
AN INFORMATIOH RETRIEVAL SYSTEM
BASED ON SUPERIMPOSED CODING

LW by

and
Hary D. Huskey

* ---- I

10 July 1969

Reproduction of this neport in whole or in part
is permitted-ror any purpose of the United
States Goveraent.

-ME ffl?1fff
L•. PROJECT GENIE REPORT NO. P-20 U ju 6 1970

-,i ~ SUPPORTED BY ARPA CONTRACT SD-185

E'. ECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley for pub.c r .lomO M6-

dviboutrOJI4 Is i)iit

AN INFORlMATION IIETRI)'WAL SYSTEYM

1IASED ON StJPERIM1POSE CODING

I-

by

John R- -Files

andI -

I11trry D . HIuskey

University of California

Santa Cruz

10 July 1969

II

The research reported on here was done at the University of

California at Santa Cruz with partial support from Project Genie
at the University off California at Berkeley (Contract SD-185 with
The Advanced Research Projects Agency of' the Department of Defense).

F-- -

II

A method of' coding a large I'ile for inf:)niat Lon retrieval is
discussed. Random superimposed coding~ of machine derived "roots' 1 of
the f ull 'ý ibulary is used to grenerate an easifly updatable and very
compact. code file. No thesaurus or dictionary or' terms is needed.
High speed is made possible by the simplicity of the searching algorithm
as well as the ability to make a search for several key words cimulta-

•r

neously. The simplicity of the search facilitates implementation of

the system on a small computer with access to a large bulk utorage

device.

I-r-

'7-•_

m-4

4I

The cost of storing information in machine-accessible form has

declined markedly in the last decade, and promises are such that one

can look forward to having complete libraries available in such form,

This places increased importance on algorithms which make it possjble

to search large files efficiently.

This paper describes an approach to thin problem.

In practice, information in p large file can be more efficiently

accessed if it in indexed in some manner. The method of indexing which

will be discussed is particularly well suited for a file which:

I) is very dynamic with both deletions and additions frequently

Occurring.

2) contains an extensive vocabulary which is to be encoded.

Both of these characteristics are frequently found in files that are to

be coded. A file of information on recently published articles about

a given subject and a card catalogue for a large library are good ex-

amples of files which require a large amount of maintenance. If up-

dating the index (code file) is expensive and time-consuming, updating

is put off until it is felt that the performance of the system has

deteriorated enough to justify the effort required to update it.

Until the updating takes place, information which is no longer of use

is still retrieved, and thle new information, if present, is in a
secondary file. Keeping a secondary file containing recent additions

avoids the serious problem of not having new material available, but

it does decrease the efficiency of the system since such a file must I.
be searched separately each time an inquiry is made of the main file.

The ability to utilize an extensive vocabulary is also very
important. In the proposed system the vocabulary to be used is

derived directly from words used in the original documents, thereby

eliminating the time-consuming and expensive practiLe of manually

abstracting and choosing indexing terms. Machine generated deriva-

tives of the original vocabulary retain more information about the

original content of the item than does the manual system of assigning

descriptors. In the manual case when selected descriptors are as-

signed to a document, associations of descriptors to words and to

S I II I I I I I I I I I I

phrases are made. Such associations are not made in exactly the same

manmer by two trained indexers, and it is likely that the associations

made by the average Lnterrogator of an information retrieval systorh

will be even more diverse. Because of this lack of uniformity in

assigning descriptors it is desirable to allow each searcher to deter-

mine words and phrases that lie wishes to associate with the concept

on which he is doing a search. Postponing such associations until

the time of the search can be accomplished only if the entire word

content is preserved in the coded form.

Ease of update and freedom of vocabulary are not enough in

themselves to make a coding algorithm worthwhile. Factors such as

speed of access, ability to make searches for combinations of words

and compactness of code file are also important considerations. All

of these characteristics will be discussed for the coding scheme

discussed below.

TINE SYSTEM

The information retrieval system which was investigated can

be divided into three components: preparation of the text, generation

of the code file, and the searching procedure. A general outline or

the first two components can be seen in Figure 1.

Since the form and format of the text to be used cam be ex-

pected to vary greatly, the text is standardized as it is read in.

Flags are set to indicate boundaries between records as well as at

the ends of lines to make it easier to reproduce the document when it

is retrieved. Also, as a measure to reduce the bulk of the file

generated (text file) extra blanks in the input text are removed. In

the pilot system the text file was generated from two sources: a

bibliography of computer science and a listing of authors and titles

from recent issues of The Souter ee Group News of the MhEE. Both of

these texts were read, processed, and stored on a disk. The text

file generated was 100,000 characters stored one character per byte.

Orce the text file is generated coding can proceed. The text

file is examined character by character until the end of a string which

-: ,

I I I I I I I I I I I I I

is to be coded (word) i encountered. The unit coded is a string of

at least three alphabetic characters surrounded by ann-alphabetic

symbols (an English word). After the word .s found ;i compared with

a list of non-content words. (i.e., the Delete List containind words

such as: of, the, and ete). If the word i found in the ijlete List

there is no further processing of that word, and the next word is

considered.

When a word is round that Is not in the Delete LisT, the trim-

ming algorithm is applied to reduce the word to a pseudo-root. Common

endings such as a, ad, ing and compound endings such ao fully (an in

carefully) are removed. By removing endings, different foans of the

same word are made into synonyms. For example, the words 'computer'

and 'cnputera' will both be reduced to the base 'ocoput.' This

derived root is then passed on to the coding procedure. (further

discussion of trimming algorithm in Appendix C).

in the coding procedure, a code word is generated for each

record. The code word can be thought of as a bit string containing

N bits, all of which are initialized to zero at the beginning of the

coding operation. When a trimmed word is to be coded into the code

word, the numeric value of the letters in the trimmed word is summed,

giving a number which is used to choose an element from the uniform

dis$tribution of integers between .. and N. Thus the resultant integer

(code value or the word) is generated by an algorithm which given the

seine trimmed word in the future will generate the identical code

svlue for that word,. By using a fixed arithmetic procedure to pro-

duce the code value for a word, the need for a dictionary of words

and assigned code values disappears. This frees the large amount

of storage which such a dictionary would occupy as well as saving

the time required to search such a file.

If for a particular word the code viO te generated is K, then
the K'th bit in the code word is set to one. The entire opration of =

finding a wotn, checking the Delete List to see if it should not be

coded, trimming, and coding is repeated until the entire record is

processed. The code word which i; umiquely determined by the words

in the record is then stored in a file (code file) along with a pointer

to the beginning of the record in the text file. This procedure in

repeated until all the records have been coded.

(Figure 1)

After coding the rile is ready for searching. The searching

program ae-opts an number of words, each of which is processed in

thoe same G anfir as the words in the text file. It is looked for in

the Delete List, trimmed, and used to generate a code value. Thin code

value is then used to produce a query, code in exactly the same way

as the uode words were produced in the code file. Upon generation of

the query code the actual search may begin. Each code word in the

code file is matched agains5 the query code to soe if the query code

is a subset of it. (Hfere a bit string X is said to be a subset of

another, Y, if when the I'bh bit in X is one, the I'th bit in Y is

also one. i.e., 101.0 is a subset of lOll while 0.01 it not.) Each

time that the query code is a subqet of the code word, the pointer to

the text file is used to gain access to the corresponding record which

can be further processed to see not only if It contains the relevant

words, but that the words are in the correct order.

The above is a brief description of tihe coding Suggested for a

file of an information scanning program. Bone detail such as the

exact procedure for romoving endings and the use of several indepen-

dently generated code values to produce multiple code words for a

given record, were not dealt with here. A more detn•tled treatment of

these problems can be found in thle appendix.

RESULTS

Fron the pilot system, dta was gained on the performance of

such a system of superimposed coding. When possible, the performance

of the superimposed coding system will be compared with that of a

threaded list and inverted file. (figures 2 and 3) The following

factors received major conslderation:

I I I I.

Read ;n týeXt
Flo. Ree-ot

inUJ 1 Cdin Poceur

1) •ase of update

2) Effect of a large vocabulary

3) Amount and type of storage

4) Speed of search

c) cost

Before MaoRing any comparisons it would be beat to give a brief doocrip-

tion of threaded libts and inverted files. An inverted file consists

of two main parts, a vocabulary file and an occurrence file. An records

axe procossed, oach significant %&.-d is looked up in the vocabulary

file. If the word has appeared before, it haa associated with it a

pointer to an area in the occurrence file; if not, then an area in the

occurrence file is set a-ide fnr the word and a pointer to the first

location in that area is entered in the vooabulary file. After this

pointer is •trl, an entry is mado in the first free location in the

corramponding area of the socowt'nce file to indicate the record in

which the word occrnred.

(Figumre ~2)

The thro•aded list or the other hand, has the aame type of

vocabulary file, but the occurrence file is Prx -•ed in a different

manner. The pointer in t•he vocabulary Nit, jiow 1rlicates a location

associated with tio fIirnt record contaiRking L.hc given word. This

location in the occuxrenoe file, in turn, contains a pointer to

another location in the occurrence file asiv-iated with the second

record whic]" contains the word, and the pointer in this lonatlon

points... Thus a linked list of all the occurrences of the word is

formed.

(FAgure 3)

1) Ease of update
In the proposed system a record can be added or deleted very

easily. To delete a record a search is performoei which will retrieve

the desired document. This produces not only the pointer to the

record in the text file but the location of the record's codc " the

code file. The code word and pointer are removed from the code file,

and their location is recorded as being free to be used for a new

entry to the code file. The space that the text was occupying in

the text file is now also free to contain new text. In order to add

d record, which is the more coninon situation, the text of the new

record is added to the text file in the first free location of a

suitable size, or at the end. It is then processed in the swiie manner

as all the other records have been. The generated code word and

pointer is inserted in the first f'ree space in the code list. Here

"no room is wasted since all of the code word and pointer combinations

"*&,e of the same length. Thus any type of update in the code file

will affect only the code for the record which is being changed.

The threaded list can be updated with slightly more effort.

The problem, and a minor one, is that the records in the occurrence

file are not all of' the same length, making it necessary to see if

there is enough room in a given free area to insert the new entry.

The inverted file on the other hand is far more difficult to

-* update than either of the others. If a record is to be removed all

_i'at need be done is to delete all pointers to it in the occurrence

file. The addition of' a record however becomes a serious problem.

!f for every word in the record there is room for an additional

pointer in the areab set aside for pointers to records containing

that word, then the update is easy. But if there is no room, a

secondary file must be set up. The number of such files will gr-ow

until it is felt that a thorough update should be made. Then the

entire text file must be re-inverted to produce a new vocabulary and

occurrence file. This is a very time-consuming and expensive project.

2) Effect of a large vocabulary

With •he uuperimposed coding there is no problem associited

with having an arbitrarily large vocabulary. This is true because

the superimposed coding does not require a table of Vocabulary words

like the inverted and threaded list files do. Since the vocabulary

file is not present and does not have to be searched, increasing the

vocabulary neither lengthens the time required for a search nor

o'ý-bulary Occurrence Tex-,

* oo nt~r 200

P wit h) Litor ii Rc rd 2

h-ReVord 2

'.'Ord 3Record 5

Record 8

FIGURE 2 Inverted File

~ ieFile P1e

urd 1 ecord3

Vlr Record 4

Record. 3

Record6

4 Record 6

Record '7Recordj

PIGMIE 3 Threaded List

'F-•
-7-

increases the amount of storage required to contain the coded informs-

tion.

3) Storage requirements

The major advantage of superimposed coding lies in the great

economy of storage. In the pilot program which was run, a text file

oV' l00,0WC byter was used Lo produce a code file requiring 3,000

bytes. This reduction of 30 to 1 from the text to the code file is

far better than the ratio obtained with the threaded list and in-

verted files. Such reductions are largest with small files such as

the one experimented with, but substantial reductions do exist even

in larger files. For example, assume that the text file consisted of -

10.000,000 bibliographic entries, each containing 12 words which will

be coded. Such an author-title entry was found to have roughly 300

characters in it, implying that the text file would be roughly 3 x 109

characters. Also assume that an average search contains at least

three significant words. Such an assumption is made on the grounds

that a search based on fewer words would tend to return more titles

than would be of interest due to the very large size of the biblio-

graphy. From these two assunptions, utilizing considerations ex-
p.lained in Appendix. B it is found that the code file would consist,

of seven code words and one pointer for each record. Each of the

code words is produced in a manner similar to the single code word
mentioned before. Now, however, once the trimmed form of the word

is found seven different procedures are applied to produce the pseudo-

random number between I and N for each of the seven code words.

Each of the code words will have 24 bits and the pointer will have 32

bits, thus indicating that each record will produce Z3 bytes o(code

in tha code file. The total size of the code file would then be

2.5 x 10 bytes, which still is a reduction of better than 10 to 1.

Such a reduction is far out of reach of an inverted file sincn

each record in the text would have to have twelve 24 bit pointers

pointing to it, and one 32 bit pointer from the record to the stari,,-

position of that record in the text file. This rcquires a total of'

h x 108 by-tes and indicates only a portion of the ruom taken utp by

the inverted fIle. It does not include 4-he vocabulary file which

would be substantial, nor doeo it encompass the overhead of the occur-

rence file consisting of markers for the boundary between lists of

pointers for a given word. Also it ignores the room which must be

set aside for a linking pointer in case i new occurrence ij to be

added.

An additional advantage of the superimposed coding lies in the

t•rpe of storage which can be used to store the code file. Since the

file will be searched serially the storage media need not be random

access. This permits the use of a cheaper sequential access storage

device such as magnetic tape, which could greatly decrease the cost

of such a system.

4) Speed of search

Evaluating the speed of a search using superimposed coding is

difficult since the speed of any implemented system depends heavily

on the characteristics of the storage media containing the code file

as well as on the obvious consideration of the size of the text file.

The search can be performed by reading the code file from bulk storage

into addressable memory and comparison of the query codes with code

words made by software. If this is done then the time required to

search the code file can be cut to loss than 6 x (the memory cycle

time of the machine) x (the total number of code words in the code

file.) This speed can be achieved due to the simplicity of the com-

parison which the software must make. The program only needs to

test iU X is a subset of Y by loading the accumulator with Y, doing

a logical AND of the accumulator with a register which contains X,

and testing to see if the accumulator equals X. When large text

files are used, and there are several independently assigned code

words for each record, time is saved by being able to reject a record

when any one of the query codes fails to be a subset of the correspond-

ing code word. By taking advantage of this a substantial amount of

time can be saved. In the previously mentioned large file, with

seven code words for each record and an average search of three words,

more than 90% of the records would be rejected after only the first

comparison was made. This means that there would be 36 memory cycle

•I

times (the time allotted for the 6 comparisons which did not have to

be made) free to taio care of the overhead in the searching program.

Even witl this simple aid fast searching procedure, a search

does require longer than the threaded list or inverted file. Although

the implementation of' this technique in software is slower there are

several methods that radically reduce the amount of time required to

search the cole file.

"U.nce the algorithm ('or searching the code file is simple, the

actual testing to see ILV X is a subset of' Y can lie done with very

asimple hardware. 3.1 the I'Li bit of' X is .1. and tho IIth- bit of Y i's

0 'or any or thle values or' I P'rolm 0 through 7, then X in not a subhat

of Y and the value of' Z will be 1. Xt' in no case is hit I or' Y:,Q

and bit I of X-l, then X is a subset of Y and Z i-s 0.

(Figure 4)

Considering the speed of present day circuitry the time required

to search a code file would be reduced to the tine required to transfer

the data from bulk storage. Since the hardware is so simple, it is

practical to scan data from several sources simultaneously. An al-

uernatixv. to havin•1 , the file searched externally would be to wire

into read only -miriory the commands 1.o test for a aubuct.- B3y adding
1ils tru, iirs to USt tihu next code word and repeat tile operation Ii'

-lih Ltst t'ai].•, the near'ch will proceed through core mnemory at a

rapid rat~e making, on],y une corpe aeces foi- each test. The end of' the

list or" code words can be marked by a code word containin6 all ones.

This has any possible query as a subset and would assure that the

loop was interrupted at that point.

A second technique which would reduce the time required to

search the file is to sort it in some manner. One such method which

generates a superimposed 8 bit code from 24 bit code is discussed in

Appendix A. Other methods such as carefully dividing code file into

small (groups and then doing a logical OR of the chosen code words

to Corm rejector vectors have been suggested.1 •

_..

iHa-dware to Test 4f
X Is a Subset of Y

Bitt

~t6 Y ___

1

FTGURTR It

Iiardwa~re to Test If' X ise a Sulbaet of~ y

-':---- -- - - - - - - -- - .-- -•-

In comparing the spoed of t-'ei search it should be noted that

with superimposed coding and when aear•hing for several words, the

search for all of the words Is carried out at once.* In the threaded I-
list and inverted file a search for several words is made by making

a list of occurrences for each word and then finding the intersection
,- - of the lists. Due to this parallelism of the search superimposed

coding can handle a multiple word search in a more efficient manner
-. - . than the other two method. _

At first glanoe it appeared that searching, the entire code

file would preclude the use or superniposed coding on a large Vile.

With moro careful exatination, however, it is apparont that thlis

type of' code file can be searched as rapidly as either the threaded V
list or the "aster inverted file. Factors which lead to this con-

clusion include:

A) The code file search can easily be implemented in hardware.

Such hardware is simple and very fast as well as being able
to handle several streams of data simultaneously.

B) If several sequential access devices or a random access

storage device is used then the code tile may be structured

to allow large blocks of the code file to be rejected with

only one tesa..

C) The superimposed coded file is much more efficient at

handling searches for records contai•nng several desiredS~keys.I

5) Cost

The cost of implementing an information retrieval system

iutilizing the type of superimposed coding suggested would be sub-

stantially less than the cost of implementing a threaded list or in-

verted file using the same text file. The reasons for this stem from

the reduced requirement for computational capability of the computer,

as well as a substantial reduction in the amount of storage required

for the coded information.

All three s.yntcms, rnwt, (a(:(C~tQ a larg•p amount o :tLur:L e to

-11-

tthe actual text. This, in all of the cases, can be either directly

accessible to the computer such as a large disk file, or may be only

machine referable nuch as a maohl.,e controllable microfilm display,

like the proposed system at the University of California, Santa Cruz

or the one being utad as pa•rt of Project Intrex at M.I.T.> The

diff'erenco of storage cost Is not found in the storage of the text

file but in the comparison of the cost ot the storage of the code

file of the superl~mposed colingj system with the cosc of storing the

vocabulary and occurrence tiles of the thr'eaded li•t and inverted

file. The cWe file is smaller and can be stored in a sequential

access device rather than a random access device. Both of these

factors tend to reduce the cost of the system.

If scanning of the code file is implemented in hardware then

the requirements on the computer become verv small. All that it is

responsible foor is processing the words in the inquiry in order to

generate the query codes, and then, while the search is in progress,

stand by to store the pointers to the text file which the one or,
possibly seoeral, hardware scanuiers pass to it.

The trial program which processed the questions, generated

the query codes and handed the scarchnifn -isoftware, wasui.-•.
stantially under 16,000 bytes of code on an IBlM 1130 with no over-

laying. Thus the requirement for expensive core storage is low.
The cost of the h&rdware which would do the testing for the query

code being a subset of' the code word and its interfacing with the

computer would be very small compared to the cost of the necessary

storage devices.

One phenomenon which is foand in the superinmposed coding and

not in come other forms of coding is the presence of spurious matches.

These ocecur because, in a given code word the fact that the I'th bit

is zero signifies that ary word assigned the code value I Is not in

the record. The converse is noL true. Since many vocabulary words

would cause the I'th bit to be one, the I'th bit being, equal to one,

does not indicate that a specific word is present. By generating

several independent code words for each record the nzumber of times

.. : :

thjat euporimnponing will cause an irre.elovant record to be retrieved

can be made arbitrarily amall. Taklo for example the case where

twelve words warp coded Into seven 21 bit code words. In that case

hhe probability that a record in which all seven of' the query codae

for a question were o& subset of the code words, and none of the bhree

words involved in the search were in the given record wans 3 x l10O.

w(ee formula in Appe-ndix B3, bdM.3ý, aW-.8, qo-m')

SSince the number of such spurious matches can be limited to

any dasired extent, although not entirely eliminated, it in con-

venient to perform some final verifying operation to assure that the

words npeoifiod in the search are actually present. Thin vriflca-

tion in the cace of the pilot program was accomplished as a side

result of the check to see that the desired words occurred in the

specified order. Consequently there was no penalty in making thin

extra check on the records which were retrieved.

The requirement that additional checking be done is not an

unreasonable one. The fact that a document contains the words in

which one is interested does not necessarily indicate that the docu-

zment is of interest. Therefore any key word searching pr"cedure can

only be the first step of an information retrieval system. The job

of a key word search is to quickly reject records that do not contain

information of interest. In this sense any of the three types of

key word information retrieval systems which have been mentioned are

more properly information screening procedures which can rapidly

eliminate a laxge portion of the text file as unlikely to contain

relevant information. Such a system should be used to identify those

records which warrant further and more extensive examination.

CONCLUSION

The method of superimposed coding which has been discussed is

a simple and relatively inexpensive manner of scanning a largu text

Vile. With a simple check for spurious matches made after the Re-cxh,

such a system can stand alone as a key word information rctrieval

nsysem. On the other hand since Lhe actual scannleingv of thM ,,xt

can be easily ancd rapidly haudJx'd by 1ko'Ipheral hardwa-cr 'Ah, -ne'J•.,kil

-43-

in vory attraotivo an a firt satao a0roonigrl mothod, Although the

prospect or heving; to searchl •h entire code file for every inquiry,

at firat glance, appvaro diocouraging, tho aimplicity of Lho socanning

algoritlh and tho ease wiLh which soaroheo can bo carried out In

parallal makea such a linear soarch very roasonable.

I . 1

lh$

APPENDIX A

Basidea implementation in hardware, measuren can be taken to

eliminatu the need for searohintg the entiro coda rilO, tium reducing

the required search Lime, One mannur of doir.1; Lhis is to use the

l'irasL coda word o1 ouch record to generate a shortinwd coda word for

it. In the case of a 234 bit code word, thie ff'ist three bit•s of tho
socond level code word is the logical OR of the first three bits of-

the first level code word. Bits 4 through 6 could also be ORed and

used as the second bit of the oCoond level code word. Continuing

WhiG process an 8 bit second level code word is produced b~aud on

the bits 1 through 214 of the original code word. Since there are

only -- 6 of these second level oodes possible, with each reoord's

'firat oode word being mapped into one and only one of theoe claanon,

the file is partivioned into ZA6 sets charaoterized by the numbers

0 through 2)5, When it is time to search the code file, the element

of the partition that the first query code belongs to is dAtomined.

If for example the query code in 000l000000lO000000000000 it would

belong to set 81 (01010100). The only sots which would have to be

searched would be those characterized by numbers which have 84 as a

subset. (i.e., 11111111, 11111110, 11111100 would have to be searched,

but 1.111011 would not have to he examined further.) T1here wo-l,1 L.e

only 32 out of' the :() seLs which would have to bc searchad, thus tho

n-Luber of o ode words which would have to be compared with the query

codos would be reduced. Using the scheme of coding 12 words Into ;.At

bits would cause roughly 10% of the code file to be classiried as

- (11111111) and Just over 3%. to be classified by aL nimber whose

binary representation contains 7 ones sad one zero. Due to the non-

uniform distribution o1' the code words over the 2*, sett, thLe reduction

in the amouit of the code file Lo be searched would not be the /0$1

suggested by the r'eduction in the number o0' sets which must be -earchud.

The reduction would, however, be in the neighborhood of J30%. (j/i of

the sets whose binary representation has seven ones and one zero and

111/2•1 of those with six ones and Lwo zeros can be eliminated.

S~ -- 11) -

APPLNTDIX B

Since coare was taken to assign the code values using numbers

from a uniforin distribution, thc expectLed number of spurious match s

can be pri('led. By varyint, the len(ýth and number of the code

words the frequency of spurious matches can be controlled. The nurhber

of spurilous matches is a function of the bit density, bd (i.e., the

number of ones in the code word divided by the nuinber of bits in the

code word); the number of code words per record, cw; the nimber of ones

in the query code, qc; and the number of records which are ceded

into the code file N.

The expected number of spurioue matches - Nx(bd) cw x qe

The number of' bits used to cfle one record ?z cw x (the number

of' bits in the code word)

1i3v keeping the itunber of" bits used and the nuraber or' ones in a code

word constant in the above two equationn, it is found thtd; the minimum

number of spurious matches occurs when the number of' bits in the code

word is e times the number of ones in the code word. That is when the
bit density in 1/c. The number of bits B to use for the code word

when there are M words to be coded in each record is roughly 2.2M.

This is found by considering that the probability that a given position
M

will be left blank is (1-]./B) . The expected bit density would then
M

be 1-(l-i/B) . Setting this equal to the 1/2 anid solving for 13 yields

the desired results. 3

Sga

[] ,. " ,1

Sm'lI
__'I-AI

APPENDIX C

The trimming program was divided into three sections. The first
step removes all 'e's, 'd's and 's's from the end of the word. These

letters were removed since there are many words such aa 'attractions'

which have compound endings terminating In s, es, d, and ed. By re-

moving these letters, in the above, the suffix, 'tion', is left on

the end of the word where it can be easily identified and removed in

a later section of the program. Once this operation is completed the

endings 'er' then 'al' and then 'ly' are searched for and removed if
found. This procedure removes endings such as the 'ally' on the end

of 'functionally' and again is a technique to handle compound endings.

After the above two trimmings have been accomplished, +.he Trim

List is consulted. Suffixes found in the Trim List are arranged in

order by length, starting with the longest. The ending found in the
list is compared letter by letter with corresponding letters on the

end of the word remaining aftu' rhe fthc t two trimming stages have

been completed. Since all of the 's's, 'e's and 'd's have been re-
moved, the suffixes are in an unusual form., For example, 'ness' would
have been trixmmed to 'n' by the first stage of the trimmitig procedure.

Also 'ance' appears as 'ane' in the Trim List.

The reason for having suffixes in this form can be seen by

considering the problem of trimming the two words 'finance' and
'financed'. In the second case, when the 'ed' is found on the end

of the word, it is difficult to decide if the 'ed' or just the 'd'
should be removed. The decision was made to remove the 'ed'. This

means that to trim 'financed', 'ane' must be in the Trim List.
However, 'finance' which should be reduced to the same pseudo-root

requires either the ending 'ance' to appear in the list or the 'e'

removed before the ending is compared with endings in the Trim List.

The second course of action was chosen because it reduces the length
of the Trimi List and makes the first step of the trimming, operation

very simple.

The comparison of the endings in the Trim List is continued

until either the l:ist is exhausted or a match is Mound and the ending

-17-

removed. There are two more checks to be made on the trimmed word.
First, the lasu two letters of the word are compared. If they are

the same, then the last letter is removed. This is done so that

a word such as 'trimming' will be cut back to 'trim'. First the 'ing'
is removed to give 'trimm' and then the second 'ni removed to give the

desired root.

The final action provides some protection against trimming

words too severely. The word 'deeds' would be trimmed to nothing.

To prevent such loss of information, ary word. which has been reduced
to less than three letters is restored to a length of three. At this

point the word is considered trimmed.

(Figure 5)

There i' - major problem Which occurs with the use of a
trimming algorithm. Words which do not convey the same meaning can

be reduced to the sane root. An example would be that both 'informa-

tion' and 'intornal' are reduced to 'inform'. Such a result may be

tundesirable; it is unlikely that when searching for one of the words,

the other would be of interest. Unfortunately the effect of this type
of false retrieval could not be observed in the small pilot program.

Such confusion of terns was rare due to the specialized nature of the

text. In a system utilizing a larger text file containing a more

generalized vocabulary, the number of such erroneous replies may

become substantial. If a system utilizing a trimmed form of the
vocabulary words - used for the first stage of an information re-

Grleval system, the problem of such extra records is not a serious

one, since the purpose of the search is to locate informati(in-rich
sections of' the text. Further examination would determine whether

the record is of interest or nuct.

The decision to utilize a trimming algorithm in the pilot pro-

gram was based on the feeling that the error of failing to retrieve

information was less tolerable than retrieving some irrelevant informa-

tion.

Last -e~e. Y4

Las

Oogoy ful

ene nt Val

icant ial

ition Cal

ation i1%

orial one

itinlg anc

ating iz

istic ry

ancy 1v

mont it

ient at

ator or

ica). or

ying cen

0--, al

eou ag

est i d

ent.

ion ab

ern y

dom n

-19-

APPENDIX D

DELETE LIST

a had what

i his will

am how with

an may being

as nor would

go our every

in the might

is was other

it also since

so does their

to from there

we have these

all more which

and must while

are that would

but this should

can thus another

-for ways however

had were either

without

_1)

SB IBLIOGRA.MlY

1. Casey, Robert S. et. al.: Carl S. Wise, "Mathematical Analysis of

Coding Systems," Plniched Cards, Their Ap!lications to Science and

Industry, Reinhold Publishing Company, New York, 1958.

2. Lowe, Thomas C.: D Pn les for an On-line Information

R etrieval System, Doctoral dissertation (ulmiitted to the University

of Pennsylvania, Philadelphia, 1966.

3. Mooers, Calvin N.: "Coding, Information Retrieval, and the Rapid

Selector", American Documentation, 4:225, Oct. 19)0.

4. Moore, Robert T.: "A Screening Method for Large Information Re-

trieval Systems", Joint Computer Conference, 19:259, 1961.

5. Overboge, Carl F. et. al.: Massachusetts Institute of Technolog

Project Intrex, Semi-annual Activity Report, l1, March 1968 to 15

SepteAber 1968, Cambrý 'ge Massachusetts, 1968.

6. Parker, Edwin B.- : e (Stanford Public Information Retrieval

Service), 1968 Annual Report to the National Science Foundation

(Office of Science Information Service), Project GN 600, Project

GN 742, January 1969.

(If

- 1*
: -
TI

