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ABSTRACT

The circumferential waves or creeping waves propagate in
both media separated by a rough interface in an alterna‘irg
fashion, and are reviewed from a theoretical point of view;
the associated velocity of propagation dependeiace on the inter-
face surface roughness is shown to be reasonably valid for
microscale roughness determination. Experimental results are
also included to support theory, and certain empirical relation-
ships are derived as an example of the application of this
technique.

INTRODUCTION

The roughness criterion1 for random rough surfaces is
expressed as:

a > A/8sine for rough surfaces

o < A/8:.nd for smooth surfaces

where ¢ = standard deviation of heights above and below the
mean; J = wavelengti; and @ = incident angle, and thus roughness
is a relative measurement and depends exclusively on the inci-
dent wavelength “71” and the angle of incidence’®’. Since in
practice, actual measurement of microscale surface roughness on
a relatively smooth surface is impossible, this paper offers a
technique to obtain a measure of such microscale roughncss in
one manner.

Experimental resultsz'3'4 in combination with theoretical
discussions3:,6,7 on the subject of circumferential waves on
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cylindrical surfaces indicate that circumferential wave velocity
vary with tue incident wavelength. ' This, coupled with the fact
that the «r-eping wave must traverse both media at tho interface
in a randor manaer, led to the conclusion9 that this velocity
should be . function of the interface roughness for a given wave-
length. A physical interpretation of this phenomena is given in
Fig. 1 whei. the surface wave is shown to propagate in both
materials.

THEORY AND EXPERIMENT

The portion of the wave that propagates in the solid
material (cylinder) is determined by the relative roughness of
the surface. Figure 2 illustrates a model surface in which, for
mathematical convenience, the height “h’' is fixed and ‘X' is
the variable. The variation of 'x“ with respect to "1" {both
have the samc units) represents the assumed roughness of the
surface.
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The experimental results and theoretical work show4 that a
maximum circumferential velocity is obtained at a certain opti-
mum frequency while the velocity diminishes on botih sides of
the optimunt freguency as Fig. 3 illustrates. One nust also
observe
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the discrepancy bctween the theoretical and experimental curves;
it can be explaine¢d by the fact that the roughness model is an
idealized one; mary other side effects are ignored fcr simplify-
ing the illustration.

The above discussion shows tiat in order to determine the
microscale roughness in terms of “x” , the theoretical frequency
versus velocity curves should be §uperimposed on the expcrimental
curves. The value of X optimum for such a plot (see Fig. 3)
corresponds to most of the propagation occuring in the solid and
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hence the no “imum civcunferciitial veloeity. Tt is further
assumed the: the marimum rouvghness corresponds to opriram X
{see Fig. <' implying thar, in a first order model, rouj.aess
is propor* nnal to the cirzumferential wave 01001tj.
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Thus the expcrimental velocity may be related to X' by the
following equ atica

x 1 x -1
@ = SEEss
Vsoun Vs Vespier (1)
or <
'. " % = Vioun ( Vi ’xp) (2)
Vrenn (Ve - Vsouin®

These anvtjon“ are valid for the model surface of Fig. 2.
The apparent discrepancy between the experimental velocity vs.
"x" curve and unan. (2), where ‘x” is a single valucd function
of Vexper , is due to the oversimplified surface model with cou-
stant “p' . In practice the surface ronghness F'* is both a

function of X" ard h'
B -Rix.h) (3)

Hence it is possinle to have a given roughness and the associated
circumferential violocity for two different values of "’ and it
requires a modification of Eq. (2) in order to account for the
second order corrcction., However, for the simple case wiere "k
is a constant, Fig. 4 shows the complete agrcomcnt between theory
and experimental rosults. For instance, as “x" approaches zero 1
or infinity a smooth surface results (i.,e.,Rwiv. ) and the prop-
agation through the solid is minimized and so is the magnitude
of the circumfer.ntial wave velocity. '
H ]
In an effort to include the N variaticen, it is assumed
that *h" is a function cof "%’ , and the plot of velocity versus x'
(Fig. 3) is empirically mcdified from £g. (l)to «xpress its
curvaturc as bein; the result of its ellipt.cal shaipe whose
center is (v, , ) and whosc semi-axes are o and "p“ or
{3~ x) + =g i (4)
g b B
The informaticn for the velocities in the solid and the fluid
are contained in constants ‘'a” and ‘h’ since the plot of cir-
cumferentiael velucity versus fquuenrv lb uniqgue for each ma-
terial. Thus a specification of ‘a’ and 'k, as functions of
the appropriate sound velocities, in ecach material, then for
t:llecperim. o, E. (4) would yicld "x’.




b CONCLUSIONS

The circumfercntial or crevping waves propagate in both
materials forming an interface. The percent length of propaga-
tion path in each material is o function of the relative rough-
ness F? or the wavelength

! A first order microscale roughness criterion in terms of
the measurecd circumferential wave velocity as a function of tae 4
f frequency is offered as a useful tool for hithertc impossible to 1
i measure scale of roughness. Furthermore, a second corder mocel |
involving second degree relationship between the surface height
parameter and the roughnes: parameter is also proposed.

Moreover, experimental verification of the first order model ]
is given for aluminum cylinder and advance work on this topic is :
under way at the University of Houston.
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