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I SUMMARY

> Measurements have-been made of the wall pressure fluctuatin and
the response of the panel structure. The plate oexcited -by a
boundary layer (M=03) and shock inpingement (' angle) the ,flow
downstream of the shock is separated. The wall pressure fluctuatihs
and panel displacement are notably greater than the case withut the
shock present.

The response of a plate, clamped in a baffle is determined. The
plate is coupled acoustically to a uniformly moving fluid. The
boundary-layer exciting the plate does not interact with the acoustic
field and is furthermore taken to be spatially uncorrelated.
Finally, the radiation is determined over the solid angle of the
Mach cone. The response is derived using finite Fourier transforms
and then solving the resulting algebraic equation by expressing the
solution expanded in a complete set of functions, a process which
leads to an infinite set of linear equations. The right-hand side
of this system of equations is a stochastic variable so that per-
forming an ensemble average the resulting equation is solved for
the covariance matrix which is subsequently diagonalized to yield the
power spectral density in the statistically independent states
(degrees of freedom).'

Description of the actual computations will be reported at a later
date.

I

f

Iq



1. INTRODUCTVON

A large aircraft in supersonic flight uriargoes large variations In flow field

over its surface. This paper Is oancorned with studying the response of

a structure excited by convected turbalene at nearly zero pressure gradient
and by sock-boundary layer interaction, with the inclusion of the coupling

due to the acoustic field on each side of a pael. Shock waves on thin-walled

structures can Impose severe loading problems, the most common of

which is the self-induced oscillation which is generated by an oscillating

shock. The shock wave can easily couple with the forcing frequency present

in the environment, including panel resonances.!I
From interior noise point of view, the upper region of the airplane fuse-

lags is considered the principal noise radiator. The aerodynamics In

this region are known from the Prandtl-Mayer relation, and further down-

stream by shock-boundary interaction. In addition, the fuselage skin ex-

periences traveling shock waves which run up and down the skin during the

acceleration period, which might last twenty minutes for a Mach 3 airplane.

In supersonic flight, the vibration of the surface is influenced by the back

pressure resulting from the radiation of sound on both sides of the surface,
so that, the surface motion and radiation are coupled phenomena. The

interior noise level is determined by skin panel vibrations. For radiation
below the critical frequency, the major source of sound arises from the

Interaction of the bending wave with the discontinuity of the boundary.

Above the critical frequency, the action of discontinuities like tear stoppers,

etc., have little effect on altering sound pressure level, since the sound

radiated by the panel is in the form of Mach wave radiation.

The experiment described in this paper indicates that some simplifications

in the model can be made, viz. (1) that there is no significant interaction

between the plate and the aerodynamic forces on the plate; and (2) that the

panel displacement is small in comparison to its thickness so that thin
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plate theory may be used. The plate, is bowever, acoustically coupled to

the external flow field and the internal cavity.

Lyamshev (1968) has solved a similar problem for a complex stnxeture.

Dowell (1969) computed the transient, non-linear response of a simply
supported plate coupled to an external flow field and a cavity. DIygdlo

(1967) presented a linear analysis allowing mutual interaction between the

plate and the external flow. Fahy and Pretlove (1967) have computed a first

order approximation to the acoustic coupling of a flexible duct wall to the

flow field through the duct. Maidanek (1966) considers an Infinite, orthotropic

plate coupled acoustically to an external flow field. Numerous other investi-

gations have been reported on acoustically coupled structures with varying

degrees of approximation, Irgens and Brand (1968), White and Cottis (1968),

Strawderman (1967), Creighton (1970), Ffowcs-Williams (1966), Crighton

and Ffowcs-Williams (1969), Dolgova (1969), Feit (1966), Lapin (1967),

Pallor and Pupyrev (1967).
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2. MEASUREMENTS

a) The Experimental Arrangement

The flow investigated was the sidewall boundary layer of the Jet Propulsion

Laboratory 20-inch supersonic wind tunnel- the shock was induced by a

300 wedge mounted outside the boundary layer, off-center and on the same

side that the measurements were made. This was done to offset the position

of the reflected shock from the opposite wall. The position of the shock was

determined by observing the displacement of a line of tufts, and by a static

pressure survey. For zero pressure gradient detail of flow field and panel

response has been previously reported by Maestrello (1968).

The experiment was arranged to perform three basic measurements:

inean velocity profile ahead of the shock with static pressure distribution

across the shock, wail pressure fluctuations and measurement of displace-

ment response of a simple panel structure. The titanium* test panel

measured 12 x 6 x .062 Inches and was brazed on all four sides of a 3/4

inch x 3/4 inch titanium frame. The brazing was intended to simulate the j
clamped edge condition. The panel formed most of one wall of a rigid

cavity measuring 14 x 8 x 6.6 inches. The other surface of the panel was

exposed to the flow field. The pressure differential across the panel was

variable. The experiment was conducted at two pressure differentials,

viz, 0.06 and 14 psi; the latter corresponds to the actual differential

between wind tunnel pressure and local ambient.

The side wall of the tunnel was modified to accommodate two identical,

rigid, steel plates, which supported the necessary Instrumentation. One

plate contained an array of holes In which pressure transducers were

mounted. The pi-essure transducers were mounted on the center-line

of the tunnel in the streamv'ise direction at the same locations where the

*TI-6AL-4V Titanium alloy containing 6% aluminum, 4% vanadium, 90% titanium



4

mean static pressure measurements were made. Two typea of pressure

transducers were used; one, the conventional lead-zirconate titanate type

made by Atlantic Research, the other a capacitance type made by Photocon

Corporation with sensitive diameters of 0. 06 inch and 0. 09 inch respectively.

Correction due to finite size transducers was made adopting the Corcos

(1963) approach. The panel displacement was measured with Photocon

capacitance, displacement transducers mounted on brackets which could

slide along a bar and could be set precisely by means of a screw mechanism.

The output of both pressure transducers and displacement transducer were

recorded on Ampex FR-1800H 14-channel tape, recorded In the FM mode.

Four channels were used for simultaneously recording data for correlation

measurements. The maximum dynamic range was obtained by splitting

each data channel into two tape tracks through phase matched filters to

separate the lower and higher frequencies.

b) The Wall Pressure Field

Measurements indicated that the flow field In front of the shock closely

approximated the properties of equilibrium of an adiabatic flat-plate boundary

layer (Maestrello 1988'. The flow In front of the shock has the following

characteristics: Mach number M = 3.03, free stream velocitye

U = 2,100 ft/sec, total temperature Tt = 567° R, boundary layer thickness
et

8 = 1.37 inch. boundary layer displacement thickness 8" = 0.445 inch,

momentum thickness = 0.083 inch, Reynolds number R = U 8/U =

4.87 x 105, skin friction coefficient Cf = 1.27 x IC 3 , and C1 R= 39.8

Coles parameter (Coles 1964).

The pressure ratio across the shock is a well defined function of Mach

number, for a 15" half-cone angle, the pressure ratio ic approximately

8.5. Experimental results show, however, that this ratio Is considerably

smaller (A p = 2.3). It is postulated that interaction with an expansion

I IN
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wave originating at the base of the wedge is responsible for lowering the

pressure differential and producing an effective decay downstream,

Figure 1. In the present case, the wedge angle induces a shock in the boundary

layer large enough to cause a separation: farther downstream, the flow be-

comes reattached and goes back to the flat plate condition. This transition

takes place within a few boundary layer thicknesses.

Downstream of the shock, the ratio of the mean pressure distribution

PsdiPs and the ratio of the rms pressure fluctuation P'di' s vary with

a consistent relationship and both reach a maximum at x/8 = 2.3, where

subscripts s and sd, mean upstream and downstream of the shock,

respectively, Figure 1. Beyond x/S - 6 the effect of the shock on the static

pressure vanishes. Kistler (1963) indicates a similar behavior between

mean and fluctuating pressure in the separated region ahead of a forward-

facing step at the same Mach number and upstream Reynolds number. The

differences in the flow geometry only alter the magnitude of the pressure,

in that the ratio of the mean pressure to the fluctuating pressure psd!Ps
sdpsd

14 In the present experiment while Kistler found that pd Psd- 32 .

The normalized power spectral density measured upstream and downstream

of the shock are shown in Figure 2. The spectra are normalized by requiring

4r(w) d = i in order to demonstrate the deviation from the zero pressure

gradient ease. For the spectra Just downstream of the shock more energy

is concentrated in a narrow low frequency band while further downstream at

x/ 4, the energy is distributed over a much broader bandwidth and

approaches the shape and level of the spectrum taken upstream of the

shock. The normalized power spectral density found upstream of the

shock corresponds to the zero pressure gradient, and peaks at

W6 ef 2 while downstream the spectral density is modified in
e

the region below the peak. It Is significant that by altering the local flow



too

04)



7

X 0.001.0 > -

0.33

0 0.75
-A 0.25

0 3.80

0. 1 : a- - o' m  - - °

/0

0.01 /.-Zero Pressure X
Gradient Spectrum

Nx

0.0017

0.000 - 1 [till I I I I I,,If
0.01 0.10 1.0 10 100

Ue

Figure 2. Power Spectral Density of the Wall Pressure Fluctuations



8

008-

0.6

0.4-

R (6,T) .5in

0.2 0' ~4.75 in.

0.2 0

00

-0.2- ----- 2.5 in.

-0.2

0 0.1 0.2 0.3 0.4 0.5

mn sec.

Figure 3. Longitudinal Cross-Correlati on of
The Wall Pressure



9

conditions, only the low frequency ends of the spectra are appreciably

affected. It is noticed that the pressure fluctuation measurements at x/8

0 where the shock impinges show a noUceable deviation from the general

pattern in the higher frequencies. This Is attributed to an Intermittant

signal superimposed on the regular pressure signal as seen on the oscillo-

scope. It is possibly due to the characteristic fanning of the shock as It

goes through the boundary layer,

Measurements of the cross-correlation are shown In Figure 3. The cross-

correlation characteristics are a function of position downstream of the

shock. The cross-correlation between positions x/8 = 0.33 and x/8 = 3.80,

the farthest apart,has characteristics similar to those found at zero pres-

sure gradient boundary layer in that the ratio between the convection velocity

and the freestream velocity U c/U = 0.72 and that the correlation between

those two points is still significant. The cross correlation of the shortest

distance between x/i = 0.33 and x/8 = 0.75, shows that the convection

velocity is very low U c/U e = 0.13 and the correlation is very weak. The

correlation between x/8 = 0,33 and x/8 = 2,25, where x/3 = 2.25 cor-

responds to the maximum static pressure ratio is negative. The shock

induces the boundary layer to separate and the recirculation within the separa-

tion region permits the sign of the pressure to change. Kistler argued that

the fluctuating pressure in the separated region arises from the combined

action of the turbulent shear layer and the recirculating flow. The picture,

however, is not yet clear enough to develop a model for time dependent

loading, since the geometry of the separated region is the primary variable

in estimating the pressure amplitude and resulting phase.

No measurement of the lateral cross-correlation was made during the test;

however, for the purpose of computing the response of the panel, it is assumed

that the pressure decays similarly to that in the case of zero pressure gradient

e a where a 2 = 0.26 and 1 is the spatial separation (Maestrello 1968).
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This choice overestimates the lateral cross-correlation, since the flow

field is far from being homogeneous. However, the overestimation may

not be exceeded by a factor of 2.

c) The Panel Response Field

Measurements were made of the power spectral density and cross-correlation

of the displacement. Typical results are shown in Figures 4, and 5 for a

pressure differential of 14 psi. The static deflection of the panel was 0.06

inches at the center, and the dynamic deflection was small in comparison

with its thickness.

The displacement spectral density at the center of the panel show pronounced

spikes, the lowest frequency of which corresponds to the lowest mode of the

panel. The accuracy beyond a frequency of 3100 Hz was poor due to the

spatial resolution of the capacitance transducer, and therefore the spectrum

beyond 3100 Hz was ignored.

Space-time correlation measurements were made along the panel centerline

from x = x' =3 in. y = y' = 3 in. at one-inch intervals up to a maximum

separation of 6 in. The correlogram indicates a convected feature with

a phase velocity d: U = 770 ft/sec. This convection velocity corres-cp
ponds to that found in the previous experiment using the same arrangements,

except that no shock was present (Maestrello 1968).

In comparing the results of the present and previous experiments, it is

concluded that the sign change of the convection velocity is attributed to

the presence of the shock. Furthermore, the cross-correlation of the

wall pressure also reflects a phase change for a separation of 2.5 inches,

which is in the same location as the phase change which occurs for the

displacement correlation in Figure 5.
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3. ANALYSIS OF ACOUSTICALLY COUPLED PANELS

a. Two-dimensional Finite Panel

The vibration of the panel is induced by an arbitrary, external pressure

field F. It is assumed that the panel motion does not interact with the

turbulent boundary layer, i. e., the forcing field is not altered by the

plate motion. However, the panel is acoustically coupled to the fluid on

both sides of the panel,

The equation of motion for an harmonic component of the displacement,

W, of a thin panel with a force, F, and a pressure differential, P2 "P1 +

acting upon it, obeys the equation

2 2B A2W_ -p w W = F + p 2 -p, + 8p (1)

where the bending stiffness, B, may include hysteretic damping, and where

Pp is the mes. Per unit area of the panel, o is the angular frequency, P2

is the acoustic pressure on the streamside of the panel, p1 is the acoustic

pressure below the panel and 8 is the static pressure differential.
p

The perturbation pressures, p1 and p2 9 are related to the velocity poten-

tials, which satisfy time-independent wave equations in the appropriate

regions. In solving these equations one uses a boundary condition which

relates the potentials to the panel displacement. These relationships may

be made more obvious through the use of Green's theorem. Thus, it is

required to solve a system of three coupled partial differential equations,

the first of which is not separable for the clamped edge boundary condition.

pI and P2 may be found directly as function of W. Thus, consider first

the cavity. The acoustic velocity potential, (P, satisfies the Helmholtz

equation

9 + k 2 = o (2)
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with boundary condition 4P 0 on all walls except on the plate

where -I OW.

The Greens function, g, for a cavIty with hard walls satisfies the

equation

A gffll r k kg j1r) = _4 ff (-p) (3)

and is given by Morse and Feshbach, Vol. H (1953)

mmx rx n7y nryt

Cos m_ aCosa-a Cos -M- Cos-

8a aC b
acbc m=O O n kmn sln (ic nd) (

(4)

cos k mn z cos k mn (Zl + d) z > zl

cos k z' cos k (z + d) z < z'
mn mn

where k2  =k2  -f--) (n7T-1

n c a C) c

and k,= wo/c where c is the speed of sound in the cavity of dimen-
O c

sions a , b , d"

By applying Green's theorem, the Integral equation for qis obtained,

y) g Ri_# -j-7 d r OR)a(

plate '

Now using the boundary conditions, this becomes

-- g(r) W (r)dr (b)

plate

it
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The pressure p1 is related te by

Pe i a 1  -iP(.P

where p is mass density of the fluid in the cavity.

To compute I2, it will be more convenient to operate with the differential

equation. Let the acoustic velocity potential in the flow field be denoted

by 0. By applying the Fourier transform on the (x, y) coordinates,

one gets the ordinary differential equation

?0 (a 2) A
dz2

where

42 k+ (M2 1) a 2 2 k Ma-

-f ley) A
(X, y, Z) =Jf f I de' x,3, z)

-00 -CO

K = co/c, M is the flow Aach number and c the speed of sound in the

region above the plate. Only the positive exponential solution to equation

(6) is chosen, since it is the solution representing outgoing waves.

Thus,

$ (a,3, z) = A (a, 3) 6, (7a)

The boundary condition, arising from the continuity of normal displacement
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Idif A

dz!I

where the differential operator

a
L= k i M --

Ox

Thus,

Now, since

a b
A i ' -b i(ax4 Yv')

LW = dx'y' e- LW (xy')

0 0

then

a b

X /, y, 1 --Z) dx'dy' G x, y, z x', y', o) LW (x', y') (8)

0 0

where

GO ei[a (r - x') + (yy) +4(z -Z')
G {C IP ) JP adp- (9)

which is found in kppendix A to be for supersonic flow,

i K (Mu + Vui2 - 2
2 ri eI

o outside the Mach cone

I



and for subsonic flow,

G~i~rI 1C7 I(MU (U0
2171 e

k x- X
exceptin this case K =Vl and u rQ~

A
If LW had been evaluated as

A
(k -aM) W

then equation (8) would read

a b
, yZ) e- 2 / / dxldy , W (X11 y') L*G (k, y, zt x', y, z') (!

This equation is formally correct If L*G Is interpreted as a distribution,

which Is to say that one partially Integrates to obtain equation (8).

Now using equation (8)

p2 (x y, z)=-tpoe L'(x, y, z)
2a2o a

- 02  dxtdy' G (x, y, z ix', y', o)ILJ W (xI, y')
47o o (12)

where p0 is the density of the fluid above the plate, and where partial

integration has been utilized. Had equation (11) been used instead,

equation (12) would read

2Sp 0c a b
P2 (x, y, z) 42 ffd'dy' W (, y) G (G , y, z jx, y', o) (i3)

0 0
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which is reducible to equation (12) by partial integration. Thus, supersonic

flow does not present any especial difficulty aside from the fact that G

is singular all along the Mach cone, and this is an integrable singularity.

Inserting the expressions for p2 and p1 into equation (1) results in a

single partial integro-differential equation to solve, viz.,

BS W - W W=F+ + * 2 {x y, X, y') 1T42W (x, y')dx~dy?
4 T0 0

c JJ (Xyx, y) W (x, y) dx dy (14)
4 c fc g c c c

plate

where the subscript c refers to the cavity, thus

a -a
c

x X+
c 2

b -b
C

Yc =y I 2

Equation (14) presents a formidable computational problem. The

Green's function g is known as an infinite series which is slow to

converge (1/n) thus compounding the difficulty by an increasing

number of necessary operations to maintain a given accuracy.

An alternative to solving equation (14) is to convert it to an integral

equation for its Fourier amplitudes and to solve the resulting equa-

tion. The advantage is that this equation is simpler (though it is a

singular integral equation). The following notation shall be employed:

i -. IRM;
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A -I
J dr e f(r)"Tpp {4

ff Jd iK

K-space

The result of applying the Fourier transform to equation (1) is

2
/A -  2" AA A

B2 W- f W=f+p"- p (15)

where

f= F+ p
p

The first term in (15) may be evaluated using Green's theorem; thus,

A W=K K4  y dr-a-- [e-  ( W+ KW)J (16a)

Now, for a plate clamped on its edge to a rigid, plane support, the

following boundary conditions hold,

W = n W = 0

2 W a3 W on edge

nd2 s 2

Where s is in the direction of the edge, i. e., the tangent, Thus,

2  [ 4 
A

A W=K W+ A w (16b)
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where

A[WJ d lk -U-1(

If more general boundary conditions are to be oouuidered (e.g. elastic

foundation) the above expression must be replaced by the right side of lt.

Mrom the equation (Tb) and the equation prior to equation (12) It Is

found that

A m p c 2 (k aM) 2  A
P " 2 W 0 (17)

From equation (6b) It is found that

A w~

plate

= -]

where

g rl)f dr e i "  g r")(8
2N plate

Substituting these results Into equation (15) gives

TO)W )+ BAWJ-l j fQ (19)

where

s= K4 -Po (k -CM TO (19a)
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Let On denote the finite Fourier transform of a beam eigen function,

nk
q~n Itfolowsfrom the Fourier representation that the tn form anorthogonal set on the infinite interval. Thus, expanding W as

W - Wmn 1m (a a ) 4i(pb) (20)

or alternatively, W as

W W rn m (n y  (21)
m, n

and introducing these expressions into (19) and subsequently utilizing

the orthogonality, gives

W =4+ rn W (mn (22)
n rs nrs rs

where 4Im are the projections of

(D(k) : f

S 4i) mn qin (a a) tn (8b)
m, n

and

mnrs f m(a aBA -

M-r T

(~Se~eArpea) s(Ya)

(See Appendices B, C and D)
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The computation of the integral IMnrs may be simplified by deforming the

contour on the a- plane. Due to the manner in which the Fourier transform

* was chosen, the integrand, except the term T(A), is single-valued and

analytic in the lower half-plane. The contour will, thus, be deformed in

this half-plane. This deformation is determined by the analytic properties

of the function TA), equation 19a. 2

2 2 2(B 1 2 )2

T(Va,) ( 2 +P2) 2 Pp B k 2

B Vk 2 +(M2 _1), 2 _2kMa p 2

This function is two-sheeted with square-root type branch points at

22k M-1
M 2 _ 1

The sheet associated with the positive value of the squre root will be

termed the physical sheet, since it corresponds to outgoing radiation.

The function has ten zeros on the two sheets, four zeros on each sheet

with the same values, corresponding to resonances of the plate and the other

two zeros are located near the branch points on one of the two sheets, inde-

pendent of each other.

It is convenient to make the following substitutions

0 o and Y =pW_2

p B
p

The equation (19a) may be written i 4 1- 22.

2 22 4 2
TOa4 9) (a'Yl

V'k2m -i~ 2Mot- 2
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I
In the present case ji is a small number ( . 0015) so that approximate

values of the zeros may be found, expressed as a power series in [t.

To the second order these zeros are

*2, _-A k /
2 2 2 2A4 +2 2 4 42(+(M -1)f3)(A + 2As1 1 Y

where

A* k M YO +(M2 -1) 0 2
sM 2  1

M -

a*)1*) A(*E)1(*)2

+A +k + (M-)A22kM
''1.2 0) 1 2 + (0)1(0 :

where

A (F)(±)2 = (,)I_ /32 (±) 2

The last four zeros exist on both sheets. The location of the first two zeros

may be distinguished into three possibilities: when Y< A then a
+s

and a are respectively on the unphysical and physical sheets; as Yis
5

increased such that A-< Y < A+ , then as moves off the unphysical sheet
+

and crosses over to the physical sheet and a s remains unchanged; as Y
+

is further increased such that A+< 'y then a crosses over to the unphysical
s s

sheet and a remains unchanged. A typical configuration for the poles and
s

branch points is shown in Figure 6.
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a Plane
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I

Figure 6. Integration Contour for I"
mnrs

The above contour, Figure 6, is deformed to circulations about poles and

branch cut in the appropriate half-planes of analyticity as indicated below,

Figure 7, for the upper half-plane.

I
i
I

I

a Plane

Figure 7. Deformed Integration Contours for Fmr

Inr

?Aw



25

The function T has been analytically continued into the k-plbne by giving

k a small negative imaginary part; so that, the branch points and the poles

are displaced off the real axis as indicated in the previous figures.

The branch-cut Integral Is given by

2 P0(k -

I() =Jd t 1(a a) [BA(a43) - (aq3)]1 (-V 2 _11a2 - 2kM a-I)

0 ~(B(a2 +A 22 _PC %~22+ 1

where a= A -it
s

So that

I'mnrs = f21 1 residues d P + ]P. (0b) I (() d P

The branch-cut integral is exponentially damped rather oscillatory, so it

may be readily performed numerically using 1Laguerre-Gauss quadrature.

The second integral is more difficult, it oscillates with a period b==7b"

In solving equation (22) maximum values of the indices are polstulated.

This is justified, since the index Is inversely proportional to some length

on the panel. Now there certainly exists, from the experimental
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point of view, a smallest length to which a disturbance may be localized.

After having solved equation (22) the plate displacement is simply the

Fourier transform of (21), thus,

W Cr)= W~ n 9M (23)
m'n \--I \--E!

where 4P is a beam eigen function.

To find the sound pressure level in the cavity the expression for W

from equation (CA) is inserted Into equation (5b) to give

m7Tx nqiy

2 cos cos cos k (z+d)
pl P W I a b n

a b m,n r,s rs mr ns k sink dc c mn mn

where I and J are given in the appendix B.

Similarly, the radiation may be computed from equation (12).

The force is not a deterministic function as has been implicitly

assumed from the outset, but a stochastic variable whose correlation

properties are known, either via a model or directly from experi-

mental data. Thus, it would only be meaningful to compute

statistical averages of the response based on statistical averages

of the force (i.e. cross-correlation). The procedure to be used

is an amendment of a procedure due to Rosenblatt (1962), the no-

tation is that of Roseniblatt.

Consider a homogeneous, stationary, random process X_
r, t

(Rosenblatt writes tids as X4. (w) to explicitly indicate that it
r, t
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is a function defined on a sample space) with a cross-correlation defined

as

R ft;ft < X. X- (24)r, t r0
[4

where < > is the expectation operator, i.e., R is defined through an

ensemble average. Because the process is homogeneous and stationary,

R( t; f, t) = R(f - f t-t')

or

h r - edrdt d M (x., dm(X.,

where d M (x., is the StieLjes measure of the process. The procedure

may be simply stated as the problem of finding a Fredholm expansion of

R and subsequently representing Xr, t by such an expansion. Such an ex-

pansion is provided by the eigenfunctions and eigenvalues of the integral

equation

0(r, t) = R( -r', t-t )4(C, t')dPdt (25)
-CO

The spectrum, is of course, continuous. The eigenfunctions are plane waves

and the eigenvalues the inverse of the power spectral density as can be

seen by applying the Fourier transform. Thus the desired expansion for

R is

R F - , t - ' - Kt  - r ) -  (t - t ')] A w d d

Now let

- 1 ei K r t > ' t (26)
KW (2r2 VR f r

tC
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I ffolms frw (24) and (2) that

!*

sio < (X;. d )~p t R (-r-P, t -t) d~fdt

Thus, de ZK, are Independent random variables with unit variance and

with zero mean if E Xr, t U 0. The transform of (26) is,

x t f Z 4WNr - (27)

A simple calculation reveals that (27) satisfies (24).

These results will now be applied to the plate displacement. Thus, the

cross-power spectral density (CPSD) of the plate response io given by

(asterisk denotes complex conjugate)

(w~)w*( IF. I nW r
m,n,r,s 9 (F

(28)

Now if the solution to equation (22) is represented as

W - 2.

mn mnlj 13i

then

ma Xs > mnlJ Y~k "M I
ijkl

_______ __
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The force F Is now identified with X. so that
r, t

< '))= (K, w) R * (K, ) K'/2
1/2

=K (K, W)R (K, <Z) 8 ( -K

In summary then

mn s>  I,J~k,1 fsl.. ITA) I'

"W (29)

Analogous to (28), the expression for the CPSD of P1 can be written in
terms of E W W* from (29). The same can also be done for the

mn rs
radiation.
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B. One imenslonal Model

To simplify the computations we assume that the transverse plate dimen-

sion is very large and that no flexural waves propagate in the transverse

direction. With these simplifications equation (22) may be written

W 2 F W = 4 (30)
n m nm m n

where

I' = dK n[ m (31)nm fT (K)

where

TO R K4_ -4 _4(

Vk2 + (2 1) K2-2 kKM

and

n (a K) F (K)

The circumvention of the branch points in the above expressions will be

described shortly.

If G denotes the inverse matrix to an + rn then the solution to (30) is

w =£G cim
n m nr m

Now performing the ensemble averages as before gives
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< W W* >= _ <r ( > G* (33)
m n> r,s nmr r> (3

but

foo *(a K) ~ (a K~)

r = K K' T* W)
-CO

To make the discussion concrete let

(F (K F* (Kt)> = P (w) 8 (KI -(K -U

C

which corresponds to a spatially uncorrelated pressure field with convection

velocity U and power spectrum P (W).
c

Thus,

00 (a K) (aK - -U-

> = P()fdK r
-f T(K) T*(K- R) (34)

c

The major contribution to the integral for 1mn' equation (31), comes

about when the peak of tn is close to the peaks of 1/ T (K); since n is

a highly oscillatory function (period = -a) with a peak at -an and
d1

decaying with the distance from this point and--- is a non-oscillatory
TPK

function with peaks whenever K equals the real part of the poles which are

roughly located at Ytimes the four roots of unit and the trapped wave poles
k k

near the branch points --K- j. But for the frequencies we are con-1 + M -1k k
sidering (up to 3000 Hz) only the pole near 1+M lies on the physical

sheet. For this frequency range the trapped wave pole is bounded by 0 and .15

and the pole near Y by 0 and. 6. Now, the peak of 4* Is given by-m
n a

which is numerically (see Appendix B) .155, .26, .36, .465, .57, .679

and the period is .206. The height of the peaks decays roughly as (1)3
1

is .05 of the first. The function - also has peaks that decay in the sameT (K)



32

manner. Thus, the tnfnite natrl r has appreciably non-zero entries
in

only in the upper left-hand comer. Consequenty, we need only compute

ran for the first 4 or -, modes, say, and then Invert this matrix + I to

obtain the upW left equare matrix of order 4 or 5 of G and thus forinn

higher modes

0m =68a
GMn Inn

So that

<<W
m n> <(4*)

for other than the first few modes.

The contour for the integral in (34), Figure 8, Is similar to one described
earlier hut the term T* (K -) introduces further poles and branch cuts.

The contour and its deformation are shown in the Figures 8 and 9. In

Figure 9 only the contours for that part of the integrand whieh is analWyic

in the upper half-plane are shown.

4, (K) may be written
In

% (K) = Sn(K) T (K)e

where

i a (a K) 3 -X 3

Sm(K) =-4 N 4 m
(aK)4  X 4

and



33

K-Plane

kI
MI

#I

•I

M

I

II
I U

Figure 8. Contour for <4r 4s* ) in Equation (34)

I
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1T K N Cos X ( aK? h X

K) Y (aK) XIn

Ssin AhX
- (2 K)+ X

m m

with am and Xm defined in Appendix B.

Now

~J, (K 1 (K-j A L (K) + U(K)

where

L 6 -I S m (K ) ( Sn (K - + T n(K - ) e

In \ v)n v /

and

i i (K- a)

U(K)=e T* (K) (K V
m Sn(-) +Tn(K -- )e

Thus, we have

00

<m >= P( d K L(K) + U (K)
.I T(K) T* (K)

The above expression is evaluated as a sum of residue contributions plus

branch - cut integrals.

2 L (z ) 1++1
1p m n * j U Rec~~ z-L
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12 L(z)
+217il Res T*(Z U +13+14

j=7 z=zj T(z u
J+9 C

where the z are identified in the above figure.

im JkJ I

I k

°I 
R I

I t 9 O
1 I

zo lI*7  M+1 *

*z 8  z 10

i 10
i I

Figure 10. Location of poles and branch cuts

As indicated previously, z6 and z9 are not on the physical sheet for the range
of frequencies considerea (Up to 14000, Hz).

cc+ +iy 1 1
f +kwi -)+10 T* +k +M + i T- +1+iY

+U Y) M+ 1

where T+  + i is the expression following equation (31) the plus
being included only to explicate that it is the positive side of the square root

branch cut. T M + i )+i is obtained from T + by replacing p. by - p.
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M-11
Ik_

d2 y U d) IU

T ' + +- i Y)T -: +

o+ ly) T -*

1 *>- f d
z -- zj T* (~- j y

111~

k+
L ( iY

f41 dy Y 7L ) ) k

J ~9 U zcj I TY) - -u 14

It is felt, that the effect of the pole at cancels the contribution of 11 and

similarily the residue at z c ancels the contribution of 1 3 Thus only 12
and 14 will contribute. Therefore

15
I p n > 2R7i I Res U(

Jz 3 j T(z) T* (z

+2'7 0 I~i+1

By the same argument which eliminated L and 13 we may replace 12and

1 4 by pretending that z 6 and z9are on the physical sheet and thus

12 2 12Ti Res=Z U (Z) z

Z- TM * 2'W

6
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and

14 -2 .ri Res ( )z-zt TM) T* (z -f)l

To evaluate the residues it is necessary to determine

+ - _ k 3

T'(z) -- 43 + I A 'Y4  k2 +Z .s _z -3k M z . 2  .

Vk2 + ( 2 _ 1) z 2 -2kM z 3

The following relationships among the poles are valid

- + Z + Zz = + z9
z4 U- z 7* U- z 8* u 9

c C c

zlO=--f + Z* Zl + -i-z2
10O U 1 11 U 2

c c

Lim = Lim = Lim 7

Z~z 7  T* ZZ (Z) z -a, ~z" "4 T* (( -z -7 7"*" * Ic-

T*(z) = z 4 - + 1 -4

V + k9 M2_ )z*2 - 2 k M z*

So

T* (z*) = T (z)

Thus
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z T z(z-

Similarly = ( 8

z Z5
Lim T (z)

[TJ 5 (zz-)

Lim =T- (z)
Z-Z T* (z -7

L~I.w)~ 1P*> U (zz U z
n-l T?(Z(z -( w )

C C

Z-r Tj +z - 7* T -!g-+Z))' (
11 UCC

U +z Z)Z

21P (i- 9 PP (w)9m

+ + (Z U) + L Z8

T(Z7 +* z * ) ' P z T * +Z 8 * -- (z

u 7 7 89
cI

K _ _ Z9
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L(+Z*) L +z*
+

r( -+ z4*) T (z4) T. + 2*) T' (z)
C C

L (z9)

T' (29) T* (zg - to)
Ce

In a similar, though simpler fashion, we may evaluate the integral In

equation (32).

A [,(x() A (K) + B (K) e'iKa

where

2 N xcos X-chX 1A(K) In (Lm) I K
In a L in ~xm TshX a]

and

Bmun (_ 2-Xm(cosXmshXm+sin Xmchm)-iKasinXmshX]
Bm (K)= a - -sin XI + sh  m

Thus in* A [O] may be decomposed into factors analytic in upper and

lower half-planes, respectively. Denoting these terms by G + and G-

we have,

G (K) + G-(K) dK
FInn f Tg-
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z..

I 4o

z7 e

O Z 8  :

I

Figure 11. Contour for F equation (31)
mn

where

G (K) =A (K) Sn* (K) + T(K) e

and

G(K)=B (K) (T n(K) +S n(K) e- iKa)

The contour of integration is indicated above.

The contour is deformed in the appropriate half-planes and branch cuts are

replaced by poles ad discussed previously. Thus,

2 fT I I R T(Z)
r n =Res G (Z R es G(z)

- Res lG-(z Res )G (z) t

z=z 7  T (Z =Z8  (z)

+ Rex G (z)
. .... ~ 9 T Mz
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We now invert the matrix + r n Let us denote this inverse by Gl].
Sinn m

Then

<Wm Wn > = Gmp (Fp Fg*> G

where the tilde denotes Hermition conjugate and sum of p and q is implied.

The final step, then, becomes the diagonalization of the CPSD matrix W I.v *

thus giving the PSD for the actual degrees of freedom of the system.

C. Acoustic Power, Power Radiated

In computing the power radiated, we make use of the unitary matrix U which

diagonalized the CPSD matrix. The average power radiated, to the far field, P,

is given by

ar

By using the asymptotic form of the Hankel function, the asymptotic form of

may be computed. This form Is

k r( 1MsnO+ McorO)
M 2 _ 1

r-.oV2 7 I k r V1 - sinG

where

A(0) dx' e M-1 1-14sWn20 M

0

The acoustic velocity in the radial direction u is given by
r

d , (r.0)U r dr
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i k(? M2 .2 0 +Mcos)2 4(r,O0)
M 2 - 1

The pressure, p, a microphcne in the far-field would measure is given by

_LP_ ik _ M 0_
Pc ax

ik4' 2M 2 - 1

-k l (r,O)

M 2 -1

The average radiated intensity is giver by the expectation value

2 Re <p u*>

_ _kPc ik(V1-M2 sin 20 +Mcos?) 1 Re
2 12M 2 \ / ' 1 2

P= ck2 (V M2 si.20 +McosO) Re '

2 (M - 1)2

<2 2A K() A* (0)
(27Tkr) 1-M 2 sin20A

where k{x'-x) cOE M

oA 1 1 M 2 -1 -M 2 sin0

0 0-
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and where

<W(x) W*(X)> = 2 n <W W*> (P (X 'P) (x)

m n * m nl

Let U denote the unitary matrix which diagonalizes ( W Wn i.e.
iim

the transformation to the actual degrees of freedom. Further, let In
trn

denote the power in the m degree of freedom, then we have

<W (x W* (x)> = i,J,m,n i (x') Umi Ai 8ij Unj U n (x)

The integrals have already been encountered, they are simply the finite Fourier

transform of the 9Pm (x) so that,

InI
<A (0 A* (0)> = iJmni(z) Ui 8i nJ * (-m)

where 
kCo 0MCOS 0

V1 _ M2 sin 26 Mz -2

M -1

=t

,I
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, APPENDIX A

If we make the following changes in variables

k
K

X - X I

then expression for the Green's function in equation (9) becomes

iKM U 
1f ik u + ft y -y ) + z 2

fKMU eiU ; CdeiP~Y+ V( 2 2) 9e d 2 ( 2 2 2

-G- (x, y, z x_ y2, 0) -V- f2~

(see M + F Vol. I Page 823)

iKMu 0
ITe f d ei u H (1) (R/ 2-' ")

VMT 1 -00

2 2 2
R = (-y') +Z

The contour of integration for the above integral is shown below

Plane

Branch Cut
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Define

1(I) 1 dK2e)u 0

By considering the asymptotic form of the Hankel function, the above
integral is seen to be convergent in the upper half-plane for values of

u and R such that

that is, the region inside the Mach cone

The contour may be deformed to be a contour along the branch cut as

shown below

i-plane

Thus

I(u) f /i]a H0 (  / 2 K2) d
below cut above cut 0a -a

eiu (2)  2- 2) f tl u H(1)  2
K K

-2 fi 0 CR-~ dj
K



48

We thus get (see Magnus & Oberhettinger p. 179)

iK Uu R
I (u) = 2 '

V/u2  R R2

so that

e'T eiK(MU + u§ 7 R2)

2'7 1i e K MR (cos0+sin0)

M R sin 0
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APPENDIX B

a

Mr .0. m IT xc  ( )d

c

a -a

X + 2

(-! K X K %X Kr X Krx

sin r--- -sh -- + a os -- c .)
a a r (C aa

Nr (r Lar n - a -- - sin 2

a C)c 2 1)

Cocs4[ (a-a yc a-jr al Mir (ac -a)]

++)a CosE-os&)a +--;a

( + ) c + (a _r+mir a+m___ 4_MaJ

++m a ar sin( 2 )sV,) a (si aaC ac - a

+ a 2 Cos vm c cos[- - 2 ) (ch K +a r s h  K

(_ a.2 (a - r~ r

"l)2 (L.em ar sin sl 2en a-' + ach Kr
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where

COS K ch xa = r r
-sin K + shK

-2and the normalization N ris given by (Dzygadio 1967) Nr 4K
r

(sh 2Kr si 2 K)+-g (sh K COS K sin K chr rr r r r r r2K
r

(ch2K -cos2K -4sinK sh.K) +a F1+I(i2+sh2K)r r r r r L4 r r

-I(sinK. chKr+sh~rO~)

and the eigenvalueS K rare the roots of the equation

COS K COS hK =1

and are approximately given by

K, 4.730 K = 7.853 K, (n+1
1 2 r =2n )

J nsis the same as I nswith a and a Creplaced by b and b C respectively.
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APPENDIX C

An [w] d In -  e- r

An -n

Now

A q xp (.Yn Q(mn, ot, a,b)

-Q (n, 30n, A ta, b, a)

where T is defined in Appendix A and

Q(MI , a, f, a, b) = 2 -iqn3 + e

KU/ sh K n a /

hch K +tJdxe-ax an sin Kn - sh Kn) f m a

0

The Ltegral may be found by appropriately combining the following

four integrals
ainKaS iix ':e-i(<n cia)>  -i"< ' "- )

-iic aa

e i( aa- Kn)_ e i(aa + K n)I

-e -

2 [ a -Kn aa + K
n
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a [i(aa + KnQ + I(aa Kn).-i

21 aa + K ca-

x ei{Xe a e 1 + e -1

o 1

9. - (ai) i~2a-1K) I
'chi, ea - wa~~ n•

n a 21 ca+iK + aa - iK
0n a

and where a is given in Appendix B.

nI

44I
4LI
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APPENDIX D

2 f
Qfw (W ... 6 J g (kjr) W (r

4 
S

plate

r~(\~ \L 2 fm(aa f (.b rn
Q Wr= P/ I 0 k s k d

M=o mn mn

n=o

where

ibm 7r- x)
f Wx-xDI 2 -M 1)2

xen

and Ir is given in appendix B.


