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SUMMARY

> Measurements have‘been made of the wall pressure fluctuatlon and
the response of the panel structure, The plate,lsﬁé§czted by a
boundary layer (M~303) and shock inpingement (" angle) the £low
downstream of the shock is separated. The wall pressure fluctuatlons
and panel dlsplacement are notably greater than the case w1thout the
shock present.

The response of a plate clamped in a baffle is detetmined. The

plate is coupled acoustically to a uniformly moving fluid. The
boundary-layer exciting the plate does not interact with the acoustic
field and is furthermore taken to be spatially uncorrelated.

Finally, the radiation is determined over the solid angle of the

Mach cone. The response is derived using finite Fourier transforms
and then solving the resulting algebraic eguation by expressing the
solution expanded in a complete set of functions, a process which
leads to an infinite set of linear equations. The right-hand side

of this system of equations is a stochastic variable so that per-
forming an ensemble average the resulting eguation is solved for

the covariance matrix which is subsequently diagonalized to yield the
power spectral density in the statistically independent states
(degrees of freedom). ' | —
Description of the actual computations will be reported at a later
date.




1. INTRODUCTION
A large aircralt in supersonic flight undergoss large varistions in flow fleld
over its surface. This paper {8 concamed with studying the regponse of
a structure excited by conveoted turbuisnce at nearly zero pressure gradient
and by shock-boundary layer intoraction, with the inclusion of the coupling
due to the acoustic field on each aside of a panel, Shock waves on thin-walled
structures can impose severe loading problems, the most common of

3 which is the gelf~induced oscillation which is generated by an oscillating

shock. The shock wave can easily couple with the forcing frequency present

2 ; in the environment, including panel resonances.

From interior noise point of view, the upper region of the airplane fuse-
iage is considered the principsl noise radiator. The aerodynamics in

this region are known from the Prandti-Mayer relation, and further down-
stream by shock-boundary interaction. In addition, the fuselage skin ex-

: z periences traveling shock waves which run up and down the skin during the

’ acceleration period, which might last twenty minutes for a Mach 3 airplane.

-
2 Se s

N

In supersonic flight, the vibration of the surface is influenced by the back
: pressure resulting from the radiation of sound on both sides of the suxface,

so that, the surface motion and radiation are coupled phenomena, The

1 interior noise level is determined by skin panel vibrations, ¥or radiation

‘ below the critical frequency, the major source of sound arises from the

; interaction of the bending wave with the discontinuity of the boundary.

Abcve the critical frequency, the action of discontinuities like tear stoppers,
etc., have little effect on altering sound pressure level, since the sound

| radiated by the panel is in the form of Mach wave radiation.
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The experiment described in this paper indicates that some simplifications
in the model can be made, viz. (1) that there is no significant interaction = i

S aanss,

between the plate and the aerodynamic forces on the plate; and (2) that the ;
panel displacement is small in comparison to its thickness so that thin J
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) plate theory may be used. The plate, is however, acoustically coupled to :
the external flow field and the internal cavity. §
f Lyamshev {(1968) has solved a similar problem for a complex structure.
"» Dowell (1969) computed the transient, non-linear response of a simply ?
J : supported plate coupled to an external flow field and a cavity. Dzygadlo §
(1967) presented a linear analysis allowing mutual interaction between the %
'{ plate and the external flow, Fahy and Pretiove (1967) have computed a first 3
, order approximation to the acoustic coupling of a flexdble duct wall to the z
:= | flow field through the duct. Maidanek {1866) considers an infinite, oxthotropic
piate coupled acoustically to an external flow field, Numerous other investi-
:- gations have been reported on acoustically coupled structures with varying
| degrees of approximation, Irgens and Brand (1968), White and Cottis (1968}, é
= Strawderman (1967), Creighton (1970}, Fiowcs-Williams (1966), Crighton
# E and Fiowces-Williams (1969), Dolgova (1969), Feit (1366), Lapin (1967), }
| Paltov and Pupyrev (1967). :
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2, MEASUREMENTS
a) The Experimental Arrangement
The flow investigated was the sidewall boundary layer of the Jet Propulsion
Laboratory 20-inch supersonic wind tunnel; the shock was induced by a
30° wedge mounted outside the boundary layer, off-center and on the same

side that the measurements were made, This was done {o offset the position
of the reflected shock from the opposite wall, The position of the. shock was
determined by observing the displacement of 2 line of tufts, and by a static
pressure survey. For zero pressure gradient detail of flow field and panel
response has been previously reported by Maestrello (1968).

The experiment was arranged to perform three basic measurements:
mean velocity profile ahead of the shock with static pressure distribution

acruss the shock, wall pressure fluctuations and measurement of displace~

ment response of a simple panel structure, The titanium* test panel

measured 12 x 6 x , 062 inches and was brazed on all four sides of 2 3/4 |
inch x 3/4 inch titanium frame, The brazing was intended to simulate the
clamped edge condition. The panel formed most of one wall of a rigid

cavity measuring 14 x 8 x 6.6 inches. The other surface of the panel was
: exposed to the flow field. The pressure differential across the panel was 3

watn” "

variable, The experiment was conducted at two pressure differentials,

P <

viz, 0,06 and 14 psi; the latter corresponds to the actual differential

: between wind tunnel pressure and local arabient,

et YL o At g B

“ The side wall of the tunnel was modified to accommodate two identical, 3
rigld, steel plates, which supported the necessary instrumentation. One
plate contained an array of holes in which pressure transducers were
mounted. The pressure transducers were mounted on the center-line

[ of the tunnel in the streamvrise direction at the same locations where the

*TI-6AL~4V Titanium alloy containing 6% aluminum, 4% vanadium, 90% titanium

Sutre s b




mean statie pressure measurements were made, Two types of pressure
transducers were used; one, the conveational lead-zirconate titanate type
made by Atlantic Research, the other a capecitance type made by Photocon
Corporation with sensitive diameters of 0,08 inch and 0,09 inch respectively.
Correction due to finite size transducers was made adopting the Corcos
(1983) approach, The panel displacement was measured with Photocon
capecitance, displacement transducers mounted on brackets which could
siide along a bar and could be set precisely by means of a screw mecharism,

The output of both pressure transducers and displacement transducer were
recorded on Ampex FR-1800H 14~-channel tape, recorded in the F3 mode.
Four channels were used for simultanecusly recording data for correlation
measuretsents, The maximum dynamic range was obtained by splitting
each data channel into two tape tracks through phase matched filters to
separate the lower and higher frequencies,

b} The Wall Pressure Field

Measurements indicated that the flow field in front of the shock closely
approximated the properties of equilibrium of an adiabatic flat-plate boundary
layer (Maestrello 1988}, The flow in front of the shock has the following
characteristics: Mach number Me = 3,08, free siream velocity

‘U'3 = 2,100 ft/sec, total temperature Tt = 567° R, boundary layer thickness
8 = 1.37 inch. boundary layer displacerment thickness §* = 0,445 inch,
momentum thickness = 0,083 inch, Reynolds numbc;r R = Ue §/U =

4.87 x 10°, skin friction coefficient C, = L21x16™, and &, §9= 39.8

Coles parameter (Coles 1964),

The pressure ratio across the shock is a well defined funciion of Mach
number, for a 15° half-cone angle, the pressure ratio is approximately
8.5. Experimental results show, however, that this rativ is considerably
maller (Ap = 2.3). It is postulated that interaction with an expansicn
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wave originating at the bese of the wedge is responsible for lowering the
pressure differential and producing an effective decay downstream,

Figure 1. In the present case, the wedge angle induces a shock in the boundary
layer large enough to cause a separation: farther downstream, the flow be-
comes reatlached and goes back to the flat plate condition. This transition
takes place within 2 few boundary layer thicknesses,

Downstream of the shock, the ratio of the mean pressure distribution

P, d/pS and the ratio of the rms pressure flucfuation p's d/p'?3 vary with

a consistent relationship and both reach a maximum at x/§ =~ 2.3, where
subscripts s and sd, mean upstream and downstream of the shocek,
respectively, Figure 1. Beyond x/8 =« § the effect of the shock on the static
pressure vanishes, Kistler (1963) indicates a similar behavior between
mean and fluchrating pressure in the separated region ahead of a forward~
facing step at the same Mach sumber and upstream Reynolds number. The
differences in the flow geometry only alter the magnitude of the pressure,
in that the ratio of the mean pressure to the fluctuating pressure P, ':I/p's d
=~ 14 in the present experiment while Kistler found that ps d/ p's d'! a2,

The normalized power spectral density measured upstream and downstream

of the shock are shown in Figure 2, The spectra are normalized by regquiring
®

'l;r( w) d = 1 inorder to demonstrate the deviation from the zero pressure

gradient ease, For the spectra just downstream of the shock more energy
is concentrated in a narrow low frequency band while further downstream at
x/ 8 =24, the energy is distributed over a much broader bandwidth and
approaches the shape and level of the spectrum taken upstream of the
shock, The normalized power spectral density found upstream of the

shock corresponds to the zero pressure gradient, and peaks at

wé /Ue = 2 while downstream the spectral density is modified in

the region below the peak. It is significant that by altering the local fiow
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conditions, only the low frequency ends of the spectra are apprecisbly
affected. It is noticed that the pressure fluctuation messuremerts at x/§
=0 where the shock impinges ghow a noticeable deviation from the general
pattern in the higher frequencies. Tkis is atiributed to an intermittant
signal superimposed on the regular pressure signal as seen on the oscillo-
scope. It is possibly due to the characteristic fanning of the shock as it
goes through the boundary layer,

Measurements of the cross-correlation are shown in Figure 3. The cross~
correlation characteristics are a function of poeition downstream of the
shock, The cross-correlation between positions x/§ = 0,33 and x/§ = §.80,
the farthest apart has characteristics similar to those found at zero pres-
sure gradient boundary layer in that the ratio between the convection velocity
and the freestream velocity Uc/U‘3 = 0,72 and that the correlation between
those two points is still significant. The cross correlation of the shortest
distance between x/§ = 0.33 and x/6 = 0,75, shows that the convection
velocity is very low Uc/Ue = 0. 13 and the correlation is very weak, The
correlation between /8 = 0,33 and x/6 = 2,25, where x/§ = 2.25 cor-
responds to the maximum static pressure ratio is negative. The shock
induces the boundary layer to separate and the recirculation within the separa-
tion region permits the sign of the pressure to change. Kistler argued that
the fluctuating pressure in the separated region arises from the combined
action of the turbulent shear layer and the recirculating flow, The picture,
however, is not yet clear enough to develop a model for time dependent
loading, since the geometry of the separated region is the primary variable
in estimating the pressure amplitude and resulting phase,

No measurement of the lateral cross~correlation was made during the test;
however, for the purpose of computing the response of the paanel, it is assumed
that the pressure decays similarly to that in the case of zero pressure gradient

- o
e |"W 2 where a2 = 0,26 and 7 is the spatial separation (Maestrello 1968),
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This choice oversstimates the lateral cross-correlation, since the flow
fleld is far from being homogeneous. However, the overestimation may
not be exceeded by 2 factor of 2.

¢) The Panel Response Field

Messurements were made of the power spectral density and cress—-correlation
of the displacement, Typical results are shown in Figures 4, and 5 for a
pressure differential of 14 psi. The static deflection of the panel was 0,06
inches at the center, and the dynamic deflection was small in comparison
with its thickness.

The dispiacement spectral density at the center of the panel show pronounced
spikes, the lowest frequency of which corresponds to the lowest mode of the
panel, The accuracy beyond a frequency of 3100 Hz was poor due to the
spatial resolution of the capacitance transducer, and therefore the spectrum
beyond 3100 Hz was ignored.

Space-time correlation measurements were made along the panel centerline
from x=x'=3 in, y = y' = 3 in, at one-inch intervals up to a maximum
separation of 6 in, The correlogram indicates a convected feature with

a phase velocity = U‘gp = 770 ft/sec. This convection velocity corres-
ponds to that found in the previous experiment using the same arrangements,
except that no shock was present (Maestrello 1968),

In comparing the results of the present and previous experiments, it is
concluded that the sign change of the convection velocity is attributed to
the presence of the shock, Furthermore, the cross~correlation of the
wall pressure also reflects a phase change for a separation of 2.5 inches,
which is in the same location as the phase change which occurs for the

displacement correlation in Figure 5.
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Figure 5. Broad Band Space Time Correlation of the Panel
Displacement Along the Center from x = x' = 0,25 Ft.
y=y'=0.26 Ft.
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ANALYSIS OF ACOUSTICALLY COUPLED PANELS

a. Two~dimensioral Finite Panel

The vibration of the panel is induced by an arbitrary, external pressure
fleld F, It is assumed that the panel motion does not interact with the
turbulent boundary layer, i,e., the forcing field is not altered by the
plate motion, However, the panel is acoustically coupled to the fiuid on
both sides of the panel,

The equation of motion for an harmonic component of the displacement,
W, of a thin panel with a force, F, and a pressure differential, P, - P, +3p
acting upon it, obeys the equation

2 2
BAW-%wW-F+p2-p1+3p 1

where the bending stiffness, B, may include hysteretic damping, and where
Pp is the mass per unit avea of the panel, wis the angular frequency, p2
is the acoustic pressure on the streamside of the panel, p1 is the acoustic

pressure below the panel and 8p is the static pressure differential.

The perturbation pressures, pl and pz, are related to the velocity poten-
tials, which satisfy time-independent wave equations in the appropriate
regions, In solving these equations one uses a boundary condition which
relates the potentials to the panel displacement. These relationships may
be made more obvious through the use of Green's theorem., Thus, it is
required to solve a system of three coupled partial differential equations,
the first of which is not separable for the clamped edge boundary condition.

Py and p2 may be found directly as function of W, Thus, consider first
the cavity, The acoustic velocity potential, ¢, satisfies the Helmholtz
equation

AP+ K=o @)

e e e oy e



w0
‘-znm.«d.-._
2N
‘
;
P

14

with boundary condition g = 0 on all walls except on the plate
3P _ _
where T i OW,

The Greens function, g, for a cavity with hard walls satisfies the
equation

AgFIT)+E g FIT)=470F-T) @)

and is given by Morse and Feshbach, Vol, @I (1953)

1 !
{ cos kmnz cos kmn(z +d) z>2

icosk z'lcos k @+d z<z!
mn mn

2 2
where k2 =k2 - (BT __/nw
mn ¢ a, \ b,

and kc= w/cc where ¢, is the speed of ssund in the cavity of dimen-

sionsa , b, d
¢ ¢
By applying Green's theorem, the integral equation for P is obtained,
=¥
= ff o 2%
P(r) = g {e/1)) oy dr; (5a)

Now using the boundary conditions, this becomes

i = o [fs @R W @ o (5b)
plate

s
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The pressure 1 is related ic by

P = -lw .9
where P, is mass density of the fluid in the cavity.

To compute P it will be more convenient to operate with the differential
equation. Let the acoustic velocity potential in the flow field be denoted
by Y. By applying the Fourier transiorm on the (x, y} coordinates,

one gets the ordinary differential equation

————-——g-——dZ‘l’ (@, + 42 $ {a, [3’ z)=0 €

dz

where

2o+ of -1 -2k M-

Y, ¥, 2) = f f dadBel @ BY) b @B, 2)

-0 =

k = w/c, M is the flow Mach number and c the speed of sound in the
region above the plate. Only the positive exponential solution to equation
(6) is chosen, since it is the solution representing outgoing waves.

Thus,

J @Bz = A@p) 167 (Ta)

The boundary condition, arising from the continuity of normal displacement

R
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is
A

d ‘;" (aié’,..z__).. = «ip ﬁf

dz

where the differentinl sperator

Thus,

A . I} 2

¥ @, B, z)=~c e ié {Tb)
Now, since

N a b 3 t

LW = }f Wyt o 10X By w &hLy"

0 0
then
a b
Yy, 2)=- --ffwdy'ec(. y, 2%, ¥%, ) LW (<%, ¥} @)

where

o e ifee-x) By -yt Lz - 7))
G &™) =ffdadgge z ©)

-l o0

which is found in Appendix A to be for supersonic flow,
\/ 2 2
i -R
oari el KMu+ Vu
\/MZ-—I Vi - R

o] outside the Mach cone

s ¢ o

AR



and for subsonic flow,

G &l™
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KO V2 g )

_2m -
Vi u + R?
k x~x

except in this case, k = 1_'M.‘a and u ==\/I~N§2

N
¥ LW had been evaluated as

A
&k ~aM) W

then equation (8) would read

ab
Vo3, 0=-=5 [ [ Wee, G 5, 2t v 2 @)
am g &

This equation is formally correct if I*G is interpreted as a distribution,
which is to say that one partially integrates to obtain equation (8).

Now using equation (8)

p2 x, ¥, 2)=~1 Poc L;p(x’ Y, 2)

ipo

2a b

47

c
5 ff dx'dy! G &, y, z1x', ¥%, 0) Iﬁz W &', ¥
0o {12}

where R is the density of the fluid above the plate, and where partial
integration has been utilized. Had equation (11) been used instead,
equation (12) would read

pz (x’ y’ Z) =

ipc2 ab

4772
0

o

g fde'dy’ W (x, y) el &, y, z|x', ¥, o) (13)
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which is reducible to equation (12) by partial integration, Thus, supersonic
flow does not present any especial difficulty aside from the fact that G
is singular all along the Mach cone,and this ig an integrable singularity.

Inserting the expressions for p2 and Py into equation (1) results in a
single partial integro-differential equation to solve, viz.,

i

c ab

2 2 % : sI_F 1 oMy it

BA W~ Ppm W=F+8p+ ) ka,y,ix‘,)’)l W !, y')dx'dy
47T § 0

2
w p iyt
t_ ¢ ff 8 Xy ¥ Ix0, Y)W &, y) dx dy (14)

T
47 plate

where the subscript ¢ refers to the cavity, thus

y

i
(o7}
3

c 2

Equation (14) presents a formidable computational problem, The
Green's function g is known as an infinite series which is slow to
converge (1/n) thus compounding the difficulty by an increasing

number of necessary operations to maintain a given accuracy.

An alternative fo solving equation (14) is to convert it to an integral
equation for its Fourier amplitudes and to solve the resulting equa-
tion, The advantage is that this equation is simpler (though it is a
singular integral equation). The following notation shall be employed:

R s

<

¥

~artat aue s




SRy Ll

J e gy e To T

PR

R e U SR <! w0y EGRRARCRPIIRBUROINEY Y, . TR .

19

—

£ @ == f dk X TT R
27 »
K-space

The result of applying the Fourier transform to equation {1) is

N A A AN
BA W - ppw2w=f+p,, -, (15)
where
f=F+8
P

The first term in (15) may be evaluated using Green's theorem; thus,

N 2.3
Fw=xti+far L [e‘m°r(Aur+KZW):| (162)

Now, for a plate clamped on its edge to a rigid, plane support, the

following boundary conditions hold,

w = an w = 0
az w oo 33 W on edge
352 dnd s?

Where s is in the direction of the edge,i. e., the tangent, Thus,

2w = kA A [w] (16b)

L AR e ek v o S e
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If more gemaral boundery conditions are 0 be conzidered (e.g. olastic
foundation) the above expression muat ba replacsd by the right side of 16a,
From the equation (7Tb) and the equation prior to equation (12) it is

found that

2 2
A ] -aM) 2
B, =50 &M S an
4
From equation {56b) 1t is found that

o » >
Py = -éjdr.g &|F) W @

plate

o[y

whers

g k|7 3 o1k g F|F) (18)

plate

Substituting these results into equation (15) gives

Tio® @+ sA[w] -a[w]- 1@ as)
where
P W 2.8 8.2
. 4 fppc K~-A"M")
TR K B 2 EC (19a)
=1

Sy

[P SR
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Let !/ln denote the finite Fourier transform of a heam eigen function,

¢, It follows from the Fourier representation that the x/,n form an

orthogonal set on the infinite interval, Thus,expanding V’\\I ag

B’

N
VK =S W ¢ (aa) \pn(ﬁb)
m,n

or alternatively, W as

Vo= X Wmn P (_5') (pn (-5)

m, n

and introducing these expressions into (19) and subsequently utilizing

the orthogonality, gives
W + 2T W = @

mn r8 mnrs 1rs mn

where (I)mw1 are the projections of

and

(See Appendices B, C and D)

20)

(21)

(22)
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The computation of the integral I;nm's may be simplified by deforming the
contour on the &~ plane. Due to the manner in which the Fourier transform
was chosen, the integrand, except the term T(), is single-valued and
analytic in the lower half-plane. The contour will, thus, be deformed in
this half-plane. This deformation is determined by the analytic properties
of the function T(K), equation 192. 2
2  Pw of M

ppw i B ( - ) )
B Vz. 2 5

Kk +M -)a -2kMa-f3

T(a,g) = (a+ g%’ -

2

This function is two-sheeted with square-rcot type branch points at

kM i\[kz + (Mz -1)132

M2-1

The sheet associated with the positive value of the squre root will be
termed the physical sheet, since it corresponds to outgoing radiation.

The function has {en zeros on the two sheets, four zeros on each sheet
with the same values, corresponding to resonances of the plate and the other
two ze.ros are located near the branch points on one of the two sheets, inde-

pendent of each other.

It is convenient to make the following substitutions

p 4 p. w2
0 and Y‘x =wp—B—

B =
Y

a M

k2

Vié . (m2-1)a2-2kMa-B

The equation (19a) may be written 4 2.2
iy 1 -( )

T(a,B) = <a2+Bz>2—Y4 2
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In the present case U is a small numwber (=~ .0015) so that approximate
values of the zeros may be found, expressed as & power series in p.

To the second order thage zaeros are

22 2

1-(5 MZ) ¥
of = a* 2 i |
8 8

2 2 2
2 Vel ol phatt vz a2t

. kM:k\/k2+(M2-l)Bz

& M -1

1A 2
L I G

"y, TRy, T 2 2

ad k v
2 2 2 %
(4,09 B+ @) [+ e’y Ay, M @ #)

2

where

2
Aoy, = @ V-85 @, ¥

The last four zeros exist on both sheets. The location of the firsttwo zeros
may be distinguished into three possibilities: when Y < A; then a;

and a; are respectively on the unphysical and physical sheets; as Yis
increased such that A;< Y < A;, then a; moves off the unphysical sheet
and crosses over to the physical sheet and a; remains unchanged; as Y

is further increased such that A;< Y then a; crosses over to the unphysical
sheet and ots remains unchanged. A typical configuration for the poles and
branch points is shown in Figure 6.
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Figure 6. Integration Contour for | nnrs
The above contour, Figure 6, is deformed to circulations about poles and
branch cut in the appropriate half-planes of analyticity as indicated below,
Figure 7, for the upper hali-plane,

e

« Plane

O

Figure 7. Deformed Integration Contours for Imnrs
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The function T has been analyticaily continued into the k~plune by givieg
k a small negative imaginary part; sc that, the branch points and ths poles
are digplaced off the real axis as indicated in the previcus figures.

The branch-cut integral is given by

. e o mpae <2

2 2
2!%0 k- M

o) [BAGp) - @ @p)]  \VZ. o 0d s pmadt

1P =

l/ o & - am? 2

‘\\/ + (M2 - ’.1)012 -~2kMo:-.B2

® @+ -

where Q= A; -1t

So that

P
I‘mnrs=/,27” 2residuesdﬁ+] \pn(Bb) I(B)dB

-

The branch-cut integral is exponentially damped rather oscillatory, so it
may be readily performed numerically using laguerre-Gauss quadrature.
The second integral is more difficult, it oscillates with a period -%”—

In solving equation (22) maximum values of the indices are polstulated .
This is justified, since the index is inversely proportional to some length

on the panel. Now there certainly exists, from the experimental

ot o~ W = pno

o G

p
H
{
§
H
.

Wyt ¥t B e

e
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point of view, a smallest length to which a disturbance may be localized,
After having solved equation (22) the plate displacement is simply the
Fourier transform of (21), thus,

LAGERD A (%) 9, (%) (23)

m,n
where @m is a beam eigen function,

To find the sovnd pressure level in the cavity the expression for W
from equation (Z3) is inserted into equation (5b) to give

m7x 7y,
2 cos cos cos k__(z+d)
W p a b mn
pl(i')= € m)n rsWr ImrJ 2 .
b B LS T8 T RS k_sink_ d
cc mn mn

where Imr and Jns are given in the appendix B,
Similarly, the radiation may be computed from equation (12),

The force is not a deterministic function as has been implicitly
assumed from the outset, but a stochastic variable whose correlation
properties are known, either via a model or directly from experi-
mental data. Thus, it would only be meaningful to compute
statistical averages of the response based on statistical averages

of the force (i.e. cross-correlation), The procedure to be used

is an amendment of a procedure due to Rosenblatt (1962), the no-
tation is that of Rosemnblatt.

Consider a homogeneous, stationary, random process Xf ¢
H

(Rosenblatt writes this as XF t(w) to explicitly indicate that it

il ST
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is a function defined on a sample space) with & cross-correlation defined

as
R 68t = (B Fa 0D (24)

where { > is the expectation operator, i.e., R is defined through an

ensemble average. Because the process is homogeneous and stationary,
R(F, t;#,th = R(F-F, t-t)

or
R(EF-T,t-t)dFdt = (dME; )AME;, )D

whered M (x; t) 1s the Stieljes measure of the process. The procedure
may be simply stated as the problem of finding a Fredholm expansion of
R and subsequently representing Xr ¢ by such an expansion. Such an ex-

pansion is provided by the eigenfunctions and eigenvalues of the integral
equation

Y@, 1 = )\fR(f~§". t-t) Y@, t) di' dt (25)

The spectrum, is of course, continuous. The eigenfunctions are plane waves
and the eigenvalues the inverse of the power spectral density as can he

seen by applying the Fourier transform. Thus the desired expansion for

R is

2 % s S 1
R(E-T,¢t-tY =(§1;) fei[K (r'r)"(t"t)]’ﬁ&%,w)dkdw

-0

Now let

Zgv,, = - T e ) 8

e R SR o o VoA e
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It follows frem (34) and (38) that

L Ll s

W VM e wnn et B e ANt DI <5
ek )

(Zﬁngv;,) = §R-RY f{lw-u)

Since (&u(x;")dm‘kx;,. ¢ D= R(E-F t-tndTde

Thus, the ZK are independent random variables with unit varisace and 4
with sero mean if E xf ¢ ™ 0. 'The transform of {26) ia, ;
- ﬁ - -
Xe o = f 2 o VR & o) o & T 900 27
’

A simple caiculation reveals that (27) satisfles (24).

These resuits will now be applied to the plrte displacement, Thusz, the
cross-power speciril dengity (CPSD) of the plate response ia given by
(aaterisk denotes complex conjugate)

- X y x! y'
W @ W+ #he m ?r . % (T) % ('B') % (T’) q)s('ff) <Wmnwri‘>
(28)
Now if the solution to equation (22) is represented as
wmn = E Ymnij d’ij ‘J‘

1,4

then

Va¥26” " T Tony Y <%y P00
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Further,
o fj"’,, L Y Barbg (o gt (B'h)
L N <8 £ =
B, P >=f Jardx TE T @)

—0—00
The forece ¥ is now identified with X; ¢ so that

- N 1/2
rw) R* (K’,w)j

>
B
-y
=
N
n
>
Gl

<Zﬁ,w Zi,m}

b

" 1/2
= ,ﬁ (ﬁ’w) /ﬁ* (f{.', w) ]

& - Ky

In summary then

E @ £ ®D)D

¥, @a) §; D) [RE, W) am) ¥ (Bb)

i

* = *
<wmn Wrs> i 321{1 Ymnij Yrskl f d

o

| 2

{29)

Analogous to (28), the expression for the CPSD of Pl can be written in

terms of E Wmn W;s from (29). The same can also be done for the

radiation,
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B. One Dimensional Model

To simplify the computations we assume that the transverse piate dimen-
sion is very large and that no flexural waves propagate in the transverse

direction. With these simplifications equation (22) may be written

w2 I w = (30)

n
a 8
o)
.G
= I )
R
R
-
==
Be
|
"o
~—
| S|

nm T &) G
~00
where
2
ipy* (1-K22M)
4 4 k
T = K- vE-
Vi - -2kKM
and
. f@ VKT ©
) TR @2)

The circumvention of the branch points in the above expressions will be
described shortly.

If G__ denotes the inverse matrix to §__ + [ then the solution to (30) is
mn mn  mn

Now performing the ensemble averages as before gives
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W WES = 20 G ¢ 95> G, (33)
but
1/ (81() 4/ (@ K')
(P P5Y = de d K! ““"‘T, ) (F ®) F* KD

-0

To make the discussion concrete let
FRFED = Pw) § & -K-5))
e

which corresponds to a spatially uncorrelated preseure field with convection

velocity Uc and power spectrum P (w).

Thus,

* @Ky @K- 5F)

© ¥
<¢r¢;>=p(w)fdx . 4
> TE T* K- -t-,-c)

The major coniribution to the integral for F o’ equation (31), comes

about when the peak of t// is close to the peaks of 1/ T (K); since \l/ is

a highly oscillatory function (period =——) with a peak at-é—-—- and

decaying with the distance from this point and is a non-oscillatory

TK)
function with peaks whenever K equals the real part of the poles hich are

roughly located at Ytimes the four roots of unit and the trapped wave poles
k k_

1+M M-1°

sidering (up to 3000 Hz) only the pole near

near the branch points ——— But for the frequencies we are con-

1+ lies on the physical

sheet, For this frequency range the trapped wave pole is bounded by 0 and .15
and the pole near Yby 0 and .6. Now, the peak of xl/; is given by—x?m-

which is numerically (see Appendix B) , 1565, .26, .36, .465, .57, .67, . . .
and the period is .206, The height of the peaks decays roughly as _I_Ql:_)S

is .05 of the first. The function m also has peaks that decay in the same

A ARl Vel
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manner., Thus, the {nfinite matyix [‘m n kias appreciably non-zero entries
otly in the upper laft-hand curner, Consequently, we need only compute

rmn for the first 4 or « modes, say, and then invert this matrix +Ito
obtanin the upper left square matrix of order 4 or 5 of Gmn and thus for
higher modes

So that

W W3 = (991>
for cother than the first few modes,

The contour for the integral in (34}, Flgure 8, is similar to one described
earlier but the term T* (K --‘-§-,-) introduces further poles and branch cuts,
The contour and its deformation are shown in the Figures 8and 9. In
Figure 9 only the contours for tbai pert of the integrand which is8 sgalyiic
in the upper half-plane are shown.

\!’m (K) may be written

-1 Ka
Yy @ =8 _®) + T_(Ke
where
iam(al()s - Xx:
8 (K)=-4 N
m m (aK)4-X£
and
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Figure 8. Contour for <¢r ¢8*) in Equation (34)
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SET e

5 cos chx
i Xm i)
L =T (K) = (X_ +ic_sa -
= Z Tm I\Ln[ m 1% K’an)z__x: (aK)2+x;)
; sin)gn sh X
‘ - (a_ X -iaK)(‘ + m)
m O SRS

with am and Xm defined in Appendix B.

S

Now

E bt ® g €-H = L0 +UE

E where

| Lo =St a{)(sna{_%)+Tn(K_%)e"i(1{“$)a)
and

2o

v

w i(K-%:-)a
UK =e T <K)(sn<x-7> +T (K-2)e )

Thus, we have

LK) + U (K
TE) T ® -2)

(b 02 D= P(w)[dx

The above expression is evaluated as a sum of residue contributions plus
branch - cut integrals.

L (zj)

Z z, - S

TE) T - §)

c

L

—1 (o pi)- zmg Res
P@) m’ 1 f=1
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12 L{z)
am Res +I +1
AT R | Ter T e | s
19 ¢
where the zj are identified in the above figure. ,;
| '
m ot im k) | |
' [ A |
A i :
!
zZ ‘ 025 '
} K z |
z, ® M-1 ¢4 z z, }
2 !
T3 —a- % ¥ b0 e Re{k}
® 7z 3 ~—— ] a [
M+1 ; 11§
|
*%g I %10° i
| i
! !
i '
i ?

Figure 10. Location of poles and branch cuts

As indicated previously, z 6 and z4 are not on the physical sheet for the range
of frequencies considerea (Up to 14002 Hz).

[+ ]
I ~fdy~U(M+1 +iy 1 _ 1
1 k @ + K ) -/ k )
* - ——
o T(M+1 Uc”’) T(M+1+1y) T(M+1+iyl

where T+ (ﬁ%—i +1 y) is the expression following equation (31) the plus

being included only to explicate that it is the positive side of the square root
branch cut. T -<

Mli 1t i y) is obtained from T+ by replacing 1 by -p..

L Sy n A s o e ammn
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k w +*[ k ~*f k
° T<M~1+Uc+iy)T (M-l“y) T (M—

It is felt, that the effect of the pole at z

similarily the residue at Zig cancels the contribution of 13.
and I 4 will contribute. Therefore
_t s
2N =
Plw)<fm "> 2715 Res 3 *U(fzg)
3 % (TAT U,
11
+2mi j§7 Res L (z)
- = * -
o B (T TTE-G

Thus only 12

+I4

By the same argument which eliminated I. and I3 we may replace I, and

2

I 4 by pretending that z, and z_ are on the physical sheetand thus

6 9

U (z)
@ *@- -‘-{}—c)

I. = -271 Res 3
2 = T
z-z6

3 cancels the contribution of Il and
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and

14 = - 271 Res
z=z9

L (z)
T * @ -§)
c

To evaluate the residues it is necessary to determine

3 iu'Y4(3zMzk2+z3M4-23M2—3kM322-kzz—ksM)

3

TWz) =4z +

Vk2+(M2~1)zz-2kMz

The following relationships among the poles are valid

ot - W * = @
240 T 5= v t% 23 " U T %4
(¢} [+] (]
w [A)
= m—— * = c— %*
Z10 U_ T3 Iy U 2,

Lim j~——————| = Lim =

z2+2, T* (2 -—3—;) z-z7* T (2

2 2

*
gyt (1-————z 21}4)
¥

\[k2+(M2-1)z*2-2kMz*

T* (z) = z*4 - Y4 +

So
™@) = T (2

Thus
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1

Lim |9 |=T ()

z-z4 T* (z «--IT)
c

Similarly

" z-z ]
Lim 8 =
2 * - —
-z _T (z U)-
¢
 z-z, ]
Lim _______10 =
z—e-zlo T*(z-.,_.-
c
T -z, ]
[ L
- * - —
2=z LT 1)

=< o> -

27riP {W)

-

U @) U (zz)
+
T E) T @ ) T ) T ey - )
c
U(-“l+z*) U(£+z*)
Uc 7 Uc 8

+ W ~!
TG T

U._
(T, * %

Teg +29 T (3
C

L (z7)

+'I‘(g- +20% T-' (zg)

L (ze)

T () T* (2, =)

¥

T (29) T* (2g -
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w *
L+ 2,9 L& *+2%
+ ¢ + <

T+ M1 @) TE 29T @)
c ¢

L (29)

T' (5) T* g -f‘;-’;

In a similar, though simpler fashion, we may evaluate the integral in
equation {32),

A[¢m(.:.)] = A, 0 + B e

where
2
A =_2Nm {Xm> l’ “O‘OSX.m"Cth ks
m(K) a a Lxm Sin)gn"'Sth
and
2
5 ) 2Nm('xm) Xm(COSXmSth*SinXmOhM)-iKaSmethm
m® =72 sm)(m+shxm

Thus \Pn* A [(bm] may be decomposed into factors analytic in upper and
lower half-planes, respectively. Denoting these terms by G ¥ and G
we have,

I I s e o)
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Figure 11. Contour for rmn equation (31)

where

¢'® = A a<>(S*<K>+ T e o K2)
" m n p K e ;

and

The contour of integration is indicated above .

The contour is deformed in the appropriate half-planes and branch cuts are
replaced by poles ad discussed previously. Thus,

1 ) ' (z) G @
27t fmn T T (z)z * Res % T @
i G @], G (2)
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We now invert the matrix am at L

n” Let us denote this inverse by Gij’
Then

X * = F * el
<Wm Wn 7 Gmp < ng b ng
where the tilde denotes Hermition conjugate and sum of p and ¢ is implied.
The final step, then, becomes the diagonalization of the CPSD matrix <Wqu*>

thus giving the PSD for the actual degrees of freedom of the system.

C. Acoustic Power, Power Radiated

In computing the power radiated, we make use of the unitary matrix Uij which
diagonalized the CPSD matrix. The average power radiated, to the far field, P,
is given by

SR AETS

By using the asymptotic form of the Hankel function, the asymptotic form of
may be compuied. This form is

i k r(Vl - M2 sin20+ M cosa)

M2-1

e

3
Y (r, §) —> = S )
rve¥ 271 k r V1-M sin‘g

where

2 2
A{§) =/ dx' e M -1

(o]

The acoustic velocity in the radial direction u is given by

_d¥ e

u
r dr

]
i
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_ ik(\ﬁ-mz sin® 0 +Mc050)
= M2—1 Yi(r, 8)

The pressure, P, a microphcne in the far-field would measure is given by

1 o o oY
——p—EP— 1k71[/ M ax
2
=ikt,l/-“;M !/
M -1
_ _ik¥@g)
M -1

The average radiated intensity is giver by the expectation value

t
i

1 Re Cp u*>

2
_ikpe ik( 1-M sin2 +Mcos€)_}_Re Y
-ikpe v 5 > Re (Y
pckz \II-MZ sin29 +M6050) Re(tPtI/*}
2 00’ - 1
Now,
1
(Y Y= CA(9) A*(9)D
@7kr) V1 - M sing
where

a a g K- X) cos 0 —M)
2 <\/ 2 . 2
CA(9YA*(0)) = / dx/ dx'e M -1 W1-M sin g
o 0 \

CW (x" W* (x)

It
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and where

WEYWe@d = 2 2 (W W* ¢ &) QK

m n m n

Let Uij denote the unitary matrix which diagonalizes (Wm Wn*> , i.e.,
the transformation to the actual degrees of freedom. Further, let ?\m

denote the power in the mth degree of freedom, then we have

Wy we @y = | GE) U Ay 8, ULy 9,

The integrals have already been encountered, they are simply the finite Fourier

transform of the (Pm %) so that,

D Y .
CAIA (DD = 4 mn %@ Uy Ay 8y Uy ¥ 62

where
___cosl
tky—2 2, M
1-M sinf

zZ = 2
M -1
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APPENDIX A

If we make the following changes in variables

K
K=V o1

then expression for the Green's function in equation (9) becomes

KM u fjﬂgdﬁ ¢u+ gy V- o2 4gH]

G (,y,2]|x",y',0) = ,,—'—
M 1-¢2 -c0 m
ikMu \/
=\/?\F fd£el§ufd3e [BW'Y')” ¢ -K-p
-1 - (g “K)"Bz
(see M + F Vol. I Page 823)
ikMu /&
_me ifu (1) Ve 2
= dfe RYET -K)
VM2-1_T[
R° = -y +z

The contour of integration for the above integral is shown below

& - Plane

- < Branch Cut

K

L A s e
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Define

I @) =fd5e’€“ Hg) (Rv52~n2)

@

By considering the asymptotic form of the Hankel function, the sbove
integral is seen to be convergent in the upper half-plane for valuas of
u and R such that

1
:
1
§
¥
!
4
i
!

u>R

that is, the region inside the Mach cone

The contour may be deformed to be a contour along the branch cut as i
shown below

S ki Seritalicd ot S

Thus

» K
I@) -[ j j ]awu Hg') (R\’fz-xz) d¢

below cut abd?e cut

N f JSu H(()2) m\/{z'__ K‘z) ) jf v H((,x) m\'i’{z_';z') at
X K
- -zfe‘e“ 3 ®RVE %) at

X




48

We thus get (see Magnus & Oberhettinger p. 179)

ix”uz-Rz
I = 27—
uz--R2

ik{Mu + Vuz -Bz)
G(;;;’)= 27 e
VMZ- 1 Vuz - R

am ol K MR (cos 6+ sin §)
Vi1 R sin g
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APPENDIX B
a
- max X
Imr /COB - % (—a—) dx
c
ac -a
xc Tox 2

mr {8 "2 Kr 1 ma 3 "2
+ cog| — -coslf— -~ —}a-—
a \ 2 a a a 2
c c
- a -a
1 a -a K
+ cos| BT{_¢ - cos r m7 L7 c
K_+my a 2 a a 2
—r — c c
a a
c
K a -a a -
r mm mT c mu{c
+ — 4 —— =1
o sin[( a_ 2 sin a, D)
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a e R = c————

! where

* cos Kk - chx
ar = T T

8in x_ + sh x
T T

and the normalization Nr is given by (Dzygadlo 1967) N;Z = Zli—
r

1 Ay
- Qi o —— - s
(sh 2 K, = sin 2 Kr) r &h K, €08 K_ sin K, ch Kr) *3 X

(ch2k ~cos 2k -4 sink shk) +a2 [1 +—1—(sin2x +sh2k)
T by T T r 4 T by
1 .
- {sink_chx + sh,{r COSK )]
Ko r T by
and the eigenvalues Kr are the roots of the equation

cos x coshx =1
r r

and are approximately given by

Kl = 4,730 K2

_ =7
= 7.853 k_ = —-(@n+1)

J isthesameasI with a and a_replacedby b and b , respectively.
ns ns c ¢

oot
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APPENDIX C

A[(Pm (;)wn (%)] = Q(m,n, a, B, 2, b
-Q (@, m, B’ a, b, g8)

where 9 is defined in Appendix A and

K_\2
Qm,n, a, B,a, b = 2(%) [—% -ig B+ e"iBb .

Kn sh -iax X
(—5_ ch Kn+iB in;: -shx)] fdx X (X)

The integral may be found by appropriately combining the foliowing

four integrals
a
-i(x_ -aa)
. i(x_ +xa) n
fsmx—}:emxdx=ée n _ e 1
na 21 Kn Kn
1(...,. +a> i( ~-——)
a a
i(@a - K ) ilaa + k)
e -1 e =1

e e AN 8
R e s o

S
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& i{as + k) i(oa - x_)
' n i}
X eiaxdx _2 |e 51 @ -],
. cos Ky 21 aa + K aa - x
o o
8 e +1 &) e -1k ) i
ch K X eidx - al + e =] _ & -1
na 2 oa +ik aa ~ix
n n
o -t
a f{aa + 1xn) ida -1 xn)
chx % eiax . ale -1 + & -
na 21 aa+ixn aa-ixn

and where o is given in Appendix B.

¥
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APPENDIX D

X y\]. .2 b e fm(‘mc) f:n (‘Bbc) Img Ins
Q [(pr('i) % ('E')] - w0, m2=o € tn k o osin k d
n=0

where

ima-x)
Xe

£ &) =
o3 xz _ (m%')z

and Imr is given in appendix B,

ale |
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