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ABSTRACT

i A computer program igs described which enables one to compute
£ the pressure waveform at a distant point following the detonation

o2 of a nuclear explosion in the atmosphere. The theoretical basis
“ﬁ?ﬁ of the program and the numerical methods used in its formulation
fé% are explained; a deck listing and instructions for the program's
b operation are included. The primary limitation on the program's
gﬁ% applicability to realistic situations is that the atmosphere is
=3 assumed to be perfectly stratified, However, the temperature and
& wind profiles may be arbitrarily specified. Numerical studies
| carried out by the program show some discrepancies with previous

| computations by Harkrider for the case of an atmosphere without
! winds., These discrepancies are analyzed and shown to be due to

i different formulations of the source mcdel for a nuclear explosion,
f Other numerical studies explore the effects of various atmospheric

; parameters on the waveforms., In the remainder of the report,

) two alternate theorcetical formulations of the program are described.
3 The first of these is based on the neglect of the vertical

T acrelevation term in the equations of hydrodynanics and allows

a solution by Cagniard's integral transform technique, The

i second is based on the hypothesis of propagation in a single

guided mode and permits a study of the effects of departures

fron stratification on the waveforms,
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Chapter I

INTRODUCTION

1.1 SCOPE OF THE REPORT

The present report summarizes investigations carried out by
the authors during the years 1966-1968 on the propagation of
low frequency pressure disturbances under Air Force Contract
Ho, F19628~67-C-0217 with the Air Force Cambridge Research
Laboratories, Bedford, !lassachusetts., The study performed was
theoretical in nature,

The principal prohlem which the authors chose to study was
that of the theoretical prediction of the pressure waveform
facoustic pressure versus time) which would be detected near the
ground at a large horizontal distance (between 500 and 20,000 km)
from a nuclear explosion in the lower atmosphere. This problem
was selected for several reasous.

luclear explosions, particularly those in the megaton range,
excite waves whose dominant periods lie in the so-called
acoustic-gravity range (roughly between 1 and 20 minute periods).
These acoustic~-gravity waves are relatively little understood
at present and exhibit many interesting properties which invite
serious inquiry.

0f all the known sources which may excite acoustic=-gravity
waves capable of being detected at large distances, the nuclear
explosions correspond most closely to point sources, This allows
a considerable simplification in the analysis. Furthermore, the
nuclear explosions are better understood and may be described in
a more detailed quantitative fasiion than would be natural sources
such as volcano eruptions, weather disturbances, etc.

A considerable amount of data on pressure waveforms recorded
following nuclear explosions exists and is published in the
scientific literatur.. Since the explanation of data should be
a principal reason for any theoretical development, it is
natural to begin with the study of phenomena for which a large
bulk of systematically obtained data exists.

It would appear that the possible application of a theory of
waves generated by nuclear explosions to the interpretation of
experimental data would be of some practical Importance, either
as an aid in a possible acoustic detection system of nuclear

-13-
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explosions, or as a means of inferring some of the as yet imper-
fectly known properties of the earth's upper stmosphere., In this
respect, the first step would clearly be the development of a
deterministic theory which, given certain properties of the
explosion and of the atmosphere, allows one to predict the
waveforms,

It should be mentioned at the outset that the problem under
consideration has been of considerable interest to a large seg-
ment of the scientific community for some fime and that the
problem has an illustrious background. The present report
merely reports a continuation of one facet of a lengthy pattern
of research which has been carried on by a large number of
investigators in the past. In a somewhat restricted sense, the
work reported here is a continuation of work done by one of the
authors (A. Pierce) under Air Force Contract No. AF 19 (628) - 3891
with Avco Corporation during 1964-1966,

A major part of the present report is concerned with the
explanation, presentation, and description of a computer program
(which we refer to by the name INFRASONIC WAVEFURMS) which was
developed during the course of the contract., This program is
based on a theory which assumes the atmosphere to be perfectly
stratified and to have somewhat arbitrary temperature and wind
velocity profiles. This theory, described in some detail in
Chapter 11, is based on a number of approximations which restrict
its application to waveforms recorded near the ground at large
distances from low to moderate altitude nuclear explosions. In
addition, the computational method restricts the application of
the program to the earliest portion of the dominant signal, which
travels with a speed roughly equal to the speed of sound at the
ground,

Chapter III gives a user's manual for the program, with
instructions for preparing input, description of t!: possible
output of the program, and sample input and output., A deck
listing of the program is given in Appendix B,

In Chapter IV, some numerical studies made using the program
are reported, These studies include the explanation of some
discrepancies with previous computations by llarkrider for the case
of atmospheres without winds; the discrepancies being due to
differences of methods of incorporating a source model into the
formulation. A discussion, with numerical examples, is also
given of the effects of variations in parameters describing the
atmosphere on the waveforms. There we conclude that the physical
significance of the individual guided modes predicted for a given
atmosphere model is extremely limited and that the total waveform

«llm
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is relatively ingsensitive to variations in the parameters
characterizing the atmosphere. An extensive compariscm with data
remains to be carried out, The only example presented in this
report is for the case recorded at Berkley, California, on

30 October, 1962 following an explosion 13,60° N, 172.22° W. near
Johnson Island. We chose this record as it appeared to be the
least affected by ambient noise of the records exhibited by Donn
and Shaw. Although the choice may therefcre appear somewhat for-
tuitous, the agreement of the theoretically obtained waveform with
this record would appear, from a subjective standpoint, to be
extremely good,

The following two chapters, V and VI, present two alterr ite
theoretical formulations of the problem of predicting waveforms,
The first of these, described in Chapter V, represents an appli~
cation of various mathematical techniaues generally known as
Cagniard's method to the idealized case when the vertical
acceleration term in the equations of hydrodynamics is neglected
at the outset. The second, described in Chapter VI, is based on
the assumption that the propagation is predominantly in a single
quasi-mode which resembles Lamb's mode for an isothermal atmo-
sphere. This theory reprecents an extension of some ideas
recently expressed by Bretherton (1969) and by Garrett (1969), and
shows considerable promise in that it is not restricted to a
stratified atmosphere or to linear equations., The quantitative
implications of these thecries are not explored, but are discussed
in the present report with the hope that they may be of interest
to other researchers concerned with acoustic-gravity wave propagation,
At the time of this writing, we are especially optimistic about the
single mode theory and hope to have some quantitative assessment
of its applicability in the very near future,

-
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Chapter II

THEORETICAL BASIS OF INFRASONIC WAVEFORMS

2,1 SUMMARY OF THE THEORETICAL MODEL

The mathematical model on which the computer program
INFRASONLC WAVLFORMS is based is briefly summarized here. The
geometry adopted (Fig, 2~1) is that of a stratified atmosphere
above a rigid flat earth., The ambient atmosphere is descrjbed
by a sound speed profile c(z) and a wind velocity profile v(z),
where z is ueipht above the ground. Both of these profiles are
assumed independent of horizontal coordinates x and y and of
time t. Moreover, the ambient winds are assumed to be horizontal,

The air comprising the atmosphere is taken as an ideal gas
of constant specific heat ratio y = 1.4 and of constant mean mo-
lecular weight, Thus the ambient pressure P, and density 0,
satisfy the hvdrostatic relation and the ideal gas law

z

p,(2) = p_(0) exp -I (va/c*)dz (2.1.1)
0

p, = Yp,/c? (2.1.2)

where p (0) (taken as 10° dynes/cm?) is the ambient pressure at
the groand. Since the propagation is considered to be predomi-
nantly in the lower atmosphere, the acceleration of gravity g is
taken to be constant with he1§ht and eaqual to the typical earth
surface value of .0098 km/sec*,

The neglect of earth curvature is in accordance with the re-
sults of previous studies by Weston (1961) and by Harkrider (1964)
which indicate that the curvature of the earth can approximately
be acoounted for by multiplying the flat earth waveform by the
factor

[(r/re)/sin(l.'/re)]l/2 (2.1.3)

where r is the great circle propagation distance and r is the
radius of the earth, This result holds in particular for waves
which have traveled somewhat less than one-fourth the circum~
ference of the earth, Since the intended application of the pro-
pram is for the interpretation of data recorded at distances less

17~
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Figure 2-1, Sketch showing the general model adopted in the
theoretical formulation, An explosion of yield Y is at height
z above a flat rigid ground in an atmosphere with stratified
sound speed c and horizontal wind velocity v. The wave dis-
turbance is detected by an observer with coordinates (x,y,z).
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than this and since the factor above does not vary appreciably
from 1 for such a range of distances, this correction is ne~
glected, In general, we consider such a correction to be minor
compared with the inevitable uncertainties in the source model and
the ambient atmosphere.

In order that the model be amenable to computation, we con-
sider the propagation to be governed by the linearized equations
of hydrodynamics, This would appear to be a fair approximatién
at large distances from the explosion, although it is clearly not
applicable close~in, It is therefore implicitly assumed that any
near field nonlinear effects may be taken into :account by a ju~
diciously chosen source model.

The source model adopted here (whose rationale is discussed
at some length in the next section) is that where the presence
of the source and the near field nonlinear effects are repre-
sented by a time-varying point energy source term added to the
right hand side of the linearized equation which corresponds to
energy conservation, Thus the governing equations (which are to
be satisfied everyuhere above the ground) are taken to be of the

form
poEth + (‘6-\7)?] =- U - gp‘e’z (2.1.4a)
D,p + Ve (po‘J) -0 (2.1.4b)
[Dtp + ﬁovpo} - c? (Dtp + 'J-VDO]
= mcf ()8(F - ) (2.1.4c)
where

D, = (3/3t) + Vey

is the time derivative corresponding to_an observer moving with the
ambient wind. In the above, p, p, and u represent the deviations
of pressure, density, and fluid velocity from their ambient values.
Ihe quantity e, is the unit vector in the vertical direction, while
r, denotes the“source location.

The time-dependent quantity f_(t) represents a function

characteristic of the source, For convenience of referral, we
state here our choice of this function prior to a discussion of

«19-
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the rationale behind such & choice, We take
t
fE(t) = Ifé(t) dt (2.1.5a)

o

where

£1e) = 00%0p (2 ) 1o @123 £ (e 23

D (2.1.5b)

Here Y. is the explosion yield in KT, p (zo) is the ambient
pressurz at the height of burst, and ko %s scaling factor

given by
A= [c(0)/c(z )]lp_(0O)/p (= )11/3 (2.1.6)
o] (o] (¢] 0 O

The quantity Ls is a length identically equal to 1 km, which we
include in the theory for dimensional "purity". The function
flKT(t) is given by
-t/ts
fle(t) - (Ps)(l - t/ts)e u(t) (2.1.7)

where

P, = L.61 x 34,45 x 10® dynes/cm?
t = 0,48 sec,
8

Here U(t) is the lieaviside unit step function and z, denotes the
height of burst.

In the actual computation, the source location ; is taken
to be a fixed point in space. An alternative assumption which
might seem more plausible is to take the source as moving with
the ambient wina at the height z, of burst. However, the results
of the computation should be ins€nsitive as to just which assump-
tion is made, This follows since we limit our analysis to dis-
turbances which travel with speeds near the speed of sound near
the ground and since the wind speeds are invariably much less than
the sound speed, Any phenomenon analogous to a doppler shift
would undoubtedly be smaller than could feasibly be detected by

experiment,

Boundary conditions on Eqs. (2.1.4) are that u_ = ( at the
ground z = 0 and that of causality (no disturbance in the far

=20
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field before £ _(t) first becomes nonzero). The time origin here
is not considered of too much relevance, With the definition
given for £ (t), it is approximately (the discrepancy being due
to nonlinear effects) équal to the time of detonation. We also
take the source location to be on the z axis (x_ = y_= 0),
Generally, we consider the +x axis to point easgward? and the
+y axis to point northward.

2,2 THE SOURCE MODEL

Here we summarize the rationale behind the choice of tne
source model given in the preceding section. The discussion
partly follows the develcpment previously given by Pierce (1968).

\le consider a basic nonlinear hydrodynamics model of a
nuclear explosion consigting of an initially isothermal sphere
of vanishingly small radius in an unbounded homogeneous atmo~-
sphere with negligible gravitv. The initial isothermal sphere
has ambient density and fluid velocity, but is assumed to
have very high temperature and pressure, The total themmal
energy {(the specific heat of air is assumed independent of
temperature) inside the sphere is denoted by L., wvhich re-
presents the total hydrodynanic enerqy releasehyhy the ex-
plosion. This, according to what is given in Glasstone's text
(1962) should be roughly 1/2 of the total energy of the ex-
plosion.

The pressure waveform of the explosion in this idealized
model can easily be shown to correspond to hydrodynamic scaling,
i.e.

p = p F(R/A, ct/h) (2.2.1)

where p_and c are ambient pressure and sound speed, F is a uni-
versal gunction, and A is a characteristic length given by

. 1/3
A = (Lhy/po) (2.2.2)

Lxperiment and numerical computations show that at mo-
derate distances (between 3 and 10\ from a nuclear explosion)
the time dependence of the blast overpressure is approximately
of the form (t relative to time of shock arrival)

p= @) - t/ne Y Tu(e) (2.2.3)

where P and T are functions of distance. According to Eq.

2]~
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(2.2.1) above, we may take

T = (A/c)A(R/A) (2.2,4a)
% P = p B(R/}) (2.2.4b)
E where A and B are universal functions of (R/A). It is clear,

since the far field propagation should be governed by linear
acoustics, that A should at large R be a relatively slowly
varying function of R/A and that, at large R, B should be ap-
proximately (spherical spreading)

B~ noxlk (2.2.5)

where B, is a very slowly varying function of R/A.

The basic idea in our source term selection is that fE(t)
in Eq. (2,1.4c) should be such that the solution of the linear-
ized equations of hydrodynamics with the neglect of gravity and
winds and for the same uniform ambient atmosphere should agree
with Eq. (2.2.1) at moderate distances., The ambient atmosphere
for this matching process is taken as that characteristic of the
burst location. The solution of the linearized equations
under the circumstances outlined above gives

T

p= erfé(t - R/c) (2.2.6)

Thus, we would choose fé to be

-t/1

fé(t) - ponok(l - t/1)e u(t) (2.2.7)

The value of R/A chosen for the matching is that corresponding to
g 1 km from a 1 KT explosion at sea level, According to Glas-
stone's text(1962) the value of P at one mile from such an
explosion is 34.45 x 10® dynes/cm? while the value of T is 0.48
sec, Since we expect the shock overpressure to fall off nearly
inversely with R between 1 km and 1 mile we may take P to be
34,45 x 10 3 x 1.61 dyne/cm® at one km, (Here we use the fact
that 1 mile is 1,61 km,) Thus

1/3 2/3

poBoA = PsLsYKT [po(zo)/po(o)] (2,2.8a)
T = Y!1(43[p°(0)/po(zo)]1/3[c(0)/c(zo)]:s (2.2.8b)
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vhere P , Ls, and t are as defined in the preceding section and
7, is the energy yfeld in KT, Equations (2.2.7), (2.2.8a,b)
agree with the definition of fé given in the preceding section.

It now remains to examine the limitations of this source
model. The basic assumption v have made is that gravity and
atmospheric gradients have relutively little effect on the early
development of the blast wave, Another important assumption is
that the initial fireball radius (before the shock detaches from
the fireball) is sufficiently small that the radius of the initial
sphere may be idealized as zero. This radius is conjectured by
Pierce (1968) to be about .05 A, The two approximations would
clearly be inappropriate if the initial sphere radius were of the
order of a scale height H «» Thus one should certainly require
A << 20 H_, 8

The establishment of a more realistic upper bound appears
to be a somewhat complicated problem, Our best guess to date is
that the positive phase duration by the time the blast overpres-
sure is down to 10% ambient should be smaller than 1/10 the
period (about 5 minutes) corresponding to Brunt's frequency w
or Hines' w,. This would insure that there be negligible
acoustic-gravity wave dispersion in the waveform while non-
linear effects are appreciable. This requirement gives roughly

Yop < 200 pyoc (2.2.9)

where YdT is the yield in MT and PaTMO is the ambient pressure
at the %eight of burst in atmospheres ?see Fig. 2-2]., Ve are
not sure if this requirement is too conservative or too generous
at present, but we offer it as a rough guideline to workers who
nmight wish to use the program.

It should be noted that, in our source model, we have taken
a point energy source rather than a point mass source, In
actual practice, for the computation of ground level waveforms,
it makes relatively little difference whether one adopts an
energy source or a mass source, However, when one considers the
fact that a nuclear explosion adds much energy but relatively
little mass to the atmosphere, it is clear that the energy source
model is a priori the more realistic, One of the authors (Pierce,
1968) has examined the relative merits of the two types of
sources, He found the linear initial value problem of waves
generated by the release of an initially isothermal sphere of
ambient density was better represented by the point energy source.
{It should be noted that the use of a point energy source rather
than a point mass source is a relatively new concept in the theory
of acoustic-gravity wave propagation. In particular, all of the
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Figure 2-2, Estimated range of yields and source altitudes for
which the effective point source model is valid.
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authors' work prior to 1968 was based on the use of a point mass
source model, ]

One inherent defect in the model is that we have no me-
chanism for taking into account the far field nonlinear effects,
In the related problem of sonic boom propagation, these are
known not to be negligible, While they do not change wave-
forms appreciably over shorter distances, their accumulative
effects can cause large distortions over very large distances,
While these far field nonlinear effects should be examined in
some detail in the future, we suspect that they are not as im-
portant in the infrasonic nuclear explosion problem as they are
for sonic booms. The basis for this belief is that the inherent
dispersive nature of the atmosphere as a waveguide tends to
filter out the higher frequencies from the lowest part of the
atmosphere and causes the lower frequencies to tend to arrive
first, The nonlinear effects should be of lesser importance
for the dominant lower frequency arrivals since the time for
a wave peak to overtake a node is correspondingly longer for
lower frequencies.

2,3 THE SOLUTION IN TERMS OF FOURLER TRANSFORMS

Since the linearized equations of hydrodynamics do not de-
pend explicitly on time and, except at the soyrce location, do
not depend explicitly on horizontal position x (due to the as-
sumed stratification of the ambient atmosphere), one may express
their solution as a triple Fourier transform over frequency w
and horizontal wave number vector components, k_ and k . Thus
one may write the acoustic pressure p, for example, as

[} [+
-’
ikex 2 - -iwt
p = I I e I fE(w)p(w,k,z,zo)e dw dkxdky
- ~otie (2.3.1)

Here fE(w)is the Fourier transform of fF(t), i.e,

o0

EE(w) = (Zn)"lf fE(t:)ej"‘ut dt (2.3.2)

The quantity € is chosen sufficiently large that the integral over
w vanishes identically at times t hefore the source is first ex-
cited, if kx and k are real, Thus the line ic above the real
axis should pass above all poles and branch lines of the inte~
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grand, The function ﬁ(m,ﬁ,z,z ) must be ggfined such that this
can be accomplished, Fourier 2ransforms u and p are defined
analogously.

A direct substitution of (2.3.1) and its counterparts for
p anu u into the linearized equations gives the following
ordinary differential equations for §, §, and fi:

-pOiQQ = ~df/dz - gp (2.3.32)

-poinzu + poﬁd;/dz . <3k (2.3.3b)
P

-10p + poiouh + d(p 8)/dz = 0 (2.3.3¢)

1P = c2p) + QOQ[CY - 1)g + dc?/dz] = (czlﬂ)gEd(z -z)
(2.3.34)

Here we have abbreviated
> >
0 aw = kev

for the Dopplgr shifted angular frequency and also have abbre-,
viated § and W for the vertical and horizontal components of u,

It turns out {[Pierce, 1965] that the above set of ordi-
nary c¢ifferential equations may be reduced to two differential
equations for

Z= P/Dilz (2.3.4a)
v = it %0 (2.3.4b)
These equations are
[N B -
[dz + S‘Z Sle (;Q 1/2;>6(z zo) (2.3.5a)
fo
d ’ -1
- ~ 8|Y - S,.2 -/L~————:>6(z -z) (2.3.5b)
(dz ) 21 \iQpilzw 0
where
S = (1~y/2)g/c? - ¢! de/dz (2.3.6a)
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81, = Q% - (y - 1)g¥/c? - (g/c?)(dc?/dz) (2.3.6b)
S, = (k3/0%) -~ ¢ 2 (2.3.6c)

The remaining quantities of interest are given by

b= pi/%2/e* + oX/21(y - Dg + de/dzl¥/e? + (1/ (i) (z - 2)
(2.3.7a)
%= e - gl (2.3.7b)

The solution to Las. (2.3.5) is easily worked out [Pierce,
1967] in terms of solutions of the homogeneous equations

Z

o = (2,3.8)

ot | 521 5 | [Y |u,e

Let Zu and Y be nonzero solutions which satisfy these equations
for 2> z_ and which are analytic functions of w for given real
k_ and k %and for all Im w greater than some finite value.
Sfmilarl¥ let Z,, Y, be a nonzero set of solutions for z < z
which satisfy the boundary condition Y, = 0 at z = 0, Then tfle
solutions of the inhomogeneous equatiofis are given by

2 = O (2 ) Zu(Zﬂ
.Y B R« (o] Yu(Z) (z > zo) (2.3.93)
2] »Zz(z).
= au(zo) (z < zo) (2.3.9b)
Y Y, (2)
where
-1
o = e |2 - gY 2,3.10
2,u iQpl/z [ L,u” B Z,u] ( )
with the Wronskian W given by
W= (Y2, - qul)any ;= ¥,0002,(0) (2.3.11)
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That W is independent of height follows directly from the dif-
ferential equations (2.3.8).

It now follows from the preceding analysis that the inte-
grand in Eq. (2.3.1) is given by

{po(z) }1/2 { {‘l’(z,zo) }
p= prapre (2.3.12)
po(zo) ﬂ[w-k°v(z°)] Zz(O)Yu(O)

W(z,zo) = [Zu(zo) - gYu(zo)]Zz(z) z >z (2.3.13a)

where

= [Zz(zo) - ng(zo)]Zu(z) z <z (2.3.13b)

It should be noted that a previous statement of the ahove result
has a misprint, [p (z )/po(z)] instead of [po(z)/po(zo)] in the
paper by Plerce (18687,

2.4 THE GUIDED MODE APPROXIMATION

The Fourier transform solution given in the previous
section 18 too complicated as it stands for direct integration.
Thus it is appropriate to take advantage of any approximations
which may be appropriate to the cases of primary interest
(namely, waves detected near the ground at large distances
which arrive at times roughly corresponding to the lower
atmosphere sound speed). The primary approximation we make
in this respect is the guided mode approximation. The mathe-
matical manipulations leading to this approximation are
described in many texts for waves in stationary media and were
first discussed by Pridmore-Brown (1962) and later modified
by Pierce (1965) for the case of waves from a point source in
a windy stratified atmosphere.

Before introducing the guided mode appreximgtion, we first
consider the symmetry properties of the factors fE’ P, and of
their product

I(w,k) = EE(w)s(w,iZ,z,zo) (2.4.1)

yhich appegrs in thg integgand of Eq. (Z.3.1). We set

k = kR + ik, where kR and kI are real vectors and similarly set

PN —
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W= wp + iwI. Since p is real, we have (or at least can choose)

I(w,k)* = Iwy + duy, = IR + 1k) (2.4.2)

I'

Thus, taking the complex conjugate of I is equivalent to changing
the signs of the real parts of w and k. Since f (w) must a
priosi have this property [fE(t) is reall, it fo§lows that p

must also have this property.

A final symmetry property which can be insuged by appro-
priate choice of branch lines is that, for real k and complex w,

Bl-wy-1y2,2 ) = -filw,k,2,2 ) (2.4.3)
(o} (¢}

To prove this, one should first note that tﬁe differential
equations (2, 3 5) are invariant if @+ -w, k + <k, Z + -2,

Y > -Y, Also, the lower boundary condition is unchanged. This
suggests that we may be able to take

Z(W,k) = =2 (=w,-K) (2.4.4)

While it would appear that this neglects the consideration of an
upper boundary condition, this is actually not the case, since
any posed upper boundary condition would of necessity have to
be equivalent to the requirement that Z(w,k) be analytic for

> €. Thus Ea. (2.4.4) merely states that we are free to de-
f}ne Z(w, k) for values of w in the lower half of the complex w
plane in such a manner that Eq. (2.4.4) is satisfied, In what
follows we consider that we have made such a definition with
an appropriate selection of branch lines. Lquation (2.4.3) then
follows from the ahove and (2.3.4a)., Since § is almost every-
vhere analytic in k, it would seew appropriate to consider (2.4.3)
to hold also when the components of k are complex.

Returning now to the central task of deriving the guided
pode approximaticn, let us first interchange the order of w and
k integrations in Eq. (2.3.1). It follows that we can do this if
we can find an € which does not depend on k. The analysis by
Friedland and Pierce (1969) would apparently indicate that such
an £ can be found providing the atmosphere is inherently stable.
Let us assume this is the case, Then the integration over k
and ky is replaced by one over k and Bk (polar coordinates) fhere

kx =k cosek : ky = k sinek (2.4.5)
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Since the integrand is clearly periodic in 6, and since increasing
the value of ak by 7 1s equivalent tc changing the sign of k,
we obtain

L2 O R 0+m/2
p = J e lut fE(w)J Q D8, (2.4.6)
ez 12 6-n/2
where
© - 0 - -
Q= f 6w, B)et* ™ kdk - I 8w, ) el*"* Kak (2.4.7)
e} =00

Here 0 is the gngle (reckoned counterclockwise) which the hori-
zontal vector x makes with the x axis., It should be noted that
the factor kex in the exponent is kR cos(8 ~ 8, ) where R is the
net horizontal distance from source to receiver,

Using Cauchy's theorem, we may show for cos(f - Gk) > 0 that

Q = Qp - Q + 20 (2.4.8)

where QR’ 0. and QI are contour integrals of the form

L

K’

fw,k)e

, 1kR cos (6~-6

c
where the contour C is taken as follows:

QR: C circles the upper right quadrant of the k plane in
the counter-clockwise sense,

QL: C circles the upper left quadrant of the k plane in
the counter-clockwise sense,

QI: C goes straight up the imaginary axis from 0 to «,

The integral 0. is readily seen to be relatively small for large
R compared to aR and to Q.  and is accordingly neglected at the
outset. The contour integrals QR and Q, are then evaluated by
Cauchy's method of residues. It'is ant&cipated that contri-
butions from any branch lines encircled in the shrinking pro-
cess are of minor importance at large R, Thus we obtain the
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approximate result
Q = 2mi{(Z Res) - ( Res)L}

where the quantities (T Res)R and (Z Res)L are the sumg of the
residues of

ikR cos(9-96, )

kﬁ(w,i)e k

at the poles in the right upper and left upper quadrants, respect-
ively.

The integrals over €, are performed by the saddle point
approximation [see, for example, Morse and rfeshbach (1954)] under
the assumption that the poles k_(w,0, )are much more slowly varying
functions of 9, tham is cos(8-01). yhysically, this assumption
is equivalent %o the neglect of crosswinds. Thus we have a
typical integral evaluated in the manner

E+m/2 -1knR cos(e-ek)
¢n(w,6k)e dek
6-m/2
2
ikn(w,e)R ik R(e-ek) /2

2

e ¢n(w.0)f e " do,

-0

R

n

where the pole location is taken at 6
phase of kn (between 0 and 7).

/

{.2“ 11/2 i(knR - m/4) +iPh(k_)/2

K" 8. Here Ph(kn) is the

Thus Eq. (2.4.6) becomes

oHe o 3/2 i{k R - wt - /4] iPh(k )/2
D = 2n1f £, (w) e |r kS e e 0 du
oo € n (2.4.11)

where %y is the residue of § at k = kn(w,e) and S is 1 if kn
corresponds to a pole of f in the upper right qua&rant; -1 for
the upper left quadrant., It is assumed throughout the preceding
analysis that w has a nonzero imaginary part, The k_ in general
will be complex numbers with positive imaginary partg.
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We may let € + 0 as long as the k (mB + 1w1,e) have non~-
negative imaginary parts as w_. + O from above. "We assume this
is the case, since otherwise Ehe ambient atmosphere would be
unstable, It is necessary to consider the possibility (since
it is a certainty in the absence of dissipation) that some of
the kn may be real when w is real. However, we wish to avoid
spurious terms which correspond to poles lying below the real
k axis when w, > 0, This can be accomplished by simply re-
quiring that, for real w and real k_, only those terms be
included for which n

3k /3w > 0 ©(2.4.12)

(which is equivalent to the reauirement that the group velocity
be positive.)

At this point we make use of the symmetry properties of ¥.
The integral over w may be separated into one from -« to O and
one from 0 to ». The former is then subjected to a change of
variable w + -w. One can readily show from (2,3.2) that the
former must be just the complex conjugate of the latter, Thus

s - i[knR-wt-n/aj
p = Ref fu(w) g An(w,e)e dw (2.4,13)
0
where
iPh(k )/2
_ 21 1/2 n
An = lmi[m] Sne ¢nkn (2.4,14)

The pole locations are assumed to be piecewise continuous
functions kn(w,e) of w, Thus we can interchange the sum and
integral in Eq. (2.4.13), obtaining

p=21 Py (2.4.15)
n

where P, is the contribution from the nth guided mode, given by

A i[k R“'(ﬂt-‘"/4]
P = Re[ £, WA_(w,0)e n dw (2.4.16)

The integration limits extend over a range of positive w for which
kn(w,e) is defined. It should be noted that the kn are in general
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complex. Their imaginary parts must be positive, but (at least
formally) their real parts could be either positive or negative,
In the terminology used by Friedman (1967), those modes with a
non-zero imaginary part of k are called leaky modes. It is
possible that a given mode mgy be leaky over a given ramnge of

w and then be non-leaky (real kn) over another range of w.

It is tempting to discard all leaky modes or leaky portions
of modes at the outset with the glib statement that at suffi.-
ciently large R they are negligible. However, just whether or
not they are negligible depends on the magnitude of Im(k_). Since
we are primarily interested in propagation to distences of the
order of 10,000 km, the values of Im(k_) should be greater than,
say, 10 ° km ! if we are to consider anleaky mode to be negligible,
We might term modes where Im(k_) is less than this value as

n
slowly leaking modes.

Just when slowly leaking modes are important in waveform
synthesis is intimately related to the nature of the topmost
region of the assumed model atmosphere. If the top of the atmo-
sphere is adjacent to a rigid surface or is bounded by a free
surface, then there is nowhere for energy tc leak and there are
no leaking modes, On the other hand, as was originally observed
by Press and Harkrider (1962), if the uppermost region of the
atmosphere is taken as an isothermal half-space, then there are
certain regions of the k vs. w ( for fixed 6 ) plane (with k and
w real) in which the dispersion curves for non-leaking modes
cannot penetrate. If a mode's dispersion curve apparently ter-
minates at the edge of such a region, then it would seem that
the extension of the mode into such a region would be a léaky
mode, None of these three types of models is too fair a repre-
sentation of the upper atmosphere, but one may argue that, if
the major portion of the energy is channeled near the ground,
then the variations in the model atmosphere above 150 km should
have relatively little effect on the actual waveform, Numerical
studies such as described elsewhere in this report would seem
to support this conclusion,

The discussion given above would suggest that we may avoid
the consideration of leaky modes by adopting a suitable model of
the uppermost portion of the atmosphere. Just what model is
adopted should probably be a compromise between what is known
about the upper atmnosphliere and the desire teo minimize the con-
tribution from the sloulv leakinn modes. In what follows, we
assurie such a model has been selected and accordingly consider
only real non-leaking modes,

Since we are interested primarily in interpreting data on
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waves arriving at times corresponding to group velocities roughly
equal to the scund speed in the lower atmosphere, it is clear that
we may discard at the outset any modes or portions of modes which
rgive negligible contributions at such times. Since the contri-
bution to a mode at time t comes primarily from frequencies near
that at which @ satisfies

f._=n (2.4,17)

it would seem appropriate to consider only those modes where
Bkn/Bw is of the order of l/c where ¢ is a representative sound
speed, To this purpose, the following theorem derived by Pierce
(1965) for non~leaking modes may be of assistance,

(y? + (x%/0%2%)dz

(2.4.18)

{QRev/X)Y2 + kuQ 2% )}dz

Qv
€
oOoY— gjlo——g

The fact that wind speeds are small compared to the sound speed
suggests that we may estimate the magnitude of 3k/3w for cases
of interest with the neglect of wind velocity. 1In this limit,
the above expression becomes

-
-~

(.02 2
+ ¢ {2.4.19)

el

21

where a® is positive. Thus 9k/3w is positive only if k > 0 (given
w > 0). Furthermore, the group velocity (dk/3w) ~, if positive,
should always be less than the phase velocity. Thus, we may
restrict our analysis to modes where k > 0 and where w/k is greater
than, say, half the sound speed at the ground, It would cer-
tainly seem appropriate to discard all modes where k is negative
or where w/k is less than the maximum wind speed, given tha: the
maximum wind speed is small, (The reasoning here may be scme-
what circular since we initially neglected the winds to arrive

at this deduction, However, a more detailed examination secems
unwarranted at the present stage,)

Let us next examine the quantity A_(w,0) in Eq. (2.4.14)
under the assumption that kn is positive, real, and greater than
w times t.e maximum wind speed. The poles of P which satisfy
these requirements must, by Eq, (2.3.12), correspond to zeros of
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Y (0),.when considered as a function of k. The residue ¢_of P
at such a pole is given by (2.3.12), only with Y (0) replgced by
dY (0)/ok. The latter derivative has been shownuby Pierce (1965)
tobe given by

[+ ]

-2j{n(§-$/k)yz + kuf 322} dz
[+

BYu(O)/Bk = (2.4.20)

z,(0)

Furthermore, since Yu(O) is 0 at a pole, the upper and lower
boundary conditions are both satisfied when k = k_ and we may
discard the subscripts £ and u. Thus we have

. po(z) 1/2 i [Z(zo) - gY(zo)]Z(Z)
*n Py (2 iz ) = .
I{ﬂ(k'v/k)Yz + k) %22} dz
0

(2.4.21)

where the direction of k is 0 and its magnitade is kn(w,e).
If Bq. (2.4.21) is substituted into (2.4.14), we find

oo(z) 1/2

1/2 . .
8nk (2(z ) - g¥(z )]Z(z)
A = RCH n 1 o 0
n Py zo) {: R ] Q(zo) o

j{ﬂ(ﬁoz/k)yz + ko 322} dz

0
(2.4,22)

It should be recalled that the expression for a guided mode is
given by Eq. (2.4.16), The quantities k (w,8) are zeros of Y (0)
and it is assumed that we need only cons®der contribucions from
mode sepments where §! is positive for all z and where kn > 0.

The only remaining piece of analysis to complete our fgrmal
derivation is the derivation of an explicit expression for fE(m).
If we insert kgs. (2.1.5) into Eq. (2.3.2), we find

© t
1/3
KT

2/3 iwt ' 1/3 '
[po(zo)/po(UX LsIe JflKT(t 1IN Yyep Ddt'de

0 0

£, (W) = (2m)" 'y
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or, after an integration by parts,

©

£, = -en N30 (2 /6, 00173 {m]lei‘“ IR CTI R SAg T

From Eq. (2,1.7), we find

< P iw

Jeiwt (/D Y1/3]) dt = 51/3 .

? fw+ 1A Yt ) ')

Thus

£ = - NP e ) /p, 0123 p t1w + 100 xE % y7H?
(2.4.23)

The symbols in this expression are as defined in Sec, 2,1,

2.5 SUMMARY OF Thk GUIDED MODE SOLUTIO:

For convenience of referral, the solution derived in the pre-
vious sections is summarized. First, we have the wave as a sum
of puided modes, the acoustic overpressure p being given by

= i p (R,6,2_,2,t) (2.5.1)

where the arguments of p, are

R = horizental distance from source

€ = azimuth angle of observer (counter-clockwise in
horizontal plane)

z, = height of burst
z = heipght of observation location
t = time of observation

In additicu p_ depends on the sound speed and wind velocity
profiles, c(79 and v(z), and on the vield YKT of the explosion
in KT.

A particular guided mode wave is given as an integral of
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the form

P, = ID“ cos [wt - knR + e] dw (2.5.2)

where the integration extends over all positive frequencies w
for which a real k_(w,0) is defined., The quantifies D_ and e
are real functions of w. Ws may define D_ as ilf,A | 3nd take e
as ©/4 minus the pahse of *f A . The chofce of slgg depends on
just which real factors are incorporated into D .

The particular forms which we may take for Dn and e are

XOR R R A RO VR OV !
D = |2 — 2
S (SR I i [ + O\ Y§43 )7%)
(2(z ) - gY¥(z )]Z(2)
x Q(i s = g o (2.5.3)
o]
I{Q-l:';/k)Yz + kuQ"3z¢} dz
0
< 5m/4 + 2 x phase [w + 1(\ Yi,é:; y 4 (2.5.3)
where
Ps = 1,61 x 34.45 x 103 dynes/cm?
L =1kn
S
t = 0,48 sec
As l 1/3
o = le(0)/c(z )][p (0)/p (z )]
kK =

k (w, 6)[e cos 6 + ey sin 0]

The functions Y and z are eigenfunctions of two coupled homo-
geneous ordinary differential equations and k (w,8) may be con-
sidered the corresponding eigenvalue.

To introduce the nomenclature used in the discussion of the
computer program, we set
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1/2

Dn = (1/R™'“) (AMPLTD) (2.5.4a) ;
aeLTD = (FacT) (A% 21w s @ Y2l | ) (2.5.4b)
1/2 |

FAcT = (4/2m Y 21e ) (n, ()10 (2 )1 210 (2 ) 1 @13 (2.5.40)

lZ(zo) + gY(zo)]Z(Z)

AM:P = e o (2.5.4d)
2z )e(z,) J{sz(i-‘é/k)w + wkq 322} dz
0
insLs
S(w) = ———— (2.5.4e)
[w+ 1t ]2
s
o 1/3
PHASQ) = e = 3n/4 ~ Phase {S(wAOYKT )} (2.5,4f)

The subscript n on various quantities is omitted for brevity.

In terms of the quantities introduced above, the contribution
Py from the n-th guided mode becomes

n = Rfl/ZfAMPLTD cos [w(t - R/vp) + PHASQ] dw (2.5.5)

where

vp = w/k (2,5.6)

is the phase velocity (varying with w) of the guided mode.

2.6 THE MULTILAYER METHOD

In order to compute the dispersion curves k (w,8) [or,

equivalently, phase velocity v_ vs. w] for the guided modes

and the functions Y and Z, it Ps convenient to formally replace
the actual atmosphere by a multilayer model, in which the model
is comprised of a discrete number of layers, each having con-
stant temperature and wind velocity. Such a technique is fairly
common in the numerical solution of wave propagation problems
and dates at least as far back as Haskell (1950)., The multi-
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layer method has some shortcomings and has been criticized

by various authors, It is important that the reader realize
that the method is only a numerical integration technigue.

We do .not approximate the atmosphere by a multilayer model at
the outset but only use this as a device to evaluate the quan-
tities needed for numerical evaluation of the solution summarized
in the previous section, In actual fact, any given multilayer
atmosphere would most likely be unstable for disturbances of
sufficiently short wave length. lowever, for anv given k and w,
we may always pick a model (by simply including enough layers)
that the numerical solution of the homogeneous residual
equations (2,3.8) is in good agreement with the result which
might be obtained by using a given continuous atmosphere. Thig
has been demonstrated previously by one of the authors [Pierce,
1966]. 1t may be argued that the multilayer method is not

the most efficient numerical method, but the authors believe
that, from the standpoint of coding the problem for numerical
computation, the multilayer method is generally to be preferred.

For the purpose of making the organization of the compu-
tation scheme as simple as possible, it is assumed that one
has picked a multilayer model of sufficient detail that it
suffices for all numerical computations necessary to evaluate
a given waveform. The same model will then be used thro-ighout
the computation, Guidelines for selecting such a model have
been discussed by Pierce (1967) and by Vincent (1969). The
user, if he so wishes, may establish his own guidelines by
numerical experiment.

In multilayer computations, it is convenient to deal with
quantities ¢l and ¢, rather than Z and Y since the latter are
not in general continuous at layer boundaries., The functions
¢l and ¢2 are defined as

Ql = cY (2.6.1a)
¢, = g¥/c - Z/c (2.6.1b)

These can be shown from Eq. (2.3.8) to satisfy the residual
equations

. ) A1 Ay

— )
dz (2n6v2/

% Aar A | | %2 ]

where the elements of the matrix [A] are given by
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Ay, = gk? /% - g/ (2¢%) (2.6.3a)
A, =1~ e?k?/q? (2.6.3b)
4y ™ g?k?/0%c? - 0F/c? (2,6.3¢)
Ayy = =Ap (2.6.3d)

1t follows from the form of these coefficients that ¢, and ¢, must
be continuous with z even when ¢ and v are discontinudcus, Ia any
given layer, the matrix [A] is constant.

On¢ restriction we place van the multilayer atmosphere is
that the top-most layer (bounded below by z = z_) be an iso-
thermal halfspace with constgnt winds. The only solution of
Bq. (2.6.2) which, for real k, is analytic in w for z > z for
all w for which Im(w) > 0, and which vanishes as Im(w) + &
(these conditions are equivalent to the causality condition)
is of the form

Ql -AlZ ~G(z - zT)
= ) e (z > zT) (2.6.4)
@2 All + G
where
2 _ a2
G All + A12A21 (2.6.5)

with the coefficients Aij appropriate to the upper half space.
‘tThe phase of G ig chosen”such that G is analytic in the upper
half of the w plane and such that the phase of G approaches 0
as Im(w)»~. 7The quantity D in the above expression is any con~
venient constant., A necessary conseguence of this is that the
phase of G must be O when w is real on all regions of the real
w axis where G2 > 0. If G? < 0, the phase of G could be either
m/2 or -n/2, depending on which choice is compatible with the
requirement that G is analytic for Im(w) > 8. It should be
noted that G has branch points on the real axis.

The values of @, and ¢, at lower values of z are found by
integrating Eqs. (2.6.2) down from z = z¢ with (2.6.4) as starting
conditions. Since the equations are linear, we can determine a
transmission matrix [R] such that
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01 d>1
= [R] (2.6.6)
QZ z =20 ¢2 Z,
where [R] is independent of the values of ¢. and ¢2 at z = Zpe
The condition that @1(0) = 0 is therefore
->
Flw,k) = AlZRll - G + All)RIZ = 0 (2.6.7)

vhere G, All; and A1 are quagtities appropriate tg the upper
halfspace. “tThe func%ion F(w,k) for general v and k is called
the normal mode dispersion function. It is defined hgre for all
values of « in the upper half plane and for all real k.,

If, as igplied previously, we restrict our attention to modes
where w and k are real, then the matrix [R] will be real and G
must be real if Eq. (2.6.7) is to be satisfied. This limits
the region in the w, k space wvhere one need search for roots of
the normal mode dispersion function. $ince we need onlv con-
sider points such that G is real, we can simply say that the
normal mode dispersion function does not exist if this condition
is not satisfied. We can also say that, if . and ¢, describe
a non-leaking guided mode (which is the only %ype we consider),
then ¢. and ¢, must satisfy an upper boundary condition of
decayiflg exponientially with increasing z in the upper half space.

One of the chief advantages of the multilayer approximation
is that one can formulate a straightforward algorithm which com-
putes the normal mode dispersion function F(w,k)for giyen real
w and k, Thus the computer can formally consider F(w,k) as a
known function in obtaiping dispersion curves. The details of
the computation of F(w,k) are discussed in the description of
the program's subroutines. [See Appendix B.1

2.7 TABULATION OF DISPERSION CURVES

One of the principal difficulties in coding the numerical
synthesis of waveforms was that of obtaining a feasible method
for tabulating the dispersion curves of the guided mode, By
dispersion curves, we here mean the graphs of phase wvelocitv

vp(w,e) versus w for fixed 0, where vp satisfies

Flw,k) = 0 (2.7.1)
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with

k= (w/v,) {"éx cos 6 + Zy sin 6] (2.7.2)

We denote the value of F(w,ﬁ)when k is given by Eq. (2.7.2) as
F,{w,v ). Thus we wish to tabulate curves in the v_, w plane
agong Phich P

FO(w,vp) =0 (2.7.3)

given a computational scheme which either computes F, for given
w and v_ or else tells us that a real Fe(w,v ) does not exist
for such values. P

Such a tabulation of dispersion curves is complicated by
the fact that it requires some care to insure that we do not
mix modes., For example, if (w,, v.) and (w,,v,) are two points
at which F, = 0, it is difficuit td determifie Whether or not
these poin@s both lie on the same curve or on different curves.
An obvious goal is to eliminate the need for human intervention
in answering such questions, The manner in which we accom-
plished this may be of some intrinsic interest as analogous
problems occur in many other contexts,

We specify a rectangular region of the v_ versus w plane and
consider a dense rectangular array of pointspin this region,
Lach point lying on the same row corresponds to the same value
of v_ and each point lying on the same column corresponds to
the Bame value of w. For each such point we compute the sign,

+ or - (or X if F(w,v_) does not exist), of the normal mode
dispersion functiom, POne can visualize such a computation as
being presented in the form of a nicture (which we term a table)

analogous to what one sees on a television screen., (See Fig. 2~3J

In such a picture one may readily perceive (providing the den-
sity of points is sufficiently great) clear-cut regions of the
v_ versus &« plane where the sign of F, is +, regions where FO
18 negative, and regions where F, does not exist (all X's),

The dispersion curves would then correspond to the more or less
sharply defined lines which separate regions of all +'s from
regions of all -'s, The technique used by the authors was (1)
to systematically and selectively increase the density of con-
sidered points to such an extent that all dispersion curves in
the rectangular region could be clearly perceived and (2) to use
the picture array as a gulde for systematicelly tabulating the
dispersion curves for eachi given mode and to define starting
brackets for homing in on particular points on the curves.
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Although the above discussion may seem to be expresséd in

‘humanistic terms, the actual computation is carried out by
‘the machine without human intervention.

One .subsidiaxry problem which had to be solved was that of
determining the criteria for when the density of points in the
"picture" is sufficiently great that all of the dispersion curves
in tlie rectangular region may be clearly defined. For this
purpose the following theoretical conjectures were of con-
siderable utility:

1. No two dispersion curves may- intersect each other,

2. As long as v_ is greatér than the maximum wind speed,
dvb/dwli 0 for any dispersion curve,

The first conjecture follows from the fact that if two curves
cross at a point (w,v_) then one must have F, = 0,8F6/3w =0
9F,/9v_ = 0 all simulPaneously satisfied at ghis point. To
locate*such a point, we would have to solve three equations
for the two unknowns w and v_. Since we have more equations
than unknovms, it would be h!ghly unlikely that such a point
could be found. To date, we have not found any case of this
happening, although the separation between adjacent curves can
be very small,

The second conjecture follows from Eq. (2.4.18). Using the
fact that vp = w/k, we find, after some algebra, that

(-]
r
02y2 4z
dv ’
-1 0
d = -}" oy (207.‘.)
k® - .
[kak™ 322 + Q(kev/k)Y?] dz

0

This 18 clearly negative as long as the denominator is positive,
However, if the denominator is negative, then Eq. (2.4.18)
would require the group velocity to be negative. If the group
velocity is negative, then the discussion associated with Eq,
(2.4,12) implies that the mode should not contribute to the
waveform. In any event, the denominator in Eq. (2.7.4) must

be pusitive for no winds and would most likely be positive if
the winds are sufficiently weak.(Throughout this discussion we
consider Q > 0 for all z.) Thus, while we have not succeeded in
giving a truly rigorous proof of either of these conjectures,
they seem likely to always hold in all cases of interest,
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With the acceptance of the two ‘conjectures discussed above, L
we may regard a pictorial array as ‘being sufficient to resolve ‘the BT
modes if it indicates no apparent violations of the Tio conjectures.
If it does indicate an anomaly, ve . simply add more points..to- the
array (i.e., increase the density of points) until the anomaly
disappears. The: method of .adding -points: should be formulated in
such a manner that one does not go overboatd as the signs of
the normal mode dispersion function will in general ocoupy & large:
amount of storage -&pace i the machine. The method ut1lized in
the program seems to ‘be fairly foolproof and vet reasonably cofi=
servative in the number of points added: to correct apparent. ’
anomalies. Further details may be found in the discussion of
the program's subroutines.

As an example of how the table expansion process works in
practice, suppose that the region of the w,v_ plane considered
is that where ,2 < v < .6 km/sec, .005 < wp< .1 rad/sec,

The first tabulatIon’is made with 900 points, corresponding to
30 equally spaced values of w and 30 equally spaced values -of
v_. For a particular 6 and a particular model atmosphere, the
rBsult (which may at the user's discretion be printed out by
the machine) is shown in Fig. 2<3. We arbitrarily number the
modes starting in the lower left corner of the table and going
up towards the upper right cormer. Note that modes 3 and &
almost touch near (0,024, 0,324), modes 4 and 5 seem to
disappear near (00443, 0.320), and other modes seem to vanish
as well, In order to get rid of these anomalies, the computer
judiciously adds new rows and columns. The table in Fig. 2-4 is
the result. lote that the w coordinates of the rows and the
phase velocity coordinates of the columns are not equally
spaced in the expanded table,
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2.8 OTHER NUMERICAL TECHNIQUES %
The result of the dispersion curve computation is a tabulation 4
(stored in the machine) of points (w,v ) which lie on the n-th K
mode's dispersion curve and which descrige that portion of the g
curve which lies in some prespecified rectangular region of the §
(w,v_) plane. Some specified number of modes are tabulated. 4
The Bize assumed for the rectangular region is an inherent E
limitation on the computation and largely determines the limits ;
of integration used in the evaluation of (2.5.5). Since these 3
limits are not the true limits of the mode, an additional ;

approximation is implied by this technique. There is some degree
of "art" involved in the selection of this rectangular region

and in the interpretation of waveforms computed with such a
truncation,
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the INFRASONIC WAVEFORMS code,
that the modes are distinct,
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N, 90316F-01

An expanded version of the table in Fig. 2-3 created by
Rows and columns have been added so
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i Let v(w) be the phase velocity as -a- function .of frequency for

a given mode which is tabulated at w = w;, Wyy ...wu, the cop= )
] responding values of v being dénoted by V., co Vi For: eaeh of -
y the values Wy the wavenumber ki wi/vi %s computed and. then
the quantities AMPLTD and PHASQ in Egs,” (2.5.4) -are. computed,
The values -of AMPLTD, k, and PHASQ at values of w between
neighboring w, are approximated by linenr interpolation, ‘following
1 a technique ifitroduced by Aki (1960) for numerical integration.over
oscillatory integrands. This defines the integrand at ‘all values.
of w between W, and e The resulting integral may then: be
expressed as a sum of N - 1 terms, each term involving elementary
functions, with no further approximations, The evaluation of
this sum then leads to an approximate value of P, for given ¢ and R.
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The Aki technique described above for numerical integration,
3 although approximate, would appear to be a considerable improve=-
5 ment over the method of stationary phase, commonly used in wave
propagation computations, It would appear that the stationary
phase approximation would probably give grossly erroneous results,
in wiew of the fact that some of the modes are very weakly dis-
persive. Ve 'should point out that the technique used here was :
suggested to the authors by Harkrider's paper (1964). :
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A shortcoming of the computation scheme is that the resulting "
solutions formally violate the causality requirement, Although ;
causality is guaranteed by the Fourier transform solution, the
{ guided mode solution, being an approximation, may not preserve
o this property. Furthermore, the truncation of integration limits
é’ will tend to amplify the non-physical waveform predicted at times
é : before the true wave should actually arrive, However, at moderate
3 and large distances, the noncausal portion of the wave should have
3 relatively small amplitudes, This is borne out by the numerical
computations. The authors believe that, with proper care in the
selection of input parameters, the scheme described here should
X give a fair representation of the dominant portion of the wave-
¥ form for low altitude observation of waves from low altitude
i explosions - providing, of course, that the stratified model for 3

the atmosphere is adequate.
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Chapter IIX

et 4

USER'S GUIDE TO INFRASONIC WAVEFORMS

R

PR

i 3,1 INTRODUCTION

INFRASONIC WAVEFORMS is a digital computer program written in

; FORTRAN IV for the IBM 360 system at M.I.T, A slightly modified

' version for the IBM 7094 is currently in operation at the Air
Force Cambridge Research Laboratories in Bedford, Massachusetts.
The purpose of the program is to give a theoretical prediction of
the acoustic pressure waveform which would be recorded at large
horizontal distances (500 km to 10,000 km) from a low to moderate
altitude thermonuclear explosion in the atmosphere. The program

S represents a substantial extension to an earlier program,

- INFRASONIC MODES, written by A. Pierce (1966).

3 In the program, the atmosphere is assumed to consist of a
number (possibly as large as 100) of horizontal layers, each
having constant temperature and wind velocity. The temperatures,
. wind-velocity magnitudes, and wind-velocity directions are not
necessarily assumed to be the same in each layer, Such a multi-
layer atmosphere, if judiciously chosen, may be expected to give
: a reasonable approximation to any continuously stratified atmo~

5 sphere in so far as the calculations of waveforms are concerned.

el N g b e

It is the authors' intent that the program be written in such
a form as to facilitate use by anyone having access to a large
digital computer. It is written in a manner such that it should
not be too difficult to modify for application to similar problems 4
’ or for use in other computer installations. The fact that we were 3
o able to modify the M.I.T. version for the AFCRL computer with only 3
g a moderate expenditure of time attests to the latter.

AT SR T

f The key to insuring that any program be amenable to wide-spread g
: usage is documentation, This report represents one such attempt
to provide such documentation. In addition, the program is
written with a predominance of COMMENT statements. A listing of
the program is given in Appendix B, The comments at the be-
ginning of each subroutine attempt to explain the function of
each, and its purpose in relation to the main task of the prograu.
Definitions of all variables, input and output, as well as of
those presumed in COMMON storage are given. This rather
elaborate procedure was suggested to the authors by a recent

book on computer analysis of time series by Simpson. (Frankly,
we believe that this is the manner in which all computer pro-
grams should be written.)
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The present program has been continuously tested and used for
well over a year now and we are reasonably certain that it is
free of major coding errors. liowever, the sheer length of the
program prohibits us from certifying this with certainty.

The theory on which the program 1s based is summarized in
the preceding chapter. Here, we attempt to describe the.program
fron the viewpoint of its operation - i.e., to give a user's
manual for the¢ program., To a certain extent, this duplicates
the statements given in the deck listing of the program. How~
ever, in a matter such as this, only a slight amount of confusion
can cause undue grief anl expenditure of time and money. Thus,
we feel that it is vastly preferable to give an overdetailed
account of the program than to run the risk of dissuading some-
one from use of the program, The comments given here apply mainly
to the operation of the M,I,T, version - it is to be hoped that
users at other installations will be able to quickly ascertain
just what modifications in the progran and in its rules of

usage are necessary.

3.2 GLCSERAL DISCUSSION OF PROGRAM USAGE

To obtain a synthesized waveform and/or other auxiliary
information, the user wust decide in advance on the values of
various iunput parameters vhich control the operation of the pro-
grar., These input parameters may be considered as falling within

one of six general categories:

1} Yaraneters specifying the nature of the model atmosphere
to be used,

2) Parameters specifying the nature of the explosion;
namely, its yield and height of burst.,

3) Parameters specifying the location of the observation
point with respect to the explosion.

4) Parameters controlling the nature of the theoretical and
numerical approximations made in the computation,

5) Parameters controlling the extent, detail, and type of
the output.

It is important that the us~r realize that not all input
parometers need be specified, The program is written so as to
allow considerable flexibility ia input and output.

-50-
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E Possible outputs of the computation include the following:
1) Punched cards containing intermediate results in a format

suitable for input to future runs of the program,

‘ 2) A tabulation on the printout of the assumed model atmo-
sphere's properties in a standard format. (Fig. 3-1)

3) Printout of all input quantities as they are read in
(Fig . 3"’2) -

A< orrve oy

4) DPictorial displays of the phase velocity curves of the
guided modes as being lines separating regions where a + sign
L is printed at every point from regions where a - (minus) sign
- is printed at every point of a rectangular array of points in
.he phase velocity versus angular frequency plane. These dis-
plays may later be used to check on whether all desired modes
were included and on whether or not the computation process
was successful in resolving the modes. (Figures 3-3 and 3-4)

8 A ST s A 8 AR A e

2T M,

o

3 5) A listing of the tabulation of phase velocity versus
? frequency for each guided mode (Fig. 3-5).

; 6) A second listing giving the same as in 5 plus parameters
; of the ¢, and ¢, profiles (defined in Eq. 2.6.1) for each point

in the t%bulation. (Fig. 3-6)

) 7) A third listing giving the same as in 5 plus an amplitude
# factor independent of yield, (Fig. 3-~7)

8) A fourth listing giving the same as in 5 plus the yield
dependent amplitude and phase which appear in the integrand of
tne integral over frequency which represents the contribution
to the waveform from a given guided mode. (Fig. 3-8) ;

9) Tabulations of acoustic pressure versus time for selected
guided mode waveforms, (Fig. 3-9)

10) Tabulation of acoustic pressure versus time for the total X
waveform, (Fig. 3-9)

E 11) A plot of acoustic pressurc versus time for selected K
- guided mode waveforms on the CALCOMP plotter. (Fig. 3-10) K

12) A plot of acoustic pressure versus time for the total
waveform on the CALCOMP plotter. (Fig. 3~10)

PO N

i -51-




e o ce W it W g e S o
e o e AR e e o
PR e - - [

i A %A

i L7
. ﬁ
3 MODEL ATMOSPHERE OF 34 LAYERS ;
: :
! LAYER 28 3] H c vx vy rot
5 34 225.CC  INFINITE  INFINITE 0.8C14 7.0 2.3
: 33 205,00 225.0C 20.00 0.7655 2.0 349
3 32 195.C¢ 205.C0 10,00 0.7469 0.0 0.0
’ 31 185.,CC 195,6¢C 10.00 0.7279 746G ¢.?
! 0 175.CC 185,60 10,00 0.7097 0.0 0.9
" 29 165,C¢ 175.CC 10.0C 0.6882 3.0 .0
- 28 1550( ¢ lOSoCG 10000 00658‘ 000 O.'.)
3 27 145,(¢ 155,0¢ 10..60 0.6093 040 0.0
: 26 135,00 145.CC 10.00 0,5413 0.0 0.0
‘ 25 125.€0 135,0C 10.00 0.4783 7,0103 0.0
3 24 115.0¢C 125,00 10.0C 044007 0.0236 0.0
% 23 105.C0 115,0C 10.0¢ 0.3168 2.0309 .0 A
- 22 95,00 105.0¢C 10.00 0.2833 0.6103 9.0
< 21 85,00 95.CC 10.00 0.2718 -0.0051 .0009
] 20 75.CC 85.06 10.00 0.2725 0.0077 0.0 .
3 19 65.0C 75,00 10.00 0.2869 0.0206 0.0
; 18 55,CC 65,00 10.00 0.3104 0.0216 .0 :
5 17 45,00 56,CC 10,00 043230 0.0216 0.0 .
: 16 40,00 45.00 5.0 0.3261 0.0175 0.0 .
. 15 385,00 4,00 5,00 0.3161 9.0082 0.0
q 14 10,60 15,00 5,00 0.3084 0.0021 0.0
X 13 25.¢C 30.0C 5.00 0.3019 -0,0021 €.00C>
: 12 20,66 25.CC 5.00 0.2938 -0,0072 0.000.
. 11 18.C0 20,66 2.00 0.2869 -0.0058 -0.0021
: 10 16.C0 18,00 2.00 0.2819 0.0955 0.0055
? 9 14.€0 16,0 2,00 0.2869 0.010) .0049
; 8 12.C¢ 14,00 2.00 0.2938 0.0139 0.0

7 10.C0 12.€0 2.00 0. 3005 0.0154 0.0

6 8.C0 10.¢C 2,00 0.3078 0.0129 0.0

5 6,00 8.00 2,00 0.3161 0.0098 0.0
: 4 4,00 6.00 2,00 0.3230 0.0046 9.0
: 3 2,00 4.0 2.00 0.3292 0,046 0.0
3 2 1.0C 2.60 1.00 03400 0,0011 -0,0C11
3 1 0.0 1,00 1.00 0.3424 0.0011 -0,0011
1 28=HEIGHT OF LAYER RQTTOM IN KM ~
A IT=HEIGHT OF LAYER TOP IN KM
8 H =WIDTH OF LAYER IN KM
i C =SOUND SPEED IN KM/SEC

VX=X COMP. OF WIND VEL. IN KM/SEC

VY=Y (OMP, OF WINC VEL. IN KM/SEC

,
P B T ]

Figure 3-1. Printout of model atmospheric properties for 30° N,
140° W, in October,
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4 33
: « j g
5 NAML MAS JUST AEEN READ IN g
ol LNANY .3
I 1 NSTARTS 1yNPRNTe L e NPNCHe 1 Cg
L %. END Eg
F :
E 5
L NANZ MAS JUST BEEN READ IN b
. L NAND ‘
'; LANGLESs LofMAXe 33,T=  292,0000° v 289,00002 ¢ 270.20300 ’ Z
T 236.00000 ¢ 225.2000C s 215.C000C v 20%.0000 v 19A,00%060 v 20%.C. N
i 237.00320 v 249,030 ¢ 265.,20000 ¢ 26C,C0000 »  240.060000 ¢ 208, N
S 230.,00790 v 250,09000 ¢ %00,00000 v STC.C00NC v 130,GC0072 v 925.C %
;o 125%.000¢ ¢ 1320.09C9 s 1390.9%000 ¢ 1460,0000 v 1600.0C02 v 0.0 3
v 0.0 v 0G0 vy 0.0 v 9.0 v Y0 » CoO .
'; , 0.9 1] 0-0 [] 000 * o.o L 3.0 * °O° 3
P 2.0 + 0.0 v CoC v 9.0 ' 20 s 0.0 H
2 ! 3.0 v 0.0 ¢ 0.6 v 0.0 ¢ Us0 " V.0 M
g . OQO ’ 0.0 ’ G.o * 0-0 L} 0.0 ’ C.O *
2.0 v 0.0 v 0.0 s 0.0 v Do) ¢ 0.0 g
2.0 v 0.0 s 0,0 v 0.0 » 3.0 + 0.0 !
. ' * 300 [] O.C [ ] 000 * 0.0 [} 0'0 . 0.0 1
3 ) 0.0 v 0.0 v 0.0 v N0 v Co9 s 0.0 3
3 3 2.0 r 20 e 0.0 + 0.0 » J.0 e 0,0 5
' Je0 v 0.C v Cu0 v 0.0 v 0.0 s G,0 3
N 2.0 v 0.0 v 0,0 v 0,0 v 0.2 v o0 :
0.0 v 0,0 v CoC ¢ 0,0 v 0,0 s 0,0 =
H ').O L 0.¢ v 0.0 L] 0.0 ¢ 0,0 » 0.0 :j
N 0.0 ¢ 0,0 v 040 v 0,0 v 0.0 ¢+ 0.0 K
o 2.0 v Cu0 ¢ Co0 e 0.0 e 0.0 v 040 H
i 0.0 v 0.0 ¢+ 0.0 s 0,0 v 0,0 » C.0 :
2.0 v 0.0 v 0.0 ¢+ 0,0 v 2.0 ¢+ 00
R 2.0 [ CoC 1] 0.0 ] 0.0 ’ o.o ’ ooo
5 0.0 L] 0.0 L] 0.0 L] 0.0 [ 0.0 v G.O
2 2.0 v 0.0 ¢+ 0.0 s 0.0 ' VENTYs G0 . =
4 0.0 v CiC v 0.0 v 0.0 v 0.0 s Go0 ‘
3 9.0 v Cuf s 0.0 s 0.0 ¢ 0,0 v 0.0 B
* 2.0 o 0.0 v 0.0 [ 0.0 e 2.0 s 0,0 H
\ 0.0 v 940 N + 040 v 049 » 0e0 :
. 2.0 v CuO v 0.0 s G40 e 0.0 ¢ Co0 .
. 2.0 e Cof ¢ 0.0 v 0.0 v 9.0 e 0.0 )
_: 0.9 [ 0.0 » 9.0 [ 0.0 ¢ 042 ’ C.O ’
N 2.0 » 0.0 ¢ 0.0 s 0.0 v 0,0 s 0.0 i
: 0.0 v 0.0 v 0.0 ¢+ 0.0 s 0.0 0 0.0 -
y 2.0 v 040 s 0.0 v 90 v 40 » 0.0
3 2.0 v 0.0 v 0.0 e 0.0 v 040 ¢ 0.0
0.0 v 0.0 v 0.0 v 0.0 » 0.0 sy Gu0
2.0 'MINDY=  3,000000C ¢+ 3,0000009 ¢ 9.9CCMO0) »  9.4000200 ]
39,000390 +  27,9000C0 v 21.000000 v 15,000000 v 12.,000062 o 14,0
16.,€2003¢C v 34,000000 v 42.000000 s 42,000000 ¢ 40,000700 v 18.C
&C.Crocac v 40,900000 + 20,000000 v 0.0 e 949 v 0.0
3 0.0 ¢ 0.0 » 0.0 v 040 v 0.9 ¢ 0.0
.
: Figure 3-2, Sample of NAMELIST printout,
. L)
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Figure 3=3,

Tabulation of the normal mode dispersion function signs

for the atmosphere of Figure 3-1 and a direction of propagation of
35° north of east.,
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? ( VPHSE NCRMAL MODE DISPERSION FUNCTION SIGN :
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i 1.56379 Xemmt bt ponap b ponct b=t
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< 1.47931 e X R et Al St & X
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3 Y.4431C Py T et R 2 T 24 .
5 J.43123 D R R Rl R el SR A ek £
3 0,41897  Recmccpto—tbtomcbibbom—t bbb :
3 J,4269C  X=mme- T Ty Ty
3 1439483 L R e LR Y Ly R Y e Y X
: 0.38276 P T ey Y X 1 4
G N+37069 Xm—omm - R X X Lt tEbpmmmmt
A J.35862 e b mmm— I ettt .
g 0434655  Xemmm—dbbbommm—m - rees
X 0633448 R L S T I L R R
= 2,32241 Xbmme et bbb ppmmmmmmmem e rere e
3 7.31034 Xttt bmmrmemmm P YT T T Lo T
1 0.29828 A e S L 2 HHEIEEEEE S
3 7¢28621 Xetttbpocmcmmmmmmemem— e ++
5 0.27414 R D
. D.26207 O e e it
3 7025000  Xé—##tdomomcmm e
i OMEGA 123456789C12345678901234567890
4 PHASE VELOCITY DIRECTICN IS 35,0CCDEGREES
2
1 OMEGA =
‘ 0.500GN0E-02 0.82759€-32 0.,11552€-01 C.14828€6-01 0,18103E-01
A 0,21379€-C1 0.24655E-C1 0.27931£-01 C.31207E-01 C.3%4483E-01
: 0.,37T759€-01 0.41034E-01 0.44310E~-01 0.,47586E-01 C.50862E-01
: 0.54138E-C1 Ce57414E~01 0.60690F-01 0.63965E-01 C.67241E-C1
3 0.77517€-01 0.73793€-01 0.77069€E-01 C.80345€E-C1 0.83621E-21
X 0.86896E-01 Ce9C172E~01 0.93448E~01 0.96724€-01 0.1)000€ 20
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. ! 7457586  Xemm——w= Y SRS Y S 4§ GR  f RO SN
£ 71.56379 e L R X T N s & 4
: { 7.55172 R R 2 e T TS
: { 7+53966 Awmmmmme R Y S a2 L ST R Ly S Ty
o 0,52759 Aemmm———— e e et & 2 X T
S 0.51552 X—==-—m—m- T Y T S T T Y W enuns,
;! 0053345  Rememcecctpocppmnans T T S SR
E 0.49138 e et s SIS LY RS E ILE TS S
0.47631 Aermem——— R R TR R TR X Tt T X 2
0.46774 ) D —t ¢t b b m—— ey e X 2
. 345517 oo me e Y O R o s
: Je.4431C Ammmwma—- bbb L R A L
3 V.43103 R R X R el S A ettt 2 S X ST
. D.41897 ) O Y T R Y e 2 L Y T R
: 7447690C ) e AT T TR L R L TR
2 C.39483 Xmeor e —— L e R e X X T2
¥ 0e38276  Reme-mwe—e- R L L 2 e YT X TR e
3 1.37069 e R R S X S T b pmm——— +
; 0.35862 s T i e I et bbb
. 0434655 e T Y e Y
3 J¢34052 Rmmrm o ——— L e T L ++
S 0. 33448 ) e L ettt
3 . 3.32241 e e e L tEEEEEs
3 0.31940 | e b R ettt DDt L TTR T
g 0.,31789 L et Y
3 0.31713 | R R R R R R R e et L T +e4e
F 2.31638 ) O e et e s
, J.31487 ettt bttt [ L e L e et LS +é
5 7.31336 ) e T e ettt +
3 0.31034 e et R et
, 1.298238 R R et L e L Lt FEEEEER LSS
. 0,28621 Xm—m—e L R D e ittt ++
. 27414 Romm=— bt e e c e c e m -
) 2026207  X=—————#tbbmmmm e e e
: .2500C b e tniatdelts - ‘)
. :
’ NYEGA 12345678901234567890123456789012134567 i
PHASE VELOQCITY DIRECTION IS 35.000DEGREES q
. i
i NYEGA = p
0,500920E-02 0.82759E-02 C.R6853E-02 C.88901E-02 Ce9)948E-02 E
0.,99138€-02 0.11552€E-01 0.14828€E-01 0.18103€-C1 6.21379€-01 ;
0.24655E~C1 0.27931€E-01 0.31207€-01 0. 34483€-C1 Ce37759E-C1 :
0.41034E-C1 0.44310E-01 0,45948E-01 Co46767€-01 0.47586€E-01 :
0.50862E-01 C.54138E-01 0.57414E~-01 0.60690E-01 Ce63965€-31 H
0.67241E-C1 0.70517€E-01 0.73793E-01 0.77069€-C1 Ce80345E-C1 i |
C.83621€E~01 C.86896F-01 N.88534E-01 0.,90172¢6-C1 Ce93448E~-C1 4
0.96724E-01  C.10000€ 00 iz
g . e)'{‘
Figure 3-4., Expanded version of the table in Figure 3-3. Rows ;
and columns have been added to make the modes distinct, ;
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0.008276
0. 008685
0.0C8890
C.009095
0.009914
0.011013
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OMEGA (RAD/SEC)
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0.008276
0.0086644
€.008685
0.008712
0.00878%
0.008852
0.00889)
00008987
0.009095
G+009590
€.009914
% €.010319
: 0.011192
; 0.011552
3 c.012215%
; C¢.013410
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OMEGA (RAD/SEC)

0.008276
0.008500
0.008621
€.008685
0.008727
0.008890
0.009095
0.009914
0.011552
C.014828
0.018103
£.018571

:

3

o LR LT

st

A e T

using the table in Figure 3-4,
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TABULATION OF FIRST 8 KODES

MNDE 1
VPHSE (KM/SEC)

0.257854
C.256762
0.256238
0.285711
N.253487
0. 249999

MODE 2
VPHSE (KM/SEC)

0.317475
C.317133
0.316778
0.316379
0.314870
0.313362
04312499
C.310344
0.,368013
0.,298275
0.,292628
C.286206
0.274137
0.269688
0.262968
0.249999

MODE 3
VPHSE (KM/SEC)

0.328731
0.322413
0.319396
0.318234
0.317387
Ne317615
0.3175%9
0.317503
0.317446
0.317323
0.317161
0.317133

s rAANn

Figure 3-5. A portion of the normal mode dispersion curve
tabulation printed by INFRASONIC WAVEFORMS as determined
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PHI1 AND PHIZ PROGFILE UATA

TAPIMX = Nii, CF LAYER FOR WHICH ABS(PHILUIAPIMX)) IS A MAXIMUM

TAPP?MX = NO, OF LAYER FOR WHICH ABS(PHIZ2 (TAP2MXE} IS A MAXIMUY

R1 = PHIL(IAPIMX) / ABS(PHI2{IAP2MX})

R2 s PHI2(IAP2MX) / ABS(PHI2(TAP2MX})

R3 = PHI2(1} /7 ABS(PHRI2(1AP2MX))

N2C1 = NO. CF TIMES PHI1 CHANGES SIGN

NIC2 = NC. OF TIMES PHI2 CHANGES SIGN

MODE 1
OMEGA VPHSE TAP 1 MX R1 N2C1 1AP2MX
0.0082€ C.25785 34 7.09325 2 16
0.C0869 0.2%676 15 6+5553%7 2 16
0.00886 0.25624 15 6.57698 2 16
3.£09C9 C.25571 15 6059924 2 16
0.00991 0.25349 15 6¢69513 2 16
0.01101 .25000 15 6.84304 2 16
MODE 2
CMEGA VPHSE IAPIMX R1 N2C1 TAP2MX

0.00828 0.31748 Kk 2.07396 3 1
0.008%4 C.31713 32 14.,98704 3 i
.00869 0.31678 32 28.47873 3 L
0,00871 0.31638 32 19.086269 3 24
0,00876¢ Ce31487 32 39,20818 )} 24
0.00885 0.31336 32 38, 63559 i 24
0.0088% C.31250 32 18,31291 1 24
0,00399 C.31034 32 37.49858 1 24
0.00906 0.30801 32 16.60118 ] 24
0.00956 C.29878 3 33,%3206 1 23
0.0C991 0,29 3 10 31,02254 1 23
0.01037 0.28621 29 28,490%4 1 23
0,01119 0.27414 28 25.,01674 i 23
0.01155 0.?26969 28 264,25119 1 23
0.01222 0.26207 24 22474201 1 23
C.01341 0. 25000 2! A0 43318 1 23

Figure 3=6, Sample printout of *t CIHH ¢3 prafile data
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TABULATION OF SOURCE FREE AMPLITUDES FROM SUBRIUTINE PAMPDE 1

HEIGHT OF BURST = 3,000 KM
HEIGHY OF ORSERVERs 0.0 KM

FACT = 0,558 KM/SEC
ALAM = 1,173
MODE 1 :
OMEGA VPHSE MNP
0.00828 0.25785 =0 ,00455954
0.00869 0.25676 -0.00459953
0.00889 0.25624 -0.004591L 71
€.0N9G9 0.25571 ~0, 00457545
0.0C991 0.25349 ~0.00446139
0.01101 0.25000 ~6400421712
MODE 2
OMEGA . VPHSE AMP
0.00828 C,31748 -0,02964770
C.N0864 0,31713 -0.,02382846
0.00869 0.31678 -0,01535229 .
c.00871 0.31638 -0.00928055
3 0.0878 0.31487 -0,00245403
: 0,0C 885 0,31336 -0,00113502
@ 0.0C889 0.31250 -0.00082699
A C.00899 0.31034 -G+ 00046585 ’
4 0.09939 0.30801 -0.0003077%
> 0.00959 0.29828 -0,00G14295
d 0.09991 0,29263 ~0.00012778
i 0.0103? 0.28621 -0.,00013161
8 0.01119 0.27414 -0.00019093
" 0.01155 0.26969 ~0.00023366
P 0.01222 0.26207 -0,00038533
: 0.01341 6. 25000 -0 00098984
3
2 MNDE 3
i OMEGA VPHSE AMP
bt 0.00828 0.32873 -0.000C6837
4 0.0(862 0.31940 -0.00349182
b 0.00869 0.31823 -0.01440191
i 0.,00873 0.31789 0402297221
: €.00889 0.31761 ~0.02886438
i 0.00909 0.31756 ~0.02937463
g 0.0€991 0031750 ~0,02952643

Figure 3-7, Tabulation of modes including the amplitude factor
AMP which is independent of the source strength,
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. MODE TABULATION FCR Y= 10000.00 KJLOTONS
{
o MODE 1
E ; OMEGA VPHSE AMPLTD PHASE
‘ ; £.00828 0.25785 -67670. 3.7268C
: i C.00869 0.25676 ~7CC10. 3.71697
. €.00889 0425624  ~1C745. 3.71206
; i €.009C9 0.25571  -T71337. 3.79715
t ) 0.01191 0.25CC0  =72766. 3.66127
3
3 MODE 2
OMEGA VPHSE AMPLTD PHASE
c.Cc828 0.31748 -3.96551E 05 3, 7268C :
C.20864 0.31713 -3,25613€ 05 3.71796 i
£.C0869 0.31678 -2,10378E 95 3. 71697 :
- C.C2871 0.31638 ~1,27441E 05 3,71634
: €.00878 0.31487 -339]5, 3,71458
: €.C0885 0.31336 ~15781., 3.71297 1
\ C.G0RRY 0.31250 -11538., 3.71206 i
» T €.07899 U.31034 —=6555.5 3.70974 !
k ' C.C09C9 0.308C1 =-4371.9 3.70715 3
. C.C0959 0.29828 =2116.2 3.69529 ;
: C.C0991 0.29263 -1639,9 3,68753 ;3
3 €.01032 0.28621 -2058.8 3,67785 i
! C.01119 0.27414 -3169.8 3.65701 2
f 0.01155 0.26969 -4053.6 3,64844 |
8 C.01222 0426207 -6811.7 3.63267 H
; G.01341 0.25CC0 ~-18688. 3.60436 ij
]
MODE 3 b
:
OMEGA VPHSE AMPL TD PHASE g
i 0.00828 0.32873  -898.67 3, 72680 ]
3 €.00850 0432241  -66064.2 3,72143
, 6.00862 0.31940 -47486, 3.71851
€.C0869 0.31823 =1,9690S€ 05 3.71697
C.00873 Ce31789 -3.14976E 05 3.71596
€.0C889 0.31761 -3,99443F 05 3.71206
€.009C9 0.31756 -4,10974E 05 3.70715
I‘ C.C0991 0.31750 -4.30359E 05 3.68753
: ] C.01155 0.31745 -4,60T6TE 05 3.64844
C.C1483 0.31732 -5.10123E 05 3.57093
*ﬁ

Figure 3-8, Tabulation of modes including the source-dependent
amplitude and phase, AMPLTD and PHASE, respectively.
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TABULATION OF RESPONSES

PRV

TIME TOTAL MODE 1 MODE 2 ‘
1 16000.0 -3,21 0.04 1.29 i
2 16015.,0 -2.57 0.01 1.38
3 16030.0 1.87 -0.01 1.54
& 160'05.0 3,34 "000‘ xcbs :
] 16060.0 -0, 06 ~0.06 1.79
6 16075,0 -1.70 ~0.09 1.87
7 16090.0 l.§7 ~-0.11 1.92
8 16105,0 3.41 ~0.13 1.94
9 16120,0 0.42 ~0.15 1.93
10 16135,0 -1.72 ~0.17 1.83
it 16150,0 1,68 -0.18 1.81
12 16165,0 5.46 -0.19 1.79 ‘
13 16180.0 3097 ‘0020 l057
14 16196,0 1.21 -0.,20 1.41
15 16210,0 2.95 -5.20 123
16 16225.0 S5.67 -0.19 1.03
17 16240,0 3.21 -0.18 0.81
18 16255,0 =095 -0.,15 C.58
19 16270.C 0.86 -0,.15 Ce34
20 16285.C 6.37 -0.12 L.09
21 16300.0 T7.21 -0.10 -0.16
22 16315,.0 3.09 -0.07 -C,41
23 16330.0 1.78 =-0.04 -0,65 .
3 24 16345,0 4,58 -0,01 -GC.88
3 25 1636000 6056 0002 ’1.09
3 26 16375,0 0.16 0,05 -1,29 1
N 27 16390.0 ~1.55 0.08 ~le47 .
5 28 16405.0 1082 0.10 “1062 ’
a 29 16‘20.0 3029 0,13 ‘1075
{ 3¢ 16435,0 ~0.45 0.16 -1.85%
it 31 16450.C ~2.80 0.18 -1.92
5 32 16465.0 0.15 0.19 ~1.96
N 33 16480.0 1.79 0.21 ~-1.96
3 34 16495,0 ~2.78 0.2% ~1.9%
35 16510.0 -6.93 0.22 ~-1.88
36 16525.0 -4 4,05 0.22 ~1.79
2 37 16%40.0 0.15 0.21 ~1.67
H 38 16555.0 -2,20 0.20 -1.53
{ 39 16570.0 -6.80 0.19 ~1.36
40 16585.0 -5,11 0.17 -1.17
3 ‘l lhchIO ‘00“2 0.15 ‘0.96
: h2 l6bls.o -2015 00‘3 -0073
> 43 16630.0 -8,42 0.10 -0.50
b4 16645.0 -8,92 0.07 -6.25

d Figure 3-9, Sample printout of the total and modal pressure histories,
7 The time 48 given in seconds after the blast, and pressure in dynes/cmz.
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Figure 3-~10, CALCOMP plot of modal and total waveforms on a common
time axis and with a common pressure scale, (Reduced to 250 ubars
per inch.,) See Figure 3-12 for a complete listing of the input data,
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It is at the user's discretion as to Just what output is
,actually realized in a given run of the program, A fuller discussion
of 1nput and output variables is given in subsequent sections,

3,3 INPUT PARAMETERS CHARACTERIZING THE ATMOSPHERE, THE SOURCE,
AND THE OBSERVER LOCATTON

- The atmosphere model is characterized by three possible sets
of parameters, These are listed below:

;| IMAX IMAX IMAX
2 E T T CI
= VKNTX WINDY VX1
VKNTY WANGLE w1
() LANGLE LANGLE

a Z1 z1 HI

The variables which appear in these three lists are defined below:

T T AR

1) 1IMAX is the number of layers of finite thickness in the
multilayer atmosphere. It is an integer and may take any value

between 2 and 99, inclusive.

RS et optgmbe

3 2) T is the absolute temperature in degrees Kelvin. It is

; a subscripted real variable; T(l) is the temperature in the lowest
layer; T(IMAX + 1) is the temperature in the upper half space.

(The layers are numbered from the bottom.) Exactly IMAX + 1 values

T(I) should be supplied,

3) CI is a subscripted real variable representing sound speed
in km/sec, CI(1) is the sound speed in the I-th layer. Exactly

=4
- ——

TSR TURTRE

IMAX + 1 values should be supplied.
E 4) VKNTX and VKNTY are subscripted (IMAX + 1 values) repre-
3 senting x and y components of wind speed in knots of the IMAX + 1
s layers (including the upper half space).
: 5) WINDY is a subscripted variable (IMAX + 1 values) repre~

' senting the wind velocity magnitude in knots of the IMAX + 1 layers.

6) WANGLE is a subscripted variable (IMAX + 1 values) repre~-
senting the wind velocity direction in degrees, reckoned counter-

E clockwise from the x axis.

3

!

3 -62=
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Figure 3-11, Sketch showing the geometrical meaning of some
of the input data for INFRASONIC WAVEFORMS,
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7) LANGLE is an integer, If it is O or negative, the computer
is being told that set 1 {(VKNTX and VKNTY) is supplied. If it {s
poaitive, set 2 (WINDY and WANGLE) ie being supplied.

7 Ay
R RV o L R

8) ZI(I) is the height above the ground of the top of the
I~th layer of finite thickness. Its dimensicns should be km.
Exactlay IMAX values should be supplied,

-7 e x e 2 G
B a2k s e

9) HI(I) is the thickness in km of the I-th layer of finite
thickness, IMAX values are supplied.

The manner in which the computer is inetructed as to when
; set 3 rather than sets 1 or 2 is being supplied depends on the
‘ value of a control integer NSTART which has previously been input,
Briefly, NSTART being 1 {mplies sets 1 or 2 are being input, while
NSTART = 2 implies set 3 is being read. This is discussed further

in Sec. 3.5.
: The source model is specified by two parameters YIELD and ZSCRCE:

1) YIELD is the yield of the explosion in KT.
2) ZSCRCE is the height above the ground in km of the explosion,

and THETKD:

L 1) ROBS is the magnitude of the horizontal distance in km
. between source and observer.

E The observer location is specified by parameters ROBS, ZOBS,
(]

;

P ‘ 2)THETIKD is the angle in degrees, reckoned counterclockwise,
G which the horizontal component of the vector from source to

. observer makes with-the x axis.

] 3) Z0BS is the height in km above the ground of the observer.

The meaning of these parameters is further illustrated by Fig. 3~11,

3.4 INPUT PARAMETERS CONTROLLING THE METHOD OF COMPUTATION AND
OUTPUT

A major portion of the computation is concerned with the de-
termination of the dispersion curves (phase velocity versus -ngula*
frequency) of the guided modes, Just which modes and which segments
of modes are fcund and used in subsequent calculations depends on
the search region in the phase velocity vs. frequency plane, This
rectangular search region is specified by the following parameters:
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1) OMl1 is the lower angular frequency limit (rad/sec) of the
search region.

2) OM2 is the upper angular frequency limit (rad/sec) of the
search region,

3) V1 is the lower phase velocity limit (km/sec) of the search
region,

4) V2 is the lower phase velocity limit (km/sec) of the search
region.

Generally, one should select V1 tc be larger than the maximum wind
speed in the model atmosphere. It is also advisable that one not
take OM1 identicaliy equal to 0, as this could conceivably lead to
machine overflow and termination of a given rum.

The details of the search for modes within the rectangular
search region dep2nd on the initial choice of the number of points
at which the sign of the normal mode dispersion function is
tabulated, As is explained in Sec. 2.7, the numerical computation
begins with the generation of an array of points, lying on a
rectangular grid, covering the search region, The total number
of intersection points in this grid is determined by two integers:

1) NOMI is the number of equally spaced constant frequency
lines comprising the vertical lines of the grid.

2) NVPI is the number of equally spaced constant phase
velocity lines comprising the horizontal lines of the grid.

Both NOMI and NVPI should be between 2 and 100, inclusive. 1In
our own calculations, we have generally taken both of these
integers to be 30.

The modes found in the search region are numbered consecutively,
starting from the lower left corner of the region, (Phase velocity
increases upwards and frequency increases to the right.) A key
input parameter in this respect is the maximum number of modes
MAXMOD which are to be tabulated and used in the subsequency
waveform synthesis. If, for example, MAXMOD is 5, the program
will not tabulate or use modes 6, 7, etc, The maximum value of
MAXMOD permitted by the current version of the program is 10,

In our computations, we generally use 10 unless we have some
reason to believe that the higher order modes will not contribute
appréciably to the wave form during the time interval of interest,

For the tabulation and graphing of pressure waveforms versus
time, it is necessary to specify the time interval of the computed

65~

127 B P



EECRENME Sov 7 e o W g0

—
Riviee

RN VAR AL 1 v e s it

fatds

vaveform and the time increment between successive times at which
the pressure is tabulated, The parsmeters specifying these quan~-
tities. are listed below:

1) TFIRST is the earliest time in seconds relative to time
of detonation at which computations are performed,

2) TEND is the latest time in seconds rélative to time of
detonation at which computations are performed.

3) DELIT is the time increment in seconds for which succes-
sive waveform points are tabulated,

In choosing these quantities, care should be taken to insure
that the number of time points (TEND~TFIRST)/DELIT is less than
1000, since otherwise incorrect values could be obtained through
storage spillover. For all realistic cases which we have consi-
dered, it appears sufficient to take DELIT > 6 sec, It is mean-
ingless to take DELIT much less than (1/20) of 1/OM2. The choice
of TFIRST and TEND is generally made with the intent of including
the main pulse, which travels with speeds of the order of the sound
speed at the ground., The nature of the theory suggests that the
computations will generally not be too reliable at times much
later than this. Some trial and error may be required to deter-
Line the optimum choice of TFIRST and TEND in relation to the
observer distance ROBS, The examples treated in the following
chapter may be of some assistance in this respect. Also, the
experimental waveforms should in principle give a clue to the

proper choice,

The nature and extent of the output is specified by a number
of additional input parameters. If one wants a maximum of print-
out of intermediate values, he specifies NPRNT = 1 (or any other
positive integer); if he wants a minimum, he specifies NPRNT = 0
(or any negative integer). In the latter case, the imput is
listed, the tabulation of waveform pressure versus time is given,
and the waveforms are plotted. In any nonroutine operation of
the program, it is probably advisable to set NPRNT = 1. However,
this does lead to a tremendous amount of printcut, and, if the
current run only represents a slight modification of a previous

run, one may want to set NPRNT = -],

The program also allows for the option to punch out inter-
mediate results on cards. The format of the punched cards is such
that they may be used in later runs of the program as input in
order to save machine time. If one desires this option, he should
set NPNCH = 1, Otherwise, he should set NPNCH = 0O, In general,
it is advisable to avoid requesting NPNCH = 1 unless one plans an
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immediate use of the cards, Otherwise, the bookkesping chores of
keeping track of a large number of cards may get out of hand,
However, the computer time saved (which may be of the order of 10
minutes of 360 time) is rot negligible, and one may sometimes wish
to exercise this option.

To limit the number of plots on the CALCOMP graph and the num—
ber of modal waveforms tabulated on the printout, an input para-
meter IOPT is used, If IOPT is 1,2,...., 10, only the contribution
to the waveform from mode number IOPT is calculated, printed, and
plotted, If IOPT is 11, the computer calculates, prints, and
plots all modal waveforms, as well as the total waveform, If IOPT
is 12, all modal waveforms are computed, but only the total wave-
form is tabulated and plotted., Normally, one might wish to set
IOPT = 11 and obtain ell possible auxiliary results, However, in
routine operation, when the qualitative properties of the individual
modal waveforms are a priori known, one might set IOPT = 12, 1In
some special cases, when one is interested in only one particular
mode, he might set IOPT equal to 1,2,3,..., or 10,

3,5 PREPARATION OF THE INPUT DECK

The program is written such that all input data should be
supplied in the NAMELIST format, which is a standard feature of
FORTRAN 1V for the IBM 360 and the IBM 7094, We find that NAMELIST

is particularly convenient because it enables us to supply only
the data which is needed for a given calculation and because it
minimizes the possibility of keypunching errors during preparation
of the input deck, For a description of NAMELIST we refer the
reader to any of the FORTRAN IV manuals,

The main program has ten NAMELIST statements, each defining
the data which may be read in when the computation executes a
READ statement with a particular NAME, The NAMES of the possible
data sets are numbered NAM1, NAM2, ...., NAM1O,

For convenience of reference, these namelist statements are
reproduced below:

NAMELIST /NAM1/ NSTART, NPRNT, NPNCH

NAMELIST /NAM2/ LANGLE, IMAX, T, VKNTX, VKNTY, WINDY, WANGLE, ZI

NAMELIST /NAM3/ IMAX, CI, VXI, V¥I, HI

NAMELIST /NAM4/ THETKD, V1, V2, OMl, OM2, NOMI, NVPI, MAXMOD

NAMELIST /NAM5/ IMAX, CI, VXI, VYI, HI, THETKD, MDFND, KST,
1 KFIN, OMMOD, VEMOD
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NAMELIST /NAM6/  ZSCRCE, ZOBS

NAMELIST /NAM7/ OMMOD, VPMOD, MDFND, KST, KFIN, AMP, ALAM, FACT
NAMELIST /NAM8/ YIELD

NAMELIST /NAMY/ MDFND, KST, KFIN, OMMOD, VPMOD, AMPLTD, PHASQ
NAMELIST /NAM10/ TFIRST, TEND, DELTT, ROBS, IOPT

In any given run with the program, the first card in the data
card pack should be a NAM1 card., This card should generally be of
the form

&NAM1 NSTART= s NPRNT= s NPNCH = &SEND

with desired values supplied for the parameters NSTART, NPRNT,
NPNCH. The order of these three quantities is irrelevant, Fur-
thermore, the name, equal sign, and value of any of them may be
omitted if one desires to use the value of 0 for any of them,

The cards following the first depend on the value of NSTART,
Unless one is supplying data in the form of intermediate results
computed during previous runs, he would take NSTART =1, Given
that NSTART=1l, the data cards following should be those corresponding
to NAM2, NAM4, NAM6, NaM8, and NAM1O, in that order. Only nonzero
values or values of quantities which will be used in the compu-
tation need be supplied. Thus, for example, if one sets LANGLE=0
(See Sec., 3.3.), then he need not list the values of WINDY or
WANGLE in the NAM2 data group. Values of subscripted variables
should be listed in the format (for example)

VKNTX L 0. ’0. ’200'2.0,500’7.5’500.m.0.00

signifying that VKNTX(1)=0,,VKNTX(2)=0,,VKNTX(3)=2.0, etc. Note
that, even though the first two numbers are 0, they could not be
omitted, since otherwise the computer would consider 2.0 to be
VKNTX(1). However, & long string of identical numbers can be
abbreviated by writing 6%0,, for example, for a string of six zeros.
It must be emphasized that elements with indices greater than the
largest index for that variable used in the computation need not

be supplied. In other words, just because 100 spaces of storage
are alotted to VKNTX ddes not imply that 100 numbers need be listed
in the input,

If NSTART=2, one supplies NAM3, NAM4, NAM6, NAM8, NAM10, If
NSTARE=4, one supplies NAM7, NAM8, NAM10, If NSTART=5, one supplies
NAM9,NAM10, This procedure is described in greater detail in the
first two pages of the deck listing of the main program in Appendix
B, The option of taking NSTART=2, 3, 4, or 5 simply allows one to
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make use of intermediate results calculated in previous runs of the
program. The data in NAM3, NAM5, NAM7, or NAMS would generally have
been punched in NAMELIST format during a previous run. We did not
define all of the input variables in these latter lists in the
preceding two sections since, in normal operation, those variables
omitted would be gpecified by the computer (through the punching
process) rather than by the user, The variables in NAM3 are a
possible exception, as NAM3, through the NSTART=2 option, simply
provides the pos:ibility of supplying the parameters defining the
model atmosphere in a manner other than that implied by NSTART=],
This has been discussed in Sec, 3,3,

A list of all possible input variables and their definitions
is given on pages 3, 4, 5, of the deck listing of the main pro-
gram in Appendix B,

The last card read in corresponding to a given problem is
always the NAM10 card. The very next card should always be a
NAM1 card., 1f the problem previously considered is the last
problem to be computed in the run, one specifies NSTART=6 in the
NAM1 list and needs not specify the values of NPRNT or NPNCH.
If not, he specifies NSTART=1,2,3,4, or 5 and gives his data cards
in one of the sequences and formats described above. The rules
for providing data for successive problems are similar to those
for the first with one exception., If the user fails to provide a
value for any quantity, the value assumed by the computer for that
quantity will be that value currently stored in the machine ~
which may not necessarily be zero. Also, even though the user may
wish to use all the values previously input through a (for exemple)
NAM2 list, he must put a NAM2 card in the portion of the deck
corresponding to the current problem. Such a card would be of the
form

&NAM2 (blanks) &END

It is in successive problems that the option of taking NSTARI=2,
3, 4, or 5 may find its greatest utility. For example, if one
wished to study the effect of yield with all other variables fixed,
he could take his data for the second and successive problems in

the form

&NAM1 NSTART=4 xEND
&NAM7 &END
&NAM8 YIELD=2000 &END
SNAM10 &END
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ENAM1 NSTART=1, NPRNT=l,  NPNCH= =1 EEND

ENAM2

IKAX = 33, —_—
71210020 0%006008a910a0l20:1400160018002009256¢3044350 040604564554,

6509756 ¢850995091050901150912560135621450915504165,9175.4185.5195.¢
205442254 9
T72292002886027046026000249092360022%5¢92156¢205091980¢2054421500227.+
23700249 9265 026000240602050018549184402000025045¢400e¢57000¢73000
925241080 ¢11800412550+1320091390¢¢14604¢16004,
LANGLE = 1,
WINDY=3403009005001909250030092704210015001260lb00%00%eslbasb09b20s
420 040291560106 202060600¢4Ce¢20099%04
WANGLE=-054 ¢ =45, ¢16%009224+45092006 918040180, ¢7%0641804013%C0

EEND
ENAMg
THETKD = 35,44
vVl = 0,75, V2 = 0460
oMl = 0,005, OM2 = Q.1
NOMI = 30, NVPI = 30,
PAXMGD = B
EEND
ENAMG ISCRCE = 3,00 208S = 040 E£END
ENAMB  YIELD = 104€3  LEND
ENAMLO ROBS = 5600,
TFIRST = 16.€3, VEND = 21.E3,
DELYY = 15..
10PY = 11,
LEND

Figure 3-12, A listing of the input data used in an effort to match

the microbarogram recorded at Berkeley, California, following a blast

at Johnson Island on 30 October, 1962, The synthesized waveform is showm
in Figure 3-10 and is compared with the empirical record in Figure 4-23,
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The value of YIELD would vary for successive problems, It should
be noted that the above would save considerable computer time
when compared with the option of taking NSTART=1,

To illustrate some of the points discussed above, a listing
of a sample input deck is given in Fig. 3-12. The resulting out-
put should include that shown in Figs. 3-1 through 3-10. i

3,6 FURTHER DESCRIPTION OF THE OUTPUT

In Figs. 3-1 through 3~10 we show a selected portion of the
output generated by the program with the input deck listed in
Fig., 3-12. This output is representative of what might be ob-
tained during normal usage of the program.

Figure 3-1 gives the computer printout of the basic model
atmosphere used in the calculation as derived from the input data.
Its format should be self-explanatory. :

Figure 3-3 gives the initial table or pictorial display of
the normal mode dispersion function sign at points in the phase
velocity versus angular frequency plane, The +'s and -"s denote
the sign, while the X's imply that the upper boundary condition
could not be satisfied. The row" correspond to different values
of the phase velocity VPHSE, These values in km/sec are listed
in the first column., The columns correspond to different
angular frequencies OMEGA., The w values corresponding to the rows
(from left to xight) are listed below the figure in the order in
which one would read a book (left to right, then down a row. The
sequence 1234 etc, of numbers directly below the figure is intended
merely to facilitate counting., The number given for the phase
velocity direction should be the same as the input value of THETKD,

P e

Figure 3-4 represents an expanded version of the display
given in Fig. 3~3. This is the result of the expansion process to
fully resolve the modes which was described in Sec, 2.7, Since
the rows and columns are now unequally spaced, the apparent graphs
of the dispersion curves are not in a uniform scale.

Figure 3-5 gives a portion of the tabulation of the dispersion
curves for the modes found during the search process. Note that
only the segment of a mode which lies within the search region is
tabulated. It also should be noted that the increments in OMEGA
(in rad/sec) and VPHSE (km/sec) are not uniform. This is an
attribute of the computational process which was selected in order
to obtain good resolution of both nearly horizontal and nearly
vertical segments of the disparsion curves.

-71-



O Y

o L RNORSNE A B Ml A~ nues e e mdeAMAr e

Figs, 3-6, 3~7 and 3-8 each give the same information as in
3-5 plus tabulations of quantities which may be of interest to
the user and which vary along the dispersion curves, It may be
questioned whether the printout in Fig. 3-5 is necessary, but we
decided on this superfluous ocutput because of the fact that the
information in Fig, 3~5 has a wider applicability than that in
Figs, 3-7 and 3-8, Also, the user might wish to display the dis-
persion curve tabulations alone without having to explain away
the presence of other data.

As in the case of the dispersion curves, the data listed in
Fig, 3-6 1is a function of the model atmosphere only., PHI1 and
PHI2 are the ¢. and ¢2, respectively, introduced in Section 2.6.
The values of %hese "potentials” are calculated at the ground and
at the top of each finite layer in the model atmosphere, and
these values are used in later calculations., Since the profiles
of these functions might give the user some insight into the
physical significance of the various modes in the computation,
Fig. 3-6 shows a tabulation of profile parameters, as defined in
that printout, for each point on the dispersion curves previously
tabulated,

The factor AMP, which is tabulated in Figure 3-7, is defined
by Eq. (2.5.4d) and depends on heights of burst and observer but
is independent of yield. Also shown in this figure are the para-
meters FACT and ALAM (Ao) which are defined in Sec, 2,5.

Figure 3-8 shows the form of the tabulation of AMPLTD and
PHASE, which are defined in Sec, 2,5 and depend upon the yield of
the source in addition to the atmospheric model and the heights
of burst and observer,

Fig. 3~9 gives a portion of the printout of the total and
modal acoustic pressures calculated in consequence of the input
data shown in Fig. 3-12, while Fig. 3-10 is a reduction of the
corresponding CALCOMP plot., In both the tabulation and the plot,
pressures are given in microbars and time in seconds after the
blast, On the plot, the modes are drawn in ascending order be-
ginning at the top, and their total is at the bottom. The
common pressure scale is determined automatically such that the
maximum amplitude of the total waveform will be about 2 inches
on the plot. Note that these formats for the tabulation and
plot are consequences of having set IOPT = 11 in the namelist
NAM10, A description of other possible output formats for
predicted acoustic response may be found in the last paragraph
of Section 3-4,

For each input case (i.e., for each NAM10 read), the code
will print all input data and will generate a tabulation and plot
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of a waveform; however, whether the outputs shown in Figs., 3~1 and
3-3 through 3-8 are printed will depend upon the current values

of NPRNT and NSTART. I1f NPRNT is less than 1, none of them will
be printed; otherwise, all are printed which correspond to points
in the calculation past the point of entry specified by NSTART,
For example, suppose that NPRNT = 1 and NSTART = 4, The first
calculations made for this case are those involving the source
strength (YIELD), so that the only printouts will be the imput
data, a tabulation of the type shown in Fig, 3-8, and a tabulation
of responses (as determined by the value of IOPT).
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Chapter IV

T

; SOME NUMERICAL STUDIES

TR RS TAYE

4,1 ILTRODUCTION

In this chapter, we present some numerical studies which have
; been made during the past year using the computer program INFRA-

: SONIC WAVEFORMS, which we have described in the preceding two
chapters, These studies were concerned with checking out the pro-
gram, comparing its predictions with previous calculations by
Harkrider (1964), and in exploring some general trends., These
studies are relatively modest and only scratch the surface.

L In these studies we refer to the individual modes using a
nomenclature devised by Press and Harkrider (1962). TFor con-
venience of reference, we review this nomenclature here. 1In

: any plot of numerically obtained dispersion curves, i.e., of phase
; velocity versus frequency, the modal curves fall into two clearly
' defined groups - regardless of the value of 0,, A sample plot is
shown in Fig. 4-~1, The identification GR,, GEl’ GR,, etc. for the
so~called "gravity modes" and S,, S,, S,, etc. for %he so-called
"sound nodes" sliould be evident {rofi thé figure., In labeling
these modes the first step ig always to identify GR, and S.. These
are two adjacent modes which are widely separated ag low fre-
quencies, G}, having a low frequency phase velocity of the order
of the sound speed at the ground and S, having one which is
considerably higher, of the order of tge largest socund speed in
the atmospheric profile. The tuo modes invariably become very

] close at a frequency of the order of a representative Brunt
frequency in the lower atmosphere. However, the two modes do not
cross, (The protable reason for this absence of an intersection
is explained in Sec. 2.7).

Once GR, and S, are identified, the remaining modes are labeled
in the order in wh?ch they appear, Thus §,, §,, S,, etc., are
the nodes corresponding to curves which woiild Be encountered tv
one scanning upwards and to the right starting from S, while 'Rl’
GR,, GR,, etc., are the modes encountered by one scanning

dovmwarids and to the left from GRO.

4.2 A COMPARISON WITH HARKRIDCR'S RLSULTS

Since the program is capable of synthesizing waveforms when
the model atmosphere is without winds, it should in principle be
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Figure 4-1, Sketch showing the labeling scheme used in this
report for the acoustic-gravity modes,
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capable of reproducing computations carried out by Harkrider (1964).
Furthermore, any comparison of our calculations with Harkrider's
should serve as a means of discovering any major coding errors in
the program, We were therefore considerably disappointed when

we first made such a comparison and discovered substantial
discrepancies, Two fruitless months were spent in checking and
rechecking the program and the theory before we finally discovered
that the discrepancy was due primarily to differences in formula-
tion, Such differences in the formulation evolve arcund how one
incorporates a model of a nuclear explosion into the theory.

To explain this difference, we discuss helow some of the
differences between the mathematical expressions used by Hark-
rider and those presented in Chapter II. In order to avoid a
lengthy review of the Markrider theory, we use his nomenclature
below, For brevity, ve do not define all the symbols used, as
those not defined here are defined in llarkrider's paper.

The Harkrider theory gives the pressure waveform due to any
given individual mode as being of the form

-\ a
p = {B}e ® sp;(D){Il +1,) (4.2.1)
where
%
1 - z] (L}Ha, 09 (E)cosTutt - T,)] du (4.2.22)
0
I, = 2J {L}{AA}{l~t}cos{w[t - (TA + TX)]}dw (4.2.2b)
0y
{5} = /m* %(a_sin 0y~ 2an,, (4.2.2¢)
(L) = o, /p ), (4.2.20)
J
) = 2 + wz)-lk;/z (4.2.2e)
{8} = exp{(as/as)(ci - wz)l/Z} (4.2.2f)
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The quantity oy is (y/2)(g/a_ ) at the burst altitude. Note that

the subscript 8 refers to the source and that «_is the sound speed
at the source. The quantity 24 is the radius of the earth, while
the iygntity a is a scaling length which increases with yieid Y

as Y'7; As is cllas; D is source altitude,

The formula corresponding to Eq. (4.2.1) according to the
formulation presented in Chapter II is

p = {BH1/pZ ) HI}p2/p (4.2.3)

where

A

. z[{x}{Amy}{n}cos[w(t -t 4t ))de (4.2.4a)

A

1/2

(&} = = (@2/a,)[p° (2)p (D)] (4.2.4b)

The quantity {AMP} is as defined in Eq. (2.5.4d).

With some minor discrepancies, it would appear from a com=-
parison of the two derivations that

(K {awr}= {L}{AA] (4.2.5)

What discrepancies do appear would Le due to the fact that we use
an energy source model rather than a mass source model. To

check whether or not this is the case and as a check on the
program, we compared our {AMP} with Harkrider's A, vhen source
and observer are on the ground (i.e., z = () and D'= 0)., In

this case we should have

B e ° )
Ay pocxo{AMl }

In Fig. 4-2, we show a plot of {AMP} in km-l vs. period in
ninutes for this case for the U.S, Standard atmosphere with no
winds. This should be compared with Fig. 7 in larkrider's 1964
paper. Although the units are not the same, the general shapes
of the curves are remarkably similar. To check on the quanti-
tative agreement, we took «_ = 1/3 km/sec and p_ = 12.6 x 10" * pm/cm3. -
The maximum value of -p°a {XMP} for the GR nod8 is then found
from Fig, 4=2 to be .0196°x 107? (pm/cm®)/sSec. The corresponding
number in harkrider's praph (as best we can read it) is ,013.
Since llarkrider does not specify the units on this graph, we
checked with him concerning this and found that 1 unit on the
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Figure 4-2, Plot of AMP vs, period for modes GRO, So' Sl’ and S
AMP is defined in Eq. (2.5.4d).
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graph corresponds to 107 (gn/ecm?)/sec. Thus the agreement
would appear to be substantial.

The analysis above still leaves several additional formal
differences vhich may or may not be of some importance, especially
for megaton class explosions. Ve emumerate these explicitly below:

-\ a
1) The factor e ° ° in Eq. (4.2,1) doe: aot appear in

Lg. (4.2.3).

2) 7The factor {L} in Eq. (4.2.2a) for w < 0, does not appear
in our Eq. (4.2.4a).
3) The quantity T, in Eq. (4.2.4b) for w> % does not appear

in our Eq, (4.2.4a). X

4) The T, in Egs. (4.2.2a) and (4.2.2b) is replaced by

1A *
T - Tas in Lq. (402043).

A

Each of these differences may be traced to the methods in which
the source model was incorporated in the theory, In Harkrider's
theory, he matched his formal solution to the cube root scaled
waveform (extrapolated from 1 KT) which would be received at a
distance a directly below the source, the distance a varying
with cube Yoot scaling. In the theory in Chapter II, the source
was taken as a point source with a time dependence chosen such
that the calculation would agree with low yield explosion data
were the atmosphere homogeneous, It is difficult to say with
certainty just which formulation is the more nearly correct.,
llowever, one consequence of liarkrider’s method is an effective
attenuation of high frequencies as yield is increased - much
more so than is indicated by the available data. (This would not
have been the case were the reference point at the same altitude

as the source.)

We consider the fourth distinction to be of no consequence as
it only changes the time origin without altering the shape of the
waveform, The other three should be relatively minor for low
yields but may lead to large discrepancies for megaton class

explosions,

To check the assumption that the first three distinctions
listed above are responsible for any major numerical discrepancies
between the results computed using INFRASONIC WAVEFORMS and those
given by Harkrider, we attempted to reproduce the theoretical
barograms in Harkrider's Fig. 13 for the direct wave as observed
at 8000 km from a 4 MT explosion at a burst height of 2,13 km,

We did this first using our program with no alterations and then
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modifying (temporarily) the program to include the factors 1~3
discussed above. The results are shown in Figs. 4-3 through 4-8,

Each figure sliows the graphs for a given mode (or the total
response) as determined by three different methods, The top
graph in each figure was calculated by the unaltered Pierce~
Posey code. The second graph was calculated by the Pierce~Posey
code with the factors exp{~A a_ ] and E and the phase shift T
included as noted above, Thé Bottom curve is the correspondzng
graph from Harkrider's Fig. 13,

1f we compare the unaltered modes with Harkrider's we note
that the mode shapes are quite similar. However, three
significant differences do exist:

1) Our GR0 dies off more slowly than does larkrider's.
2) Our acoustic modes are much stronger relative to GR0
than are Larkrider's.

3) All of our acoustic modes arrive approximately 3 minutes
later relative to GR, than do Harkrider's.

In our altered calculations, GR, dies out more rapidly, the
acoustic modes are weaker relative 20 GR, than before, and the
acoustic modes arrive slightly earlier relative to GR,. This
clearly indicates that the factors and phase shift considered are
the major sources of differences between Harkrider's synthesized
waveform and ours. Our altered total response is almost identical
with his up to about 26900 sec., where our S, begins to dominate
the sum., Since &§, is not included in llarkrider's sum, agreement
could not be expected in this region.

The fact that the altered waveforms for each mode have ampli-
tudes of about 2/3 those reported in Harkrider's figure may be
attributed in part to the absence of the factor p°/p° in llarkrider's
original formulation. llowever, we understand that tfis has been
corrected in the version of his program currently in operation.

This would lower uarkrider's amplitudes bv a factor of .76 and

would bring the two sets of computations to a fair agreemeant. We

are not sure of the cause of the remaining discrepancy but think

it might be due to either our use of an energy source rather than

a mass source or to a different choice for ambient density at

the ground, %The similarity in shape of the two waveforms suprests
that the major cause of the discrepancy has been amply accounted for,
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Fipure 4-3. Comparison of mode GR_as computed by Pierce and Posey and

o
by Harkrider. Hlere and in Fips. 4=4 throuph 4-8, no two curves are
neccessarily on the same pressure scale, but all use a common time scale.
The value of a representative troush-to-peak pressure variation is

siven for each curve,

-82-



e WA

PIERCE-POSEY FORMULATION

- :lO pbars

A_TERED PIERCE-POSEY FORMULATION

le—tOmin.—=

..: ; 16.2 ubars

HARKRIDER FORMULATION

MODE S,

TIME
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Figure 4-7. Mode 83 as computed by Pierce and Posey.
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4,3 GLILRAL TRLNDS

The computer code INFRASOWIC VAVETORMS has been utilized to
study the effects of the various parameters of the source (yield,
height of burst) and of the atmospheric model (temperature and wind
vrofiles, upper boundary condition) upon theoretical microbarograms.
For the sake of simplicity and economy, models of only four to
seven finite layers plus the upper half-space were used in this
initial study., The temperature profile shown in Fig, 4-9 with
no winds was chosen as a standard for the purposes of comparison,
Notice that this profile exhibits certain features of the ARDC
standard atmosphere: there are two sound channels, one centered
at 25 km and one at 85 km, with the model's minimum temperature
in the upper channel, Most runs were :.2de using a yield of 10 MT,
height of burst of 3 km and a range of 2000 km. The synthesized
nicrobarogram for the standard conditions is given in Fig, 4~10
together with graphs of the modes summed to arrive at the total

response,

The Upper Loundary Condition

As the altitude increases, the composition and density of the
atmosphere changes considerably. As the composition changes, the
application of the perfect gas law becomes less appropriate, and as
the medium becomes increasingly rarified, the equations of hydro-
dynamics lose their applicability, However, under the assumption
that practically all of the ecnergy of a given disturbance is below
100 km, it would seem that the details of the atmospheric structure
above the ionosphere should have little effect upon the waveform
observed on the ground. This hypothesis was confirmed by a
series of runs in which the atmosphere below 110 km was held
constant, while the temperature profile above this height was
varied, While dominant frequencies and amplitudes were, in
general, unaffected, the details of the individual modal waveforms
did vary, and two definite trends were observed,

If only the temperature in the upper half-space (T ) is varied,
one sces that the two extremes, T small ("almost" a free boundary)
and T large ("almost" a rigid boundary) produce microbarograms
which look very similar (Fig. 4-11). But, if one compares the
tables of the normal mode dispersion function signs for the two
cages (Fig., 4-12), it is clear that in the process of going from
one extreme to the other, the dispersion curves have shifted,
since the sign of the normal mode dispersion function at any given
point in the frequency-phase velocity plane has been reversed,
txamination of intermediate cases reveals that the shift has
been upward for increasing T_; i.e., the dispersicn curve normally
associated with the GR, mode in the free case moves upward and
assumes the shape and position of the curve normally associated
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with the S mode. Fer an intermediate case, for which the modes

are in the midst of their transitions, the modal disturbances bear
little resemblgnce to those for the extremes, yet their total

(Fig. 4-13) does resemble that for the extremes, at least for the
first half hour. The suggestion made here is that because the
dispersion curves are strongly dependent upon T_, but the waveform

is not, the modes which arise are primarily mathematical conveniences
with limited physical significance. This contradicts the viewpoint
prevalent in much of the current literature,

Secondly, as soon as the temperature in any layer is of the
order of three times any relative maximun for the atmosphere below
that layer, a rigid boundary condition at the bottom of that
layer is approximated. For example, the two waveforms presented
in Fig. 4-14 shov almost negligible difference, although they were
produced by two different models, one with T = 800° K beginning
at 130 km and the other witii temperatures of 800° X from 130 to
150 km, 1000° I from 150 to 200 k¥n, and 150C° ¥. above 200 kn. It
is clear that the additional layvers in the second model had little
effect upon the predicted wicrobarogram,

The Temperature Profile

The computer code beins; used in this study synthesizes micro-
barograms by suaming the theoretical contributions from guided modes.
In general, there are three types of ducting mechanisms which might
produce guided modes: (a) Lamb mode ducting, (b) sound channel
ducting, and (c) discontinuity ducting,., (See Figs, 4=~15 through
4-17.) A Lamb mode exists in an isothermal atmosphere due simply
to the presence of the ground. Its energy density decays expo-
nentially with altitude., A sound channel exists at any altitude
where the sound speed profile has a relative minimum, The third
phenomenon which might contribute to ducting is a tendency in some
circumstances for wave energy to be concentrated near discontinuities
or in the region of large gradients of the sound speed.

Since we are generally concerned with the waveform observed at
the ground due to a source near the ground, one would guess that the
most important influence would be from Lamb mode ducting, with the
effect of a sound channel being to strengthen or weaken the Lamb
mode, depending upon its altitude and strength. The only large
sound speed gradients in the atmosphere are at great heights., Thus,
our earlier consideration of the effect of the upper boundary
condietion tells us that this mechanism could not significantly
contribute to ducting, except that a free or rigid boundary pro-
hibits radiation of energy away from the earth and produces micro-
barograms (Fig. 4-11) vhich decay more slowly than those for
intermediate cases (Fig. 4-13).
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Figure 4-13., Pressure waveform for a case intermediate to the
free and rigid upper boundary conditions. Here, T, = 300° K.
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Figure 4=14, Synthesized microbarograms for (a) an atmosphere with

T, = 800° K beginning at 130 km and (b) an atmosphere with temperatures
of 800° K from 130 to 150 km, 1000° K from 150 to 200 km and 1500° K
above 200 km,
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Figure 4-15, Sketch illustrating the mechanism of Lamb mode
ducting., In an isothermal atmosphere, the Lamb mode has its
maximum pressure at the ground and decays exponentially with
height,
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Figure 4-16, Sketch illustrating the mechanism of sound
channel ducting. The energy of the disturbance is concentrated
in the region of a relative sound speed minimum,
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Figure 4-17. Sketch illustrating the phenomenon of discontinuity
ducting., The pressure has its maximum value at the discontinuity
in sound gpeed and decays exponentially with distance from it,
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The hypothesis that Lamb mode ducting is the principal mechanism
of propagation for the acoustic-gravity wave under consideration is
discussed in more detail in Chapter VI, lere the effects of the
two sound channels in the standard atmosphere are investigated,
Since we assume that the atmosphere has constant composition and
obeys the perfect gas law, the sound speed is proporticnal to the
square root of the absolute temperature. The sound speed profile
of our standard model is shown in Fig. 4-18, along with the
sound channel variations studied, Variation 1 eliminates the lower
channel, 2 increases the sound speed in the upper channel so that
the minimum is in the lower channel, and 3 eliminates the upper
channel,

Examination of the microbarograms (Figs., 4-19, 20, 21) cor-
responding to the three variations reveals a strong dependence
upon both sound channels, since all three waveforms are different
and none resembles the standard., By looking at the GR,, S, and
S, modes, we see that their shapes and relative sizes seem to de-
pend most strongly on the location of the minimum sound speed in
the model, That is, tlie nodes for variation 1 most resemble those
of the standard, while the modal patterns of variations 2 and 3
resemble each other. Also, the entire G, mode is almost the
same for all cases, indicating that it is probably governed most
strongly by Lamb ducting, DMode S, shows its largest contribution
to the ground level microbarogram in the two cases, variations
Z and 3, when the model has its minimum sound speed in the lower
channel, This might mean that S, tends to concentrate its energy
near the minimum sound speed, although to put nuch emphasis on
this possibility would be somewhat inconsistent with our earlier
conclution that the modes are of limited physical significance,

The Wind Profile

In studying the effects of winds, we fiyd it convenient to
define an equivalent sound speed, ¢ = ¢ + v*i, yhere c is the
sound speed, v is the wind velocity vector, and i is a horizontal
unit vector in the direction of propagation, Two windy models
which were used to produce theoretical microbarograms (Fig. 4-22)
both have c profiles the same as the standard atmosphere, but
one, variation 4, has a c_ profile equal to the c profile of
variation 1, and the othe¥, variation 5, has a ¢_ nrofile equal
to the ¢ profile of variation 2, MNotice that, even thouch winds
are actually treated in a much more sophisticated manner than
simply using ¢, in the place of c (see Chapter II), the results
imply that the sophistication has only slight effect on the predicted
vaveforms., The microbarograms for the uindy atnospheres,
variations 4 and 5, very stronglv resemble the records for the
windless models having the same c¢_ profiles (variations 1 aund 2,
respectively). Thus, as long as the wind speed in every layer is
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Figure 4-18, Sound speed profile for the standard temperature
profile shown in Figure 4~9 and three variations studied.
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Figure 4-19. Microbarogram and three of the modes calculated
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-102-




AT,

A R

Sabem P

P AERTTREAN sl s e

Rt L A RGO P B A N ORI T L

SN VT R TR T TN N AT RS RIS T el r ERMATRR A2 AT
B . e e s - . aa an

R RS A N P S i G AT ST LA S SR

- menad e e A A i 4 B S h

640 pﬁars/inch

©m

[~
o

(=)

GRo

So

- d \ M’\,—/\\/\/F\J‘ e ™ Nt ™ e * e TN T e T TN T, PPN

S,

foms o \/\A/\/\/\,/\/\/‘\/\.f\.’\/\.-fv\f\.f\ PPN W T SN S e

e el

GRy+ S+ -...+S¢

e e

7800 9602
L 1

TIME (9EC)

Figure 4-21, Microbarogram and three modes calculated using sound
speed variation 3 (See Fig. 4-18),
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much less than the speed of sound for that layer, the major effect
of the wind is simply to change the effective sound speed profile,
In retrospect, it would appear that one need not incorporate winds
into the computer code; instead he may use the device described
above,

Source Parameters

Test runs in which the source parameters were varied indicated
(1) that, for bursts well below the sound speed minimum in the
lover channel, the height of burst has relatively little effect
on the shape of the generated wave and only slight effect on its
amplitude and (2) that the yield of the explosion has little
influence upon either the wave's shape or the ratio P' = (wave
anplitude/yield). In one example studied, P' fell by 47 as the
yield went from 18 Y to 30 MY, Iliff (private communication,
1970) has studied both of these types of variations in con-
siderably more detail using INFRASONIC WAVEFORMS and finds that
the height of burst effect is very significant at altitudes above
10 km., 1In particular, the wave amplitude on the ground tends to
increase with height of burst up to an altitude of the order of
40 km for megaton class explosions and then decreases with
increasing altitude. Also, the ratio P' shows the smallest
variation with yield for the earliest portion of the waveform;
the variation may be considerable for the later arrivals,

4.4 A COMPARISON WITH EMPIRICAL DATA

On 30 October, 1962, the United States exploded a thermo-
nuclear bomb of the megaton range near Johnson Island. The
collection of observed microbarograms published by Donn and Shaw
{1967] contain several records made following this blast, one
of which, the Berkeley record, appears exceptionally free of
noise and appears representative of what might be expected for
a waveform under ideal circumstances. (This judgment is not
solely that of the authors, since this waveform was chosen by
others for the cover of the program of the Symposium on Acoustic
Gravity Waves, Boulder, Colorado, July, 1968,) Thus, it was
felt that this was the waveform which we might have the best
chance of matching with a theoretical synthesis.,

In preparing the input for the program INFRASONIC WAVEFORMS,
the most important decision is the choice of a model atmosphere,
Unfortunately, there are three categories of atmospheres which
strongly affect the waveform received: the atmosphere near the
source determines the relative excitation of the modes, the
atmosphere along the path of the disturbance determines how the
wave propagates, and the atmosphere above the observer determine-
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the ground strengths of the modes. Moreover, none of these
atmospheres is constant over time or has winds and temperatures
which are functions of altitude alone. Thus, in light of the
fact that our model can neither be representative of the entire
range of atmospheric profiles above the path nor display the
inconsistency and horizontal inhomogeneity of any real atmosphere,
exact agreement between theory and experiment would not be
expected. ievertheless, general agreement might be hoped for.

An atmospheric model was constructed to represent the average
conditions between Johnson Island and llerkeley for the month of
October, The temperature profile (Fig. 3~-1) was taken from
Valley's Handbook of Geophysics and Space Environments, Figures
2,2, 2.4, and 2,5, and tue wind profile (Fig. 3-1) vas taken
fron Valley's Figure 4,11 and Table 4.21 and from the 1965
COSPAR International Reference Atmosphere, p. 46,

Since the actual yield and height of burst for the source
was not knoim, they were set arbitrarily at 10 MT and 3 km,
respectively. A range of 5600 km and direction of propagation
of 35° north of east were used. For a copy of the complete input
data, see Fig. 3~-12,

The synthesized waveform agrees surprisingly well with the
observation (Fig. 4-23), both having the same time of arrival,
a 5,5 minute period for the first major cycle, and the same
doninant periods and relative amplitudes for about 35 minutes.
Since Donn and Shaw did not give the amplitude of their record,
an amplitude comparison cannot be made here. On the first major
cycle of the synthesis, there is a variation of about 300 ubars

from peak to peak.
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Figure 4-23, Comparison of theoretical and observed micro-
barograms for Berkeley, Cs&lifornia, following a nuclear blast
near Johnson Island, 30 October, 1962, A listing of the com-
plete input data for the synthesis is given in Fig, 3-12,
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Chapter V

AN APPROXIMATE METHOD BASED ON

CAGNIARD'S INTEGRAL TRANSFORM TECENIQUE

5.1 CAGNIARD'S METHOD

Cagniard's method is a technique utilizing mathematical proper-
ties of functions of a complex variable which allows one, under
certain circumstances, to invert Fourier transforms. The technique
dates back to Lamb's classic paper (1904) on the propagation of
elastic transients on the surface of an elastic hslfspace, but its
significance was not realized until the 1930's when Cagniard, Pekeris,
and Smirnov and Sobolov independently discovered that the technique
may be applied to a much more general type of problem and developed
the mathematical techniques in a more suitable form. The resulting
method is generally called Cagniard's method, probably because of
the fact that Cagniard's book (1939, 1962) was the first treatise
on the subject to become known by the general seismological community.

Cagniard's method is generally acknowledged to be extremely
complicated. This is due partly to the amount of algebra involved
in using the method, to the fact that it does involve some intricate
mathematical ideas, but primarily (in the authors' opinion) due to
the rigorous style with emphasis on generality in Cagniard's book.
The method was very little used until the mid 1950's when C.H. Dix
attempted to give a simpler explanation of the method and demonstrated
the fact that it leads to feasible quantitative predictions. Since
the late 1950's a large number of papers have appeared on the subject
with a wide scope of applications besides seismology.

In general terms, one may consider Cagniard's method to be
concerned with the evaluation of integrais of the form

+ & x [THe
P(x,t) = J” ....J'°° et X f»+ . e-ith(i.w) dw d"k  (5.1.1)
=00 -0 —aopie

where the number of dimensions of i may, for all practical purposes,
be restricted to 1 or 2. For certain restricted types of kernel
functions F(k,w), Cagniard's method provides a sequence of mathe-
matical manipulations which allows one to exactly transform the
above to an expression of the form

w(;at) = r f(T)I(t"T);) drt (5.1.2)
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vhere I(t - T,;) is a relatively simple (compared to (5.1.1) )
expression to evaluate. In some cases it may be single closed

;! expression, or it may involve one or two integrations with finite

R limits. This is a substantial achievement as integrals such as
(5.1.1) generally defy direct numerical integration because of the
infinite limits and the fact that the integrands are highly oscilla-

tory.

Integrals of the form of Eq. (5.1.1) arise often in studies of
wave propagation in stratified media -- particularly for waves gene-
rated by sources which are point and line sources. Thus one may
wonder as to just what types of stratification does the method apply.
As best we can tell, from an examination of cases for which the
method has been applied previously, the principal restriction on
F(k,w) is that it must be expressible as a sum of one or more terms

of the form

FE,0 = fwel*TnE,w) (5.1.3)

L’ where f(w) is a function of w, and where T and D are functions of §
and w which may each be cqnsidered (subject to some mathematical fine
points) as a function of k/w. The identification described above can
be made, in particular, for a point source in a layered stratified
medium, where each discrete layer is such that, were it extended to
infinite thickness, propagation of any plane wave pulse in the layer
would be nondispersive. This type of identification would seem
evident from various mathematical formulas given in Brekhovskikh's
treatise (1960) on waves in stratified media.

R LR Ol MYt 1 o s Wmeeri s 2o

5.2 THE APPROXIMATION OF NEGLECT OF VERTICAL ACCELERATION

B ieny:

: It is apparent that Cagniard's method cannot be applied to the
¥ propagation of acoustic-gravity waves per sé since these waves are

1 inherently dispersive. The counterpart of a homogeneous medium for
¢ such waves is an isothermal atmosphere and it was demonstrated by

’ Hines (1960) that plane waves in such a medium are dispersed. Thus,
Cagniard's method would appear inapplicable to an integral such as

g that appearing in Eq. (2.3.1).

% However, it appears that there is one rather simple approximation

: under which Eq. (2.3.1) may be put into a form which is amenable to

i Cagniard's*method. This is where one neglects the vertical acceleration
term p D we_ in Eq. (2.1.4a). Whether or not neglecting this term is

> justiffe& 18 somewhat debatable. However, its neglect leads to such
considerable simplification that one feels compelled to explore its

consequences.
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We were led to the observation described above by a paper written
by Row in 1966. Row sought to obtain the transient wave generated by
a point source in an unbounded isothermal a'mosphere with the neglect
of the effects of the ground. The theory developed led to a single
integral over angular frequency where the integrand was essentially
the Green's function determined by Pierce (1963) and by Dikii (1962)
for a harmonic point source. In order to evaluate 595 integral, Row
used the artifice of formally equating Wy = (y - 1)7""g/c and
w, = yg/(2¢), which amounts to taking Y = 2. On examination of Row's
result, we found that it could also be approximately interpreted as
arising from the neglect of vertical acceleration. It was natural
then to ask if this idea could not also be used in other situations
where the atmosphere was not isothermal. Pursuing this point led to
the discovery that Cagniard's method applied when the vertical acce-
leration is neglected.

While the approximation may seem somewhat drastic, there are
several factors involved which suggest that the physical significance
of the results may not be entirely negated and that its inherent
inadequacies may be offset by the fact that it leads to a theory
which does not necessitate using some of the approximations pecular
to the multi-mode theory described in Chapter II (such as neglect
of branch line integrals, neglect of leaky modes, and the truncation
of integrals over w).

In the first instance, the approximation of neglecting vertical
acceleration would seem to be most appropriate at lower frequencies.
Since the first major cycle in empirical waveforms normally has a
period in the range of 5 minutes, it would seem that some low-
frequency approximation might be applicable in the calculation of
the earliest portion of the wavetrain.

While the approximation does lead (as is demonstrated in
subsequent sections) to an instantaneous propagation in the vertical
direction (which is clearly wrong), we might consider this shortcoming
to he not too serious since we are concerned with propagation to large
horizontal distances. Furthermore, what calculations we have performed
for the theory outlined in Chapter II suggest that the vertical acce-~
leration near the ground at large distances are very small compared
to the longitudinal accelerations for the earliest part of the wave.
One clear cut advantage of the method is that it leads to a calculable
solution which is clearly causal -~ which is not true for the theory
embodied in the computer program INFRASONIC WAVEFORMS. This would
also suggest that we might do hetter for the earliest part of the
waveform with the Cagniard's method theory. Of course, the final
test of this would be in the comparison of results with experiment.
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5.3 FORMAL DESCRIPTION OF CAGNIARD'S METHOD FOR ACOUSTIC-GRAVITY WAVES

We consider the same problem as posed in Sec. 2.1. The only
distinction is that we replace Eq. (2.1.4a) by the two equations

Py DU, + @.VIV]) = Vyp (5.3.1a)
dp/dz = -gp (5.3.1b)

corresponding to the approximation discussed in the preceeding section.
Then, the solution of (5.3.1), (2.1.4b), and (2.1l.4c) is of the form,

for acoustic pressure p,

p= Iﬂ fE(T)G(t - T,x,y.z.zo)dr (5.3.2)

where the Green's function G represents the response to a point
impulsive source (x° - O,y° = 0).

The Fourier integral expression for G {s essentially the same
as Eq. (2.3.1), one distinction being that fE(w) is replaced by 1/2m.

Thus we have

> > r‘ie
1 1k.x S > ’iwt

—opig
where
A p_(2) |% { ¥(z,2 )
G = |—v = { ° } (5.3.4)
[po(zo)] o - Kz )] OO
with
¥(z,2)) = (2, (z) - &Y (2)]Z,(2) z, > 2 (5.3.5a)
= [7y(z)) - 8Y)(2))]2 (2) z, <z (5.3.5b)
Y= QI/c (5.3.6a)
(5.3.6b)

Z = g¢1/c - c¢2

Subscripts £ and u have heen omitted from the last two equations for
brevity. The above are essentially the same as Egs. (2.3.12), (2.3.13),
and (2.6.1). The only formal appearance of the effect of the neglect of
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vertical acceleration is in the ordinary differential equations
(residual equations) satisfied by 01 and @2. These are

Y1 1M A2l B

% (5.3.7)
B A A2l 1%
wvhere
Ay = gk?/02 - yg/2¢? (5.3.8a)
Ay =1- c2k?/q? (5.3.8b)
Ay = g2k?/0%c? (5.3.8¢)
Ayg = Ay

Note that these are the same as Eqs. (2.6.3) except that A,. does
not have the term -0?/c? present in Eq. (2.6.3c). The qua%%ities
(¢1 .¢2 ) and (01 '°2u) are particular sclutions of the above
residua equationg -="only that the first satisfy the ypper boun-
dary condition (¢,, = 0 at Z = 0) while the second set satisfies
the upper boundary (¢, and ¢2 analytic and bounded for Wy > €,

k real, and all z > 0}.

The anglysis preceding Egqs. (2.4.2) and (2.4.3) shows that we
may select G(w,k) to be such that

G(w,k)* = G(-wk,-k%) (5.3.9a)
C(w,k) = -G(-w,-K) (5.3.9b)

A third symmetry property follows from the fact that the new set of
coefficients depend on w and k only through the combination k?/92,
or alternately, only through the combination k/w. If we examine the
consequences of this we find that we may take

G = 1 D(w, k) (5.3.10)

w=-% -:/(zo)]

where

-+ -+
D(wk ,k*) = D(w,k)* (5.3.11a)
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D(- 4-k) = D(w,k) (5.3.11b)
D(uws,ak) = D{w,Kk) (5.3.11c)
for any real a.

Other velevant propertiec of D are that it is finite or else
zero as w + @ for all real k. None of its branch lines in the w
plane (when k is fixed and real) extend to infinity. One may ahow
that the only branch points are those associated with the upper
half-space and are located for real k at w = Wy and W = w, where

W, =KV 3 2¢, [iy-1) %7y (%] (5.3.12)

Thus, there are only two branch points -- both on the reai axis.
The branch line is taken as extending directly along the real axis
between the two points.

The poles of D in the w plane for real P4 may be denoted by wn(i).
Near any such pole,

D_(k)
D3 —Pe (5.3.13)
w - wn(k)

where Dn(i) is the residue. The quantity wn(ﬁ) should be of the

fornm

-> <
w (k) = k| v (8) (5.3.14)

where Ok is the direction of k. This follows from Eq. (5.3.1llc).
Also, Eq. (5.3.11b) would imply that

vn(0k+w) = ~vn(6k) (5.3.15)

The Eq. (5.3.11a) would imply that v_ is entirely real. Finally,
we can show that Dn is real, and thal it is of the form

D = [k A (8)) (5.3.16)
vhere

A(6) = A (8)* (5.3.17)

A8+ = ~A(6) (5.3.18)
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If D is D on the real axis just above the branch line and nb
is D on the real axis just below the branch line, we may show
(k real) that
> -+
Da(w,k) - Db*(m,k)
If we use polar coordinates for f. then

D.(-w,k,ek) = D, (w,k, 6, +)

follows from Eq. (5.3.11b)

With these preliminaries, we may now describe Cagniard's method
(or at least the authors' version of the method) as it applies to the
problem. For t < 0, G vanishes. For t > 0 we deform the integration
contour to enclose the entire lower halfspace in the clockwise sense.
This contour is then shrunk to enclose all poles and the branch line
(Fig. 5-1) and the residue theorem is utilized to pick up the contri-
bution from the poles., This gives us

po(2) 1B
GCs= R T [IBL + g In] (5.3.19)
[ K+ ]

vhere the branch line contribution is given by

{2‘" o, i(D - D %)
IBL - rk dk J dek eik.x 2 . iwt {;.._.E._’_:_‘__} dw (5.3.20)
0 o w, - k-v(zo)

and a particular pole contribution is given by
ikv t

2m T2 kAe n
I = 2m rk dk I o, e { < *} (5.3.21)
o o kvn - v(z°)°k

In the above we neglect the pole associated with the zero of w - §°;(zo).
The integral along the branch line is interpreted as a principal value.

As for the branch line contribution, we let w = vk and change the
w variable of integration to one over v. Then we perform the k inte-
gration first. Doing this gives

2n v i(hb -~ D %) A \o
I, = J a6, J 2 v {-——%—-—;—‘-—} r elk[R cos(B-A)-vt] o (5.3.22)
o vy v - ek'v(zo) o
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where

S -c.v ¥ -1)%

) V1,2 " GVt 2¢_[ (y-1) “/v] (5.3.232)
-+ -+ -
e - (cos Bk)ex + (sin Gk)ey (5.3.23b)
It should be noted that \] and v, are functions of ek. Also, D 1s a
function of v and Gk. a

b o O e

The pole contributions may similarly be expressed as

A ik[R cos(e-Gk)-v t]
re T ok dk  (5.3.264)
(o]

2% "
I =27 I do =
n o k [vn - ;(zo)-ek]

Here R is the net horizontal distance from the source.
Next, we may show, using various properties described above, that

the contribution to the integrand in either (5.3.22) or (5.3.24) from
Gk + 7 is just the complex conjugate of that from ek. Thus we set

PORs L U anC - s

G4m/2 v, i(D8 - D %) ik[R cos(e-ek)-vt]
I, =2 Re de dv 4 e k dk
BL o-nf2 K Uy v - erv(z ) do
1 k o
(5.3.25)
o4m/2 A ik(R cos(e-ﬁk)-v t]
I = 4TRe J a8, S r e "k dk
0-1/2 [vn - v(z°)°ek] o

At this point we introduce some minor approximations which would
not be approximations at all were there no winds., We formally replace

eikve , os (kvt)

in Eq. (5.3.25). The justification for this is that (D_ - D _¥*)/v is
even in the absence of winds. Also, for the pole contributign. the
terms I can be paired (I ,I_ )} in the absence of winds where v = v ,
The resldues A_ would haveé the property that A = A__ and thus ™ we
might 1nterpre¥ the quantity An/vn as being even in H, and consequently
ve might let

-ikv t

n

g (An/vn)e -+ n§0 Z(An/vn) cos kvnt
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These ideas lead to the expressions

84m/2 v, 1(D‘ - D.*) ikR cos(e—ak)
I, = 2Re I dé I dv ——— r e cos (kvt) k dk
- 9-m/2 v, v - ek'v(zo)
o+m/2 An fﬁ ikR cos(6-6, )
I +I_ = 87 Re J dé e cos (kv t) k dk
n n 9-m/2 k v, - ;(zo)':k] n

Another approximation we introduce in the same spirit is to set 6, = 6
in the argument of v,, v 99 s V., and A . This is justified in
the absence of winds and wbuid séem Po be apBroptiate with winds
included since the integrand contribution is heaviest near Gk = g,
With this approximation we have

i(p_~ D %)
I, = rz dv [ a2 :‘ M(R,vt)
v -0

v - ek°v(zo) 8

1
f A
I +1_ =4n 2 M(R,V_t)
[ vealls w6

k

where

v

M(R,vt) = 2 Re J Iw eikR sin ecos (kvt) k dk do
o

o
)

I” o1KR sin esin (kvt) dk dé} (5.3.26)
o’o

= v-l(d/dt){2 Re I

The indicated integral can be shown to be

ul ”»l} -
] 2 Re I fm (LKR 8InB o ey dk do = —22i(VE 3% (5.3.27)
o’o [(vt)? - R?)

vhere U is the Heaviside step function.

Finally, we combine the results above and obtain

P=p g * ¥ P (5.3.28)
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where
a2 Do(z) %'{VZ 1 {1(D8-Da*)} {[t-R/lvl f'E(T) dt }dv
BL oo(zo) vy vl v - zk';(z )y’0 o0 (v3(t-1)? - Rzl;i
°
(5.3.29a)
1
p (z) |* A t-R/v £' (1) dt
oo nlv - v(zo)-ek 0 /- [v:(t-‘r)2 - R?]

In the above expression, v_ is considered as being positive and the
sum over n is over only those "modes” having positive phase velocities.

The physical interpretation of the above solution is that the total
waveform is the sum of a "lateral wave" (the branch line integral) plus
a sum of guided mode waveforms. Each guided mode is nondispersive and
has a speed v The shapes of various guided mode waveforms are similar.

The relative simplicity of the results must be emphasized. The T
integration is over finite limits and should be easily performed on a
digital computer. The only lengthy problem would be that of finding
the A and A for the guided modes. However, this could be done with
only a sligh@ modification to the existing program INFRASONIC WAVEFORMS,
The lateral wave might be more difficult to evaluate (since it involves
two integrations) but we would expect its contribution to be small for
most cases of interest. We should also point out that there is no
apparent restriction on the atmospheric profiles for which the above
theory might be applied.

5.4 THE ISOTHERMAL ATMOSPHERE AS AN EXAMPLE OF THIS METHOD

The only example which we have explored in any depth using the
method of the previous section is that where the ambient atmosphere
is isothermal. 1In this event the function D appearing in Eq. (5.3.10)
is given by

in|z-z | ip|z+z |
D = -i{Me °" 4+ Ne °} (5.4.1)
where
g [A
M= e {%; * iu} (5.4.2a)
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(i - ¢~ (w - wl)?)
N o= B A__ B = [u + u,/e] (5.4.2b)

0 o =l,2 2
[~i4 - ¢ (wA wB)

m;k’ wy :

The plus sign in {5.4.2a) corresvonds to z > z, while the minus sign
corresponds to z > z . The quantity u has®a branch line between
-(w_fuw)clk| and (W 7wA)c|k[. Its phase is between 0 and T in the
upper half of the w plane,

Theonly poles are at w= * cIkI and lie on the real axis to the
left and right of the branch line. The residue at the positive pole
1slk|A1 wvhere

=(L = v/2) (g/e®) [z + 2|
Al = pg(1 - y¥/2)e (5.4.3)

Thus, from Eqs. (5.3.28) and (5.3.29), we have

P = Pp + 1Y (5.4.4)
wvhere
bpo(z) ek (wB/wA)c t-R/v f'E(T) dt
bype = -4 e f 0 { I - ; - %} dv (5.4.5a)
: o %0’} o - [vi(t - T)° - R°)°
. -1
XONE -1 - ¥/2) (g/cH) |z + 2|
py = -8 PRCR) (g/c) (L - y/2)e
oo
t-R/c f'E(T) dr
X ( ;5 (5.4.51")
0 [c?{t - T)* - R?)
Here
~ik' -z | -iKk|z + z |
Q = (2/v¥)Re {Hb ° 4+ Ne ° } (5.4.6)
where
M= - R ((v/2Xe/c?) T 1K) (5.4.7a)
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N - -(g/zx){ X4 $§§;§§§;} (K + (/2)g/c?]  (5.4.Th)

R = gl(y - DIV - (v/2)/e2 Ve (5.4.7¢)

In the event the presence of the ground is neglected, there is no
guided wave P, and the term with N does not appear in (5.4.6).

We have carried out a modest amount of calculations using the
above formulas, taking f_(t) to be a delta function. The quantity
Py then, for t > Rfc, has a t and R dependence given by

P1 = ct 5.4.8
1 [c2t? - R2]3/2 ( )

and thus falls off as 1/t? at large t. The direct wave is oscillatory
in general. The nature of the oscillation can be described if we let
v = R/t and examine the factor exp[-iK|z - z°|]. Thus

L3 {amplitude} cos {g|z - z°|[(Y - 1)t?/R? - (Y/Z)c"zl;5 + phase factor}
(5.4.9)

Pp
The angular frequency as a function of time is then
glz - z°|(Y - 1)t/R?

el(y - DE/R? - (y/2)c 2]

(5.4.10)

=>4
tH

which 1s large at early times and which asymptotically (large t and
fixed R) approaches

Iz - zol t
w =-§——R——- (y - 1) (5.4.11)

which is essentially the sam. =2s Row's wc. The difference is that
the R above is horizontal distance rather than total slant path
distance. As long as lz - zOI/R << 1, our result agrees with Row's.
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Chapter VI

THE SINGLE MODE THEORY

6.1 INTRODUCTION

The calculations presented in Chanter IV and by previous
authors (Scorer, Pekeris, harkrider, etc.) suggest that the
earliest portion of the waveform (say, the first three cycles)
received at large distances may be considered as associated
with a single composite mede. This point of view has, in par-
ticular, been espoused with considerable eloquence by Garrett
and by Bretherton in some very recent napers on the subject,

We find this point of view to be appealing by virtue of the

fact that it may lead to a satisfactory method for taking

into account some effects which are neglected in the formulation
of the multi-mode theorv presented in Chapter II., Such effects
would include far field nonlinear effects, departures of the
atmosphere from perfect stratification, attenuation by viscosity
and therral conduction, and large scale irregularities in the
earth's terrain.

Another virtue of a single-mode theory would be its inherent
simplicity. The computational procedure represented by INFRA-
SONIC WAVEFORMS, regardless of how good one regards the theory
on which it is based, is sufficiently complicated that its
consequences can only be explored by numerical experiment. The
large number of possible parameters which must be specified in
order to construct a single waveform make it very difficult to
draw any succinct simple cause and effect relationships between
any one of these parameters (for example, yield) and particular
features of the waveform. This would probably be a minor
handicap from a practical standpoint, given the existence of
the computer program, if we possessed a reasonable knowledge of
the atmosphere's state at the time the explosion took place.

In practice, however, this is not the case, as the atmosphere
is always imperfectly known at any given time, The usual ex-
perimental situation is where a number of waveforms are re-
corded at various points and where a limited knowledpge of the
explosion and of the atmosphere is possessed. The typical
analysis problem would be to use this data and whatever else

is known to determine a refined description of the atmosphere
and/or the explosion. Borrowing a term from exploration geo-
physics, this might be designated the inverse problem o, infra-
sonic wave propagation. In principle, given an adequate theory
and a numerical procedure for synthesizing waveforms, we can
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solve this inverse problem (or at least find a possible range

of solutions and a most probable solution) by trial and error
in repetitive calculations with systematic variation of input
parameters. Obviously, this could be a very expensive and time-
consuming process, Thus, a strong case can be made for an
attempt to find a simple model where the number of input para-
meters is greatly reduced.

Insofar as the theory embodied in INFRASONIC WAVEFORMS is
concerned, the possibility of using it to solve the inverse
problem is severe'y limited by the fact that it is restricted
to perfectly stratified atmospheres. The data showing ampli-
tude variations with observer location exhibited by Wexler
and Hass following the largest Soviet explosion strongly sug-
gest that departures from stratification are of considerable
significance, On the other hand, the present theory is already
so complicated that it appears prohibitively difficult to extend
it to include departures from stratification. A possibility
would be a tradeoff - altering the theory to take the non-
stratification into account at the expense of the accuracy which
might be expected were the atmosphere perfectly stratified.

In this respect, the single mode theory might represent a very
convenient compromise.,

6.2 LAMB'S MOLE

In 1910, Horace Lamb demonstrated that a single guided mode
exists for the isothermal atmosphere with no winds. In retro-
spect, the existence of this mode is very curious as the normal
criterion for ducting in conventional (gravity neglected)
acoustics would seemingly preclude its existence,

The formulas for Lamb's mode are trivially extended to
include constant horizontal wind. For convenience of reference,
we summarize the result here., The acougtic pressure p, density
p, horizontal fluid velocity deviation u, and vertical fluid velo-

city w are given by

2
p = o B2/C Fxyt) (6.2.1a)
2
o = c2e7B2/C PRy t) (6.2.1b)
- 2
T . omnElc TG0 /0 (2) (6.2.1c)
we=0 (6.2.1d)
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wvhere T and E satisfy 5
[3/3t + v+9, 10 = -V, F (6.2.2a)
[3/3t + VeV, IF + c29,+0 = 0 (6.2.2b)
or
[3/3t + VeV, 1%F ~ c?V2F = 0 (6.2.3)

which is the two dimensiogal wave equation for nondispersive pro-
pagation, In the above, x., is horizontal displacement and Y, is
the horizontal conponent og the gradient, iote that c and v (hori-
zontal wind) are considered constant in the above.

The plane wave solution of (6.2,3) is

i kex]
F= Foe- wt - x

where w and k satisfy the dispersion relation
(w - kov)? = c2k?

->
Since this gives k/w as being independent of frequency, the pro-
pagation is nondispersive.

The relative simplicity of Egs. (6.2.2) and (6.2.3) must be
emphasized. Although the disturbance is in a three dimensional
space, these equations only involve two spatial coordinates.
Furthermore, the coefficients in these equations are constant =-
a substantial simplification for propagation in an inhomogeneous
medium,

It would appear that, if a single-mode theory of infrasonic
propagation were to be developed, the mode selected should be
that which, for more realistic atmospheres, is the counterpart of
Lamb's mode for an isothermal atmosphere. This follows since the
principal disturbance contributing to the waveform observed at
ground level is one which moves very nearly with the ground speed,
which is only slightly dispersive, and which has very little ver-
tical movement (as contrasted with horizontal movement) associated
with it, CGarrett and Bretherton have succeeded in finding this
mode for a stratified atmosphere which is nearly iscthermal and
which has nearly constant winds, We give a modified derivation
(with slightly different results) below:
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The residual equations, (2.3.8), for disturbances of given i
and W may be rewritten in the form

d .
4 4 a1y o 4=l

where ¢ may be taken as

: - 1/2
: o = o2V @0t 22) (6.2.5)
: Since Y = 0 at the ground altitude z_, we may place these in the
- form of coupled integral equations a
F4
Z=¢ '[F+ !¢ Sle dz} (6.2,6a)
z
8
] z
% Y = ¢f ¢-18212 dz (6.2.6b)
z
8

where F i independent of 2z, To the above we add, as a restriction
on w and k, the guided condition that Yo '20as z+ o, i,e,

o
I ¢"sllz dz = 0 (6.2.7)
Z

&

By successive iteration starting with Y = 0 in Eq. (6.2.6a) we
find that these have the formal solution

- ~1
Z® ¢ {14 LyoLoy + LyoloiLygloy + Lyghoglyolyilyglyy + oot IF
(6.2.8a)
Y = ¢[L21 + Lyjlyoloy + L21L12L21L12L21 4+ ... ]F (6.2,8b)
(g1 ¥ Laalagbar * orlaotortaobor * oot dome = O (6.2.8¢)

where le and L2l are operators, defined such that for any function
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Q(z) appearing to their right

z
L), J ) 5,50 dz (6.2.%a) §
2 g
g 3
T :
= “2 K
2 4
& ;
The subscript (z==) in Eq. (6.2.8c) implies that the upper limit i

of the last integration is «,

The lowest order approximation to the dispersion relation
would be [Lu]°° = 0 or

f ¢ 2[(k*/Q%) - "2 dz =0 (6.2.10)
Z

24

To further approximate this, we expand :

2 2 2
L = .___k__:_;___ -~ E—- 1+ 2]:’ ('\; - -\:.,)/QL] (6.2.11)
0% (w - kev)? 9{ -
where
>
SlL = - k°vL

and where v, is any representative wind speed. We consider v
indgpendent of z._ Since we have some latitude in the definit&on

of vy we def qe VL such that

o

I ¢~2(3 - ;L) dz = 0
z

g

or

-127-

[




P o .

. trar

¢~V dz

-
: vy " (6.2,12)
j¢'zdz
Then, substituting (6.2.11) into (6.2.10), we find
2,02 o 2
k /QL lch (6.2,13)
where
1 ¢-2c-2 dz
== (6.2.14)
‘L I¢'2 dz

In what follows we refer to ; as the average wind velocity and to

c, as the average sound speed ‘for the Lamb mode.

One should note that nq. (6.2.13) is exactly the same disper-
sion relation as was obtained for Lamb's mode in an isothermal
atmosphere with constant winds,

From Eqsy (6,2.8a,b), keeping just the first order terms in
c? - ctand v - Vi and using (6.2,13), ve find

L

7 = o1 2 _ 2 2T

Z=¢ '[1+ (nL wBL)(A + B k/QL)]F (6.2.15a)
Y = o[C + E-E/QL]F (6.2.15b)

vwhere A, 3, c, 3 are functions of z, given by

2 2
E A= f¢2c dz (6.2.16a)
Z
g
; Z
B = f¢23 dz (6.2.16b)
Z
8
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z
C= ch'z (e = ¢ *)dz (6.2.16¢)
z
g
z
D= <z/c§>f $2E - V) dz (6.2.16d)
z
)
We have also defined the average Brunt's frequency War for the
Lamb mode by the relation
2 2 (vellol2/e2
wy = (y=1)g%/ef (6.2.17)

If we examine the next hignest order correction(which is second
order in ¢ -~ ¢? and v - v,) to the dispersion relation (6.2.8¢),
we find, after some algebra and the use of the definitions of v
and Cps that

[kzlﬂi - CZZ]J o 2 dz + (3c;29;2)f o2 ke (3-27L)]2 dz
2

z
8 3

o0
- @2 - ng)I ¢2[C + E-K/QLJZ dz = 0 (6.2.18)

2z
8

This 1is essentially the same as the dispersion relation derived by
Garrett, It should be noted that the presence of the last term
makes the mode dispersive, The integral shculd be convergent
since C(®) and D(*) are both zero.

To the same order of approximation, we may write the dispersion
relation for a wave traveling with wave normal in the direction
of k in the form

= - L2 _ 2
w k(cL + Vi + akk) k(k kBL)hkk (6,2,19)
where
> 2
Vi T VLte (6.2.20a)
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J [V - V)8, 1% dz

A " [3/(2cL)}- (6.2.20b)
f¢’2 dz
kgL = wgL/er (6.2.20¢)
f $7[C + Dog, /e, 1? da
(6.2.204)

hkk = (l/2)cL , -
[¢ 2 a2

Here Z is the unit vector in the direction of i. One should note
that a,, and hkk may each be considered as the Cartesian components

of a t%%sor.
If we had a hypothetical pulse propagating in the e direction,
such that all frequency components can be considered askbeing plane

(or line) waves ( in the horizontal plane) with the same wave
nunber direction e, , this pulse could be represented as a Fourier

integral in the form

v(t,s) = 2 ReJa(k)e-i(wt - ks) g (6.2.21)
0

where s = Z_'; is distance in the direction of X and w is con-
sidered as a function of k. Then, if w(k) is given by (6.2.19),
it must follow that the wave variable ) satisfies the equation

/At + (e, + vy, + a,130/3s + hkk(32/352 + kﬁL)(aw/as) = 0
(6.2,22)

which may be recognized as an equation wiich in many other con-
texts is generally called the linearized Korteweg-de Vries

eguation.

6.3 FAR FIELD NONLINLAR EFFECTIS

In this section we generalize the linearized Korteweg-de Vries
equation governing pulse propagation in the Lamb mode to include
accumulative nonlinear effects, We assume at the outset that such
effects are weak and that their primary effect is to distort the
waveform. In this respect, we consider that the only apgreciable
nonlinear effect is represented by the fact that cy, and Ve should
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Lbe the height averaged sound speed and wina velocity, given the
fact that the ambient medium is altered by the presence of the
vave uisturbance., Thus we replace

c ciL (6.3.1a)
ML .
ik > Vi (6.3.1b)

in the dominant terms (zeroth order in 3 - ; and ¢? - ¢2) in
(6.2.22). L L

To determine CEL we set
Y(p, + P)

"W (6.3.2)

[

in Eq. (6.2.14) such that, to the first order,

sl

(CNL)-Z -
f¢'2 dz

L

+

|
[l A L

The fact that ¢ «lso depends on ¢ is not important as it leads to
nonlinear terms of first order in c? - c? which are considered
small, %o obtain the lowest order nonlinear correction, we may

approximate

LFL'B‘ L G-Dp ~1 -1 Uy-l
c? \Po p 2 Py ’

o c Y c? Y 0

using Eqs. (2.3.4a3), (6.2.5), (6.2.15a) and varicus relatiors
appropriate to the case when the atmosphere is isothermal, Using
some additional aoproximations, we find

NL ,
¢ = cL{l + [y - 1)/(2y)]vp(zg)/pokzg)} (6.3.3)

where
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[p, /2y (21 /Y = D) 4

z
v = ;& (6.3.4)
[ [p, @)/ (21T = D) 4y
z
g
In a similar manner, we compute
[ @+ W)ee 7 dz ] [p/cp J¢72 dz
z z
v& = -gr P o~ v],k + —8;
I ¢ 2 dz I b 2 ds
“g g
= v ey Ve ) /e ()] (6.3.5)

where v is the same as in Eq. (6.3.4).

With Eqs. (6.3.3) and (6.3.5), the modified pulse propagation
equation (6.2.22) becomes

/ot + {cL tv, ta,tell+ 1)/2Y]V[P(zg)/po(zg)]}3¢/89

+ hkk(az/as2 + k§L>(aw/as) =0 (6.3.6)

This equation will be nonlinear, since p(z ) is a function of y,
regardless of what we choose V¥ to represen@. [For example, we
could take ¥ to be p(z ).] The above equation is generally re-
ferred to as the Korteﬁgg;de Vries equation.

6.4 DISSIPATION EFFECTS

We next consider the modification to Eq. (6.3.6), i.e., the
Rorteweg~-de Vries equation, due to the dissipation caused by
viscosity and thermal conduction in the atmosphere, Specifically,
we derive an extra term which represents the correction due to
the effects of these phenomena. In carrying through the deri-
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vation. we neglect nonlinear effects - with the assumption that
terms which are both nonlinear and which involve viscosity and
thermal conduction are of negligible influence on the waveform,

[ i S e e s o UMY iy

There are essentially two broad types of dissipation which
may be considered -~ bulk dissipation and wall dissipation. The
former is the dissipation which occurs when any wave propagates
in an unbounded medium, while wall dissipation is-thet which
occurs due to the presence of thé ground. The former takes
place primarily at high altitudes because of the decrease of
enbient deusity with height, while the latter takes place close
to the ground in a thin boundary layer. A priori, we assume
that bulk dissipation is the more important and we accordingly
neglect wall dissipation. We have not, however, investigated
this quantitatively as yet, and we plan to do so in later
studies, In what follows we proceed on the assumption of negli-
gible wall dissipation.

T
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The general procedure we adopt is to first write out the

i equations of hydrodynamics with viscosity and thermal .conduction
- included and then derive the linearized first order equations

for acoustic perturbations to an ambient state. This ambient
state is taken to be height stratified and time independent as
described in Sec. 2-1. The source term 1is neglected at the
outset, since we are here concerned with propagation at distances
' somewhat removed from the source location.

Tt R b s

The modified equations then become

: o[, U+ UeV] = ~Tp - gpe + (30 j/axi)'éj (6.4.1a)
>
Do + V-gpou) =0 (6.4.1b)
(D.p + Us¥p ) = c2(D_p = us¥p ) = D (6.4.1¢)
t o t o E °Te
where
” e 2
°1j = nlaui/ij + Bujlaxi - (2/3)6ijV u] + cGijV u (6.4.2a)

D = 2n(y - 1) (3v/3z)+ [3u/dz + Vu,] + (ch)"V°{'<V[(Yp - czp)/oo]}
(6.4.2b)

llere n is the dynamic viscosity, § is the bulk viscosity, c_ is
the specifie heat per unit mass at constant volume and Kk is the
thermal conductivity. The above result neglects fluctuations in
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Cyr Ny &y and K due to the presence of the disturbance, The
remaining symbols hiave the same meaning as used in Chapter 2,

1f we next consider a planar disturbance 9f fixed angular
frequency w and fixed horizontal wave number k, such that

~fwt ik°x

p = p(z)e (6.4.3)

with analogous relations for density p, vertical fluid velocity
W, etc., and impose the condition €#(z) = 0 at z = 2 , we find,
after a lengthy analysis, that &

4
~y@/p MY - I Y = Dicgn « ct?/a2ip - Q) dz (6.4.4)
Z
where
Q = (2/22){(3/32) [n(1k2@ + 3[E+21/31)]
- [(4/3)n + ;]k‘i&t + 17k%9w/d2}
+ DGy - 1) (3v/32)+[30/32 + 1k0)

+ (ve)) 7 (/32) [k (3/32) (¥ - c*B)/p }]
= (ve) ki (vp - ¢*B)/p )} (6.4.5)

~
A priori, we expect Q to be small., Thus it would seem appro-
priate to neglect all quantities in this expression which are
known to be small for the unattenuated Lamb mode. In particular,
we neglect all terms involving &, Also, since we expect

lr <<ke

we neglect all terms involving 83/3:. In addition, it would appear
to be sufficient to take the plane wave relations

p = p/c? : t-ﬁ - Qﬁlpo

and thus to express Q entirely in terms of f. Thus we obtain

Q= /2 {3/ @lo ) /32] - [(4/3n + LIkap/ )
+ [y = 1)/ (0c )1{3/3z(kd/32(B/p )] - k*p/p }
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- Next, since n and K are relatively slowly varying with height, and
3 i ! 1s also slowly varying, and since, in the Lamb sode,

e ~
w=(B/p ) = [(y - Dg/c*)B/p,

é we can further approximate the above by
Q = [{c2/QHIty - Dc*In - [(4/3)n + glk2)

+ [y = /@ DHIy - 1)?*s?/e*] - K*}xiflo,
(6.4.6)

If we desire a dispersion relation for the Lamb mode which
) includes dissipationi/ve may obtain one by simply taking the

guided condition @p '’ + 0 as z + ©, From Eq. (6.4.4) we would
°

have

. [t st - cuesmtig - @) e = 0 (6.4.7)
0

. Then, to obtain a lowest order dispersion relation, we simply set
! = QL and teke

PRV

z
-£ (g/c?) dz

$(z) = (D) (L/c?)e (6.4.8)

as is appropriate to the Lamb mode in lowest order. Here D is
any constant, In this manner, we obtain

1- cszlni = -1zud(k=- kg)/nL (6.4,9)
where
[teter3 n + 51 + oy = Dxre Y6727 as

]¢-z dz

J(Y - D¥@*/e®)n + (v - x/e Jo %0 ' dz
, (6.4.,10b)

I{cz[(4/3)n + 7]+ (y - l)K/cv}¢.20;l dz

1 1)

2
kd
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and where .
-(2 - y)g(g/c*) dez

¢ 2= (1/c®)e (6.4,11)
is the same as used previously.
Then to first order in ud we find
- ek o 2 _ 2
QL cLL iud(k kd) (6.4.12)

which corresponds to the wave equation

1 2
.?r‘: + (c + Vm;)%% - ud[-z—-;- + k:) y=0 (6.4.13)
8

This should be compared with Eq. (6.3.6). It should be noted that
the temm

az
8

represents the presence of dissipation, Thus we have a correction
tern to add to that equation, The general relation would be

%t-’ + {(CL t v tag telly+ 1)/2Y]\’P(0)/p°(0)}3!,'1/38

+ by, (3%/9s% + kgL)(awas) - ud(a*/ae;2 + kg)p =0 (6.4.14)

1k @

In analogy with the usual nomenclature, we might term this the
Korteweg~de Vries-Burgers' equation for propagation in the Lamb

mode,

The presence of the temm k? 1s an interesting byproduct of
the height stratification of the Lamb mode. Formally, it repre-
sents a negative damping and arises from the fact that there is
a coatinuous transfer of energy from high altitudes to low
altitudes (or conversely, depending on the wave's phase) due to
the fact that the amplitudes of u and p/p increase with altitude,
In order for the wave to maintain the stritification associated
with the Lamb mode, one must assume that this enexgy is con—
tinuously being extracted from the ambient medium, This k?
term is important only for very low frequency propagation and
would seem to imply that the mode is weakly unstable at
sufficiently low frequencies,

«l36-
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A 3 We cannot ascertain whether this is a real instability or

: i merely a fiction of our mathematical technique., However, in any
i : event, the growth of the instability, if it did exist, would be

3 of such a slow rate that it probably would not be possible to de-
tect it in practice,

6.5 HORIZONTAL RAY PATHS

The discussion up to now has assumed the ambient atmosphere
: , to be independent of horizontal coordinates x and y. If this is
: ' not so, we expect that much of the preceding can be salvaged if
9 ? the variation with these coordinates is sufficiently slow. The
3 . propagation at leng distances would still locally appear as pro~
1 i pagation of planar waves_(almost constant airection for the
horizontal wave numbers k), %hus we nmight assume the energy (or
whatever we might associate with thé wave) propagates along hori-
zontal ray paths,

6
Let us consider a particular characteristic feature of the

g . waveform which is received at some time T{x) at locations having
N a position x on the ground. (The vector x has only x and y con-

E ; ponents.) A line of constaut T(x) may be termed a wavefront.

‘ Iu the absonce of dispersion, uissipatioun, ana gonlinear effects
- , {all of vhich we assume to be small) this wavefront moves out
/ ! from the source with a speedt ¢, (the height-averaged speed) vhen
viewed by someone moving with Ehe local height-averaged wind
velocity vy Thus if someone woved with speecd

-

) x _ > > .

he would always be op a wavefront (assuming he was initially on
a wavefront), ilere ek is tlie unit outward pointing normal to the

wavefront

e, = V1/|vr| (6.5.2)

Since, for small dt, one must have
T(X) + dt = T(x + [dx/dt]dt)

fron the identification of d;/dt as wavefront velocity, it follows
that

Yredx/dt = 1
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or

Vrefe Ve/|Ve| + ¥} = 1

This gives us the following partial differential equation for T
(the eikonal equation)

."2
(1 -Vt VL)

(V1)? = (6.5.3)
‘L
or, if we abbreviate
k=Wt (6.5.4)
we have
k2 = (- ko¥)¥/el (6.5.5).

-
Since k has the units of invarse velocity, we refer to it as the
wave slowness vector.

We next cousider just how this parameter k would vari with

time when viewed by someone moving with the speed c e + v..
Lk L
We note that
> -»>
dic dx , ol . *> 20,
T [-d-t? V]k {(cLek + VL) vive
2
eVt
- e §eV(VT) + Y VD)
1 - Vrey

L

where we have used Eqs. (6.5.2) and (6.5.3)., Let us note that
. 29t 3%t o+ 1
[VteV]VT 5-,;; -5;“-5;‘-8- eB 3

(1 - Vrev,)?
- JE?) - %V{ L ?
2
CL J

(vt} 226

;"w
pos]
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S @ - vre? a-vev)
” - 3 ch - VIVT‘VL]
‘L L
Thus;
> 3>
> 1 - kev,)
dk L .-) <> . -
e e VcL - V(k VL) + \ vk
1 - k) .
= - cy VcL - kquLa - vLalak,u/axg - Bkslaﬁm]ee

The last term vanishes since Vxﬁ = 0, Using an identity from vec-
tor analysis, we then obtain

-+ a Ko )
dk L 2T - Tx(Txy
d_t- - - .—_.E].:—_— VcL - (k V)VL - Lx(vaL) {6.5.6)

The above relation plus the Eq. (6.5.1), which we rewrite as

> %

dx L >
e A e enredl 2B / (6.5(7)
5 % L

gives us two coupled vecgor equations (or four coupled scalar
gguatigns) wiich, given v, and ¢, as functions of x, and, given

k and x at some time t _, eénable us to determine g ray trajectory
x(t), k(t), as a function of time t. The curve x(t) represents
what we might term a horizontal ray path in the x,y plane. There
are, in actuality, a family of such paths, We distinguish various
members of the family by a parameter 6 (whosg¢ precise definition
is deferred to later) and accordingly write k(t,8) and x(t,6).

The basic assumption we make here is that propagation along
a horizontal ray path is such that the dispersion, nonlinear dis-
tortion, and dissipation of the pulse is governed by only the state
of the atmosphere immediately above the path. Thus we set the
acoustic variables as being of the form

p = P(s,0,2)Y(s,t,0) (6.5.8a)
u = U(s,0,2)¥(s, t,0) (6.5.8b)
p= Q(S.e.z)‘ll(S.t,e) (6.5.8¢)
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where s is a parameter characterizing distance along the path
(although not precisely equal to distance) and where  satisfies
the partial differential equation (6.4.14) (i.e,, the Korteweg-de
Vries~Burgers equation) with the coefficients being considered as
functions of 8 and 0,

A defiﬁition of s may be obtained from the fact that an in-
crement ds represents a distance in the direction of e5. Thus,

if one follows a horizontal ray path with the speed given by (6.5.7)
one should have s changing at the rate

>
ds _ 3 dx
at - %k‘de " oLt Vi
Thus, 1if df is the increment of distance along the path, we have
ds .t 4t
de > -+
lege + vl lef + 2¢pvy

It would appear that, in the usual case where vi << ci, it would
be adequate to take ds/df = 1,

(60509)
+ Vi]i72

The remaiging question we need consider is how the amplitude
quantities P, U, and Q vary with height z and with the paraneter s,
It would appear that the former variation should be that appropriate
in the lowest order for the Lamb mode, at the appropriate point on
the ground. 7Thus we might take

P = pi/YA(s,B) (6.5.10a)
U= [Pi"ylool{-‘:(s,ﬁ)/(l - 3Lo1*<)}A(s,e) (6.5.10b)
0 = 2/¥/e21A(s,0) (6.