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Abstract

Three-dimensional wave propagation in an elastic half-space

is considered. The half-space is traction free on half its boundary,

while the remaining part of the boundary is free of shear traction and

is constrained against normal displacement by a smooth, rigid barrier.

A time-harmonic surface wave, traveling on the traction free part of the

surface, is obliquely incident on the edge of the barrier. The amplitude

and the phase of the resulting reflected surface wave are determined by

means of Laplace transform methods and the Wiener-Hopf technique. Wave

propagation in an elastic half-space in contact with two rigid, smooth

barriers is then considered. The barriers are arranged so that a strip

on the surface of uniform width is traction free, which forms a wave-

guide for surface waves. Results of the surface wave reflection problem

are then used to geometrically construct dispersion relations for the

propagation of unattenuated guided surface waves in the guiding structure.

The rate of decay of body wave disturbances, localized near the edges

of the guide, is discussed.



Introduction

It has recently been discovered that surface waves, propagating

on a plane surface of an elastic solid, can be guided over significant

distances by introducing barriers on the surface of the substrate in

various ways. The substrate is usually viewed as an elastic half-space,

and the barriers are formed by depositing a layer of another elastic

material on part of the surface of the half-space. By depositing a rela-

tively massive, elastically weak material along a strip on the surface,

or by depositing a relatively light, elastically stiff material on all

parts of the surface except along a strip, a structure which will act

as a waveguide for elastic surface waves is obtained. A detailed dis-

cussion of some guiding structures has been given by Tiersten [I], who

was concerned primarily with obtaining approximate dispersion relations

for harmonic waves propagating in the waveguides. The guided waves in

these cases are not the usual types of surface waves with constant am-

plitude on lines of constant phase, but are more general surface waves,

of the type discussed by Knowles [2], that have amplitudes which vary

along lines of constant phase.

In [l], Tiersten modeled the surface displacements of the

guiding structure by the transverse deflections of an appropriately

selected system of membranes to obtain approximate dispersion relations

for the waveguide. A somewhat different approach is proposed here.

Before dispersion relations are studies, an auxiliary problem is con-

sidered in which one edge of the guiding structure is moved off to

infinity, so that only one discontinuity in the boundary conditions must

be taken into account. The reflection and transmission of surface
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waves at the discontinuity is then studied by solving the appropriate

equations of dynamic elasticity. The elasticity problem is three-dimen-

sional, in the sense that the scalar dilatational displacement potential

and more than one component of the vector shear wave potential are non-

zero. The problem can be transformed, however, so that all unknown

quantities are solutions of two-dimensional boundary value problems which

can be solved by Laplace transform methods and the Wiener-Hopf technique

[3].

The solution of the surface wave reflection problem is then

used to find approximate dispersion relations for the waveguide. The

solution of the reflection problem indicates the presence of localized

body wave disturbances near the edge of the barrier. The approximate

dispersion relations for free waves in the guide are obtained by geometri-

cal considerations, assuming that these localized disturbances decay

sufficiently fast with distance from either edge of the guide.

The particular problem considered in detail in the following

sections was chosen for its simplicity, and it serves as a convenient

vehicle for presenting the method. The boundary conditions considered

assume that the surface of the isotropic elastic half space is traction

free on a strip of finite width and that the remaining part of the sur-

face is free of shear traction and undergoes no displacement in the

direction normal to the surface. Systems which are more realistic, in

that the mass and stiffness of the loading are considered, are currently

being studied.

Concerning applications, there is a considerable effort being

exerted by workers in electronics to design and fabricate structures to

act as surface wave guides at microwave frequencies. Configurations other
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than those mentioned above are being studied. These devices are being

integrated into miniature circuits and serve as transmission lines,

delay lines, amplifiers, mixers, etc. A review of the state of develop-

ment of these devices is given by Stern [4].

The Surface Wave Reflection Problem

Let x. = (x, y, z) be a three-dimensional Cartesian coor-J

dinate system, oriented as in Fig. 1. The isotropic elastic solid occupies

the region z > 0 . The traction on the surface z = 0 vanishes for

x < 0 . For x > 0 , the shear traction vanishes on z = 0 , while

the surface is constrained against displacement in the z-direction by a

smooth, rigid obstacle. The edge of this impedance coincides with the

y-axis.

The displacement vector is expressed in terms of a dilatational
2

wave potential 0 and a vector shear wave potential 'k as

U. (U, V, W) = 0,1 + e jk' k,Z "

The potential functions satisfy the wave equations

V2¢ - a 2 = 0 , V2T. - b2. = 0 , j = 1, 2, 3 , (2)] ]

where -a and b are the dilatational and shear wave slownesses, and

the dot denotes differentiation with respect to time. The divergence of

TP. is arbitrary and, for definiteness, is taken to be zero,
]

T. . = 0 • (3)J ,]

The components of the stress tensor are given in terms of the displacement

2Cartesian tensor notation is used whenever it is convenient to do so.
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potentials as

Ejk = X'sjkUtt + 2 ,.jk + P(ektm TMZj + eim "mtk)(4)

where V' and U are the Lam4 constants.

The displacement potentials which solve the problem posed must

satisfy the following conditions on the boundary z 0 for

= 0 x(5)

rxz =0 yz =O 0 - < x < 0 (6)
xz yz(6

W= 0 , 0 < X < C (7)

The input is a free surface Rayleigh wave with harmonic time dependence

which is propagating in the region x < 0 , and which is obliquely in-

cident on the obstacle covering the region x > 0 . A line of constant

phase is shown in Fig. l(b), where the angle of incidence 60 is defined.

If the Rayleigh wave slowness for the material at hand is c and the

circular frequency of the wave train is w , then the incident wave is

represented by

y, 0z t) = 0 e i(Ct - ax - By) -P0 z (8a)

y, z, t) = o? ei(Wt - ax - qBy) -q0 z (8b)
I I

where 00 is a constant amplitude, and a and 0 are components of

the wave number y = wc in the x and y directions, that is,

a = y sin 8 and y cos 6 . Furthermore,
o o

P (2 2 ) 1 2)1/2 (9a)
0)a q Kb)I/2
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i8(2y -_Kb - 4poqo) q

1 2q (y2  K 2 (9b)
o b

0 = - a * 0 (9c)

where Ka = wa and Kb = wb It is the response of the material

to this surface wave input that is sought.

It is now assumed that the surface wave represented by (8) is

present for all x , and the potentials are written in the form

§(x, y, z, t) = ý(x, z) ei(Wt - ay) + $0 (x9 y, z, t) , (10a)

T.(x, y, z, t) ip.(x, z) ei(wt - By) + Tl(x, y, z, t) (10b)

It is the fact that the physical system is invariant with respect to

translation in the y-direction that makes it possible to write the depen-

dence of the potentials on y in the explicit form indicated in (10).

All dependent variables are assumed to be split into a sum of two terms

as in (10), one representing the incident surface wave and the second

term representing the diffracted field. The convention adopted in

writing (10) that a lower case symbol represents the amplitude of the

diffracted field in the x, z-plane of the corresponding upper case

symbol is taken to apply to all displacement components and stress compo-

nents.

The potentials (10) are substituted into the wave equations

(2), the condition (3) and the boundary conditions (5) - (7) to obtain

a formulation of the boundary value problem for 0 and ij . The input

surface wave appears in the formulation as the right side of a non-

homogeneous boundary condition. Omitting a common exponential factor,
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the result of the substitution is

V2ý - 0 , V -2 X 2 0 (11)
a b

i - 811 2 + *3,3 0 * (12)

zz0 , )x< (13)

axz, 0) = 0 , (yzx, 0) = 0 x (14)

w(x, 0) - C e- , 0 < x < - (15)

where X2a -2 Ka 2 X -2 K and C may easily be deter-
a a b b o

mined from (1) and (8).

The problem defined by (11) - (15) is solved by means of the

bilateral Laplace transform and the Wiener-Hopf technique. The transform

is defined by

$(X, z) : fe-x *(x, z)dx . (16)

This transform is applied to the equations (11) - (15). The anticipated

form of the solution suggests that all quantities are dominated by a

term like e-i axI as IxI becomes large, which implies that all trans-

forms converge only on the imaginary axis in the X-plane. To apply the

Wiener-Hopf method, however, a strip of convergence is required. The

usual artifice employed to achieve this strip of convergence is to

prescribe a slight material dissipation in such a way as to give a a

small negative imaginary part. The Wiener-Hopf method is then applied,

after which the dissipation is assumed to vanish. This scheme is well

established [5], and no direct reference to it will be made in the sub-

sequent development. One result of the scheme worth mentioning here is
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that, for the present problem, the positive imaginary axis is viewed as

being in the right half-plane while the negative imaginary axis is in

the left half-plane. In other words, the inversion path for the trans-

form (16) is the imaginary axis, approached from the right in the lower

half of the A-plane and approached from the left in the upper half-plane.

Application of the Laplace transform to (11) yields four or-

dinary differential equations whose solutions, bounded and/or represent-

ing outgoing waves for large z , are

SP(X)e-Pz , p = (A2  X 21)/2 Re(p) > 0 (17a)a

Me ~-qz, q = (X 2 X2)1/2 , Re(q) > 0 (17b)

Assuming Aa to be real, the condition Re(p) > 0 is satisfied every-

where in the A-plane if branch cuts are provided along a < jRe(X)j <a - ~(~

Im(A) 0 and the branch whose value is a at A = 0 is chosen.a

As 0 becomes smaller, the branch point Xa approaches the origin. The

branch point reaches the origin when 0 = Ka , and then moves up the

imaginary axis, that is, Aa becomes positive imaginary when 0 < Ka•

The branch cut then runs from a to the origin along the imaginarya

axis, and then to + - along the real axis. The situation is similar

in the left half-plane. The particular case when Aa is real and Ab

is imaginary is shown in Fig. 2.

The transform of (12) is

S- iBaP 2 + V3,3 0 . (18)

Finally, the transformed boundary conditions are

zz(A,0) = pF(A) , (19)
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a xz(X, 0) = 0 ayz (x, 0) = 0 (20)

C G0(A)
W(x, 0) +- ( )+G*(X) Tx+ i ' (21)

where F+(A) is an unknown function, analytic in the right half of the

X-plane, and such that its inverse transform vanishes for x < 0

Similarly, the unknown function G*(A) is analytic in the left half

plane and is such that its inverse transform vanishes for x > 0 . The

boundary conditions are now applied to determine the parameters of

integration P and Q.

A nonhomogeneous system of four linear algebraic equations for

the four functions P and Q. is obtained by substituting (17) into

(18) - (20), and evaluating at z = 0 . If the unknowns are ordered

to form the vector (P, Q1, Q29 Q3 ) and the equations are put in the

order (19), (20)1, (20)2, (18), then the determinant of the coefficients
22

is K2 q D(A) , where

D(A) 2 82 - 2A2 )2 )2+ 4(A 2 - 82 )pq . (22)

The function D(A) is a modified form of the Rayleigh wave function

and, on the sheet of the Riemann surface being considered, D 0 has

only two roots in the finite A-plane. These roots are located at

A = - ia . The roots are indicated in Fig. 2. The solution of the

system of equations is

P(A) = (AX2 + -2A2) F+(A) / D(A)., (23a)

Q() = - 2i8p F+(A) / D(A) , (23b)

Q2 (A) = - 2Ap F +(A) / D(A) , (23c)

Q3 (A) = 0 . (23d)
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The result (23) is now substituted into (21), yielding an equa-

tion of the Wiener-Hopf type

2Kb p(2 + ic) F+) = D(M) G(A) . (24)

Strictly speaking, (24) holds only on the intersection line of the left

and right half-planes. The function p is factored into the product

P+ p_ where

( + =) 1 / 2  (25)

To proceed with the Wiener-Hopf method, it is found to be convenient to

introduce the auxiliary function D*(M) defined by

D*(A) = D(A) / K (X2 + 2 ) , (26)

where = 2(Ki -_K ) > 0 . This function has neither zeros nor
b a

poles in the cut A-plane, and D*(A) + 1 as II 4 . A product fac-

torization of D* into sectionally analytic functions D*(M) and D*(M)

(the plus and minus have the same meaning as before) has been presented

in various forms many times in the literature, for example in [6) and [7].

It is merely noted here that such a factorization can be accomplished,

and presentation of explicit expressions is deferred to a later point in

the discussion.

The relation (24) can now be written

2
Kb p+ F +(A) ( - ia) D*(A) G_(A)

) = (27)

Applying the well-known analytic continuation argument, each side of

(27) represents one and the same entire function, say E(X) . From the
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condition that w(x, 0) is a continuous function of x at x 0 ,

coupled with the asymptotic result [8]

w(x, 0) = w Aw(X, 0)

it is consluded that

G_(X) = o(i) as IX! + . (28a)

It can also be shown that the condition of integrable strain energy den-

sity at x = z = 0 implies

F +() M o(i) as IAI ÷ . (28b)

In view of (28), E(M) has algebraic behavior at infinity and

E(X) = o(Xl/2) as IJX + m . The extended Liouville theorem then im-

plies that E() = E , a constant, whose value can be determined byo

setting A = - ia in the right side of (27). The functions F (A)

and G (A) (or G*(A)) are then completely determined, and the trans-

forms may be inverted.

Attention will be limited to the surface displacement on z 0

and, in particular, on the z component of the surface displacement.

The transform inversion integral for w(x, 0) is

1 ri* Eo0 P-0 Xxw(x, 0) = J - l*(X)(A + ia)(-ia) e dA .(29)

The path of integration is indicated in Fig. 2. For x > 0 the path

of integration may be closed by an arc at infinity in the left half-plane.

The only singularity of the integrand inside the resulting closed path is

the pole at A = - ia , and the residue is found to exactly cancel

the contribution of the incident wave for x > 0 , thus satisfying the
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boundary condition (7).

In the right half-plane the integrand of (29) has branch points

at X = X aXb and a pole at X ia. For x < 0 the path of

integration may be closed by an arc at infinity in the right half-plane.

By applying Cauchy's theorem, w(x, 0) may be written as a sum of the

residue of the pole and a branch line integral, the latter representing

the contribution due to body waves. The residue, on the other hand,

represents the reflected surface wave which is the wave of primary in-

terest here. Denoting the residue by w (x, 0) , the reflected sur-

face wave is given explicitly by

D*(- ia) p_(ic) i(W -axx)
w(x, 0) D: ~ -ia ~ e . (30)s D!(ia) p_(- ia) Co

All quantities in (30) have been explicitly defined except the ratio

D*(- ia) / D*(iUa) . This ratio has one form when Xa and Xb are

real, and different forms when Xa and/or X b are imaginary. For

the particular case when Xa is real and Xb is imaginary (that is,

- ixb is positive real)

D*(- ia) _ix 4(a 2 +E M2)(+ý2 )1/2 -X2 •2)I1/2
bb

D*(- ic) 2ct bdl•JAab__
D•i) =exp f- tan- (Xb+B2+2•2)2

2 2 2 21/2 2 2 1/22ict Xa -l - )(xa-• )1  (• -2) d)l

(ia a ta-1a b__-tan- X+2-2 22 221

Jo (X2+ý 2_ ) 2 (31)

bbWhen X b is real, the first integral is absent and the lower limit of

integration of the second is Xb. When Xa is imaginary, the lower

limit of the first integral is - iX and the second integral is absent.a

The ratio of the amplitude of the reflected surface wave to

the amplitude of the incident surface wave versus angle of incidence
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has been calculated for the special case of Poisson's ratio of 0.25,

and the result is shown in Fig. 3. The wave numbers for this case are

2 2 2 2
related by Kb 3K2a and y = 3.549 K . Also shown in the same

figure is the phase change the surface wave experiences during reflection.

The values of 0 at which 8 , which is the apparent wave number of0

the input disturbance along the reflecting barrier, equals a wave num-

ber of body waves are indicated by the lines labelled 8 = Ka and

Kb

The salient features of the amplitude curve in Fig. 3 are easily

interpreted. For small values of 0 the apparent wave number 8 of0

the incident surface wave along the barrier is greater than the wave

number of the slower body waves Kb . Equivalently, the apparent wave

speed of the input along the barrier is less than the shear wave speed.

Consequently, only localized, non-propagating body wave modes are ex-

cited near the edge of the obstacle. All energy arriving at the obstacle

in the incident surface wave must be carried away by the reflected sur-

face wave, which is the only remaining mode of propagation. The reflec-

tion coefficient is therefore unity for 8 > Kb " When a < Kb b

propagating shear waves are excited, which carry some energy away from

the edge of the obstacle. The surfaces of constant phase of these shear

waves are right circular cones whose axes coincide with the y-axis.

The amount of energy carried by the reflected surface wave is thus re-

duced, as indicated by the decreasing amplitude. When 8 K Ka

propagating dilatational modes are also excited. For reasons of sym-

metry, the amplitude curve has zero slope at 0 = 900. The value of0

the amplitude coefficient at 0 = 900 agrees with the result re-

ported in [6].
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Guided Surface Waves 3

The results of the previous section are now used to obtain

approximate dispersion relations for guided surface waves. The notation

established in the preceding analysis will be employed here, to the ex-

tent possible. Suppose now that the motion of the surface of the elas-

tic half-space is restricted by two rigid obstacles, leaving only a strip

of finite width traction free. More precisely, suppose that the boundary

conditions on z = 0 (5), (6), (7) are replaced by

E = 0 , d < x < d , (32)zz

Z 0 , £ 0 , - < x < , (33)xz yz

W 0 , - < x<- d , d < x < , (34)

where d is the constant half-width of the traction free strip. A

solution is sought for wave motion in the wavegulde in the form

W(x, y, t) = A(x) ei(Wt - Ey) , (35)

where A(x) is the mode shape, w is the frequency, and E is the

wavenumber of the guided wave. The phase slowness of the guided wave

is defined as s = w/E . As discussed previously, if only waves which

are not attenuated as they propagate are considered, then Kb • .

It appears to be improbable that a solution of the form (35),

which satisfies the boundary conditions (32) - (34), can be found. Ad-

ditional assumptions must be made, therefore, in order to obtain approxi-

mate results for the problem. To this end, it is assumed that the body

3The method employed in this section to construct dispersion relations
evolved from several helpful discussions with Professor R. J. Clifton,
Brown University.
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wave disturbance localized in the vicinity of either edge of the waveguide

has negligible effect on the state of deformation at the other edge. This

is, in effect, an assumption on the rate at which the amplitude of the

localized modes decays with distance from the edge. Although no precise

information on this rate can be given, the validity of the assumption

can be investigated to a limited extent. Some results are discussed in

the next section. In any case, the result of the assumption is that, if

a plane surface wave is incident on one edge of the waveguide, it is

reflected according to the reflection law derived in the previous section.

That is, the reflection from one edge of the guide occurs as though the

other edge was absent. It is then possible to determine dispersion re-

lations which are "exact" within the range of validity of the basic as-

sumption.

The dispersion relations for a wave of the form (35) propagating

in the channel are now constructed. The construction essentially con-

sists of a superposition of wave trains which interfere in such a way

as to satisfy the conditions on the edges of the waveguide. For the

time being, attention is limited to those propagation modes which are

symmetric, that is, A(x) = A(-x) . Consider two trains of harmonic

surface waves propagating in the channel with angles of incidence 00

and -8 and with common frequency w . Further, suppose the two wave0

trains have the same amplitude, say 1/2, and are such that their crests

intersect on x = 0 . A diagram showing several lines of constant phase

of these waves is shown in Fig. 4a. For definiteness, the solid lines

are taken to represent crests. In the preceding section it was tacitly

assumed that the phase of a wave train increases in a direction opposite

to the direction of propagation. The line representing zero phase may
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be selected arbitrarily, and this line is identified with a particular

wave crest as shown in Fig. 4a. The dashed lines in the figure represent

the lines of constant phase resulting from reflection of the zero phase

lines. Denoting the phase change as a function of 80 , which is shown

in Fig. 3, by 2wm(8 0 ) , the dashed lines trails the zero phase lines

by a distance 2rm/y . The wavelength of the wave trains is 2/r/y

of course.

The dispersion relation for symmetric waves is now obtained

by combining two pieces of information. The simplest case, when any

cross section of the guide is cut by at most two crests, is considered

here. First, the wavelength of the guided surface wave Z = 2f/C

is the interval at which the net displacement due to the combined wave

trains repeats itself, that is, the wavelength is the spatial period.

A wavelength is indicated in Fig. 4a, where the interval is determined

by the intersection of crests. The endpoints of the interval locate

lines of constant phase of the guided surface wave. Second, the phase

velocity of the guided surface wave 1/s = w/E is the apparent speed

of these lines of constant phase. Referring to Fig. 4a, the phase velo-

city is the speed at which the point of intersection of the crests moves

along the y-axis. This information is now cast into mathematical form.

Let v denote the dimensionless phase velocity, defined as

the ratio of phase velocity to surface wave velocity. Then

v cos8 1 (36)

0

The wavelength t is determined from the geometry of Fig. 4a to be

t 2d + (1 - m) 2w (37)
cot Y cos e

0 0
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The result of eliminating e from (37), by employing (36), is0

md 2 m• (38)(2 _)1/2
(v -1

where the relation £ = 2/ý/ has been used. In the previous section,

m was determined as a function of 6 . In view of (36), m can alter-0

natively be expressed as a function of v . Equation (38) is then the

dispersion relation for the lowest symmetric mode of guided surface wave

propagation. A plot of v versus dimensionless wave number gd is

shown in Fig. 5.

Dispersion relations for the higher symmetric modes are obtained

in a similar way. These modes result when a cross section of the guide

may intersect more than two crests of the wave trains. The appropriate

diagram for studying the second symmetric mode is shown in Fig. 4b.

Carrying out the analysis for the second and higher modes, the dispersion

relation for the Mth symmetric mode is

(d = (M 1)1 M = 1, 2, 3, (39)(v2 1) )1/2

The antisymmetric modes may be analyzed in a similar manner. The phase

line diagram for the lowest antisymmetric mode is shown in Fig. 4c,

where the phase zero again indicates a crest and the phase w indicates

a valley. The result of analysis for the Lth antisymmetric mode is

1

(m2  -, L = 1, 2, 3, . (40)(V2 _ )1/2

The dispersion relations for the lowest antisymmetric mode and the second

symmetric mode are also plotted in Fig. 5.

The means of determining mode shapes A(x) resulting from

superposition of wave trains propagating in oblique directions is
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discussed by Tiersten [1]. The easily derived results for the problem

considered here are

cos [(v 2 
- 1)1/2 Ex] , symmetric

A(x) = (41)

tsin [(v 2  1)1/2 Ex] , antisymmetric

Making use of the dispersion relations, (41) becomes

Acos((m + M - 1) d) , M = 1, 2,

A(x) = 
(42)

Lsin((m + L - 1.) , L = 1, 2,

It is observed that the mode shapes do not predict a zero displacement

in the z-direction at x = - d , which might seem to contradict (34).

The reason for this apparent difference is that A(x) does not take

into account the non-propagating dilatational and shear wave disturbances

localized near the edges of the guide. These localized disturbances

contribute to the total displacement, the net displacement being the

sum of contributions due to localized modes and surface waves. The

displacement due to surface waves alone is not, and indeed should not

be, zero at x = t d .

Finally, the dimensionless group velocity of the various

modes may be calculated directly from the dispersion relations. For the

Mth symmetric mode

v dv
g d-

v + (m + M - 1)(v -1) (43)
(v 2- l)m'- (m + M - l)v

where m' = dm/dv . For the Lth antisymmetric mode, the (M - 1)

in (43) is replaced by (L - 1) . Some group velocity curves of v
2 g

versus Ed are shown in Fig. 6.
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Discussion

The dispersion curves shown in Fig. 5, as well as those for

all higher modes, are asymptotic to v = 1 as Ed + - . That is, for

wavelengths which are infinitely short compared to channel width, waves

in the channel propagate at the Rayleigh wave speed. The curves are

arranged in a familiar way, with the first antisymmetric mode lying be-

tween the two lowest symmetric modes. The cut-off wavenumber of each

mode is determined as the wavenumber at which the phase velocity of the

guided wave equals the velocity of shear waves in the half-space. For

wavenumbers outside of this range free waves cannot exist. For dimension-

less wavenumbers between 2.51 and 6.21 only the lowest symmetric mode

can exist, for Ed between 2.51 and 9.91 only the lowest symmetric

and lowest antisymmetric modes can exist, and so on.

From the group velocity curves in Fig. 6, it is observed that

the short wavelength, high frequency components of a guided pulse will

propagate faster than the long wavelength, low frequency components.

Due to the small variation of group velocity over the whole range of

wavelengths, however, the guide must be relatively very long before this

feature is advantageous for cleaning high frequency noise out of a

signal. Also, out of all components of a given wavelength, the contri-

bution of the lowest mode travels slower than the higher modes.

In the previous section, dispersion relations for guided sur-

face waves were derived under the assumption that the body wave distur-

bances, localized in the vicinity of each edge of the guide, had no effect

on the reflection of surface waves at the opposite edge of the guide.

As a result of this assumption, the dispersion relations were obtained

without direct reference to the localized disturbances. The localized
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modes are represented by the branch line integrals mentioned in the process

of evaluating (29) for w(x, 0). Because of the complicated expressions

involved in these integrals, it seems unlikely that a direct evaluation

as a function of distance from the reflecting boundary can be carried out.

If such an evaluation could be made it would aid in establishing a mini-

mum distance at which, for a given wavenumber, the amplitude of the de-

caying part is small enough to be neglected, as was done here. Some

information can be obtained, however, by asymptotic methods.

For x < 0 , the path of integration of (29) may be completed

by an arc at infinity in the right half of the A-plane. By applying

Cauchy's theorem, w(x, 0) is shown to consist of a surface wave con-

tribution (30) plus the desired branch line integral. The form of this

integral makes it ideally suited for application of Laplace's method to

determine the asymptotic value of the integral as jxj + - (see [9],

for example). The result of this calculation is

w(x, 0) = Kix 1-3/2 eXb as x -m , (44)

where K is a constant. The result (44) may be used as an approximation

for values of x greater than five or six wavelengths. Relation (44)

implies a fairly fast decay of the localized disturbance. Because of the

appearance of the algebraic factor lxi-3/2 , the decay is fairly fast

even when Ab is very small. For example, when Ab = 0 ,

w(- 2d, 0)/w(- d, 0) = 0.36 or when Ab = l/d the ratio is about

0.13.

Additional information concerning the basic assumption can be

deduced from application of the appropriate Tauberian theorem of Laplace

transform analysis [8]. Consider aw(x, 0)/ax , obtained by differentiating
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(29). From the fact that the integrand is 0O(-1/2 ) as JA1 I , it

can be deduced that Dw/•x is 0(Cx1-1 /2) as x - 0- . Since w s(X, 0)

has a finite slope at x = 0 , the localized disturbance has an

infinite slope there. While it is not clear from the foregoing whether

w(x, 0) due to the body waves increases or decreases with distance away

from the edge x = 0 , the latter is most plausible.

Finally, the magnitude of the z component of surface displace-

ment at x = 0 can be found. It is that displacement which must be

added to the (known) surface wave displacement so that the net displace-

ment is zero. This magnitude usually comes out to be less than one-half

the displacement due to surface waves. Thus, based on the amplitude of

the localized disturbance at x = 0 , on the infinitely large rate

at which the amplitude changes near x = 0 , and on the fairly fast

decay of the amplitude for large Ixi , the basic assumption seems to

be a reasonable one.

The limited range of applicability of the Wiener-Hopf method

limits the number of surface wave reflection problems which can be solved

in detail. For example, the problem which is identical to that considered

here, except that all components of surface displacement are required to

vanish for x > 0 , cannot be solved by the methods employed here. The

reason for this is that application of Laplace transforms yields a system

of Wiener-Hopf equations, rather than a single equation, and no means of

solving such systems is known [5]. There are several other configurations,

besides the one considered here, which do lead to solvable Wiener-Hopf

equations.
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Figure Captions

Fig. 1 The physical system viewed along the negative y-axis and the

positive z-axis.

Fig. 2 The complex X-plane for the case when Xa is real and b

is imaginary, including the Laplace transform inversion path.

Fig. 3 Dimensionless amplitude and phase change of z component of

displacement versus angle of incidence for surface wave reflec-

tion.

Fig. 4 Diagrams used to determine dispersion relations for (a) lowest

symmetric mode, (b) second symmetric mode, and (c) lowest anti-

symmetric mode. The phases of the various lines of constant

phase are shown.

Fig. 5 Dispersion curves for first and second symmetric modes and

first antisymmetric mode, showing dimensionless phase velocity

versus dimensionless wavenumber.

Fig. 6 Group velocity curves for first and second symmetric modes and

first antisymmetric mode, showing dimensionless group velocity

versus dimensionless wavenumber.
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