ESD-TR-70-97

AD 706 857

GERMANIUM MICROWAVE SWITCHING TRANSISTOR

Doyle S. Granberry, et al

Massachusetts Institute of Technology Lexington, Massachusetts

20 September 1963

This document has been approved for public release and sale.

AD706 857

FINAL REPORT

ON

GERMANIUM MICROWAVE SWITCHING TRANSISTOR

TO

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

C-00949

September 20, 1963

03-63-38

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

TEXAS INSTRUMENTS INCORPORATED SEMICONDUCTOR-COMPONENTS DIVISION

DALLAS, TEXAS

TANITAR IV-71

Final Report

on

GERMANIUM MICROWAVE SWITCHING TRANSISTOR

to

Massachusetts Institute of Technology

Lincoln Laboratory

Project Manager

Warren P. Water

Warren P. Waters, Manager Exploratory Device Development Branch

R. L. Petritz, Director Semiconductor Research and Development Laboratory

RECEIVED

SEP 3 0 1002

DISTRIBUTION

The work reported in this document was performed at Texas Instruments Incorporated, Dallas, Texas, for Lincoln Laboratory under Purchase Order No. C-00949.

Lincoln Laboratory is a center for research operated by Massachusetts Institute of Technology; this work was supported by the U. S. Army, Navy, and Air Force under Air Force Contract AF 19(628)7400. 2020

September 20, 1963

This document has been approved for public release and sale; is distribution is unlimited.

I. INTRODUCTION

Texas Instruments has completed a program under Lincoln Laboratory Order No. C-00949 to improve the germanium microwave switching transistor developed under previous contracts with Lincoln Laboratory. The principal objective was to materially reduce base resistance, r_b , while maintaining or slightly increasing the high cut-off frequency, fT. Early stages of the work under this order were described in an Interim Report, 1 and this final report describes the total work and the results obtained.

1

Accepted for the Air Force Franklin C. Hudson Chief, Lincoln Laboratory Office

II. DESIGN APPROACH

The fundamental approach used in this work was to develop suitable three-stripe geometry (emitter in the center with two outside base stripes) thus reducing base resistance. This approach was outlined in detail in TI's proposal to Lincoln Laboratory dated 29 Decemher 1962.

III. OBJECTIVE SPECIFICATIONS

Table 1 lists the objective specifications.

Table I

OBJECTIVE SPECIFICATIONS

PARAMETER	CONDITIONS		LIMITS
BVcbo	100 μα		10 v min
BV _{ebo}	100 µa		l v min
BVCEO	15 ma		3 v min
hFE	$V_{CE} = 1 v, I_{C} = 10 ma$		20 min
hFE	$V_{CE} = 1 v, I_C = 50 ma$		20 min
ICBO	3 v	8	5 µa min
τ _s	$I_{C} = 30 \text{ ma},$		
	$1_B \cong 3$ ma		20 ns max
CTE	$V_{EB} = 0.5 v$		1.5 pf max
COB	$V_{CB} = 2.5 v$		1.5 pf max
fT	$V_{CB} = 2.5 v$	1. ¹⁰	3 kmc min
	$I_{C} = 10 \text{ ma and}$		
	$I_{C} = 50 \text{ ma and}$		
	IC = 80 ma		
rb'	IC = 10 ma		
	$V_{CB} = 2.5 v$		40 Ω max

IV. TECHNICAL DISCUSSION

The base resistance, r_b' , of a switching transistor is important because this resistance increases the input signal voltage required to drive the transistor. Calculation of r_b' for the mesa transistor described in this report, with three-stripe geometry, can be approximated by:2,3

$$r_{b}^{\prime} = \frac{\rho_{s}^{\prime} S}{12 L} + \frac{\rho_{s} S_{1}}{2 L} = 31.7 \text{ ohms}$$

where

 $p_s' =$ sheet resistivity under emitter = 900 ohms/square

 P_s = sheet resistivity outside the emitter = 40 ohms/square

S = emitter width = .5 mil

 S_1 = space between contact stripes = .5 mil

L = iength of contact stripe = 1.5 mils

This resistance, 31.7 ohms, can be compared to the values actually obtained in this program be referring to Fig. 1, a distribution chart for the state-of-the-art samples. The agreement between theory and practice is gratifying, considering that the sheet resistances ρ'_s and ρ_s are not known with good accuracy. The value assumed for ρ'_s , 900 ohms, is taken from a Gummel⁴ measurement, and this type of measurement is now open to some question (although in this case no better method is known). The value for ρ_s , 40 ohms, was obtained by daubling the value measured just after vapor diffusion. It is assumed that the sheet resistance approximately doubles during subsequent etching. This has been verified to some extent in simple etch tests on diffused germanium slices, but is by no means certain.

In making a transistor to meet the rb' and other requirements of this program, the geometry shown in Fig. 2 was used. This geometry is achieved by using a metal mask ta evaporate pairs of interleaved emitter and base stripes as shown in Fig. 3. The extra emitter stripe is later removed during the mesa etch. Figure 3 also includes a photagraph of a completed transistor. The process for making the transistor is shown in flow chart, Fig. 4.

The cut-off frequency, f_T , of a microwave switching transistor is of the utmost importance. The reason is that the circuit load resistances must be kept low at high frequencies and this limits the voltage gain. It is essential therefore to have current gain, and this requires a high f_T .

Calculations for f_T were given in the work under a previous MIT contract,⁵ and need not be repeated here because the base layers were almost the same as in the current pragram. Subsequent increases in f_T which have been achieved were primarily due to improvements in epitaxial material and to reducing the collector resistivity. Alloy and diffusion temperatures have not been changed very significantly in this program. Predicted values of f_T abtained by calculation are higher by a factor of two than the values actually achieved, but even this agreement is better than could be obtained a few years earlier.

Fig. 2 Geometry of Three-Stripe Transistor

FIGURE 3

Figure 5 gives the f_T distribution for all the state-of-the-art samples submitted under the current program. Figure 6 is a plot of $1/f_T$ versus $1/l_E$ and gives the intrinsic f_T or f_T ; of one of these devices. For this particular transistor f_T is 3 gc.

In the area of technical problems, thermal compression bonding has been developed to the point of being usable, but it continues to limit repeatability and virtually prohibits further size reductions in the geometry. This bonding operation, using pressures on the order of 50,000 lbs/sq in often damages the half-micron base layers, causing shorts or leakage in the collector junctions as well as the emitter junctions. An approach for getting away from this problem has now been found and this will play an important part in our future plans for microwave transistors.

Fig. 6 GERMANIUM MICROWAVE SWITCHING TRANSISTOR Intrinsic Cut-off Frequency f_{T1}

1/1_E Milliamperes

V. TRANSISTOR TEST RESULTS

Details of test results on the fifty transistors submitted to Lincoin Laboratory as stateof-the-art samples are shown in Tables 2 through 6. Results from the r_b ' and f_T work have already been mentioned (Figs. 1 and 5).

Some special measurements have also been made in evaluating this new transistor.

Figure 7 is a circuit schematic of a 200 mc binary system using these transistors, indicative of the high frequency capability of the devices. Wave forms are also included in this figure.

Figure 8 shows a circuit schematic and a photograph of the jig used for amplifing extremely short pulses of 2 nanoseconds total length. Figure 9 is a photograph of the input and output pulse obtained in this 2 nsec application. Test Data on First Lot of State-of-the-art Samples

	2-679 86P4	4-679 B6P4	9-,680 A	9-679 A6	9-679 B6P4	11-679 A	12-679 B4	14-679 84	15-679 86P4	17-679 A
ВV _{СвО} (100 на) V	16.0	12.0	7.2	8.0	16.5	12.6	7.2	17.0	16.0	9.5
ВV _{F8} О(100 на) V	1.0	1.2	1.3	1.1	66.	.86	1.2	1.6	1.3	1.2
BV _{CFO} (15 ma) V	6.8	6.6	5.0	7.5	5.8	5.0	3.4	5.5	7.4	6.0
1 _{Св.О} (3 v) на	.2	-	5.0	2.0	.2		١.		۲.	3.0
h _{FF} (1 v, 10 ma)	83.0	91.0	250	22	58.0	62.0	59.0	200.0	83.0	42.0
h _{FF} (1 v, 50 ma)	192.0	166.0	310	33.0	156.0	100.0	142.0	450.0	185.0	89.0
V CE (sat) C = 10ma										
	.10	•0•	.09	н.	. 10	.13	60.	.09	=	÷.
$V_{CE(sat)}I_{C} = 50ma$										
$1_{B} = 5.0ma$.17	. 18	. 19	.20	.19	.40	.17	.17	. 18	.25
$V_{BE} I_C = 10ma$										
1 ₈ = 1.0ma	.46	.46	.46	.44	.48	.51	.47	.48	.47	.51
$V_{BE} I_{C} = 50ma$										
$l_{\rm R} = 5.0$ ma	.56	.61	16.	.62	.65	.82	.64	.63	.57	.69
ت تر 30 ma , 3.0ma , Ns	22	30	30	19	36	28	32	30	21	îð
C _{OB} 2.5 v	2.1	1.87	1.66	1.89	2.16	1.54	1.44	1.19	2.14	2.23
f _T 400 mc 2.5V, 10ma	1.48	1.76	3.14	2.22	1,78	3.36	2.04	2.0	1.72	i.76
f _T 400 mc 2.5 v, 50ma	1.28	1.41	2.24	1.57	1.30	2.35	1.44	1 , 65	1.46	1.46
NF 200 mc 2.5 v, 2 ma, db	2.2	3.2	3.5	3.8	3.6	4.3	4.5	5.0	2.9	3.5
h _{FE} 1 v, 2 ma	57.0	57.0	166.0	9.3	25.0	33.0	33.0	110.0	50.0	20.0
f _f 2.5 v, 2 ma	1.03	1.15	1.70	1.37	1.25	1.76	1.41	1.35	1.15	1.3
r _h ', Calculated	18.0	38.0	50.0	30.0	39.0	58.0	61.0	87.0	30.0	34.0

TABLE 3

Test Data on Second Lot of State-of-the-art Samples

	1- 734AA	2- 734AB	7- 727B	10- 732BB	11- 67989
BV _{CBC} (100 μα) V	15.0	16.0	1.3	3.2	11.0
Avalanche Breakdown, Volts	14.5	16.0	17.0	16.2	15.0
^β ν _{EBO} (100 μΑ) ν	.42	.72	.52	.80	1.6
BV _{CEO} (15 MA) V	5.8	6.0	4.5	5.5	5.6
i _{CBO} (3V) µA	.1	.1	250	9.0	.2
h _{FE} (1V, 10MA)	50	36.7	65.6	28.5	37
h _{pp} (1∨, 50 MA)	120	122	166	71.5	1000
$V_{CE(SA^{T})}$ I = 10 MA	.08	.08	.07	.12	.07
$I_{\rm B} = 1.0 \text{ MA}$					
$V_{CE(SAT)}I_{C} = 50 \text{ MA}$.16	.15	.15	.20	.15
$I_{B} = 5.0 \text{ MA}$					
$V_{BE} I_{C} = 10 MA$.58	.47	.45	.48	.46
$I_{B} = 1.0 MA$					
$V_{BE}I_{C} = 50 MA$.66	.61	.62	.67	.60
$I_{B} = 5.0 MA$					
7 (30 MA, 3MA) Ns	33	38	28	23	35
C _{OB} (2.5 ∨) PF	1.04	.95	1.0	1.2	1.21
f _T (400 MC, 2.5V, 10 MA) Gc	2.3	2.58	4.45	2.72	2.07
f _T (400 MC, 2.5V, 50 MA) Gc	1.41	2.52	3.06	3.28	1.45
DATA FOR rb					
NF (200 MC, 2.5V, 2 MA) DB	5.2	3.1	4.5	4.4	4.4
h _{FE} (IV, 2 MA)	20	10.5	28.6	11.1	400
f _T (2.5 V, 2 MA) Ge	1.23	1.46	2.38	1.44	1.53
r <mark>b' (Calculated)</mark> OHM5	69	21	36	40	74

4	
e	
9	
Tak	

Ŀ,

MICROWAVE SWITCHING TRANSISTORS

Transistar #	2-749 AA1	3-748 AA	4-748 AA	6-748 AA1	6-748 AA1P2	8-748 AA1	8-748 AA1	9-738 AA	13-748 AB	20-73. AA2
вV _{CBO} (100 на) V	13.0	12.4	18.0	8.8	15.5	15.8	16.8	7.0	9.0	15.5
BV _{EBO} (100 μα) V	1.5	1.3	1.4	1.3	1.2	۱.۱	1.4	.85	1.0	.75
BV _{CEO} (15 ma) V	4.7	4.0	7.0	6.5	4.2	6.4	4.5	4.5	4.8	6.5
I _{СВО} (3 V) на	.5	۲.	١.	15	۲.	۲.	l.	.2	1.0	-
h _{FE} (1 V, 10 ma)	125	330	40	56	270	33	435	140	660	28
hFE(1 V, 50 ma)	250	620	100	110	500	94	590	310	660	50
VCE(SAT)IC = 10 ma	.12	.08	.10	.13	.07	.12	.08	.08	60.	.14
18 = 1.0 ma										
VCE(SAT)1C = 50 ma	.21	.18	.16	.25	.20	.27	.17	.17	.17	.22
l _B = 5.0 ma										
VBE 1C = 10 ma	.51	.46	.46	.49	.47	.52	. 48	.48	.51	.47
$1_{B} = 1.0 \text{ ma}$										
VBE iC = 50 ma	.67	.60	.60	.65	.65	.62	.67	.6۱	.67	.62
1 _B = 5.0 ma										
_{\$} (30 ma, 3 ma)Ns	37	53	60	27	27	19	46	23	21	18
C _{OB} (2.5 V.)PF	1.2	.62	1.0	1.1	1.33	.57	1.22	1.2	1.0	.86
f ₁ (400 mc, 2.5 V, 10 ma)Gc	3.1	2.61	2.58	3.1	2.0	2.55	2.89	4.0	4.08	2.8
f _T (400 mc, 2.5 V, 50 ma)Gc	2.32	2.25	1.72	1.65	1.55	2.04	1.72	3.28	2.24	2.1
Data for rb										
NF(200 mc, 2.5 V, 2 ma)DB	4.2	4.1	4.5	3.8	4.6	5.8	3.7	5.4	5.0	2.8
h _{FE} (1 V, 2 ma)	160	220	12	25	220	10	200	80	400	12
f _T (2.5 V, 2 ma) Gc	2.27	1.89	1.76	2.22	1.3	1.68	2.07	2.2	2.64	2.0
r _b ' (calculated) Ohms	67	66	44	43	76	67	57	67	95	22
g* parameter	10.	10.	60.	.051	.017	۲.	10.	.018	.0064	.088
		2								

15

* g parameter = $\frac{1}{1C}BO + \frac{1}{1 + h_{FE}}$

		MICROW	AVE SWI1	ICHING	TRANSIS	TORS				
Transistor #	2-737 BA	12-737 BA	10-732 AA	9-732 BA4	3-773 8	11-773 B	10-734 AB1P2	3-738 AA	4-738 AA	1-744 AA1
BV _{CBO} (100 µa) V	15.8	17.0	5.6	14.5	0.11	5	0.0	2.9	9.8	0.9
BV _{EBO} (100 μα) V	1.3	1.0	1.6	.75	.92	.45	.85	.2	.92	.93
BV _{CEO} (15 ma) V	3.7	7.5	3.4	3.8	5.2	3.2	5.5	4.5	4.9	4.7
1 _{СВО} (2.5 V) µа	١.	.1	18	Γ.	2	9 10 - 100 10 - 100	۲.	60	21.0	7.0
hpE(1 V, 10 ma)	270	32.2	250	250	500	46.5	50	83.5	69	62.5
h _{FE} (1 V, 50 ma)	625	59	417	385	832	100	125	185	156	143
$V_{CE(SAT)}$ ¹ C = 10 ma	.07	.09	.08	.07	.07	60°	.08	60°	60.	.10
$l_{B} = 1.0 ma$		•								
VCE(SAT) $I_{C} = 50 ma$.15	.18	.18	.14	.18	.2	.14	.17	.18	.19
$l_{B} = 5.0 \text{ ma}$										
$V_{BE} I_C = 10 ma$.45	.44°	.45	.45	.45	.46	.46	.45	.46	.48
l ₈ = 1.0 ma										
$V_{BE} I_{C} = 50 ma$.60	.57	19.	.60	.59	.64	.58	.59	.62	.68
l _B = 5.0 ma										
_s (30 ma, 3 ma)Ns	24	24	23	28	20	22	36	16	15	10
COB (2.5 V)PF	1.16	1.06	1.36	1.21	.763	.584	1.13	1.27	i.07	1.450
f _T (400 mc, 2.5 V, 10 ma)Gc	3.78	2.725	3.55	3.1	3.24	3.06	3.28	4.52	4.45	2.36
f _T (400 mc, 2.5 V, 50 ma)Gc	3.64	2.46	3.36	2.76	2.64	1.76	3.36	4.08	4.045	2.75
Data for rb'										
NF(200 mc, 2.5 V, 2 ma)DB	4.9	3.2	4.4	3.1	3.9	4.45	2.7	3.9	4.7	4.2
hFE(1 V, 2 ms)	125	18.2	166	143	286	18.2	25.0	40.0	40.0	33 3
f _T (2.5 V, 2 ma)Gc	2.045	1.608.	2.0	1.745	2.320	1.865	1.72	2.27	2.40	1 78
rb' (calculated) Ohms	77	30	68	42	63	52	25	41 .	63	55

Table 5

Translator $\#$	4-744 AA10	2-792 B20	4-744 AA22	8-744 AA22	5-737 BA7	4-792 B7	8-744 AA4	11-744 AA4	12-744 AA4	8-792 B	4-744 AA1	14-734 AB3P3	1-734 AB3P4	9-738 AA1P1	21-7 ABL
BV _{CBO} (100ua)V	13.0	16.2	7.0	11.0	17.0	7.9	8.5	13.9	15.0	17.0	12.0	7.0	15.5	5.6	3.9
ЕУ _{FВО} (100µа)V	1.2	.64	1.1	1.2	1.4	.80	1.3	1.2	-95	.68	1.2	.82	.69	1.3	.B.
BVCFO(15ma)V	3.9	7.7	4.0	4.0	5.4	6.3	4.6	4.4	5.1	8.0	3.8	4.8	6.3	4.3	6.2
Iran (3V)ua	.1	.1	8.0	2.5	.1	3.0	3.0	.1	•1	.1	.1	7.0	.1	30.	70.
h _{EE} (1V., 10ma)	200	20	167	142	100	25	77	222	77	20.	200	83	27	100	28
h _{FF} (1V.,50ma)	357	26	278	294	200	55	166	357	167	33	420	200	83	200	81
V _{CE} (SAT)I _C =10ma I _R =1.0ma	· 00	.16	.10	60.	. 08	.14	11.	60.	11.	.15	.10	.13	.13	.12	.12
V _{CE} (SAT)I _C =50ma I _R =5.0ma	.17	.25	.19	.18	.16	• 22	•19	.15	.19	.22	.20	.20	.21	·24	.20
V _{BE} I _C =10ma I _H =1.0ma	. 46	• 50	. 46	L4.	.49	.51	.49	. 48	.51	• 52	Lth .	.51	• 54	. 48	.52
V _{BE} I _C =50ma T _B =5,0ma	.62	.66	•59	.62	.64	.66	-67	.64	.68	.67	-67	.67	.72	.61	.70
τ _R (30ma,3ma)Ns	21	12	15	22	43	15	20	50	27	14	18	25	30	15	23
с _{Од} (г.5V.)РF	1.36	1.07	1.38	1.38	1.15	1.34	1.29	1.31	1.21	.88	1.38	1.17	1.12	1.01	1.07
f _m (400mc,2.5V.,10ma)Gc	3.2	2.25	3.0	2.83	3.51	2.24	2.72	2.30	1.83	1.72	3.0	1.78	1.78	4.43	3.28
r ₁ ,(400mc,2.5V.,50ma)Gc	3.2	1.47	2.93	2.89	2.67	1.72	2.58	2.30	1.83	1.31	3.02	1.62	1.80	4.33	3.20
Data for r _b '															
NF(200mc,2.5V.,2ma)DB	3.8	3.2	3.5	3.6	3.7	3.8	4.8	2.7	4.1	3.9	4.3	3.4	in Lu	4.5	5.3
h ₅₂ (1V.,2m2)	118	7.4	100	74.	50.	12.5	33.	143.	36.4	8.0	125.	40.	4.7	67.	10.5
f _T (2.5V., 2ma)Gc	1.91	1.48	1.76	1.65	2.19	1.53	1.59	1.40	1.19	1.17	1.74	1.13	1.06	2.32	1.82
rb' (calculated)Ohms	57	18	94	L4	84	32	67	31	51	28	68	36	52	63	50

Table 6

.

3

MICROWAVE SWITCHING TRANSISTORS

17

DGbg 9/24/63

Fig. 7 200 mc binary circuit and waveforms

Jig used to switch 2 nsec pulse with schematic

FIGURE 9 Photograph of input and output pulse in 2 ns application

A new package suitable for this and other microwave transistors has been designed with the following objectives:

- 1. Improved isolation between input and output.
- 2. Minimum series inductance (secured by holding rigidly to a characteristic impedance of 50 ohms).
- 3. Minimum high frequency loss (by careful matching).
- 4. Configuration suitable for use in microstrip transmission lines.

In the initial version of the package, the emitter is connected to the outside case in order to minimize emitter inductance, but this feature is not mandatory. Figure 10 shows the construction. The geometry is such that every portion of the internal circuit of the package has a nominal characteristic impedance of 50 ohms.

Evaluation of the new package has been started but is not yet complete. Characteristic impedance is being measured by a pulse technique shown in a block diagram, Fig. 11. Reflections that occur in the 50 ohm transmission line system are viewed on a calibrated sampling oscilloscope. The scope shows the magnitude of the impedance causing the reflection. It is calibrated by simply plugging in a known 75 ohm transmission line and adjusting the gain so that the 25 ohm impedance increment (above the 50 ohm system) produces 5 divisions of deflection or 5 ohms per division. Then the unknown microstrip line (containing the new transistor package) is inserted in place of the calibrating line, and the impedance of the unknown is observed directly.

Figure 12 is a photograph of the oscilloscope response obtained on the first engineering sample package. This shows that the moninal 50 ohm microstrip transmission line used for mounting the package had a characteristic impedance of 47 ohms, and the package sample had a characteristic impedance several ohms less than 47. This first package model had dimensional errors caused by an incorrect silk screen and these dimensional errors account for the low characteristic impedance. New silk screens have been obtained and new engineering samples have been built. These samples are now in process of evaluation. First indications are that the characteristic impedance of the new models is approaching closer to 50 ohms. Other measurements on the new package will include the high frequency losses.

FIGURE 10

50 OHM MICROSTRIP PACKAGE

Pulse reflection technique for measuring characteristic impedance of microstrip line and microstrip package.

FIGURE 12

Characteristic impedance of 50 ohm microstrip package as measured by pulse technique

VII. FUTURE PLANS

A further improvement in this transistor which is now possible is to planarize it, including expanded contacts. This will improve repeatability by eliminating the damage to the crystals which is caused by thermal compression bonding. TI's proposal to Lincoln Laboratory dated 26 July 1963 describes an extensive but feasible program for planarizing the device. Planarizing also will give new design freedom in the geometry of germanium transistors. This will be a big step forward, leading probably to higher frequencies and lower base resistances.

VIII. SUMMARY

As the data indicates, the basic objectives of the germanium microwave switching transistor program under Lincoln Laboratory Order No. C-00949 have been achieved, obtaining an average base resistance of 51 ohms while retaining a high cut-off frequency f_T averaging 2.8 gc. A microstrip package has been designed, samples built, and evaluation has begun. Fifty transistors have been submitted to Lincoln Laboratory as state-of-the-art samples.

REFERENCES

- 1. Interim Progress Report to Lincoln Laboratory MIT, Order No. C-00949 dated July 26, 1963.
- 2. R. L. Pritchard, "Two-Dimensional Current Flow in Junction Transistors at High Frequencies," Proc. IRE, Vol. 46, June 1958, pp. 1152–1160.
- 3. J. M. Early, "Design Theory of Junction Transistors," B.S.T.J., Vol. 32, 1953, pp. 1271–1312.
- 4. H. K. Gummel, "Measurement of the Number of Impurities in the Base Layer of a Transistor," Proc. IRE, Vol. 49, pp. 834–835, April 1961.
- 5. Texas Instruments Proposal to MIT Lincoln Laboratory for Continuation of Germanium Microwave Switching Transistor Development dated 29 December 1962.

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL	DATA -	R&D	
(Security classification of title, body of abstract and indexing annot 1. ORIGINATING ACTIVITY (Corporate author) Texas Instruments Incorporated under Purchase No. C-00949 to M. I. T. Lincoln Laboratory	e Order	entered when the ore 20. REPORT SECT Unclassi 2b. GROUP Nore	nell report is classified) DRITY CLASSIFICATION fied
) REPORT TITLE			· · · · · · · · · · · · · · · · · · ·
Final Report on Germanium Microwave Switching	ng Transi	stor	
4. DESCRIPTIVE NOTES (Type of report and Inclusive dates) Even 1 Report			
5. AUTHOR(S) (Lost name, first name, initial)	······		
Granberry, Doyle S., Waters, Warren P., and I	Petritz, F	R. L.	
20 September 1963	7 <i>8</i> . TOTA	L NO. OF PAGES	7b. NO. OF REFS
	9a. ORIG	INATOR'S REPORT	NUMBER(S)
En. CONTRACT OF GRANT NO A.F. 19 (628)-7400		03-63-38	
N. PROJECT NO. 649L	95. OTHE essign	R REPORT NO(S) (2 ned this report)	Any other numbers that may be
e. Purchase Order No. C-00949		ESD-TR-70-	-97
10. AVAILABILITY/LIMITATION NOTICES			
This document has been approved for public relision is unlimited.	case and	sale; its distr	ibution
I. SUPPLEMENTARY NOTES	12. SPON	SORING MILITARY A	CTIVITY
None	U.	S. Army, Nav	y and Air Force
13. ABSTRACT		•	
Texas Instruments has completed a program. No. C-00949 to improve the germanium micr	ram under owave sw atory. Th	r Lincoln Labo itching transis ie principal of	ratory Order tor developed ojective was to
materially reduce base resistance, r_b , while high cut-off frequency, f_T . Early stages of t scribed in an Interim Report, and this final r results obtained.	naintain he work w eport des	ing or slightly under this orde cribes the tota	increasing the er were de- al work and the
materially reduce base resistance, r_b , while high cut-off frequency, f_T . Early stages of t scribed in an Interim Report, and this final r results obtained.	maintain he work w eport des	ing or slightly inder this orde cribes the tota	increasing the er were de- il work and the
materially reduce base resistance, r _b , while high cut-off frequency, f _T . Early stages of t scribed in an Interim Report, and this final r results obtained.	maintain he work w report des	ing or slightly inder this orde cribes the tota	increasing the er were de- il work and the