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ABSTRkCT

The report considers the two dimensional effects of

a step wave progressing with constant superseismic velocity

on the surface of a half-space. The material treated is

isotropic and it s assumed that incremeqtal relations between

both deviatoric and volumetric stress and strain depend nor

only on the instantaneous values of those quantities, but

also on bulk and shear moduli which differ according to

whether initial loading, unloading, or reloading occurs.

Simple closed form solutions are obtained when the moduli

K and G are constant and lie within certain limits. For the

more general case, when K and G are functions of the first and

second invariants of stress, solutions requiring only quadra-

tures are found.

As an au):iliary study, a problem involving a nalf-space

of fluid with a bilinear pressure volume relation is solved.
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LIST OF SYMBOLS *

Cp , oS  Velocity of propagation of elastic
P-waves and S-waves.

eij Strain deviators.

G, K Shear and bulk moduli, respectively.

G, G, K Constants used in expressions for bulk
and shear moduli.

41 ' J2 Invariants, Eqs. (5) and (6).

p Nondimensional pressure.

Sy2 ij Stress deviators with respect to axes

x, y, etc.

t Time.

u, v Nondimensional velocities.

V Velocity of surface load.

vx , Vy Velocities with respect to axes x and y.

X Nondimensional quantity defined by Eq. (17).

x, y, zD , r, Coordinates defined in the text.

y Shear strain.

Aa, Av, etc. Increments of a, v, etc-. at a discon-

tinuity.

Ckk Volumetric strain.

0, 6 Angles reidLed to directions of principal
stres defined in the text.

Density.

ax a y , a 2 , oij Stress components with cespect to axes
x, y, etc.

t near stress.

Position angles measured from the surface
an.: defined in the text.

Other symbols in the text are defined as they occur.
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I INTRODUCTION.

In Refereaces 1l] and [2] a material model was described

which can be fitted reasonably well to the behavior of soils

in uniaxial strain and triaxial shear tests. The model was

introduced for the investigation of wave propagation and is

characterized by the fact that the stress-strain diagrams for

typical ioading-unloading cycles show hysteresis loops. This

is achieved by prescribing different bulk and shear moduli in

loading and unloading. The model is thus an alternative to

elastic-plastic ones. The new model does not require dny

statement equivalent to a yield condition. The following will

only give details required in the present investigation. For

full information the reader is referred to the above references.

In order to gain an understanding concerning the propa-

gation of dynamic disturbances a previous study, Ref. (3],

presented closed form solutions for one dimensional propa-

gation of plane waves. The present study is concerned with

the plane problem of the two dimensional effects of a step

wave progressing with supersonic velocity on the surface of

a half-space. Solutions of such two dimensional problems

by other than purely numerical, finite difference methods

not only add to the understanding of the problem, but permit

also a check on the correctness and effectivencs of numerical

codes for Lhe multidimeasionai situations. The desire for

such a check was the prime motivation for the present in-

vesti4 tion.



-2-

The material treated is isotropic and the model assumes

that the incremental relations between volumetric stress and

strain, and between deviatoric stress and strain depend not

only on the instantaneous values of these quantities, but

alsc on the question of whether the change in these quantities

occurs during initial loading, unloading, or reloading. The

stress-strain relations appear thus in form exactly as in a

donventional elastic material

£kk 3 K 1 (1)

and

- 5 1 4 j (2)

where j1 , Ckk represent the first invariants of stress

and strain, respectively, ands sij e ij are the deviatoric

stress and strain components. The moduli are expressed in

tezms of the invariants of the stress tensor. K is a

function of Jl while G may be a function of JI and J2

K- K0 + k(J I )  (3)

G G + E(J 2 , j1) (4)

where

1 1 + 2 + 3 (5)

1 (6)2 2 sj 1i4



Rowever, the dependency on J and J2 is expressed by different

functions for initial loading, unloading, or reloading.

Consider the relation between J and Ckk where the value 3K

represents the slope of the J1 - ekk diagram. For a material

which initially hardens such a diagram will be in general of the

form of Fig. (la). The path 1-2 represents initial loading,

while 2-3 represents unloading , where energy considerations

require that point 3 be to the right of the initia3 path 1-2.

On re loading to point 2, according to the model, the material

will retrace the path 3--2 until point 2 is reached. On further

loading, aAy point 4, it follows the initial lpading law. The

simplest case occurs when the fun.tions K are constants,

different for loading and unloading. The. resulting 5 kk - J1

diagram is shown in Fig. (lb).

Consider, for simplicity the situation when J as well as

the deviators sij in a Cartesian coordinate system ,n,4 are

kept constant when !=J. Only one of the shears s , B T is

varied, while the other two, as = sn , vanish. To stud! the

relation between T and the corresponding strain deviator e,, y9

requires simultaneous consideration if the diagrams ot J2 and r,

Figs. (2a,b). Initial ioading is represented by 1-2. On un-

loading, 2-3, rhe trivarliant . 2 will reach a iinimum vanuo rk.r

T3 = 0. Further unloading in T represents reloading, as J2,

increases again, until at point 1, the value J2 equai. t li1

previous ,.k- um 12 * Further decrease in T, path 4-S, brns

A,-auV of the inteaded ap liea tion to sol ;, the model

implies that J remains copressive.
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the initial loading law for G into force, as sho ,n in

Figs. (2a,b). If the functions G are constants, the T-Y

diagram consists of straight lines, as shown in Fig. (2c).

It will be subsequently shown that simple, nearly

trivial closed form solutions for the problem to be studied

can be obtained iU the functions K and G are constants, and

lie between certain limits. For the more general case where

K and G are functions of J and J2 solutions requiring only

quadratures will be found.

Prior to studying a solid half-space of the new model

material under progressing loads, it seemed educational to

cons.der a similar model for fluids, with pressure volume

relations according to Fig. (1). Fer progressing step loads

only uninteresting results are obtained, because in these cases

the pressure field becomes simply a leading shock front (where

the pressure jumps) followed by a uniform pressure. The

result is thus entirely unaffected by the unloading law. The

latter would affect the results, however, if the pressure

decays, say linearly, after the initial sudden rise. Results

in closed form for bilinear fluids were obtained and are

presented in Appendix B. They may be a useful guide in further

studies concerning solids subjected to decaying loads.
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II FORMULATION OF THE BASIC EQUATIONS.

Figure (3) indicates the half-space with a system of

stationary Cartesian coordinates. The x-axis is in the

direction of motion of the stop load, the y- and z-axes are

normal to the x-axis in and out of the plane of the figure,

respectively. The analysis considers the case of plane strain,

Czz a 0, when the velocity V of the step load is larger than

the largest possible characteristic or shock velocity which is

within the domain of the solution.

The governing equations for the problem are in appearance

the same as those for the steady-state two dimensional problem

for a conventional elastic material. The equations of motion

aire

as 1J 1 T v

ax + - -
+ a-

as 31 av

__I + 11 + __ (8)

The constitutive equations are

2G 3 x9x +  - 2G (9)
x 9K a

y J = 2G - (10)
av av

-G( By + 0 (11)

x y -9K J (12)

In the present problem the moduli G and K are functions of the

invariants as described in the Introduction.
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Previous experience with steady-state two dimensional

problems in inelastic materials, Refs. (4], [5], suggests a

procedure for the sclution. In brief, the following steps

are required:

1. Introduction of the fact that in a steady-state

problem a.l unknowns can only be functions of the

variable C - x - Vt.

2.. Elimination of the velocities v and v
x y

3. Dimensional considerations, Ref. [4], suggest

the possible existence of solutions in which the

stresses are solely functions of the variable

- cot- I /y). Its introduction reduces the

partial'differential equations to a set of

ordinary ones.

4. Finally, the unknowns sx , Sy and T are replaced

by the principal stress deviators sI k s2 and

the angle 0 between the direction of s, and the

horizontal, Fig. (3),

1 Cos 20 + 2 sin 2 (13)
2x  coI cos(14)s

Sy 1 sI sin 2 + s2 0 (14)

S(S 1 - s2) sin 0 cos 3 (15)
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This leads to the four differential equations

2G
3K 1

G

s2 cos2i l-2X -_2 -ein 24 8K s2

G = 0
sin 24 sin 24 2 sin 2 -2(1-2X -R) 1 J

G 3 1

2 G G 2
sin2G-X X --- cos -cos 24 0 (sI  s2)e

-j L (16)

, ds 1

where s - etc., and

X = 12( ) sin2 (17)

0

Equations (16) are linear and homogeneous, so that the

derivatives of the unknowns sI $ s2 and J. , and the value

- s2)W vanish unless the coefficient matrix is singular,

requiring

~4
GK+ G

(2X- )(2X 0 (19)
0 0

In any region of finite extent in 1, changes in stress

or direction 8 can thus only occur if one of the two factors

of this equation vanishes. Substitution of th respective

value of X into Fqs. (16) defines ratios between the ratc

of change of the stresses and that of 0'. The values of X are



4K + sG
2X K G (20)

or

2x (21)G
0

When the last equation applies, the invariant J1 and thus the

value of the mean pressure do not change at all.

Regions in 4 where changes of stress occur can exist

only :''f K + G and G are, respectively, functions of J

and/or J12 * If one or two of these quantities do not depend

on the stresses, the above equations give, instead, one or

two values X which, through Eq. (17) define locations 4 of

shock fronts. Equation (20) defines the location of a dis-

continuity in the normal stress s1 + I Jl1 ,while Eq. (21)

defines a location of a discontinuity in the shear stress

in the plane of the shock front. Both types of shock fronts

propagate with their respective characteristic velocity.

4

If K + G and G are functions of the stresses, dis-

continuities propagating with n.ncharactaristic velocities

may also occur. The velocity and corresponding locations 4

of such shocks are not given by Eqs. (20,21), nor defined by

the differential equations, Eqs. (16), which apply only in a

region of a continuous stress field. The appropriate

equations must be obtained for the nonlinear stress-strain

relations in combinaLion with momentum considerations

(Rankine-Hugoniot relations). The situation is discussed in

Appendix A.



III BILINEAR MATERIAL.

In order to obtain insight into the nature of the stress

field caused by a progressing step load, Fig. (3), the special

case in which the functions k and g in Eqs. (3,4) vanish is

r nsidered first. In this case the expressions for K and G do

uot depend upon the stresses but on whether or not the material

is being loaded, unloaded or reloaded. Due to the linear

nature of the stress-strain relation, Figs. (lb,2c), this case

will be referred to as "bilinear", and the moduli for .nading

will be designated by K and G while those for unloading-

reloading are K and G .O O

As mentioned in Section II, Eqs. (20,2') when applied to

the bilinear material do not permit regions of finite extent

in 4 within which the stresses change. Instead, these

relations define locations of discontinuities in stress and

velocity, similar to dilatational (P) and shear (S) fronts in

a conventional linear elastic material. The locations of

possible loading fronts arc
3K+ 4G

Op sin- 1 "o 0] (22)

sin - .13

s - sin -  P (23)

In the present problem the only discontinuity for unloading-

reloading is an S front at

-" - s 1n i1 (24)
OS 7r- si IV 1_ p
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As stated previously, only superseismic velocities V

will be considered, i.e., the value of V will be sufficiently

large so that the angles p S OS S defined by Eqs. (22,23,24)

are real and in the range between 7/2 and 7r. In addition, due

to Go the inequality S < S must hold so that the

relative locations of the P, S and 9 fronts are shown in

Fig. (4).

Stress Changes at =

The first stress change must be loading because the

materiel is originally -unstressed and unstrained. Since

OP < OS c he first stress change occurs discontinuously at

0 *p . The relation between the principal st: esses 01

(normal to the front) and a2 (parallel to the front) behind

the P front, i.e., for p , is

3K - 2G
O2 3K0 +40 1 (25)

0 0

and the direction of the principal stress 1 is

0 = p - 2  (26)

At this stage the value a is not known and conditions

for its determination from the prescribed surface load p must

be developed.

Stress Changes at =

The values of the stresses and of the direction 0 for

> 0 p must remain as given by Eqs. (25,26) until S
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where a second fron. of discontinuity may occur. The stresses

must change at this S front in such a way that the material

is unloaded and possibly subsequently reloaded as indicated

by the value of J2 ' To describe the S front, the state of

stress 01 , 0 2 , 0 ahead of S is resolved into components

parallel and perpendicular to 4 and the resu'.ting com-

ponents of stress are denoted by aT , aN and Ti , Fig. (5).

Since the S front involves only shear changes, aN and aT are

constant across 4 = S and only the value of T1 can change to

another value 2 However, since the S front is one of

unloading-reloading the value of J2 for r2 behind the front

must not exceed the value of J2 for 1 ahead. This implies

1- '2 1 'l (27)

Equation (27) has a geometric interpretation in terms

of the principal directions 81 0 2 on either side of the

front. Let 6 denote the smaller of the tvo angles made by

the normal to the S front and the principal directions ahead

of the front. (The two possible cases are shown in Figs. (6a)

and (6b).) Equation (27) implies that the appropriate

principal direction behind the S front makes an angle with

the normal to the front which is less than or equal to 6,

i.e., it lies in the shaded wedge in the respective Fig. (6a)

or (6b). If this shaded wedge includes a vertical line, Fig.

(7), a solution involving only the P front and S front is

possible. In this case the value of the ratio 2 /T1 can b
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chosen so as to make the appropriate principal axis behind

the S front vertical, insuring that the boundary condition

of vanish'ng shear stress is satisfied. The value of a I can

then be chosen to satisfy tne boundary condition 0 = p.
y

It is easy to derive a condition indicating when a

solution of the type just described is possl.ble. Figure (7)

shows the P and S fronts and the shaded areas which are to

contain the vertical. If Fig. (6a) applies, the relation

$S - P 6 < 1 holds, so that the vertical line will be in-

side the shaded wedge if V - S 6E S - 4P . This con-

dition may be written in the form'

i+ P (28)

S 2

If Fig. (6b) applies no additional condition is required

because the wedge always contains the vertical line. Noting

3IT
that in this case > -4- and P + w one finds that

Eq. (28) is automatically satisfied. It is therefore the

gene:xal c-ind±tion for the existence of a solution involving

only a P front and an S front.

If Eq. (28) is not satisfied, it may be possible to

construct solutions by including at 4 = S an additional

shear front at which loading occurs. This possibility,

to be considered next, can of course occur only if Fig. (6a)

applies.
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Stress Changes at S

Immediately ahead of the S front, Fig. (8), the state of

stress is identical to that immediately behind the S front.

Since the S front inherently involves additional loading, the

value of J2 in the region between the S and S fronts must be

equal to the previous maximum value of J2 between the P and

f.rozits. This implies that T2 = 1 at the S front as well as

T > -C at the S front, where T and T 2 are the components of

the shear stress parallel to the S front for 4S <) <S and

0 > OS respectively, Fig. (8). Noting the definition

6 -S p , the first reqjirement, T 2 - V ' implies that

the direction 02 of the principal axis behind the S front is

02 S + 6 2S - (29)

This is equivalent to saying that the principal axis coincides

with the right edge of the shaded wedge in Fig. (6a). The

second requirement, T2 > -1 , implies, Fig. (8), that the

angle between the normal to the front and the direction of

the principal stresses ahead of and behind the front,

02 - (S - E) and r - S , respectively, must satisfy the

inequality 02 - (4S - -) < r - In addition, the

direction of the principal stress between the S and S fronts

must be at least as steep as the normal to the S Itutit, or

2 S - .r Substitution of Eq. (29) into th-! last two

inequalities gives

!s + OP +  "
< +s <  (30)

2 -S 2

V
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When this condition is satisfied a solution inrolving an

S front and an S front can be constructed.

Summary and Example

Equations (28) and (30) indicate that a solution of one

of the two types considered caa be constructed whenever
s +  Pe

2 S . For example, consider the limits for which

the solutions found apply when the values K= 8/3 G and

V - 44" op are used. Equations (22,23) give 4p 150.000

and S = 165.520. Therefore, according to Eq. (28), a

solution can be constructed involving only a P front and

an S front if

165.000 < s < 165.520 (311

while an additional S front is required when, Eq. (30),

157.760 < S < 165.00* (32)

Finally, if S < 157.76° neither of the proposed solutions

applies.

Equations (31,32) may be restated in terms of G by0

using Eq. (24). It is easily deduced that relation, Eq. (31),

holds if G< < 1.07 G , while Eq. (32) holds for

1.07 G < G < 7,2q G . For G > 2.29 G no solution of
o 0 0 0 0

the type considered exists.
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IV NONLINEAR MATERIAL.

A. Material Description

The form of the moduli K and G as functions of the in-

variants was .aken from Ref. (2]. For initial loading,

G -G0 + G, jVrj1I - G2J + G J 2 (33)

K K° - K C + K2Ck (34)

0~ K1ekk 2 kk

and for unloading and reloading,

G - G + G / i + (50 1 121 2 1 3 1

K = K -R 1J1 (36)

The magnitudes and signs of the constants G are to be

selected such that the stress-strain diagrams have the

curvatures and general character shown in Figs. (la) and

(2a).

B. Method of Solution

The configurations of the solutions shown in Figs.

(7,8) for the bilinear material are used as guides in the

determination of solutions in the nonlinear case. Beginning

with a discontinuity in the principal stress normal to the

front, 4 ,Eq. (A-]), it can be expected that instead

of the discontinuities in shear in Figs. (7) or (8), the

nonlinear material will produce regions in which shear stresses

- - -
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change in a continuous manner. Because of the change in

curvature in the unloadirZ-reloading portion of the diagram,

Fig. (2b), there is also a possibility of a noncharacteristic

shock in shear adjoining the continuous region.

Conditions which define the discontinuity in normal

stress at 4 = p are discussed in Appendix A. Using an

ipverse approach, an arbitrary jump o in the principal stress

aI normal to the front is selected, integration of the in-

cremental relation at the front, Eq. (A-3) yields the corre-

sponding values P and c at the front, and hence the starting

values

2 Pc p
s 4 (01 - 02)

1 P
s2 ' l

.J P + 2Pc (37)
1 01 +22

C 1  C E

For locations )> p, Eqs. (16)-(19) govern the

continuous portion of the solution, where the moduli are

given by Eqs. (33)-(36). Equations (16) may be satisfied

by regions of uniform stress, sI = s2 - Jl = 0 0, or by

regienq of stress variation when Eq. (19) is satisfied.

Because Eq. (19) implies that the determinant of Eqs. (16)

vanishes, only three of the four Equations (16) are thus

independent. However, since Eq. (19) must remain valid
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throughout regions of stress change, a fourth independent

equation in s I , 2 ) J1 and (sI - s2)e is obtained by

differentiation of Eq. (19) with respect to . In the

present problem the resulting relation is of interest only

for the case of changes in the deviatoric stresses, when

Jl W 0. For this case the fourth equation becomes

20V

(2sl + ;2)sl + (2s2 + sl)s2 - 2 /J] sin 24 C38)*)

Substitution of Eqs. (21) and (38) into Eqs. (16) yields

the following expressions for the four unknown derivatives

2pV 2  /TLC. 9
- sin 2 (?

1 I

s 2  -s 1 (40)

-71 C (41)

, -SI

o - s - s2 ) tan 2i (42)

Equations (39)-(42) permit the numerical determination of

the values of stresses in regions of continuous loading or

unloading-reloading by quadratures, provided the values on

one boundary of the region are known.

The possibility of a noncharacteristic shock in shear

associated with the solution must also be explored. From

the cas of; unaxa presur wa it isvl know that

in a material which continuously hardens as the stress level

The value G. shown applias for the case of loading.
A

For unloading or reloading it is to be replaced by G1
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is changed from level "A" to a level "B", diszoicinuities

with a jump in stress from "A" to "B" can occur. The stress-

strain diagram for shear, Fig. (9), indicates that this is

the situation in the reloading portion, between points 3 and

4 of the diagram. The complete unloading-reloading diagram

has a point of contraflexure at 3. In such a case it is also

known from prior experience that there will be a continuous

stress change, immediately followed by a discontinuity.

The discontinuity and its velocity can be represented

graphically using the stress-strain diagram, Fig. (9). Stress

and strain may change discontinuously from a value corresponding

to a point 2a, between 2 and 3, to a point 3a, between 3 and 4.

Stability of the shock requires that a line 3a to 2a is tangent

to the T-y diagram at point 2a. The slope of the line defines

the shock velocity. As the diagram applies only as far as

point 4 the stress level cannot exceed the value at point 4.

If the discontinuity present in a solution does not reach

a stress level corresponding to point 4 where the value of J2

is equal to the previoas peak, the solution can not have a

region of further loading in shear. If the discontinuity is

such that a value J2 , equal to the previous peak, is reached

a region of further loading is possible.

C. Determination and Description of the Solution.

Figure (10) shows the configuration of the solution which

will be constructed. It is a generalization of the one in
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Fig. (8) for the bilinear material in which two discontinuities

in shear occur, one in unloading-reloading, one in further

loading.

At the invariant J2 changes discontinuously from J. - 0

to a value J 2 The direction of the principal stress a1 is
P tP

defined by the angle 0P , p - Z , while the value of 02 corre-
P

sponding to the chosen value a1 can be computed from the re-

lations given In Appendix A. Behind the front, 0 > Op , there

is a region of uniform stress which terminates at the root

of. Eq. (21) using the value of G for unloading. At this

location a region of continuous unloading of deviatoric and

shear stresses begins. Forward integration of Eqs. (39)-(42)1

using the initial values, Eq. (37), determines the stress

field numerically, point by point.

The integration is stopped at a trial location 02 > i

which is selected so that the value of 0, defining the

direction of the principal stress, satisfies the inequality

6 < - - . (This ensures that a stable shock in shear in the

location 02 is possible.) As next step, the location S of a

shock in shear is determined in which the shear stress changes

from the value found at 2 to the value which makes J2 equal

to the previous maximum of J2 ' The point 2 and the shock

described are accepted if, and only if, OS 02 9 otherwise

another point 2 must be selected, and the process repeated.

For 0 > 02 =  S there is again a region in which the

principal stresseb remain constant. This region can be
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terminated at a root 3 43 of Eq. (21) using G for loading,

in which location a new region of continuous stress change

begins. Forward integration of Eqs. (39)-(42) proceeds until,

at 4 a 4)4 0 the principal stress a1 becomes perpendicular to

the surface, i.e., 0 - T . From the point 4 4 to the

surface, r = , the stresses are again uniform. The value

of the principal stress a1 obtained in the location 4)4 is the

value of the applied surface pressure which corresponds to the

P
originally assumed value a

There is also the possibility of a solution which does

not contain a region of change associated with further loading

in stress between 4)3 and 4)4 ' This solution corresponds to

the one in Fig. (7) in the bilinear case. In this solution a

shock can be selected such that the principal stress for

0 > 02 is vertical.

D. Numerical Results

The moduli chWen for the first twa.inumerical examples

are

G = 7.178 -20.0 1 rYI)

K - 11.965 - 150.0 t kk 1
for loading, and

G - 4.0 + 40.0 2 (44)

for unloading and reloading.
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Because the modulus K affects th3 solution only during

loading at 4 - p no information for unloading is required.

It may be seen from Eq. (39) that solutions in regions of

continuous stress changes (in shear) are influenced only by

coefficients G and G Without actual loss of generality

GG2 G 2 G3 were conveniently assumed to be zero.G 3 3

Figures (11) and-(12) show numerical results for the

moduli given above for two different ratios of surface pressure

speed, V, to the speed c . It may be noted that the regions

of continuous stress change are quite small in angular extent.

This reflects the relatively small amount of curvature of the

stress-strain diag;rams for the moduli used. There is a

relatively small change in a1 from the value at ? to the

surface value at n -. However, if stress components in the

horizontal and vertical directions, aX and a respectively,x y

are considered [see Figs. (13) and (14)] the changes in the

stress field are more significant and visible.

Figure (15) shows numerical results for the modulus

G =4.0 + 10.0 /J_(45)

for unloading and reloading. The initial loading moduli were

chosen to be the same as Eqs. (43). In this case only one

region of continuous stress change is present. The stress

changes introduced by the shock in shear are sufficient to

satisfy the boundary conditions, and no region of further
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loading is -equired. This alternate solution, corresponds

to the one shown in Fig. (7) for a bilinear material. It

occurs if the parameters are such that a shock in shear can

be selected so that the principal stress oI becomes vertical,

2 , immediately behind the front. In this case the front
2

is represented by the line 2a-3a in Fig. (9).
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APPENDIX A

Consider a plane moving front at which discontinuities in

stresses and velocities occur, and let &,n, be a Cartesian

coordinate system, Fig. (A-1), where g is normal, and n,4

tangential to the front. Conditions for discontinuities of

stress and velocity normal as well as tangential to the front

will be studied, but the two cases must be treated separately.

1. The P-front.

A front whare discontinuities of stress and velocity

occur in the direction of propagation of the front will be

referred to as a P-front. Let Aac , Av be the discontinuous

changes of normal stress and velocity, respectively. Conser-

vation of momentum at the front requires

pa C ppAV (A-1)

where cp is the velocity of propagation of the front, while

Av. = AvC 0 (A-2)

A C T, = #A C 0

Equation (A-1) and the first of Eqs. 0-2) give the relation

Sj The inclination p of such a front in the problem

considered in the body of the report is thus

- 1Sin-I (A-3)
~Piwi V~j ~
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Consider in detail the case where the region ahead of the

front is stressless and at rest. The normal to the front

is then a principal direction, i.e., O -1 . a a2 a On

03 - a . To find for any selected value Ata the jumps in
31

the other quantities Eqs. (1) and (2) are combined with

Eqs. (A-i) and (A-2) to obtain the "one dimensional" incre-

mental stress-strain relation

a1 =(K + A G) cl (A-4)

Using the values of K and G given by Eqs. (33) and (34) the

integral of &2 can be found in closed form. First Eq. (1)

is integrated to express J as a function of ekk * The

result is substituted into Eqs. (5), (6) and (33), then

into Eq. (A-4), with the result

do 2  7
do2+ = 7 e j- 1  

(A-5)d_1 ' a2 J j  l

where

a 1
3 1

2
C I K -- G

1 0 30o

C -K 1 + aK + 2G2 K

! K- K 6G K 2
C3  N 2 - aK - -G2K

3 2 2 K1 -G 2 1  3 0
1(A-6)

C - aK + 2 K + 6G K K 1

4 3 2 3 2 2 3 oI

C - -4K K G -2 G K2

o3 -1
23C6  2G3KIK2

C7 2 2
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The solution of the differential equation (A-5), for the

initial condition 02 = 0 when = 0, is

7 7 - l(- l ) j - m  ( - l ) ! , - i e - a l  
M -

a -2 (1 )i m+ 1  C.(l-6l ea "e 1 3K0 e -
m.1 J-m a (m-l)! j o

-1.5 K1  + K e 3 (A-7)

where 6im 0 1 for ml, 61m = 0 for m # 1.

A Newton Raphson technique was used in the examples to

find the value of e for the selected values of 02 . may

then be found from the integral of Eq. (1) giving the complete

stress system at the front.

2. The S-front.

Discontinuous changes at the S-front occur only in the

.velocity v parallel to the front, and in the corresponding

stress a = I. Conservation of momentum at the front

requires

AT= PCSAV (A-8)

where c is the velocity of propagation of the front, while

1

AV= AV = 0 (A-9)

A = AoI = Ao =0 j

Equation (A-8) and the first of Eqs. (A-9) give the relation

2 AT
c 2A The inclination Os of such a front in the problem
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considered in the body of the report is thus

s1 sn -1 (1 (A-10)

To determine the ratio AT/Ay consider the case where the

front propagates into a region which has an existing stress

field with principal directions not perpendicular to the

front. The incremental stress-strain relation is

2G (A-1l)

where G depends on the invariant

2s + s s + S2 + (A-12)

As stated in the body of the report, only discontinuities in

shear for unloading - reloading were required. For this

situation Eq. (A-I) was integrated numerically u*ing Eq. (35)

for G.
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APPENDIX B

Bilinear Fluid.

The simplest case of the new material model considered

in this report is that of a bilinear fluid with a pressure-

volume relation similar to the one shown in Fig. (Ib) for

the solid. If a half-space of such a material is subjected

to a supersonic progressing step load, the solution is trivial.

It consists of a shock front (in which the lower modulus KL

for loading applies) follr ed by a uniform stress field. The

higher value of the modulus, N, a -s not affect the solution

at all. The simpler nature of the bilinear fluid, as com-

pared to the solid, makes it possible to give a closed form

solution for the alternative problem of a half-space, Fig.

.(B-1), subject to a progressing pressure pulse which rises

suddenly to a value P , but subsequently decreases linearly.0

This problem involves both loading and unloading in the fluid,

so that the nature of the material affects the result.

The hbsic equations describing an inviscld fluid may be

written in nonaimensional form by introducing the following

units of length, veloci., and pressure, respectively,

P
l 0 discontinuitv in surfacp Pressure

Ah - gradient of surface pressure

velocity: V velocity of surface load
2

pressure: poV

where p is tie nominal density of the fluia. The linearized

nondiMLaional equations of conservation of mass and momentum
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are

a+ a u 0
ax a t

a.-+ v 0
ay a t
30 K u av

+-- ) 0at 2p ax ay
p0

where p is the pressure in the fluid while u and v are the

horizontal and vertical components of velocity, respectively.

In this form the equations depend solely on the nondimensional
K

parameter K . This parameter varies because K assumes the
P0V2

value KL or KU depending upon whether the fluid is being

loaded or unloaded - reloaded, respectively.

In the steady-state problem considered here, p, u and v

ar- necessarily functions of y and the combination = x-t.

After elimination of u, Eqs. (B-i) can therefore be reduced to

By a&

(B-2)
z 2 aR av.

Sa& ay}
where Z is the nondimensional parameter,

V2

K 1 (B-3)

which may assume the alternative values ZL , ZU for loading

and unloading - relooding, respectively.

Consider the situation when V is supersonic with respect

to the sound speeds for loading, [- , and unloading,
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> K If the fluid were linear with K = KL, instead

of bilinear, one finds easily that the solutior, consists of a

shock front inclined at the angle T 
- sin -1  1 T-

00

followed by gradually (as a matter of fact linearly) decreasing

pressure. It will be assumed, and subsequently ver:fied, that

the situation for the bi...Lnear fluid is similar, i.e., there

is loading at the front only, and unloading everywhere else.

As the entire region between the surface and the ?-front,

Fig. (B-2), is assumed to be an unloading region, the problem

requires the solution to the hyperbolic differential equations

(B-2) for Z = ZU in this region. This is now a linear hyper-'

bolic problem. As the boundary conditions for this problem,

one imposes aL all points Q on the loading front, i.e.,

Q . -Z LyQ Ithe momentum requirement

VQ = ZLpQ (B-4)

while at any surface point T with the coordinate &T P the

surface pressure is specified,

PT ' Po ( 1 + CT)  (B-5)

The linear form of the boundary conditions, Eqs. (B-4)

and ,_, , is th.- .. . . hyperbn!1c probIemrn mplion that the

pressure p(,,y) is of the linear form

p(C,y) = Po (1 + C + ky) (B-6)

where the coefficient of is unity in order to satisfy



-- 44 --

Eq. (B-5), while the constant k is so far undetermined.

Substitution of Eq. (B-6) into Eqs. (B-2) leads to

.v(,.,y) - p (v + k& + Z2 y) (B-7)

where v is a constant of integration. The values of k and

v are determined by substitution of Eqs. (B-6) and (B-7)

into Eq. (B-4),

z2 + 2
U Lk=

2Z L (B-B)

v o z E
ZL

-In order to verify the premise that the entire wedge

between the P-front and the surface is continuously unloading

consider the pressure, obtained from Eq. (B-6), p = p0 (l + x -

t + ky). Since 2 is obviously neg.:tive, the validity of the

solution is confirmed. Equations (B-6), (B-7), (B-8) and

Fig. (B-2) thus describe the solution to the problem.

The solution presented above, while intended for com-

pletely supersonic velocities V of the surface pressure,

appears to remain valid when the load moves subsonically with

respect to the higher of the sound speeds, , provided

that V is still supersonic with respect to the sound speed in

lod It is of general interest to show that in
00

this case, where th ,ituation is not completely supersonic,

the above solution, while valid, is not unique. Alternate

solutions are obtained by adding terms which satisfy homogeneous

boundary conditions on the surface and on the P-front.
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For the case now being considered, Eq. (B-3) gives a
22

negative value for Z while ZL remains positive. Introduceneatvevauefo U  L

the real and positive quantity Y,

2 2
Y -ZU  ; Y > 0 (B-9)

and a new set of independent variables,

r =1_ + 2
(B-10)

e=tan (- )

It may be verified easily that

Yac
(B-il)

with

, rx cos (B-12)

is a solution of Eqs. (B-2) which satisfies the homogeneous

boundary condition p = 0 on the surface 0 - 0 for all X.

The constant X can be used to satisfy the remaining conditions,

Eq. (B-4). If singularities in pressure and velocity are

eliminated as inappropriate, one obtains an infinite number

of roots X = Xn , namely,

n 1, 2 .2 . (B-13)

-I
where the principal value of tan is used. Therefore, one
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may add to the previous olution, Eqs. (B-6), (B-7), (B-8) and

(B-9), a term of the form of Eqs. (B-1l) where

= A r(Xn)cos X 6 (B-14)
n=l n

Tne coefficients A are arbitrary, except for the restriction
n

that 3 < 0 everywhere. Steady-state solutions are thus not

unique when the surface load moves subsonically with respect

to the speed of sound which applies for unloading - reloading.
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