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ABSTRACT

The report considers the two dimensional effects of
a step wave progressing with constant superseismic velogity
on the surface of a half~space., The material treated is
!sotropic and it is assumed that fncremental relations between
both deviatoric and volumetric stress and strain depeand not
only on the instantaneous values of those quantities, but
also on bulk and shear moduli which differ according to

whether initial loading, unloading, or reloading occurs.

Simple closed form solutions are obtained when the modull
K and G are constant and lie within certain limits. For the
more general case, when K and G are functions of the first and
sccond invariants of stress, solutions requiring only quadra-

tures are found.

4s an auxiliary study, a problem involving a nalf-space

of fluid with a bilinear pressure volume relation is solved.
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OF SYMBOLS

X

x’ Y’ zﬁ g) rl’ C
Y

Ao, Av, etc.

*)

Velocity of propagation of elastic
P-waves and S-waves.

Strain deviators.
Stiear and bulk moduli, respectively.

Constants used in expressions for bulk
and shear moduli.

Invariants, Egs. (5) and (6).
Nondimensional pressure.

Stress deviators with respect to axes
X, ¥, etc.

Time.

Nondimensional velocities.

Velocity of surface load.

Velocities with respect to axes x and y.
Nondimensional quantity defined by Eq. (17).
Coordinates defined in the text.

Shear strain.

Increments of 0, v, ete. at a discon-
tinuity.

Volumetric strain.

Angles relu.ed to directions of principal
stress defined in the text,

Density.

Stress components with cespect to axes
X, ¥y, etc,

Snear stress.

Position angles measured from the surface
an., defined in the text.

Other symbols in the text are defined as they occur.
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1 INTRODUCTION.

In Refereaces [1l] and [2] a material model was described
which can be fitted reasonably well to the behavior of soils
in uniaxial strain and triaxial shear tests. The model was
introduced for the investigation of wave propagation and is
characterized by the fact that the stress-strain diagrams for
typical loading-unloading cycles show hysteresis loops. This
is achieved by prescribing different bulk and shear moduli in
loading and unloading. The model is thus an alternative to
elastic-plastic ones. The new model does not require any
statement equivalent to a yield condition. The following will
only give details required in the present investigaticn. For

full information the reader is veferred to the above references.

In order to gain an understanding concerning the propa-
gation of dynamic disturbances a previous study, Ref. [3],
presented closed form solutions for one dimensional propa-
gatior of plane waves. The present study is concerned with
the plane problem of the two dimensional effects of a step
wave progressing with supersonic velocity on the surface of
a2 half-space, Solutions of snuch two dimensifonal problems
by other than purely numevical, finite difference methods
not only add to the understanding of the problem, but permit
also a check on the correctness and effectivencss of numerical
codes for the multidimeasional situations. The desire for
such a check was the prime meotivation for the present in-

vestig rwaon.
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The material treated is isotropic and the model assumes
that the incremental relations between volumetric stress and
strain, and between deviatoric stress and strain depend not
only on the instantaneous values of these quantities, but
alsc on the question of whether the change in these quantities
occurs during initial loading, unloading, or reloading. The
stress-strain relations appear thus in form exactly as in a

conventional elastic material

. o L3 1
€k " 3K Y1 (1)
and
&, m ook 8 144 (2)
13 7 26 14
where Jl , ekk represent the first invariants of stress
and strain, respectively, and.s1j s e1j are the deviatoric
stress and strain componénts. The moduli are expressed in
texms of the invariants of the stress tensor. K iu a
function of J1 » while G may be a function of J1 and Jz
= 3
K=K+ k(Jl) (3)
= C 4
G Co+g(J2,J1) 4
where
5
I, =0y +0, + 0, {5)
1 6
PR 814 514 (6)
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However, the dependency on Jl and J2 is expressed by different

functions for initial loading, unloading, or reloading,

Consider the relation between J1 and €rk where the value 3K
represents the slope of the J1 = €k diagram. For a material
which initially hardens such a diagram will be in general of the
form of Fig. (la). The path 1-2 represents initial loading,
while 2~3 represents unloading*), where energy considerations
;equire that point 3 be to the right of the 4initial path 1-2,

On reioadlng to point 2, according to the model, the material
will retrace the path 3-2 until point 2 1is reached. On further
loading, say point 4, it follows the initial lrading law. The
simplest case occurs when the funitions K are constants,

different for loading and unloading., The resulting €xk Jl

diagram is shown in Fig. {(1lb).

Consider, for simplicity the situation when Jl as well as

the deviators s in a Cartesian coordinate system §,n,L are

13

kept constant when i=j. Only one of thne sheuars sg T is

n

varied, while the other two, SEC = vanish, To stud; the

*ng
relation between T and the corresponding strain deviator egn z Y,
requires simultaneous consideration of the diagrams of J2 and T,

Figs. (2a,b). Inittal loading is represented by 1-2., On un-

loading, 2-3, the <nvariant J? will reach a wminimum value for

Ty = 0. Further unloadiung in T represents releading, as J?

increases again, until at point 4 the value J2 equairs Chie
previous wa: faum J2 . Further decrease in v, path 4=5, brings
R

dreaquse of the inteaded application to solls, the model
implies that J1 remains coumpressive.
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the initial loading law for G iato force, as shown in
Figs. (2a,b)., If the functions G are consctants, the T-Y

diagram consicts of straight lines, as ahown in Fig. (2¢).

It will be subsequently shown that simple, nearly
trivial closed form solutions for the problem to be studied
can be obtained if the functions K and G are constants, and
lie between certain limits. For thue more general case where
K and.G are functions of J, and J, solutions requiring only

1 2
quadratures will be found.

.Prior to studving a.solid half-space of the new model
meterjal under progressing loads, it seemed educational to
cons.der a similar model for fluids, with pressure volune
relations according to Fig. (1). Fer progressing step loads
only uninteresting results are obtained, because in these cases
the pressure fileld beco;es simply a leading shock front (where
the pressure jumps) followed by a uniform pressure. The
result is thus entirely unaffected by the unloading law. The
latter would affect the results, however, if the pressure
decays, say linearly, after the initial sudden rise. Results
in closed form for bilinear fluids were obtained and are

presented in Appendix B. They may be a useful guide in further

studies concerning solids subjected to decaying loads.
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I TORMULATION OF THE BASIC EQUATIONS.

Figure (3) indicates the half-space with a system of
stationary Cartesian coordinates. The x-axis is in the
direction of motion of the step load, the y- and z-axes are
normal to the x-axis In and out of the plane of the figure,
respectively. The analysis considers the case of plane strain,
€,2 ° 0, when the velocity V of the step load is larger than

the largest possible characteristic or shock velocity which is

within the domain of the solution.

The governing equations for the problem are in appearance
the same as those for the steady-state two dimemsional problem
for a conventional elastic material. The equations of moticn

are

2oy + % o} + . oV (7)
% 3 ax 3y ~ P 5t
9s 1 aJl 5t av
9y + 3 By + x P 5t (8
The cconstitutive equations are
ov
R 26 2 .. %
5, + Y Jl = 26 T (9)
v
. 26 ¢ _ N
5, + 5% 31 = 26 T (10)
. avx va
X = G(ST + -a—x‘- (11)
. . 2G =
Sy + :iy ~ 9% Jl = 0 (.12)

In the present probiem the moduli ¢ and K are functions of the

invariants as described in the Introduction.




ol -

- -

Previous experience with steady-state two dimensional

problems in inelastic materials, Refs. [4}, [5], suggests a

procedure for the sclution. 1In brief, the following steps

are required:

10

Iatroduction of the fact that in a steady-state
problem a.l unknowns can only be functions of the
variable £ = x ~ V¢,

Elimination of the‘velocities Vo and vy .
Dimensional considerations, Ref. [4], suggest

the possible existence of solutions in which the
stresses are solely functions of the variable

O = cot-l(Ely). Its introduction reduces the
partial 'differential equations to a set of
ordinary ones.

Finally, the unkncwns s sy and T are replaced

X ]
by the principal stress deviators Sy » Sy and
the angle 6 between the direction of s, and the

horizontal, Fig. (3),

2 2
s, ™ 8, cos 0 + Sy sin®9

2 2
sy = 8y sin" 6 + s, cos 6

T = (s1 - 52) sin 8 cos 9

(13)

(14)

(15)
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This leads to the four differential equations

26G !
1 1 K 0 8,
G '
sinzw coszw 1-2% 1? -ain 2V s,
= 0
2 , 5 Go 1l '
sin 2y sin 2y 2 sin 2¢ -2(1-2X% 7;) 3 Iy
2 Go Go 2 '
sin w-x-?r X = - cos Y ~-cos 2y 0 (sl - 52)6
L <L = (16)
' ds1
vhere s, ¥ TR etc., and
1 pv? 2
X =3 (G_—) sin®¢ (17)
o
Y =¢ -0 (18)

Equations (16) are linear and homogeneous, so that the

] 1] '
derivatives of the unknowns S) 5 5, and J, , and the value

1
(s1 - 32)6' vanish unless the coefficient matrix is singular,

requiring

(2% - E‘i->(zx M —2) w0 (19)
o] [}

In any region of finite extent in ¢, changes in stress
or direction 8 can thus only occur if one of the two factors
of this equation vanishes. Substitution of th respective
value of X into Eas. (1ld) defines rarios between the zates

of change of the stresses and that of 8'. The values of X are
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K + % G
2X = g (20)
o
or
G
2X = G (21)
o

When the last equation applies, the invariant Jl and thus the

value of the mean pressure do not change at all.

Regions in ¢ where changes of stress occur can exist
only 4f K + % G and G are, respectively, functions of Jl
and/or dy . 1f one or two of these quantities do not depend
on the stresses, the above equations give, instead, one oxr
two values X which, through Eq. (17) define 1locations ¢ of
shock fronts. Equation (20) defines the location of a dis-
continuity in the normal stress s, + % J, » while Eq. (21)
defines a location of a discontinuity in the shear stress
in the plane of the shock front. Both types of shock fronts

propagate with their respective characteristic velocity.

4
IfK'l-g

continuities propagating with nceuchavactaristic velocities

G and G are functions of the stresses, dis-

may also occur. The velocity and corresponding locations ¢
of such shocks are not given by Eqs. {20,21), nor defined by
the differential equations, Eqs. (16), which apply only in a
region of a continuous stress field., The appropriate
equations must be obtained for the nonlinear stress-strain
relations in comtinaiion with momentum considexations
(Rankine-Hugoniot relations). The situation is discussed in

Appendix A.
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III RILINEAR MATERIAL.

In order to obtain insight into the nature of the stress
field caused by a progressing step load, Fig. (3), the special
case in which the functions k and g in Eqs. (3,4) vanish is
¢ nsidered first. In this case the expressions for K and 6 do
not depend upon the stresses but on whether or not the material
is being loaded, unloaded or reloaded, Due to the linear
Aaturg of the stress-strain relation, Figs. (lb,2c), this case
will be referred to as "bilinear", and the moduli for .nading
will be designated by Ko and Go while those for unloading-

reloading are K_and G_ .
o o

As mentioned in Section II, Eqs. (20,2') when applied to
the bilinear material do not permit regions of finite extent
in ¢ within wbich the stresses change. Instead, these
relations define locations of discontinuities in stress and
velocity, similar to dilatational (P) and shear (S) fronts in
a conventional linear elastic material. The locaticns of

possible loading fronts are

-1 .1 3K° + QGO
¢P = 7T - sin [V ———33-——*] (22)

G

bg » 7w - st (d] ~23 (23)

In the present problem the nnly discontinuity for unloading~-

reloading is an S front at

f ¢n

55 Y [%] 21 (24)

<




]
b
] ) -~ 10 -~
1
; As stated previously, only superseismic velocities V
E will be considerad, i.e., the value of V will be sufficiently

large so that the angles ¢P s ¢S

are real and in the range between 7/2 and w. 1In addition, due

, ES defined by Eqs. (22,23,24)

ey

to Eo > G, , the inequality 58 < ¢g must hold so that the

relative locations of the P, § and § fronts are shown in

Fig. (4).

Stress Changes at ¢ = ¢P

The first stress change must be loading because the
material is originally unstressed and unstrained. Since
¢P < ¢s , the first stress change occurs discontinuously at
¢ = ¢P . The relation between the principal st:esses Gl
(normal to the front) and ¢

2
the P front, i.e,, for ¢ > ¢é , 1s

(parallel to the front) behind

e

3K - 26
o e

2 " 3K _+ 46 (25)
4] [o]

o [+]

1

and the directicn of the principal stress 9, is

0= ¢, - % (26)

5 At this stage the value Gl is not known and conditions

for its determination from the prescribed surface load p must

be developed.

Stress Changes at ¢ = ¢s

The values of the stresses and of the direction 8§ for

¢ > ¢P must remain as given by Eqs. (25,26) until ¢ = 58
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where a second fron. of discontinuity may occur. The stresses
must change at_this S front in such a way that the material

is unloaded and possibly subsequently reloaded as indicated

by the value of"J, . To describe the § front, the state of

{ stress 01 , 02 , 8 ahead of ¢ = 68 is resolved into components
L parallel and perpendicular to ¢ = $S and the resulting com-

p » Oy and ?1 , Fig. (5).

A Since the § front involves oaly shear changes, G, and 0, are

ponents of stress are denoted by & ]
N T

constant aczross ¢ = %s and only the value of T, can change to

1
another value T, . However, since the 5 front is one of

unloading-reloading the value of J, for T, behind the front

2 2
must not exceed the value of J2 for ?l ahead, This implies
“Ty 2T, <7 (27)

Equation (27) has a geometric interpretation in terms

1 92 on either side of the

front. Let § denotn the smaller of the two angles made by

of the principal directions 8

the normal to the S front and the principal directions ahead “®

of the front. (The two possible cases are shown in Figs. (6a)

and (6b).) Equation (27) implies that the appropriate

principal direction behind the § front makes an angle with
the normal to the front which is less than or equal to 6§,
i.e., it lies in the shaded wedge in the respective Fig. (6a)
or (6b). If this shaded wedge includes a vertical line, Fig.

(7), a solution invelving only the P front and S fromt is

possible. In this case the value of the ratio ?2/¥1 can &
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choser so as to make the appropriate principal axis behind
the S front vertical, insuring that the boundary condition

of vanisht’'ng shear stress is satisfied. The value of 0. can

i

then be chesen to satisfy tne boundary condition oy 2 p.

It is easy to derive a condition indicating when a
solution of the type just described is possible. Figure (7)
shows the P and § fronts and the shaded areas which are to
contain the vertical. 1If Fig. (6a) applies, the relation
$s - $P 26 < % holds, so that the vertical line will be in-
side the shaded wedge if 7 - ES <8 = 58 - $p - This con-
dition may be written in the form’
LTy
¢ 25— (28)
1f Fig. (6b) applies no additional condition 1is required

because the wedge alvays contalns the vertical line. Noting
3n
4
Eq. (28) is automatically satisfied. Xt is therefore the

that in this case 68 > and 55 > 4y % one fiunds that
general condition for the existence of a solution involving

only a P front and an § front,

If Eaq. (28) is not satisfied, it may be possible to
construct solutions by including at ¢ = ¢S an additional
shear front at which loading cccurs. This possibility,
to be considered next, can of course occur only if Fig. (6a)

applies.
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Stress Changes at ¢ = ¢S

Immediately ahead of the S front, Fig. (8), the state of
stress is identical to that immediately behind the S front.
Since the S front inherently involves additional loading, the
value of J2 in the region between the $ and § £ronts must be
equal to the previous maximum value of J2 between the P and S
fronts. This implies that T, = -T., at the § front as well as

2 1

9 1 at the § front, where Tl and T,

the shear stress parallel to the S front for 55 < ¢ < ¢g and

T, > T are the components of

$ > ¢, , respectively, Fig. (8). Noting the definition
S 3

§ = 65 - $p 4 the firs: reqiirement, T, = =T implies that

2 1°
the direction 52 of the principal axis behind the S fromt is

T - - T
92 - ¢S + § - 7 = 2¢S - ¢P -3 (29)

This is equivalent to saying that the principal axis coincides
with the right edge of the shaded wedge an Fig. (6a). The

second requirement, T, > T implies, Fig. (8), that the

1
aagle between the normal to the froaut and the direction of

the principal stresses ahead of and behind the front,

6 (¢s - %) and (7w - ¢S), respectively, must satisfy the

. -
inequality 52 - (9g - %) <m - ¢ . In addition, the
direction of the principal stress betweer the S and S fronts
must be at least as steep as the nofmal to the S5 frout, orvr
52 > ¢S - % . Substitution of Eq. (292} into th. last two

inequalities gives

{30)
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When this condition is satisfied a solution involving an

S front and an S front can be constructed.

Summary and Example

Equations (28) and (30) indicate that a solution of one
of the two types considered caa be constructed whenever
bg + dp
2
the solutions found apply when the values Ko = 8/3 Go and

h ¢S . For example, consider the limits for which

V = 4/Go7p are used. Equations (22,23) give ¢p = 150.00°
and ¢s = 165,52°., Therefore, according to Eq. (28), a
solution can be constructed involving only a P front and

an S front if

165.00f‘i g < 165.52° (31,
wpile an additional S frgnt is required when, Eq. (30),

157.76° < g < 165.00° (32)

Finally, if $S < 157.76° neither of the proposed solutions

applies.,

Equations (31,32) may be restated in terms of Eo by
using Eq. (24). 1t is easily deduced that relation, Eq. (31),
holds if G < Eo < 1.07 G, while Eq. (32) holds for
1.07 6 <& < 2,29 G, - For G > 2l29 G, no solution of

the type considered exists,
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v NONLINEAR MATERIAL.

A, Material Description

The form of the moduli X and G as functions of the in-

variants was taken from Ref. (2]. For initial loading,

2

G =G, + G |f.x"2'| = GyJy + 6,0 (33)
K« K -~ K.,€ +1<e2 (34)
o 17kk 27kk
and for unloading and reloading,
= = = - 2
¢ =G + G |/T;| - 8,3, + 6,37 (35)
K=K - KJ; (36)

The magnitudes and signs of the constants Gj ara to be
selected such that the stress-strain diagrams have the
curvatures and general character shown in Figs. (la) and

(2a).

B. Method of Solution

The configurations of the solutions shown in Figs.
(7,8) for the bilinear material are used as guides in the
determination of solutions in the nonlinear case. Beginning
with a discontinuity in the principal stress normal to the
front, ¢ = ¢P , Eq. (A-1), it can be expected that instead
of the discontiruities in shear in Figs. (7) or (8), the

nonlinear material will prouuce regions in which shear stresses
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change in a continuous manner., Because of the change in
curvature in the unloadinz-reloading portion of the diagram,
Fig. (2b), there is also a possibillity of a noncharacteristic

shock in shear adjoining the continuous region.,

Conditions which define the discontinuity in normal
stress at ¢ = ¢P are discussed in Appendix A. Usiag an

inverse approach, an arbitrary jump UP in the principal stress

1
01 normal to the front is selected. 1integration of the in-

cremental relation at the front, Eq. (A-3) yields the corre-

sponding values og and ei at the front, and hence the starting
values
- & (cP - o5 1
8173 Y% 2 -
S 4
S2 z %1
P P
Jy =0y + 202 (37)
T
9 =4dp -3
p
17 &

J
Fov locations ¢ > ¢P 5 Eqs. (16)-(19) govern the

continuous portion of the solution, where the moduli are

given by Eqs. (33)-(36). Egquations (16) may be satisfied

1§ 1] ! 1]
by regions of uniform stress, s ® =J =06 =0, or by

®2 1

regions of stress variation when Eq. (19) is satisfied.
Because Eq. (19) implies that the determinant of Eqs. (16)
vanishes, only three of the four Equations (16) are thus

independent. However, since Eq. (19) must remain valid
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throughout reglons of stress change, a fourth independent
1) 1 1

)
equation in S1 3 S5 » Jl and (sl - 82)6 is obtained by
differentiation of Eq. (19) with respect to ¢. In the
present problem the resulting relation is of interest only
for the case of changes in the deviatoric stresses, when

]

J1 = 0. TFor this case the fourth equation beconmes

3
(251 + 12)51 + (Zs2 + s

2
O TV o *)
Vs, c, I J2| sin 2¢ (38)

Substitution of Eqs. (21) and (38) into Eqs. (16) yields

the following expressions for the four unknown derivatives
2

. 2pve VT, *
8, = —————J—-—& sin 24 (?3) )
1 Gl(s1 - 32)
1 H )
85 = -8 (4?)
t
J, = ¢ (41)
)
] . ~8
8 = 1 (42)

(s1 - sz) tan 2y

Equations (39)}-(42) permit the numerical determination of
the values of stresses in regions of continucus loading or
unloading-reloading by quadratures, provided the values on

one boundary of the region are known.

The possibility of a noncharacteristic shock in shear

associated with the solution must also be explored. From

the case of uniaxial ure waves it ig well kneo

in a material which continuously hardens as the stress level

*
) The value Gi shown applies for the case of loading.

For unloading or reloading it is to be replaced by 51 .
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§
is changed from level "A" to a level "B", discoucinuities
with a jump in stress from "A" to "B" can occur, The stress-
strain diagram for shear, Fig. (9), indicates that this is
the situation in tge reloading portion, between points 3 and

3 4 of the diagram. The complete unloading-reloading diagram

has a point of contraflexure at 3. In such a case it is also
known from prior experience that there will be a continuous

stress change, immediately followed by a discontinuity.

g The discontinuity and its velocity can be represented

——

graphically using the stress-strain diagram, Fig. (9). Stress
and strain may change discontinuously from a value corresponding
to a point 2a, between 2 and 3, to a point 3a, between 3 and 4.
Stability of the shock requires that a line 3a to 22 is tangent
to the T~y diagram at point 2a. The slope of the line defines

. the shock velocity. As the diagram applies only as far as

point 4 the stress level cannot exceed the value at point 4.

y If the discontinuity present in a sclution does not reach
a stress level corresponding to point 4 where the value of J,
is equal to the previous peak, the solution can not have a
region of further loading in shear. If the discontinuity is
such that a value J, , equal to the previous peak, is reached

2

a region of further loading is possible.

C. Determination and Description of the Solution.

b Figure (10) shows the configuration of the solution which

3 will be constructed., It is a generalization of the one in
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Fig. (8) for the bilinear material in which two discontinuities
in shear occur, one in unloading-reloading, one in further

loading.

At ¢p the invariant J, changes discontinuously from J, = 0

to a value 32 . The direction of the principal stress 0, is

1
defined by the angle eP = ¢P - % , while the value of og corre~
sponding to the chosen value oi can be computed from the re-
lations given in Appendix A; Behind the front, ¢ > ¢P s, there
is a }egion of uniform stress which terminates at the root ¢1
of, Eq. (21) using the value of G for unloading. At this
location a region of continuous unloading of deviatoric and
shear stresses begins. Forward integration of Eqs. (39)-(42);

uging the initial values, Eq. (37), determines the stress

field numerically, point by point.

The integration is'stopped at a trial location ¢2 > ¢1
which is selected so that the value of 6, defining the
direction of the principal stress, satisfies the inequality
0 < ¢ - % . (This ensures that a stable shock in shear in the
location ¢2 is possible.) As next step, the location $S of a
shock in shear is determined in which the shear stress changes
from the value found at ¢2 to the value which makes Jz equal
‘to the previous maximum of J2 + The point ¢2 and the shock
described are accepted if, and only if, 35 o ¢2 , otherwise

another point ¢2 must be selected, and the process xepeated.

-

For ¢ > ¢2 = ¢s there 1s again a region in which the

principal stresses remain constant. This region can be
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terminated at a root ¢ = ¢3 of Eq. (21) using G for loading,
in which location a new region of continuous stress change
begins; Forward integration of Egs. (353-(42) proceeds until,
at ¢ = ¢6 y the principal stress 01 becomes perpendicular to
the surface, i.e., 6 = % . From the point ¢ = ¢, to the

surface, ¢ = m, the stresses are again uniform. The value

of the principal stress O, obtained in the location ¢A is the

1
value of the applied surface pressure which corresponds to the

originally assumed value ai .

There 1is also the possibility of a solution which does
not contain a region of change associated with further loading
in stress betwecen ¢3 and ¢4 . This solution corresponds to
the one in Fig. (7) in the biiinear case. In this solutiomn a
shock can be selected sucﬁ that the principal stress for

$ > ¢2 is vertical.

D. Numerical Results

-

.

The moduli chasen for the first two.numerical examples

are
G = 7.178 - 20.0 l/?:l ]
(43)
K = 11.965 - 150.0 €,
for loading, and
G = 4,0 + 40.0 |/J£| (44)

for unloading and reloading.
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Because the modulus K affects th:2 solution only during
loading at ¢ = ¢P no information for unloading is reguired.
It may be seen from Eq. (39) that solutions in regions of
continuous stress changes (in shear) are influenced only by

coefficients Gl and 51 . Without actual loss of generality
G ¢, , €

2+ G35 Gy were conveniently assumed to be zerxe.

¢ 3

Figures (l1) and~{(12) show numerical results for the
woduli given above for two different ratios of surface pressure
P It may be noted that the regions
of continuous stress change are quite small in angular extent.

speed, V, to the speed c

This reflects the relatively smail amount of curvature of the
stress~-strain diagrams for the moduli used. There is a
relatively small change %n ol from the value at ¢ = ¢? to the
surface value at ¢ = m. However, if stress components in the
horizontal and vertical directions, ox and oy respectively,
are considered [see Figs. (13) and (14)] the changes in the

stress field are more gignificant and visible.
Figure {(15) shows numerical results for the modulus
G = 4.0 + 10.0 |/J£[ (45)

for unloading and reloading. The initfal loading moduli were
chosen to be the same as Egqs. (43). In this case only one
region of continuous srvess change i5 present. The stress
changes introduced by the shock in shear are sufficient to

satisfy the boundary conditions, and no region of further
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X loading is —-equired. This alternate solution, corresponds

to the one shown in Fig. (7) for a bilinear material. It
occurs if the parameters are such that a shock in shear can
be selected so that the principal stress oy becomes verticai,
6 = % , immediately behind the front. In this case the front

is represented by the line 2a-3a in Fig. (9).
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APPENDIX A

Consider a plane moving frout at which discontinuities in
stresses and velocities occur, and let E,n,L be a Cartesian
coordinate system, Fig. (A-1), where £ is normal, and n,%
tangential to the front, Conditions for discontinuities of
stress and velocity normal as well as tangential to the front

will be studied, but the two cases must be treated separately.

1. The P~front.

A front whare discontinuities of stress and velocity
occur in the direction § of propagation of the front will be
referred to as a P-front. Let AoE ’ AVE be the discontinuous
changes of normal stress and velocity, respectively., Conser-~
vation of momentum at the front requires

Aag = pcPAvE (a-1)
where p is the velocity of propagation of the front, while
L \
ﬁeg = E; AVE
= ] A-2
Avn AVC 0 > ( )
= Ao 0
Aon ¢ # )
Equation (A~l) and the first of Eqs. (4-2) give the relation
2 Ao€
c,, = . The inclination ¢, of such a front in the problem
P pAs:g P

considered in the body of the report is thus

Ac—”’
bp = T - sin~t [%v ‘SKEEI (a-3)
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Consider in detail the case where the region ahead of the
front is stressless and at rest. The normal to the front

is then a principal direction, 1i.e., © ]

17 % » 9% %%
0y = oC . To find for any selected value Aol the jumps in
the other quantities Eqs. (1) and (2) are combined with
Eqs. (A-1) and (A-2) to obtain the "one dimensional" incre-

mental stress-strein relation

= (K +

wis

o G) € (A-4)
Using the values of K and G given by Eqs. (33) and (34) the
integral of 62 can be found in closed form. First Eq. (1)

is integrated to express J1 as a function of ekk . The

result is substituted into Eqs. (5), (6) and (33), then

into Eq. (A-4), with the result

do 7

EE%'+ ao, = lecj ei'l (A-5)
where

a = % 3 G1 )

€p = % - % 6o

C, = =K + akK_ + 26,K_

Cy = K, - 3 aky = Gk - 66,k

Cp = 3 aky + 3 Gy + 66K Ky

Cg = -4K K65 - 3 G3Ki

Gy = 26,K K,
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The solution of the differential equation {(A-5), for the

initial condition g, = 0 when el = 0, is

7 7

(—l)j’m(j-l)! -ae m-1
o, = -2 ) 1§ - C.(1-8, e °71) ¢ + 3K € -
2 m=1 j=m aJ m+l(m--l)! J lm 1 °
.2 3 _
-1.5 Ky€e] + K €] (A-7)

where alm = 1 for mal, Glm = 0 for m ¥ 1.

A Newton Raphson technique was used in the examples to
find the value of El for the selected values of 02 . Gl may
then be found from the integral of Eq. (1) giving the compnlete

stress system at the front.

2. The S-front.

Discontinuous changes at the S-frount occur only in the

.velocity Ya parallel to the front, and in the corresponding

stress °€n = T, Conservation of momentum at the front

requires
=2 "'8
AT pcsAv (A-8)

where g is the velocity of propagation of the front, while

1
Ay = —— Av
ch n ]
Av£ = AVC =0 ! (A-9)
o IS = Q
AGE Aon Aoc l

Equation (A-8) and the first of Eqs. (A-9) give the relalion

2 At

cg = 253; . The inclination ¢s of such a front in the problem
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considered in the body of the report is thus

-1 1% _ar )
¢S = T - sin [v ZpAY) (A-10)

To determine the ratio AT/AY consider the case where the
front propagates into a region which has an existing stress
field with principal directioas not perpendicular to the

front:i, The incremental stress-strain relation is
T e 26 Y (A-11)

where ¢ depends on the invariant

2 2 2
= + + + -12
I, Sg ) Sn T (A-12)

As stated in the body of the report, only discontinuities in
shear for unloading - reloading were required. For thic
situation Eq. (A-11l) was integrated numerically using Eq. (35)

for G.
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APPENDIX B

Bilinear Fluid.

The simplest case of the new material model considered
in this report is that of a bilinear fluid with a pressure-
volume relation similar to the one shown ian ¥Fig. (1b) for
the suvlid, 1f a half-space of such a material is subjected
to a supersonic progressing step load, the solution is trivial.
1t consists of a shock front (in which the lower modulus KL
for loading applies) follr od by a uniform stress field. The
higher value of the modulus, n, @ ~s not affect the solution
at all. The simpler nature of the bilincar fluid, as com-
pared to the solid, makes it possible to give a closed form
solution for the alternative problem of 2 half-space, Fig.
{(B-1), subject to a progressing pressure pulse which rises
suddenly to a value Po , but subsequently decreases linearly.
This problem ipvolves both loading and unloading in the fluid,

so that the nature of the material affects the vesult.

The basic cquations describing an inviscid fluid may be
vricten in nonaimensional form by introducing the following
units of length, veloci*, aad pressure, respectively,

P
L discentinuity in surface pressure
gradient of surface pressure

length:

>

velocity: V velocity of surface load

pressure: p VY

where e, is the nominal density of the fluia, The linearized

nondimeasional equatioas of conservation of mass and momentum
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are
%5 + 3w o ) (B-1)
PrtEpdedh -0 )
[+]

where p is th2 pressure in the fluid while u and v are the
horizontal and vertical components of velocity, respectively.

In this form the equations depend solely on the nondimensional

parameter Kz . This parameter varies because K assumes the
. P,V
value KL or KU depending upon whether the fluid is being

loaded or unloaded - reloaded, respectively.

In the steady-state problem considered here, p, u and v
ar~ necessarily functions of y and the combination § = x-t.

After elimination of u, Eqs. (B-l) can therefore be reduced to

-a—a_-a-!‘o \'
dy d
(B-2)
23 _ 2w,
2 3 " 7y 0
where Z 1is the nondimensional parameter,
Z (B-3)

‘which may assume the alternative values ZL , Zu for loading

and unloading -~ reloading, respectively

_____ -

Consider the situation when V is supersonic with respect

to the sound speeds for loading, BL , and unloading,

[«
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Ky L

— > — . 1If the fluid were linear with K = K, instead
o o L

of bilinear, one finds easily that the solution consists of a

shock front inclined at the angle ¢P U sin-l [% V %u]
o

followed by gradually (as a matter of fact linearly) decreasing
pressure, It will be assumed, and subsequently ver. fied, that
the situation for the biiinear fluid is similar, i.e., there

is loading at the front only, and unloading everywhere else.

As the entire region between the surface and the ?P-front,
Fig., (B~2), is assumed to be an unloading region, the problem
requires the solution to the hyperboiic differential equations
(8=-2) for Z = ZU in this region. This is now a limear hyper-’
bolic problem. As the boundary conditions for this problem,
one imposes at all points Q on the loading front, i.e.,

3

= -ZLyQ , the momentum requirement

Q
v, = Z (B-4)
Q ~ “LPq
while at any surface point T with the coordinate ET , the
surface pressure is specified,
Pp = P (1 + &) (B-5)
The linear form of the boundary conditions, Eqs. (B-4)
aand {B-5), in this linear hyperbolic problem implies that the
pressvre p(f,y) is of the linear form
p(&,y) = Po(l + § + ky) (B-6)

where the coefficient of § is unity iu order to satisfy
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Eq. (B-5), while the constant k is so far undetermined.

Substitution of Eq. (B-6) into Egqs. {(B-2) leads to
“v(L,y) = p_(v_ + KE + 22y) (B-7)
s Y Po'Vo U

vhere Vo is a constant of integration, The values of k and

v, are determined by substitution of Egs. (B-6) and (B-7)

into Eq. (B-4),
(B-8)

‘In order to verify the premise that the entire wedge
between the P-front and the surface is continuously unloading
consider the pressure, obtained from Eq. (B-6), p = po(l + X -
t + ky). Since %% is obviously negative, the validity of the
solution is confirmed. Equations (B-6), (B~7), (B~8) and

Fig. (B-2) thus describe the solution to the problem,

The solution presented above, while intended for com-
pletely supersonic velocities V of the surface pressure,

appears to remain valid when the load moves subsonically with

K
respect to the higher of the sound speeds, 32 , provided
o
that V is still supersonic with respect to the sound speed in
KL
loading, r It is of general interest to sbow that in
o

this case, where the wituation 1s not completely supersonic,
the above solution, while valid, 1s not unique. Alternate
solutions are obtained by adding terms which satisfy homogeneous

boundary conditions on the surface and on the P-front.
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For the case now being considered, Eq. (B-3) gives a

negative value for 25

the real and positive quantity Y,

while ZE remains positive. 1Introduce

Y = -2 ; Y >0 (B-9)

(B-10)

(B-11)

with
¢ = r} cos D (B-12)

is a solution of Eqs. (B-2) which satisfies the homogeneous
boundary condition p = 0 on the surface 6§ = 0 for all A.

The constaat A can be used to satisfy the remaining conditions,
Ea. (B-4)., If singularities in pressure and velocity are
elinminated as inappropriate, one obtains an infinite number

of roots A = An , nameiy,

B e e ; nel1, 2, ... (B-13)

where the principal value of tan-l i3 used. Therefore, one



e 46 ==

may add to the previous .olution, Eqs. (B-6), (B-7), (B-8) and

(B-9), a term of the form of Eqs. (B-11l) where

¢ = n§1 Anr(ln)cos xne (B-14)

Tne coefficients An are arbitrary, except for the restriction
that %% < 0 everywhere. Steady-state solutions are thus not
unique when cthe surface load moves subsonically with respect

to cthe speed of sound which applies for unloading - reloading.
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