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PREFACE

This Memorandum further documents the man-machine
interaction studies sponsored by the Advanced Research
Projects Agency. The data organization illustrates the
needs of a typical on-line relational data file, such as
might be found in a military command and control environment.

This Memorandum exemplifies techniques used in the
implementation of one functional aspect of the GRAIL
(Graphical Input Language) system. The GRAIL system
techniques are now being used at RAND in a series of experi-
ments designed for direct application to the Defense
Intelligence Agency and for the Air Force Aeronautical
Chart & Information Center. It is expected the techniques
will also be useful to the Army Map Service and the Navy
carrier force command-control and intelligence facility.

DoD agencies, military agencies and ARPA contractors
enlisted in constructing interactive graphical systems may
obtain detailed information on other functional aspects of
GRAIL by contacting the Computer Systems Group, Computer
Sciences Department, The RAND Corporation, 1700 Main Street,
Santa Monica, California 90406.
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SUMMARY

RING STRUCTURES

The disposition of data and available storage space
described in this Memorandum is effected by the GRAIL system
by a hierarchy of ring structures that represent the logic
of both the user's program and the system itself. As their
name implies, ring structures are continuous chains of
elements compartmentalized in a structure space in such a
fashion that any unused space is always compressed within
a single area whose boundaries change with the number of
elements in use at any given time.

This Memorandum describes five ring structure types:

1) The system structure describes space allocation
and data disposition in the system's secondary
area. It also contains information about the
current user's file. When GRAIL is in use, a
copy of the system structure exists in primary
storage, and is updated in secondary storage
whenever the operating environment changes.

2) The files description structure describes in a
gross way all secondary storage space that may
be allocated to the user's files; it resides at
a fixed location in the user's secondary storage
area. A copy is read into primary storage only
to access or to manipulate a file.

3) The file structure describes space allocation
within a user's file as well as the interrelation-
ships, names, and secondary storage locations of
labeled process definitions.

Part of the above three ring structure types is a
space allocation substructure that descrihes the location
of data sets and space available for use in secondary
storage.
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The twvo remaining ring structure types are the context
and plane structures:

4) The contex?! etructure is a part of the internal
orgarization of a labeled process definition. "ne
such structure exists for each labeled process
definition in a user's tile. It contains informa-
tion about labels (and their attributes) and the
hierarchy of unlabeled process instances within
the labeled process definitions. A copy of the
procers definition exists in a primary storage
wvhenever a display frame of that prccess defini-
tion is being displayed.

S) The plane etruciure, one for each process defini-
tion, contains information about the connectivity
of graphical elements in each display frame and
the translation of parameters for each labeled
process instance in the frame. It also provides
information that permits an association hetween
ths virtual image and its internal logical repre-
sentation. A copy of the plane representing the
process being operated upon exists in primary
storage.

PRIMITIVES

Primitives are remote code requences that perform basic
operations on all GRAIL ring structures. They obtain and
release elements, locate elements, and modify the ring
composition.
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1. INTRODUCTION

Bacause representatior and maintenance of the GRAIL
system and ucer's program requires data far in excess of
what can be accommodated in primary storage, the hulk af
this information must be stored in secondary storage. Thus
arises the necessity of monitoring the disposilLion of data
and of all remaining available space.

In general, ring structures are used to represent the
logic of both the user's program and the systerm itself.

For example, they describe the connectivity of flow diagrams,
and, less apparently, the space allocation of a user's pro-
gram in secondary storage.

ELEMENTS AND RINGS

Rings are continuous chains of elements. Flemerts are
either 8 or 16 bytes in length. Each 4-byte word of a
8-byte element and the first two words of a l6-hyte element
consist of a code and either a link or a datum. The last
two words of a 16-byte element are data (see Fig. 1l). The
first bit of the code byte determines whether the following
three bytes constitute a link or a datum. Links, which are
relative addresses of other elements, are maintained by a
group of ring structure primitives. All links are relative
to the beginning of the space in which the ring structure
resides.

The upper link is the objeet link and the lower is the
set link (see Fig. 2). One or more elements linked through
the object link make up an objeet ring. Similarly, one or
more elements linked through the set link compose a get ring.

Basic operations on ring structures~-such as finding,
procuring, and releasing elements--are performed by ring
structure primitives, written as a group of remote code
sequences. A mechanism employed in these operations is an
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array of pointers (see Fig. }) that delimit the houndaries
of the structure's space. Though external to the structure
space, the array normally resides in the same automatic
storage that contains the structure spacc.

STRUCTURE SPACE

Rings of elements are compartmentalized in a structure
space (see Fig. 3). The boundaries of the availahle space
(see Fig. 3) change according to the number of elements in
use at any given time. Wwhen an element of either length
is requestnd, the appropriate element bounding the avail-
able space is supplied. When returned, the appropriate
boundary element of the type in use is interchanged with
the element to be returned. This operation keeps the
elements in use separated from the available space.

To conserve secondary storage space, the structure
space is compressed and only those elements in use are
recorded.

Elements external to the structure space--for example,
a Pseudo Command Channel Word (PCCW) in the table of PCCWs
shown in Fig. 4--are permissible while the structure is in
primary storage. The links of such external elements are
automatically updated by the primitives. This provides a
current reference to a (possibly) relocated ring.
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II. THE GRAIL RING STRUCTURES

There are five basic ring structure types: 1) the
system structure, 2) the files description structure,
3) file structures, 4) context structures, and 5) plane
structures.

SPACE ALLOCATION SUBSTRUCTURE

Common to the first three structure types enumerated
above is a space allocation substructure (see Fig. 5) that
describes the location of data sets within a particular
area in secondary storage, and also space available for
use.Jr It consists of three parts or rings: the occupied
set ring, the partially available heads object ring, and
the available heads object ring.

The space allocation substructure relates to a par-
ticular region of secondary storage space. Within this
space are data sets. The location of some, but not all,
of these data sets is given in the occupied set ring. 1ID
is the internal identifier of a data set. C,H is the
relative cylinder and head (i.e., the location) cf that
data set in secondary storaqe.‘ A group of logical 1/0
system processes adds elements or deletes elements from
the occupied set ring under program control when adding
or deleting a data set. Optiorally, they can pass the
relative C,H to the invoking process for recording else-
where. Thus, not all data sets in this area appear in the
occupied set ring. Typically, static display frames ani
compiled cead-only processes are recorded here;: the loca-
tion of dynamic display frames and ring structures are kept
elsewvhere.

yfhe secondary storage used was two IBM 2311 disk
drives, one for the system and one for user's files.

*Ime disk pack is divided into 200 cylinders, each
cylinder containing 10 heads.
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A disk head can exist in one of three different states:
completely occupied, completely available, or partially
occupied. The partially available ohject rina (see Fig. 5)
describes the latter case, but does not relate to the data
sets themselves, but only to the amount of free space
available. In particular, the C,H of the element gives the
relative cylinder and head location; the number of hytes
in the element indicates the amount of availahle space in
that head. This object ring also is maintained by the
logical I/0 processes.

The available heads object ring specifias the avail-
ability or nonavailability of each head within the space.
(See Fig. 6 for details.) It is used when a completely
available head is needed, and is maintained hy the logical
1/0 processes.

Because the location of data sets in these three rings
is relative, the absolute lncation is olhtained (for purposes
of reading and writing) by adding to it the hase C,H in the
element labeled "Base.” Addresses are kept in relative
form to facilitate, for example, replication of files; i.e.,
when a file is copied, only the hase address of the copy
need be updated.

SYSTEM STRUCTURE

The epetem structure (see Fig. 7) is a directory, de-
scribing space allocation for the system in secondary stcorage.
It also contains information about the current or last-
addressed user's file. Except for the Initial Program Load,
it is the only data set that res.des at a fixed location in
the system's secondarv storage area. Wwhen GRAIL is in use,
a copy of the system structure exists in primarv storage.
This copy is rewritten on secondary storage whenever the

+

fThe Initial Program Load Record is the first 24 bytes
of cylinder O, head O on each disk opack.
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operating environment changes so that conditions can be
re-established if there is a system failure.

The contents of the identification source element (see
Fig. 7) are distributed as a formal parameter throughout
the system, and are used as a source for internal identifiers
of new data sets. The system key is a label identifying the
current version of the system. Note: in Fig. 7, the pre-
viously described space allocation substructure is present.
(See Fig. 8 for details of user's file information.)

FILES DESCRIPTION STRUCTURE

Similar to the system structure, which descrihes the
system's secondary storage area, is the Files Description
Structure (FDS), which describes the secondary storage area
allocated to the users' files (see Fig. 8). It is the only
data set in the users' secondary storage area that resides
at a fixed location.* Unlike the copy of the system struc-
ture, which resides in primary storage continuous.y, a copy
of the files description structure is read into primary
storage only when there is need to access or manisulate
some file that it describes.

Like the system key in the system structure, the ver-
sion ID is the current version identifier. Again, the
space allocatior. substriicture is present. Additionally,
the files description structure contains a set of file
object rings, whose functions are laheled and described in
Pig. 8. The type identifier is necessary because the log-on
procedure and the file-accession mechanism of the GRAIL
system have been adapted to other GRAIL-derived programs.

FILE STRUCTURE

——

The file structure (see Fig. 9) in the user's file
describes space allocation within that file, and also

¥;h IPL record may reside at 0,0 on this pack as well.
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specifies the interrelationship, the name, and the relative
location of labeled process definitions within the file.

One cylinder of the file space serves as a virtual
memory during interpretive execution of processes. The
occupied set ring of the space allocation substructure
describes only compiled process data sets in the file. The
modification number is a counter for the number of times
that a file has been rewritten, and thus provides a process
with a key as to whether it has the latest information. The
file name is user-specified and matches the file name in the
FDS. A set of process definition object rings, one object
ring for each process in the file, is similar to the file
object rings in the FDS. That is, each object ring de-
lineates the attributes of a process definition; in the
FDS, each object delineates the attributes of a file.

CONTEXT STRUCTURE

The context structure is part of the internal organiza-
tion of a labeled process definition. One such structure
for each labeled process definition in the user's file
resides in the user's file space in secondary storage. A
copy of the context structure for the process definition
(a frame of which is being displayed) exists in primary
storage so that GRAIL can respond to the user's manipulations.

The context structure contains two kinds of information
(see Figs. 10 and 11l): 1) those labels and their attributes
that can be referenced throughout the labeled process defi-
nition (others cannot be so referenced because they are re-
stricted to the plane in which they appear), and 2) the
hierarchy of open-process (unlabeled) instances or labeled
process instances within the labeled process definition.

The label substructure (see Fig. 11) contains labels
and their attributes that are addressable through the
labeled process definition. This substructure is auto-
matically built from label references whenever the user

S
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vrites a label in any of the following three places: a

flow chart frame, a coding sheet frame, or a data-definition
frame. An object ring, one for each label, specifies the
label and its attributes. One of its attributes is its type
(automatic, formal parameters, etc.). Another is a set of
description object rings, one for each line associated with
the label on the data-definition frame. Por each descrip-
tion line, the user supplies the pseudo-operation code,

data declaration, and comments. The number of elements on
each description object ring depends on the length of the
commentary printed by the user. The three keepers (see

Pig. 11) serve as place markers wvhen the user edits a state-
ment or graphical symbol referencing a label. A fourth
attribute of the label is a responsibility set ring denoting
the plane structure data set ID for the plane from which the
data were referenced, and a count of its references in that
plane.

The process name and its internal identifier also appear
in the context structure (see Pig. 10).

The 1enainder of the structure specifies the hierarchy
of open planes in the labeled process definition and the
instances of other labeled processes (virtual contexts) in
the process definition. In Pig. 10, each §/s set represents
the definition of a plane: each S/S represents an instance of
an open or virtual process in that plane. If an §/8 object-
connects to an S/s, it signifies an open-process: if to an
8/V, it signifies an instance of a labeled process. The
plane structure ID and the secondary storage location (rela-
tive to the file base) are given on the S/S elements for
open-process definitions (planes) in the labeled process
definition.

Instances of other labeled process definitions are
virtual within this process. The element (S/S) gives the
virtual process context structure ID (the corresponding
location (C,H]) is found in this file structure), and the
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ID of the labeled instance in this plane structure. The
keeper in the C/S set (see Pig. 10) is object-connected to
the plane from which a frame is being displayed. It is
used to mark the position of the plane that the user is
currently viewing, and changes accordingly as the user
views different display frames.

PLANE STRUCTURE

There is at least one plane structure in the secondary
storage file space (see Figs. 12-17) for each process defi-
nition. A copy of the plane representing the process being
operated upon is in primary storage. The plane structure
cortains information about the flow-1line connections between
elements in each frame as well as the label translation for
each labeled process instance in the frame. The plane
structure also contains information that permits an assoc-
iation between the virtual image and its internal logical
representation.

Pigure 12 shows the basic object ring containing the
various attribute sets and the plane-structure data set ID.

Pigqure 1) shows the frame's structure for frames in
the plane. Each frame object specifies:

1) The display frame ID and its location relative to
the file base:;

2) A source of tag identifiers that hecome uniquely
associated with each graphic element, and that
are used with the hardware match circuitry to
detect a stylus pointing to the flow lines;

3) A set of CCW objects, one for each fiqure dis-
played in the frame.

The Channe! Command Word (CCW) object item element
connects to a graphic object ring specifying the attributes
of the displayed figure. Por the frame being displayed,
an external element (the PCCW), replaces the CCW displace-
ment element on the CCW object.
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Figure 14 shows the translation of formal parameters
for a process instance, and also the set of defined
decisions.

Pigures 15-17 show the graphic object rings and their
attributes, e.g., flow connectivity.
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III. RING STRUCTURE PRIMITIVES

The primitives are Remote Code Sequences (RCS) that
perform the basic operations on all GRAIL ring structures.
For example, they find, procure, and release elements.
Because the primitives use the same hardware registers for
consecutive primitive operations, there is a minimum need
for intervening instructions by the invoking processes.
Unless the primitive I/0 hardware registers contain an out-
put, they remain unchanged over a primitive. The contents
of other hardware registers may be destroyed.

FUNCTIONS OF PRIMITIVES

Notes to the following:

1) The address of an element, i.e., A (element), is
the address of its first byte, regardless of
whether it is object- or set-connected.

2) The address of a ring, i.e., A (ring), is the
address of any element belonging to the ring.

3) C (Ra) means content of symbolic register a.

OBTAIN AND RELEASE PRIMITIVES

1) Get an 8-byte element from available space.
Input C(R6) A (The address of an arrayf).
Output C(R7) A (The address of an element, if

an element is available).

= 0, if no more element space is
available.
2) Get a l6-byte element from available space. The
parameters are the same as in the above.

+See Fig. 3 (p. 5).
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Build an object ring from available space elements.
Input C(R6) = A (an array).
C(rR7) = A (a LIST).
LIST contains - a, Bl1,B2,...BN,00.
cl,c2,...CK,00, where Bi is the set code
byte for the ith 8-byte element and where
cj is the set code byte for the jth 1l6-byte
element, and where the 00 following BN and
the 00 following the CK indicate the termina-
tion of the 8- and 16-byte eleme..ts, re-
spectively. The common object cod2 byte
is a.

Output C(R7) = A (address of a ring).

Return element to available space.

Input C(R6) = A (an array).

C(R7) = A (element).

Output - None.

Return a ring to available space. This primitive

function is a process, not a remote code sequence.

It is the single exception.

Parameters: A (RING), the higher-order bit
indicates either object or set ring
to be returned.

A (ARRAY)

Return.

LOCATE ATTRIBUTE PRIMITIVES

1)

Search object ring for the element described by
the object and/or set-code ivtes.
Input C(R6) = A (an array).
C(R7) = A (ring).
C(R8) = A (object-code byte, set-code byte).
Output C(R7) A (element, if found).
= 0, if no match on codes occurs.
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NOTE: 1If the object- or set-code byte of the
input description is zero for this primitive and
the following one, the object or set code of the
element is accepted as a matched comparison. If
both code bytes of the input description are zero,
the primitive advances to the next element of the
ring and, without actually comparing, assumes a
successful comparison on both object and set codes.
Search set ring for the element described by the
object- and/or set-code bytes. Parameters are
identical to 1) above.

Search object ring for the element described by
the datum.
Input C(R6)

A (an array).

C(R7) = A (ring).
C(R8) = A (datum to compare).
C(R9) = (# bytes-1) of datum to compare.

Output C(R7) A (element) if datum is found.
= 0, if no datum is found.

See diagram below:

Comparison
begins with

this byte. S

Search set ring for the element described by
the datum. Parameters are to 3) above.
Search object ring for immediate datum.

Input C(R6) = A (an array).
C(R?7) = A (ring).
C(R8) = A (4-byte datum to compare).
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Output C(R7) = A (element), if datum is found.
= 0, if no datum is found.

The second 4 bytes
are used for comparison
with input datum,

datum

Compare link only of set-ring elements.
Input C(R6) = A(an array).
C(R7) = A (ring).
C(R8) = A (4-byte datum, the last 3 bytes
of which will be used for comparison).
See diagram below.
Output C(R7) = A (element), if datum is found.
See diagram below.
0, if no datum is found.

These 3 bytes will be used
for comparison.

These 3 bytes of input data
will be used for comparison.
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7) Set ring advance to the nth element. Ignore
keeper elements in counting.

keeper
92 = 3 K elements
Input C(R6) = A (an array).
C{R?) = A (ring).
C(R8) = § elements to advance, zero is
illegal.

Output C(R7)

A (nth element from current position).

STRUCTURE MODIFYING PRIMITIVES

1) 1Insert an element on an object ring.
Input C(R6) = A (an array).
C(R?7) = A (slement).
C(R8) = A (object ring).
Output - None.
2) 1Insert an element on a set ring. Parameters are
identical to 1) above, except C(R8) = A (set ring).
3) Delete an element from an object ring.
Input C(R6) = A (an array).
C(R?7) = A (element).
Output - None.
4) Delete an element from a set ring. Parameters
are identical to 3).
5) Merge two object rings.
Input C(R6) = A (an array).
C(R7) = A (first ring).
C(R8) = A (second ring).
Output - None.
6) Merge two set rings. Parameters are identical
to 5) above.



-3)3-

REFPERENCES

1. Ellis, T. O., J. P. Heafner, and W. L. Sibley, The
GRAIL Project: An Ezperiment im Nar.-Machine Conm-
mun{oations, The RAND Corporation, RM-S5999-ARPA,
September 1969.

2., o====- o The GRAIL Language and Operations, The RAND
Corporation, RM-6001-ARPA, September 1969.
J. ----- o The GRAIL Syetem Implementation, The RAND Cor-

poration, RM-6002-ARPA, September 1969.



OCUMENT CONTROL DATA

! OHGRAtDeG aLNiIvIlY Jo MPOST HICUBTY CLASSH ICATION
UNCLASSIFIFD
The Rond Corporotion n CoOw
3 #eOet time
TUE CRALL RINGC STRUCTURE AND PRIMITIVES
4 AUIROEY) floe came. himl same. innaly
Ellfs, T. 0., J. F. Heafner and ¥. L. Siblcy
3 010001 DAl 6s 10141 MO OF PAGHS 6% NO OF B3
April 1970 42 3

COsateall O8 CoANT 1O

8 ONGINAIOTY #PO8T NO

DACH15-67-C-0141 RM-6241-ARPA

Go AVARABHITY AUMITALION NOIKTY

DOC-1

% SPONIONNG AGINCY
Advanced Rescarch Projects Agency

10 asdieace

A description of the ring-structure mech-
anism that controls the disposition of data
and storage space in the GRAIL system. The
ring structures--continuous chains of ele-
ments containing codes and either links or
data--represent the logic of both the
user's program and of the system {tsclf.
The basic typces are (1) system structure;
(2) files description structure; (3) file
structure; (4) context structure; and (5)
plane structure. Common to the first three
types 18 a space allocation substructure
that describes the location of data sets
vithin a particular area in secondary stor-
age and of space available for use. Basic
operations on ring structurcs--such as
finding, pro- .ing, and releasing ele-
ments<-are performed by ring structure
primitives, written as a group of remote
code sequences.
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