
, «*.

S
THE ORAIL RINO STRUCTURE

AND PRIMITIVES
T O Mil«, i r Hmminrnt mt^d W L mbkmf

TO

D D C

ADVAN -«D RB8BARCH PROJECT8 AOENCY

mm,
•AMTA MONICA • CAllfOINIA-

;. u M i) . !

•*i an» —W ro« rt-Bi« iux4u AW MU; rrt ottTtiiimo« u imuMmo. HI

AAT« ommm »m ••• •

KM «Mt AMI-A

TIIE ORAIL RING STRUCTURE
AND PRIMITIVES

T. O. EUi«, J. F. Heafner and W. L. Sibley

Thit iwearrh i« »upportwi by ihr AHvnnrrH Ron-arch Projecl» Agency under Conlract
No. DAHC13 67 (. 0141. Views or concluüions contained in this study should not he
inlrrpreled as representinp the official opinion or policy of Rand or of ARPA.

DISTRIBUTION STATEMENT
This document has lieen approved for public release and sale; its distribution is unlimited.

ß» Tfo K-H11 V&v»***'
I700MAINSI • SANtAMONlCA • CAlltQINI

-lli-

PREFACE

This Memorandum further documents the man-machine

interaction studies sponsored by the Advanced Research

Projects Agency. The data organization illustrates the

needs of a typical on-line relational data file, such as

might be found in a military command and control environment.

This Memorandum exemplifies techniques used in the

implementation of one functional aspect of the GRAIL

(Graphical Input Language) system. The GRAIL system

techniques are now being used at RAND in a series of experi-

ments designed for direct application to the Defense

Intelligence Agency and for the Air Force Aeronautical

Chart & Information Center. It is expected the techniques

will also be useful to the Army Map Service and the Navy

carrier force command-control and intelligence facility.

DoD agencies, military agencies and ARPA contractors

enlisted in constructing interactive graphical systems may

obtain detailed information on other functional aspects of

GRAIL by contacting the Computer Systems Group, Computer

Sciences Department, The RAND Corporation, 1700 Main Street,

Santa Monica, California 90406.

SUNNAHY

RING STRUCTURES

The disposition of data and availabla •tora^a apaea

described in this Mamorandun it affaotad by tha GRAIL eyatan

by a hiararchy of ring structuras that rapratant tha logic

of both tha user's program and tha ■ytta« itarlf. fta thair

name implies, ring structure! «re continuous chains of

elements compartmentaliiad in a structure spaca in such a

fashion that any unused spaca is always cosiprassad within

a single area whose boundaries change with tha number of

elements in use at any given time.

This Memorandum describes five ring structure types:

1) The eye tern etruoture describes space allocation

and data disposition in the system's secondary

area. It also contains information about the

current user's file. When GRAIL is in use, a

copy of the system structure exists in primary

storage, and is updated in secondary storage

whenever the operating environment changes.

2) The filee deeaription structure describes in a

gross way all secondary storage space that may

be allocated to the user's files; it resides at

a fixed location in the user's secondary storage

area. A copy is read into primary storage only

to access or to manipulate a file.

3) The file structure describes space allocation

within a user's file as well as the interrelation-

ships, names, and secondary storage locations of

labeled process definitions.

Part of the above three ring structure types is a

space allocation sufcstruoture that describes the location

of data sets and space available for use in secondary

storage.

-VI

Tli« two r«M«lAln9 '*•>• •trociar» tvp«= *ro •• * &mfnt

«ntf piim tlr^ctur««!

4} l*m tonttMi iimetuM 1« • p*rt of tho intomol
or^ariMtloo of • labolcd proottt doflnielon. • ^

■ueh ttruetttro oxltt« for oaoh labolod proostt
doflnltion in • u«or*t filo. It eontaini inforaa-

tlon «boot lobolt (and thoir Attribut»«) and tho

hiorar^iy of unlabalad proooat inataneat within

tha labolod proooat dafinitlona. A oopy of tha

prooota d#f mit ion axiita in a primary ttoracra

whenever a display frame of that prcsatt defini-

tion ia baing displayed.

5) Tha plan« »truetur*, one for each process defini-

tion» contains information about tha connactivity

of graphical element« in aach display frame and

tha translation of parameters for each labeled

process instance in the frame. It also provides

information that permits an association between

the virtual image and its internal logical repre-

sentation. A copy of the plane representing the

process being operated upon exists in primary

storage.

PRIMITIVES

Primitives are remote code sequences that perform basic

operations on all GRAIL ring structures. They obtain and

release elements, locate elements, and modify the ring

composition.

-vll-

CONTKNTS

PRZPACB Ill

SUMMARY V

FIGURES lx

Section
I. INTRODUCTION 1

Elements and Rings 1
Structure Space 4

II. THE GRAIL RING STRUCTURES 7
Space Allocation Substructure 7
System Structure 9
Files Description Structure 12
File Structure 12
Context Structure 15
Plane Structure 19

III. RING STRUCTURE PRIMITIVES 27
Functions of Primitives 27
Obtain and Release Primitives 27
Locate Attribute Primitives 28
Structure Modifying Primitives 31

REFERENCES 33

-Ix-

FIGURES

1. Ring Structure

2. Ring Structure

3. Ring Structure Pointers

4. An External Element

5. Space Allocation Substructure

6. Available Heads Element

7. System Structure

8. Files Description Structure .,

9. File Str icture

10. Plane Structure

11. Context Structure

12. Plane Structure

13. Plane Structure

14. Plane Structure

15. Plane Structure

16. Plane Structure

17. Plane Structure

2:

2:

2:

2<

25

26

-I-

B«o«ui« r«pr«s«nt«tic»n «nd MilnUiiane« of th» «mAtL

■ytt«n and utvr's proqrtm rmqvlrm» data far In axoaaa of
what can ba aooonmodatad in primary atorafa« tha bulk of

this information muat ba atorad in aacondary atoraga. That

arises tha nacaasity of Monitoring tha diapoailion of data

and of all remaining available space

in general, ring structuraa are uaad to rapraaant tha

logic of both the user's program and tha aystarn itaalf.

For example, they describe the connectivity of flow diagraaa*

and, less apparently, the space allocation of a user's pro-

gram in secondary storage.

ELEMENTS AND RINGS

Rings are continuous chains of elements. Elemerta are

either 8 or 16 bytes in length. Each 4-bvte word of a

8-byte element and the first two words of a 16-byte element

consist of a code and either a link or a datum. The last

two words of a 16-byte element are data (see Fig. 1). The

first bit of the code byte determines whether the following

three bytes constitute a link or a datum. Links, which are

relative addresses of other elements, are maintained by a

group of ring structure primitives. All links are relative

to the beginning of the space in which the ring structure

resides.

The upper link is the object link and the lower is the

eet link (see Fig. 2). One or more elements linked through

the object link make up an object ring. Similarly, one or

more elements linked through the set link compose a set ring,

Basic operations on ring structures—such as finding,

procuring, and releasing elements—are performed by ring

structure primitives, written as a group of remote code

sequences. A mechanism employed in these operations is an

3

I

3 a 2
a

? i
:

5

ui

5
i

00

U
N

K

O
R

D

A
TU

M

LI
N

K

O
R

D
A

TU
M

UJ

8
U

UI B o o

Ü
5

I

o

Öl

o

3

<,-

c
o

I
I

er

-4-

array of pointers (••• fig.)) that dallitit th« houndaria«

of tha structure'»i apaoa. Though axtamal to tha structura

spoco. tha array normally ras^daa in tha sana automatic

atoraga that contains tha structura apaco.

STRUCTURE SPACE

Rings of alamenta ara compartmentalized in a structura

space (see Fig. 3). The boundaries of the available space

(sea Fig. 3) change according to the number of elements in

use at any «given time. When an element of either length

is request > I, the appropriate element bounding the avail-

able space is supplied. When returned, the appropriate

boundary element of the type in use is interchanged with

the element to be returned. This operation keeps the

elements in use separated from the available space.

To conserve secondary storage space, the structure

space is compressed and only those elements in use are

recorded.

Elements external to the structure space—for example,

a Pseudo Command Channel Word (PCCW) in the table of PCCWs

shown in Fig. 4—are permissible while the structure is in

primary storage. The links of such external elements are

automatically updated by the primitives. This provides a

current reference to a (possibly) relocated ring.

-5-

>
<
en
on
<

o
Q.

0)
t.

Ü

to

c
•r-
a:

i

CO

O)

-6-

E
0)

UJ

0)

I
I

-1-

II. THE GRAIL RING STRUCTURES

There are five basic ring structure types: 1) the

system structure/ 2) the files description structure»

3) file structures# 4) context structures, and 5) plane

structures.

SPACE ALLOCATION SUBSTRUCTURE

Common to the first three structure types enumerated

above is a space allocation substructure (see Fig. 5) that

describes the location of data sets within a particular

area in secondary storage, and also space available for

use. It consists of three parts or rings: the occupied

set ring, the partially available heada object ring, and

the available heads object ring.
The space allocation substructure relates to a par-

ticular region of secondary storage space, within this

space are data sets. The location of some, but not all,

of these data sets is given in the occupied set ring. ID

is the internal identifier of a data set. C,H is the

relative cylinder and head (i.e., the location) of that

data set in secondary storage. A group of logical I/O

system processes adds elements or deletes elements from

the occupied set ring under program control when adding

or deleting a data set. Optionally, they can oass the

relative C,H to the invoking process for recording else-

where. Thus, not all data sets in this area appear in thr»

occupied set ring. Typically, static display frames «nl

compiled read-only processes are recorded here; the loca-

tion of dynamic display frames and ring structure« are kept

elsewhere.

The secondary storage used was two IB*« 2311 disk
drives, one for the system and one for laser's fllss.

The disk pack is divided into 200 cylinders, each
cylinder containing 10 heads.

-8-

r\
M 1
U 1
»- 1

x 1
a. u 1

»- a
o a

*

ut 1
»- 1
a o 1 c^ 1

X <5 11
u

-9-

A disk head can exist in one of three different states:

completely occupied, completely available, or partially

occupied. The partially available object ring (see Fig. 5)

describes the latter case, but does not relate to the data

sets themselves, but only to the amount of free space

available. In particular, the C,H of the element gives the

relative cylinder and head location; the number of bytes

in the element indicates the amount of available space in

that head. This object ring also is maintained by the

logical I/O processes.

The available heads object ring specifies the avail-

ability or nonavailability of each head within the space.

(See Pig. 6 for details.) It is need when a completelv

available head is needed, am* is maintained by the logical

I/O processes.

Because the location of data sets in these three rings

is relative, the absolute location is obtained (for purposes

of reading and writing) by adding to it the base C#H in the

element labeled "Base." Addresses are kept in relative

form to facilitate, for example* replication of files} i.e.,

when a file is copied, only the base address of the cooy

need be updated.

SYSTEM STBUCTURE

The »ytttm ttruetur* (tee Fig. 7) is a directory, de-

scribing space allocation for the system in secondary storage.

It also contains information about the current or last-

addressed user's file. Except for the Initial Program Load,

it is the only date set that resAdes at a fixed location in

the system's secondarv storage area. Mhen HRAIL IS in use*

a copy of the system structure exists in primary storage.

This copy is rewritten on secondary storage whenever the

The Initial Program Load Pecord is the first 24 bytes
of cylinder O* heed 0 on each disk Deck.

-10-

H

GROUP
INDEX

20 BITS FOR
STATUS OF 20

HEADS

30 BITS FOR
STATUS OF 30 HEADS

30 BITS FOR
STATUS OF 30 HEADS

C» 0 1

2 3 4

5 6 7

CVUNOCR NOS. RELATIVE
TO THE CROUP INDEX

HEAD NOS. «MTHINACVUNOER
Cl MT AVAIL., 0 »' • PARTIALLV
OR OCCUPU 0

ABSOLUTE C.H R* SI C,NI • «EL. C.W
REL.C.H «••81* «EL CVL.NO.» • iREL.Mt*ONOi

Fig. 6--Avan«b1t Htadt CUatnt

-11-

!,

1
?

I

183
.5- J

si 5j

''tl ill
"• * « ■<9

1:11 |i?
~ z ~ ° * n -
fCf- |5'

I I
J I
 J

- i»

s
'Mi
** 51 2*: «-
?5 je »2 l*

-1 ^2 Ssl ii
s* $• r

5 •

- b>

1

^7

in

u
3

«A
I
I

-12-

operating environment changes so that conditions can be

re-established if there is a system failure.

The contents of the identification source element (see

Pig. 7) are distributed as a formal parameter throughout

the system, and are used as a source for internal identifiers

of new data sets. The system key is a label identifyinq the

current version of the system. Note: in Fig. 7# the pre-

viously described space allocation substructure is present.

(See Fig. 8 for details of user's file information.)

FILES DESCRIPTION STRUCTURF

Similar to the system structure, vhich describes the

system's secondary storage area, is the Files Description

Structure (PDS), which describes the secondary storage area

allocated to the users' files (see Pig. 6). It is the only

data set in the users' secondary storage area that resides

at a fixed location. Unlike the copy of the system struc-

ture, which resides in primary storage continuousiy, a cooy

of the files description structure is read into primary

storage only when there is need to access or man im I ate

some file that it describes.

Like the system key in the system structure, the ver-

sion ID is the current version identifier. Again, the

space allocation substmcture is present. Additionally,

the files description structure contains a set of flit

object rings, whose functions are labeled and described in

Pig. 8. The type identifier is necessary because the log-on

procedure and the file-accession mechanism of the GRAIL

system have been adapted to other GRAIL-derived programs.

PILE STRUCTURE

The file structure (see Pig. 9) in the user's file

describes space allocation within that file» and also

-*
An IPL record may reside at 0,0 on this pack as well.

-13-

a>
3

ü
3

U
VI
a
a
VI

i
00

-14-

1 £
< H
Ü O

Ul O l 3
o-i coot
<-l3t-
2< 10 to

c:

?!

£S

v^z

UJ UJ s «»I

VJT" KM

ZLU

So
"-? IJ a.
a

Ui
u
ft
3J3

i/)rj

ae *

|i
3a

o

i
I

o>

a- tot-

J

-15-

specifiea the Interrelationship; the name, and the relative

location of labeled process definitions within the file.

One cylinder of the file space serves as a virtual

memory during interpretive execution of processes. The

oacupied set ring of the space allocation substructure

describes only compiled process data sets in the file. The

modification number is a counter for the number of times

that a file has been rewritten, and thus provides a process

with a key as to whether it has the latest information. The

file name is user-specified and matches the file name in the

FDS. A set of process definition object rings, one object

ring for each process in the file, is similar to the file

object rings in the FDS. That is, each object ring de-

lineates the attributes of a process definition; in the

FDS, each object delineates the attributes of a file.

CONTEXT STRUCTURE

The context structure is part of the internal organiza-

tion of a labeled process definition. One such structure

for each labeled process definition in the user's file

resides in the user's file space in secondary storage. A

copy of the context structure for the process definition

(a frame of which is being displayed) exists in primary

storage so that GRAIL can respond to the user's manipulations,

The context structure contains two kinds of information

(see Figs. 10 and 11): 1) those labels and their attributes

that can be referenced throughout the labeled process defi-

nition (others cannot be so referenced because they are re-

stricted to the plane in which they appear) , and 2) the

hierarchy of open-process (unlabeled) instances or labeled

process instances within the labeled process definition.

The label substructure (see Fig. 11) contains labels

and their attributes that are addressable through the

labeled process definition. This substructure is auto-

matically built from label references whenever the user

-16-

-I* UJ
S
< zu.

^
^

z
CO

UJ

—
u i-t a.

-17-

u ■ ■
li

' I I

\y

-!

|8

Qu

y •-
i I

-f

o

Ur

(f

3
I
1 I

\^

D

LT

5

-lt-

writ«a m lab«l in any of thm following thro« plaooat a

flow chart fraaa« a coding ahoot trmm» or a data-dafInition

fraaa. An object ring* ona for aaeh labal« apaeifiaa tha

labal and ita attributaa. On« of ita attributaa la ita typa

(aatoMatic* formal paranatara* ate.). Aaothar ia a aat of

daacrlption objact rlnga* ona for aaoh lina aaaociatad with

tha labal on tha data-dafInltion fraaa. Por aaeh daaerip-

tlon lina, tha uaar auppliaa tha paaudo-oparation cod«.

data daelaration, and eomanta. Tha nunbar of alaMnta on

aaeh daaeriptimt objaet ring dapanda on tha length of tha

coawantary printad by tha uaar. Tha three kaapai*« (aee

Pig. 11) aerve aa plaee Marker• whan the oaer edita a atete-

nant or graphical ayaibol referencing a label, h fourth

attribute of the label ia a reaponaibility aat ring denoting

the plan« ttruoture data aet ID for the plane fron «dtich the

data w«r« referenced* and a count of ita referencea in that

plana.

The proceaa nana and ita intamal identifier alao appear

in the context atructur« (aea Pig. 10).

The te«aindar of the atructur« tpecifiea the hierarchy

of open planaa in tha labeled proceia definition and the

inttanoea of other labeled proceaaae {virtual contaxta) in

the procett definition. In Pig. 10, each S/a aet repreaantt

the dafinition of a plan«; each S/S repraaanta an inatance of

an open or virtual proceaa in that plana. If an S/ft ob)ect-

conneeta to an 8/a# it aignifiea an open-procaaa: if to an

S/v, it aignifiea an inatance of a labaled proceaa. Tha

plana atructur« ID and tha aacondary atoraga location (rela-

tive to the file baaa) are givan on the S/S alanenta for

opan-proceaa deflnitlona (planaa) in the labaled proceaa

definition.

Xaetancaa of other labeled procaaa definitiona are

virtual within thia proceaa. The eleawnt (8/S) givaa the

virtual proceaa contaxt atructure ID (the correaponding

location (C.H) ia found in thia file atructure). and the

-1»-

10 of th« l«i>«l«d instano» in this plan« •tmetur«. Th«

• #*;*.- in th« C/8 Mt ••• Fig. 10) !• obTct-connmcfd to
th« plan« fro« «»hioh a fraao is boln« dltplayod. It ii

uood to »ark th« position of th« plan« that th« ua«r 1«

currently vi«winq, and chanq«« accordingly «■ th« tt««r
vi«w« cliff «rent display fra«««.

PLANE STRUCTURE

Th«r« Is at l««st on« plan« structur« in th« sscondary

storag« fil« spac« (««« Pif«. 12-17) for «aeh prooast d«fi-

r.ition. A copy of th« plan« r«pr«««ntin9 th« proc««t bminq

oporatad upon i« in prinary «torafa. Th« plan« structur«

oor.t«ins Information about th« flow-lin« ocmnoctions b«tv««n

«l«swnts in «ach fran« as w«ll as th« labal translation for

aaoh lab«l«d proooss instane« in th« fran«. Tha plan«

structur« also contains infonMtlon that pomits an assoc-

iation b«twe«n th« virtual xrnqm and its intomal logical

r«pr«s«ntation.

Pigur« 12 shows th« basic object ring containing th«

various attribut« ssts and th« plan«-structur« data sat ID.

Figur« 13 shows ths fraas's •tructur« for frsinss in

th« plan«. Each frsm« c^>j«ct specifi«st

1) Th« display fraM ID and its location ralativ« to

th« fil« basai

2) A souro« of tag idantifivrt that bacoM unigu«ly

aasociatad with «ach graphic alanant» and that

ar« usad with th« hsrdwar« match circuitry to

datact a atylua pointinq to th« flow Una*:

3) A s«t of COt ob)«cts, on« for «ach fioura dis-

played in tha frama.

Th« Channel Coewtand Word (cot) object item element

connacts to a graphic object ring ■pecifyinq the attributes
of the displayed figure, for the frame being displayed,

an external «lemcnt (the PCCN)« replaces the COt displsce-

Mnt «l«m«nt on th« COt objoct.

-20-

Fiqur« 14 ihow» th» translation of formal paranatara

for a prooaat instanea. and alao tha aat of daflnad

dacialon«.

Pi9uraa 1S-17 ■how tha graphic objact ringt and thair
attrlbutaa« a.«.« flow oonnaetivity.

-21-

Cm
f

On

OYi

C

C

C

C

-,i 1

r
li m
T

I

il
V_>

G^ •

VJ7

2

-22-

o
4

X

7"

o >

^ ^

I J

c
8?

1=

8
oil

aw«

• w J

-23-

G

Ky

S
i
?

L7

c
c

z
i

V_7

3

is

I o
8

^7

rx
!

3

I

^/

3-

^

2
u

n

'24-

M M 1^ I

SS I i iäs si w • i

i:

- §

! i
O •- j

' ? - 5
C K fi
S 8 ib

■ ■ • ■ ■

/^V

/7\

s -

s ■

s -

r\

V^A KJ

5|«

CO ""

5J<
5

/^V

5 a
||
CD

ii

CO

II

I«

\y

a «e

a —

3 E
•«
%r>
•
c
<•

1 a.
►-

i m
E •^
s •

• o> <n
CO u.
H

a

« H

-25-

r\

r\

CO

eo *

oo ~

W5

• 1

1 ^ 1 1 B5
F 1

1 ft 1 to J 1

1 N
1 * *" 1

1 ^ 1 M Of 1

1 ^ [CD 1 -1

*- t*i »- ** — %

n±

Kjr

K QC

i

oooo
ii ii

1

u

-26-

r>

fi" i w

1 <
00 OC

[8 ~

a a

o —

a oc

o —

8

OQ

in

lit (/)

OUJ
oc u

UJ o go.
00

y

hi
to z
OUJ
-10.
oo

CO
to
UJ
u

UJ O

z Q-
UJ Qj

Of 00

«oJ?)
Uj3
O UJ

00
b< uj
Sao
UJ UJ o a coo

0)

o
I.

c

I

u.

E^J

>o r^ oo (ML
oo oo oO oo oo
II II II II II

CO
(/)

et oo
0.

-27-

III. RING STRUCTURE PRIMITIVES

The primitives are Remote Code Sequences (RCS) that

perform the basic operations on all GRAIL ring structures.

For example, they find, procure, and release elements.

Because the primitives use the same hardware registers for

consecutive primitive operations, there is a minimum need

for intervening instructions by the invoking processes.

Unless the primitive I/O hardware registers contain an out-

put, they remain unchanged over a primitive. The contents

of other hardware registers may be destroyed.

FUNCTIONS OF PRIMITIVES

Notes to the following:

1) The address of an element, i.e., A (element), is

the address of its first byte, regardless of

whether it is object- or set-connected.

2) The address of a ring, i.e., A (ring), is the

address of any element belonging to the ring.

3) C (Rex) means content of symbolic register a.

OBTAIN AND RELEASE PRIMITIVES

1) Get an 8-byte element from available space.

Input C(R6) = A (The address of an array).

Output C(R7) = A (The address of an element, if

an element is available).

a 0, if no more element space is

available.

2) Get a 16-byte element from available space. The

parameters are the same as in the above.

""See Fig. 3 (p. 5).

-28-

3) Build an object ring from available space elements.

Input C(R6) = A (an array).

C(R7) = A (a LIST).

LIST contains - ot, Bl,B2,.. .BN,00.

Cl,C2,...CK/00, where Bi is the set code

byte for the tth 8-byte element and where

c. is the set code byte for the jth 16-byte

element» and where the 00 following BN and

the 00 following the CK indicate the termina-

tion of the 8- and 16-byte elements, re-

spectively. The common object codi byte

is a.

Output C(R7) » A (address of a ring).

4) Return element to available space.

Input C(R6) = A (an array).

C(R7) = A (element).

Output - None.

5) Return a ring to available space. This primitive

function is a process, not a remote code sequence.

It is the single exception.

Parameters: A (RING), the higher-order bit

indicates either object or set ring

to be returned.

A (ARRAY)

Return.

LOCATE ATTRIBUTE PRIMITIVES

1) Search object ring for the element described by

the object and/or set-code bytes.

Input C(R6) ■ A (an array).

C(R7) = A (ring) .

C(R8) ■ A (object-code byte, set-code byte).

Output C(R7) = A (element, if found).

« 0, if no match on codes occurs.

-29-

NOTE: If the object- or set-code byte of the

input description is zero for this primitive and

the following one, the object or set code of the

element is accepted as a matched comparison. If

both code bytes of the input description are zero,

the primitive advances to the next element of the

ring and, without actually comparing, assumes a

successful comparison on both object and set codes.

2) Search set ring for the element described by the

object- and/or set-code bytes. Parameters are

identical to 1) above.

3) Search object ring for the element described by

the datum.

A (an array).

A (ring).

A (datum to compare) .

(# bytes-1) of datum to compare.

A (element) if datum is found.

■ 0, if no datum is found.

See diagram below:

Input C(R6)

C(R7)

C(R8)

C(R9)

Output C(R7)

Comparison
begins with
this byte. datum

4) Search set ring for the element described by

the datum. Parameters are to 3) above.

5) Search object ring for immediate datum.

Input C(R6) - A (an array).

C(R7) = A (ring).

C(R8) = A (4-byte datum to compare).

-30-

Output C(l»7) • A («IttMnt), if datun is found.

0« if no datun is found.

Ths second 4 bytss
are ussd for comparison
with input datum.

datum

6) Compare link only of sst-ring slsments.

Input C(R6)

C(B7)

C(R8)

Output C(R7) -

A(an array).

A (ring).

A (4-byte datum« the last 3 bytes

of which will be used for comparison)

See diagram below.

A (element), if datum is found.

See diagram below.

0, if no datum is found.

■ 1
I

These 3 bytes will be used
for comparison.

These 3 bytes of input data
will be used for comparison.

-31-

7) S«t ring «dvanc« to th« «ith mh

k««p«r «lementi in countInq.

int. Ignore

$2 or K
kooper
•loMnti

Input CUM)
emi)
C(RI)

Output C(R7)

A (an array).

A (ring).

f alamantt to advanc«, tare it

illagal.

A (nth element from currant position).

STRUCTURE MODIFYING PRIMITIVES

1)

2)

3)

4)

5)

6)

Insert an element on an object ring.

Input C(R€) - A (an array).

C(R7) - A (element).

C(R8) - A (object ring).

Output - None.

Insert an element on a set ring. Parameters are

identical to 1) above, except C(R8) - A (set ring).

Delete an element from an object ring.

Input C(R6) - A (an array).

C(R7) - A (element).

Output - None.

Delete an element from a set ring. Parameters

are identical to 3).

Merge two object rings.

Input C(R6) - A (an array).

C(R7) - A (first ring).

C(R8) - A (second ring).

Output - None.

Merge two set rings. Parameters are identical

to 5) above.

-J3-

REFERCMCES

1. El lii, T. 0.« J. P. H«afn«r, and w. L. 8ibl*y# ."'.#
GRAIL Projiot: An igpirimtnt in Man-Maohin* Com-
muni oation§, Th« PAKD Corporation* im-S999-ARPA.
Sopt«Mb«r 1969.

2. —— # rfc« GBAJL Language and Operation», Tho RAND
Corporation« RM-€001-JülPA, Saptanbar 1969.

3. r)|# GHAJL Syatim Implimmtation, Tha RAND Cor-
poration, RM-6002-ARPA, Saptanbar 1969.

OCUMINT CONTtOl DATA

i OMtMAHMa *cimn

Urn •o«^ Ce<po<«f>«M

tmcLASsinro
i% OMM»

Till: CHAli IINC STVUCTUU AMD PBIHITIVRS

4 wiwowmwK

EUU. T. 0., J. F. H*«(n*r and U. L. SIM.-y

I HHM1 MM

April 1970

tot*« MO o* »«on «k MO o» Mn

1
t CO««t(ACtOtO*«Mf MO

DACM1S-67-C-0U1
• OM»H«tOt> MKVf NO

RM-62'.l-ARPA

H AVIUMMirV/tHMlAtiON NOXn

OOC-1

•% WON»O«M0 *CIMC>

Advanced ll«s*arch Projoct« Agoncy

>.- «MtMCI

A deocription of the rlng-otruccur« meh~
mimm chat control« th« dlapoaltioa of data
and atorage apace in tha GIAIL ayataa. Tha
ring atructuraa—conttnuoua chaina of ala-
■anta containing codaa «id cither link« or
dot a—represent tha logic of both tha
uaar'a prograa and of the ayataa itaelf.
The baaic typea are (1) ayataa atructure;
(2) flics deacriptlon atructure; (3) file
atructure; (4) context atructure; and (5)
plane atructure. Conmun to the first three
typea ia a apace allocation aubstructuru
that describee the location of data sets
within a particular area in secondary stor-
age and of space available for use. Baaic
operations on ring structures—such as
finding, pro .ing, and releasing ele-
nents—arc perfomed by ring structure
primitives, written as a group of rcnotc
code sequences.

it

Coaputer graphics
CoBsputt-r prograanlng language
GRAIL (Graphical Input Language)

