
^*^^^r^% %#^Va#^B^W ^^^^ w^^^' 9

MEMORANDUM
RM.6145.ARPA
APRIL 1970

to

A SURVEY OP DATA STRUCTURES FOR
INTERACTIVE GRAPHICS

J. A Hamilton

PRBPARBDFOR
ADVANCED RESEARCH PROJECTS AGENCY

xD D C

üüm 74* INTI 11 \J£nätviftttt
SANTA MONICA • CAtifOlNIA

CM A w I N ' - H <~i 'J '.. f

muoMttn UUMUMmO. S V

■■^•■^•■•—rrr—

ART A ORDBR NO ISO I

MEMORANDUM

RM6145 ARPA
APRIL IM70

A SURVEY OF DATA STRUCTURES FOR
INTERACTIVE GRAPHICS

J. A. Hamilton

Thin rF*rarrh in supportrd by ihr Advanced Research Projects Agency under Contract
No. DAHC1S 67 C 0141. Views or conclusions contained in this study should not be
interpreted as representing the official opinion or policy of Rand or of ARPA.

DISTRIBUTION STATEMENT
This document has been approved for public release and sale; its distribution is unlimited.

MdD 74e K-H I I L/^fa»*««*«
1700 MAIN SI i SANTA MONtCA * CAtlFOINIA * •040»-

-iii-

PREFACE

Current activity in interactive computer graphics has

exposed several basic problems. One of the more difficult

of these problems is organizing data within the computer to

allow sufficient flexibility for a wide class of applications.

The data structuring and manipulation methods are of

particular interest to the designers of large-scale data-

retrieval systems and management-information systems includ-

ing the USAF Advanced Logistics System and USAF Rome Air

Development Center's work on DM-1 and follow-on systems.

This Memorandum describes and compares the salient

features of several important research efforts in the field.

Among these are Sketchpad, CORAL, APL, ASP, LEAP, TRAMP,

AED, and L .

The results of the research (especially the software

associative-store techniques in LEAP and TRAMP) bear on a

wide variety of fields in which data relationships are

important.

James Hamilton, a RAND Corporation Summer Student,

is presently a student at the University of Michigan.

-v-

SUMMARY

A Survey of Data Struoturee for Interactive Graphioe
analyzes and compares several methods of organizing and

manipulating data within a computer to allow sufficient

flexibility for many interactive graphic applications.

These structuring methods are particularly useful in large

data-retrieval and information-management systems, including

the USAF Advanced Logistics System. A data structure is de-

fined in terms of:

1) A data item—a bit of string;

2) A pointer—a data item that contains address

information;

3) A structure space—a subset of the computer's

memory;

4) A head—a contiguous block of machine words that

is not contained in any other such block;

5) A component—a block of contiguous machine words

contained in a bead.

A data structure is a collection of beads within a structure

space.

A program for processing such a structure must be able

to create and destroy beads, and reference data items. The

first ability is provided by a storage-allocation, associa-

tive-memory system in the ALGOL-like LEAP language, by which

one data item is used as the address of a block of several

data items. The structure requires excess storage, but it

keeps related information together and uses secondary

storage efficiently. Thus, LEAP structures are valuable as

relational data stores for large information retrieval prob-

lems, but they are less so for the normally small inter-

active graphics problems.

The referencing ability provided by several procedural

languages, including AED, BCPL, L , and PL/1, enables the

-vi-

programmer to design his own structures. However, several

predesigned structures, whose components are arranged into

rings, are useful in interactive graphics—e.g., Sketchpad

or CORAL.

How is graphical information represented in a data

structure? In a Sketchpad ring, a drawing is a collection

of entities (e.g., points, lines, and circles), each repre-

sented by a bead. Line drawings in TRAMP (structurally

similar to LEAP) are shown by an associative-memory struc-

ture—a tree whose nodes represent positions, lines, points,

and pictures. The Sketchpad display includes topological

information (i.e., the connections between parts) but CSMP

represents topology exclusively.
Graphical input is usually related directly to a data-

display structure, then indirectly to the problem structure

because 1) most hardware provides input via light pen, thus

automatically relating input to the display structure, and

2) transformations have been applied to the problem struc-

ture so that only the display structure knows what is being

shown.

-vii-

CONTENTS

PREFACE ,

SUMMARY ,

FIGURES ,

Section
I. INTRODUCTION

II. STRUCTURES
The Ring Structures
The Software Associative Memory Approach

III. GRAPHICS APPLICATIONS
Ring Structure Representations for
Line Drawings

Line Drawing in TRAMP
Representation of Topological Networks ..
Display Generation
Interactive Aspects

IV. LANGUAGES
Simple References
Set References
Creating, Inserting, and Deleting
Iteration and Searching

V. STORAGE MANAGEMENT
Storage-Allocation Strategies
Secondary-Storage Methods
Storage management in LEAP

GLOSSARY

REFERENCES

iii

v

ix

2
5

10

15

15
16
18
20
22

25
25
28
30
32

36
36
39
40

41

43

 .

-ix-

FIGURES

1. A Generalized Structure 4

2. A Sketchpad Structure 6

3. A CORAL Structure 9

4. A LEAP Structure 12

5. A Sketchpad or CORAL Line Drawing 17

6. A TRAMP Line Drawing 19

7. The CSMP Representation 21

8. A Display Structure for the Line Drawing
of Fig 5 23

9. The ASP Pictorial Structure Representation .. 34

10. Defining the Sketchpad Entities in APL 35

11. A Free Storage Management Strategy 37

-1-

I. INTRODUCTION

This Memorandum provides a useful and reasonably thorough

description and analysis of data structures for interactive

graphics. Familiarity with the field is assumed, and no

attempt is made to define "interactive graphics" (dealt with

only in Sec. Ill). The goal is to describe and compare

salient features of the most important research efforts in

data structures.

Comparison requires descriptions in a common terminology

so that essential similarities and differences become apparent.

Many properties attributed to data structures are really prop-

erties of description, particularly when pictorial. Good

descriptions are valuable to programmers using data-structure

facilities, but should be independent of the structures them-

selves (and therefore lie outside the purview of this paper).

The most important description of any data structure is the

language used to reference and modify it. (As discussed in

Sec. IV, many linguistic constructs are independent of the

structure to which they are applied.)

The information in this Memorandum derives almost en-

tirely from the published literature. Unfortunately, most

authors mention data structure only briefly. Thus, poten-

tially interesting features of many systems are not ade-

quately enough described for inclusion. The primary basis

for discussion of any particular work is its author's claim

of applicability to interactive graphics. This claim is

rarely supported, because the terms are not well defined.

But some agreement exists among authors in the field as to

which papers are of primary importance, and all of these are

considered.

-2-

II. STRUCTURES

Terms used in the description of data structures are:

structure apaae, bead, component, data item, and pointer.

Although these correspond to familiar objects, here they

are generalized, and the reader is cautioned against assuming

properties not explicitly stated in the following*.

A data item is any bit string that represents an object

of interest. A data item typically represents an integer,

a floating-point number, or a character string. A pointer

is a data item that contains address information. Specifi-

cally, if f(x) is a function whose value is a machine

address, then any data item in the domain of f is a pointer.

In any given structure, there is only one such function;

but if there is more than one, pointers are referred to by

the name of the function.

The most common function is

f (x) « x + constant

with the constant generally zero. The choice of a function

may be machine-dependent; it is always determined on the basis

of efficiency. The function may have two arguments, in which

case both are pointers. This generality is needed to describe

the so-called software-associative memory structures. The

range of the function is generally restricted to some subset

of the machine's available memory. This subset, which may

include all types of storage as well as core, is called the

structure epaoe. Restricting the range restricts the domain.

Bead is a term borrowed from the Automated Engineering

Design (AED) Project [1]. It means n-component element, but

is defined here as a contiguous block of machine words that

is not contained in any other such block (except the struc-

ture space).

^i^Wifc^ ■ ■-' ■

-3-

A component is a block of contiguous machine words

contained In a bead, and Is also the smallest object that

can be pointed to by a pointer. A component contains at

least one data item, which may be a pointer or any other

type. It may contain any number of pointers, and is not

fixed in size or internal structure. A bead may contain

any number of components of varying size and internal

structure. Components are ordered within a bead, and may

be referred to by number.

A standard pictorial representation for structures is

used: beads are shown as rectangles, components are

separated by horizontal lines, and data items within com-

ponents are separated by vertical lines. If a data item is

not a pointer, it is blank or contains a name for the data

item. If it is a pointer, it contains a dot, which is the

tail of an arrow, that points to the component referenced

by the pointer (see Fig. 1).

A data structure is defined as a collection of beads

within a structure space. A program for processing such a

structure requires the basic abilities to create and destroy

beads, and to reference data items. The first ability is

provided by a storage-allocation system {discussed in Sec. V),

The refe-jneing ability provided by several procedural

languages, including AED, BCPL, L , and PL/1 [1-4] (discussed

in Sec. IV), gives the programmer the ability to generate

and manipulate structures of his own design. Whether the

necessity of designing one's own structure is a useless

burden remains to be answered. Large classes of problems

exist that have considerable structural similcrity, and data

structures have been designed that match such problem struc-

tures. But there remains the necessity of learning the

intricacies of these structures, as well as those of main

talning and interfacing with the associated software.

However, several structures have been designed that are

useful in interactive graphics. Designing a data structure

-4-

A TREE WITH SUPERIMPOSED
"PRECEDENCE" STRING

A SIMPLE
RING

Fig. 1--A Generalized Structure

-5-

consists of making restrictions on the internal structure

of beads and components. These restrictions take the form

of declarations about classes of beads and their components.

These declarations allow the construction of primitive func-

tions that manipulate the structure in predefined ways. The

terms used below were introduced by the original authors.

THE RING STRUCTURES

Perhaps the best-known of the structures are the

Sketchpad rings [5]. Sketchpad contains four types of com-

ponents: header components, value components, hens, and
chickens. Every bead has one header component, its first

component, followed by an arbitrary number of hens and

chickens, collectively called ring components. Following

the ring components are an arbitrary number of value

components.

Value components contain one data item that is not

a pointer and has no structural interpretation. A header

component contains three data items: 1) the number of com-

ponents in the bead, 2) the number of ring components, and

3) the type, used for identification by the processing

program.

The ring components are the interesting ones. A

chicken contains four pointers: the hen pointer, the for-

ward pointer, the backward pointer, and the header pointer.

A hen contains the same four pointers. However, the hen

pointer is given a value not in the domain of the pointer

function (viz., zero), to distinguish hens from chickens.

As shown in Fig. 2, the ring components are organized

into rings. Each ring contains exactly one hen, and an

arbitrary number (possibly zero) cf chickens. The ring

components are ordered in the ring, with forward pointer

pointing to the next component; backward pointer pointing

to the preceding component; hen pointer pointing to the hen;

and header pointer pointing to the header component of its

bead.

■' ■' ■""

-6-

rORMARD
POIMIER

0 HZADCR
POIMTIR POIMTIR

H»

1 BAOMARD
| POIMTIR

HEM
POINRR

WAKR 1
POINRR

POIBIARD 1
POURU |

CMICUM

BEAD

nnm

». «. i, *
i. >
*.». •

n«. ?--* Sketchpad Structurt

wim

-7-

The pointer function in Sketchpad is the standard

f(x) » x + c ,

with non-zero c that allows x to be smaller than the full

address space of the machine. The header pointer, however,

uses a different function, viz.

f(x) - x + address of x .

The above representation is structurally irrelevant« but

important for efficiency since it allows x to be a very

small negative number, needing only 4 or 5 bits.

Most follow-ups to the original Sketchpad work (€-111

have been either inadequately described or not significantly

different. One nearly identical structure is CORAL (Class

Oriented Ring Associative Language) PJ, in which the back-

ward pointer and hen pointer are replaced by one pointer

plus a one-bit data iten that tells whether it is a back-

ward pointer or a hen pointer. CORAL rings are built with

backward pointers and hen pointers alternating. Also« the

header pointer is eliminated without mention. The author

can only assusw that an additional one-bit data ite» is

used to nark the header component so that it may be found

by a i. ort search.

These differences primarily affect efficiency, cutting

in half the space requirement of Sketchpad ring components,

which requires two machine words. CORAL achieves this im-

provement at the cost of a small increase in processing time

due to the necessity of moving, for example, through more

than one component to reach the hen. This cost is dependent

on problem characteristics* if these are such that rings

are generally short (less than 10 components), then hen and

backward pointers could be eliminated without great loes.

CORAL is considered a good compromise.

-8-

A more important difference is the addition in CORAL

of a small bead called a nub. When a bead is created, it

contains a fixed number of ring components that cannot be

changed because of storage-allocation methods. A bead is

made a member of a ring by adjusting one or more of its

ring components to point to the appropriate rim members.

However, it may happen that all of the ring components are

used; in the majority of cases, this will never happen

because of problem-structure constraints. In a Sketchpad

structure one must be careful of this possibility when de-

signing bead types? but in CORAL the "nub" overcomes this

problem. A nub is a bead containing two ring components

(used as shown in Pig. 3), which serves as a general example

of a CORAL structure.

Both Sketchpad and CORAL structures are manipulated by

a set of primitive functions discussed in Sec. IV). Another

language, APL (Associative Processing Languaqe), extends

PL/1 and provides structural capabilities identical to CORAL,

with the exception of a data item called an "associative

data attribute" (12). Although its implementation is not

described (and this author is unwilling to guess), the

language itself is discussed in Sec. IV.

Another ring-type structure, ASP (Associative Structure

Package) (13)* is logically equivalent to CORAL hut with the

CORAL nub carried to its extreme. In CORAL terms, the ASP

structure is obtained by restricting the ring components in

each normal bead (called an element in ASP) to two (one hen

and one chicken). A second bead (a ringstart) expands hens

in the 9mm way that the CORAL nub (an associator in ASP)

expands chicken«.

Although this description of ASP differs from the

original, it permits a direct comparison that indicates ASP

is equivalent to CORAL from the viewpoint of the programmer

equipped with the sane set of primitive functions—except

that he no longer has to determine the number of ring com-

ponents in a beed. Processing of an ASP structure is slower

I

-9-

1 pourm •

tunttft (■»>

0 raiviu f [POIVTU 1 fount»]

tarn IUWVT laiia»)

Flg. 3--A CORAL Structurt

-10-

than CORAL, but part of the ASP work is the development of
an elegant pictorial description for structures. Although
the pictorial description specifically represents ASP
structures it could also be used for other structures.

THE SOFTWARE ASSOCIATIVK MEMORY APPROACH

This section concludes with a description of a software-
slnulated associative memory. Several systems, nearly struc-
turally equivalent, use the associative memory approach
(14-17). The system described here is part of the LEAP lan-
guage (14-151.

LEAP is designed to store triples. A trip I* is an
ordered set of three data items—attribute, object, and
value. Because the structural description alone might be
meaningless, retrieval requests that LEAP is intended to
support are discussed before describing the representation
of triples in terms of beads and components. A LEAP struc-
ture is a collection of triples. Besides determining the
presence or absence of a particular triple, LEAP can re-
trieve the following nets of triplest

1) All triples having attribute A and object Ot
2) All triples having object 0 and value V;
3) All triples having attribute A and value Vi
4) All triples having attribute A;
5) All triples having object Oi
6) All triples having value V.

Retrieval is accomplished by providing three separate struc-
ture spaces: attribute space, object space, and value space.
There are two retrieval methodst 1) for the first three
types and 2) for the second three. Bach triple is stored
in all three structure spaces. To retrieve a set of type
1), for example, method 1 is Applied to the attribute space.

Each space is identical in structure, the only dif-
ference being a permutation of the triple before it is

-11-

stored. The attribute apace »tores the triple 'A, 0r V),

the object space (0t V* A), and the value »pace (V, A« 0).

In the attribute space, each data itcai in a triple has

three pointer functions. The first is the it*i-funotion

that yields the address of the external description (external

to the data structure and its proceesor in the sense that it

is interpreted elsewhere). This external description is

usually outside the structure spece, but also mmy be inside

(i.e.« another triple).

The second function is the hath-function that require«

two arguments, the attribute and the object of a triple.

These arguments may be two pairs Mich that

f(Al,01) - f(A2#02) .

This situation, called a conflict, nost be resolved. In

Sec. V the hash function, which yields the address of a hash

bead (see below), and inpleawnts retrieval method 1# is

further discussed.

The third pointer function—the u«#-/wn<?fion--appllet

to the attribute (for the attribute space), and yields the

address of a ose-header bead (p. 13). It implements re-

trieval method 2.

A fourth end final pointer function—the link~funoti0n~~

uppliea to other deta itena found in the structure spece,

not to tr/fie itens. It epplies to pointers called links

and yields the address of any bead.

Two bead types have baan mentioned above. All beads

listed below contain exactly one component (the distinction

is not relevant here) and one data item that indicates the

type (eee Fig. 4) t

1) The hash bead contains five data items:

a) Attribute!

b) Object—for comparison with originsls to

resolve conflicts;

-12-

vu
S *LZ- ' i N

-^UJliflL-

Flg. 4--* LEAP Struetur«

-13-

c) Use link—see use header;

d) Conflict link—in conflicts, additional hash

beads are chained to the first. To retrieve,

one searches the list for the bead with the

correct attribute and object;

e) Value, or value link—if there is more than

one value for the same attribute-object pair,

additional value beads are chained to the hash

bead.

2) Value bead—two data items:

a) Value;

b) Value link or zero.

3) The use header contains one data item that is a

link to th* first hash bead in a use ring. There

is one use ring for each attribute that collects

all triples having that attribute. It is accessed

by applying the use-function to the attribute.

Hash beads and value beads may have one additional non-

pointer data item if the triple is used as an ITEM (pointed

to by a triple member via the item-function).

Now, compare this organisation to other structures, con-

sidering only the attribute space. Let attributes correspond

to components, objects to beads, and values to data items.

Although only one of many ways of viewing a LEAP structure,

the entire generalised structuring ability is there, plus

much nor©. Of course, one must assume the burden of de-

signing one's own structure, which is even worse in the

simulation of asscoiative memories, because of its greater

complexity and its relative unfamiliarity.

In any case, there are several differences between

generalised structures and a LEAP structure with the above

correspondences: beads (objects) are of varying length;

the use ring autosiatically ties together objects that have

the same attribute; the object and value spaces are in-

tentionally redundant (although it is clear that a ring

«B*H9B5

-14-

structure could be duplicated in a smiliar way by using

permutations). Note that a ring structure can store exactly

the information required by the problem, whereas a LEAP

structure stores the same information in several forms for

reasons of search efficiency.

Finally, in considering the costs involved, the quantity

of storage required is vastly increased, so much so that all

but the smallest structures require secondary storage [18].

On the other hand, LEAP structures lend themselves to a

rather efficient use of secondary storage; in fact, speed is

relatively independent of the size of the structure, which

makes it look good for large problems. But it is not clear

that graphics problems generate structures large enough to

require secondary storage. As for processing speed, assuming

the referenced triple is in core, the hash function requires

three or four instructions, and conflict resolution even

more, which means that referencing is probably less than a

factor of ten slower.

LEAP and similar structures clearly have great value

as relational data stores for information retrieval problems,

but their usefulness in interactive graphics is not clear.

■Pi

-15-

III. GRAPHICS APPLICATIONS

This section deals with two problems that are really

the same problem: 1) how to represent graphical informa-

tion in a data structure; and 2) how to relieve the program-

mer of the job of display generation and management. A

solution to the first problem also solves the second—since

once we have a fixed data-structure representation, we can

build a processor to generate the display from this struc-

ture. The real problem is to find a representation amenable

to both display structure and problem structure. The several

possibilities described below are followed by a brief general

discussion of display generation.

RING STRUCTURE REPRESENTATIONS FOR LINE DRAWINGS

The Sketchpad representation of line drawings has been

the basis for succeeding work in this field, and little that

is new has been added. In Sketchpad, a drawing is a col-

lection of entities, each of which is represented by a bead.
This discussion concerns five types of entities (although

there are many more in the actual implementation): points,

lines, circle arcs, pictures, and instances. The first

three should be obvious. These entities constitute a nearly

minimal selection of building blocks; clearly other common

entities (e.g., general conies) could be added to the list,

but the display generator must be aware of them. A picture

entity collects in its picture ring the lines, arcs, and

instances that make up the picture. It also collects all

instances of that picture in an instance ring. An instance

references a picture by appearing in its instance ring, and

the referenced picture is a subpicture of the picture in

whose picture ring the instance appears. Thus, a display

is a hierarchy with a picture at the top, containing

instances of other pictures, which in turn may contain

instances, etc.

——^-"

-16-

Figure 5 shows a brief description of the internal

structure of the entities. Each bead contains the following

in addition to a header component:

1) A line contains three chickens—one for the picture

ring and two for the end points.

2) A circle arc contains four chickens—one for the

picture ring and three for end points and center.

It also has two value components/ angle of arc

and radius.

3) A point contains one chicken for the picture ring—

one hen to collect the lines and circles referencing

this point (the ring goes through the chickens

listed above), and two values giving the coordinates,

4) An instance contains two chickens—one each for the

picture ring of the picture containing it and the

instance ring of the picture it references. It

also contains four values, giving a transformation

(rotation, translation, and scale) to be applied to

the picture it references.

5) A picture contains two hens—one for the picture

ring and one for the instance ring.

The arrangement of hens and chickens in this structure

introduces a set of dependencies that are consistent with

the deletion mechanism provided for Sketchpad structures.

A bead containing a chicken is said to depend upon the bead

containing the hen for that chicken. When an entity is

deleted, all dependent entities must be deleted as well

(e.g., a line must have end points). Deletion mechanisms

are discussed below (Sec. IV).

LINE DRAWING IN TRAMP

For completeness, an example of line-drawing representa-

tion in an associative-memory structure is included. Imple-

mented in TRAMP [15] (structurally almost identical to LEAP),

■

^7

-17-

A

Flg. 5--A Sketchpad or- CORAL Lint Drawing

-li-

ft display it represented by • tre« who»« nod«s represent

position», line*, point«* and pictures. The tree struetur*

is • Mt of triples that is distinguished by attribute CLA5.

The vsluo of the triple is a nod« in the tree, and tlio

object of the triple is a daufhtor of that nod«.

k torainal nod« determine« the typ« of «ntity* vis.»

position, line, or point. These correspond to display

orders: !.«.« position ««an« Invisible line, lin« Man«

visible line« and point «sens display a point. The branches

■ust thus be ord«red. fro« l«ft to right« in th« s«qu«nc«
in which they are to he displayed. Thus a lin«« in th«

Sk«tehpad sense, i« represented by two succ«sslve nod««—

either pos 11 ion-1 me or line-lire.

Th« «ingl« isswdist« predecessor of each terminal nod«

is th« tumm of that entity, and 1« also th« object of •

pair of triples whose values are coordinates and who««

attribute is COO«. All further predecessors are MM« of

pictures: i.«.« names Of OOllOOtiOM Of pMitiOM« lin««,

point«« and other picture«. V ware 6 «hOM « triangl«

Ming this scheme.

nZfPZStHThTlOH OP TOPOLOr.ICAL WmrtRKS

Many application prograM ar« not concerned wit»- the

geometry of « dispUy. but rather with th« topology I i.«.«

th« connections between parts. Thi« i« p«rtioularlv true

Of Such applications as «l«ctrio«l or logic«! Mtwork

dosign.

Th« Sk«tchpad representation does include topological

information a« part Of it« constraint satisfaction mechsr.isr

(but in « complex and unnatural way not d«scrib«d her«).

Another «y«t«si« CSMF (Continuous Syst««« Modeling Progresi)

(If) h«s been designed to represent only the topologicsl

Structure. Th« representation consists of a set of entities

(e.g., resistors and capacitors) that must be made known to

the display generator in SOM undescribed way. Bach entity

-If-

rosltloQ

TRIANGLE

Lin» Lin«

Th« Store of TrlpUt

CLAS. LI. TRIAWCLE

CLAS. L2e TRIANGLE

CLAS. U, TRIANGLE

CLAS. U. TRIANGLE

CLAS. POSITION. LI

CLAS. LINE. L2

CLAS. LI«. L3

CLAS. LINE. U

COOR. LI, XI

COOK, LIt Yl

COOR. L2. X2

COOt. L2. Y2

COOR. L3. XI

COOK, L3. Yl

COOR. U. X4

COOR. U. Y4

Hq. 6--» TRANR Lint Drawing

-20-

has an Arbitrary nuabar of attaohtr point§, which corra-

■ por.d to ring corponanti of the bead roprosontinq the
entity. Bach nod« in the topoloqical ttructure la rapre-

•er.ted by a ring through the attaohar pointa at that noda

(tee Pig. 7).

Although this ■yttam handle« a large clasa of computer-
aided deaign probler.« in a aiaple way, it ia unable to deal

with geometric considerations. However* it clearly could

be merged with the Sketchpad repreaentation. What ia needed

ia the addition of ring conponenta for attacher pointa to

inatancea.

DISPLAY GENERATION

Con«ider the problem« of tranalating a problem atructura

into a program for controlling a diaplay. In general, thia

diaplay program will be a aequence of diaplay ordera (codea

that control beam movement, etc.) tranamitted through a data

channel, under control of a channel program. Thia channel

program haa two instruction«: one «end« a block of diaplay

ordera, giving a starting location and word count; the other

ia a transfer in channel inatruction, which allows a transfer

of control within the channel program. These channel in-

structions may be viewed aa pointers that give structure to

the diaplay program. The problem is how to generate the

diaplay atructura fro« the problem structure.

Cotton and Greatorex (9) deecribe a system that builds

a diaplay atructura from a problem structure very similar

to Sketchpad. The diaplay structure is very similar to the

problem atructura. Mainly, ring pointers are replaced by

transfer in channel commands, and valuea by display orders.

in auch a way that one merely a tarts the channel program at

a picture block; the diaplay processor transfers from block

to block finally ending, once again, at the picture block.

The differencea are that inatances are expanded and point

blocks are removed in favor of including coordinates in

-21-

CAPAC1T0R

\

RESISTOR TRANSISTOR

Flg. 7--The CSMP Representation

-22-

lin« «od eircl« block«. (Actually point blocks «r« not

in th« problon itructur«. in tho Cotton-Crontorox syatCH.)

Figure • shows sn sxsMpls of s display structure for ths

Skstchpsd ttructur« of Pig. S (p. 17).

Zs it rsssonsbls to asrgs ths prob Is» itructur« and

ths displsy structure sinos thsy havs aany siailaritics?

Ths difficulty dsvslops with ths various trsnsforwstions

that Mist bs appli«d in 9«n«r«tlnq ths displsy structurs.

One of thsss is ths translstion fro« problsn eoordinatss

to displsy eoordinatss* or fro* vsluss to display ordsrs.

If ths display space is snallsr thsn ths prob Is« spaos,

scissoring (ths rsmovsl of objects that lis out• id« ths

displsy iaafs) aay bs involved. In sddition« ths trans-

formations (rotation, translation* and scaling) specified

by instance« rsquirs thst s ««parat« copy of s picturs bs

nads for ssoh inatsnoe.

Display gsnsration in TRAMP is sinpls. Teminsl nod«

typ«« and eoordinatss ars transaittsd in ordsr, fro« Isft

to rieht* in th« trss.

No othsr displsy gsnsrstion Msthods havs been described*

because work has depended on the sppliostion proqrsa to

gsnsrsts th« display through a ssquenc« of cells to prieitivs-

display functions. Thsss functions often include subpicturs-

dsfinition capabilitiss* providing ths ability to displsy or

dslsts previously generated suhpictures. Therefore* thess

functions ars really a sst of data-structurs primitiv«« for

manipulating th« display structurs, r«quirina th« programmar

to Isam two ssts of primitiv««.

INTERACTIVE ASPECTS

A qusstion of primary intsrsst is how to rslats graphic«!

input to a data structurs. Th« choics is b«tween r«lating

input directly aither to the problem structure or to the

display structure (and then to the problem structure). Th«

second sltsrnativs haa invariably been chossn for two rsasonst

-23-

f"
>

1 •

i

^ - •

r !_ ik

i - i
3 e

?

7 \ 5
I

2
3
8

7 / I a E

^ 1 1
f

i
t

r ?
1

V

-24-

1) most hardwar« provides input vim light pmn. in which caa«

th« hardware automatically ralataa input to display stmc-

tur«; and 2) transfomations hava b««n applied to the prob-

Ian structurs so that only tha display structurs knows what

is being displayed.

Tharafora. a naans of rslating display structurs back

to probla» atructuro is required (assuaiing input can be

related to the display structure). In a systeai with display

primitives, the display processor is unaware of the probier

structurs. To circumvent this problem» display primitives

generally return identifiers with which the displayed items

will be referenced in the future. The application proqram

is then foroed to cross-refarance these identifiers with

its data structure* an awkward solution at best.

with the Ootton-Greatorex structure (9), however, the

solution is simple. Bach entity in the display structure

is put into a rinq heeded by the entity from which it was

generated in the problem atructure. The TRAMP structure

(IS] has an equally simple solution. Bach entity name is

rade the object of a triple whose attribute is RXftT and

whoaa value is the location in the display structure.

CSMP (19) has en intsrestinq solutions the displsy is

not generated by the application proqram, but by the user

sittinq at a oonaole in convarsation with the display pre

cessor, which is then responsible for qeneratinq the prob-

lem structure from the display structure, rather than vice

versa. CSMP does this by dividinq the display surface into

64 small squarea and then ssarchinq the display structure

for group« of attacher points lying in the sama squars.

Many quastions re 1 at ma to the generality of the display

processor are left unanswered.

-25-

IV. LANGUAGES

Th« foilowinq diseufsion of languag«« has twc goalst

1) th« daaeription of primitiv« oparationa for data atruc-

tur« aanagaMnti and 2) th« praaar.tation of th« syntax

uaad to apacify thaaa priadtivaa. Tha prlmitivaa ara dlt-

cuaaad in four groupa« along with tha appropriata syntactic

for««. Tha first ia ainpl* rafarancat* or ratriaval of

data itaaa fro« «anaralitad structurat. Tha aaction on

rafaranoaa daalt «rith tha apacifio atmcturaa dafinad in

CORAL and LEAP« followad by a daacription of tha updating

of atructuraat i.a.« tha oraation, inaartion, and dalation

of baada. Tha taotion concludaa with tha nora complax

aaarching and itaration oparationa* onca again appliad to

tha apaoifio ring atructuraa and aasociativa mamory

atructuraa.

SIMPLE REFERENCES

Tha probltM with data-atruotur« procatting in a typical

algabraio languaga (a.g.» FORTRAN) it that on« nam« is bound

to two valuat--a location and it« contant«—but tha program

oontrola only th« contents.

Thara ara many ways around this problem. Daacribing

tham raquirat introducing some terminology, borrowed this

time from the BCPL language (2]. An *gpr*§»ion ia a aaquence

of variables, manifast constants, parenthesss, plus and

minus, and unary operator ru. A variabl* ia a name with

two valuaa (as in FORTRAN). A manift§t oonttant is a name

with only one value. This name may be a number (e.g., 5)

or an arbitrary identifier that haa become a manifeat con-

stant in some undefined way. The important point ia that

its value is known to the language proceaaor (compiler).

The location, or left-hand value of a variable is a mani-

feat constant. Parentheses, plus, and minua are used in

the uaual way.

-26-

An expression is evaluated to yield a single value.

The value of a variable in an expression is the right-hand

value, or contents of the location determined by the left-

hand value. An indirection operator, rv, applied to an

expression, yields the contents of the location determined

by the value of the expression.

We now can describe, in terms of the above, the referents

provided by various languages which are essentially a small

subset of BCPL. Consider first the referent

A(B) = rv (A + B) .

With no restrictions on A or B, this is the meaning of A(B)

in BCPL. But most languages restrict A to be a manifest

constant. In FORTRAN and its relatives, A is a manifest

constant whose value is assigned by the compiler. That is

what is meant by the statement

DIMENSION A(...) .

In AED [1] , the value of A is assigned by the programmer,

using the non-executable statement

A $>$ value .

It must still be a manifest constant however, and is required

to be declared so by

COMPONENT A .

In AED, B is viewed as a pointer to a bead, and A is the

offset of a particular component. Thus, A(B) references a
component of a bead.

Next consider A(B(C)). As one might expect, in most

languages this is rv(A + rv(B + C)). In AED, however, it

-27-

can also be rv(A + B + C), provided A is a COMPONENT, and

B is another manifest constant called a SUBELEMENT. If B

is also a COMPONENT, the other meaning is used. A(B + C)

also means rv(A + B + C) . In BCPL only, one also may have

A(B)(C), meaning rv(rv(A + B) + C) .

L [3] is a low-level language in which variables,

called huge, are identified by single letters. Reference

is accomplished by concatenation; i.e., AB means rv(A + B),

where A is a bug name and B is a manifest constant declared

by defining the internal structure of a bead. The declara-

tion is made by using the instruction (i DB j k); i is the

value of B, and j and k are bit numbers that determine

shifting and masking to be performed after the storage

access. ABC means rv(rv(A + B) + C), and such strings can

be arbitrarily long, the same as BCPL, without parentheses.

In PL/1, a bead—a PL/1 structure in which the items

at level two are components—is declared by:

DECLARE 1 (structure name) CONTROLLED ,

2 (component name) (attributes) ,

2 (component name) (attributes) ,

If A is a component name, and B a variable with attribute

POINTER, then B ■* A is equivalent to rv(A + B) , where A is

a manifest constant whose value is assigned by the compiler

to be its relative position in the structure. A component

may be a substructure, via

2 A , 3 C , 3 D ...

In this case, B -»• A.C means rv(A + B + C) , where both A and

C are manifest constants. A component also may be an array

-28-

in the FORTRAN sense, and B •* A(C) also means rv(A + B + C).

B -•• A -•• C means rv(rv(A + B) + C) . If a structure contain-

ing component A is declared CONTROLLED (B), then A means

B -»■ A. Note, however, that pointer arithmetic is illegal
in PL/1, but not in BCPL, AED, or L . BCPL is the simplest

and most general of these languages; in addition, its data

items are completely typeless, whereas PL/1 provides a com-

plex array of types, and AED uses the common ALGOL types.

SET REFERENCES

The above languages allow one to reference single-

data items in any generalized data structure. If a more

specific structure is defined, however, one can devise ways

of referencing such substructures as rings.

In CORAL and Sketchpad, ring-structure primitives are

implemented by macros in an assembler language. APL

(Associative Programming Language) [12], however, is an

extension of PL/1 that manipulates a CORAL structure. As

above, a CORAL block is declared as a PL/1 structure, but

with attribute ENTITY, instead of CONTROLLED. Hens are

declared with attribute SET, and chickens with attribute

MEMBER. Value components can be any other PL/1 data item.

Variables of type ENTITY contain pointers to entities.

Of interest here are references to three things: rings

(called sets in APL), entities, and components of entities.

An entity is referenced either by an entity variable or

by designating a particular member of a set. The latter

is done by number, since rings are ordered. The syntax is:

(entity ref) ::= (entity variable) [(set ref>((integer)) ,

A set is referenced by giving the name of a ring component

of a particular entity. The syntax is:

(set ref) ::= (entity ref).(component name) .

-29-

Clearly, this also serves to reference value components.

For example, A.B and A.B(5).C are set references; and

A.X, A.B(3).X, and A.B(5).C(2).X are value references. In

these examples, A is an entity variable, B and C are ring

component names (declared as SET or MEMBER), and X is a

value component name.

Actually, the same syntax might serve as well in a

generalized structure by using the integers as duplication

factors, and removing the dots that separate names. Further-

more, we have L references. For example, A.B(5).C(2).X

would be ABBBBBCCX, conceptually very similar to the APL

reference. Clearly, the difference lies in the description.

The LEAP language [14-15] is very similar to ALGOL,

with the addition of several statements and data types to

handle the relational structure. The relational structure

stores triples. The attributes, objects, and values of

triples are declared as ITEMs. An ITEM is a manifest con-

stant, whose value is the address of a tvpical ALGOL vari-

able. The value of the variable is accessed by the opera-

tor y, which is identical to rv. For example,

INTEGER ITEM A

makes A the address of an integer. Its value is yA. Theye

are also variables, called ITEMVARS, whose right-hand values

are ITEMs. A triple is specified as

0 = V

where A, 0, and V are ITEMS or ITEMVARS.

The implementation of another data type in LEAP, called

SET, is not described. A SET is a collection of ITEMS, and

may be specified in a variety of ways:

1) A set variable;

2) A list of ITEMS (e.g., (A, B, C});

-30-

3) Unions, intersection» and conplernents of sets;

4) A • O—th« set of -'alue» of all triple« with

attribute A and objact O;

5) A'V—tha «at of objacta of all triplas with

attributa A and value V.

CREATING, INSERTING, AND DRLETING

The creation of a bead requires a call to storage

management to allocate a block of words. In BCPL, AKD, and

L this requires an explicit function call specifying the

size of the bead. The function returns an address used to

update the variable that will reference the bead, namely

B in A(B). In PL/1, creation it accomplished via the

scatement:

ALLOCATE (structure name) SET (pointer variable) ;

and in APL by the almost identical

CREATE (entity name) CALLED (entity variable) .

In LEAP, a triple is created by the statement:

MAKE (attribute) • (object) = (value) ,

where attribute, object, and value are ITEMS or TTEMVARS.

ITEMS may also be created dynamically by

NEWITEM -> (itemvar)

or

N((expression))

.-■ .

-31-

Xn the second case, the value of the new ITEM is initialized

to the value of the expression.

Cencralized structures are built by explicitly updating

components of beads with pointers, requiring only the

reference mechanisms already described. Triples are added

to a LEAP structure by the same make instruction that

creates them, and structures are built only by adding triples

But a CORAL structure is built by inserting blocks in

rings, done in AiPL by the statement:

INSERT (entity variable) IN (set ref) .

This statement is ambiguous, however, because blocks in a

ring are ordered, and specify the position in the ring where

the block is to be inserted. In APL, this is done by

specifying ordering as an attribute of a set component name.

Two such orderings are FIFO, meaning insert entities at the

end of the ring; and

ORDERED INCR ON (component name) ,

which means that entities in a ring are to be kept sorted

on a particular component.

Deleting is a bigger problem since it Involves un-

creation as well as un-insertion. In a generalized struc-

ture, these must be done separately. Un-creation, or re-

turning of a bead to free space, is done by a function call,

just as in creation. In PL/1, the keyword is FREE. Un-

insertion consists of updating pointers to the returned

bead. Unfortunately, structures may be made inconsistent

in complex ways that the programmer must be aware of.

In a CORAL structure, however, these steps can be more

precisely defined. One may request that a block (entity)

be removed from a ring (set). The APL statement is

REMOVE (entity ref) FROM (set ref) .

-32-

This requires that pointers in the adjacent blocks in that

ring be updated to skip the block in question. One also

may delete an entity or a set (DELETE (entity or set ref>).

Deletion of a set means deletion of all entities in the set.

Deletion of an entity means removal from every set of which

it is a member, deletion of every set for which it has a

SET component (hen), and return of the bead to free storage.

A single delete may activate four separate functions: two

deletes (both recursive), a remove, and a free; first real

advantage of CORAL over a generalized structure in terms of

quantity of code necessary to perform the operation.

ITERATION AND SEARCHING

Operations that reference sets as a whole are found

only in APL and LEAP. The first of these is "do something

for each element of a set." The APL syntax is:

FOREACH (entity variable>=(entity name) IN (set ref>

WITH (boolean exp.> UNTIL (boolean exp> ;

(statement list); END .

The statement list is executed once for each entity in the

set satisfying the WITH and UNTIL clauses, which are optional.

The entity variable points to the entity in question during

each execution.

In LEAP, where sets are of primary importance, the

statement has two different forms and allows multiple iter-

ation variables, called locals. The first form is quite

similar to the above:

FOREACH (local) IN (set expression) DO (statement list) .

The second is:

FOREACH A'0=V DO (statement list)

-33-

where any one or two of A, 0, and V may be locals. If V

is a local, for example, it is equivalent to FOREACH V IN A-O;

but if both 0 and V are locals, the statement list is exe-

cuted once for each pair (0, V) such that A'OHV is in the

store.

APL offers one further statement not found in LEAP,

potentially the most valuable, that enables one to search

rings in various ways. The syntax is:

FIND (entity variable) ■ (entity specification)

WITH (boolean), UNTIL (boolean),

ELSE (statement) .

(entity specification) ::=

((integer)) (entity name) IN (set ref)

| (set name) CONTAINS (entity ref) .

This statement either finds an entity satisfying the WITH

and UNTIL clauses (optional), and updates the entity vari-

able, or it executes the else statement. The entity spec-

ification directs it to search for the nth entity in a set,

with the given properties, or to search for the entity

whose set component heads the ring containing a specific

entity.

The literature on ASP [13] includes an interesting

pictorial representation for ring structures (see Fig. 9).

This pictorial representation could be useful not only as

an aid to the design of display and problem representation

but also as an input to some graphical language (as opposed

to a character-string language).

When discussing languages, one notes an absence of any

reference to graphics, a condition more or less reflected

in the literature. Clearly, however, one could define the

Sketchpad entities in APL and obtain a very graphical-looking

program (illustrated in Fig. 10) for the simple entities

described in Sec. III.

-34-

-o $ $—'

^ RING START

0 ASSOCIATOR

|"~| ELEMENT

J5L-1

()-H

(5 ()-l

Fig. 9--The ASP Pictorial Structure Representation

^j^itjmbMBiiimmiimmivii ■■

-35-

DECLARE I picture ENTITY,

2 prlng SET FIFO,

2 Irlng SET FIFO,

1 instance ENTITY,

2 prlng MEMBER,

2 Irlng MFMBER,

2 trans,

3 (xtram, ytrant, sin, cot) FIXED,

I line ENTITY,

2 prlng MEMBER,

2 epolnts MEMBER,

1 clrcla ENTITY,

2 prlng MEMBER,

2 epolnts MEMBER,

2 (radius, angle) FIXED,

1 point ENTITY,

2 prlng MEMBER,

2 epolnts SET,

2 (xvalue, yvalue) FIXED,

Fig. 10--Defin1ng the Sketchpad Entitles In APL

-36-

V. STORAGE KANAGEMEWT

In all Of the structure» discussed ah ve, except asso-

ciative memory (LBAP), •pacific calls to «toraqe-manaqenpnt

rcutmes are required to gat and raturn heads. Prom tha

logical point of view, tha tpacifica of storage management

ara irrelevant; but in term« of efficiency, thay are crucial.

In addition, a prograamar who ia awara of atoraga-manaqament

strategy may be abla to write a nora afficiant program.

Savaral atratagiaa for managing a atructura apaca assumed

to ba in cora ara described below, followed by a diacuasion

of secondary atoraga techniques. Many of the methods de-

scribed hare are implemented in tha A£D frea-atorage

package (20].

STORAGE-ALLOCATION STRATEGIES

Tha firat atap in daaigning a storage-management pack-

age ia to choose tha avallabla bead sizes. A requirement

ia that the largest bead used in the atructure be available.

Ona choice, which greatly simplifies tha problem, is to

aupply only ona block aize. A large variance of bead size

will raault in a lot of waatad apace. But if the variance

in bead aize ia less than 25 percent of the mean, it could

ba a good choice—especially if time ia much more important

than atorage efficiency. To allocate fixed-size beads, a

liat of available beads is maintained. When a new bead is

requeated, the firat one on the list is supplied; when a

bead ia returned, it ia appended to the end of the list.

It ia possible to supply only beads of a few different

sizes; but except in special cases, this is no better than

supplying exactly the size requested, which is probably the

beat aolution. There are several ways of doing this: one

can maintain a free storage list in increasing order of

size (see Fig. 11). To supply a bead, one searches the list

\

r -37-

«n

t

r-i

"N 1.

c
01
E
«

(N f^J CM CM

Ol
IO
u
o
♦*
«/)

«
0)
s.

o>

-38-

for a bead of the right size; if there are none, a larger

one is split, and the remainder added to the list in the

proper place. If no bead is large enough, there is no

simple solution; although two smaller beads might be con-

tiguous, such a case is difficult to find. Thus, there

is a chance of considerable loss in space; but the method

is fairly efficient.

A second strategy uses a free-storage list in increasing

location order. Beads are allocated by searching for a large

enough bead, and then splitting it if necessary. When a bead

is returned, however, it is combined with any adjacent beads;

so that free beads are always as large as possible, and the

problem with the increasing size strategy is avoided.

But there is still storage lost because a large bead

may not be available when a combination of several small

non-contiguous beads would be large enough. The only way

to recover this space is by moving used beads, a process

called compaction. Compaction is extremely time-consuming

because pointers to moved beads must be updated. This re-

quirement also makes compaction impossible in a generalized

structure since there is no way of knowing which data items

are pointers. In a CORAL structure it is not too difficult,

however, because of the back pointers. In any ring struc-

ture, one can find the pointers to update by following the

ring all the way around; the time consumed is proportional

to the average length of the rings. In any case, compaction

should be considered only when the program would terminate

without it.

Thus, there are four strategies in storage allocation:

1) Single fixed size;

2) Small number of fixed sizes;

3) Arbitrary sizes (no coalescing of returned beads);

4) Arbitrary sizes (coalescing of returned beads).

-39-

Each step requires more overhead but uses space more

efficiently. Garbage collection, used rather freely to

mean one or another of the free storage management tech-

niques also refers to the LISP [21] process of scanning

the structure and marking used beads, then collecting

unused beads in a free storage list. Such a process is

unnecessary in the structures discussed here, because

beads are always returned explicitly (e.g., by the delete

mechanism in APL). Because of the confusion about this

term, it should probably not be used.

SECONDARY-STORAGE METHODS

Since data structures can become very large, some means

of keeping them partially in secondary storage is necessary.

One solution is hardware or software paging techniques (which

are easier on the programmer but fail to take advantage of

problem structure), in which the related information becomes

scattered throughout structure space, requiring more

secondary-storage references than necessary. One way of

avoiding this problem is to divide the structure space into

zones, as determined by the programmer, who is then required

to specify a particular zone when getting and returning beads.

This zoning not only allows related information to be kept

together, but also permits different storage-allocation

strategies for different zones.

Hardware paging still restricts the size of virtual

memory, and software paging can be done only when all

references are processed through data-structure primitives.

Another solution is to require the programmer to deal with

secondary storage through specific file operations that

store and retrieve parts of the structure. Once again, the

zone technique may be useful because one could direct the

storage and retrieval of zones, which takes maximum advantage

of problem structures but places an added burden on the pro-

grammer. Another advantage of explicit file operations is

— m

-40-

that the space can be compacted as it is transferred, which

not only saves space on secondary storage but also saves

core space when reloaded.

STORAGE MANAGEMENT IN LEAP

Although the associative memory structure in LEAP re-

quires a great deal of storage, it is efficient because

of the implementation of the hash function, which is f

(Attribute, Object). The high-order bits of an attribute

are used as the track address of a block of storage con-

taining all the triples with that attribute; important be-

cause related information is kept together.

Then, the attribute and object are exclusive "or-ed"

to obtain an offset within the block of a hash bead. The

low-order bits of the attribute are used as the offset of

a use-ring header.

The storage within a block is divided into hanh beads,

conflict beads, value beads, and use headers in about equal

quantities. Conflict beads and value beads must be allocated

by one of the strategies described. When any bead type

is exhausted, the remainder of space in the block is lost;

so fragmentation is still a problem.

-i».,,.,

::·I
l~ '
'\ ,,

Ring start

SET

Structure space

Triple

Value

Value component

-42-

In CORAL, a hen. Also, in ASP, a bead
that expands hens, as does the nub in
CORAL.

In APL, a ring. In LEAP, a collection
of ITEMS.

The subset of computer storage used to
hold the data structure. The range of
the pointer function(s). May include
all types of storage.

In LEAP, an ordered set of three data
items. The principal object contained
in a LEAP structure.

In LEAP, one of the three data items
in a triple. Otherwise, any non-pointer
data item.

In Sketchpad and CORAL, all components
except header components and ring
components.

I

-43-

REFERENCES

1. AED-0 Programming Manual, Preliminary Release No. 2,
MIT Electronic Systems Laboratory, November 1964.

2. Richards, Martin, The BCPL Reference Manual, MIT
Project MAC, Memo M-352-2, January 1969.

3. Knowlton, K. C, "A Programmer's Description of L ,"
Communications of the ACM, Vol. 9, No. 8, August
1968.

4. PL/1 Language Speoification8t SYSTEM 360 Reference
Library, C28-6571, IBM Corporation, Data Processing
Division, White Plains, N.Y.

5. Sutherland, I. E., "Sketchpad: A Man-Machine Graphical
Communication System," MIT Lincoln Laboratory Tech-
nical Report No. 296, January 1963.

6. Johnson, T. E., "Sketchpad III: A Computer Program for
Drawing in Three Dimensions," AFIPS Conference Pro-
ceedings, Spring Joint Computer Conference, Vol. 23,
1963, pp. 347-353.

7. Roberts, L. G., "Graphical Communication and Control
Language," Second Congreea on the Information Syetem
Sciences, November 1964, pp. 211-221.

8. Ling, M.T.S., "Man-Machine Communication with Graphical
Console," Engineering Summer Conference on Computer
Graphics, University of Michigan, 1965.

9. Cotton, I. W., and F. S. Greatorex, Jr., "Data Struc-
tures and Techniques for Remote Computer Graphics,"
AFIPS Conference Proceedings, Fall Joint Computer
Conference, Vol. 33, 1968, pp. 533-544.

10. Parker, D. B., "Solving Design Problems in Graphical
Dialog," On-Line Computer Systems, McGraw-Hill, N.Y.,
1967, pp. 176-219.

11. Chasen, S. H., "The Introduction of Man-Computer
Graphics into the Aerospace Industry," AFIPS Con-
ference Proceedings, Fall Joint Computer Conference,
Vol. 27, 1965, pp. 883-892.

12. Dodd, G. G., "APL—A Language for Associative Data
Handling in PL/l," AFIPS Conference Proceedings,
Fall Joint Computer Conference, Vol. 29, 1966, pp.
677-684.

13. Lang, C. A., and J. C. Gray, "ASP—A Ring Implemented
Associative Structure Package," Communications of
the ACM, Vol. 11, No. 8, August 1968.

-44-

14. Rovner, P. D., and J. A. Feldman, "LEAP Language and
Data Structure," to be published in Information
ProoeeBing 1968, Proceedings of IFIP Congress 1968.

15. , "An ALGOL-Based Associative Language," Com-
muniaations of the ACM, Vol. 12, No. 8, August 1969.

16. Ash, W., and E. H. Sibley, "TRAMP: An Interpretive
Associative Processor with Deductive Capabilities,"
Proceedings of the 22rd National Conference of the
ACM, 1968, pp. 143-156.

17. Sibley, E. H., R. W. Taylor, and D. C. Gordon, "Graphical
Systems Communication: An Associative Memory Approach,'
AFIPS Conference Proceedings , Fall Joint Computer Con-
ference, Vol. 33, 1968, pp. 545-555.

18. Symonds, A. J., "Auxiliary Storage Associative Data
Structure for PL/1," IBM Systems Journal, Vol. 7,
Nos. 3 and 4, 1968.

19. Baskin, H. B., and S. P. Morse, "A Multilevel Modeling
Structure for Interactive Graphic Design," IBM Systems
Journal, Vol. 7, Nos. 3 and 4, 1968.

20. Ross, D. T., "The AED Free Storage Package," Communica-
tions of the ACM, Vol. 10, No. 8, August 1967.

21. McCarthy, J., et al. , LISP--1.5 Programmer's Guide,
MIT Press, Cambridge, Mass, 1962.

vi ..' . .

;■ . rHi'?0

CUMENT CONTROL DATA

ORIGINATING ACTIVITY

The Rand Corporation

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

REPORT TITLE

A SURVEY OF DATA STRUCTURES FOR INTERACTIVE GRAPHICS

AUTHOR(S) (lot) name, linl name, initial)

Hamilton, J. A.

REPORT DATE

April 1970

CONTRACT OR GRANT NO.

DAHC15-67-C-0U1

6a. TOTAl NO. OF PAGES

53

«b. NO. OF REFS.

21

8. ORIGINATOR'S REPORT NO.

RM-61A5-ARPA

fa. AVAKABIllTY/UMnATION NOTICES

DDC-1

10. ABSTRACT

Compares methods of organizing data with-
in a computer to permit many interactive
computer graphic applications. A data
structure is a collection of blocks of
machine words (beads) within a subset of
the computer's memory. A program for pro-
cessing such a structure must be able to
create and destroy beads and to reference
data items (bit strings). The first abil-
ity is provided by LEAP'S associative-
memory storage allocation system. The ref-
erencing ability furnished by several pro-
cedural languages enables the programmer to
design structures. However, several prede-
signed ring structures are useful in inter-
active graphics—e.g., Sketchpad or CORAL.

9b. SPONSORING AGENCY

Advanced Research Projects Agency

II. KEY WORDS

Computer graphics
Information processing
Computer programming languages

' ;. .!:,,5

J

