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PREFACE

Current activity in interactive computer graphics has
exposed several basic problems. One of the more difficult
of these problems is organizing data within the computer to
allow sufficient flexibility for a wide class of applications.

The data structuring and manipulation methods are of
particular interest to the designers of large-scale data-
retrieval systems ard management-information systems includ-
ing the USAF Advanced Logistics System and USAF Rome Air
Development Center's work on DM-1 and follow-on systems.

This Memorandum describes and compares the salient
features of several important research efforts in the field.
Among these are Sketchpad, CORAL, APL, ASP, LEAP, TRAMP,
AED, and L6.

The results of the research (especially the software
associative-store techniques in LEAP and TRAMP) bear on a
wide variety of fields in which data relationships are
important.

James Hamilton, a RAND Corporation Summer Student,
is presently a student at the University of Michigan.
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SUMMARY

A Survey of Data Structures for Interactive Graphics
analyzes and compares several methods of organizing and
manipulating data within a computer to allow sufficient
flexibility for many interactive graphic applications.

These structuring methods are particularly useful in large
data-retrieval and information-management systems, including
the USAF Advanced Logistics System. A data structure is de-
fined in terms of:

l) A data item--a bit of string;

2) A pointer--a data item that contains address
information;

3) A structure space--a subset of the computer's
memory;

4) A bead--a contiguous block of machine words that
is not contained in any other such block;

5) A component--a block of contiguous machine words
contained in a bead.

A data structure is a collection of beads within a structure
space.

A program for processing such a structure must be able
to create and destroy beads, and reference data items. The
first ability is provided by a storage-allocation, associa-
tive-memory system in the ALGOL-like LEAP language, by which
one data item is used as the address of a block of several
data items. The structure requires excess storage, but it
keeps related information together and uses secondary
storage efficiently. Thus, LEAP structures are valuable as
relational data stores for large information retrieval prob-
lems, but they are less so for the normally small inter-
active graphics problems.

The referencing ability provided by several procedural
languages, including AED, BCPL, L6, and PL/1, enables the
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programmer to design his own structures. However, several
predesigned structures, whose components are arranged into
rings, are useful in interactive graphics--e.g., Sketchpad
or CORAL.

How is graphical information represented in a data
structure? In a Sketchpad ring, a drawing is a collection
of entities (e.g., points, lines, and circles), each repre-
sented by a bead. Line drawings in TRAMP (structurally
similar to LEAP) are shown by an associative-memory struc-
ture--a tree whose nodes represent positions, lines, points,
and pictures. Tre Sketchpad display includes topological
information (i.e., the connections between parts) but CSMP
represents topology exclusively.

Graphical input is usually related directly to a data-
display structure, then indirectly to the problem structure
because 1) most hardware provides input via light pen, thus
automatically relating input to the display structure, and
2) transformations have been applied to the problem struc-
ture so that only the display structure knows what is being

shown.
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I. INTRODUCTION

This Memorandum provides a useful and reasonably thorough
description and analysis of data structures for interactive
graphics. Familiarity with the field is assumed, and no
attempt is made to define "interactive graphics" (dealt with
only in Sec. III). The goal is to deseribe and compare
salient features of the most important research efforts in
data structures.

Comparison requires descriptions in a common terminology
so that essential similarities and differences become apparent.
Many properties attributed to data structures are really prop-
erties of description, particularly when pictorial. Good
descriptions are valuable to programmers using data-structure
facilities, but should be independent of the structures them-
selves (and therefore lie outside the purview of this paper).
The most important description of any data structure is the
language used to reference and modify it. (As discussed in
Sec. IV, many linguistic constructs are independent of the
structure to which they are applied.)

The information in this Memorandum derives almost en-
tirely from the published literature. Unfortunately, most
authors mention data structure only briefly. Thus, poten-
tially interesting features of many systems are not ade-
quately enough described for inclusion. The primary basis
for discussion of any particular work is its author's claim
of applicability to interactive graphics. This claim is
rarely supported, because the terms are not well defined.

But some agreement exists among authors in the field as to
which papers are of primary importance, and all of these are
considered.
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II. STRUCTURES

Terms used in the description of data structures are:
atructure gpace, bead, component, data item, and pointer.
Although these correspond to familiar objects, here they
are generalized, and the reader is cautioned against assuming
properties not explicitly stated in the following:

A data item is any bit string that represents an object
of interest. A data item typically represents an integer,

a floating-point number, or a character string. A pointer
is a data item that contains address information. Specifi-
cally, if f(x) is a tunction whose value is a machine
address, then any data item in the domain of f is a pointer.
In any given structure, there is only one such function;

but if there is more than one, pointers are referred to by
the name of the function.

The most common function is

f(x) = x + constant

with the constant generally zero. The choice of a function
may be machine-dependent; it is always determined on the basis
of efficiency. The furction may have two arguments, in which
case both are pointers. This generality is needed to describe
the so-called software-associative memory structures. The
range of the function is generally restricted to some subset
of the machine's available memory. This subset, which may
include all types of storage as well as core, is called the
atructure apace. Restricting the range restricts the domain.
Bead is a term borrowed from the Automated Engineering
Design (AED) Project [l]. It means n-component element, but
is defined here as a contiguous block of machine words that
is not contained in any other such block (except the struc-
ture space).



A ocomponent is a block of contiguous machine words
contained in a bead, and is also the smallest object that
can be pointed to by a pointer. A componeut contains at
least one data item, which may be a pointer or any other
type. It may contain any number of pointers, and is not
fixed in size or internal structure. A bead may contain
any number of components of varying size and internal b
structure. Components are ordered within a bead, and may
be referred to by number.

A standard pictorial representation for structures is
used: beads are shown as rectangles, components are
separated by horizontal lines, and data items within com-
ponents are separated by vertical lines. If a data item is
not a pointer, it is blank or contains a name for the data
item, If it is a pointer, it contains a dot, which is the
tail of an arrow, that points to the component referenced
by the pointer (see Fig. 1).

A data structure is defined as a collection of beads
within a structure space. A program for processing such a
structure requires the hbasic abilities to create and destroy
beads, and to reference data items. The first ability is
provided by a storage-allocation system (discussed in Sec. V).

The refe. :ncing ability provided by several procedural
languages, including AED, BCPL, L6, and PL/1 [1-4] (discussed
in Sec. 1IV), gives the programmer the ability to generate !
and manipulate structures of his owr. design. Whether the
necessity of designing one's own structure is a useless
burden remains to be answered. Large classes of problems
exist that have considerable structural simile-ity, and data
structures have been designed that match such problem struc-
tures. But there remains the necessity of learning the

intricacies of these structures, as well as those of main- ;
taining and interfacing with the associated software.

However, several structures have been designed that are
useful in interactive graphics. Designing a data structuce
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consists of making restrictions on the internal structure

of beads and components. These restrictions take the form
of declarations about classes of beads and their components.
These declarations allow the construction of primitive func-
tions that manipulate the structure in predefined ways. The
terms used below were introduced by the original authors.

THE RING STRUCTURES

Perhaps the best-known of the structures are the
Sketchpad rings [5]. Sketchpad contains four types of com-
ponents: header components, value components, hens, and
chickens. Every bead has one header component, its first
component, followed by an arbitrary number of hens and
chickens, collectively called ring components. Following
the ring components are an arbitrary number of value
components.

Value components contain one data item that is not
a pointer and has no structural interpretation. A header
component contains three data items: 1) the number of com-
ponents in the bead, 2) the number of ring components, and
3) the type, used for identification by the processing
program,

The ring component., are the interesting ones. A
chicken contains four pointers: the hen pointer, the for-
ward pointer, the backward pointer, and the header pointer.
A hen contains the same four pointers. However, the hen
pointer is given a value not in the domain of the pointer
function (viz., zero), to distinguish hens from chickens.

As shown in Fig. 2, the ring components are organized
into rings. Each ring contains exactly one hen, and an
arbitrary number (possibly zero) c¢f chickens. The ring
components are ordered in the ring, with forward pointer
pointing to the next component; backward pointer pointing
to the preceding component; hen pointer pointing to the hen:
and header pointer pointing to the header component of its
bead.
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The pointer function in Sketchpad is the standard
f(x) = x + ¢ ,

with non-zero ¢ that allows x to be smaller than the full
address space of the machine. The header pointer, however,
uses a different function, viz.

f(x) = x + address of x .

The above representation is structurally irrelevant, but
important for efficiency since it allows x to be a very
small negative number, needing only 4 or 5 bits,.

Most follow-ups to the original Sketchpad work (6-11)
have been either inadequately describhed or not significantly
different. One nearly identical structure is CORAL (Class
Oriented Ring Associative Language) (7], in which the back-
ward pointer and hen pointer are replaced by one pointer
plus a one-bit data item that tells whether it is a back-
ward pointer or a hen pointer. CORAL rings are huilt with
backward pointers and hen pointers alternating. Also, the
header pointer is eliminated without mention. The author
can only assume that an additional one-hit data iftem is
used to mark the header component so that it may he found
by a i.ort search.

These differences primarily affect efficiency, cutting
in half the space requirement of Sketchpad ring components,
which requires two machine words. CORAL achieves this im-
provement at the cost of a small increase in processing time
due to the necessity of rmoving, for example, through more
than one component to reach the hen. This cost is dependent
on problem characteristics: {f these are such that rings
are generally short (less than 10 components), then hen and
backward pointers could be eliminated without great loss.
CORAL is considered a good compromise.




A more important difference is the addition in CORAL
of a small bead called a nub. When a bead is created, it
contains a fixed aumber of ring components that cannot bhe
changed because of storage-allocation methods. A bead is
made a member of a ring by adjusting one or more of its
ring components to point to the appropriate rinj memhers.
However, it may happen that all of the ring components are
used; in the majority of cases, this will never happen
because of problem-structure constraints. In a Sketchpad
structure one must be careful of this possihility when de-
signing bead types: hvt in CORAL the “"nuh” overcomes this
problem. A nub is a bead containing two ring components
(used as shown in Fig. 1), which serves as a general example
of a CORAL structure.

Both Sketchpad and CORAL structures are manipulated by
a set of primitive functions discussed in Sec. IV). Ancther
language, APL (Associative Processing Language), extends
PL/1 and provides structural capabilities identical to CORAL,
with the exception of a data item called an "associative
data attribute” (12]). Although its implementation is not
described (and this author is unwilling to guess), the
language itself {s discusesed in Sec. IV.

Another ring-type structure, ASP (Associative Structure
Package) (13), is logically equivalent to CORAL hut with the
CORAL nub carried to its extreme. In CORAL terms, the ASP
structure is obtajined by restricting the ring components in
each normal bead (called an element in ASP) to two (one hen
and cne chicken). A second bead (a ringstart) expands hens
in the same way that the ONMRAL nub (an associator in ASP)
expands chickens.

Although this description of ASP differs from the
original, it permits a direct comparison that indicates ASP
is equivalent to CORAL from the viewpoint of the prograrmer
equipped with the same set of primitive functions--except
that he no longer has to determine the number of ring com-
ponents in a bead. Processing of an ASP structure is slower
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than CORAL, but part of the ASP work is the development of
an elegant pictorial description for structures. Although
the pictorial description specifically represents ASP
structures it coculd also be used for other structures.

THE _SOFTWARE ASSOCIATIVE MEMORY APPROACH

This section concludes with a description of a software-
simulated associative memory. Several systems, nearly struc-
turally equivalent, use the associative memory approach
(14-17). The system described here is part of the LEAP lan-
guage (14-15).

LEAP is designed to store triples. A triple is an
ordered set of three data items--attribute, ohject, and
value. Because the structural description alone might be
meaningless, retrieval requests that LEAP is intended to
support are discussed before describing the representation
of triples in terms of beads and components. A LEAP struc-
ture is a collection of triples. Besides determining the
presence or absence of a particular triple, LEAP can re-
trieve the following mets of triples:

1) All triples having attribute A and object N;
2) All triples having object O and value V;

3) All triples having attribute A and value V;
4) All triples having attribute A;

S) All triples having object O;

6) All triples having value V.

Retrieval is accomplished by providing three separate struc-

ture spaces: attribute space, object space, and value space.

There are two retrieval methods: 1) for the first three

types and 2) for the second three. Each triple is stored

in all three structure spaces. To retrieve a set of type

1), for example, method 1 is applied to the attribute space.
Each space is identical in structure, the only dif-

ference being a permutation of the triple before it is
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stored. The attribute space stores the triple (A, 0, V),
the object space (0, V, A), and the value space (V, A, O).

In the attribute space, each data item in a triple has
three pointer functions. The first is the {tem-funetion
that yields the address of the external description (external
to the data structure and its processor in the sense that it
is interpreted elsewvhere). This external description is
usually outside the structure space, but also may be inside
(i.e., another triple).

The second function is the haeh-function that requires
two arguments, the attribute and the object of a triple.
These arguments may be two pairs cuch that

f(A1,01) = £(A2,02) .

This situation, called a conflict, must be resolved. In
Sec. V the hash function, which yields the address of a hash
bead (see below), and implements 1etrieval method 1, is
further discussed.

The third pointer function--the use-function--applies
to the attribute (for the attribute space), and yields the
address of a use-header bead (p. 13). It implements re-
trieval method 2.

A fourth and final pointer function--the link-function--
upplies to other data items found in the structure space,
not to tr.,le items. It applies to pointers called links
and yields the address of any bead.

Two bead types have been mentioned above. All beads
listed below contain exactly one component (the distinction
is not relevant here) and one data item that indicates the
type (see Fig. 4):

i

1) The hash bead contains five data items:
a) Attribute:
b) Object--for comparison with originsls to
resolve conflicts;
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c) Use link--see use header;

d) Conflict link--in conflicts, additior.al hash
beads are chained to the first. To retrieve,
one searches the list for the bead with the
correct attribute and object;

e) Value, or value link--if there is more than
one value for the same attribute-object pair,
additicral value beads are chained to the hash
bead.

2) Value bead--two data items:

a) Value:;

b) Value link or zero.

3) The use header contains one data item that is a
link to tha first hash bead in a use ring. There
is one use ring for each attribute that collects
all triples having that attribute. It is accessed
by applyirg the use-function to the attribute.

Hash beads and value beads may have one additional non-
pointer data item if the triple is used as an ITFM (pointed
to by a triple member via the item-function).

Now, compare this organization to other structures, con-
sidering only the attribute space. Let attributes correspond
to components, objects to beads, and values to data items.
Although only one of many ways of viewing a LEAP structure,
the entire jeneralized structuring ability is there, plus
much more. Of course, one must assume the burden of de-
signing one's own structure, which is even worse in the
simulation of asscciative memories, because of its greater
complexity and its relative unfamiliarity.

In any case, there are several differences between
generalized structures and a LEAP structure with the above
correspondences: beads (objects) are of varying length:
the use ring automatically ties together objects that have
the same attribute; the object and value spaccz are in-
tentionally redundant (although it is clear that a ring

- el
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structure could be duplicated in a smiliar way by using
permutations). Note that a ring structure can store exactly
the information required by the problem, whereas a LEAP
structure stores the same information in several forms for
reasons of search efficiency. ‘

Finally, in considering the costs involved, the quantity
of storage required is vastly increased, so much so that all
but the smallest structures require secondary storage [18].
On the other hand, LEAP structures lend themselves to a
rather efficient use of secondary storage; in fact, speed is
relatively independent of the size of the structure, which
makes it look good for large problems. But it is not clear
that graphics problems generate structures large enough to
require secondary storage. As for processing speed, assuming
the referenced triple is in core, the hash function requires
three or four instructions, and conflict resoluticn even
more, which means that referencing is probably less than a
factor of ten slower.

LEAP and similar structures clearly have great value
as relational data stores for information retrieval problems,
but their usefulness in interactive graphics is not clear.
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ITII. GRAPHICS APPLICATIONS

This section deals with two problems that are really
the same problem: 1) how to represent graphical informa-
tion in a data structure; and 2) how to relieve the program-
mer of the job of display generation and management. A
solution to the first problem also solves the second--since
once we have a fixed data-structure representation, we can
build a processor to generate the display from this struc-
ture. The real problem is to find a representation amenable
to both display structure and problem structure. The several
possibilities described below are followed by a brief general
discussion of display generation.

RING STRUCTURE REPRESENTATIONS FOR LINE DRAWINGS

The Sketchpad representation of line drawings has been
the basis for succeeding work in this field, and little that
is new has been added. In Sketchpad, a drawing is a col-
lection of entities, each of which is represented by a bead.
This discussion concerns five types of entities (although
there are many more in the actual implementation): points,
lines, circle arcs, pictures, and instances. The first
three should be obvious. These entities constitute a nearly
minimal selection of building blocks; clearly other common
entities (e.g., general conics) could be added to the list,
but the¢ display generator must be aware of them. A picture
entity collects in its picture ring the lines, arcs, and
instances that make up the picture. It also collects all
instances of that picture in an instance ring. An instance
references a picture by appearing in its instance ring, and
the referenced picture is a subpicture of the picture in
whose picture ring the instance appears. Thus, a display
is a hierarchy with a picture at the top, containing
instances of other pictures, which in turn may contain
instances, etc.

g T i et s ool e B
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Figure 5 shows a brief description of the internal
structure of the entities. Each bead contains the following
in addition to a header component:

1) A line contains three chickens--one for the picture
ring and two for the end points.

2) A circle arc contains four chickens--one for the
picture ring and three for end points and center.

It also has two value components, angle of arc
and radius.

3) A point contains one chicken for the picture ring--
one hen to collect the lines and circles referencing
this point (the ring goes through the chickens
listed above), and two values giving the coordinates.

4) An instance contains two chickens--one each for the
picture ring of the picture containing it and the
instance ring of the picture it references. It
also contains four values, giving a transformation
(rotation, translation, and scale) to be applied to
the picture it references.

5) A picture contains two hens--one for the picture
ring and one for the instance ring.

The arrangement of hens and chickens in this structure
introduces a set of dependencies that are consistent with
the deletion mechanism provided for Sketchpad structures.

A bead containing a chicken is said to depend upon the bead
containing the hen for that chicken. When an entity is
deleted, all dependent entities must be deleted as well
(e.g., a line must have end points). Deletion mechanisms
are discussed below (Sec. 1IV).

LINE DRAWING IN TRAMP

For completeness, an example of line-drawing representa-
tion in an associative-memory structure is included. Imple-
mented in TRAMP [15]) (structurally almost identical to LEAP),
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a display is represented by a tree whose nodes represent
positions., lines, points, and pictures. The tree structure
is a set of triples that is distinguished by attribute CLAS.
The value of the triple is a node in the tree, and the
object of the triple is a daughter of that node.

A terminal node determines the type of entity, viz.,
position, line, or point. These correspond to display
orders: f{.e., position means invisible line, line means
visible line, and point means display a point. The branches
must thus be ordered, from left to right, in the sequence
in which they are to be displayed. Thus a line, in the
Sketchpad sense, is represented by two successive nodes--
either position-line or line-line.

The single irmediate predecessor of each terminal node
is the name of that entity, and is also the object of a
pair of triples whose values are coordinates and whose
attribute i{s COOR. All further predecessors are names of
pictures: fi.e., names of collections of positions, lines,
points, and other pictures. Figure 6 shows a triangle
using this scheme.

REPRESENTATION OF TOPOLOGICAL NETWNRKS

Many application programs are not concerned with the
geometry of a display., but rather with the topology: {.e.,
the connections between parts. This is particularly true
of such applications as electrical or logical network
design.

The Sketchpad representation does include topological
information as part of its constraint satisfaction mechanism
(but in a complex and unnatural way not described here).
Another system, CSMP (Continuous Systems Modeling Program)
(19) has been designed to represent only the topological
structure. The representation consiste of a set of entities
(e.9., resistors and capacitors) that must be made known to
the display generator i{n some undescribed way. Each entity
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has an arbitrary number of attacher pointse, which corre-
spond to ring components of the head representing the
entity. Each node in the topological structure is repre-
sented by a ring through the attacher points at that node
(see Pig. 7).

Although this system handles a large class of computer-
aided design problems in a simple way, it is unable to deal
with geometric considerations. However, it clearly could
be merged with the Sketchpad representation. Wwhat is needed
is the addition of ring components for attacher points to
instances.

DISPLAY GENERATICH

Consider the problems of translating a problem structure
into a program for controlling a display. In general, this
display program will be a sequence of display orders (codes
that control beam movement, etc.) transmitted through a data
channel, under control of a channel program. This channel
program has two instructions: one sends a block of display
orders, giving a starting location and word count; the other
is a transfer in channel instruction, which allows a transfer
of control within the channel program. These channel in-
structions may be viewed as pointers that give structure to
the display program. The problem is how to generate the
display structure from the problem structure.

Cotton and Greatorex (9] describe a system that builds
a display structure from a problem structure very similar
to Sketchpad. The display structure is very similar to the
problem structure. Mainly, ring pointers are replaced by
transfer in channel commands, and values by display orders,
in such a way that one merely starts the channel program at
a picture block; the display processor transfers from block
to block finally ending, once again, at the picture block.
The differences are that instances are expanded and point
blocks are removed in favor of including coordinates in
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line and circle blocks. (Actually point blocks are not
in the problem structure, in the Cotton-Greatorex system.)
Figure 8 shows an example of a display structure for the
Sketchpad structure of FPig. S (p. 17).

Is it reasonable to merge the problem structure and
the display structure since they have many similaritics?

The difficulty develops with the various transformations
that must be applied in generating the display structure.
Onc of these is the translation from problem coordinates
to display coordinates, or from values to display orders.
If the display space is smaller than the problem space,
scissoring (the removal of objects that lie ocutside the
display image) may be involved. In addition, the trans-
formations (rotation, translation, and scaling) specified
by instances require that a separate copy of a picture be
made for each instance.

Display generation in TRAMP is simple. Terminal node
types and coordinates are transmitted i{n order, from left
to rioht, in the tree.

No other display generation methods have been described,
because work has depended on the application program to
generate the display through a sequence of calls to primitive-
display functions. These functions often include subpicture-
definition capabilities, providing the ability to display or
delete previously generated subpictures. Therefore, these
functions are really a set of data-structure primitives for
manipulating the display structure, requiring the programmer
to learn two sets of primitives.

INTERACTIVE ASPECTS

A question of primary interest is how to relate graphical
input to a data structure. The choice is between relating
input directly either to the problem structure or to the
display structure (and then to the problem structure). The
second alternative has invariably besan chosen for two reasons:
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1) most hardware provides input via light pen, in which case
the hardware automatically relates input to display struc-
ture; and 2) transformations have been applied to the prob-
lem structure so that only the display structure knows what
is being displayed.

Therefore, a means of relating display structure back
to problem structure is required (assuming input can be
related to the display structure). In a system with display
primitives, the display processor is unaware of the problerm
structure. To circumvent this problem, display primitives
generally return identifiers with which the displayed items
will be referenced in the future. The application program
is then forced to cross-reference these identifiers with
its data structure, an awvkward solution at hest.

With the Cotton-Greatorex structure (9]}, however, the
solution is simple. Each entity in the display structure
is put into a ring headed by the entity from which {t was
generated in the problem structure. The TRAMP structure
(15) has an equally simple solution. Each entity name is
made the object of a triple whose attribute is HIST and
whose value {s the location in the display structure.

CSMP (19] has an interesting solution: the display is
not generated by the application program, but by the user
sitting at a console in conversation with the display pro-
cessor, which is then responsible for generating the prob-
lem structure from the display structure, rather than vice
versa. CSMP does this by dividing the display surface into
64 small squares and then searching the display structure
for groups of attacher points lying in the same square.
Many questions relating to the generality of the display
processor are left unanswered.
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IV. LANGUAGES

The following discussion of languages has two goals:
1) the description of primitive operations for data struc-
ture management: and 2) the presertation of the syntax
used to specify these primitives. The primitives are dis-
cussed in four groups, along with the appropriate syntactic
forms. The first is simple references, or retrieval of
data items from generalized structures. The section on
references deals with the specific structures defined in
CORAL and LEAP, followed by a description of the updating
of structures:; i.e., the creation, insertion, and deletion
of beads. The section concludes with the more complex
searching and iteration operations, once again applied to
the specific ring structures and associative memory
structures.

SIMPLE REFERENCES

The problem with data-structure processing in a typical
algebraic language (e.g., PORTRAN) is that one name is bound
to two values--a location and its contents--but the program
controls only the contents.

There are many ways around this problem. Describing
them requires introducing some terminology, borrowed this
time from the BCPL language [(2]. An expreseion is a sequence
of variables, manifest constants, parentheses, plus and
minus, and unary operator rv. A variable is a name with
two values (as in FORTRAN). A man{feet conetant is a name
with only one value. This name may be a number (e.g., S)
or an arbitrary identifier that has become a manifest con-
stant in some undefined way. The important point is that
its value is known to the language processor (compiler).

The location, or left-hand value of a variable is a mani-
fest constant. Parentheses, plus, and minus are used in
the usual way.
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An expression is evaluated to yield a single value.
The value of a variable in an expression is the right-hand
value, or contents of the location determined by the left-
hand value. An indirection operator, rv, applied to an
expression, yields the contents of the location determined
by the value of the expression.

We now can describe, in terms of the above, the referents
provided by various languages which are essentially a small
subset of BCPL. Consider first the referent

A(B) = rv (A + B) .

With no restrictions on A or B, this is the meaning of A(B)
in BCPL. But most lanquages restrict A to be a manifest
constant. In FORTRAN and its relatives, A is a manifest
constant whose value is assigned by the compiler. That is
what is meant by the statement

DIMENSION A(...) .

In AED [1]), the value of A is assigned by the programmer,
using the non-executable statement

A $=$ value .

It must still be a manifest constant however, and is required
to be declared so by

COMPONENT A .

In AED, B is viewed as a pointer to a bead, and A is the
offset of a particular component. Thus, A(B) references a
component of a bead.

Next consider A(B(C)). As one might expect, in most
languages this is rv(A + rv(B + C)). 1In AED, however, it
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can also be rv(A + B + C), provided A is a COMPONENT, and

B is another manifest constant called a SUBELEMENT. If B

is also a COMPONENT, the other meaning is used. A(B + C)

also means rv(A + B + C). In BCPL only, one also may have
A(B) (C), meaning rv(rv(A + B) + C).

L6 (3] is a low-level language in which variables,
called bugs, are identified by single letters. Reference
is accomplished by concatenation; i.e., AB means rv(A + B),
where A is a bug name and B is a manifest constant declared
by defining the internal structure of a bead. The declara-
tion is made by using the instruction (i DB j k); i is the
value of B, and j and k are bit numbers that determine
shifting and masking to be performed after the storage
access. ABC means rv(rv(A + B) + C), and such strings can
be arbitrarily long, the same as BCPL, without parentheses.

In PL/1, a bead--a PL/1 structure in which the items
at level two are components--is declared by:

DECLARE 1 (structure name) CONTROLLED ,
2 (component name) (attributes) ,
2 (component name) (attributes) ,

If A is a component name, and B a variable with attribute
POINTER, then B + A is equivalent to rv(A + B), where A is
a manifest constant whose value is assigned by the compiler
to be its relative position in the structure. A component
may be a substructure, via

2A,3C'3Dooo

In this case, B + A.C means rv(A + B + C), where both A and
C are manifest constants. A componenti also may be an array
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in the FORTRAN sense, and B + A(C) also means rv(A + B + C).
B+ A+ C means rv(rv(A + B) + C). If a structure contain-
ing component A is declared CONTROLLED (B), then A means

B + A. Note, however, that pointer arithmetic is illegal
in PL/1, but not in BCPL, AED, or L6. BCPL is the simplest
and most general of these languades; in addition, its data
items are completely typeless, whereas PL/l1 provides a com-

plex array of types, and AED uses the common AIGOL types.

SET REFERENCES

The above languages allow one to reference single-
data items in any generalized data structure. If a more
specific structure is defined, however, one can devise ways
of referencing such substructures as rings.

In CORAL and Sketchpad, ring-structure primitives are
implemented by macros in an assembler language. APL
(Associative Programming Language) [12], however, is an
extension of PL/1 that manipulates a CORAL structure. As
above, a CORAL block is declared as a PL/l1 structure, but
with attribute ENTITY, instead of CONTROLLED. Hens are
declared with attribute SET, and chickens with attribute
MEMBER. Value components can be any other PL/1 data item.
Variables of type ENTITY contain pointers to entities.

Of interest here are references to three things: rings
(called sets in APL), entities, and components of entities.
An entity is referenced either by an entity variable or
by designating a particular membe:r of a set. The latter
is done by number, since rings are ordered. The syntax is:

(entity ref) ::= (entity variable) | (set ref)((integer)) .

A set is referenced by giving the name of a ring component
of a particular entity. The syntax is:

(set ref) ::= (entity ref).(component name) .

-~
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Clearly, this also serves to reference value components.
For example, A.B and A.B(5).C are set references; and

A.X, A.B(3).X, and A.B(5).C(2).X are value references. 1In
these examples, A is an entity variable, B and C are ring
component names (declared as SET or MEMBER), and X is a
value component name.

Actually, the same syntax might serve as well in a
generalized structure by using the integers as duplication
factors, and removing the dots that separate names. Further-
more, we have L6 references. For example, A.B(5).C(2).X
would be ABBBBBCCX, conceptually very similar to the APL
reference. Clearly, the difference lies in the description.

The LEAP language [14-15) is very similar to ALGOL,
with the addition of several statements and data types to
handle the relational structure. The relational structure
stores triples. The attributes, objects, and values of
triples are declared as ITEMs. An ITEM is a manifest con-
stant, whose value is the address of a typical ALGOL vari-
able. The value of the variable is accessed by the opera-
tor vy, which is identical to rv. For example,

INTEGER ITEM A
makes A the address of an integer. 1Its value is yA. There

are also variables, called ITEMVARS, whose right-hand values
are ITEMs. A triple is specified as

>
o
1T

v,

where A, 0, and V are ITEMS or ITEMVARS.

The implementation of another data type in LEAP, called
SET, is not described. A SET is a collection of ITEMS, and
may be specified in a variety of ways:

1) A set variable;
2) A list of ITEMS (e.q., {A, B, C});
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J) Unions, intersections and complements of sets:

4) A - O--the set of values of all triples with
attributa A and object O;

S) A'V--the set of objects of all triples with
attribute A and value V.

CREATING, INSERTING, AND DELETING

The creation of a head requires a call to storage

management to allocate a block of words. 1In BCPL, AFD, and

L6 this requires an explicit function call specifying the

size of the bead. The function returns an address used to
update the variable that will reference the bead, namely

B in A(B). In PL/1l, creation is accomplished via the
statement:

ALLOCATE (structure name) SET (pointer variable) ;
and in APL by the almost identical
CREATE (entity name) CALLED (entity variable) .
In LEAP, a triple is created by the statement:
MAKE (attribute) °« (object) = (value) ,

where attribute, object, and value are ITEMS or ITEMVARS.
ITEMS may also be created dynamically by

NEWITEM -+ (itemvar)

or

N((expression)) .

od
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In the second case, the value of the new ITEM is initialized
to the value of the expression.

Cercoralized structures are built by explicitly updating
components of beads with pointers, requiring only the
reference mechanisms already described. Triples are added
to a LEAP structure by the same make instruction that
creates them, and structures are built only by adding triples.

But a CORAL structure is built by inserting blocks in
rings, done in APL by the statement:

INSERT (entity variable) IN (set ref) .

This s-atement is ambiguous, however, because blocks in a
ring are ordered, and specify the position in the ring where
the block is to be inserted. In APL, this is done by
specifying ordering as an attribute of a set component name.
Two such orderings are FIFO, meaning insert entities at the
end of the ring; and

ORDERED INCR ON (component name) ,

which means that entities in a ring are to be kept sorted
on a particular component.

Deleting is a bigger problem since it involves un-
creation as well as un-insertion. 1In a generalized struc-
ture, these must be done separately. Un-creation, or re-
turning of a bead to free space, is done by a function call,
just as in creation. In PL/1, the keyword is FREE. Un-
insertion consists of updating pointers to the returned
bead. Unfortunately, structures may be made inconsistent
in complex ways that the programmer must be aware of.

In a CORAL structure, however, these steps can be more
precisely defined. One may request that a block (entity)
be removed from a ring (set). The APL statement is

REMOVE (entity ref) FROM (set ref) .



-32~

This requires that pointers in the adjacent blocks in that
ring be updated to skip the block in question. One also
may delete an entity or a set (DELETE (entity or set ref)).
Deletion of a set means deletion of all entities in the set.
Deletion of an entity means removal from every set of which
it is a member, deletion of every set for which it has a
SET component (hen), and return of the bead to free storage.
A single delete may activate four separate functions: two
deletes (both recursive), a remove, and a free; first real
advantage of CORAL over a generalized structure in terms of
quantity of code necessary to perform the operation.

ITERATION AND SEARCHING

Operations that reference sets as a whole are found
only in APL and LEAP. The first of these is "do something
for each element of a set." The APL syntax is:

FOREACH (entity variable)=(entity name) IN (set ref)
WITH (boolean exp.) UNTIL (boolean exp) ;

(statement list); END .

The statement list is executed once for each entity in the
set satisfying the WITH and UNTIL clauses, which are optional.
The entity variable points to the entity in question during
each execution.

In LEAP, where sets are of primary importance, the
statement has two different forms and allows multiple iter-
ation variables, called locals. The first form is quite
similar to the above:

FOREACH (local) IN (set expression) DO (statement list) .
The second is:

FOREACH A*OZV DO (statement list)
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where any one or two of A, O, and V may be locals. If V
is a local, for example, it is equivalent to FOREACH V IN A<O;
but if both O and V are locals, the statement list is exe-
cuted once for each pair (0, V) such that A<O=V is in the
store.

APL offers one further statement not found in LEAP,
potentially the most valuable, that enables one to search
rings in various ways. The syntax is:

FIND (entity variable) = (entity specification)
WITH (boolean), UNTIL (boolean),
ELSE (statement) .
(entity specification) ::=
({integer)) (entity name) IN (set ref)

| (set name) CONTAINS (entity ref) .

This statement either finds an entity satisfying the WITH
and UNTIL clauses (optional), and updates the entity vari-
able, or it executes the else statement. The entity spec-
ification directs it to search for the nth entity in a set,
with the given properties, or to search for the entity
whose set component heads the ring containing a specific
entity.

The literature on ASP [13] includes an interesting
pictorial representation for ring structures (see Fig. 9).
This pictorial representation could be useful not only as
an aid to the design of display and problem representation
but also as an input to some graphical language (as opposed
to a character-string language).

When discussing languages, one notes an absence of any
reference to graphics, a condition more or less reflected
in the literature. Clearly, however, one could define the
Sketchpad entities in APL and obtain a very graphical-looking
program (illustrated in Fig. 10) for the simple entities
described in Sec. III.
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Fig. 10--Defining the Sketchpad Entities in APL

oK,

picture ENTITY,
2 pring SET FIFO,
2 iring SET FIFO,
instance ENTITY,
2 pring MEMBER,
2 iring MEMBER,

2 trans,

3 (xtrans, ytrans, sin, cos) FIXED,

line ENTITY,

2 pring MEMBER,

2 epoints MEMBER,

circle ENTITY,

2 pring MEMBER,

2 epoints MEMBER,

2 (radius, angle) FIXED,
point ENTITY,

2 pring MEMBER,

2 epoints SET,

2 (xvalue, yvalue) FIXED,

v
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V. STORAGE MANAGEMENT

In all of the structures discussed abcve, except asso-
ciative memory (LEAP), specific calls to storage-management
routines are required to get and return beads. From the
logical point of view, the specifics of storage management
are irrelevant; but in terms of efficiency, they are crucial.
In addition, a programmer who is aware of storage-management
strategy may be able to write a more efficient program.
Several strategies for managing a structure space assumed
to be in core are described below, followed hy a discussion
of secondary storage techniques. Many of the methods de-
scribed here are implemented in the AED free-storage
package (20]).

STORAGE-ALLOCATION STRATEGIES

The first step in designing a storage-management pack-
age is to choose the available bead sizes. A requirement
is that the largest bead used in the structure be available.
One choice, which greatly simplifies the problem, is to
supply only one block size. A large variance of bead size
will result in a lot of wasted space. But if the variance
in bead size is less than 25 percent of the mean, it could
be a good choice--especially if time is much more important
than storage efficiency. To allocate fixed-size beads, a
list of available beads is maintained. When a new bead is
requested, the first one on the list is supplied; when a
bead is returned, it is appended to the end of the list.

It is possible to supply only beads of a few different
sizes; but except in special cases, this is no better than
supplying exactly the size requested, which is probably the
best solution. There are several ways of doing this: one
can maintain a free storage list in increasing order of
size (see Fig. 1ll). To supply a bead, one searches the list
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for a bead of the right size; if there are none, a larger
one is split, and the remainder added to the list in the
proper place. If no bead is large enough, there is no
simple solution; although two smaller beads might be con-
tiguous, such a case is difficult to find. Thus, there
is a chance of considerable loss in space; but the method
is fairly efficient.

A second strategy uses a free-storage list in increasing
location order. Beads are allocated by searching for a large
enough bead, and then splitting it if necessary. When a bead
is returned, however, it is combined with any adjacent beads;
so that free beads are always as large as possible, and the
problem with the increasing size strateqgy is avoided.

But there is still storage lost because a large bead
may not be available when a combination of several small
non-contiguous beads would be large enough. The only way
to recover this space is by moving used beads, a process
called compaction. Compaction is extremely time-consuming
because pointers to moved beads must be updated. This re-
quirement also makes compaction impossible in a generalized
structure since there is no way of knowing which data items
are pointers. In a CORAL structure it is not too difficult,
however, because of the back pointers. 1In any ring struc-
ture, one can find the pointers to update by following the
ring all the way around; the time consumed is proportional
to the average length of the rings. In any case, compaction
should be considered only when the program would terminate
without it.

Thus, there are four strategies in storage allocation:

l) Single fixed size;

2) Small number of fixed sizes;

3) Arbitrary sizes (no coalescing of returned heads);
4) Arbitrary sizes (coalescing of returned beads).
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Each step requires more overhead but uses space more
efficiently. Garbage collection, used rather freely to
mean one or another of the free storage management tech-
niques also refers to the LISP [21] process of scanning
the structure and marking used beads, then collecting
unused beads in a free storage list. Such a process is
unnecessary in the structures discussed here, because
beads are always returned explicitly (e.g., by the delete
mechanism in APL). Because of the confusion about this
term, it should probably not be used.

SECONDARY-STORAGE METHODS

Since data structures can become very large, some means
of keeping them partially in secondary storage is necessary.
One solution is hardware or software paging techniques (which
are easier on the programmer but fail to take advantage of
problem structure), in which the related information becomes
scattered throughout structure space, requiring more
secondary-storage references than necessary. One way of
avoiding this problem is to divide the structure space into
zones, as determined by the programmer, whc is then required
to specify a particular zone when getting and returning beads.
This zoning not only allows related information to be kept
together, but also permits different storage-allocation
strategies for different zones.

Hardware paging still restricts the size of virtual
memory, and software paging can be done only when all
references are processed through data-structure primitives.
Another solution is to require the programmer to deal with
secondary storage through specific file operations that
store and retrieve parts of the structure. Once again, the
zone technique may be useful because one could direct the
storage and retrieval of zones, which takes maximum advantage
of problem structures but places an added burden on the pro-
grammer. Another advantage of explicit file operations is
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that the space can be compacted as it is transferred, which
not only saves space on secondary storage but also saves

core space when reloaded.

STORAGE MANAGEMENT IN LEAP

Although the associative memory structure in LEAP re-
guires a great deal of storage, it is efficient because
of the implementation of the hash function, which is £
(Attribute, Object). The high-order bits of an attribute
are used as the track address of a block of storage con-
taining all the triples with that attribute; important be-
cause related information is kept together.

Then, the attribute and object are exclusive "or-ed"
to obtain an offset within the block of a hash bead. The
low-order bits of the attribute are used as the offset of
a use-ring header.

The storage within a block is divided into hash beads,
conflict beads, value beads, and use headers in about equal
quantities. Conflict beads and value beads must be allocated
by one of the strategies described. When any bead type
is exhausted, the remainder of space in the block is lost;
so fragmentation is still a problem.
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GLOSSARY

In LEAP, one of the three data items
in a triple.

A contiguous subset of the structure
space, which is not a part of any
other bead.

In CORAL, a bead containing header
ring components and value components.
Distinguished from the CORAL nub.

In Sketchpad, a component containing
four pointers; used to make a bead
part of a ring.

A contiguous subset of a bead. The
smallest object pointed to by a poincer.

In AED, a bead is also an n-component
element. In ASP, the bead containing
value-data items.

A bead that represents some graphical
object (e.g., a line, circle, etc.) .

In Sketchpad, a component containing
three pointers, one of which is part
of every ring.

In LEAP, any member of a triple. It
also has a value.

A chicken in APL.

As part of a language, a name (charac-
ter string) having only one value. The
value is known to the language processor.

In CORAL, a bead containing two ring
components, which, in effect, add ring
elements to blocks.

In LEAP, one of the three members of a
triple. Otherwise used as an author
defines it.

A data item containing address informa-
tion that is extracted via a pointer
function.

Any circular sequence of pointers.

In Sketchpad and CORAL, the components
containing the ring-structure pointers.

In CORAL, a chicken.
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In CORAL, a hen. Also, in ASP, a bead
that expands hens, as does the nub in
CORAL.

In APL, a ring. In LEAP, a collection
of ITEMS.

The subset of computer storage used to
hold the data structure. The range of
the pointer function(s). May include

all types of storage.

In LEAP, an ordered set of three data
items. The principal object contained
in a LEAP structure.

In LEAP, one of the three data items

in a triple. Otherwise, any non-pointer

data item.

In Sketchpad and CORAL, all components
except header components and ring
components.
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