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PREFACE 

Current activity in interactive computer graphics has 

exposed several basic problems.  One of the more difficult 

of these problems is organizing data within the computer to 

allow sufficient flexibility for a wide class of applications. 

The data structuring and manipulation methods are of 

particular interest to the designers of large-scale data- 

retrieval systems and management-information systems includ- 

ing the USAF Advanced Logistics System and USAF Rome Air 

Development Center's work on DM-1 and follow-on systems. 

This Memorandum describes and compares the salient 

features of several important research efforts in the field. 

Among these are Sketchpad, CORAL, APL, ASP, LEAP, TRAMP, 

AED, and L . 

The results of the research (especially the software 

associative-store techniques in LEAP and TRAMP) bear on a 

wide variety of fields in which data relationships are 

important. 

James Hamilton, a RAND Corporation Summer Student, 

is presently a student at the University of Michigan. 



-v- 

SUMMARY 

A Survey  of Data Struoturee  for Interactive  Graphioe 
analyzes and compares several methods of organizing and 

manipulating data within a computer to allow sufficient 

flexibility for many interactive graphic applications. 

These structuring methods are particularly useful in large 

data-retrieval and information-management systems, including 

the USAF Advanced Logistics System.  A data structure is de- 

fined in terms of: 

1) A data  item—a bit of string; 

2) A pointer—a data item that contains address 

information; 

3) A structure  space—a subset of the computer's 

memory; 

4) A head—a contiguous block of machine words that 

is not contained in any other such block; 

5) A component—a block of contiguous machine words 

contained in a bead. 

A data structure  is a collection of beads within a structure 

space. 

A program for processing such a structure must be able 

to create and destroy beads, and reference data items.  The 

first ability is provided by a storage-allocation, associa- 

tive-memory system in the ALGOL-like LEAP language, by which 

one data item is used as the address of a block of several 

data items.  The structure requires excess storage, but it 

keeps related information together and uses secondary 

storage efficiently.  Thus, LEAP structures are valuable as 

relational data stores for large information retrieval prob- 

lems, but they are less so for the normally small inter- 

active graphics problems. 

The referencing ability provided by several procedural 

languages, including AED, BCPL, L , and PL/1, enables the 
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programmer to design his own structures. However, several 

predesigned structures, whose components are arranged into 

rings, are useful in interactive graphics—e.g., Sketchpad 

or CORAL. 

How is graphical information represented in a data 

structure? In a Sketchpad ring, a drawing is a collection 

of entities (e.g., points, lines, and circles), each repre- 

sented by a bead.  Line drawings in TRAMP (structurally 

similar to LEAP) are shown by an associative-memory struc- 

ture—a tree whose nodes represent positions, lines, points, 

and pictures.  The Sketchpad display includes   topological 

information (i.e., the connections between parts) but CSMP 

represents topology exclusively. 
Graphical input is usually related directly to a data- 

display structure, then indirectly to the problem structure 

because 1) most hardware provides input via light pen, thus 

automatically relating input to the display structure, and 

2) transformations have been applied to the problem struc- 

ture so that only the display structure knows what is being 

shown. 
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I.  INTRODUCTION 

This Memorandum provides a useful and reasonably thorough 

description and analysis of data structures for interactive 

graphics. Familiarity with the field is assumed, and no 

attempt is made to define "interactive graphics" (dealt with 

only in Sec. Ill). The goal is to describe  and compare 

salient features of the most important research efforts in 

data structures. 

Comparison requires descriptions in a common terminology 

so that essential similarities and differences become apparent. 

Many properties attributed to data structures are really prop- 

erties of description, particularly when pictorial. Good 

descriptions are valuable to programmers using data-structure 

facilities, but should be independent of the structures them- 

selves (and therefore lie outside the purview of this paper). 

The most important description of any data structure is the 

language used to reference and modify it.  (As discussed in 

Sec. IV, many linguistic constructs are independent of the 

structure to which they are applied.) 

The information in this Memorandum derives almost en- 

tirely from the published literature. Unfortunately, most 

authors mention data structure only briefly. Thus, poten- 

tially interesting features of many systems are not ade- 

quately enough described for inclusion. The primary basis 

for discussion of any particular work is its author's claim 

of applicability to interactive graphics.  This claim is 

rarely supported, because the terms are not well defined. 

But some agreement exists among authors in the field as to 

which papers are of primary importance, and all of these are 

considered. 



-2- 

II.  STRUCTURES 

Terms used in the description of data structures are: 

structure  apaae,   bead,   component,   data  item,  and pointer. 

Although these correspond to familiar objects, here they 

are generalized, and the reader is cautioned against assuming 

properties not explicitly stated in the following*. 

A data  item  is any bit string that represents an object 

of interest.  A data item typically represents an integer, 

a floating-point number, or a character string. A pointer 

is a data item that contains address information.  Specifi- 

cally, if f(x) is a function whose value is a machine 

address, then any data item in the domain of f is a pointer. 

In any given structure, there is only one such function; 

but if there is more than one, pointers are referred to by 

the name of the function. 

The most common function is 

f (x) « x + constant 

with the constant generally zero.  The choice of a function 

may be machine-dependent; it is always determined on the basis 

of efficiency.  The function may have two arguments, in which 

case both are pointers. This generality is needed to describe 

the so-called software-associative memory structures. The 

range of the function is generally restricted to some subset 

of the machine's available memory.  This subset, which may 

include all types of storage as well as core, is called the 

structure epaoe.     Restricting the range restricts the domain. 

Bead  is a term borrowed from the Automated Engineering 

Design (AED) Project [1].  It means n-component element, but 

is defined here as a contiguous block of machine words that 

is not contained in any other such block (except the struc- 

ture space). 

^i^Wifc^ ■ ■-' ■ 
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A component  is a block of contiguous machine words 

contained In a bead, and Is also the smallest object that 

can be pointed to by a pointer. A component contains at 

least one data item, which may be a pointer or any other 

type.  It may contain any number of pointers, and is not 

fixed in size or internal structure. A bead may contain 

any number of components of varying size and internal 

structure. Components are ordered within a bead, and may 

be referred to by number. 

A standard pictorial representation for structures is 

used:  beads are shown as rectangles, components are 

separated by horizontal lines, and data items within com- 

ponents are separated by vertical lines.  If a data item is 

not a pointer, it is blank or contains a name for the data 

item.  If it is a pointer, it contains a dot, which is the 

tail of an arrow, that points to the component referenced 

by the pointer (see Fig. 1). 

A data structure is defined as a collection of beads 

within a structure space.  A program for processing such a 

structure requires the basic abilities to create and destroy 

beads, and to reference data items.  The first ability is 

provided by a storage-allocation system {discussed in Sec. V), 

The refe-jneing ability provided by several procedural 

languages, including AED, BCPL, L , and PL/1 [1-4] (discussed 

in Sec. IV), gives the programmer the ability to generate 

and manipulate structures of his own design.  Whether the 

necessity of designing one's own structure is a useless 

burden remains to be answered.  Large classes of problems 

exist that have considerable structural similcrity, and data 

structures have been designed that match such problem struc- 

tures.  But there remains the necessity of learning the 

intricacies of these structures, as well as those of main 

talning and interfacing with the associated software. 

However, several structures have been designed that are 

useful in interactive graphics. Designing a data structure 
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consists of making restrictions on the internal structure 

of beads and components.  These restrictions take the form 

of declarations about classes of beads and their components. 

These declarations allow the construction of primitive func- 

tions that manipulate the structure in predefined ways.  The 

terms used below were introduced by the original authors. 

THE RING STRUCTURES 

Perhaps the best-known of the structures are the 

Sketchpad rings [5].  Sketchpad contains four types of com- 

ponents: header  components,   value   components,   hens,   and 
chickens.     Every bead has one header component, its first 

component, followed by an arbitrary number of hens and 

chickens, collectively called ring components.  Following 

the ring components are an arbitrary number of value 

components. 

Value components contain one data item that is not 

a pointer and has no structural interpretation. A header 

component contains three data items:  1) the number of com- 

ponents in the bead, 2) the number of ring components, and 

3) the type, used for identification by the processing 

program. 

The ring components are the interesting ones. A 

chicken contains four pointers: the hen pointer, the for- 

ward pointer, the backward pointer, and the header pointer. 

A hen contains the same four pointers.  However, the hen 

pointer is given a value not in the domain of the pointer 

function (viz., zero), to distinguish hens from chickens. 

As shown in Fig. 2, the ring components are organized 

into rings.     Each ring contains exactly one hen, and an 

arbitrary number (possibly zero) cf chickens.  The ring 

components are ordered in the ring, with forward pointer 

pointing to the next component; backward pointer pointing 

to the preceding component; hen pointer pointing to the hen; 

and header pointer pointing to the header component of its 

bead. 
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The pointer function in Sketchpad is the standard 

f(x) » x + c , 

with non-zero c that allows x to be smaller than the full 

address space of the machine.  The header pointer, however, 

uses a different function, viz. 

f(x) - x + address of x . 

The above representation is structurally irrelevant« but 

important for efficiency since it allows x to be a very 

small negative number, needing only 4 or 5 bits. 

Most follow-ups to the original Sketchpad work (€-111 

have been either inadequately described or not significantly 

different. One nearly identical structure is CORAL (Class 

Oriented Ring Associative Language) PJ, in which the back- 

ward pointer and hen pointer are replaced by one pointer 

plus a one-bit data iten that tells whether it is a back- 

ward pointer or a hen pointer. CORAL rings are built with 

backward pointers and hen pointers alternating. Also« the 

header pointer is eliminated without mention. The author 

can only assusw that an additional one-bit data ite» is 

used to nark the header component so that it may be found 

by a i. ort search. 

These differences primarily affect efficiency, cutting 

in half the space requirement of Sketchpad ring components, 

which requires two machine words. CORAL achieves this im- 

provement at the cost of a small increase in processing time 

due to the necessity of moving, for example, through more 

than one component to reach the hen. This cost is dependent 

on problem characteristics* if these are such that rings 

are generally short (less than 10 components), then hen and 

backward pointers could be eliminated without great loes. 

CORAL is considered a good compromise. 
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A more important difference is the addition in CORAL 

of a small bead called a nub.    When a bead is created, it 

contains a fixed number of ring components that cannot be 

changed because of storage-allocation methods.  A bead is 

made a member of a ring by adjusting one or more of its 

ring components to point to the appropriate rim members. 

However, it may happen that all of the ring components are 

used; in the majority of cases, this will never happen 

because of problem-structure constraints.  In a Sketchpad 

structure one must be careful of this possibility when de- 

signing bead types? but in CORAL the "nub" overcomes this 

problem. A nub is a bead containing two ring components 

(used as shown in Pig. 3), which serves as a general example 

of a CORAL structure. 

Both Sketchpad and CORAL structures are manipulated by 

a set of primitive functions discussed in Sec. IV). Another 

language, APL (Associative Processing Languaqe), extends 

PL/1 and provides structural capabilities identical to CORAL, 

with the exception of a data item called an "associative 

data attribute" (12). Although its implementation is not 

described (and this author is unwilling to guess), the 

language itself is discussed in Sec. IV. 

Another ring-type structure, ASP (Associative Structure 

Package) (13)* is logically equivalent to CORAL hut with the 

CORAL nub carried to its extreme.  In CORAL terms, the ASP 

structure is obtained by restricting the ring components in 

each normal bead (called an element in ASP) to two (one hen 

and one chicken). A second bead (a ringstart) expands hens 

in the 9mm way that the CORAL nub (an associator in ASP) 

expands chicken«. 

Although this description of ASP differs from the 

original, it permits a direct comparison that indicates ASP 

is equivalent to CORAL from the viewpoint of the programmer 

equipped with the sane set of primitive functions—except 

that he no longer has to determine the number of ring com- 

ponents in a beed. Processing of an ASP structure is slower 
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than CORAL, but part of the ASP work is the development of 
an elegant pictorial description for structures.  Although 
the pictorial description specifically represents ASP 
structures it could also be used for other structures. 

THE SOFTWARE ASSOCIATIVK MEMORY APPROACH 

This section concludes with a description of a software- 
slnulated associative memory. Several systems, nearly struc- 
turally equivalent, use the associative memory approach 
(14-17). The system described here is part of the LEAP lan- 
guage (14-151. 

LEAP is designed to store triples. A trip I*  is an 
ordered set of three data items—attribute, object, and 
value. Because the structural description alone might be 
meaningless, retrieval requests that LEAP is intended to 
support are discussed before describing the representation 
of triples in terms of beads and components. A LEAP struc- 
ture is a collection of triples. Besides determining the 
presence or absence of a particular triple, LEAP can re- 
trieve the following nets of triplest 

1) All triples having attribute A and object Ot 
2) All triples having object 0 and value V; 
3) All triples having attribute A and value Vi 
4) All triples having attribute A; 
5) All triples having object Oi 
6) All triples having value V. 

Retrieval is accomplished by providing three separate struc- 
ture spaces: attribute space, object space, and value space. 
There are two retrieval methodst  1) for the first three 
types and 2) for the second three. Bach triple is stored 
in all three structure spaces. To retrieve a set of type 
1), for example, method 1 is Applied to the attribute space. 

Each space is identical in structure, the only dif- 
ference being a permutation of the triple before it is 
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stored.  The attribute apace »tores the triple 'A, 0r V), 

the object space (0t V* A), and the value »pace (V, A« 0). 

In the attribute space, each data itcai in a triple has 

three pointer functions.  The first is the it*i-funotion 

that yields the address of the external description (external 

to the data structure and its proceesor in the sense that it 

is interpreted elsewhere). This external description is 

usually outside the structure spece, but also mmy  be inside 

(i.e.« another triple). 

The second function is the hath-function  that require« 

two arguments, the attribute and the object of a triple. 

These arguments may be two pairs Mich that 

f(Al,01) - f(A2#02) . 

This situation, called a conflict, nost be resolved. In 

Sec. V the hash function, which yields the address of a hash 

bead (see below), and inpleawnts retrieval method 1# is 

further discussed. 

The third pointer function—the u«#-/wn<?fion--appllet 

to the attribute (for the attribute space), and yields the 

address of a ose-header bead (p. 13). It implements re- 

trieval method 2. 

A fourth end final pointer function—the link~funoti0n~~ 

uppliea to other deta itena found in the structure spece, 

not to tr/fie itens.  It epplies to pointers called links 

and yields the address of any bead. 

Two bead types have baan mentioned above.  All beads 

listed below contain exactly one component (the distinction 

is not relevant here) and one data item that indicates the 

type (eee Fig. 4) t 

1) The hash bead contains five data items: 

a) Attribute! 

b) Object—for comparison with originsls to 

resolve conflicts; 
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c) Use link—see use header; 

d) Conflict link—in conflicts, additional hash 

beads are chained to the first.  To retrieve, 

one searches the list for the bead with the 

correct attribute and object; 

e) Value, or value link—if there is more than 

one value for the same attribute-object pair, 

additional value beads are chained to the hash 

bead. 

2) Value bead—two data items: 

a) Value; 

b) Value link or zero. 

3) The use header contains one data item that is a 

link to th* first hash bead in a use ring.  There 

is one use ring for each attribute that collects 

all triples having that attribute.  It is accessed 

by applying the use-function to the attribute. 

Hash beads and value beads may have one additional non- 

pointer data item if the triple is used as an ITEM (pointed 

to by a triple member via the item-function). 

Now, compare this organisation to other structures, con- 

sidering only the attribute space.  Let attributes correspond 

to components, objects to beads, and values to data items. 

Although only one of many ways of viewing a LEAP structure, 

the entire generalised structuring ability is there, plus 

much nor©. Of course, one must assume the burden of de- 

signing one's own structure, which is even worse in the 

simulation of asscoiative memories, because of its greater 

complexity and its relative unfamiliarity. 

In any case, there are several differences between 

generalised structures and a LEAP structure with the above 

correspondences:  beads (objects) are of varying length; 

the use ring autosiatically ties together objects that have 

the same attribute; the object and value spaces are in- 

tentionally redundant (although it is clear that a ring 
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structure could be duplicated in a smiliar way by using 

permutations).  Note that a ring structure can store exactly 

the information required by the problem, whereas a LEAP 

structure stores the same information in several forms for 

reasons of search efficiency. 

Finally, in considering the costs involved, the quantity 

of storage required is vastly increased, so much so that all 

but the smallest structures require secondary storage [18]. 

On the other hand, LEAP structures lend themselves to a 

rather efficient use of secondary storage; in fact, speed is 

relatively independent of the size of the structure, which 

makes it look good for large problems.  But it is not clear 

that graphics problems generate structures large enough to 

require secondary storage. As for processing speed, assuming 

the referenced triple is in core, the hash function requires 

three or four instructions, and conflict resolution even 

more, which means that referencing is probably less than a 

factor of ten slower. 

LEAP and similar structures clearly have great value 

as relational data stores for information retrieval problems, 

but their usefulness in interactive graphics is not clear. 
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III.  GRAPHICS APPLICATIONS 

This section deals with two problems that are really 

the same problem:  1) how to represent graphical informa- 

tion in a data structure; and 2) how to relieve the program- 

mer of the job of display generation and management.  A 

solution to the first problem also solves the second—since 

once we have a fixed data-structure representation, we can 

build a processor to generate the display from this struc- 

ture. The real problem is to find a representation amenable 

to both display structure and problem structure. The several 

possibilities described below are followed by a brief general 

discussion of display generation. 

RING STRUCTURE REPRESENTATIONS FOR LINE DRAWINGS 

The Sketchpad representation of line drawings has been 

the basis for succeeding work in this field, and little that 

is new has been added.  In Sketchpad, a drawing is a col- 

lection of entities,  each of which is represented by a bead. 
This discussion concerns five types of entities (although 

there are many more in the actual implementation):  points, 

lines, circle arcs, pictures, and instances. The first 

three should be obvious. These entities constitute a nearly 

minimal selection of building blocks; clearly other common 

entities (e.g., general conies) could be added to the list, 

but the display generator must be aware of them. A picture 

entity collects in its picture ring the lines, arcs, and 

instances that make up the picture.  It also collects all 

instances of that picture in an instance ring. An instance 

references a picture by appearing in its instance ring, and 

the referenced picture is a subpicture of the picture in 

whose picture ring the instance appears. Thus, a display 

is a hierarchy with a picture at the top, containing 

instances of other pictures, which in turn may contain 

instances, etc. 
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Figure 5 shows a brief description of the internal 

structure of the entities.  Each bead contains the following 

in addition to a header component: 

1) A line contains three chickens—one for the picture 

ring and two for the end points. 

2) A circle arc contains four chickens—one for the 

picture ring and three for end points and center. 

It also has two value components/ angle of arc 

and radius. 

3) A point contains one chicken for the picture ring— 

one hen to collect the lines and circles referencing 

this point (the ring goes through the chickens 

listed above), and two values giving the coordinates, 

4) An instance contains two chickens—one each for the 

picture ring of the picture containing it and the 

instance ring of the picture it references.  It 

also contains four values, giving a transformation 

(rotation, translation, and scale) to be applied to 

the picture it references. 

5) A picture contains two hens—one for the picture 

ring and one for the instance ring. 

The arrangement of hens and chickens in this structure 

introduces a set of dependencies that are consistent with 

the deletion mechanism provided for Sketchpad structures. 

A bead containing a chicken is said to depend upon the bead 

containing the hen for that chicken.  When an entity is 

deleted, all dependent entities must be deleted as well 

(e.g., a line must have end points).  Deletion mechanisms 

are discussed below (Sec. IV). 

LINE DRAWING IN TRAMP 

For completeness, an example of line-drawing representa- 

tion in an associative-memory structure is included.  Imple- 

mented in TRAMP [15] (structurally almost identical to LEAP), 

■ 
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ft display it represented by • tre« who»« nod«s represent 

position», line*, point«* and pictures. The tree struetur* 

is •  Mt of triples that is distinguished by attribute CLA5. 

The vsluo of the triple is a nod« in the tree, and tlio 

object of the triple is a daufhtor of that nod«. 

k  torainal nod« determine« the typ« of «ntity* vis.» 

position, line, or point.  These correspond to display 

orders: !.«.« position ««an« Invisible line, lin« Man« 

visible line« and point «sens display a point. The branches 

■ust thus be ord«red. fro« l«ft to right« in th« s«qu«nc« 
in which they are to he displayed.  Thus a lin«« in th« 

Sk«tehpad sense, i« represented by two succ«sslve nod««— 

either pos 11 ion-1 me or line-lire. 

Th« «ingl« isswdist« predecessor of each terminal nod« 

is th« tumm  of that entity, and 1« also th« object of • 

pair of triples whose values are coordinates and who«« 

attribute is COO«.  All further predecessors are MM« of 

pictures: i.«.« names Of OOllOOtiOM Of pMitiOM« lin««, 

point«« and other picture«.  V ware 6 «hOM « triangl« 

Ming this scheme. 

nZfPZStHThTlOH  OP TOPOLOr.ICAL WmrtRKS 

Many application prograM ar« not concerned wit»- the 

geometry of « dispUy. but rather with th« topology I i.«.« 

th« connections between parts.  Thi« i« p«rtioularlv true 

Of Such applications as «l«ctrio«l or logic«! Mtwork 

dosign. 

Th« Sk«tchpad representation does include topological 

information a« part Of it« constraint satisfaction mechsr.isr 

(but in « complex and unnatural way not d«scrib«d her«). 

Another «y«t«si« CSMF (Continuous Syst««« Modeling Progresi) 

(If) h«s been designed to represent only the topologicsl 

Structure.  Th« representation consists of a set of entities 

(e.g., resistors and capacitors) that must be made known to 

the display generator in SOM undescribed way. Bach entity 
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has an Arbitrary nuabar of attaohtr point§,  which corra- 

■ por.d to ring corponanti of the bead roprosontinq the 
entity.  Bach nod« in the topoloqical ttructure la rapre- 

•er.ted by a ring through the attaohar pointa at that noda 

(tee Pig. 7). 

Although this ■yttam handle« a large clasa of computer- 
aided deaign probler.« in a aiaple way, it ia unable to deal 

with geometric considerations.  However* it clearly could 

be merged with the Sketchpad repreaentation. What ia needed 

ia the addition of ring conponenta for attacher pointa to 

inatancea. 

DISPLAY GENERATION 

Con«ider the problem« of tranalating a problem atructura 

into a program for controlling a diaplay.  In general, thia 

diaplay program will be a aequence of diaplay ordera (codea 

that control beam movement, etc.) tranamitted through a data 

channel, under control of a channel program. Thia channel 

program haa two instruction«:  one «end« a block of diaplay 

ordera, giving a starting location and word count; the other 

ia a transfer in channel inatruction, which allows a transfer 

of control within the channel program. These channel in- 

structions may be viewed aa pointers that give structure to 

the diaplay program. The problem is how to generate the 

diaplay atructura fro« the problem structure. 

Cotton and Greatorex (9) deecribe a system that builds 

a diaplay atructura from a problem structure very similar 

to Sketchpad. The diaplay structure is very similar to the 

problem atructura. Mainly, ring pointers are replaced by 

transfer in channel commands, and valuea by display orders. 

in auch a way that one merely a tarts the channel program at 

a picture block; the diaplay processor transfers from block 

to block finally ending, once again, at the picture block. 

The differencea are that inatances are expanded and point 

blocks are removed in favor of including coordinates in 



-21- 

CAPAC1T0R 

\ 

RESISTOR TRANSISTOR 

Flg. 7--The CSMP Representation 
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lin« «od eircl« block«.  (Actually point blocks «r« not 

in th« problon itructur«. in tho Cotton-Crontorox syatCH.) 

Figure • shows sn sxsMpls of s display structure for ths 

Skstchpsd ttructur« of Pig. S (p. 17). 

Zs it rsssonsbls to asrgs ths prob Is» itructur« and 

ths displsy structure sinos thsy havs aany siailaritics? 

Ths difficulty dsvslops with ths various trsnsforwstions 

that Mist bs appli«d in 9«n«r«tlnq ths displsy structurs. 

One of thsss is ths translstion fro« problsn eoordinatss 

to displsy eoordinatss* or fro* vsluss to display ordsrs. 

If ths display space is snallsr thsn ths prob Is« spaos, 

scissoring (ths rsmovsl of objects that lis out• id« ths 

displsy iaafs) aay bs involved. In sddition« ths trans- 

formations (rotation, translation* and scaling) specified 

by instance« rsquirs thst s ««parat« copy of s picturs bs 

nads for ssoh inatsnoe. 

Display gsnsration in TRAMP is sinpls. Teminsl nod« 

typ«« and eoordinatss ars transaittsd in ordsr, fro« Isft 

to rieht* in th« trss. 

No othsr displsy gsnsrstion Msthods havs been described* 

because work has depended on the sppliostion proqrsa to 

gsnsrsts th« display through a ssquenc« of cells to prieitivs- 

display functions. Thsss functions often include subpicturs- 

dsfinition capabilitiss* providing ths ability to displsy or 

dslsts previously generated suhpictures. Therefore* thess 

functions ars really a sst of data-structurs primitiv«« for 

manipulating th« display structurs, r«quirina th« programmar 

to Isam two ssts of primitiv««. 

INTERACTIVE ASPECTS 

A qusstion of primary intsrsst is how to rslats graphic«! 

input to a data structurs. Th« choics is b«tween r«lating 

input directly aither to the problem structure or to the 

display structure (and then to the problem structure). Th« 

second sltsrnativs haa invariably been chossn for two rsasonst 
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1) most hardwar« provides input vim light pmn.  in which caa« 

th« hardware automatically ralataa input to display stmc- 

tur«; and 2) transfomations hava b««n applied to the prob- 

Ian structurs so that only tha display structurs knows what 

is being displayed. 

Tharafora. a naans of rslating display structurs back 

to probla» atructuro is required (assuaiing input can be 

related to the display structure).  In a systeai with display 

primitives, the display processor is unaware of the probier 

structurs. To circumvent this problem» display primitives 

generally return identifiers with which the displayed items 

will be referenced in the future. The application proqram 

is then foroed to cross-refarance these identifiers with 

its data structure* an awkward solution at best. 

with the Ootton-Greatorex structure (9), however, the 

solution is simple. Bach entity in the display structure 

is put into a rinq heeded by the entity from which it was 

generated in the problem atructure. The TRAMP structure 

(IS] has an equally simple solution. Bach entity name is 

rade the object of a triple whose attribute is RXftT and 

whoaa value is the location in the display structure. 

CSMP (19) has en intsrestinq solutions the displsy is 

not generated by the application proqram, but by the user 

sittinq at a oonaole in convarsation with the display pre 

cessor, which is then responsible for qeneratinq the prob- 

lem structure from the display structure, rather than vice 

versa. CSMP does this by dividinq the display surface into 

64 small squarea and then ssarchinq the display structure 

for group« of attacher points lying in the sama squars. 

Many quastions re 1 at ma to the generality of the display 

processor are left unanswered. 



-25- 

IV.  LANGUAGES 

Th« foilowinq diseufsion of languag«« has twc goalst 

1) th« daaeription of primitiv« oparationa for data atruc- 

tur« aanagaMnti and 2) th« praaar.tation of th« syntax 

uaad to apacify thaaa priadtivaa. Tha prlmitivaa ara dlt- 

cuaaad in four groupa« along with tha appropriata syntactic 

for««. Tha first ia ainpl* rafarancat* or ratriaval of 

data itaaa fro« «anaralitad structurat. Tha aaction on 

rafaranoaa daalt «rith tha apacifio atmcturaa dafinad in 

CORAL and LEAP« followad by a daacription of tha updating 

of atructuraat i.a.« tha oraation, inaartion, and dalation 

of baada. Tha taotion concludaa with tha nora complax 

aaarching and itaration oparationa* onca again appliad to 

tha apaoifio ring atructuraa and aasociativa mamory 

atructuraa. 

SIMPLE REFERENCES 

Tha probltM with data-atruotur« procatting in a typical 

algabraio languaga (a.g.» FORTRAN) it that on« nam« is bound 

to two valuat--a location and it« contant«—but tha program 

oontrola only th« contents. 

Thara ara many ways around this problem.  Daacribing 

tham raquirat introducing some terminology, borrowed this 

time from the BCPL language (2]. An *gpr*§»ion  ia a aaquence 

of variables, manifast constants, parenthesss, plus and 

minus, and unary operator ru. A variabl*  ia a name with 

two valuaa (as in FORTRAN).  A manift§t oonttant  is a name 

with only one value. This name may be a number (e.g., 5) 

or an arbitrary identifier that haa become a manifeat con- 

stant in some undefined way. The important point ia that 

its value is known to the language proceaaor (compiler). 

The location,  or left-hand value of a variable is a mani- 

feat constant.  Parentheses, plus, and minua are used in 

the uaual way. 



-26- 

An expression is evaluated to yield a single value. 

The value of a variable in an expression is the right-hand 

value, or contents of the location determined by the left- 

hand value.  An indirection operator, rv, applied to an 

expression, yields the contents of the location determined 

by the value of the expression. 

We now can describe, in terms of the above, the referents 

provided by various languages which are essentially a small 

subset of BCPL.  Consider first the referent 

A(B) = rv (A + B) . 

With no restrictions on A or B, this is the meaning of A(B) 

in BCPL.  But most languages restrict A to be a manifest 

constant.  In FORTRAN and its relatives, A is a manifest 

constant whose value is assigned by the compiler.  That is 

what is meant by the statement 

DIMENSION A(...) . 

In AED [1] , the value of A is assigned by the programmer, 

using the non-executable statement 

A $>$ value . 

It must still be a manifest constant however, and is required 

to be declared so by 

COMPONENT A . 

In AED, B is viewed as a pointer to a bead, and A is the 

offset of a particular component.  Thus, A(B) references a 
component of a bead. 

Next consider A(B(C)). As one might expect, in most 

languages this is rv(A + rv(B + C)).  In AED, however, it 
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can also be rv(A + B + C), provided A is a COMPONENT, and 

B is another manifest constant called a SUBELEMENT.  If B 

is also a COMPONENT, the other meaning is used.  A(B + C) 

also means rv(A + B + C) .  In BCPL only, one also may have 

A(B)(C), meaning rv(rv(A + B) + C) . 

L  [3] is a low-level language in which variables, 

called huge,  are identified by single letters.  Reference 

is accomplished by concatenation; i.e., AB means rv(A + B), 

where A is a bug name and B is a manifest constant declared 

by defining the internal structure of a bead.  The declara- 

tion is made by using the instruction (i DB j k); i is the 

value of B, and j and k are bit numbers that determine 

shifting and masking to be performed after the storage 

access.  ABC means rv(rv(A + B) + C), and such strings can 

be arbitrarily long, the same as BCPL, without parentheses. 

In PL/1, a bead—a PL/1 structure in which the items 

at level two are components—is declared by: 

DECLARE 1 (structure name) CONTROLLED , 

2 (component name) (attributes) , 

2 (component name) (attributes) , 

If A is a component name, and B a variable with attribute 

POINTER, then B ■* A is equivalent to rv(A + B) , where A is 

a manifest constant whose value is assigned by the compiler 

to be its relative position in the structure.  A component 

may be a substructure, via 

2 A , 3 C , 3 D ... 

In this case, B -»• A.C means rv(A + B + C) , where both A and 

C are manifest constants.  A component also may be an array 
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in the FORTRAN sense, and B •* A(C) also means rv(A + B + C). 

B -•• A -•• C means rv(rv(A + B) + C) .  If a structure contain- 

ing component A is declared CONTROLLED (B), then A means 

B -»■ A.  Note, however, that pointer arithmetic is illegal 
in PL/1, but not in BCPL, AED, or L .  BCPL is the simplest 

and most general of these languages; in addition, its data 

items are completely typeless, whereas PL/1 provides a com- 

plex array of types, and AED uses the common ALGOL types. 

SET REFERENCES 

The above languages allow one to reference single- 

data items in any generalized data structure.  If a more 

specific structure is defined, however, one can devise ways 

of referencing such substructures as rings. 

In CORAL and Sketchpad, ring-structure primitives are 

implemented by macros in an assembler language.  APL 

(Associative Programming Language) [12], however, is an 

extension of PL/1 that manipulates a CORAL structure.  As 

above, a CORAL block is declared as a PL/1 structure, but 

with attribute ENTITY, instead of CONTROLLED.  Hens are 

declared with attribute SET, and chickens with attribute 

MEMBER.  Value components can be any other PL/1 data item. 

Variables of type ENTITY contain pointers to entities. 

Of interest here are references to three things:  rings 

(called sets in APL), entities, and components of entities. 

An entity is referenced either by an entity variable or 

by designating a particular member of a set.  The latter 

is done by number, since rings are ordered.  The syntax is: 

(entity ref) ::= (entity variable) [ (set ref>((integer)) , 

A set is referenced by giving the name of a ring component 

of a particular entity.  The syntax is: 

(set ref) ::= (entity ref).(component name) . 
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Clearly, this also serves to reference value components. 

For example, A.B and A.B(5).C are set references; and 

A.X, A.B(3).X, and A.B(5).C(2).X are value references.  In 

these examples, A is an entity variable, B and C are ring 

component names (declared as SET or MEMBER), and X is a 

value component name. 

Actually, the same syntax might serve as well in a 

generalized structure by using the integers as duplication 

factors, and removing the dots that separate names.  Further- 

more, we have L references. For example, A.B(5).C(2).X 

would be ABBBBBCCX, conceptually very similar to the APL 

reference.  Clearly, the difference lies in the description. 

The LEAP language [14-15] is very similar to ALGOL, 

with the addition of several statements and data types to 

handle the relational structure. The relational structure 

stores triples.  The attributes, objects, and values of 

triples are declared as ITEMs.  An ITEM is a manifest con- 

stant, whose value is the address of a tvpical ALGOL vari- 

able. The value of the variable is accessed by the opera- 

tor y,  which is identical to rv.  For example, 

INTEGER ITEM A 

makes A the address of an integer.  Its value is yA.    Theye 

are also variables, called ITEMVARS, whose right-hand values 

are ITEMs. A triple is specified as 

0 = V 

where A, 0, and V are ITEMS or ITEMVARS. 

The implementation of another data type in LEAP, called 

SET, is not described. A SET is a collection of ITEMS, and 

may be specified in a variety of ways: 

1) A set variable; 

2) A list of ITEMS (e.g., (A, B, C}); 
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3) Unions, intersection» and conplernents of sets; 

4) A • O—th« set of -'alue» of all triple« with 

attribute A and objact O; 

5) A'V—tha «at of objacta of all triplas with 

attributa A and value V. 

CREATING, INSERTING, AND DRLETING 

The creation of a bead requires a call to storage 

management to allocate a block of words.  In BCPL, AKD, and 

L this requires an explicit function call specifying the 

size of the bead.  The function returns an address used to 

update the variable that will reference the bead, namely 

B in A(B).  In PL/1, creation it accomplished via the 

scatement: 

ALLOCATE (structure name) SET (pointer variable) ; 

and in APL by the almost identical 

CREATE (entity name) CALLED (entity variable) . 

In LEAP, a triple is created by the statement: 

MAKE (attribute) • (object) = (value) , 

where attribute, object, and value are ITEMS or TTEMVARS. 

ITEMS may also be created dynamically by 

NEWITEM -> (itemvar) 

or 

N( (expression)) 

.-■ . 
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Xn the second case, the value of the new ITEM is initialized 

to the value of the expression. 

Cencralized structures are built by explicitly updating 

components of beads with pointers, requiring only the 

reference mechanisms already described.  Triples are added 

to a LEAP structure by the same make instruction that 

creates them, and structures are built only by adding triples 

But a CORAL structure is built by inserting blocks in 

rings, done in AiPL by the statement: 

INSERT (entity variable) IN (set ref) . 

This statement is ambiguous, however, because blocks in a 

ring are ordered, and specify the position in the ring where 

the block is to be inserted.  In APL, this is done by 

specifying ordering as an attribute of a set component name. 

Two such orderings are FIFO, meaning insert entities at the 

end of the ring; and 

ORDERED INCR ON (component name) , 

which means that entities in a ring are to be kept sorted 

on a particular component. 

Deleting is a bigger problem since it Involves un- 

creation as well as un-insertion.  In a generalized struc- 

ture, these must be done separately.  Un-creation, or re- 

turning of a bead to free space, is done by a function call, 

just as in creation.  In PL/1, the keyword is FREE.  Un- 

insertion consists of updating pointers to the returned 

bead.  Unfortunately, structures may be made inconsistent 

in complex ways that the programmer must be aware of. 

In a CORAL structure, however, these steps can be more 

precisely defined.  One may request that a block (entity) 

be removed from a ring (set). The APL statement is 

REMOVE (entity ref) FROM (set ref) . 
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This requires that pointers in the adjacent blocks in that 

ring be updated to skip the block in question.  One also 

may delete an entity or a set (DELETE (entity or set ref>). 

Deletion of a set means deletion of all entities in the set. 

Deletion of an entity means removal from every set of which 

it is a member, deletion of every set for which it has a 

SET component (hen), and return of the bead to free storage. 

A single delete may activate four separate functions:  two 

deletes (both recursive), a remove, and a free; first real 

advantage of CORAL over a generalized structure in terms of 

quantity of code necessary to perform the operation. 

ITERATION AND SEARCHING 

Operations that reference sets as a whole are found 

only in APL and LEAP.  The first of these is "do something 

for each element of a set." The APL syntax is: 

FOREACH (entity variable>=(entity name) IN (set ref> 

WITH (boolean exp.> UNTIL (boolean exp> ; 

(statement list); END . 

The statement list is executed once for each entity in the 

set satisfying the WITH and UNTIL clauses, which are optional. 

The entity variable points to the entity in question during 

each execution. 

In LEAP, where sets are of primary importance, the 

statement has two different forms and allows multiple iter- 

ation variables, called locals. The first form is quite 

similar to the above: 

FOREACH (local) IN (set expression) DO (statement list) . 

The second is: 

FOREACH A'0=V  DO (statement list) 
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where any one or two of A, 0, and V may be locals.  If V 

is a local, for example, it is equivalent to FOREACH V IN A-O; 

but if both 0 and V are locals, the statement list is exe- 

cuted once for each pair (0, V) such that A'OHV is in the 

store. 

APL offers one further statement not found in LEAP, 

potentially the most valuable, that enables one to search 

rings in various ways.  The syntax is: 

FIND (entity variable) ■ (entity specification) 

WITH (boolean), UNTIL (boolean), 

ELSE (statement) . 

(entity specification) ::= 

((integer)) (entity name) IN (set ref) 

| (set name) CONTAINS (entity ref) . 

This statement either finds an entity satisfying the WITH 

and UNTIL clauses (optional), and updates the entity vari- 

able, or it executes the else statement.  The entity spec- 

ification directs it to search for the nth entity in a set, 

with the given properties, or to search for the entity 

whose set component heads the ring containing a specific 

entity. 

The literature on ASP [13] includes an interesting 

pictorial representation for ring structures (see Fig. 9). 

This pictorial representation could be useful not only as 

an aid to the design of display and problem representation 

but also as an input to some graphical language (as opposed 

to a character-string language). 

When discussing languages, one notes an absence of any 

reference to graphics, a condition more or less reflected 

in the literature.  Clearly, however, one could define the 

Sketchpad entities in APL and obtain a very graphical-looking 

program (illustrated in Fig. 10) for the simple entities 

described in Sec. III. 



-34- 

-o $ $—' 

^ RING START 

0 ASSOCIATOR 

|"~| ELEMENT 

J5L-1 

()-H 

(5 ()-l 

Fig. 9--The ASP Pictorial Structure Representation 

^j^itjmbMBiiimmiimmivii ■■ 



-35- 

DECLARE  I picture ENTITY, 

2 prlng SET FIFO, 

2 Irlng SET FIFO, 

1 instance ENTITY, 

2 prlng MEMBER, 

2 Irlng MFMBER, 

2 trans, 

3 (xtram, ytrant, sin, cot) FIXED, 

I line ENTITY, 

2 prlng MEMBER, 

2 epolnts MEMBER, 

1 clrcla ENTITY, 

2 prlng MEMBER, 

2 epolnts MEMBER, 

2 (radius, angle) FIXED, 

1 point ENTITY, 

2 prlng MEMBER, 

2 epolnts SET, 

2  (xvalue,  yvalue)  FIXED, 

Fig.   10--Defin1ng  the Sketchpad Entitles  In APL 
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V.  STORAGE KANAGEMEWT 

In all Of the structure» discussed ah ve, except asso- 

ciative memory (LBAP),   •pacific calls to «toraqe-manaqenpnt 

rcutmes are required to gat and raturn heads.  Prom tha 

logical point of view, tha tpacifica of storage management 

ara irrelevant; but in term« of efficiency, thay are crucial. 

In addition, a prograamar who ia awara of atoraga-manaqament 

strategy may be abla to write a nora afficiant program. 

Savaral atratagiaa for managing a atructura apaca assumed 

to ba in cora ara described below, followed by a diacuasion 

of secondary atoraga techniques.  Many of the methods de- 

scribed hare are implemented in tha A£D frea-atorage 

package (20]. 

STORAGE-ALLOCATION STRATEGIES 

Tha firat atap in daaigning a storage-management pack- 

age ia to choose tha avallabla bead sizes.  A requirement 

ia that the largest bead used in the atructure be available. 

Ona choice, which greatly simplifies tha problem, is to 

aupply only ona block aize.  A large variance of bead size 

will raault in a lot of waatad apace.  But if the variance 

in bead aize ia less than 25 percent of the mean, it could 

ba a good choice—especially if time ia much more important 

than atorage efficiency. To allocate fixed-size beads, a 

liat of available beads is maintained. When a new bead is 

requeated, the firat one on the list is supplied; when a 

bead ia returned, it ia appended to the end of the list. 

It ia possible to supply only beads of a few different 

sizes; but except in special cases, this is no better than 

supplying exactly the size requested, which is probably the 

beat aolution.  There are several ways of doing this:  one 

can maintain a free storage list in increasing order of 

size (see Fig. 11). To supply a bead, one searches the list 

\ 
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for a bead of the right size; if there are none, a larger 

one is split, and the remainder added to the list in the 

proper place.  If no bead is large enough, there is no 

simple solution; although two smaller beads might be con- 

tiguous, such a case is difficult to find.  Thus, there 

is a chance of considerable loss in space; but the method 

is fairly efficient. 

A second strategy uses a free-storage list in increasing 

location order. Beads are allocated by searching for a large 

enough bead, and then splitting it if necessary. When a bead 

is returned, however, it is combined with any adjacent beads; 

so that free beads are always as large as possible, and the 

problem with the increasing size strategy is avoided. 

But there is still storage lost because a large bead 

may not be available when a combination of several small 

non-contiguous beads would be large enough.  The only way 

to recover this space is by moving used beads, a process 

called compaction.  Compaction is extremely time-consuming 

because pointers to moved beads must be updated.  This re- 

quirement also makes compaction impossible in a generalized 

structure since there is no way of knowing which data items 

are pointers.  In a CORAL structure it is not too difficult, 

however, because of the back pointers.  In any ring struc- 

ture, one can find the pointers to update by following the 

ring all the way around; the time consumed is proportional 

to the average length of the rings.  In any case, compaction 

should be considered only when the program would terminate 

without it. 

Thus, there are four strategies in storage allocation: 

1) Single fixed size; 

2) Small number of fixed sizes; 

3) Arbitrary sizes (no coalescing of returned beads); 

4) Arbitrary sizes (coalescing of returned beads). 
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Each step requires more overhead but uses space more 

efficiently. Garbage  collection,  used rather freely to 

mean one or another of the free storage management tech- 

niques also refers to the LISP [21] process of scanning 

the structure and marking used beads, then collecting 

unused beads in a free storage list.  Such a process is 

unnecessary in the structures discussed here, because 

beads are always returned explicitly (e.g., by the delete 

mechanism in APL).  Because of the confusion about this 

term, it should probably not be used. 

SECONDARY-STORAGE METHODS 

Since data structures can become very large, some means 

of keeping them partially in secondary storage is necessary. 

One solution is hardware or software paging techniques (which 

are easier on the programmer but fail to take advantage of 

problem structure), in which the related information becomes 

scattered throughout structure space, requiring more 

secondary-storage references than necessary. One way of 

avoiding this problem is to divide the structure space into 

zones, as determined by the programmer, who is then required 

to specify a particular zone when getting and returning beads. 

This zoning not only allows related information to be kept 

together, but also permits different storage-allocation 

strategies for different zones. 

Hardware paging still restricts the size of virtual 

memory, and software paging can be done only when all 

references are processed through data-structure primitives. 

Another solution is to require the programmer to deal with 

secondary storage through specific file operations that 

store and retrieve parts of the structure. Once again, the 

zone technique may be useful because one could direct the 

storage and retrieval of zones, which takes maximum advantage 

of problem structures but places an added burden on the pro- 

grammer. Another advantage of explicit file operations is 
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that the space can be compacted as it is transferred, which 

not only saves space on secondary storage but also saves 

core space when reloaded. 

STORAGE MANAGEMENT IN LEAP 

Although the associative memory structure in LEAP re- 

quires a great deal of storage, it is efficient because 

of the implementation of the hash function, which is f 

(Attribute, Object).  The high-order bits of an attribute 

are used as the track address of a block of storage con- 

taining all the triples with that attribute; important be- 

cause related information is kept together. 

Then, the attribute and object are exclusive "or-ed" 

to obtain an offset within the block of a hash bead. The 

low-order bits of the attribute are used as the offset of 

a use-ring header. 

The storage within a block is divided into hanh beads, 

conflict beads, value beads, and use headers in about equal 

quantities.  Conflict beads and value beads must be allocated 

by one of the strategies described.  When any bead type 

is exhausted, the remainder of space in the block is lost; 

so fragmentation is still a problem. 

-i».,,., 
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In CORAL, a hen. Also, in ASP, a bead 
that expands hens, as does the nub in 
CORAL. 

In APL, a ring. In LEAP, a collection 
of ITEMS. 

The subset of computer storage used to 
hold the data structure. The range of 
the pointer function(s). May include 
all types of storage. 

In LEAP, an ordered set of three data 
items. The principal object contained 
in a LEAP structure. 

In LEAP, one of the three data items 
in a triple. Otherwise, any non-pointer 
data item. 

In Sketchpad and CORAL, all components 
except header components and ring 
components. 
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