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SUMMARY

An adaptation of the two-step Lax-Wendroff method is used for solving the
unsteady one-dimensional equations of non-linear shallow water theory, including
both frictional resistance and lateral inflow terms. This finite difference
method iz fast, accurate and simple to programme and covers the formation and
subsequent hietory of discontinuities in the solution, in the fornm of bores and
hydraulic Jumps, ithout any special procedures. The behaviour of the numerical
solution behind these jumps is found in the examples to be sufficiently smooth
without the addition of an artificisl viscous force term, A variety of
illustravive examples is given, including simple casez of flood waves in rivers,
bores in channels resuliting from rapid changes of upstream conditions,
oscillatory waves cn & super-critical stream and e simple hydrolcgy example with
e significant lateral infiow from rain, Several checkz of the numerical method
are included., The examples are confined to channels of uniform rectanguiar
crogs-section, but the method generalises in a straightforward way to real rivers
end estuaries in which the cross~section is non-rectangular and varies along the
length cf the channel.
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m n e et e

Many prsctical problems of open channel hydraulics can be modelled by the
equations of unsteady one~dimensional non~linear shallow water theory,
particularly if a frictional resisvance term (e.g. Chézy) and a lateral inflow
term are included. For example, flood waves in rivers, surges travelling
along channels, tidel flooding in estuaries, and surface run-off from heavy
rein. Shsllow water theory is applicable to flows in which the wave length of
disturbances and the radius .f curvature of the water surface is much greater
than the depth of water; ‘non-linear® means no restriction is placed on the
ratio of wave amplitude to weter depth,

The equations of shallow water theory are zimilar to those of gas dymamics.
The purpose of this work is to adapt a method that has been found very success-
ful in the gas dynamica application, namely the two-siep Lax-Wendroff method
(Richtmyer snd Morton' )» to the shallow water equations. The main differences
are that the shallow water equations are not in ‘conservation-law'! form (e.g.
f/st = dg/dx) when frictional resistance and lateral inflow terms are included
and that there are just two equations (continuity sand momentum) against the
three of gas dynamics (contirmity, momentum and energy). In shallow water flows,
bores and hydraulic jumps (sta%tionary bores) correspond to shock waves in gas
dynamics, These points of dirscontinmuity of the mathematical zolntion are
referred to collectively as 'jumps?.

The equations of these flows are Pfar too complicated for an analytical
solution to be possibie and a aumerical method is csesential. The first choice is
between an Bulerian and a Lagrangian formulstion. The latter has advantages in
gas dynamice when mixtyres of gases with differing thermodynamic properties are
invoived, but the Eulerian form ia more convenlert in the current application;
Also &n Eulerian method is more easily exti:nded tc¢ unsteady two-dimensional
problems. The second choice is between a characteristic finite difference method
and & direct finite difference method. In the latter methods the contisuity
and mcmentum equations are expressed directly in terms of finite differeace
approximations, while in the former it is the characteristic properties of these
equations that are so approximated. KNumerical solutions based on characteristics
are accurate and unconditionally stable numericelly, and thi_xing in terms of
characteristics helps both physical interpretation and seeing whether & problem
with given initisl and boundary conditions is tweli-posed?. But such methods
are slow and become complicated when the flow conteins jumps, particularly when
a Junp is moving into fiuid that ie already diaturbed. On the other hand, finite




aiTfersnce astheode are fast hut. until the Lax-Wendroff method, were

relatively inaccurate, The Lax-Wendroff method has second order accuracy and
has been found in gas dynamics to be applicable to flowe containing jumps,
without special procedures, such as shock fitting or ucing an artificial viscous
force, being essentlal as with other methods to avoid vioclent instability in
the numerical solution behind s jump, The jumps appear automatically when
using the Lar-Wendroff method on these flows, as near-discontinuities across
which the dependent varisbles have very nearly the correct jump ard which
travel at very nearly the correct speed thrcugh the fluid., The jump is spread
over about four finite difference space steps, with e slight but well damped
oseillation irn the solutic: bek-nd 1:, This spaclal resolution of a jump is
generally perfesctly acceptsble in practice (in reality due to effects missed
cut of the basic equations the jump is not a perfect mathematical discontinuity
but is spread over a short distance), but if further resolution is required an
srtificial viscous force can be used with this method as well. One aim of the
present investigation is to see what profiles are obtained for bores and
hydraulic Jumps.

Thus, in summary, the Lax-Wendroff wmethod applied to the Eulerian form
of the equations {the method is also applicable to the Lagrsngian formulation)
is choson as the mest promising method for solving the shallow water equations;
with the reservation that at boundary pointe it is sometimes an advantage o
use & characteristic method.

Five specific problems are chosen for illusirsting and checking the
nethod, and for exhibiting some of the eccentricities of this type of flow:

(1) An infroductory problem of a steady flow down a channel of
decre=asing gradient containing & hydraulic Jjumy.

{2) A channel having initially & steady uniform super-critical flc-.
At time ¢+ = 0 an oscillatory boundary condition ia applied upstresm. This
cage provides & check against a theoretical result,

(3) A gradusl but permanent change of level at the upstream end of a
chanmel, The initial flow can be either sub- or super=-critical., If the glven
rise of upstream level is sufficiently abrupt a bore forms in the flow,

(4} A simiiar problem for a finite duration surge passing the upstream
end of the chann2l. One example given is of & flocod wave travelling down a

river,
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(s) mple hydvelogy problem with heavy raln

variable slope.

The channel or river in <“hese examples is of uniform rectangular cross~
section and of width much greater then the depth. But the method extends in
a straightforward way to natural channels in which the cross-section is
irregular both as regards lopgiiudinal and lateral variation, if it is assumed
that the flow is still one-dimensional. Also the .ethod is applicable to one-
dimensional tidal calculations i estuaries and chamnels., The major effort in
applying the method to & real situation lies in extracting the geometrical data

of the channel from maps or a spesial survey, and putting it in a form suitable
for the computer,

2 THEORY

2,1 Basic equations

The continuity equation for wuter flowing in a wide channel of uniform
rectargular cross-section is

%-&u%‘-q-h%nq R (1)

and the momentum equetion is

2
du . du 3 _ o
3{4-\1&-4-3 8;-3/’-0-;‘5:-&% = 0 . (2)

The motion 8 assumed to be one~dimensional with water depth h(x,t) and
velocity wu(x,t), where x is the distance coordinate measured in the down-
stream direction und %t denot2s the time, Disturbences to the steady basic
flow are assumed to produce wwes of leagth and radius of curvature of the
water surface much greater then the water depth, so that the vertical
acceleration of the water iz small and the pressure can be taken at the hydro-
static value, The downwerd slope of the cnannel bed is denmoted by 8{x) 8o
the corresponding slope of the water surface is g—g- - 8, glving the pressure
gredient term included in (2). The fiictional resistance ia represented by the
Chézy approxiration and, since the breadth of the chamnnel (b) is assumed much
greater thea the depth, the hydraulic mean depth {or Fydresulic radius) is given
by

R = cross~sectional area of water - bh
wetted perimeter + 2h
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accounting for this factor in the denominator of tl.» friction term of (2). The
Chézy constaunt, ¢, may vary with Xx, %o allow iur chenges of roughness. The
quantity g, occurring in both (1) and (2), is the lateral inflow from rain,
run=-of £ and tributary flow, less the outflow from seepage, etc. It is assumed
in (2) that «ll inflow entars the channel with zero velocity compeonent im the
direction of the main stream, end thet, for the cutflow, this same velocity
component is reduced tc zero on leaving the main stream. The last term of (2)
is usually relatively very small, so these assumptions are not crucial; the
dominant effect of inflow and cutflow is to add the term on the right-hand side
of (1). 7he valme of q may vary with both x and t, &and is expressed in
units of

(volume/unit time)/((unit lemgth of chamnel) x (unit width)) , e.g. f£t/s .

Equations equivalent to (1) and (2) are derived in detail by Stokex®.

(Stoker usee the Manning approximation for the frictional resistance which
jatroduces hu",’ in place of h in the resistance term, but only trivial
changes are necessary below to incorporate this slternative.)

If the bed ¢ the channel has constant slope &nd the net inflow term is
neglected, it can be sesn that a »!eady urniform flow satisfies the simple
relation

w = cs)? . (3)

The simplicity of (3) results partly from writing the dimensionless constent in
2
the resistance term as g/C°.

2.7 Eqwiions in characteristlc form

The mumerical solution of (1} and {2) is to be obtained by & finite
difference method rather than a chsracteristic method, but it is useful to

express these equations in characteristic form. In one example the characteristic

properties are used directly to determine an unspecified boundary value, &nd a
knowledge of the slopes of che characteristics in the x,t plane fixes the
number of conditions {0 be given at boundaries end also determines the maximum
value of the finite difference time step for a given space step if the
calculations are to be numerically stable.

In the x,t plane the characteristics of (1) and (2) have slopes
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and the corresponding characteristic relations are found in the usuai way
(e.g. Courant’) to be respectively
-g-{uiZ(gh)%} = g s.._g.a...i 3 -9.‘.".} ,
as Fn (a)f
= 2 % » say . (S)

Small amplitude disturbances travel both downstiveam and upstream at s wave speed
(gh)% relative to the water velocity u. So, for a Froude number greeter than

one, i.e, F = —3—-5 >1, sucn disturbances can oaly travel downstreanm.

(eh)
3 METHOD OF SOLUTION

3.7  General method

The numerical solution of (!) and (2) is obtained by a simple extensior of
the two~step Lax-Wendroff method. These equations are written as

2o - ©

and
T3 G ean) = 38-553;-%‘,‘4 ; M

or for brevity s&s

BB @)

=nd
%“42—5— = v , (9)

viare
Q = m , E=§ua+gh (10)

and V is the right-hand side of (7).




A vectangular finite difference net is taken in the x,t plane, with
pivotal points X = i Ax in the x-~direction togather with a suitable time
step &, as depicted in Fig.1. It is assumed that the solution is known at
&ll Xy at time ¢, in particular the initial conditions fix the solution
at all Xy at t = 0. The numerical solution is required at time t + &t.
The firat step is to obtain proviaional values at the centres of the
rectangular meshes (i.e. points mid-way between the at time © + %A’t)
from the explicit formulae

h, !(‘c +3ee) - 3 {n(t) + 1, (t)) . Quq(t) = Q(t)

X

g & " Hoa® vy
ceee (11)
end
t+gae) -3 N s
ui&( + 3 08) }%Atui(t) + +1( )} . Ei_‘_.‘(tgx 1(t) -3 {Vw(t) + vi(t)} .
veen (12)

The second alep uses the.a staggered values to obtain the required solution at
the rivotal points x, at time ¢ + A4t from the explicit formilae

hi(f; + At) - hi(t) . Qié(t + 3 OL) - Qi_}ét + 3 Ab)
i) &x

o LGRS YORENPCES 2.0} (13)

ui(t + 4Ot) - u.l(’c) ’ Ei&(t + 3 ML) - Ei_%.(t + 3 )
At - %

= % {V1+%(t R LORRAPCER 2.0) BN (L)

The finite difference solution cen then be found at time ¢ + 2 At, and so on
through as many tinme steps as required.

This method has the usual condition for numerical stability:

ax >{u + (an)d) &t . (15)
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It is assumed at this stage that u 2 0, Condition (15) is inferred from the
corresponding condition for the equations of gas dynamicaT , and no instsbility
has occurred in the hydrsulics examples when the ratio Auxidt is in
conformity with (15) at all points,

3.2 Boundary points

In the examples of saction 5, the river or channel is taken to be in a
state of steady uniform flow at t = 0, with h = h, and v = u,, say, and vith
these constant values related through (3). Por + >0, a disturbance is applied
et x =0 and the solution is soug downstreum of this point at subseocuent
times,

If P<1at x=0 Just one boundary condition is required at this
point, The explanation being that only one of the chsracteristics leaves the
region x > C of the x,t plane when drawn backwards in time, this charac-
teristic is the one with

g"g = u+(gh)%>0 . (16)
The other characteristic with

dx 3

S = u-(an)¥<o an

enters the region x > 0 and intersects time t at the positive value x = x9,
as shown in Fig.2. This second characteristic gives a relation connecting
values on the boundery x = O with internal values that ue.z already been
found, thuz only one of the two boundary values remains free to be specified

as data. Suppose the depth veriation st x = G is specified, then the water
velocity uo('!', + At) is calculated by an iterative method based on (iT) and the
corresponding characteristic relstion., Referring to Fig.2, the procedure is:

(&) Assume as starting valves
uo(t +40t) = ua(t), ul{t) = uo(t) and ht{t) = ho(t) .

The values of ho(t + At) and ho(t) 2re known from the given boundary
condition and uc(t) hee already been found.

(b) Find x? from (17) expressed in the finite difference form
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where u = stands for uo(t + At) and similarly for h,.

(c) Obtain new values of u' and h' by quadratic interpolation
between the xnown valves of uend h at (0,t), (x‘,t) and (xa,t).

(a) Obtain a new estimate of uo(t + &) from the following finite
difference approximation of (5) (lower signs for thie characteristic):

u, = 2(@0)% st -2y o 3{z_(0,t +&t) +2_ (x5, 8)} &t . (19)

(2) Repeat from step (b) on until the value of u_ has converged.

This simple iterative procedure is not always convergent, since if steps (b) to
n+l n

(d) are represented by u’ o= f(\f;) where u  1is the nth iterate of u end
u‘;‘” the n+1-th, then |£t| >1 when At is sufficlently large, maialy through
the effect of the resistance term. In gas dynamics this texm is absent and
convergence is eacier to obtain, The powerful Wegstein methed (Buckinghamu,

for example) is used here to obtain convergence. Thiz method forms two

n n .
sequences and U such tnat

n  .n=ly.n _n=l
(uo -u, )(uo; - )
n nel  nal | a2
(v,o -u -y b U )

o

n
= uon »

axnd the iterative process is now

n+1 n

u, = f(uo) .

this method has been found to produse a convergert value of ug (in practice
a value is sccepied when differing by less than 0,0001 ft/s from the previous
tterate) after at most 7 iterationz. The starting values u:;, v.g ¥ at

o
{ + At are taxen equal to uc(t).

The genarai finite difference method can then be applied to find the
internal values h‘, uy, ete,

If F>1at x =0, bpoth characteriastics have g% >0 and intersect
time % ocuiside the region at negabive values of x. Thus the:rs are now no
relations connecting boundary values with known internal values, and both
verisbles have to be given as date on the boundavy.
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It is also necessary to specify the downstrews position at which the
calculations are to stop. For a disturbance starting at x =0 at time ¢ =0,
the leading disturbance or wavefront travels downstream at the known speed

%x; = Uy (Eh*)i . (20)

Hence, at each pivotal value of t, the calculation can end at the highest
value of 1 such that

1ax <{u, + @Bt , (21)

since the water is undisturbed from the initial state at pivotal points that lie
further downstream,

There is an important exception to this: if the water depth at x = 0
increases sufficiently rapidly or the initial Froude number is sufficiently
high, a bore will eventually form in the flow. If the bore is at the Lead of
the disturbanse, it travels faster than the speed given by (20) and tha
caleculation must in this case be continued to a grester value of i than
required by (21). In practice, when a bore is likely, & generous number of
extra points is included ahead of the nornal wavefront. The number cf extra
points is known to be sufficient when the computed solution at the last few
points reproduces the initial undisturbed state,

Further discussion of initial and boundary conditions is included in the
following examples. In paxrticular, simpler forms of upstream and downstrean
conditicns oscur in asections 4 end 6,

3.3 BSolution near jumps

Across a bore or hydraulic jurp the water depth and velocity are
discontimious, and it can be shown that water crossing the discontinuity suffers
& sudden loss of mechanical emergy (lamb). The lost energy is turned into heat
by turbulence at the jump (or part of it can be radiatad awey in the form of
surface waves) and the mechanism for this abrupt energy loss is not contained ir
the basic equations.

As in gas dynamics, introducing an artificial viscous force tem of the
fora

2
Sai' (aAt)a(gl;) }, vith a = constant ,
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gives a loss oF mechanicel energy which is iarge where u is changing rapidly.
The addition of this fictitious term enables a continuous solution to be
obtained across a jump. In the numerical solution the jump is spreud smoothly
cver a short length of x, though with some oscillations behind it, in place
of an exact mathematical discontimuity. For a given value of Ax the length
of the transition and the amplitude of the oscillations depend on the value of
a that is chosan, &nd the cptimum choice is a metter for numerical experiment.
In practice this extra term is only important in the neighbourhood of the jump.

In the lax-Wendroff method a similar extra force term is provided auto-
matically by the truncation erroxr, this being proportionsl to bauléxa. The
distinction between the differential equations and their finite difference
representations on the Lax-Wendroff scheme is very useful, as it allows {lows
containing Jjumps to be covered by the basic rumerical method without any special
treatment, This type of difference scheme ic cailed *dissipativet.

y STEADY FIOW CONTAINING A NYDRAULIC JUMP

The steady forms of (1) and {(2) with q = 0 are

uh = Q (constaut) (22)
and
du dh 2
ugt el - )+§“;-;=0 ; (23)
elimipating u glves
s
-5
dh _ c°w (24
x @ =z
-93--1
gh

Consider the integration of (2i4) in the downstream direction on a long
slope with a steadily decreasing gradient, starting with a super-critical flow
at x = 0, As the gradient decreases, the water velocity decreases and the
depth increases, until a point is reached at which Qa = gh3, that is F =1,
and dh/dx tends to positive infinity. The physically scceptable solutior in
these circumstances ccnsists of a transition via a hydraulic Jump between two
branches of the solution.
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Az an ayamnle consider the sitmtiion shoum dlagrammetically in Fig .3,
The gradient is /50 upstream o x = 10 £, and after this pouint the gradient
decreases suoothly to & final vaiue of 1/800 downstream of x = 3C ft. The
corresponding variation of the depth is to be calculated., It is assumed that
the flow is uniform in x S0 and 4 x & 60 £t with (3) holding, @ = 4 7t%/s,
and C = 80 £t3/s. These conditions fix the flow at x = O as:

h = 0586, u = 8ft/s and F =2 ;
and at x = 60 £t as:
h = 1268 ,u = 317 ft/s and F = 0.5 .

! The solution has besn cbtained by the artificial viscous force method, but
i for brevity the details are not given here. We concentrate on the Lax-Wendroff
msthod. The unsteady formulation is retained and & rough guess at the solution
provides the initi&l ccnditions required at t = 0. The time t now corresponds
to an iterastion parameter and At is chosen at each riage to keep well within
the stability criterion (15) at all poirts. Two boundsry conditions are
required at x =0 as F >1 there, tnese are h = 0,5 ft and u = 8 ft/s.

At x =60 ft, F <1 g0 only one condition may be epecified, this is taken as
h =1.,26 ft and the value of u at this point is obtained by a characteristic
calculetion, similar to that of section 3.2. As the sclution converges 4o the
required steady state, this calculation zives u - 3.17 ft/s at x = 60 £t as
required.

The result with Ax =1 ft is shown in Fig.4 after 2%0 iterations, that
is after 240 steps of varying At. The soiution is hardly changing with t
at this stage and shows the sharp profile for the hydraulic jump that is pro-
duced by the methnd, with the typical initial cvershoot. Also plottad on Fig.h
in the assumed value of h at ¢ = 0, this s obtained from h = Q/u with
u assumed to vary linearly between x =1 ft and x = 53 ft, The values of u
at these points are taken equal to the respective boundary values, given above.

5 THE FROPAGATION OF DISTUXBANRCES DOWK CHANNELS

' 5.1 Oscillatory waves superimposed on & super-critical fiow

We consiier & wide chamnel of uniform rectanguiar cross-section with
3 : constant gradient, 8, and with no lateral inflow. Initially the ficw is taken
to be steady and uniform with depth h, and velocity u,, such that
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u, = C(h, S)i, in accord with (3). The flow is assumed to be super-critical
with u, > (gh,)%, so that B8 >g/C°. Two boundary conditions are required a*
the upstream position x = 0, +these are taken as

h = hy+Hsinw , u = u, +Usin {25)

for t > 0. No special downstream conditions are required, but heyond the wave-
front of the disturbance: h =h, u =u,. It is assumed that H/h, and U/u,
sre sufficiently small or F, =u,/ (gh,)z is sufficiently large to keep the
flow at x = 0 super-critical at all values of t. The numerical solution is
required for the disturbance produced downstresm of x = 0, in particular for
the eventual steady oscillation at any point.

If Hand U are relatively small, the analytical solution of the
linearised forms of (i) and (2) provides a good test case. Writing for the
stesady osclllation

1 (wh-lex) , 1 (wt~kx) (26)

h = hy+He u = u, +Ue ’

substituting into {1) and (2), snd retaining only first powers of H and U
gives

@ -1) 2 ®+ Glar, ~2ur,) e, k+ (F-220) = 0, (27)

where 4
cy = (gh,)% end o = gSfu, . (28)
Thus
2uF, - 3t £y H(4E - w2 F) - bia w(E? + 2))
X = 5 . (29)
2¢,(Fy - 1)

For the special value F, =2, equation (29) has the two xoots

. ) W~ 2ia
12,=33-;,k2=—3';—- (30)

The firet root gives a ware of constent amplitude travelling downstream with
speed u, + ¢, = 3¢,. The second rcot gives a damped wave travelling downstream
with the lower speed u, - ¢, = ¢,. Hence, if the constants in the boundary
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solution for very small H/h, should represent e wave of constant amplitude.
It is easy to verily that the slower wave is absent if

v - ()
ce H
by,

{31)

The dsta for tnis test of the numericai method aad computer Drogramme was
taken as!

h, = 052 &nd hence c, = 4 ft/s ;
u, = 8rtfs as F, = 2
cC = kertl’/s snd hence 8 = 1/18, o = 2/9 ;
= = 05s gving @ = ixradfs
E = 0.005 £t {= 1, /f100), and U = 0.04 £t/s from (31) .
The finite difference steps were

Ot = 0,01 8 (that is 50 steps of At in each cycle)
and
x = 015t {>(u, +c, )t = 0,121¢) .,

With these values tuc numerical results showed an increase of wave
amplitucde of only 0.3% st u point 240 steps of Ax downstresm, The solution
was advanced over 360 steps of At in the course of the calculation. This
result provides a useful check on the programme.

For general U,H in the upstream boundary conditions, it follows from
\29) that when ¥, <2 both waves are damped in the direction of travel. When
F, >2, the faster downstream wave actually ircresases in amplitude and even=-
tually the lineaxr theory ceases to be valid, The slower wave is still damped.
Tn practice, inatability in the form of roll waves is observed in steady flows
when P, >3, Roll waves (Stokera) are a series of bores, spaced equidistantly,
and with a frequency equal perhaps to that of a small disturdance arplied to
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the flow, for example the freguency of surface waves in a res2rvoir at the
upstream end of the channel,

3 Thus, one interesting application of the numerical method for the solution
of the non-linear equations is to see the resulis of applying s disturbance of
very small amplitude at x = 0 to a flow with F, > 2, To accalerate the

3 growth of the disturbance the high value F, = 9 was assumed. Th: amplitudes

] at x = 0 were taken as

H = 0.025 it (that is S5 of h,) and U = 0.2 £t/ ,

with the above values of h,, C and w. The results are shown in Fig.5. The
depth is plotted as a function of x at a time t = 3,145 s after the start
of the disturbance. The groph shows the rapid trensition from small amplitude
sinusoidal waves into sharp peaked waves separated by water of nearly constant
depth. This profile has some similarity to observed roll waves, but
unfortunately with this symmetricel steepening the curvature of the water
surface is becoming too large at the crests for shallow water theory to be
velid.

Thir sub-sectior has been concerned with the steady oscillations
developed well behind the wavefront. 1In fact, for ¥, >2 the head of the
disturbance truvelling downstreem will be a bore, and even for F, <2 a bore
develops if the initial rate of depth increase (= HW) 1is sufficiently large
(righthill and Whithama). The next two sub-sections include the mumerical
solution near the wavefront, and the formatiorn and behaviour of bores,

5.2 Transient effects of a permanent change of upstream corditions

We consider as previously a wide channel of uniform rectangular cross-
section with constant gradient of the bed and no lateral inflow. The Proude
number F, = u,/(gh,)% of the initial steady uniform flow is arbitrary. One
boundary condition is recaired at the upstream position x = 0 when F, <1,
and two boundary conditions when F, >1. The conditions at x = 0 are
assumed for illustration to take the simple forms:

=2
it

hy+ H* t for O <t <t¢

1
i

b, + H' t*

hy+H , say , for t &ttt ,
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representing & permsnent change of water level oceurring over time t?. Tn
addition when P, > 1:

u = u, +U %t for 0<t <t!
and

u = u, + UF ¢!

= u,+U , say , for t &tV

For simplicity, it is assumed at x = 0 that F remains either greater than
one or less than cne throughout the motion.

The numerical method of section 3 is directly applicable to this problem.
If F<1at x =0, the special procedure involving a characteristic is used
to obteln u &t x =0,

An analytical result is available for this problem: Lighthill and Whitham6

show by expanding the solutisn near the wavefront in a power series of

T =1t - x/(u, + c,) with coefficients functions of t and the wavefront being
T =0, that a bore forms wvhen F, <2 if the initial steepness {= initial
discontimuity of dh/dt) 4s such that

( ) (2 -r)(0 + 1) (=X, say) . (32)

In such cases the bore forms at a time given by

(dh/dt)
¢ ey o fmmr e 2

If F, >2 a bore alweys forms in the disturbed flow for positive (dh/dt) o
In the presant example
(& ) (34)

A formule that is useful for checking the Lax-Wendroff treatment of Jumps
i1s one for the gpeed of travel of a bore, separating, say, depths of h, and
h (>h,). If the bore speed is &', then it may be shown (Stokere, Lambs) by
expressing the conditions of contimuity and conservation of momentum across
the jump that the rate of volume flow per unit width across the jump (Q),
satisfies
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Q® = % ghh(h+mn,) (35)
-and
Q = h(t' -u) = n(8'-u,) , (36)

where u and u, are the water velocities on the two sides of the bore. Hence,
the velocity of the bore ia

8% = u, 4 {%sh (l 4 h—‘—‘-)}é ; (37)

showing incidentally that

gt >u, + (gh,,)% . (38)

The numerical solution has been obtained 1or the following examples
(c=48 ft%/s throughout ).

(a) River: h, =81ft, F =0.25 giving u, =4 ft/s; eand with
h(0,t) 4increasing from 8 £ to 13 2t in 1 h. This is an idealised example of
a river subject 0 a loag duration flood at an upstream position. These values
give K = 0,040 and (dh/at), = 0.0014, 8o by (32) no bore is predicted. The
numerical solution obtained with Ax = 5000 ft and At = 120 8 1s shown in Fig.6
to be a wave of nearly constant profile moving downstream at about 6.9 ft/s.
Such a profile is called a 'monoclinal flood wavel?,

(b) River: data as (a) except the increase of h(0,t) occurs in only
50 s. This exmaple corresponds rcughly to the rapid opening or breaking of a
lock gate. In this case (dh/dt)o = 0.10 >K, 80 a bore is predicted. The
results obtained by the numerical method are drawn in Fig.7 and show the bore
at the head of the disturbance. These results were obtained with &x = 70 ft
and At = 2.5 8, and as a check repeated with Ax = 35 £t and & = 1.25 s; the
agreement was satisfactory. The numerical results give a final bore speed of
gt = 22,4 ft/s, while (37) predicts 22.5 ft/s using the smoothed value
h = 9.7 £t Jjust behind the bore. For comparison, u, + c, = 20 ft/s. Accoxrd-
ing to the theoretical result (33), the bore starts to format ¢ =~ 85 s,
and the numerical results show a bore on the first profile after this time st
t =102 s,

(c) Steep channel: h, = 0.5 ft, F, = 1.5 giving u, =6 ft/s; and
with h{0,t) increasing from 0.5 ft to 1 ft and u(0,t) increasing from 6 ft/s
to 8.5 ft/s in 50 8. These values give K = 0.035 and (dh/dt)o = 0,010, so by
(32) no bore is predicted. The numerical solution obtained with A&x = 40 ft
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and At = 2.5 8 13 showr in Fig.8. The profile is similar to that obtained in
the sub-critical case (a), and moves downstreem at about 10 ft/s.

(1) Steep channel: data us (c) except the increases of h{0,t) and
u(0,t) occur in only 5 8. In this case (dh/at) o = 0.10 >K, 50 a bore is
predicted. The numerical solution obisined with Ax = 4 £t and &t = 0,25 &
is drawn in Fig.9, and giows the bore at the head of the disturbsnce. The
numerical method gives & final bore speed of &' = 11.7 £t/s, while (37) predicts
11.8 ft/s using the smoothed value h = 0,80 £t Jjust behind the bore. For
comparison, u, + ¢, =10 ft/'s. According to (33), the bore starts to form at
t =10.3 5, and the numerical results first show a definite bore on the profile
at t =15 8,

5.3 Effects of an upstream disturbance of finite duration

The effects of an upstream boundary conditior (or conditions) representing
a disturbance of finite duration can be examined by a small modification to the
programme, The upstream conditions at x = 0 are taken for illustration as:

h = h, + Kain (xt/t?) for O0<t <t!?
end
h = h, otherwise .

In additionr wvhen F, > 1:

u = u, +Usin (xt/t?) for 0<t <t!

and
v = u, otherwise .
The results (32) and (33) concerning bore formation apply, with
ah\ Hx
=) = 7 (39)
qt /o t
in this case,

The numerical solution has been cbtained for the following two frrther
examples,

(e) River: data as example {a), with H=5 £t and t+* =1 h, These
values give K = 0.040, as previously, and (clh/dt)o = 0,0084, so by (32) no
bore is predicted. The mumerical solution obtained with Ax = 5000 £t and
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E At = 120 8 is shown in Fig.10. The peak of the disturbance travels at 6.6 ft/s.
: This exemple resembles a flood wave travelling down e river and the kinematic
w#ave theory of Lighthill and Whithamé is applicable, with the wave property
{downstream waves only) following from the continuity equation, plus, in place
of the full momentum (or dynamic) equatior, a simple steady state approxi-
mation relating u and h, such as (3). The initial disturbance travelling at
speed u, + (gh*)% (= 20 £t/s) 15 heavily damped and the main disturbance
travels (on a linearised form of the theory) at speed %'u, (= 6 £t/8). Example
(a) is also amenable to 4his approximation.

(f) Steep channel: data as example (c), with H = 0,5 ft, U =2,5 ft/s
end t* = 15 8, These values give K = 0.035, os previously, and
(dh/dt)o = 0,105 > K, 80 a bore is predicted, The numerical solution obtained
with Ax =4 ft and t = 0,25 s is drawn in Fig.!! and shows the bore at the
head of the disturbance, This sclution is in satisfactory sgreement wiii that
obtained using Ax = 8 ft and At = 0.5 s. The numerical method gives a final
bore speed of 4% =11.2 ft/s, while (37) predicts the same speed using the
smoothed value h = 0.70 £t Just behind the bore. The extrapolations of the
smooth profile behind the bore leading to this value are shown dotted on Fig.il.
In this example the wave profile continues to rise steeply after the bore,
For comparison, u, + ¢, =10 ft/a. According to (33), the bore starts %o
fornat t = 9.7 8, and the numericel results show a bore to be forming at
t =10 s,

The numerical method is now well tested and is directly applicable to
flows containing jumps. These test examples provide strong support for iis
use in less idealised problems which are completely intractable to theory.

The computer programmes written for the problems in this Report are
bagically similar, and each example takes around 15 s of computing time on an
: ICL 1907.

6 A SIMPIE HYDROLOGY APPLICATION

Consider the situation drawn diagrammatically in Fig.12, in which very
heavy rain is falling on the surface shown, the rain starting at time t = 0,
The boundary conditions st x = O and x = £ are taken a3 u = 0, this one
condition is sufficient at each boundary as ¥ <1 there. This problem has
some similarity to that of rain falling on a cambered road with blocked gutters.
The slope of the surface is assumed to vary as
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The resuiting flow down the slope is reguired as r. function of x and t.

The usual approach to 'run-off?! problems in hydrology is by the kinematic
wave approxim&tion6 which combines the contimuity equation

%‘-+-§;(uh) = q ()

with the assumption that the flow is quasi-steady and locally uriform with (3)
holding:

T (42)

in place of the full dynamic equation (2). Or the more accurate approximation

of (2)
s e oh(s-B) )

can be taken, [The formz of (42) and (43) assume S 20 and 8 & g%

i
respectively, otherwise u = - ¢(~ hS)é y Wea=C {h g:—:- - 8)} 9
respectively.] Other approximations of similar form have been proposed.

The combination of (41) and (42) gives an equation of the form

2.2

%%*r%ug%'—-q--ﬁ—(’h %;3 ; (&)

with u given by (42). It is assumed {hat C 1is independent of x. On the
other hand (41) and (43) give

"
an,3 m_ctnf ok | P oas (15)
XTIV E T ;:5 1" & °

with u given by (43). Equation (44) requires an initial condition and an
upstrec 1 condition, but no downstream condition caun be specified as the single
family of characteristics % = %1- aliows only downstream waves, travelling
at the kinematic wave speed g.u. Equation (45) requires an initial condition
and both an upstream and s downstream boundary condition, as there is now a
diffusion effect, The numerical solution of (44) can be obtained by a

PP A e TN
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charecteristic method, and that of (45) is probably best cbiained by an
iterative sppiication of a Crank~Nicolson type method.

fiowewer, in this work vwe cap retain the full dynamic equation (2) end
galve by the lax-Wendrcff method. The 1nitial conditions require care, the
natursl choice h =u =0 st t = 0 makes the right-hand side of (7)
indeterminate., One slternative is8 to assume an initial non-zero water depth
that is equivalent to a few seconds of rainfall, with u given initially by
%he positive root of the quadratic

2
88"?"}:“%1’:0 ’ (46)

that is the right-hand side of (7) put equal to zero. Other starting assump-
tione may be preferable., It 1s in any cese assumed uncritically in this problem
that the basic equations (1) and (2) hold in the early stages of the motion
when the depth is very small,

The boundary conditions axre u =0at x = 0 and x = £, As the values of
h at these points can be obtained by a small modification to the general finite
iference method, the characteristic method is not necessary in this special
cagse, The value of At 18 chosen at each step to keep well within the steoility
requirement (i5).

Consider as a runerical exanple:

q = 1o~ ft/s , corresponding to about 4 inches of rain falling in

cne hour with no surface seepage,

L = 100 ft, with a maximun slope S(32£) = 3/i0c ,
C = 48 ft%/s and the initial depth is taken to be equivalent to 30 s
of rainfall.

Tte results obtainad with Ax = 4 £t are shown in Fig.13. A partial check can
be applied: total volume of rain faller per unit length of surface normal to the
curve of Fig.12 at t =116 58 equals (716 + 30) X 10.1; x 100 = 1.46 fta; and
in faet the area under the corresponding curve of Fig.13 agrees with this figure.
The oscillations .- %the solution become relatively less az t increases, and
may oe partly due to the artificial initiel condition of unitorm depth which
omits a hydrsulic Jump, chough implying & deceleration from super-critical to
sub-critical flow &t about x = 80 ft. The oscillations are reduced by taking
At mmch smaller at the start of the calculations than is required by (15). It
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1ow very quickly beccmes steady in x < 80 ft; and it is
found that the relaticnship between h and u in this region is close to that
of the kinemastic approximations (42), (43) and (46). There is 1little
difference between these three approximations in this example, Thus, the
kinematic theory is adequate in x <80 £ft, but in x > 80 ft tke dynamic
theory is necessary for this rather demanding test case involving very rapid
deceleratiocn, partly by a hydraulic jump, as the tlow approaches the downstream
boundary.

7 EXTENSIONS TO NATURAL CHANNELS AND TO ONE-DIMENSIONAL TIDAL CALCULATIONS

In & river or estuary the cross-section of the channel is rsrely
rectangular and uniform in the along-stream direction, x. The width at the
water surface, for example, can vary with both x and, at a fixed value of x,
with the current level of the water suriface, The water depth varies in the
across-stream direction and often the varistion of the bed in the along-streem
direction is such that even the mean water depth doeg not vary smoothly with
x. However, the height of the water surface, n(x,t), above a fixed hori-
zontal plane (for exampie mean sea level) varies mich more smoothly with x
and has hardly any variation acrcss the width of the stream, and for these
reasons i8 chosen as a dependent varisble in the general case. See 7ig.14.

In fact, for the rectangular channel, 0 wes eliminated from {2) through the
relation

én _ o _
ox ox S

Assuming that the flow is still approximately one-dimensiona , (6) and (7)

generalise to

g%-i»ga}?(Au) = q (47
and
2
-g—:—+-é%(%u2+g‘n) = 02:2‘—;-1:' H (48)

where A(x,t) ie the cross-sectional area of the water at location x aud
time t, &1d R(x,t) 1s similerly the hydraulic mean depth. The latera).
inflow a 1is nrow in units of
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These ejuations are equivalent to those derived by Stokera.

For the uniform rectangular channel, A was simply proportional to h.
But now at each value of x there iz a functional relationship between A
and n to be determined from large scele maps or charts, or perhapa from a
special survey. This is depicted diagrammatically in Fig.14, which shows n
as 8 different function of A at each pivotal value of x. Similarly, R is
obtained as a function of A for each =x.

If the date of Fig.14 is given, the numerical solution can be obtained by
the Lax-Wendroff method as before, the dependent varisbles now being A and u.
At several stsges of the calculation values of n and R have to be obtained from
this data corresponding vo known values of A and x.

In estusries and in tidel rivers and channels, the water velocity may
change in direction over the tidal cycle. The following points now apply:

(a) The factor ua in the frictional resistance term must be written
as |u] u, to ensure the resistance force alwaysz opposes the motion. This
requires only a simple change in the programme,

(b) The stability criterion (for a rectangular channel) is now
&x > (Juf + (gh)i’) &8,

in place of (15),

(c) Usually F <! at both the mouth and the landward limit of the
estuary, thus one boundary condition is required at each point. For example,
the tidal level might be specified at the mouth as

h = hy+ Hslnuws ,

and the corresponding velocity is obtained by the method of section 3.2; while
at the landward limit there might be a barrizr with the condition u =0,
and the corresponding water level is obtained &s in section 6.

(d) Approximate initial conditions must be specified at t = 0 and the
calculations then advanced through sufficient time steps for the sclution to have
become periodic in t. The better the guess at these conditions, the quicker
this will be achieved, but very rough initial conditions may suffice in practice,
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method covers this case without any special procedures in the computer

programme ,
8 CONCLUSIONS

The Lax-Wendroff method has been applied in this Report to a selection of
one-dimensional unsteady prcblems of open channel nydraulics. It has been
shown that the method can be applied to flows containing bores and hydraulic
Jumos without either shock fitting or employing an artificial viscous force,
and at the same time givas an scceptable spacial resolution to these
discentinuities. The method is simple, easy to programme for a computer, and
even for flows without jumps hes sdvantages ovar other methods. The extensions
of section 7 cover many practical situations, and further extensions are
possible, for example junctione and two-dimensional unsteady problems could be

considered,
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dimensionless constant in artificial viscous force
srea of water cross-section

channel breadth

wave speed in undisturbed water: (gh*)%
Chézy constant

2+ gn

finite difference approximation to E at x

"

Froude number: u/ (gh)%

Yroude number of undisturbed flow
acceleration due to grevity
watoer depth

finite difference approximation to h at x =

]
»

undisturbed water depth

value o h at x = xt

amplitude of depth disturbance et x = ¢
rate of increase of water depth st x =0
squars root of =1 in section 5.1

wave number in (26)

roots of (27)

defined by (32)
a fixed downstream boundary is taken as x = 2

latersl inflow
finite difference approximation to q at x

]
o
[

rate of volume flow per unit breadth: uh
finite difference approximetion to Q at x

hydraulic mean depth

downward slope of channel bad

time

duration of change of upstream conditions
water velocity

finlte difference approximstion to u at x

n
tal
[¥

undisturbed water velocity
value of u at x = x?
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SYMBOLS (Contd.)

the two sequences used in the Wegstein method of section 3.2
(n =0,1,2 ....)

amplitude of velocity dlsturbence at x =0

rate of increase of water velocity at x = 0

abbreriation for right-hand side of (7)

finite difference approximation to Vat x = x, -

distance along the chexmel in the downstream direction
finite difference mesh points in the x-direction (1= 0,1,2, ....)

the characteristic with negative slope from {0, ¢t + At) passes
through (x',t)s see section 3.2 and Fig.2
abbreviatione for right-hand sidea of (5)

elu,

finite difference steps

vertical displacement of water surface from & given horizontal plane
veloclity of bore

characteristic variable defined in section 5.2

circular frequency of oscillatory disturbance
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