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SUMMARY

An adaptation of the two-step Lax-Wendroff method is used for solving the
unsteady one-dimensional equations of non-linear ihallow water theory, including
both frictional resistance and lateral inflow terms. This finite difference

method is fast, accurate and simple to programme and covers the formation and

"subsequent history of discontinuities in the solution, in the form of bores and
"hydraulic Jumps, '4,ithout any special procedures. Thm behaviour of the numerical

solution behind these jumps is found in the examples to be sufficiently smooth

without the addition of an artificial viscous force term. A variety of

illustrative examples is given, including simple casez of flood waves in rivers,

bores in channels resulting from rapid changes of upstream conditions,

oscillatory waves on a super-critical stream and a simple hydrolcgy example with

a significant lateral inflow from rain. Several checks of the numerical method

are included. The exemples are confined to channels of uniform rectangular

cross-section, but the method generalises in a straightforward way to real rivers

end estuaries in which the cross-section is non-rectangular and varies along the

length of the channel.
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Many practical problems of open channel hydraulics can be modelled by the

equations of unsteady one-dimensional non-linear shallow water theory,

particularly if a frictional resisnance term (e.g. Chity) and a literal inflow

term are included. For example, flood waves in rivers, surges travelliag

along channels, tidal flooding in estuaries, and nurfact run-off from heavy

rain. Shallow water theory is applicable to flows in which the wave length of

disturbances and the radius .f curvature of the water surface is much greater

than the depth of water; 'non-linear' means no restriction is placed on the

ratio of wave amplitude to water depth.

The equations of shallow water theory are similar to those of gas dynamics.

The purpose of this work is to adapt a method that hati been found very success-

ful in the gas dynamics application, namely the two-step Lax-Wendroff method

(Richtmyer and Morton!), to the shallow water equationi. The main differences

are that the shallow water equations are not in 'conservation-law' form (e.g.

8f/dt = g/x) when frictional resistance and lateral inflow terms are included

and that there are just two equations (continuity and momentum) against the

three of gas dynamics (contiruity, momentum and energy). In shallow water flows,

bores and hydraulic jumps (sta'tionary bores) correspond to shock waves in gas

* dynamics. These points of discontinuity of the mathematical soltttion are

referred to collectively as 'Jumps'.

£ The equations of these flows are f• too complicated for an analytical

solution to be possible and a numerical method is ejeential, The first choice is

between an Eulerian and a Lagrangian formulation. The latter has alvantages in

gas dynamics when mixt" -es of gases with differing thermodynamic properties are

involved, but the Eulerian form ia more convenient in the current application;

t•lso an Bulerian method is more easily ex~tnded to unsteady two-dimensional

problems. The second choice is between a characteristic finite difference method

and a direct finite difference method. In the latter methods the continuity

and momentum equations are expressed directly in terms of finite difference

approximations, while in the former it is the characteristic properties of these

equations that are so approximated. Numerical solutions based on characteristics

are accurate and unconditionally stable numerically, and thi:ldng in terms of

characteristics helps both physical interpretation and seeing whether a problem

with given initial and boundary conditions is 'well-posed'. But such methods

are slow and become complicated when the flow contains jumps, particularly when

a jump is moving into fluid that is already disturbed. On the other hand, finite



L4
F t::---- -- ^A• a"." PR+ hre, until the TAx-Wendroff m-thod, were

relatively inaccurate. The Lax-Wendroff method has second order accuracy and

has been found in gas dynamics to be applicable to flows containing jumps,
without special procedures, such as shock fitting or ucing an artificial viscous

force, being essential as with other methods to avoid violent instability in

the numerical solution behind a jump. The Jumpa appear automatically when

using the Lar-Wendroff method on these flows, as near-discontinuities across

which the dependent variables have very nearly the correct jump aDd which

travel at very nearly the correct speed through the fluid. The jump is spread

over about four finite difference space steps, with a slight but well damped

Socillat~on in the solutior beh- n! 14t. This jpa.Ial resolution of a jump is

generally perfectly acceptable in practice (in reality due to effects missed

out of the basic equations the Jump is not a perfect mathematical discontinuity

but is spread over a short distance), but if further resolution is required an

artificial viscous force can be used with this method as well. One aim of the

present investigation is to see what profiles are obtained for bores and

hydraulic Jumps.

Thus, in summary, the Lax-Wendroff aii.thod applied to the Eulerian form

of the equations (the method is also applicable to the Lagrangian formulation)

is choen as the most promising method for solving the shallow water equations;

with the reservation that at boundary points it is sometimes an advantage -4o

use a characteristic method.

Five specific problems are chosen for illustrating and checking the

method, and for exhibiting some of the eccentricities of this type of flow:

(1) An introductory problem of a stead-it flow down a channel of

decreasing gradient containing a hydraulic Jump.

(2) A channel having initially a steady uniform super-critical f. l,.

At time t = 0 an oscillatory boundary condition is applied upstream. This

case provides a check against a theoretical result.

(3) A gradual but permanent change of level at the upstream end of a
channel. The initial flow can be either sub- or super-critical. If the given

rise of upstream level is sufficiently abrupt a bore forms in the flow.

(4) A similar problem for a finite duration surge passing the upstream

end of the chann~l. One exaemle given is of a flood wave travelling down a

river.
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variable slope.

The channel or river in 111hese examples is of uniform rectangular cross-

section and of width much greater than the depth. Put the method extends in

a straightforward way to natural channels in which the cross-section it

irregular both as regard. longitudinal and lateral variation, if it is assumed

that the flow is still one-dimensional. Also the method is applicable to one-

dimensional tidal calculations iii eatuaries and channels. The major effort in

applying the method to a real situation lies in extracting the geometrical data

of the channel from maps or a special survey, and putting it in a form suitable

for the computer.

2 THEORY

2.1 Basic equations

The continuity equation for wtter flowing in a wide channel of uniform

rectangular cross-section is

ah 8 a
Sq+ U h ( )

and the momentum equation is

- 1 + -+ o 0 (2)

The motion "is assumed to be one-dimensional with water depth h(xt) and

velocity u(x, t), wheee x is the divtance coordinate measured in the down-

stream direction and t denotes the time, Dicturbances to the steady basic

flow are assumed to produce -nvves of length and radius of curvature of the

water surface much greater than the water depth, so that thc vertical

acceleration of the water is small and the pressure can be taken at the hydro-

static value. The downward slope of the anannel bed is denoted by S(x) so
ah

the corresponding slope of the water surface is .- , giving the pressure

gradient term included in (2). The fitctional resistance is represented by the

Chdzy approxivAtion and, dince the br-.adth of the channel (b) is assumed much

greater thp4 the depth, the bydraulie mean depth (Ir l-draulic radius) is given

by

= cross-sectional area of water bh
wetted perimeter h
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accounting for this factor in the denominator of tLi friction term of (2). The

Chezy consbant, C, may vary with x, to allow iur changes of roughness. The

quantity % occurring in both (1) and (2)? is the lateral inflow from rain,

run-off and tributary flow, less the outflow from seepage, etc. It is assumed

in (2) that all inflow enters the channel with zero velocity component in the

direction of the main streav, and that, for the outflow, this same velocity

component i, reduced to zero on leaving the main stream. The last term of (2)

is usually relatively very small, so these arsumptions are not crucial; the

dominant effect of inflow and cutflow is to add the term on the right-hand side

of (1). The value of q may vary with both x and t, and is expressed in

units of

(volume/unit time)/((unit length of channel) x (unit width)) , e.g. ft/s

Equationt equivalent to (I) and (2) are dertved in detail. by Stoker2

(Stoker uses the Manning approximation for the frictional resistance which

3ntroduces h4/I in place of h in the resistance term, but only trivial

changes are necessary below to incorporate this alternative.)

If the bed of the channel has constant slope and the net inflow term is

neglected, it can be seen that a s- eady uniform flow satisfies the simple

relation

u - c(hS) . (5)

The simplicity of (3) results partly from writing the dimensionless constant in

the resistance term as C/2 .

2.'! Esvitions in characteristic form

The numerical solution of (1) and (2) is to be obtained by a finite

difference method rather than a characteristic method, but it is useful to

express these equations in characteristic form. In one example the characteristic

properties are used directly to determine an unspecified boundary value, and a

knowledge of the slopes of ,•he characteristics in the x,t plane fixes the

number of conditions to be given at boundaries and also determines the maximum

value of the finite difference time step for a given space step if the

calculations are to be numerically stable.

In the xt plane the characteristics of (1) and (2) have slopes
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(g=h and u-(9h) , (4)

and the corresponding characteristic relations are found in the usual way

(e.g. Comrant 3 ) to be respectively

d tu _2(gh)j, = g -u 2 CL
at- -177± (g-)"

= z ± , say . (5)

Small amplitude disturbances travel both downstream and upstream at a wave speed

(gh)i relative to the water velocity u. So, for a Yronde number greater than

one, i.e. F = (-_ > 1, such disturbances can only travel downstream.

3 METHOD OF SOLUTION

3.1 General method

The numerical solution of (I) and (2) is obtained by a simple extension of

the two-step Lax-Wendroff method. These equations are written as

Oh = q (6)

and

3f + (N• * + 6) g s - - (7)

or for brevity as

a. q (8)

'tnd

au +E az (9)

where

a- V i th r + go f10)

and V is the right-hand side of (7).
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A rectangular finite difference net is taken in the x,t plane, with

pivotal points xi = i Ax ir the x-direction together with a suitable time

step At, as depikted in Fig.1. It is assumed that the solution is known at

all xi at time t, in particular the initial conditions fix the solution

at all xi at t - 0. The numerical solution is required at time t + At.

The first step is to obtain provialonal values at the centres of the

rectangular meshes (i.e. points mid-way between the xi at time t + i At;

from the explicit formulae

hf. (t + Ltt) - t hi(t) + hi+l(t)) qi+1(t) - Qi(t)
Vry At + ,K IM q . ,+i(t) + qi(t)}

and

UL4(t +. Aot - ½ {ui(t) + Uj+l W)} zi.+(t) - Ei(t)+ ..... i [V V+lltW + Vimt)

.... (12)

The second M-Pep "es the.3 staggered values to obtain the required solution at

the FIvotal points xi at time t + At from the explicit fo'Mulae

h1 (t + At) -hi(t) +~~j t- 1 1 t+~t

At ax

S½ {% (t + ½ At) + qj%(t + ½ft)) (13)

an•

ui(t + At -it E + Ei(t + j At) - E,4 t + bt)

At + LX

- t{vi•½(t + ½At) + vi4 (t + At)} (14)

The finite difference solution can then be found at time t + 2 At, and so on

through as many time steps as required.

This method has the usual condition for numerical stability:

Ax > {u + (gh)} . (15)
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It is assumed at this stage that u 2 0. Condition (15) in inferred from the

corresponding condition for the equations of gas dynamics , and no tnat!bility

has occurred in the hydraulics examples when the ratio 4&ciAt is in

conformity with (15) at all points.

3.2 Rndar points

In the examples of section 5, the river or channel in taken to be in a

state of steady uniform flow at t = 0, with h = h* and u - u, say, and vith

these constant values related through (3). Por t > 0, a disturbance is applied

at x = 0 and the solution is sou& downstream of this point at subsequent

times.

If F < 1 at x - 0, just one boundary condition is required at this

point. The explanation being that only one of the characteristics leaves the

region x > 0 of the x,t plane when drawn backwards in time, this charac-

teristic is the one with

Su + (gh)*>o . (16)

The other characteristic with

dx (17)Su - (gh)< 0 7)

enters the region x > 0 and intersects time t at the positive value x = xt

as shcon in Fig.2. This second characteristic gives a relation connecting

values on the boundary x - 0 with internal values that 1w, a already been

found, thus only one of the two boundary values remains free to be specified

as data. Suppose the depth variation at x = 0 is specified, then the water

velocity uo(t + At) is calculated by an iterative method based on (17) and the

corresponding characteristic relation. Referring to Fig.2, the procedure is:

(a) Assume as starting values

u,(t +,t) = %(t), u,(t) = uo(t) and hI(t) - h(t)

The values of h0 (t + At) and %o(t) are known from the given boundary

condition and uo0 (t) has already been found.

(b) Find xI from ( 7) expressed in the finite difference form
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X1 tju 0  (gh0 )l.au'- (ghl') 6tit ,(

where u stands for uo(t + At) ard aimilarly for h

(a) Obtain new values of ut and h' by quadratic interpolation

between the known values of, u and h at (O,t), (xl.,t) and (x 2 ,t).

(d) Obtain a new estimate of u 0 (t + At) from the following finite

difference approximation of (5) (lower signs for this characteristic):

u° = 2(gho)½ + u,. l (gh,) + ½ tz(0,t + At) + z_ (,,t)+ t . (19)

(e) Repeat from step (b) on until the value of u0  has converged.

This simple iterative procedure is not always convergent, since if steps (b) to
n+1 = re n

(d) are represented by unl f(u) wher is the nth iterate of u0  and
n+1 0 0o
u the n+1-th, then If' l >1 when At is sufficiently large, mainly through

the effect of the resistance term. In gas dynamics this term is absent and

convergence is easier to obtain. The powerful Wegstein method (Backingham ,

for example) is used here to obtain convergence. This method forms two

n n
sequences uo and u, such that

Z:U n- .... . - n- 1

(- o -(u-u )(uo u
0+ 0

and the iterative process is now

un-+l =f(u'o)

This iethoa has been found to produce a convergent value of uo (in practice

a value is accepted when differing by less than 0.0001 ft/s from the previous

iterate) after at most 7 iterations. The starting values Uo, T

t tare taken equal to u,(tOW

The genera&i finite difference method can then be applied to find the

internal values h.1, I 1 , etc.
dx

If F > I at x = O; ooath characteristics have d- > 0 and intersect

time +. cwtside the regoin at negative values of x. Thus the:,e are now no

relations connecting bonmdary values with known internal values, and both

variables have to be given as data on the boundta'.

[: .... .... .. ...• • ..... .
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It is also necessary to specify the downstrewA position at which the

calculations are to stop. For a disturbance starting at x - 0 at time t 0,

the leading disturbance or wavefront travels downstream at the known speed

F ~dx dx u.,u (20)

Hence, at each pivotal value of t, the calculation can end at the highest

value of i such that

i &x < (u, + (gh,)½ t (21)

since the water is undisturbed from the initial state at pivotal points that lie

further downstream.

There is an important exception to this: if the water depth at x - 0

increases sufficiently rapidly or the initial Froade nuaber is sufficiently

high, a bore will eventually form in the flow. If the bore is at the head of

the disturbance, it travels faster than the speed given by (20) and the

calculation nast in this case be continued to a greater value of i than

required by (21). In practice, when a bore is likely, a generous number of

extra points is included ahead of the nornaJ. wavefrtot. The number of extra

points is known to be sufficient when the computed solution at the last few

points reproduces the initial undisturbed state.

Further discussion of initial and boundary conditions is included in the

following examples. ln particular, simpler forms of upLtream and downstream

conditions occur in sections 4 and 6.

S olution near juvign

Across a bore or hydraulic Jump the water depth and velocity are

discontinuous, and it can be shown that water crossing the discontinuity suffers

a sudden loss of mechanical energy (Lamb 5 ). The lost energ is turned into heat

by turbulence at the jump (or part of it can be radiated away in the form of

surface waves) and the mechanism for this abrupt eaerey loss is not contained in

the basic equations.

As in gas dynamics, introducing an artificial viscous force term of the

form

~1ffr)2 )) with a =constant ,
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gives a loss of mechanical energy which is large where u is changing rapidly.

The addition of this flctitioun term enables a continuous solution to be

obtained across a jump. In the numerical solution the Jump is spread smoothly

over a short length of x, though with some oscillations behind it, in place

of an exact mthematical discontinuity. For a given value of Ax the length

of the transition and the amplitude of the oscillations depend on the value of

a that is chosen, and the optimum choice is a matter for numerical experiment.

In practice this extra term is only important in the neigbourhood of the jump.

In the Lax-Wendroff method a similar extra force term is provided auto-

matically by the truncation error, this being proportional to 2u/6x 2. The

distinction between the differential equations and their finite difference

representations on the Lax-Wendroff scheme is very useful, as it allows flows

containing jumps to be covered by the basic numerical method without any special

treatment. This type of difference scheme is called 'dissipative'.

4 STEADY PIUh, COANINU G A WfDRAULIC JUMP4

The steady forms of (1) and (2) with q = 0 are

uh = Q (constant) (22)

and

u +g - + - o2 (23)
h

elimi ating u gives

SC 2 . (24)

Consider the integration of (24) in the downstream direction on a long

slope with a steadily decreasing gradient, starting with a super-critical flow

at x = 0. As the gradient decreases, the water velocity decreases and the

depth increases, until a point is reached at which Q2 = gh3, that is F = 1,

and dh/dx tends to positive infinity. The physically acceptable solution in

these circumstances ccnsists of a transition via a hydraulic jump between two

branches of the solution.



The gradient is 1/50 -';pstream oe X 10 ft , and after this point the granient

decreases smoothly to a final value of 1/800 downstream of x = 3C ft. The

corresponding variation of the depth is to be calculated. It is assumed that

the flow is uniform in xSO and in x a60 ft with (3) holding, Q = 4 ft 2/s,

and C = 80 fti/s. These conditions fix the flow at x = 0 as:

h = 0.5 ft, u = 8 ft/s and F =2 ;

andat x -60ft as:

h - 1.26 ft ,u - 3.17 ft/s and F = 0.5

The solution has been obtained by the artificial viscous force method, but
for brevity the details are not gi-en here. We c:oncentrate on the lax-Wendroff

msthod. The unsteady fornulation is retained and v. rough guess at the solution

provides the initial conditions required at t = 0. The time t now corresponds

to an iteration parameter and At is chosen at each iftage to keep well within
the stability criterion (15) at all poirts. Two boundary conditions are

required at x = 0 as F >1 there, these are h - 0.5 ft and u = 8 ft/s.

At x - 60 ft, F < 1 so only one condition may be specifled, this is taken as
h =1 .26 ft and the value of u at this point is obtained by a characteristic
calculation, similar to that of section 3.2. As the solution converges to the

required steady state, this calculation 9;.ves u -* 3.17 ft/s at x = 60 ft as

reqquired.

Mhe result with Ax = 1 ft is shown in Fig.4 after 240 iterations, that

is after 240 steps of varying &t. The solution in hardly changing with t

at this stage and shows the sharp profile for the hydraulic Jump that is pro-

duced by the method, with the typical initial overshoot. Also plotted on Fig.4

it. the assumed value of h at t = 0, this i.s obtained from h = Q/u with

u assimed to vary linearly between x = 1 ft and x = 59 ft. The values of u

at these points are taken equal to the respective boundary values, given above.

5 THE PROPAGATION CF DISTURANBCES DOWN CHAMAS
5.1 Oscillatory waves superijmsed on & super-critical flow

We consieler a wide channel of uniform rectangular cross-section with

constant gradient, 2, and with no lateral inflow. Initially the flGw is taken

to be steady and uniform with depth h. and velocity u*, such that
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u = C(h* S)A, in accord with (3). The flow is asu med to be super-critical
with u* > (gh,)I," so that S > g/C2. Two boundary conditions are required at

the upstream position, x - 0, these are taken as

h = h* + H min 4 , u = u, + U sin Wt (25)

for t > 0. No special downstream conditions are required, but beyond the wave-

front of the disturbance: h - h, u = u. It is assumed that H/h* and U/u*

are sufficiently usall or F* -u*/(gh*); is sufficiently large to keep the

flow at x = 0 super-critical at all values of t. The numerical solution is

required for the disturbance produced downstream of x = 0, in particular for

the eventual steady oscillation at any point.

If H and U are relatively smal1, the analytical solution of the

linearised forms of (I) and (2) provides a good test case. Writing fo: the

steady oscillation

h = h* + H ei(wtkx), u = u*+U ei(wt1kx) , (26)

substituting into (1) and (2), and retaining only first powers of H and U

gives

(F2-1)ck 2 +(3 F - 2wF*) c* k + (W2 - 23o ) k20 , (27)

where

c* = (gh*) and a = gS/u* (28)

Thus

2W F - 3m P* (41,F*) 41 w4i 2 + 2)
k = .. . ... .. 2 . ... . (29)

2c*(F.- I)

For the special value F, = 2, equation (29) has the two roots

= = " ' -2ia, (30)3* k2  • *

The first root gives a wa'ire of constant amplitude travelling downstream with

speed U* + c* = 3cc. The second rcot gives a damped wave travelling downstream

with the lower speed u, - a* = c*. Hence, if the constants in the boundary
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::~i~ ~&U at 7- F can UU UoWWW" toW c~ h ~ "' h e~c2

solution for very small H/h*e hould represent a wsve of constant amplitdaee.

It is easy to veriLy that the slower vave Is absent if

U hu.
k, H

= -_ (31)

The data for this test of the numerical method aid computer programme was

taken &ast

h* = 0.5 &nd hence c* = 4 ft/s ;

u* = 8ft/s as F.-W 2

C - d8 fti/s and heice 8 - 1/18, 2/9

2s
7 .0.5 9 giving wI - 4xrad/s ;

H - 0.005 ft (- h,00), and U -0.04 ft/s frca (31)

The finite difference steps were

At = 0.01 a (that in 50 steps of At in each cycle)

and

x = 0.15 ft (>(U+c*) At - 0.12 ft)

With these values ti&- numerical results showed an increase of wave

amplitude of only 0.3% at a point 240 steps of Ax downstream. The solution

was advanced over 360 steps of At in the course of the calculation. This

result provides a useful abeck on the programme.

For general U, H in the upstream boundary conditions, it follows from
(29) that when F < 2 both waves are damped in the direction of travel. When

F* > 2, the faster downstream wave actually increases in amplitude and even-

tually the linear theory ceases to be valid. The slower wave is still damped.

In practice, instability in the form of roll waves in observed in steady flows

when F* > 2. Roll waves (Stoker 2 ) are a series of bores, spaced equidistantly,

and with a frequency equal perhaps to that of a small dist-,rbance arplied to

S•
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the flow, for example the frequency of surface waves in a reservoir at the
uipstream end of the channel.

Thus, one interesting application of the numerical method for the solution
of the non-linear equations is to see the results of applying a dieturbance of
very small amplitude at x - 0 to a flow with F. > 2. To accelerate the
growth of the disturbance the high value F. = 9 was assumed. Th.! amplitudes

at x = 0 were taken as

H = o.025 ft (that is5%ofh*) and U 0.2 ft/s

with the above values of h*, C and w. The results are shown in Fig.5. The
depth is plotted as a function of x at a time t = 3.145 a after the start
of the disturbance. The graph shows the rapid transition from small amplitude
sinusoidal waves into sharp peaked waves separated by water of nearly constant

depth. This profile has some similarity to observed roll waves, but
unfortunately with this symmetrical steepening the curvature of the water

surface is becoming too large at the crests for shallow water theory to be

valid.

This sub-sectior, has been concerned with the steady oscillations

developed well behind the wavefront. In fact, for F* > 2 the head of the
disturbance trmvelling downstream vill be a bore, and even for F* < 2 a bore
develops if the initial rate of depth increase (= HW) is sufficiently large

(Lighthill and Whitham6 ). The next two sub-sections include the numerical
solution near the wnvefront, and the formation and behaviour of bores.

5.2 Transient effects of a permanent change of upstream conditions

We consider as previously a wide channel of uniform rectangular cross-
section with constant gradient of the bed and no lateral inflow. The Froude
number F. = u*/(ghj)' of the initial steady uniform flow is arbitrary. One
boundary condition ic reoaired at the upstream position x = 0 when F, < 1,

and two boundary conditions when F* > 1. The conditions at x 0 are
assumed for illustration to take the simple forms:

h = h. + HI t for 0 <t <tt

and

h = h.+H't'

= ht+H , say , for tktc ,
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representing a permanent change of water level oecurring over timp t1 Tn

addition when F* > 1:

u - u* + Ut t for 0 <t <t'

and

U = U, + Ut tt

= U* + U , say , for t &ts

For simplicity, it is assumed at x - 0 that F remains either greater than

one or less than one throughout the motion.

The numerical method of section 3 is directly applicable to this problem.

If F < I at x - 0, the special procedure involving a characteristic is used

to obtain u at x = 0.

An analytical result is available for this problemi Lighthill and Whitham6

show by expanding the solution near the wavefront in a power series of

S= t - x/(u, + c*) with coefficients functions of t and the wavefront being

0 = 0, that a bore forms when F* < 2 if the initial steepness (= initial

discontinuity of dh/dt) i3 such that
(•)o gh. S

(h > gu--* (2 -F)(I . ( x, say) . (32)

In such cases the bore forms at a time given by

2u* log (dh/dt) 0" (33)

If F* > 2 a bore always forms in the disturbed flow for positive (dh/dt)o.

In the present example

(t)o = H' (34)

A formula that is useful for checking the Lax-Wendroff treatment of Jumps

is one for the speed of travel of a bore, separating, say., depths of h* and

h (>h*). If the bore speed is 11, then it may be shown (Stoker 2 , Lamb 5 ) by

expressing the conditions ct continuity and conservation of momentum across

the Jump that the rate of volume flow per unit width across the Jump (Q),

satisfies
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2h h*(h + ht) (35)

--and
Q h(f'- u) = h.('- u*) k36)

where u and u* are the water velocities on the two sides of the bore. Hence,

the velocity of the bore is

ft= u*+½igh (1 ) ; (37)

showing incidentally that

S>u* + (gh) . (38)

The numerical solution has been obtained tor the following examples

(C -- 8 fti/s throghout).

(a) River: h. - 8 ft, F. = 0.25 giving u. = 4 ft/s; and with

h(O.t) incrtasing from 8 ft to 13 ft in 1 h. This is an idealised example of

a river subject to a long duration flood at an upstream position. These values

give K = 0.0m40 and (dh/dt)o = 0.0014, so by (32) no bore is predicted. The

numerical solution obtained with Ax - 5000 ft and At = 120 s is shown in Fig.6

to be a wave of nearly constant profile moving downstream at about 6.9 ft/s.
Such a profile is called a tmonoclinal flood wave'.

(b) River: data as (a) except the increase of h(Ot) occurs in only

50 a. This example corresponds roughly to the rapid opening or breaking of a

lock gate. In this case (dh/dt) = 0.10 > K, so a bore is predicted. The

results obtained by the numerical method are drawn in Fig.7 and show the bore

at the head of the d sturbanc(. These results were obtained with Ax = 70 ft

and At = 2.5 s, and as a check repeated with Ax = 35 ft and At = 1.25 s; the

agreement was satisfactory. The numerical results give a final bore speed of

ft = 22.4 ft/s, while (37) predicts 22.5 ft/s using the smoothLd value

h = 9.7 ft just behind the bore. For comparison, u. + c. = 20 ft/s. Accord-

ing to the theoretical result (33), the bore starts to form at t - 85 0,
and the numerical results show a bore on the first profile after this time at

t =102 s.

(c) Steep channel: h. = 0.5 ft, F* = 1.5 giving u* = 6 ft/s; and

with h(Ot) increasing from 0.5 ft to I ft and u(O,t) increasing from 6 ft/s

to 8.5 ft/s in 50 a. These values give K = 0.035 and (dh/dt)o = 0.010, so by

(32) no bore is predicted. The numerical solution obtained with Ax 40 ft
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and At - 2.5 8 is shown in Fig.8. The profile is similar to that obtained in

the sub-critical case (a), and moveos downstream at about 10 ft/s.

(4) 8teep channel: data as (a) except the increases of h(Ot) and

u(O,t) occur in only 5 s. In this case (dh/.t)o = 0.10 > (, so a bore is

predicted. The numerical solution ob%.*ined with Ax - 4 ft and At = 0.25 a

is drawn in Fig.9, and shows the bove at the head of the disturbance. The

numerical method gives a final bore speed of V - 11.7 ft/s, while (37) predicts

11 .8 ft/s using the smoothed value h - 0.80 ft just behind the bore. For

comparison, u. + C. = 10 ft/s. According to (33), the bore starts to form at

t = 10.3 s, and the numerical results first show a definite bore on the profile

at t = 15 a.

5.3 Effects of an upstream disturbance of finite duration

The effects of an upstream boundary condition (or conditions) representing

a disturbance of finite duration can be examined by a small modification to the

programme. The upstream conditiong at x - 0 are taken for illustration as:

h = h* + H sin (st/t') for 0 <t <t'

and

h = h* otherwise

In addition when F. > I:

u = u.* + U sin (%t/t') for 0 <t <t'

and

U = u. otherwise

The results (32) and (33) concerning bore formation apply, with

(dh (39)

in this case.

The numerical solution has been obtained for the following two P.rther

examples.

(e) River: data as erample (a), with H = 5 ft and t' = 1 h. These

values give K = 0.040, as previouslJy, and (dh/dt)o = 0.0044, so by (32) no

bore is predicted. The numerical solution obtained with Ax = 5000 ft and
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At = 120 s is shown in Fig.10. The peak of the disturbance travels at 6.6 ft/s.

This example resembles a flood wave travelling down a river and the kinematic

wave theory of Lighthill and Whitham is applicable, with the wave property

(downstream waves oniy) following from the continuity equation, plus, in place

of the full momentum (or dynamic) equatior, a simple steady state approxi-

nation relating u and h, such as (3). The initial disturbance travelling at

speed u, + (gh*)4- (= 20 ft/s) Is heavily damped and the main disturbance

travels (on a linearised form of the theory) at speed I u, (= 6 ft/s). Example

(a) is also amenable to this approximation.

(f) Steep channeli data as example (c), with H = 0.5 ft, U = 2.5 ft/s

and t' = 15 a. These values give K -- 0.035, as previously, and

(dh/dt)° = 0.105 > K, so a bore is predicted. The numerical solution obtained

with &x = 4 ft and t = 0.25 s is drawn in Fig.ll and shows the bore at the

head of the disturbance. This solution is in satisfactory agreement with that

obtained using Ax = 8 ft and At = 0.5 s. The numerical method gives a final

bore speed of t = 11.2 ft/s, while (37) predicts the same speed using the

smoothed value h = 0.70 ft just behind the bore. The extrapolations of the

smooth profile behind the bore leading to this value are shown dotted on Fig. II.

In this example the wave profile continues to rise steeply after the bore.

For comparison, u* + c* = 10 ft/s. According to (33), the bore starts to

fora at t = 9.7 8, and the numerical results show a bore to be forming at

t = 10 B.

The numerical method is now well tested and is directly applicable to

flows containing jumps. These test examples provide strong support for its

use in less idealised problems which are completely intractable to theory.

The computer programmes written for the problems in this Report are

basically similar, and each example takes around 15 s of computing time on an

ICL 1907.

6 A SIMPLE HfYDROLOGY APPLICATION

Consider the situation drawn diagrammatically in Fig.12, in which very

heavy rain is falling on the surface shown, the rain starting at time t = 0.

The boundary conditions at x = 0 and x = I are taken as u = 0, this one

condition is sufficient at each boundary as F < I there. This problem has

some similarity to that of rain falling or 4 cambered road with blocked gutters.

The slope of the surface is assumed to vary as
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The resulting flow down the slope is required as r. function of x and t.

The usual approach to *run-off* problems in hydrology is by the kinematic

wave approximation6 which combines the continuity equation

6h+- u)=q (41)

with the assumption that the flow is quasi-steady and locally uniform with (3)

holding:

u = c(hS)½ , (42)

in place of the full dynamic equation (2). Or the more accurate approximation

of (2)

u = c f(S - a (43)

can be taken. [The forme of (42) and (43) assume S A 0 and 8 k

respectively, otherwise u -C(- hB)i I u -C {h (W -

respectively.] Other approximations of similar form have been proposed.

The combination of (41) and (42) gives an equation of the form

C2 h2 dS (44)

with u given by (42). It is assumed that C is independent of x. On the

other hand (41) and (43) give

h Ah - qh -h C2 h2  dS (45)

with u given by (43). Equation (44) requires an initial condition and an

upstreL, condition, but no downstream condition can be specified as the single
family of charateristics •= allows only downstream waves, travelling

at the kinematic wave speed u. Eqtation (45) requires an initial condition

and both an upstream and a downstream boundary condition, as there is now a

diffusion effect. The numerical solution of (44) can be obtained by a
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characteristic method, and that of (45) is probably best obtained bv an

iterative appltcation of a Crank-Nicolxon type method.

However, in this workt we can retain the full dynamic equation (2) and

solve by the lax-Wendroff method. The initial conditions require care, the

naturral choice h = u - 0 at t = 0 makes the right-hand side of (7)

indeterminate. One alternative is to assume an initial non-zero water depth

that is equivalent to a few seconds of rainfall, with u given initially by

the positive root of the quadratic

2

gS - Sh- h_ = 0 , (46)

that is the right-hand side of (7) put equal to zero. Other starting assump-

tione may be preferable. It is in any cese assumed uncritically in this problem

that the basic equations (1) and (2) hold in the early stages of the motion

when the depth is very small.

The boundary conditions are u = 0 at x = 0 and x = I. As the values of

h at these points can be obtained by a small modification to the general finite

difference method, the characteristic method is not necessary in this special

case. The value of ft is chosen at each step to keep well within the steoilitv

requirement (115).

Consider as a numerical example:

q = 10-4 ft/s , corresponding to about 4 iihches of rain falling in

one hour with no surface seepage,
£-- 100 ft, with a mximum slope S(,t) 3/i0u ,

C = 48 fti/s and the initial depth is taken to be equivalent to 30 s

of rainfall.

The results obtained with Ax = 4 ft are shown in Fig.!3. A partial check can

be applied: total volume of rain fallen per unit length of surface normal to the

curve of Fig.12 at t = 116 s equals (116 + 30) x 10-4 x loo = 1.46 ft 2; and

in fact the area 9nder the corresponding curve of Fig.13 agrees with this figure.

The oscillations ', the solution become relatively less as t increases, and

may be partly due to the artificial initial condition of uniform depth which

omits a hydraulic Jump, though implying a deceleration from super-critical to

sub-critical flow at about x = 80 ft.. The oscillations are reduced by taking

6b much smaller at the start of the calculations than is required by (15). It
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found that the relationship between h and u in this region is close to that

of the kinematic approximations (42), (43) and (46). There is little

difference between these three approximations in this example. Thus, the

kinematic theory is adequate in x < 80 ft, but in x > 80 ft the dynamic

theory is necessary for this rather demanding test case involving very rapid

deceleration, partly by a hydraulic jump, as the flow approaches the downstream

boundary.

7 EXTENSIONS TO NATURAL CHANEILS AND TO ONE-DLMENSIONAL TIDAL CALCUIATIONS

In a river or estuary the cross-section of the channel is rerely

rectangular and uniform in the along-stream direction, x. The width at the

water surface, for example, can vary with both x and, at a fixed value of x,

with the current level of the water surface. The water depth varies in the

across-stream direction and often the variation of the bed in the along-stream

direction is such that even the mean water depth does not vary smoothly with

x. However, the height of the water surface, n(x,t), above a fixed hori-

z ontal plane (for example mean sea level) varies much more smoothly with x

and has hardly any variation across the width of the stream, and for these

reasons is chosen as a dependent variable in the general case. See 7ig.114.

In fact, for the rectangular channel, 71 was eliminated from (2) through the

relation

SahS=-s

Assuming that the flow is still approximately one-dimensiona (6) and (7)
generalise to

.+ (Au) x q (47)

and

.+ 3.-(-u+ gn) A(8

where A(x,t) is the cross-sectional area of the water at location x ani4

time t, aid R(xt) is similarly the hydraulic mean depth. The laterm.

inflow q is now in units of
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These equations are equivalent to those derived by ftoker2 .

For the uniform rectangular channel, A was simply proportional to h,

But now at each value of x there is a functional relationship between A

and I to be determined from large scale maps or charts, or perhaps from a

special survey. This is depicted diagrammatically in Fig.14, which shows 'n

as a different function of A at each pivotal value of x. Similarly, R is

obtained as a function of A for each x.

If the data of Fig.14 ir. given, the numerical solution can be obtained by

the Lax-Wendroff method as before, the dependunt variables now being A and u.

At several stages of the calculation values of q and R have to be obtained from

this data corresponding to known values of A and x.

In estuaries and in tidal rivers and channels, the water velocity may

change in direction over the tidal cycle. The following points now apply:
2

(a) The factor u in the frictional resistance term must be written

as Jul u, to ensure the resistance force always opposes the motion. This

requires only a simple change in the programme.

(b) The stability criterion (for a rectangular channel) is now

X > (IuI +

in place of (15).

(c) Usually F < I at both the mouth and the landward limit of the

estuary, thus one boundary condition is required at each point. For example,

the tidal level might be specified at the mouth as

h = h* + H sin w-c

and the corresponding velocity is obtained by the method of section 3.2; while

at the landward limit there might be a barrier with the condition u = 0,

and the corresponding water level is obtained as in section 6.

(d) Approximate initial conditions must be specified at t = 0 and the

calculations then advanced through sufficient time steps for the solution to have

become periodic in t. The better the guess at these conditions, the quicker

this will be ach¢eved, but very rough initial conditions may suffice in practicc-.

I
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method covers this case without any special procedures in the computer

programme.

8 CONCLUSIONS

The Lax-Wendroff method has been applied in this Report to a selection of

one-dimensional unsteady problems of open channel hydraulics. It has been
shown that the method can be applied to flows containing bores and hydraulic
jumps without either shock fitting or employing an artificial viscous force,

and at the same time gives an acceptable spacial resolution to these

disccntinuities. The method is simple, easy to programme for a computer, and
even for flows without jumps has advantages over other methods. The extensions

of section 7 cover many practical situations, and further extensions are
possible, for example junctions and two-dimensional unsteady problems could be

considered.
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dimensionless constant in artificial viscous force

A area of water cross-section

b channel breadth

C* wave speed in undisturbed water: (g)•

C Chezy constant

E 2+ gh

Ei(t) finite difference approximation to E at x -X

F Froude number: u/(gh)i

F* )'roude number of undisturbed flow

g acceleration due to gravity

h vatý,r depth

hi(t) finite difference approximation to h at x --

h* undistvrbed water depth

ht value of h at x = xt

%.• amplitude of depth disturbance #.t x - 0

)p rate of increase of water depth at x = 0

i square root )f -1 in section 5.1

k wave number in (26)

k1 ,k 2  rootsa of (27)

K defined by (32)

1 a fixed downstream boundary is taken as x A

q lateral inflow

qi(t) finite difference approximation to q at x = i

q rate of volume flow per unit breadth: uh

Qi(t) finite difference approximation to Q at x =

R brdraulic biean depth

S downward slope of channel ba•d

t time
to duration of change of upstream conditions

u water velocity

ui(t) finite differei:ce approximation to u at x x

u* undisturbed water velocity

Ut value of u at x = x
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5Y)MO, (Coutd.)

Uo n o the two sequences used in the Wegatein method of section 3.2
(n - 0,#1,p2# ....

U amplitude of velocity disturbance at x = 0
Ut rate of increase of water velocity at x - 0

V abbreriation for right-hand side of (7)

Vi(t) fiuite difference approximation to V at x = xi

x distance along the channel in the downstream direction

xi fird.te difference mesh points in the x-directlon (i - 0,1,2, .... )

Xt the characteristic with negative slope from (0, t + At) passes

through (x',t)s see section 3.2 and Fig.2

Z Z abbreviations for right-hand sides of (5)

&x, At finite difference steps
Svertical di sp lacement of w ater surface from a given horizontal p lan e

velocity of bore

characteristic variable defined in section 5.2

circular frequency of oscillatory disturbance
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