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for Maia Shortwave Radio Communications; published in 1G%3.

The new book w¥as written with an eye to the considerable prograss made

in the past in the engineering of shortwave antennae. This wonograph pre~

sents a great deal of material on antennas which were virtually unused at

the time the first monograph was published. Included among such ant~nnas ar

broadside multiple-tuned antennas and, in particular, broadside antennas_
with untuned reflectors {(Chapver X1I), traveling wave antennas with pure
resistance coupling (Chapter XIV), logarithmic entennas (Chapter XVI),
multiple-tuned shunt dipoles (Chapter IX}, and others.

The materials on rhombic antennas (Chapter XIII} have been expanded

substantially. Included are data on rhombic entznnas with obtuse angles

I ks Sl P R R SR RS ey

Ty

(3150°), as well as a great many grephics on the directional properties of
antennas which take the parallel component of the field intensity vector

into consideration.

on a common area is discussed, as are other questions. A new chapter on

single-wire traveling wave antennas (Chapter XV) has been added, as has a

new chapter (Chapter XVII) on the comparative noise stability of various re=-
ceiving antennas. Other materials not contsined in the first monograph are

included here. At the same tise, much ¢f the materisl which is no longer
current has been deleted.

o T P TSNS S RDE ST

5y coauthor for Cha.ter XIII (rhombic antennas) was S. P. Belousov.
My coauthors for Chapter XIV (single~wire traveling wave antennas)
was written by S. P. Belousov and V. G. Yampol'skiy. Chapter XV1I (com-

parative noise stability of receiving antennas) was written by L. K. Olifin.

yoyT e

The section on transmitting antenna selectors (#4, Chapter XIX) was written
by M. A. Shkud.

“APTY

The graphics and computations for broadside multiple-tuned antennas

v .

were taken from the work done under the supervision of L. K. Olifin, for the
most part.

The graphics for computing the wutual impedances of two balanced di-

poles with arbitracy dimensions, contained in the handbook zection, were

compiled under the supervision of S, P. Belousov.

I express my appreciation to all the coauthors named.

I feel that it is my duty to express wmy deep appreciation to L. S.
Tartakovskiy and Ye. G. Pol'skiy for the greal help given me in selecting

the materials and in editing the monograph. I als> express my thanks to

V. G. Ezrin and I, T. Govorkov for their oreat help in aelecting the materieis
for the monographe

This monograph is the result of the ruvision of the book titled Antennas

The question of the superposition of two rhombic antenna
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List of Principal Symbols Used

g A vector potential
; B magnetic induction; susceptancej flux density; induction density;
é magnetic flux density
g c capacitance; capaciiyj permittance; capacitor q
’ C1 linear capacitancg
g c velocity of electromagnetic waves in a vacuum,; ¢ = 3’108 meters/second
E a,b,c sides of a spherical trienglej arbitary constants
. A,B,C arbitary constants .
3 ' V] antenna directive gain; antenna front-to-back ratio -
2 J De electromotive force directive gainj electromotive force fronteto-back
- ) ratio *
é). ’ D electrical displacement, k/mz; dielectric flux dengity
sz'g‘,f ? D distance between ‘conductors 1
?‘},\ d distance between dipoles; conductor diameter \ 3
i - H E electric field intensity, volts/meter ’ \;
o -- ) e electromotive force (emf), volts . . ‘
‘ : 3 F surface
S ; < Floa) antcnna radiation pattern formula
; ’ : F(a) vertical plane antenna radiation pattern formula .
) ;: ; Flop) herizontal plane antenna radiation pettern formula
. }' % T oscillation frequency, hertz .

conductance, mho

1 linear conductance, mho

G
G
H magn :tic field intensity
H
h

I
Koo - -

H difference in dipole heights; dipole height . g

height of dipoie above the ground 3

i

E . . ' - 0 .
3 \3 I electric current, amperes k

loop loop current amplitude . ,

3 incident and reflected waves of currents
in re

o M

1
100p® ‘node loop and node currents !

: 2
j current volume density, amperes/meteor

b e

J
k traveling wave ratio

R Y
.

T

inductance, henries

linear inductance, henries/meter

SRS o
'l
f-
L‘ﬂﬂ!

2

line length; conductor length; length of an unbalanced dipole;

3
3
-

PR

length of half a balanced dipole .

5

Y
P
.

gi Ieff antenna effective length

; M mutual inductance, henries )
{%Z Ml linear mutual inductance of coupled lines, henries/meter gﬁ: i
S n number of half-wave dipoles in a tier, $G or SGD antemnas i
g? n, number of tiers, SG or SGD antennas i

"Z:’?
o

fg{gﬁzg&@% R g IR —— e e T,
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EJ.;;i P actual puwer
é"' 3 . P feeder line reflection factor; arbitary constant
? d PysPp voltage and'current teminator reflection factors
3 " q amount of electricity, charge, coulombs
R/ R pure resistance, ohms
. uf/i R linear impedance of uniform lines, chms/meter
J< ; Rz radiation resistance
: an mutual radiation resistance of n and m dipoles in an antenna system
5., .; [R“{ modulus of reflection factor for a parallel polarized plane wave
;f - . ’EL' modulus of reflection factor for a normally polarized plane wave ¢
, r radial coordinate in a spherical system of coordinates
S Poynting vector »
'3 T alternating current oscillation period
t tim;
\ U voltage; difference in potentialg; volts
X Uih’Ure incident and reflected waves of voltage ‘
) Uloop’unode loop and node voltages . .
' voltage across points on a conductor; volume
i v electromagnetic wave velocity, meters/second
; ) . W characteristic impedance of a lossless line
: ‘ E wmed characteristic impedance of the medium
) reactance K
‘ aff( : ' X . reactive component of the mutual radiation resistance of two dipoles, .
L . n and m
‘ ‘ Y admitcance
; ‘ Y, linear admittance of a liné ‘ -
A zZ impedance
Zl linear impedance of a line
. : X,¥y2  rectangular coordinates
i o } z coordinate along the axis of a cylindrical syst of coordinates
,iﬁ {1( E Zeq equivalent impedance
B . Zin input impedance, Zin = Rin + 1xin
: 1 Zload'z2 line impedance .
T o phase factor (wave number), o = 2n/)
A e ; B attenuation factor
: ’T} Y propagation factor
; ,f Y : Y angles of a spherical triangle
Y, specific conductivity, mhos/meter
S } A tilt angle
: -
; ' 8 relative noise stability; energy leakage power ratio
b € permittivity of the medium, farads/meter

9

permittivity of a vacuum, ¢, = 1/4n1+9+107 farads/meter
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relative permittivity

antenna gain factor

efficiency

antenna efficiency

zenith angle in a spherical system of coordinates; the angle formed

by the axis of a conductor with an arbitrary direction

wvavelength, meters

magnetic inductivity, henries/meter

magnetic inductivity of a vacuum, Bo = anlO-T henries/meter

relative magnetic inductivity :
characteristic impedance of a line with losses; electric volume

density

linear electric density

magnetic flux; half a rhombic antenna obtuse angle

argument {phase) for the reflection factor for a parallel polarized

plane wave ’
argument (phase) for the refiection factor for a normally polarized
plane wave

scalar potential

the azimuth in a cylindrical or spherical system of coordinates; the
azimuth of antenna radiation patterms'in the horizontal plane, read
from a selected direction (the axis of the antenna conductor, or the
normal to the axis of the antenna conductor)

phase angle

oscillation angular frequency, @ = 2nf

g
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Chapter 1

THE THEORY OF THE UNIFORM LINZ

#I.1. ‘fescgraphy Equations

The theory of long lines, which are sysiems with distributed constants,
like the theory for systems with lumped constants (circuits) can be ba.cd
on‘Kirchhoff's laws. However, the condlusions drawn from circuit theory
cannot b¢ applied directly to long lines.

Circuit theory is based on the following assumptions, and these are not
applicable to long lines:

(1) a circuit consists of spatially dispersed elements in which electric
or magnetic fields are concentrated. Electric field carriers are usaally
condeasers, while magnetic field carriers are usually induction coils;

(2) currents are identical in magnitudes and phases at any given moment
in time within the limits of eacﬁ element (induction coils or condensers).
This assumes that the time nceded to propagate the electromagnetic processes
within the limits of an element is so short that it can be ignored when com=
pared with the time for one period.

These are not rigid assumptions. Even in circuits, every element which
is an electric field carrier, say a condenser, is simultaneously a magnetic
field carrier to some extent. A magnetic field carrier, say an induction
coil, is also an eiectric field carrier to some extent (a shunt capacitance
for the coils). Nor is'the second assumption rigid.

However, in ordinary circuits the magnetic fields created around con-
densers, and the electric fields created around induction coils, are extremely
weak. And the time required to propagate the electromaénetic processes within
the limits of each element in the system ig usually short. As a result, the
conclusions based on the assumptions indicated are justified as a first
approximation. ¢

Neither the first, nor the second, assumption is applicable to long
lines, Every element in the line, however small it may be, is a carrier of
an electcic, as well as of a magnetic field. Figure I.l.1 is included for
purposes of illustration of what has been said to show the propagation of
electric and magnetic lines of force through the cross section of a twin
line. Line dimensions are usually sufficiently large, and the propagation
time for the electromagnetic processes along the lincs is commensurate with
the time of one period. But if we cannot apply the laws governing the pro-
cesses in circuits to the line as a whole, they can be applied in their
entirety to a small element of the line which can be considered to be the
sum of such eiements. Each element in tho line can be replaced by an equi=-

valent circuit consisting of inductance and capacitance {fig. I.1l.2).
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Correspondingly, the line as a whole can be replaced by an equivalent ciscuii
consisting of elementary inductances and capacitances, as shown in Figure
I.1.3a. Since tne line conductors have pure resistance, and since there is
leakage conductance between them, the complete equivalent circuit 1or the

g line is as shown in Figure I.l.30b.

Figure I.l.l. Structure of the electromagnetic field through
the transverse cross section of a twin line,

Figure I.1.2, Line element equivalent circuit.

(a) 5 5@ ‘ far Lar b
o, TN — N
= 'I'"L‘,dz "("C,dz ! Igf; -.%c,dz @
¢_:tf§\____,.:EJU\_m__*~..beq\_~ zgx
i 5, L £
. (b) 5 ] dr 2 9 . 3 dt
N Lo R Ly B bor far g far
E'dz;dl 393 292 e 2

v
_41 M
3 dt 3 dz

Figure I.1.3. Equivalent circuit for a line: (a) without impedance
and leakage conductance considered; (b) with impedance
and lcakage conductance cousidered.

Telegraphy equations are based on Kirchhoff's laws for the formulation
of the relationships vetween current and voltage applicable to an elementary
section of a iine replaced by equivaleat inductance, capacitance, resistance,
and !eakage conductance. Sclving the teivgraphy equations will provicde the

relationships for the entire line. .
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Figure I...h. Schematic diagram 9° sn ¢ 1d-loaded line.

The concept of distributed onstants for “he line is introduced for
analytical convenicnce:

Ll is the inductance per unit line lengti;

C, 13 the capacitance per unit line Yeng:hg

R is the resistance per unit line lenging

G is the conductance per unit line lenath.

Telegraphy equations are derived as follows. Let us say we hauve a long
line (fig. I.l;h), and let us isoiate an infinitely small element of length
dz at distance z from the t:rmination. The isolated element, dz, has in-
finitely small inouctance dL, capacitance dCy resistance dR, and conductance
dG. They egual

dl = leZ
dC = Cydz
dR = Rydz|"
dG = G,dzl

{1.1.1)

The voltage drop, dU, across element dz is equal to the current, I,

flowing through it multiplied by the eleonent's impedance; that is
df = 1 (dR + iwdl) = 1 (R, + ieL,) dz = [Z,dz, (1.1.2)

where .
w 1is the angular frequeicy ! tno soltage applied to the line, while
Z, = R i(L)Lp '

Dividing botl. sides of the equation by dz, xe obtain
—‘=12p (10103)
The expression for the change in the current flowing in element dz can

be derived in similar fashion.

The change 1 the current, df flowing in element dz is equal to the

.

current shunted in the capacitance and the conductance of this element.

This current is equal to the voltage multipiied by the element's ime

.

pedance; thet is

:Mwm e vy

dl = U{dQ +}+ «dC) = U (G, +10C ) dz = UY dz. (1.1.4)
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where

Yn'=ax + i‘cho f

Dividing both sides of the egquatien by dz, we obtain

. %= Ut (1.1.5)

- '\ ‘ ' Equations (X.1:3) aad (I.1.5) are called telegraphy equations. They

‘ . establish the association between the voltage and the curremnt at any point
w : in the line.
v : -
t 4-‘,."'7 «  #I.2. Solving the Telegraphy Equations
- (a) General expressions for voltage and current

! i3 ’ In order to solve the telegraphy equations they are tranaformed so

each contains only U or I. When the equations are differentiated with respect

: to z they take the following form
. o gU_ g dl
§ da®
3 If o1y | : T (T.2.)
e
] dat dz

B Substituting the values for dU/dz and dI/dz from I.1.3 and 1.1.5 in

- (I.2.1), and converting, we obtain

U _ZyY U =0 . e
. dad . .
. (1.2.2)

E The differential equations ai (%.2.2) have the following solutions

.

U= Ae"* + Be™

(1.2.3)
=487 + BV

i
o where AJ. Az, Bl and B2 are constante of integration,
3 -4
% ' & A . 1= Vzl—y: = V(—Rx 4- iol,) (G + i“)cl) = B‘l" la, ’. (I.2.4)

A . Here y is the wave propagation factor;
. ' B is the attenuation factor; .
R - i
A . o is the phase factor., \

= Lot us substitute the solutions found in equation (X.1.3) in order %o

L ;— determine the dependencies beiween Al’ B1 and Az. Bz. We then obtain

e _ . . -
- -7 " TACT - 1B = 2, (46" + Bye). (1.2.5) i

ety
MAEINIA a3 oo parcn wdh n

- i
= !

I .
S '-, ' f
1
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The characteristic impedance, W, is a real magnitude when R1 and G1

are disregarded.

- - ;
; <
] - :
*
o] ? RA~008-68 1)
\ The equality (I.2.5) should l.e satisfied identically for any value of z.
N Thic can only be s8¢ if the terms with the factors eYz in the right end left
: «“ i hand sides are equal to each other. This applies as well to the terms witl
-\ i the factors e Y2 in the right and left hand~sides. Accordingly, we obtain {
two equations . i
.\ 4" = AL ‘f
S .\\ } ? ~ %
DN ¢ ’ . 2
S i By= B . (1.2.6)
. e )i ;
3 where the symbol introduced o v
’: e B g . ,
R _1/%4 _y/ Rxiel 5
T o AR GFieC (1.2.7)
LI
] . is called the line's characteristic impedance. (See Appendix 1).
e Substituting the values for A, and 82 from (I.2.6) in (I.2.3), we obtain
\ - U= A" 4 Be™ ]
i . (1.2.8) ;
J= L (e~ pe) - -
? 2
We will use the conditions at the termination, that is, at the point o
¥
i where z = 0, in order to determine the constants of integration. &
: ”\>; { Let us designate the voltage and current at the terminatio: by U2 and 3
T { I,. Substituting z =0 in (1.2.8) and solving with respect to A, and B/, we 4 E:
~j’47 3 ¢ obtain . ;
B . 3 1 . 4 "2
g /1;='2—'(Uz+119) N é
S ] ) (1.2.8a) "3
i e&ell }
, : ‘Bl='2—(U’~.1’-p) %:
2E Substituting the values for A, and B, in (1.2.8), we can present 3
- § formula (I1.2.8) in the form §
I . " g
: U=Uychz-kdpshyz §
¥ g U . :.
I =lchyz+4 =*-shyz (1.2.9) i‘
.3 ¢ ‘ il
%
x fﬁ{ : (b) Expressions for voltage and current in high-frequency lines. é
' 3 The ideal line. ’:
3 At high frequencies uLl > Rl and “cl > Gl' Therefore, when making . §
3 ; engineering computations it is often possible to approximate a line's charac= ! %
‘ ¢ ; teristic impedance as E
; T, i
. R . W= VT—‘T ) (1.2.10)
. *V' * ) .j
;‘

B
RO

oS
.

o e T o sl VIR AT A8 e o0 e i SRS TR

P

[ S



e 1 /X
1
\
P
% 1%
1
N e
] “
i
X ‘.
~£
-+
73
e

i S

e gy B4

R TN

o ae v~ DT WA

ax

e Ao

RA-008-68 12

Replacing P in (I.2.9) with W, we obtain

U = Uy chyz + 1,Wahyz

1= Iichyz + 2-shyz (1.2.11)

I

It is sometimes preferable to use approximate formulias in analyzing

short lines in order to simplify the calculations. These formulas are de-

rived on the assumption that R1 o G1 = O

for voltag~ and current take the form

And y = {y, while the expressions

'

U = Uycosaz + il,Wsinaz ] : .

I = [ycos3z 41 % sinaz (1.2.12)

-

A lossless line is called an ideal line.

#I.3. Attentuation Factor B, Phase Factor g, and Propagation Phase

Velocity v

Squaring the right and left hand-sides of equation (X.2.4) and equating

the real and imaginary components to oach other respectively, we obtain two

equations, from which we determine that

=5V 3-SRV ETI @] o
: P (RCy+ Ol e (R0 ) . (1.3.2}

where

A 1is the wavelength in free space. .
If line operating conditions are such that we can take G1 = O, then

-

YT e

. pa R, (3.3.4)
If R =G =0, then .
a= 5
A
8=0. ) (1.3.5)

Substituting the expression for y from (I.2.4) in (I.2.8), we obtain

) Ues A‘e"‘“‘" + Bl'e—(.‘u-lu) .
e [A,e"'*""—B,e"‘"*“"] . (2.3.6)
-r

.
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As will be seen from (I.3.6), the voltage and current amplitudcs at any
point in the line have two components, The first of these (with the co-
efficient Al) decreases with decrease in z; that is, as a result of approachs=
ing the termination. The second (with coefficient Bl) increases as the tev-
mination is approached. Moreover, the closer to the source the first ccm-
ponent is, the greater the phase lead, but conversely, the closer the second
component is to the s&urce the greater the phase lag.

What follows from what has been pointed out is that the first component
is a voltage and current wave propagated from the source to the termination
(incident wave), while the second component is a voltage and current wave *
propagated in the opposite direction (reflected wave)(fig. I.3.1).

Propagation of these voltage and current waves occurs at a velocity de-

termined by the phase factor g. Let us find the absolute magnitude of the
wave propagati09 phase velocity on the line. From formula (I.3.6) it will
be seen that when wave passage is over a segment of length z the phase wiil

change by angle @, eqial in absolute magnitude to ‘

(I.3.7)

lo] = oz

~B= ==

Distribution of amplitules of incident and re-
flected wavez on & line.

Figure I.3.1.

A = incident wave; B - reflected wave.

On'the other hand, the phase angle can be expressed in terms ol the
propagation phase velocity. In fact, let the wave be propagated with cuanstant
phase velocity v. Then the phase angle obtained as the wave passes over a

path of length z will be equal to

(1.3.8)

¢ 2
?::2‘-7—::!2‘ o

1
o T’
‘where
T is the time of une period;
t = 2/v is the time needed to cover path z at velocity v.
Equating the right-hand sides of equations (I.3.7) and (I.3.8), we obtain

2z 1
O
e T

e & AU A B S I AN L B e A s NS

v
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Exéressinq T in terms of the wavelengih in free space,

Y R s 3 ST, o DR b O,

P and <he
propagation rate in free space by ¢, and tnen substivuting ¥ = A\/c, we oo= f
tain N
ve 2,
; {1.3.9)
5
%
] ; where
8
K i ; ¢ = 3°10 wmeters/seccnd is the speed of ligat in free spuce. i
~ Y . . .
-, g As a practical matter, at high frequencies o .4 2n/A, and, correspond.ngly,
. Ve Ce ]
uA: 3 i Recapping what has beea explained above, wa can describe the processes E
?r 1 taking piace on a line as follows. ;

) The electromotive force applied to a line causes voltage and current

: waves to appear on it and these waves are propagated from the source to -he

temination at velocity v, which is close tuv that of light, c. The current

. and voltage waves are respectively propagated at a phase velocity close to

.
that of light, and the electromagnetic field is an electromagnetic wave. \!
. In the general case the wave is partly roflected by and yartly dissipated ;

in the termination resistor. The reflected w.ve is back propagated froam the

termination to the point of supply at the same velocity as the incident
wave. The wave is attenuated as it is propacated oa the conductor. Tne
magnitude of the attenuation is determined by the attenuation factor, and

it, in turn, is determined by the line's distributed constants. ’ )

#I.4. The Reflection Factor

The retlection factor is the ratic betveen tae reflectec wuve o volvage
(Ure) or current (Ire) at the puint of refiection anc the iascideace wave of
voltage (Uin) or current (I’r) at the same pointc.

in

N - hY 3 . -
As will oe seen srom (X.2.8} and (I.2.8a), :ne voicage

reflection
factor equals .
! -~
re B Ui—le Zy—2 -
pU - -3-:— = A U+ iy Zy+ e (Toa.2)

At high frequencies, whies. p can be replaced by VW, we c¢biuin

Zy—W
= e, {r 3
p‘/ Z.-i—W . \A.‘Iozl

It can be shown in a similar wenner that the oorrent reflection factor

- e

equals

bl
H
"
"~
L
~
-
8
'
o

(Toha3)

The reflection factor p, can also be considered vo D3 the wagne.ic
field reflection factorj that is
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A high-frequency line, reactance loaded (Z2 a ixz):

~/ </ )
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PLYS
.. Py = Intre/Intin = Pyt (1.4.4)
where
¢ Intre and Intin are the magnetic field intensities of the reflected i
E and incident waves in a transverse plane passing thvough .the end .
. of the line. i
. Similarly, S E
Py - Ere/Ein = pg (I.4.5) '
where v
! Ere and Ein are tihe electric field intensities of the reflected
and incident waves in the transverse plane indicated. #
pInt = -pE (104.6)
. The equality at (I.4.6) is self-evident because the Peynting vector
for the reflected wave has a direction diametrically opposed to thet of the . i
Foynting vector for the incident veve (see Chapter IV). 4
Let us find the numerical values of the reflection factors for some .
special casese. .
§ An open-end line (Z2 = o)
=2=P 1
. Pu= .
i py=—1 J (1.4.7) g 3
: - . }
A closed-end lirne (22 = 0): i i
4 =’0— [4 — e I f
Pu=oy ™ 70 L » ! $
b p[ = 1 (Io‘loa) i -i
{ % :

N

_iX—w .

‘ pu lxz_*_l?' . ‘ (104.9)

The absolute value (the modulus) of P, equals Q’

Xrwr -
!p 1:: —2—.*-—— =1,
o X3+ ws : (1.4.10)

. . .
S T TR T R I T

LR n s M B

A line loaded with impedance equal to its wave impedance (22 = p):
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The results obtained can be interpreted as follows.
The energy fed into the line continuously in the form of an incident

4 wave can either be dissipated in the pure resistance installed at the end of
ﬁ; %ﬂ‘} o the line, or it can be returned to the source in the form of a reflected

wave. The wave is fully reflected by open-end or closed-end lines; as well

N ! as by a line, the end of which has instulled in it a reactance which takes
éf'-‘ﬁ? no energy. Accordingly, the modulus of the reflection factor will equal one.
}-jtt : In this case, if there are no losses in the line proper, the energy cir-
;fﬂ e > culates from the beginning to the end of the line and back, without being
Ey = vi : dissipated. .
: If the termination contains pure resistance, or complex impedance, the
E 7'} , incident wave energy can be dissipated in the termination. However, we
V o can only have complete dissipation of the incident wave energy when the ter~
mination contains a resistance across the terminals of which it is possible
. & - to retain that relationship between voltage and current created in the wave

. propagated along the line. For the incident wave the voltage to current '

ratio equals p. As a result, only when the end of the line contains impedance

; 'J-/i' Z2 = p ig it possible to actually have complete dissipation; that is,

pU = PI = 0.

ks . If the termination contains impedance Z2 £ 0y Uz/I2 at its terminals

C " will equal Z2 and will differ from p. Now complete dissipation is im-

E possible, and some of the energy is reflected. ~
: - The reflection factor has a magnitude such that the relationship

" = U, U .
3 Z,=U, +U_ /I 41

e =P 1 pu/l * Py (1.4.12)

g . g is satisfied at the end of the line.

o

Nor is it difficult to explein the sense of the concrete values of Py

L2
ks
Ty
-
.

and p;; given by formulas (X.4.7)=(1.4,11). For purposes of example, let us

take formulas (1.4.7) and (I.4.8). What follows from these formulas is that

in the case of the open-end line (fig. £.5.1) the.current reflection factor
. ) equals (-1). This is understandable because the current coriresponds to a

moving charge which, naturally enough, begins to move in the opposite direction

e s o

when it reaches the termination, and this is equivalent to rotating the

e LI

phase 180°. On the other hand, in the case of the closed-end line the charge

ia

continues to move when it reaches the termination, and makes a transition

from one conductor to the other at the point of short circuit. A charge on

one, let us say the upper conductor, moves to the other (lower) conductor

o

and, conversely, a charge moves from the lower cnnductor to the upper con-
ductor. The direction of movement changes 180° when the transition is made
) to the other conductor, naturally enough. A charge changing direction at the ~~—
site of the transition to the other conductor corresponds to a reflected wave

of current. Reflected waves of current have no phase jumps at the reflection

e, vy Y 6 Swowwre A gy




e, AN

T e Y

e -

vy

e,

ST TPTETIEE e SR AYE

t

o o g A R e g T
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site (pI = 1) because the change in the direction in which the charges are pro~
pagated occurs at the sita of the ™ nsition to the other conductor, which has
a current with opposite phase flow..g in it (the currents in conductors 1
and 2 have opposite phases). We can explain the sense of the values obtained

for p. and p,,, given other conditions at the end of the line, in a similar
I U

manners.

#1.5. Voltage and Current Distribution in a Lossless Line

{a) The open-end line

The current flowing in an open~end line is I

= 0., Substituting I2 -0
in equation (I.2.12), we obtain

2

U = Uycos az
Uy .
l=i2tsinaz (1.5.1)
W .
Figure I.5.1 shows the curves for the distribution of voltage and current ’
on an open-end line. R
. ”‘
o ;‘:3\\\\ AN //’17*<j .
< —> 2
Z 2A :\ ;5,\ 1] :gﬂ 4

- o

-
fo

Figure I.5.1. Voltage and current distribution on an open-end line.

As will be seen, there is a voltage loop (maximum) and a current node
(minimum) at the termination. Loops and nodes for both voltage and current

occur at length segments equal to )/2. Voltages and currents at the nodes
equal zero.

-

The phases of voltage and current on the line change in 180° jumps as
they pass through a node.

An electromagnetic wave on a line characterized by this type of current
and voltage distribution, one in which phases change in jumps as they pass
through zero, and remain constant within the limits of the segments between

two adjacent nodes, is called a standing wave.

(b) The closed-end line

The voltage ac» 38 the closed-end line equals zero (U2 = 0)., Here
equation .(I.2.12) takes the form )
U=i l,\Vsin':z}

I::-I,coSaz (10502)
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Figure I.5.2. shows the curves for the distribution of the voltege and

current on a closed-end line. The curves have the same shape as those for “ +
the open-ended line, but the difference here is that there is a voltage
node and a current loop at the end of the line. ’
. v oy
2 ] ; ;\/'f><,-\ u/l'>\
vy B
PR e __l .
& o4 g
L
A Figure 1.5.2. Voltage and current distribution on a closed-end
R line.
i
U (¢) The reactance loaded line
7 o S Substituting U,/I, = Z, = iX, in (I.2.12), and after making the transe-
R
Y'i.g N formations, we obtain
IR
',‘, . i’ t €05 (12 — ¢)
b g U=y, —"22"1,
SEERY €osp ’
AN ' [ Yo sintz—g) (1.5.3)
4 (Lo
v
E vhere |4 '
, = arclg — .,
L .9 g X, , N .
A standing wave is formed on the line and thore are no voltage or current :
‘; o nodes or loops at the termination. The first voltage loop is at distance :
Ty :
=L =2 . ;
ik - % a 2’ ' i
-
} Figure I.5.3, shows the curves for current and voltage distribution
3 ,r- [ - = = (/ - y
S for X, Wip = n/t) :
: v
SR 1 1}
N AN < <
E vy 2 24, (K] 2
A E : : i‘. !
v :‘; ’
:‘ ,;S ::.‘? Zz
;- :% Figure I.5.3. Voltage and current distribugion on a line for
T o By =00 X, =W,
3
]
| (d) The pure resistance loaded line
. k! . . .
: oy Substituting U2/I2 = R, in (1.2.12), we obtain
v - LW, .
e P . U=U, (cosaz + i E—smaz) J ‘
- i . o (1.5.4) -
4 g l=1, (cosa 24 %’—sinaz) !
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) . ~ s Figure 1.5.4 shows the curves for the voltage distribution on a line

' é for -salues of RZ/V equal to 03 0.1; 0.2 0.5; 1; 2; 5; 103 o

) ; The current distribution curves have the same characteristics as do

,"~‘f, % the voltage distribution curves, but the displacement along the line with

respect to the latter is by segments equal to 1/4 ).

~

When R2 > W the voltage and current loops and nodes appear at the

same points as they do on the open-end line, and when R2 < W they appear .

oy Ve

at the same pointa as they do on the closed~end line.

R . (e) The line vwith a load equal to the wave impedance
:gﬂ‘k : Substituting R

= W in (1.5.4), we obtain

2

58 _ 'U=U,e‘“l

e * : [=le" | (1.5.5)
. '

‘ The line has only an incident wave. This mode or a line of finite

, E length, when there is no reflected wave, is called the traveling wave mode. ’

X .

"\ ; Aptomeoe 1y fafale s le]r s !

Y . . § . & o |ar |02 | os

i

o0/ 20N

|

. /AN ax
B Y

2 35
4

‘_ : - ) s ' ~ 5 ’
<L : 1"'R‘ "

.
Saded i Rl

Ak b

i
b
. . ]
. H . ! A
w3 3 \ Figure I.5.4. Voltage distribution on a line for different % E
r ¥ L values of R,/W and X, = O, i3
e 3 A - curve number. E] s
ara ! - 2
’f.,? A (£f) The complex impedance loaded line 2
3 ';{ Converting formula (%.2.12) and substituting 02/12 - 22, ve cbtain 3
- -

oS

‘ U=, (cosaz+i zisina:)
' , ; s . *.506)
! = I.(cosa:-}- i %’-sin az) '

\
%
\
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Here the coefficients of sin gz are complex magnitudes, as distinguished
from formula (I.5.6), in which the coefficients of sin gz are imaginary.

This latter indicates that when z = Q there are neither voltage loops nor
voltage nodes.

The formulas at (I.5.6) can aiso Le given in the form for when the co-
efficients of the sines in the right-~hand side are imaginary. This requires
making a substitution

”“”"*"?M(z""%)' (1.5.7)
that is, the reading is not made at the termin . .., but at a point displéced
from the termination by distance z

0
where ¢ can be determined from the relationship

= ¢/x {loward the energy source side),

2w X
t121 = e -
ST TR R—w (1.5.8)

The angle %y is taken to be in the quadrant ip which the sign of
sinZ, coincides with the sign of the numerater, and the siga of cos2 ¢ zoin-
cicdes with the sign of the denominator in (I.5.8).

Substituting (I.5.7) in (I.5.6), we obtain

LW :
U==Uz(cosazl-'f 1-b-smazl )Cc"

. A ¢ ).
) U, , s D .
I:—.-E’(cosazl-,-|-;V-smaz,)Ce‘°, .
where
'ca___”..— . 2%RWw
V(RS + X5+ RWY + (G — )/ (R X R (1.5.10)
D--W 2R (1.5.11)

(RS 4+ ) +V7%) =V (RY ¢ X 4+ —(2RW)
. 2R, X, W
b2 = 2

= (x.5.12)
(R -+ XI) —(R3= X)) ws

The angle 2 ¢ is taken to be in the quadrant in which the sign of
si.. 2 ' coincides with the sign of the numerator, and the sign of cos 2 y co-
incides with the sign of the denominator in (I.5.12).

Since (Ri * Xz + wz)z ;.(2R2h)2, as as will be seen from formula
{I.5.11), D is real. D has the dinensionality of impedanc.. A& ccmparison
between formula (I.5.9) and (I.5.4) shows thut D is the line impedance at
point z, = 0. From formula (I.5.11), D> W for any loads at the termination.
Consequently, the voltage and current distriiwtion, beginning at point z, = 0

that is; beg.naing at a point displaced zy ® o/q.with respect to the termina-

tion), is the same as in the case of the line loaded with pure resistance,

N 1

. e s

3
1
3
>
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o~y
| ., R, > W. There is w« voltage loop at z = Zqe Accordingly, substitution of
\ oz =gz 1@ results in the equivalené transfer of the point at which the
reading is made from the termination (z = 0) to the site where the voltage
loop is found (zl = 0). 6 .o
-4
Figure I.5.5 shows tha voltage and current distribution for R2 = Xz o W, iy
&
H
I/ ’
Yuane p 4
] i
‘ NG/ .
| . T Y T2 ?
| . () ] i
\\\.4// | \\¥; (i . %
! i : 1
) JV il Q4% :
| I A A :
¢ L
| ; +— Ingirc—r_02 4
i ! el o
0 . 3
| ;A .. 3
B ‘
l:'ﬂa’lX) . i
ﬁ:'x; (374 ' :
| : - .o
\ S Figire I.5.5. Voltage and current distribution on a line for .
‘ : 4 R2 = X2 = W,
#1.6. Voltage and Current Distribution in a Lossy Line
(a) The open-ended line 4
As in the case of the lossless line, we obtain '
U=U,chyz * ;
I==glsh12 ‘ (1.6.1)
?
’ These formulas can be reduced to the form
.. 5
) U=U,(chzcosaz 4 ish3zsina?) ) N
' [ = l.l_*.(sh‘ezcoqaz-i-ichgzsinaz) ) ) (1.6.2) ’ -
* ? .

o

As will be seen, in the loscy line the voltage and current have two

components 90° apart. »

e, o

Formula (I.6.2) can be given in the form

-

.

e e L {
* U =U, Vshisz + costaze ¥

(1.6.3)
[= -q’—Vsh’_;i Z4-sin*az g
? .

’
where

== arc tg (th z't % 2), .

3 ?u ac_g( ,;3 ¢ ) . (10604)
‘ ¢, = arclg(cthpzigaz), -

(1.6.5)

VOISR ST TR Wit weneay, o
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Analysis of formula (I.6.3) reveals that in the lossy line the voltage
and current loops and nodes are displaced relative to the loops and nodes
on the ideal iine. Given below are the formulas for computing the distences
frem the termination to the voltage and current loops and nodes on the

open-ended lossy line:

&
. n A
2z B e ——— o
, Uloop | /82 (1.6.6)
o b ' '
, 21 _}_.
2 . .
U node H_(_:,)’ 1. (1.6.7) .
. - 221X
21 Loop TR (1.6.8)
1—(—:) -
o . . T (1.6.9)
; i1 node (_il 2
-)
where
n=0,1, 2, 3..

These are approximate formulas, based on the assumption that B/p < 1.
The voltages and currents at the loeps and nodes can be computed through

the following formulas

Usoop = U,chjz Vx—(%)‘smaz, (1.56.10)
Ynode © Uizl 14 (‘i‘)‘ chtpz, (1.6.11)
Iloop = l—l;-c-llﬁzl/l—-(—-g-){sthz , . (1.6.12)
Iode ™ %sh?z’/l -}- (%)1 chiz. | (X.6.13)

Here z is the distance from the termination to the points where
Uloop’ Unode’ Iloop' and Inode can be determined. They can be computed
through formulas ({(.6.6) - (1.6.9).

{b) The closed-end line

U=i""°’“”}. , . (X.6.14)
\ I=1I,chyz

The formulas at (I.6.14) can be given in the form

.

U=1,7Ysii 3z +sintaz e | ‘ (1.6.15)

where _ =1, VsW3z+ costaz 2™ } '
9y = arctg (cth B ztgaz), (1.6.16)
' (1.6.17)

¢, =arctg(thBzlgas).

- - ———

o o b 4 o iAo ¢
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s The locations of the vecltage and current loops and nodes can be found i
through the approximate formulas 3
' Ml A
gy 4 ' ?
- o= — Im 018 B
zU loop ( a ) (1.6 )
—n A
?
N = . . Ia .
; 25 node _;‘(_g_)s 2 (X.6.19)
a
. n A
P e, 1.6.20
“1 1o0p © 1-{—3-)’ 2 (1.6.20)
\ a
z = 2kl ) (1.6.21)
1 node B\2 4
14 (—-) .
-3
The expressions fcr Uloop‘ Unode, Iloop’ and Inode are the same as
in the case of the open-ended line. .
(c) The reactance loaded line
\\ . Here, for convenience of analysis, the equations at (I.2.9), by
‘ .
substitution
z, = Uz/l'.2 and tg 6 = -p/zz (1.6.22)
. . can be converted into ‘, .
/ h{y2—0)
. Uy, S22
¢ =Y ch0 .
_ S Yshz=0 | (1.6.23)
i 3 ch @
i In the general case 9§ is a complex magnitude
e = b + ia . (106-24)
¥
£ s
% Substiiuting yz = 8z + igz and § = b + ia, in the formulas at
§ (1.6.23), ve obtain
¢ : U, ' . . 1
= 2 [ch(Bz—b) cos{axz— a) -} ish {3z -~ b)sin (az —a
i [eh (Bz—b) cos(ez—a) + ish 2 — Bsin (2 —a)]
U, , ‘ : ° ) H : H ’ (1-6025)
o= et [sh (§2 —b) cos (az — a) + ich (Bz — &) sin(az —a
i (s (32— ) cos (a2 — ) - i hi(pz ~ bjsin ez — )]
A The fcrmulas at (1.6.25) can be given in the form .
. Us : )
= ———2—— Y sh? (B2 — b) - cos? (a2 — v
Um oo VG — O oo (= ) e
U’ - - \ (106026)
: = — sh3(8z — b) 4-sin*(az—a) e™
‘ roe s ) TR =0 Fsin(z~a) :
2 X t g
; : where . 3
3 I SN 2 = aretg [th(3z— b) tg (2~ a)}, (X.6.27) B
¢ ".5 ?[ =,arc tg ICth (?Z.‘b) tg (u-a)]. (106028) %
; t § s
= %
' MY .
| A
: e n s b+ P e e wn st WA rrees b st St 1 weiirh
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The magnitudes b and a can be determined from the relationship
th ¢ = th(b + ia) = -»p/Zz, and prove to be equal to
) 283
th 26 = —————
Lhapn (1.6.29)
tg 2a=—24-——
© At —0% ' (1.6.30)
where A and B are the imaginary and real components of the relationship
-p/22 ) '
Byidz= =
: (I.6.31)

The following approximate expresasion for the characteristic impedance

(sce Appendix 1) can be obtained from formula (I.2.7)

\ | p:FV(x—i—j’;-). (1.€.32)
Substituting (I.6.32) in (1.6.31), and (I.6.31) in (I.6.29) and
(1.6.30), we obtain . -

W(R.—lx.)

th2b='—' 2 s ' (I 6 33)

(& +x)+ [+ (L] .
2‘7‘(.)(:’?_}&)
{g2a = . RO .
(R§+"z)"“”[‘+(':")] (1.6.34)

If B/q < 1, then p can be replaced by W and formulas (I.6.33) and (I.6.34)
will take the form

2W R,

%= — -
thae R+X+w ' (1.6.35)
W X,
2= iy (1.6.36)

Comparing (1.6.36) and (I.5.8), we sec that in this case

tg.2a = tq 2,

as shoulé be expected.
The locations of the woltage and current loops and nodes can be determined

through formulas

(apl)_bosh2s -
%y 100p " — )p = = ";" ' (1.6.37)
1-(—;) ch2b 5
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s

RSt 0 iy &)
: 2 p sh2b
% - | -l-——]-r————— .
zU - [( ) X a x l_- (106038)
node K l
[ (T) chi2b
2a B sh
oy 2] 222
2y g [ NN R Y (1.6.39)
loop . 8 \s 4 '
- 1‘*(‘“) ch2p :
. .4
a B sh2s
("+ =) e A :
ZI node a l*(l ‘ch% " ] 4 (1.6.40
. -
where n = O; 1, 2, 3...
Voltages and currents at nodes and loops equal
B\ o
: l—{—] sh3(fz2—10)
u = (a ) (1.6.41)
1 32— .
oop  U,ch(3z—0) sh* b+ cos’a
‘ . / —g—\.rhi -
U : = y l‘i‘( (X -“' @1 b) (1060112)
node U sh(3z—10b) b Tcond T
. . - . B \*
1—(—) SA@z—b)
I o] Ul A [ (106043)
1< Lch(Bz—b
Loop ? (?Z ) shd b - cocta
- )
Us o 1ns % ' ‘+(_i') cht¢z—9)
Inode = Tsh(az—b) . sh‘b+cos'a ] 1] (106.%)
where z is the distance from the terminaticn to the points at which Uloop’

U y I y and I are determined.
node loop node

#I.7. Tne Traveling Wave Ratio for the Lossless Line

The concept of the traveling wave ratio can be used to characterize the

line noade.

it

‘\\ The traveling wave ratio is

\
\

x=U_ /U =1 . /I (1.7.1)

min’ max min’/ “max’

where

U, and U are the voltage amplitudes at the voltage ncile and loop;
min max

Imin and Imax are the current amplitudes at the current node and loope.
The traveling wave ratio for the lossless line can be expressed in

terms of the reflection factor (see Appendix 2)

L peliziol . (1.7.2)
where it

Ip] is the modulus of the reflection factor.
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i
As follows from (I.4.2)
) Ri-;iX,—W (Ry— Wy X3
Joj = | Rmids =1/-—-——__:~ (1.7.3)
Ra-iXaq-W (Ra4-Wp 4 Xy .
4 ‘.;Evj #I.8. The Traveling Yav: Ratio f»r the Lossy. line
S (a) T vpen-ended or closed-end line. The reactance loaded line.
A As follows irer f,walas (I.6.10)=(1.6.13), the traveling wave ratio
x " when B/a 4 1 is equal to
R 1 G N
N — 3
RS sh8 Zpo +( a') ¢ e’zl’mde shBZnod -
. b= : e reaiiat] (1.8.1)
¢ 'p"loop !__(_g_) s pz chpzloop
k: a loop .
. where
3 A 2 ode is the distance from the termination to the specified voltage
K ! "4 or current node; b \
‘ zloop is the distance from the termination to the specified voltage ,

or current loop.

If the distance from the termination to the point where the traveling

wave ratio is to be determined is sufficiently great as compared with the .
distance between a loop and a node, ano de leoop’ and the expressit;n for . ;
the traveling wave ratio takes the form + ‘
ko= th B, . (1.8.2) v :
‘ If B is sufficiently small, '
] ‘ k & B2 . (1.8.3)

loop

The expressions obtained for the traveling wave ratio can also be used

: i for the reactance loaded line.

5 (b) The complex impedance loaded line
¥ 3 As follows from formulas (I.6.41)=(I1.6.44), the traveling wave ratio
: =

E | : will be equal to

3 i : '

E ; £V aa

3 i h(szno b) a / o (350“0) ~ sh@3 Iﬂ"’ic—b)

d'@’.loop l’) - __B__ <h @ 2jo0p~— ) (X.8.4)

!

! - k=
; . . 3 -
: " sh “hlo'op )

if z is very mu¢h larger than V4, then gz

hode B2 loop

end * )3 ~ th(leOOp - b) (108-'5)

-
!

where b can be found through formula (I.6.33).
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#1.9. Equivalent and Input Impedances of a Lossless Line

{a). Determination of the equivalent and input impedances

The equivalent impedance of a line at a point distance z from its end
is the ratio of the voltage across the line conductors to the current flowing

in the line
zeq = UW(z)/1(z) (I.9.1)

The input impedance is found from the expression for Zeq by sub-

stitution z = {

Zin = U(l)/I(t)o (10902) *

(a) The open-ended line

~

Substituting the values for U and I from formula (I.5.1) in {(I.9.),

we obtain

~asser L peigaz=iX
=, = = ]
Q i%‘—sincz (10903)

Figure I.9.1 shows the curve for the change in the equivalent impedance
with respect to z. !

The equivalent impedance of the line is reactance at all points because
the lossless line cannot absorb energy if it has no resistive load termina-
tion. ,

As Figure 1.9.1 shows, the sign of the equivalent impedance changes
every )3/L segment. The impedance is negative, that is, there is capaci-
tance, in the first segment from the termination.

Substituting z = 1 in (I.9.3), we obtain.

Zin = =iW ctg o 1« (Iogolt_)
1 ' 1 ' 3 A
i} . | [1 [ .
l Voo 2y .
1 ] .o ]
' ' : )
1 ch )
! 1 f
| o :
FRE BRI ] L™
! bA; ;f bﬁ 4
AR R Y
i
i i f [
1 i I !
N \ | l
o .
”‘¢ . .

Figure I.9.1. Curve of change in equivalent impedance of an
open-ended line. ’
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(b) The closed-end line

In a manner gimilar to the foregoing, we obtain

-

| N ” .

‘ JRIE ‘ .y Z,’==.!ngf12='ixa.q (1.9.5)
|

|

i A comparison between formulas (I.9.5) and (X.9.4) shows that the nature

b ; i of the change in the equivalent impedance is the same as for the open-ended

SO line. 7The difference is that curves for the equivalent impedance of a closed
' line are displaced along the axis of the abscissa by & distance equal to
L .5 A4 with respeect to the curves for the equivalent impedance of an opsn lipe.

B (c) The reactance loaded line

Zy= —iWclglez—¢) = i Xy (1.9.5)
. 4 where

S E 14
E TS t =—
o gq X

L]

The nature of the change in the equivalent impedance is the zame as that

in the first two cases.
F o~ The curve for the equivalent impedance is obtained with a displacement
af; . i . magnitude of ¢/q as compared with the case of the open line.
% - ‘ (d) The pure resistance loaded line T
4 ) ;? ’ Substituting the values for U and I, from the expressions contained ‘
ii “ in formula (I.5.4) in formula (I.9.1) we obtain o
-3 1 : : ] %— 10,5 [x - (—Z—W’sin %z
: .‘ Z“‘== Rq.*—l)(oq:'W (-Z-)’;:o:.’az-}:sin’nz ! (I.9.7)
T ;e . Rl - ) "
- !, 2
3 ‘ where
;; ~‘\5 ' Req and xeq are the active and reactive components of the equivalent
5 . impedance.
'f = i‘ The curves for Req/w and xeq/w with respect to line length for different
‘} C b .,  values of RZ/V are shown in figures I1.9.2 and 1.9.3.

(e) The line with a load equal to the wave impedance

Substituting the expressions for U and I from formula (I.5.5) in

formula (I.9,1), and putting 02/12 = W, we obtain

zin = Zeq a W, (1.9.8)

When an impeJance equal to the characteristic impedance is inserted

o - S———— i+

.7

at the end of the line (a traveling wave mode on the line) the equivalent

P

impedance at any point is made up of pure resistance and is equal to the

line's characteristic impedance.
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. ‘Figure I.9.2. Curves of change in R /W for different values
eq .
of Rz/w and X2 = Q.

A - curve number; B ~ Req/W.
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Figure I.9.3. Curves of change in Xéq/w for different values of

RQ/W and X2 = 0,

A = curve number; B - xeq/w.
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(f) The complex impedance loaded line

30

Substituting the expressions for U and I from formula (1.5.6) in

formula (I.9.1), we obtain

14
cosaz-p| 7’- slnaz

2= W - 2 .
E—cosaz—i-isinaz i (1.9.9)
) [

If the expressions for U and I from formula (I.5.9) are substituted in

formula (X.9.1), and if it is taken that W/D = k (this equality can be ob=

tained through formulas (I.5.11), (X.7.2), and (I.7.3)], then, aft

+ransformations, we obtain

7 =W"¢—i0.5(l—/¢“)sin2:zl . (

*q Kcostaz -f-sintaz

#1.10. Equivalent and Input Impedances of a Lossy wine

(a) The open-ended line

As for the lossless line, we obtain

sh23z—isin212
ch23z—cos2az =

@)=pc(h12=p

If p is replaced by its expression from formula (I.6.32), the expression

i‘of Z is transformed inte

/2 :
.'/ (sh232—--%-sin2¢z)-—-i(—%—sh2az+sin2zz)
Zy=W ch23z—cos2z (1.10.2)
I (b) The closed-end line .
. _, sh23z4-isindaz
Ze?— pthyz=p ch2dztcos2z (1.10.3) -

Afver the substitution of p = W(1 - i%),'expression (I.10.3) takes the

form .

: l B ) 8 :
sh2izp~—sin2az)—1 sh23z—sin222

qu'a ‘V a L .

ch2iz |-cos2az

(¢) The complex impedance lcaded line

Substituting the exprensions for U and I from formula (I.6.23), and

the expression for ¢ from (1.6.24), in formula (I.9.1), we obtain

)
Z =pcth(yz—0)= sh2(3 2 §) —isin 2(az2— q)
=P ,@ —0. ?mmu~w—yn@uw)

er the |

1.9.10)

{(1.10.1)

(1.10.47

(1.10.5)
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or, substituting P = W{(1 - %), we obtain

sh2(8 z-—b)—-%—sin XNa z—a)
=W -
Zq= Y e 2(8 2~ b) —cos%(az—a)

\—f—sh?(ﬁz—b.)-{*slxiﬂaz-a)
HU)

—l"ch2@z—-b)—-cosi'(az—a) ’ (1.10.6)

and a and b are found through formulas (1.6.33) and (I.6.34).

#I.11. Maximum and lMinirum Values of the Equivalent Impedance of a

Lossless_&iﬂs

A knowledge of the maximum and minimum valves of the active and reactive
components of the equivalent impedance of a line is of interest.

Ifr £he line is open, closed, or reactance loaded, the maximum equivalent
impedance can be infinitely large, while the minimum will equal zero. This
follows from what has been cited above.

f the ﬁ} e is complex impedance loaded, both maximum and minimum equi=
valeni impedaﬁaes have a finite magnitude.

The maximum value of the equivalent impedance occurs at the voltage
loop (tha current node), whereas the minimum value occurs at the voltage node
{current loop). These are pure resistances.

We can use formula {I1.9.10) to obtain expressions for thesz. Voltage
loops ocnur at points gz, - nmy, where n = 05 13 2§ 35 aee

Substituting one of the stated values of gz, in formuila (1.9.10) we ob=
tain i

YA = R = W/k . (1.i1.1)
eq max eq max

Voltage nodes occur at points oz, = {(2n ¢+ 1)n/2, where n = 0; 1; 2; 3; eee
Substituting one of the stated values of azl in formula (I.9.10) we

obtain

. =R . =Wk (1.11.2)
eq min eq min

The minimum value of the reactance (xeq) of the equivalent impedance
eqﬁals ZeXoe.

The maximum value of xeq can be found by solving

dxeq/dz =0 (1.11.3)

Substituting xeq from equation (I.9.10) in equation (X.11.3), differeantiating,

and solviiy the equation obtained with respect to z,, we obtain

v .

1

2= i%-arc tgh (I.11.4)
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Here zy is the distance from the voltage locop to the poeint where Xe
is a maxim.m.

Substituting this value for z, in formula (1.9.10), we find

— LY
X = w iz A (1.11.5)
eq max 2k
If X € 1, then
.  Jon
ey max W/2k + £1/2 Req max” (1.11.6)

#i.12. Maximum and Minimum Values of the Equivalent Impedance of

2 Lossy Line

(a) Open, closed, or reactance loaded lines

Let us consider the open-end line.
Let us limit ourselves to the case of S/q € 1. It can be taken that
P ~ W, and that the voltage loops are at distances z = z = n /2

loop
{n =0; 3; 2; 3; ...) from the termination.

Substituting P = W and z p =R /2 in formula (1.10.1), we find the

loo
maximum pure resistance equal to

4 p . I.12.
eq max ™ Cth 3 “ocp (I.12.1)
- . .. R n
If szloop is smali, it can be takon that Cthsloop‘u 1/3z1°°p, and then
R = W/gz . (1.12.2)
eq max loop
Taking G, = 0, we obtain (see I.3.4)
= 2w2/R 2 (1,22.3)
eg max 1%loop e

where

zloop is the distance of the specified voltage loop from the termination.

Minimum reactance occurs when

= (2n + 1) Ve .

<
wode

Substituving this value for z in formula (1.10.1), we obtain

e min ¥ th B2 ga~ ¥ B o = 1/2R 2 ode (T.12.4)

nod 1

where

2 ode is the distance of the specified voltage node from the terminatien.

The expressions obiained for R and R . are walid for a
eq max eq min
closed-end line and for a reaciance loaded lipa.
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(b) The complex impedance loaded line

The approximate expressions for maximum and minimum values of R
can be obtaincd curough equation (I.10.5) if it is assumed that 8/¢ is an
exXtremely small magnitude. In this case the maximum values of Req occur

at the points where gz - a = - a = niy while the minimums occur at

o'zloop
the points where gz = a = ST (2n + 1)n/2, They can be expressed
by the formulas

eq max © W cth (leoop - b), (1.12.5)

. =Wth Bz . =~ b). (I.12.6)
eq min node

#1.13. Maximum Voltages, Potentials, and Currents Oczeurring on a Line.

The Maximum Electric Field Intensity.

it is important to know the maximum voltages, potentials, and currents
for a line used for high power transmissions. We will limit ourselvcs to
the case in which line losses can be neglected.

The effective voltage across the voltagé loop eguals

“ ' U oop SV’paloop, (1.13.1)

where
P is the power delivered to the line;
Rloop is the line resistance at the voltage lcop, and is equal to W/k .
(see #I.11).

Substituting the value of R in formula (I.13.1), we obtain

loop

Uloop =’VPW/k {1.13.2)

The maximum potential on a two-wirec line is equal to half the maximum
voltage.
The effective value of the current flowing at a current loop, whore the

line resistance equals Wk, is found through the formila

\ Iloop =‘Vp/wx< (1.13.3)

Finding the maximum electric field strength on a line is of great
interest. The maximum electric field strength is at the surface of the con-
ductor and can be found in terms of the magnetic field strength at the surface
of the conductor. A TEM type wave (a transverse el:ctromagnetic wave) is pro=
pagated on the lines we are considering. V¥hen the line is functioning in

the traveling wave mode we find that there is the relationship

E = W, Int,
i

TR S T g o n e <1
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between the electric field strength, E, and the magnetic field strength, Int,
at any point in space, and particularly at the surface of the conductor, where
E is the electric field strength, volts/moter;
Int is the magnetic field strength, amperes/meter;
wi has the dimensionality of impedance (ohms), and can be called the
characteristic impedance of the medium.

For TEM waves in free gpace

wi = 120w, ohms.

The magnetic field strength at the surface of the conduccor can be .

found through the relationship

?L”;d‘ = fFJndb = {r.13.4)

where the left-hand side is the circulation of vector H around the circum=

ference of the conductor,
di is an element of the circumference of the conductor;

jn is the current volume censity in the transverse cross section of

the conductor, amperes/mz;
dF is an element of the surface of the conductor's cross section.
Assuming the current and magnetic field strengths to be uniformly

distributed around the circumference, we obtain

§L}lldt a2 Hpd = I {1,13.5)

where
d 1s the conductor diameter.

The maximum electric field strength, Emax’ equals

B o= WiI/nd (1.13.6)

Substituting I = U/W in {I1.13.6), we obtain

E = W, U/Wnd (1.13.7)
max Ry
or .
Emax = 120U/Wd (I.13.8)

If the line is muiti-conductor, that is, each balanced half of the line
consists of n parallel conductors (for a four-wire balanced line n = 2}, and
if the distance between conductors is such that current distribution around
the circumference of the conductors can be considered as uniform, the current
flowing in one conductor will be reduced by a factor of n. Correspondingiy,

the maximum field strength equals

[P
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B x © 120U/Wnd (1.13.9)

(non-uniformity in current distribution between conductors not considered).
If 4 is in centimeters, Emax is in volts/centimeter.
Formula (X.13.9) holds for any value of the traveling wave ratio for the
line, since E in the formula is defined in t*erms of U, 3Substituting the
value of U from (I.13.2), we obtain

E__ = 1207 P/na Vi (1.13.10}

ma.

Here Emax is the effective value of the field strength at the surface of the

conductor at a voltage loop.

#1.14. Line Efficiency

By line efficiency is meant the ratio of the actual power dissipated
in the terminator to the total actual power delivered to the line. The
eificiency, 7}; can be expressed in terms of ithe reflection factor, p, as
Tollows (see Appenaix 3) .

P SR bl V.
n=e | —|ppeid ¢ (I.14.1)

Substituting the expression for }pl in terms of the traveling wave

ratio k(|p| = 1-k/1+k) in formula (I.1l4.1), we obtain

1
ch231+—;— k+—l—)snzaz ) (1.14.2)

i

'q=

if 281 € 1 we can replace sh28{ by 28! and ch 281 by one, whereupon

'q: ——1_._'_

]+(k+_ll‘_ 3y o (I.ll*aB)

Formula (I1.14.3) shows that efficiency is higher the closer the traveling
wave ratio is to one and the smaller 3i.

Figure I.14.1 shows the curves for the change in T with respect to
81 for traveling wave ratios equal to 0.1, 0.2, 0.5, and 1. Formula (I,14.2)
was used to construct the curves.

The efficiency of a line operating in the traveling wave mode equals

LT (To1k.b)
If 281 < 1,
=l—231 (I.14,5)
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03

11

Y

0 a1 a2 £3 4 .45 08 47 g8 g9 IpC

Figure I.14.1. Curves of change in line efficiency with respect to *
g1 for different traveling wave ratioe,

A -~ kbv, traveling wave ratio.

#1i.15. Resonant Waves on a Line

The waves on a line, the input impedance of which has no reactive com=-
ponent, are called resonant waves.

The data presented in the foreoing indicate that resonant waves occur
on a lossless line when there is a current loop, or node, at the point of
supply for the line.

Every line has an infinitely large number of waves for which the re-
active component of the input impedance equals zero. A line, therefore,
has not one, but an infinitely large number of resonant waves. The maximum

resonant wave is known as the line's natural wave.

#1.16. Area of Application of the Theory of Uniform Long Lines

In practice; the most widely used are uniform two-wire balanced and
one-wire unbalanced open-wire or shieslded lines. A line which is made up
of two balanced conductors, or of two balanced systems of conductors, bet=~

veen which an emf source is connected, is called a balanced line.

I |

(v) =

TIIT 7 T0I07 T~ m
t

Figure I.16.1. Schematic diagrams of unbalanced single-wire iines:
(a) single-wire unbalanced line; (b) unbalanced line
consisting of a system of wires.
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The open-wire one-wire line is understood to mean a line consisting of
but one conductor (fig. I.16.1a), or of a system of conductors (fig. I.16.1b),
to which one of the output terminals of the emf source is connected, while
the other terminal is grounded. The shielded one-wire line is understood
to mean a line consisting of a conductor (or of a system of conductors)
surrounded by a shield which is connected to the generator shield and the
load shield. The coaxial line is a special case of a shielded line.

The theory of uniform long lines is applicable to balanced lines, as
vell as to single-wire lines if they are uniform.

It is ;180 possible to usge the computational apparatus of the theory
of uniform lines in the case of shielded one-wire lines if the penetration of

the current into the external surface of the shield is excluded.
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Chapter II

EXPONENTIAL ARD STEP LINES

#II.1. Diffcrential Equations for a Line with Variable Characteristic

Impedance and Their Solution. Exponential Lines.1

Exponantial and step transmission lines are videly used as broadband

elements for matcling lines with different characteristic impedances.

Let us take a line with a variable characteristic impedance (fig. 71.1.1}.

The change in the characteriscic impedance is shown in the drawing by the -

change in the distance between the line's conductors. In practice, the

characteristic impedince is changed by changing the diameters of the con=
ductors, or by using other methods, such as changing the parameters of the
medium surrounding the conductor, alil of them in addition to the method where-

by the distance between the conductors is changed.

===

Figure Il.l.1. Line with a variable characteristic impedance.

It is obvious that equations (I.1.3) and (I.1.5), derived for the uni-
form line, remain valid in this case; that is, the voltage/curreyt ratio

for any line element is in the form

du

;= IZ,
4y, ' (I1.1.1)
dz

where

z is the distance between a gpecified point ¢a the line and its
termination.
Zl and Yl are functions of z for non-uniform lines.

Differentiating the second equation at (1I.1.1) with respect to z, we
obtain

ddl (7} dY,
w oGt (11.1.2)

1, M. 5. Neyman. "Non-uniform Lines with Distributed Constants."
IEST, No. 11, 1938.
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i
Substituting the exprassions for dU/dz and U from formula (IX.1.1) in

s forrula (II.1.2),
. d8 de ¥, dz * {II.1.3)

Since l/Y1 le/dz = d/dz(lnYl), equation (II.1.3) takes the form

Sl L nY)—izY, =0, (11.1.4)
Similarly
. % —-‘L_‘j -‘-id;(ln 2)—UZY, =0, (11.1.5)
Let us designate
~;=3+ia.—;)/'z—,7; - (11.1.6a)
’Z_x_

=V (1I.1.6b)

Then equations (I1I.1.5) and (II.1.4) can be transformed into
axy du d

— — e — | I1] {0 ._I/ ’_—“
I 7 d {In G¥)} N 1
.___+_._.__ ..L ' II. .7

As we see, in the general case the distribution of current and voltage
i; the non-uniform line can be described by linear differential equations
with variable coefficients.
However, in the special case when p changes ir. accordance with an ex=
ponential law '
o = pye’” (11.1.8)

.

where Po is the characteristic impedance at the termination and the propa~-
gation factor ¥y remains constant along the line. The coefficients
d/dz[1n(oy)] and d/dz(ln p/y) become constants and equal to b.

Lines for which p changes in accordance with an exponential law are
called exponential lines.

Analysis of the exponential line follows.

After the substitution of (II.1.8), equation (II.1.7) is in the
following form .

U _p & pu=0

dz? dz .
M KLy - ) (I1.1.9)
o +0b ~ v}l =0 9

The equations at (IX.1.9) have the following solution
U=Ac™ + B e

s K3l (I1.1.10)
I=A4e' 4Be?

1
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The coefficients k kz, ki, and k! are dectermined from characteristic

1'
equations corresponding to the differential equations at (II.1.9).

The characteristic equations are in the form

K— bR — 2 =0 } (I1.1.11)

from whence

(Ir.1.12)

SR Substituting (II.1.12) in (I1.1.10),

TN 2ol Y e (B Y o (2}
" Us=e’ [Axe /1 (2) + Bie V”(z)} (11.1.13)

. R e N

: -
)+&e:

e ] ' The connection between A2 and Al, as well as between 82

be found by substituting the solution arrived at in one ¢f the original

and Bl’ can -

ni e differential equations.

e Substituting that solution in the first of the equations at (II.1.1),

CL3 . ' 7o\ .
2 i [

L F V[' (2 ./ b\2
S i e / {[—;-i-l/ 1‘+(-%) ]AI‘Y.”OA:}'*‘
14 ." —b’. . .

d y . —1V1'+ —-) —_—
. 2 3 2 )

o8 +e ( . {[—;‘ - 1/'13'*‘ (—:") ]Bl ""7.”081} =0, -

. ? This equation should be identically satisfied for any value of z, so

should be equal to zero in both expressions in the braces. Thus, we get

;?i;"i two eguations, from which we find
;. _—
SRR . . b b\ !

A=Ay | = 1 (—) —

3 *[21'*'(/ 1 2/ | o’ (II.1.14)
“". o b ——_Tb-—l- _l_
X :;,’ A . BQ-BI [.E;-l/l-*- K2-‘) ]:?0 ' (1151015)
2 E We will use the boundary conditions to determine the constants Al and
SRR - | —
THNRE ) Bl. Let us assume that at the termination, that is, when z = 0,
AN ;

. NeNy ’ ¥

[
'
!
K ¢ © e e - - e s 5.t e TP e o
{
t




P

~ww, e

i
¢
$
¢
i
:
S
£
é

where

Z is the resistor inserted in the termination;

U, is the voltage across the termination;

I_ is the current flowing in the termination.

Substituting (IX.1.14),

Al=

RA-008-68 41 N
U"’Ug )
U ’ +
I=l=—% (11.1.16)
2
/

p
(I1.1.15) and (I1.1.16) in (II.1.13), and i
solving the equations obtained with respect to Al and Bl’ we find %
L
U,——-+V/f+(—>]+hv. i
' (11.1.17) '
2}//1’4- —-) i
4

characteristic impedance changes smoothly, as it does in the uniform line,
there are two waves of voltage and current; an incident wave, characterized

by the coefficient Al and A2, and a reflected wave, characterized by the

coefficients B, and B

(11,1.18)
) 2b//1’4-( ) ‘ 1

What follows from equation (II.1.13) is that in a line in which the

.
P N

1 2° :

1

The voltages of the incident and reflected waves change in direct pro- {
1/2 bz ¢

portion to e

al to the square root of the

The changes in the incident and reflected wave currents are_ inversely

in the exponential line; that is, the cnange is proportion~- .

characteristic impedance because

“"=1/zﬁ=;/;§.

proportional to the square root of the characteristic impedance.

P

Since traveling waves are propagated from an area of low characteristic

impedances to an area of high characteristic impedances, voltage and current ]

amplitudes are transformed; the voltage amplitude increases, the current

amplitivde decreases. Accordingly, ithe exponential line is a voltage and

current transformer.

#11.2. The Propagation Factor

I'vom the foregoing equations it is apparent that in this case the factor

vy does n:t characterize the propagation of incident and reflected waves. In-

stead, it is the factor

w=v/ﬁ+(%)~wb/1+(— =?*xa

where

B8' and @' are the attenuation factor and the phase factor.

(11.2.1)

T A 2
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ok h
A) AR Substituting the expression for y, we find

‘f §’=1/-§-[—[“’:-.3’—(%)’} + V [“’—f”— ('Z‘—)T'*' 4“’32}' (11.2.2)

- K -

- R e O B o) R

If B € @y and this is customary and is the case at high frequencies,

expressions P! and o' will take the form

\ \/'_:G: (I1.2.4)
o= l/l - (711’), (11.2.5)

;S Formulas (II.2.4) and (II.2.5) demonstrate that the larger b is, that is, k|

j ,; the less frequent the change in the line's characteristic impedance, the 4 i
: smaller the phase factor and, as a result the greater the phase velocity

3 "/;Q factor increases with an increase in b.

R 3

| #II.3. The Reflection Factor and the Condition for Absence of Reflection k

3 As we noted above, the reflection factor is the ratio of the voltage

{or current) associated with the reflected wave at the point of reflection

A

‘ 3 _ﬂ!/f of wave propagation on the line (v' = @/y'). Moreover, the attenuation
|

tce the voltage (or current) associated with the incident wave at the same

A 3 ‘ . place on the line. From (II.1.13) the reflection factor for the voltage
- g ' equals .
y
3 Py = B/A, - -+ (11.3.1)
o ’
;f'- : ) Substituting the expressions for B1 and Al from equations (II.1.17)
A ’
S and (I1I.1.18), we obtain

. e .
AN R '
. \ " [-—%4.!/.‘,4,(_:.)’]_*_7“ (11.3.2) |

AR . A

3 " v % é wher e‘
&'. : ’ Z2 is the terminating impedance. '
f ; If line losses are neglected, that is, if it. is taken that y = iy
A ; ;
} ‘T end p, = W,, the expressions for p; will take the form P
4 o b — T : . -
2 Z,[-;--{—-la‘/l-—(-;i-) ]-uw. ' !
E g Py = 3 — . (I1.3.4)
: l,[——z--}-iu]/l—(;) ].Naur, | .
. u.g ’
JEE
-
- " i
. ' ‘
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Similarly, the reflection factor for the current when there are no line

losses equals

']+laW.} ' (11.3.5)

Equating the numerators in the right-hand sides of equations (11.3.4)
and (IX.3.9) to zero is the condition for absence of reflection. We find
from these equalities that in order to eliminate reflection wo must insert

a complex impedance equal to

Z, =

w, T
"‘f:ﬂ/‘—(ﬁ)’ ' (11.3.6) :

But if b/2y is so much less thanunity that we can ignore it

in the end of the line.

22 = WO,
and the reflection can be eliminated by inserting as the terminator a pure
resistance equal to the characteristic impedance of an exponential line at

its end. , . N

#11.4. Line Input Impedance

The input impedance of an exponential line equalé

[y

Z (IIsaﬁol)

in = Yza1) z=t)

We will limit ourselves to consideration of a lossless line,

Subsgtituting ths values for Uz_ and Iz_ found through equation

§ =1

(I1.1.13) in equation (I1.4.1), we obtain

Aleh‘V[::zzir4-n —hl}[T:ngr

z, = M 18 ., (11.4.2)
CAY -2\
i V - \;.) —lat V (1.)
Aye 4Ly

In the special case of the termination centaining impedance Zz, found

through equation (I1.3.6), and which is to say the impedance ensuring ab=

sence 0.7 reflection‘(fl = B; = 0), we obtain an input impedance equal to
. i

s

ot
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Accordingly, when ihiere 18 noe reflection the rnput impedance, like the
load impedance, is compliex and depends on the wavelength.

But from equations (I1.4.3) and (11.3.6), if b/2y is so small that it
can be ignored when compared with unity, the input impedance, like sz 18
active when there is no reflection and does not depend on the wavelength,

whareupon

Z, = \v'oe . (Il.b.%)

Ag we see, il b is sufficiently small, that is, when the change in
the characteristic impedance i3 suificiently sliow, the exponential line”
can «~t as a wave transformesr, transforming the pure resistance equal to

. . . . . bt
“O in its terminacion into a pure resistance equal to WGe « b can be

either pesitive or negative.
We can prove that if the magnitude b/2y is ignored the input impedance

will, for arbitrary ivac Z,, «gual
4

Wy
wsal a1 sinal
W, oo L3 o

Z, = jva ' (IIalko )
in ‘%ECQSﬂlj'iﬁﬂdz 3
ltg

The ratio Zin/z ie the uxponeniiezl line impedance transfcrsation

ne
2
ratio. Comparing equations {II.4.5} and (1.9.9}, we see that the factor
[ LW

) i €0, 3¢ 41 = sinal

&;’,‘. Zy

AN Wy . N
=7 cosrlq-isinal
3

is the transformation ratio for impedance 22 of a uniform line with un-
changed characteristic impedance WO’ and that the factor ebl is a supplemental
transformation factor defined by the exponential nature of the change in
the line's characteristic impedance., .

The condition of smaliness of the ratio b/Z2y in the case ¢f a speci=-

fied trunsformation ratio imposes a definite limitation on the length of the

expcnential line (i), vhich should be at least some minimum value.

#I11.5. Degpendence of the Needed Length of an Exponential Line on a

Specified Traveling Wave Ratio
P g

The expcnential line, as was peinted out above, can be used as e trans-
former for matching lines ~ith difforent characteristic impedances (fig.
11.5.1).

The exponential line load is a line with som» characteristic imredance,
w2 = Wo. The exponential line, together with line 2 connected to it, is
the load for line 1, which has *he characteristic impedance
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{ The exponeniial line should previde a sufficiently small reflectien

factor at the end orf line 1, and in order to do sc the input impedance of
. . . . by
the exponential line (Zin) should be close to W = W & .

i .
B ~——— L
A fawer ! 1B i
=3 [l Incronewisuatenca aungl fumud 2 Va1 We
j

et

i - »

Fagure Ii.5.1. Fxponential transmission-line trensformer.

A = line 1y B - exponential line; C =~ line 2.
Let us derive tne expression for the reflection factor aa

Zia—W, Zip =W, o
Zin+ W, Zq Wyt

Pu= . {1I.5.1)

where

Zin is the exponential linw's input impedance.
Substitut?ng the expressicen for zin from {I1.4.2) and the values for A Ay
B,, and B; from (1I1,1.14)-(11.1.18), in (I1.5.1), converting, and ignoring
(b/Za)z, we obtain

2@ ' (II.SGZ)

The maximum reflection factor results when '

1“_: J“lg

A,
where 4
n is any integer, or zero
) ves d
Pt et = 50 {iI.5.3)

By using the formuia at (I1.5.2), we can find the relaticnship between
the refiection facter, the length of the e<ponential line, and the relation-
ship of W, to w,.. .

pobhy 2
As a matter of fact,

i

W, o= et = Wye¥,
Irom whence

. (11.5.4)

e
PR LM e
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Substituting the value for b from (11.5.4) in (I11.5.2), and omitting

the factor characterizing the phase, we obtain

1'%
bnﬁi sinal

ipu"-r:—- 22}

(11.5.5)

#IX.6. General Remarks Concerning Step Transition lLines

Step transmission lines, that is, transmission lines comprising sections
with different characteristic impedances, can be used for broadband matching
of twe lines with dissimilar characteristic impedances, Wb and Wg. .

Step lines usually are made up of scctions of equal lengths. The
characteriétic impedance within the limits of each section remains constant.

Different combinations of the number, n, length, i, and characteristic
impedances of sections for satisfying a specific matching requirement are
possible within the limits of a specified frequency band,

The requirements usually reduce to keepinjy the reflection factor ixar
waves propagated from right to left, or from left to right, at a predetermined
magnitude within the limits of the specified frequency band. And it is
assumed that the line to which the energy is being fed has a resistive ioad
equal to its characteristic impedance.

Let us pause here to consider the optimum, or Chebyshev, step transition.
By cptimum we mean that step transition which has e minimum overall length,

L

n{, for a specified jump in the characteristic impedances
N

WS/Wé(N > 1), a specified maximum reflection factor Poax? and an
operating band kz - Xl' We shall not pause to consider the mathematical
analysis, but will limit ourselves to citing the final results of such
analysis, since they permit us to select the data for th; step transmission
line in accordance with specified requirements and problem conditions.

We will cite the data for iwo-step, three~step, and four-step trans-

.. . 1
mission lines.

#11.7., Step Normalized Characteristic Impedances

(a) Two-~step line (n = 2)

The normalized (that is, equated to W6) characteristic Zmpedance

of the first step is found through the formila

.

y—1 . (N—1p (11.7.1)
IV D et a— e ————————— - [ ]
1T 228, 1/- 4igt 0, +N :

8, = arccos (‘A _‘./22),

where

(II.7.2)

1. Sec the article by A. L. Feltdshteyn and L. R. Yavich titled "The

Engineering Computation for Chebyshev Step Trgnaitiona." Radiotekhnika
[{Radio Engineeringl, No. 1, 1960,
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i
A= n ' (11.7.3)
€os (—-- arc cos C)
i
N~—1
C = "‘:‘ZT‘ }/TV. »
(11.7.4)
b= 2Pl
V=17 lnan (11.7.5)
Ipl__. is the specified maximum permissible reflection factor.

max
The normalized characteristic impedance of ths second astep is

W, = NW {11.7.6)

(b) Three-step line (n = 3}

The normalized characteristic impedance of the first step can be

found through the transcendental equation *

Nl w2 ow /T_ N 2VWN .
(g'e.mvm-QWIVN—. W -—-‘;:—' (21.7.7)

The magnitude Wl can be found graphically using equation (II.7.7):

—
cos8, =4 L2, (11.7.8)
W, =VN, (11.7.9)
, N
Wy= o=+ i (11.7.10)

1

A can be found througn formulas (II.7.3) - (1157.6).

(¢) Four-step line (n = &4} :
1V1=VE
. .y s ' ' (11.7.11)
E=—"l—{ 2Vala—N) _ a::\ . {tgzel_%_tgled}_i.
2 | (Yavap N (Ve N
1 | 2Va(a—N} 6l — N? (tg*® 2 1‘ L
— e — = g'6, -+ 1g%6,) } +
-+\/ 4{ (Va+a)? N{Ya+ NP ) N, (11.7.12)
v T : (11.7.13)
a= 2(2'(: ‘—8:)61 - V 4;;‘(2;\ ‘S‘”;t + N ' ’
' . (I1.7.14)
c058‘=/«00$—é-.
cosG,=Acos3——Z—. (11.7.15)

A can be found through (II.7.3) -~ (I1,7.6).

The characteristic (normalized) impedances of the second, third, and

fourth sieps equal
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; wy= K2,
i ‘ Co (11.7.16)
i lV! m. 'u‘,_v" 3
? (11.7.17)

W, = “ij_.

: v (11,7.18}

Tables 11.0.1 « I1.0.3 contaiii the values 6f the step eharacteristie

impedances for specified values of Splmax, N, and A, computed using the

formulas given.

#1I.8., Finding the Length of the Step, 1, and the Waveband within which

the Specified Value for the Reflection Factor lp]max Will Occur.

The length of a step is found through formula

Ay - ’
. I::——Q—“—al'c‘.OSA, (110801)

]
where

. Az is the longest wave in the specified opera%ing band.

The ratio of tha longest wave to the shortest wave in the operating
band is found through !

Ay 7~ ar¢ C0$ 4
= e, . 4
5 arccos A (11.8.2)

Here A2 and kl should be understood to be the wavoclengthas in the step

i line
v )
A, =)‘,°-—.
c
v
A=y, -
where

Azo and klo are the wavelengths in free space;

v is the phase velocity at which propagaticn occurs on a step lines

é is the speed of light

If we are discussing step transmission lines made up of sections of
open~wire lines we can take v = c.

The .full length of the step transition equals

L = nt (1I1,8.3)
where

n is the number of ateps.
Tables 11.8.1 - IX.8.3 iist the corresponding values of Az/xl for each
value of A4, We can, by using these tables, find the needed number of steps, n,

the length of a step, i, ané the characteristic impedances for a sperified
Aszl ratio if the magnitudes of N and !P!max are specified.
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Table 11.8.1
Two=-step line n = 2
P inay =0.02 i [ tman =0.05 1P i, =04
{ A, { . { A
N A w, W, o 7.’5}'1 w, W,,,—l: 3 A v, L2 ';:' N
4w 1

1,2 10,600 1,057 | 1,035 10,143 | 2,388 ‘{o‘.sf.z 1,073 | 1,119 | 0,0907] 4,513 — - - - -
1,4 {0,460 11,09 [ 1,974 | 0,174 1.875?1\0.676 1,102] 1,271 | 0,332 | 2,702 1 6,864 | 1,144 | 1,224 | 0,084 | 4,954
1.6 10,894 1,i36 | 1,407 | 0,186 | 1,695 ¥ 0,500 | 1,153 | 1,387 | 0,150 | 2,343 § 0,772} 1,183 | 1,353 ] 0.i10 | 3,561
13 10,355 | 1,170 1,538 | 0,192 | 1,601 , 0,536 { i,:88 | 1,516 | 0,160 | 2.126 0,710 | 1,218 | 1,478 | 0,124 | 3,021
2.0 0,327 | 1,200 | 1,635 | 0,i07 | 1,538 4 0,498 | 1,29 | 1,640 | 0,167 | 1,993 § 0,665 | 1,250.| 1,600 | 0,134 | 2,725
2,2 {0,307 1,250 | 1,76y | 0,200 | 1,496 ; ©.425 | 1,2i5 | ,760 | 0,172} 1,002 § 0,631 | 1,277 | 1,720 | 0,141 | 3,537
2,4 10,200 1,257 { 1,909 | 0,203 1,461 ’10.447 1,270 11,880 | 0,476 1 1,837 { 0,603 } 1,304 | 1,850 | 0,147 | 2,402
2,6 10,278 | 1,263 | 2,027 | 0,205 | 1,437 0,428 | 1,297 | 2,000 : 0,123 | 1,783 | 0,550 | 1,330 | 1.950 { 0,151 | 2,300
2,8 [0.268 | 1,307 | 2,147 | 0,207 | 1,418 ;‘o,-::s, 1,323 1 2,110 | 0,182 | 1,744 § 0,561 | 1,357 | 2,000 | 0,155 | 2.222
3.0 [0.239 ] 1,520 | 2,256 [ 0,203 ' 1,400 0,400 | 1,349 | 2,203 | 0,084 | 1,710 { 0,515 | 1,38 | 2,168 | 0,188 | 2150
3,2 10,550 1.351[2.360!0.2:0;1.333‘0.558 1,370 | 2,340 ! 0,187 | 1,680 § 0,530 | 1,404 | 2,250 | 0,161 | 2,103
304 0,234 11,372, 2,479 | 0,215 1 1,372 0,376 | 1,300 , 2,440 | 0,188 | 1,656 £ 0,517 | 1,425 | 2,350 | 0,163 | 2,038
3.6 io.zas 1,39i | 2,587 0.2i21 1,364 % 0,369 1.4:0!2.550 0,190 | 1,634 [ 0,507 | 1,436 | 2,490 ] 0,185 | 2,020
3,8 50.233::.41052.69450.213fi.352 ’: 0,361 | 1,430 | 2,660 | 0,191 | 1,615 | 0,496 | 1,466 | 2,590 | 0,167 | 1,957
4,0 }o.zes;=.4zs‘2.a:o:o.2;3;x.343 0.354 | 1,450 | 2,758 | 0,192 x,59950.4ss 1,487 | 2,601 | 0,169 | 1,955
4.2 lo.mg1.4;5;2.905[0,2:“;.336 ; 0.347;2,46712.860 0,194 | 1,582 £ 0,478 | ! 504 | 2,790 | 0,171 | 1,829
4.4 fv.z- ':.463!3,008:0,2:521.329'0.341;1.483'2.960 0,195 | 1.569 10,470 | 1.52! | 2,800 | 0,372 | 1.%05
5.6 0,26 3,479'3.11010.::5.:.aze:o.sss!;.soois.oco 0,195 | 1,558 | 0,462 | 1,538 | 2,590 | 0,174 | 1,881
B8 0.2i21 1,495 ) 8,201 0,006 1 5,315 0,530 | 1,517 4 3,160 | 0,196 | 1,545 £ 0,455 | 1,585 | 3,080 | 0,175 1 1,883
5.0 20.291:,51013.3“fa.s:c.:.szo; 0.326 | 1,535 13,261 | 0,197 | 1,536 § 0.449 | 1,572 | 3,150 | 0.176 | 1,83
5.2 10,206 11,525 s.,;:*.io.z.:’lx.sa.; 0,320, 1,548 { 3,360 | 0,198 | 1,525 | 0,444 | 1,547 | 3,260 | 0,177 | 1,629
++ ] 0.203 1 1,540 1 3,567 | 0,217 | 1,299 0,317 | 1,562 | 3,450 | 0,199 | 1,517 f 0,438 | 1,602 | 3,360 | 0,175 | 1,812
5.6 0,251 ..;3;}3,6:-:10.215\:.zuo,o.mah.sm 3,550 1 0,199 | 1,508 § 0,433 | 1,616 | 3,460 | 0,179 | 1,798
5.8 [0,108 | 1,561 | 3.700 | 0.2i5 | 1,201 o,soo]x.:,oo 3.650 | 0,200 ) 1,600 £ 0,428 1,631 | 3,550 | 0,180 | 1,784
6.0 _o.wa~x,ss:;a.vssjo.z;o‘*.m 0,306, 1,605 | 3,739 | 0,200 | 1,494 [ 0,423 | 1,646 | 3,646 | 0,186 | 1,770,
6.2, 0,194 " 1,504 3,69 . 0,2.9 1 ;.28 0.303 1 i,6i8 ' 3,830 | 0,201 | 1,487 ¢ 0,419 | 1,656 | 3,730 | 0,181 fi750
8.4 10,162 1600 3.981, 0,219 1,200 0,299 1,630 | 3,930 ; 0,202 | 1,479 ] 0,415 | 1,671 | 3,630 | 0,162 | 1,749
.6 ;0,190 4,619 14,077 0,220 1,277 0.296 | 1,643 | 4,020 | 0,202 | 1,473 { G411 | 1,684 | 3,020 | 0,183 | 1,738
8.8 0.iod 1,831 4.0¢9 0,220 §LIT: 0,204 1,686 | 4,110 | 0,203 1.469E0.407 1,607 | 4,0i0 ;0,183 ] 1,728
7O 0uSE LG43 4,200, 0,220 1,20 0.29:’;,66934.19420.203 1,463 5 0,404 | 1,750 | 4,603 | 07184 1 1,720
7.2 30.154)..654 4,352 0.%2, ' 1,267 0.288 X.GSOL,4.280!0.203.1.457%0.400 1,722 1 4,180 0.!84"1-'“0
7o 1085 Ledd 4wa2 G,z x.eca’o,zco‘:.590,4.370!0.204‘1.453'40.397 1,733 ¢ 4,270 | 0,185 1,702
T.6 0.8 LOTT 4,881 6.2 .02 0,203 1,701 ¢ 4.450 ;6,200 | 1,447 ¥ 0,304 | 1,745 | 4,350 | 0,186 1 1 665
T 0LTE 1688 4,620 0,02, 0.250 0,2 :.n:z'r.,ssofo.zos;x'.mﬁo.ssz 1,755 1 4,440 | 0,156 | 1,697
3.0 0078 4,898 ¢ 4,700 0,200 4,057 0.07% 2.722*4.01630.2053i‘439;‘:0.338 1,768 4.525%0.157,1.6&0
8.2 0477 L7% 479 00w 286 (277 1,73 {4.730_; 0,205 | 1,435 6,385 | 1,778 | 4,610 | 0,187 | 1,573
S.4 0.8 LTI 4085 0,222 254 G275 1 1,743 | 4,810 1 0,206 | §,431 ; 0,352 | 1,789 | 4,690 | 0,188 | 1,665
8.6 | 0.174 1,730 4.972 0222 1250 0,275 :.75514.500%6).206 1,428 510.37952.500i4.77010.zssfx.ess
8.8 1 0.T3 L7490 4,080 0,222 1,269 62T 1765 4,950 | 0,206 | 1,423 5 0.377 | 1,810 1 4,660 | 0165 | 1,653
$.0 10,172 3,749 : 50451 0,228 1247 20 1,775 5,007 | a.ae;'i mmgo.sn'; L8271 } 4,942 0,189} 1,646

. | 1 . o ' 1 1 i ! !

. . ‘ : - ; , - ; ‘
9,2 %o.m f 1,759 ' 5.230 1 0,023 ' 1,246 | 0.267 , 1,765 {5,150 | 0,207 | 1,415 i mrzi 1,831 | 5,020 1 o.:ss! 1641
1070 {1,769 . 5,315 0.223 | 1,244 . 0.266 | 1,795 1 5.230 1 0,207 | 1,414 | 0,370 | 1.841 | 5,100 | 0,190 | 1,635
9.6 10,60 1,778 ! 5.4:,0?0.923' 1,243 | 6,254 . 1,804, 5.320 | 0,207 | 1,410 | 6,368 | 1,450 | 5,180 | 0,160 | 1,632
9.8 ;o.xasix.7a725.f.ssgo.223 1.241:0.‘262'3.8.4[5,40520.2\38 a.«oa*e.sss!x.sso'is.zeoio.xsx 1,624
16,0 io.zssgx.'lga{&.sss:‘o.zsa{1.237 9,261 z.aza@a.«asio.m i.mlo.a&s? x.avo.!s.m;o.xsxsx.sw
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Table 1I1.8.2

Three-step line n

RA-008-68

=3

17l mag = 0,02

|7 lpnqy = 0,05

1P lmax = 0}

' Nt A

Wy

Wy

W,

{

—

Ay

A
A\ 4

Wy

Wy

W, l

{

——

A

A
A 4

W,

v,

>
-

l.£0.781

1,410,652
1,610,621
1,800,584
2.0',556
2,200,537
2.4'0,521
2,610,508

1,047
1,067
1,087
1,105
1,120
1,133
1.146
0,160

1,095
1,183
1,265
1,42
i414
1,483
1,549
1,612

1,149
1,312
1,472
1,627
1,786
1,942
2,004
2,241

(£

8.0 .‘-90'
3,0' 0.\\\1
ﬂ

|
|
lo..

A )
o et

420,441
4.4:C'§43¢.
5.60,0%
5810, 40
5.0;0.-;24
5.2,0,420
5.4 0 416
a.ov.wlé
5.6,0,410
6,010,407
6,290,403
- 3.400,402
e.slo,‘:oo

75! 1,194

201,221
6;1.229

L1172
1,183

1,204
1,213

1,237
1,246
1,253
1260
1,267
1,273
1,279
1,285
1,292
1,299
1,304
1,309

1,673
1,732
1,769
1,844
1,807
1,949
2,000
2,049
3,008
12,145
2,10}
2,236
2,250
2,32
i2,366
2,408
2,449
2,490
2,530

1,314

\

.

l2.569

2,301

2,536

2,680

2,823

2,968
3,115
3,255
3,395
3,534
3,671

3,810
3,947
4,085
4,222
4,338
4,489
4,619
4,733
4,889
5,023

0,107
0,131
0,143
0,151
0,156
0,160
0,163
0,165

0,167
0,171

0,173
0,174
0,175
0.176
0,177
0,178
0,179
0,180
0,180
0,181
0,182
0,182
0,183
0,163
0,184
0,154
0,184

3,6574 0,924
2,830,0,830
2,48770,775
2,317;0,736
2,21040,703
2,12940,685
2,072 0,666
2,02710,651

1,065
1,090
1,13
1,133
1,149
1,166
1,179
1,193

1,005
1183
1,265
1,342
1,414
1,483
1,548
1,612

1,98710.637
1,91810,627
1,02000,6:5
1,605%0,606
1.67240.598
1.85110,590
1.83:10,584
1,82000,577
1,80610,572
1,795}0,566
1,784 0,560
1,77340,556
1,76240.551
1,75210,547
1,74410,542
1,136$0,539
1,72810,536
1,72230,531
1.715{0,529
1,710]0,524

l 206
1.213
1,228
2,237
1,246
1,256
1,267
1,276
1,284
1,292
1,300
1,307
1,314
1,321
1,328
1,335
1,342
1,348
1,353
1,359

1,673
1,732
1,789
1,841
1,697
1,940
2,000
2,049
2,008
2,195
2,191
2,236
2,250
2,324
2,366
2,408
2,449
2,490
2,530
2,569

1,12710,0624
1,2840,0942
1,43810,109
1,5890,118
1,73910,126
1,888 10,130
2,0360,134
2,17910,137

———n =

2,324
2,462
2,606
2,749
2,889
3,025
3,156
3,202
3,427
3,500
3,502
3,825
3,957
4,088
4,217
4,345
4,473
4,599
4,730
4,887

0,140
0,142
G, 145
0,146
0,148
0,150
0,151
0,152
0,153
0,154
0,155
0,156
0,157
0.158
0,159
0,159
0,160
0.161
0,161
0,162

7,0068 ~

4,31010,935
3.,592:0,866
3,22440,851
2,971:0,821
2,849]0,5802
2,732[0,787
2,645;0,768

1,091
123
1,185
1,177
1,195
1.2
1,227
1,241

1,095
1.183
1,265
1,342
1.414
1,483
1,549
1,612

1,100
1,241
1,388
1,529
1,674
1.817
1,956
2,095

0,037
06,0772
0,088
0,096
0,102
0, 106
0,311

2.56910.754
2,51840,742
2,4560,732
2.41610.721
2,379%0.713
2,31310,765
2.31710,697
2,28710,611
2.2660,685
2,241 10,679
2,270,674
2,20230.668
2,152} 0,664
2,167} 0,659
2,15110,655
2,137110,649
2,12640,646
2.10740,643
2.10010,639
2,08210,636

1,25¢

1,266
1,278
1,288
1,299
1,311

1,322
1,331

1,339
1,347
1,336
1,365
1,373
1,380
1,387
1,395
1.402
1,408
1,414
1,420

1,673
1,732
1,789
1.844
1,897
1,949
2,000
2,049
2,098
2,145
2,191
2,236
2,280
2,34
2,366
2,408
2,448
2,49
2,530

2,5¢9]4

2,230
2,370
2,506
2,640
2,77
2,899
3,025
3,156
3,285
3,415
3,540
3,662
3,787
3.913
4,037
4,138
4,219
4,403
4.5%
,636

3
0,114
0,117;3

0,1i9
0,122
0,i24

0,127
0,139
0,136

0,132

0,134
0,135
0,136
0,135
¢,138
Q,139
0,140
0,140

0,125

0, 13112

0,13442

a.s!o.:m?
7.0!0.395;‘
7.2,0.395
7,4;0.391
7,6,0,389
7,5,0,387
3,0 ‘0. 385
8, 2;0 333
8.4,0,38!
8. 50 379
8.80,377
9,0,0.376
9,20,374
9,4{0,373
9,610,371
9.8,0,570

I0.0P.&GQ

1,320
1,325
1,330
1,33
1,340
1,345
1,330
1,354
1,358
1,362
'!\‘)7
1,37

1,375
1,380
1,384
1,387
1,391

2,608
2,646
2,683
2,720
2,757
2,793
2,528
2,864
2,60
2,933
2,966
3,030
3,033
3,066
3,098
3,130
3,162

5,152
5,263
5.414
5,543
5,612
5799
5,927
6,036
6,185
6,314
6,437
6.55¢
6,691
5,812
6,936
7,066
7.188

0,185
0,185
0.185
0,185
0,185
0,187
0,187
0,187
0,188
0,188
0,188
0,189
0,189
0,189
0,189
0,190,
2,190

1,76210,522
1,69740.519
1.697}0.516
1,68780,515
1,68370,513
1,67710,511
1.673%0,508
1,66740,506
1,663£0,504
1,65710,502
1,65370,500
1,65010,458
1,646:0.436
1,64210,493
1,63930.491

:.m%c,m :

1,634;0.488

1,365

1,370
1,375
1,380
1.385
1,390
1,395
1,400
1,405
1,410
I.414
1,419
1,423
1,427
1,430
% 2

1,440

2,608
2,645
2,683
2,720
2,757
2,793
2,628
2,864
2,898
2,633
2,968
5,000
3,033
3,066
3,002
3,129
3,162

4,982
S, 11
5,236
§,362
5,487
5,612
5,735
5,857
5,979
6,009
§,2:3
6.342
6,465
6,587
€,713

0,163
0,163
0,164
0,164
0,164
0,165
0,i65
0,166
0,166
0,166
0,167
0,167
9,167
0,166
0,168

6,829{0,168
6,94710,169

2,073%0,633
2.06510,620
2,05440,626
2,051 0,623
2,0:440,620
2,037£0,6'8
2,027 ;0,615
2,020} 0,612
2,0i350,610
2,007¢6.,607
2,000, 0,605
1,99370.603
1,95740,601
1,97210,559
1.67230,597
1,967 40,564
1,86130,692

1,426
1,433
1,439
1,444
1,449
1,45
1,461
1,466
1,471
1,476
1,481
1,485
1,490
1,404
1,498
1,503
llm

2,608
2,646
2,633
2,720
2,757
2,793
2,828
2,564
2,898
2,933
2,956
3,000

3.033!

3,006
2,088
3,130
3,162

4,769
4,884
5,003
5,183
5,25
5,36¢
3,477
5.593
5,710
5,827
5,942
6.039
5,173
5,292
3,473
6,520
§,63%

0,143
0,152
0,142
0,143
0,144
0,144
0,145
0,145
0,146
0,148
0,146
0,147
0,147
0,148
Q. 148
0,149
0,149

.
d
vt
-—

2,402
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#II.9. Finding the Reflection Factor within the Operating Band for

a Step Transition

The reflection factor changes within the limits of the operating band.

The dependence of the reflection factor on the wavelength is found through

YV iTy =i
el A (11.9.1)

Here ITnl2 is the so~called effect.ve attenustion function
|Tult= 1+ 07322, (11.9.2) -

where

Tn(coa 6/A) is a Chebyshev polynomial ¢f the first type of n¥ order

from the argument cos 0/A,

n is the number of steps.
'
cos & _. cos 6 \? )
T’(A)_z(a)"l. ] ‘ '
T,(—(ﬂ),,—_ 4( t:ose)'_3 cos 6 ;
A A A . ’
T(——ms—)=8 cos 0 .—8 ::;:O\a i (11.9.3)
“a ( A ) ( e i

where
@ = 2ml/) is the electrical length of the step;
A is the waveléngth on the step line.

Substituting the value of T.. found through {II.9.3) in (II.9.1), we

11
can find the dependence of p on ).

PR,

o Arend ARt aomrd s F Y sl ey § 2k Mt g 0 T e % et i W e ) e w4

PR A o N weae

e betd




RA-008-68 A

Chapter 111

COUPLED UNBALANCED TWO-WIRE LINES

#II1.1. General

The preceding chaptei's reviewed balanced two-wire lines. One often
encounters unpalanced two-wire lines in practice, and the computational
apparatus in éhe foregoing is unsuited to an investigation of these le*‘ter
lines.

Figure III.1.1 shows examples of two unbalanc;d lines. In the example
in Figure III.l.la, the unbalance is the result of dissimilar conditions ;t
the end of conductors 1 and 2 of the line, while in the example in Figure
I1I.1.1b, the unbalance is the result of the difference in the diameters of
conductors 1 and 2. There are other reasons for an unbalance, such as un=
equal potentials at the generator end of conductors’l and 2, unegual

heights of the conductors above the ground, etc.

* 2

(a) zg b
' @

2

(v) =5 Z

2,

[
Pz 222 e
Figure III.l.1. Examples of unbalanced lines.

a - dissimilar conditions at terminations;
b - dissimilar conductor diameters.

Unbalanced lines, like balanced lines, have incoming distribuied con=-
stants, inductance, capacitance, resistance, and leakage, per unit line
length. We will limit ourselves to an analysis oi unbalanced lines,

disregarding their losses (R1 =G, =0).

1

#I111.2. Determination of the Distributed Constants and Characteristic

Impedances of Coupled Lines

(a) Distributed capacitances

The electrical system, which is an unbalanced line consisting of two
conductors of identical length (1), should be considered in the light of
three different distributed capacitances:

Cl’ the capacitance of conductor 1 per unit length of the system;
Cz, the capacitance of conductor 2 per unit length of the system;

012’ the capacitance between conductors 1 and 2 per unit length of the
L4
' system,

In order to find capacitances Cl, Cz, and C12 let us use equations which

associate ihe static charges and potentials in the system of conductors with

¢ -
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¥
g R i
each other. In the case of two conductors, these equations are in the form 3
LY 4
" : &
Vi=qion+ @ }. (111.2.1) ;
Vi=¢:9m+ o C 3
P
vhere N 3
4 Vl and V2 are the potentials for conductors 1 and 2j 3
q, is the linear charge density, conductor 1j 5
q, is the linear charge densily, conductor 2; i
¢11 i, the linear potent.al factor for conductor 1, numericelly equal i
2
to the potential induced in conductor 1 by its own charge with® §
) linear density equal to one; :
' ¢22 is the linear potentisl factor for conductor 2, numerically equal :
to the poteatial induced in conductor 2 by its own charge with :
3 X _17 linear density equal to one; V)l ’ 2
j ‘ P12 is the mutual linear potential factor, numerically equal to the :
potential induced in conductor ! by the charge on conductor 2 with ) ]
. b
linear density equal to one; . Q
, 9oy is the mutual linear potential factor numerically equal to the ' 3
potential induced in conductor 2 by the charge on conductop 1 with %
. linear density equal’to one. . f' f
Potentials P11 sz, Py Gy can be found throug? Academicidg M. V.
Shuleykin's method, as well as by other known methods. When the lengths of P f
conductors 1 and 2 are the same, 910 = Pop° ) g .
We should note that it is not mandatory for conductors 1 and 2 to be ;
single conductors. Each conductor can, in turn, consist of a bystem of f
# 4
conductors under a common potentiale. N N \
‘ o
Solving equation (IXI.2.1) for q, and q,, we obtain : ) ;
i 3
P ....?L'_V ' 2 3
) . §i=7 Vi e ;
1
o= B Y, — By, (111.2.2) E
A ' A 2
4 - ) §
where . : ’ %
2 ¢
; A = onus ~— PuaPn = ta — i ;
H] ' .
From formula (1I11.2.2), ¢22/A is the charge incoming per unit'leng{h of

conductor 1, when the potential on this conductsr is equal to one, and the
potential on cenductor 2 is zerc; that is, there is capacitance C

Cuctor 1 per unit length of the system.

1 for con» !

5 IRTRORRpnO I o 4

Similarly, ¢11/A is the capacitance 02 for conductor 2 per unit length
t} of the syster, and ¢12/ = ¢21/A iz the mutual capacitance C
ductors 1 and 2 per system unit length.

12 between con~

1.

¢

As A, Pistol'kors. Antennas. SGyaz'izdat, ~s47, Ppe 227-238.
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Accordingly,
Cl =% 2’—1- i1 -—---—-?" -
4 Qu¥n— ?fz l
Co=1 0 % .
A fu?n - 7?3 '
{111.2.3)

Cn P12 Fis
4 *Fufes— ‘f?z

From formula (IXX.2.3), if the mutual capaci‘ince between conductors 1

and 2 ia zero, corresioading to 95 = 0,

. Cl=cxo="" P d
fu -
. Col (I1I.2.4)
Cz = Czo =] — :
P23
whera ;‘w and C"o are the capacilonces of condictors 1 and 2 per unit

length when there is no link between them; that is, these are the capacitances
¢f single conductors 1 and 2 per.unit length.

When V and 2 are measured in volts and coulombs per meter, respectively,
and { is in meters, C is in farads per meter,

(b) Distributed inductances and line mutual inductance

Two magnitudes which characterize the distributed inductance in an
unbalanced linc must be considered:
Llo,- the inductence of conductor 1 per unit length, the influence of
conductor 2 not considered;
Léo’ the inductance of conductor 2 per unit length, the influence of
conductor 1 not considered.
The distributed mutual inductance of an unbalanced line can be characterized
by the magnitude Mlz’ which is the mutual inductance per.unit line length.
Using the known relationship

. 2.
L (henries/meter) ¢, (farads/meter) = 1/9‘106(second32/meter )

and taking equation (III.2.4) into consideration,

) , .l

NS S I1I.2.
Lo = Sigvwgy, = gige ¢ 5)
SIS R B
Similarly, ST gl0e,, 9.0 Va2 '
(11.2.6)

1 . -
My = oo T
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3 A i {¢) Line characteristic impedances
A lossless unbalanced line conaisting of two systems of conductors
has three characteristic impedances which can be found through formulas
JS (I11.2.3), (II.2.5) and (I.2.10): 1
3 ..' : ) ' v, = 1 = I 91— ?|§_
A ' 3'1.0’6“ 3.10% P13 . ~ ‘::
: i —o? T4
' . i W, = - IL.C - - llo. 1P — %12 , »‘
Ny . . . : . . . 3
. ! e :‘ : ?“ 2 ‘o (1113207) A
k. N: ) S W= 1 = i Pt — 912 . \:j
L 17 300C, 3000 g . 4
6 ) . e :
- , where
i .. . -
: Wl ig the characteristic impedance of conductor 1 of the system; 2
, . 2
or ) Vz is the characteristic impedance of conductor 2 of the system; =
! i
i H le is the mutual characteristic impedance of conductors 1 and 2 of 2
) o 3
: the systom. 4 x
: If the mutual capacitance between conductors 1 and 2 equals zero :
E ' > (Cl2 = 0), by substituting the values for Cl'and Ca, taken from equation .4
X ’ (IXI.2.4) in the case cited, ve obtain -
o . : . . ~
' = 5 ——— R —— b
‘ L Wi=Wi=oce ~ 5w ™| ‘
e . . y ’ (111,2.8) s
- - R et — e ] Es
- ] W3 =Wa 310G, 3100 7% s 3
1 . 1
: 1 When 012 falls to zero, le becomes infinite. y
3 3 Example 1. Compute the linear potential factor for the unbalanced line . E
. ; shown in Figure III.2.1. . e
7/ 3
B 3 — s/ cy
TR : ./// 2
i ¢ “ = X ¢+&-Ti-0 e 4
3 g 2
28 2 .
I i
! 7
] t 3
Figure III.2.,1. Schematic diagram of an unbalanced line. U
3 X The line consists of two systems of conductors., The first system (1) con~ N
P . . . . E
=, ¢ ; sists of eight cond.ctors, diameter d = 7.8 mm, length { = 120 meters, conw= pe
‘ z nected in parallel and positioned to form the generator of a cylinder of -
f; 3 (R} diameter D = 130 cm. The second system (2) consists of two conductors of ‘
% the same diameter and length as the conductors in the first system, and these 2
i 9 are connected to each other. The conductors in the second system are g
; ! LR
P " 4
[ ‘; 4 . B
N 4
' i - L - o
k. Y A
3 3
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parallel to the conductors in the first system and positioned close t¢ the

l ' 3 ‘ / .
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* Y. . center nf that system. The distance between the conductores in the second

5 9
.a », .
E 4 . system is & = 20 cm.
3 ' 1. Find the lirear potential factor for the first systea (q-u).x
: i ‘ The average potential irduced in conductor I (fig. III.2.1) by its uwa
i charge equals
1 . . -
: :'" : ¢II&V = 9.]0° 20‘ (lﬂ 'T“ ‘—‘00301) ﬂg'l@’&;'
k. E ‘ :
i 'i where
Ve oo f .0 is the linear charge density for each ef the csnductors ia the first
. system
: oy = 9,/8. .
. The distance between conductors I and II and I and VIII equsal
SRS : . . . D 30
s ‘ : g1 =Sy =2 sin=e =57 cm-

The averagc pntential induced in conductors 1I or VIII by conductor 1

Y

A equals

A ) ) !
3 : ¥t Hew =V Vittay= 910123 ( In a7 -—0.307) = 9:10%10s,,
I Similarly we find
N 1 1110w = P Vitar= 910"+ 8,833 9/ 1y, =% 7 ap=29-10%:8,310y3

A . 9 vay = 9100.8,153,

The total average potential ‘on conductor I from the charges carried by
the conductors in the first system equals .

) Pray= 9107 (20  2.10 - 2:8,83 4 2.8,31 -4 8,15) 0 & 9-10%52,63, we}
=9.10%10,33;. -

Since all the conductors in the first system are symmetrically positioned,
their average potentigls are the same. Accordingly, P av is the average.
potential for the entire first system.

The linear potential factor for the first system equals

9

9, = 9+ 107 - 10.33.

2. 7ind the linear potential factor for the second system of conductors

(@) .
(1) The average potential for the second system from its charge

equals ..

. : t . 231 -
Giay'= 910025, [2 ( In—— 0.307)+ n -&-] -
©29:10%32,20 1= §-10%15,1¢,,

where

o, is the linear charge density for each of the conductors in the second

systeme

: 1. All formulas cited heruv for potential calculations were obtained using
Howe's method.
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(2) The linear potential factor for the second system equalse

g

(‘922 = 9 * 10 . 16--‘.0

3. Determine the mutual linear potential factor ((pl?).

(1) The average potential for the first system of conductors,

induced by one of tho conductors in the second system, equals

B ¢ of . .
P12a, 10025 (‘ In > -—o.m} 72 9:1009,633,. -

() ‘The average potential for the first pystem of tenductora,

induced by both conductors in the second system, equals

Putg,, N Hizay== 9:107:2 0,5373=9:10%19,083, = 9-10°-9,63¢y,’

The mutual linear potential fector is ‘Pl?. =g » 109 * 9.353

Example 2. Find ’a’l,

D1 ™ P1ov

wz, and w,2 for en unbalanced line, the data for
1 v

which are as given in Example 1.

The magnitudes Cl, c
(I111.2.3) and (III.%.7).
Substituting

we obtain

ot Cip0 i1 W, and W, are found ¢hrough formulas

" g = 10,33-9-10°,
9332 16,1.9:10, ’
us == 9,53-9-10°,

9.1
W, =140 ohms, )

{
€, =0,215 —— (farads/meter) .

|
Cy = 0,138 = (farads/meter).

W, =217 ohms,

i
Cyy = 0,127 AT (fargds/meter)
Wy = 236 ohms.

. #11X.3. Pistol'kors' Equations for an Unbalanced Line

Let us introduce the notations

]
.Xx =*.°' L= “Iugow

N . l .
X:=”Lm=w?zzm '

‘ ) ) . (IIX.3.1)

C Xp=oM,= “?um;;'

blnwcl=w 2;—’-

b,-::mC,x:w%‘- ;

b,.::mC,.nwz;—'- (III0302)
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I1 is tiie current flowing in conductor 1} I2 that flowing in conductor 2.
Let us select an infinitely small slement of an anbalanced lise at

distance z from its end.

The potuntial drop across slement dz of conductor 1 equals

) dV‘ = il'lxldz‘ + ‘I‘xlgdz'

ileldz is the enf of self-induction in element dz;
iszlzdz iz the emf of mutual induction in element dze.

Dividing both sides of the equality by dz, and designating Vi t dll/dz,

’ V;= ixllg +_i_XnI,. ' . (111'3'3)
Similarly

V;=‘= ix;’g'}"ixﬂll' (III.B-IQ)

The change in the curreat flowing in element dz of conductor 1 eguals

©dly= fidz = ibYdz — 1633V odz,
where
iblvlgF is the curraznt leakage due to the capacitance of the element of
conductor 1 to ground;
iblzvzdz is the current leakage due to the capacitance of the element of
conductor 1 to conductor 2. *

Dividing both sides of the equalily by dz,
L=ibVy—ibaVy: {I11.3.5)

Similarly,

I =6V, — ibui. (111.3.6)

The minus signs in front of the second terms in the right-hand sides
of equations (III.3.5) and (IIX,3.6) are taken from the signs in the equaticus
at (III1.2.2). The minus sign means that mutual capacitance causes a re-
duction in current leakage in the case of potentials with the same names.
Let us reduce these equations to a form which will be convenient Zor
analysis in order to integrate the differential-equations at (IXI.3.3)~
(I11.3.6). Let us differentiate equations (III.3.3) and (III.3.4) with
respect to z, and substitute the expressions for Ii and Ié from equations
(IIX.3.5) and (II1.3.6). Carrying out the oporations indicated, and making
the fransformations, _ . _ g
v +'a’Vl==0 . )

Vi +atVy =0 (X11.3.7)
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These equations are second-order homogeneous linear differential equationsa

They can be satisfied by the following functions

. —

V,= /i,c05a..+|B,sma:}

Va = Aycosazot i B, sinaz (111.3.8)

where Al’ Az, Bl and 82 are constunts of integration which can be found from
the conditions at the ends of conductors 1 and 2,
Substituting the expressions Vl and V from {II1/3.8) in equations

(11X.3.3) and (X1X.3.4), and solving them w1th reapeci to I,-and I,

1
B B, A .
Joes [ B A A
{ (W V")cmaqu(wx Mnazl
8 8 A
l, = {8 _ B A A ! (111.3.9)
: (W, W,,)cos” +i w, )Si““z;

Formulas (IXI.3.8) and (II1.3.9) were derived by A. A. Pistol'kors.

#TII.4. In-Phase and Anti-Phase Waves on an Unbalanced Line

Aralysis of how unbalanced lines function can often be simplified by
introducing the concept of in-phase and anti-phnse waves. The in~phase wave
on a twin line is a weve in which the currents and the potentials for any

cross section of the line are identical in absolute magnitude and phase for
both conductors (fig. III.4.1a).

(a) o ) .
Z ’~‘\\__,/”—‘\\‘_,/’f
’\/

Figure IIl.4.1. In-~phase {a) and anti-phase {b) waves on a line.

The anti-phase wave on a twin line is a wave in which the currents and
the potentials for any cross section of the line are identical in absolute
magnitude but opposite in phase for both conductors (fig. I1I.4.1b).

Regardless of the current and potential distributions along conductors 1
and 2, we can represent them as the sum of two components, the in-phase com-
ponent, and the anti-phase component. In fact, lei V., and V_, the potentials

1 2
for conductors 1 and 2, be functions of z.

Obviously, we can also find those majnitudes of Vc and Vn which satisfy

the relationships

—~ vl = Vf 'i'n Vn

V,QV‘——V M (III.‘A.I)

n
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for any values of V1 and Vz. ’ .
Solving (IIX.h.1) with respect to V_ and V., l

Vem o Vi + Vi)

A ’
] . (111.4.2)
3 Vo= Vi— V2
~ i . where
. : . t“ ,A' . :
A : Vc is the in-phase potential;
Y Vn is the anti-phase potential.
-
v S ' Accordingly, the potential across each conductor can be split into .
e two components, one of which has identical values of absolute magnritude and

phase for both conductors, while the other has values wnich are identical

! with respect to absolute magnitude, but opposite in phase.

The in-phese and anti-phase currents can be expressed in terms of similar

E ! formulas ..
R 1 :
- , . lc““{‘(’x'f‘/z) ‘
. 8 ) ) y - (111.4.3)
o . [n=‘_2“(lx—la)' o
LR ' Substituting the expressions for Vl, Vz, Il and 12 from equations
. . {XIX1.3.8) and (IIX.3.9) :n equations (III.4.2) and (III.4.3), we obtain
- | ..
g ! iR 1 .
; : . V.= 5 [(Al-}-A,) cosaz-{-x(Bl 4 B,)sma z] (XIII.hok)
. § 1T L . ' :
3 A V,,=—é-l(A,—-A,)cosaz+x(B‘— ;) sin az]
e . . .
S 1 17 1 1 )
RN - -1 =—~{[B (——--—-—- /—-—-——-)]cosaz
.. 2 ) ! U4 Wxa’+ \Wy. Wi + e
A . -{-x[A1 (—-—-——L-)-{- (»——-—-——)] smaz} '
AN . . l W1
B ‘ .
I =—-{[B‘( 4 )—- + ]cosaz+
"VH . (III.IkOS)
+ x[A, (—-+ ) A,( + )] slnaz}
Wis
: ‘ #I111.5. Examples of Unbalanced Line Computations
] "; ! ', Example 3. Find an expression for the voltage and current in a line,
. ; : the sketch of which is shown in Figure IlI.l.la.
g E; Solutior., Let 22 be the line load and Iload the surrent f{lowing in the
A “ line load. Conductors ! and 2 have characteristic impedances wl, W?, and
‘. ‘g W, e ) N ¢
\ - E 12 . { H
- "
1 ‘ :
- .
( ) 3 i
3 3 i
O " 3 - - ’
Ly ‘ T
( i
b :

| g
’,
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§ < Let us use the boundary conditicns at the beginning and end of the line
: ar to find the constants Als Ayy By and B, in formulas (I11.3.8) and (111.3.9).

At the end of the line, where z = O,

11 = Iload (111.5.1)
o}

At the beginning of the line, where z = |
I = -1, . (111.5.2)

Substituting the expressions for Vl’ Vz, Il’ and 12 from formulas
(111.3.8) and ({I1.3.9) in formulaas (II1.5.1) and (III.5.2), and assuming

z = 0, or z = {, respectively, we obtain a system of equacions for finding
‘ the sought=for constants

1 s Y B RIS S I RN M AT S I S
Y-t
[\
f

'
i
§ Jii
. Ay = ——._-—L .
! { ' Wi
. i}
' } B, _ B
: Toaa  =\p, W,.)
: By 2
. W, w,, . ¢
. - r(a, By (111.5.3)
3 ' — — == Ycosal i —-—-— slnal]
,\ SR e, v, W o ,
3 . 8;, B Ay A4 ] ’
2 oo Yeosat i (| 2 =L Vsinal (=0
, ) [ v, "W, v, ",

Using the system at (I11.5.3) we can find the constants of integration,
b and using formulas (YI1.3.8) and (IXI.3.9), we can find ;he potential and
current distributions in any of the conductors. These expreasions are complex
in their general form, and will not be cited here.

' ¥ ;‘ 5 Ug:-i'g F‘B
< . ] L3 l .

; . @
xj

Figure III.5.1. Schematic diagram of a shielded coaxial line.

v

Example 4. Find expressions for the voltage and current fov a shielded

coaxial line, the schematic diagram for which is shown in Figure IiII.S5.l.

1 is the line's shield, 2 is its inner coriductor,
Solution. Let us introduce the notation:
U 1is the voltage applied to the line;

Z1 is the irpedance of linz grounding;
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Z, is the line load;

“

{  in the line length, 3

1, Wz, and w12.

Line unbalance can be established by the non-identity of the distributed con-

Conductors 1 and 2 have characteristic impedances W

stants on conductors 1 and 2, wherein W AW 90 and one of the conductors
(conductor 1 - the line shield) is grounded through impedance Z at the point
where the emf is sunplied.

Let us assume that the inner conductor is completely shielded, that is,
that the shield is solid, and 02 = C12' 80

W o=V (11X.5.4)

2 12°

[

The general equations for the unbalanced line (III,3.8) and (IIX.3.9),
express tne current and potential distributions for the line.
The line's boundary conditions are:

at the termination, where z = 0

Yy ¥y = 1,2,}

 h=—1, ; (111.5.5)
at the source, where z = {

Vi—Wy=U } (111.5.6)

i=—(h 12

v I dI_f I11.3.8
1t Voo I, and I, from ( 3.8) .

and (IIX.3.9) in formulas (III.5.5) and (117.5.6), and assuming that z = 0,

Substituting the expressions for V

or that z = 1, respectively, we obtain a system of equations for finding
the constants of integration. .

The solution, with formula (III.5.4) taken into consideration, yields

the following expressions for the constants of integration

B,=0, B, =U !
‘Tcosal-{-lsiacl
: . b (111.5.7)
11 _0 A.—-U
W' 7—-cosal+ismat I
W, )

Substituting (III,5.7) in equations (IIX,3.8) and (1II.4.2), we obtain

expressions for the potentials across the outer and inner conductors of the

‘ line, V1 and V2, as well as for Vc and Vn. Vl proves to be zero. This is

as expected, because in the case of a complete shield all the elecirical
lines of force between the line's inner conductor and its shield are contained
within the shield (they do not penetrate beyond the shield). Accerdingly,

Vé is the anti~phase voltage across the line (Un). The expression for Un is {

i I R LR oid R e T
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4

7,ces024-iWysinaz 3
) —_ iy a s Y - '_"‘""‘—‘"j"“"". I 5. ;
« s UneaVa=VyeaVy Lycoss b iWysinal (111,5.8) 3

iz

e o £

Substituting formula (IIX.5.7) in (I11.3.9) and (III.4.3), we obtain

eRe.

2

the expressions for I1 and 12‘ as well as those for Ic and In. Fusrther,

12 = -Il; Ic = 0, and

<,

U Wycosaz-piZ,sinaz
W, Zycosxil-iW,sinal (111.5.9)

Ih=

The line's input impedance equals

P i e

. 3 . v
s 5 * y =

ez, facoral i iysinal

: 4in = Tt SV s al -1 Zysinal (111.5.10)

. From formulas {I111.5.8) and {I11.5.10) we see that in the case of con-
: plete shielding of the line's inner conductor the expressions for voltage,
current, and input impedance for the shielded line coincide with the cor=-

i responding expressions for the conventional twin (balanced) line.

. Let us note that the resualts obtained do not change if the line is

' grounded at some point other than at the point of supply. We can prove this

by considering the condition at (XII.5.6), related to some point z = zl

rather than to the point z = {.

e vemmea R

The foregoing formulas were abtained for an arbitrary Zl' It is

apparent that they will remain valid when Z1 = C., which corresponds to the B
+

ideally grounded line, and when Z.1 = o, which corresponds to the ungrounded

LY

line. . ! .‘}'
{ So, from what has been discussea here, we can use the computational .
apparatus of the theory of two-wire %alancad lines in ‘the case of a completely ' -
shielded inner conductor of a sinlelded line.

The analysais ﬁade aid not consider ithe conductivity to ground of the emf
source and line load. When these conductivities are taken into consideration
the analysis of the shielded line gets complicated and the computational
apparatus of the theory of two-wire balanced lines would have to be discarded,
even in the case of complete shielding of the inner conductor. .
Example 5. Find the transmittance of a multi-conductor unbalanced linee.

. Often used to Teed unbalanced antennas are unbalanced transmission lines

rather than cables. Here the solid shielded conductor is repiaced by a

series of conductors positioned around an inner conductor consisting of one,
or of several conductors. The shielding conductors are grounded at the
transmigsion line source and termination, the diagram of which is shown in ]
Figure III.5.2. l ﬁ
In lines such as these, because the grounded shield is not solid, only

some of the current flowing along the inner conductor has the shield as the A
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return. The rest of the current has the ground as its return. It is of

irteresct to find the ratio of the current with the ground return to the total .

PPV

current flowing on the inner conductor. The higher this ratio; the greater

the loss to g;‘ound.

TN

[
et 2y

Figure 1IX.5.2. Schematic diagram of an unbalanced line.

JRUOPE N

Solution. The curreat with the ground return is the in-phase component

Oy AgY g

of the current (Ic). Accordingly, the problem is one of finding the ratio

Ic/Iz' We shall call this ratio the shield transmittance.

In the case given

: V. = 0. (I11.5.11) ‘ vE
1 \4

From formula (III.3.8), and considering (III.5.11), we obtain A = Bl = 0. if

Equations at (111.309) can be “ransfermed into ]

Iln—-w-—!-(l},cosaz+lzl,slnaz)
13
1
Iy= &—(B,cosaz%l/‘i. sinaz) (I11.5.12) .
A .

The in-phase component of the current equais i

: 1 1 . :
em g b 0= (=) Qs A (g5 )

The anti-phase component of the current equals
i ! 1, —1 _l__(_l__ —l-)(B cosaz-Ppicdssinaz)
a=gth—ly= = Gty ) B sids " (II11.5.14)

From formulas (III.5.12) and (III.5.i3) the ratio of the in-phase current

to the total current flowing on the inner conductor, that is, the transmittance, :
equals ’ . 3
1, Wi — W,
AT (111.5.152 :
&
. The ratio of the in~phase component of the current to the anti~phase .
' component, from formulas (III.5.13) and (II1.5.14), equa's J
g ’ A Wy — V7, 3
- I,,' - W"+W‘ . (III-S.IG) B
The ratio of the current flowing in the shield to the current in the - i/

inner conductor from formula (I1i.5.12), equals

5 ,
‘ ?

:

i
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hy T N

! :
- ,I 2 e . -T- e je ‘}.
o - LT, = SW W - (F11.5.17) :
- 1 i
; : In the cage of the lire based on the de*a from examples I and 2, we
obtain the following quentitative relationships .
4

: 3 - le Wy, 226—27 19
: —te ey = - - = 0,04
. A 2W,, 2.236 . 4712

¢ le W=V, o 26—27 19 o
I Wiy -+ W, 236 4 217 453 =T
X R W, - U7
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Chapter 1V

RADIO WAVE RADIATION

e e e o e vl A 1 ey ] B Samy

#IV.l. Maxwell's First Equation

7
i

Heinrich Hertz, in 1887, established experimentally that it was possible
to radiate radio waves, that is, to radiate and propagate free electromag-
netic fields in space. He established the theory of the elementer§ radistor

of radio waves now :mown as the Hertz dipole. Hertz, in his investigations,

JARAVE e SR 4y

P T S S

relied on the writings of James Clark Maxwell, who, in 1873, published his

-y

“"Treatise on Electricity and Magnetism." Maxwell’s contribution was a matﬂeo
matical theory for the electromagnetic field. He formulated the relationships
between the strengths of electric and magnetic fields, and the densities of

current and charge, in the form of & system of equations known as the Maxwell

G r b b A A At ebar XePaw r A 3o s

equations. It is from these equations, as well as from subsequent work done
by Poynting, and other scientists, that the possibility of obtaining electro-
magnetic waves derives. Hertz provided the experimental confirmation.

The initiative and the practical solution to the problem of using radio

waves for communications purposes belong to the Russian scientist Aleksandr
3 3 3 Stepanovich Popov, who built the world's first radio communication line.

It was he whe suggested and built transmitting and receiving antennas .

in the form of unbalanced dipoles. These are still widely used in various i 4

A TE

22

fields of radio engineering. The theory of these antennas is based directly -

o

Y T on the work done by Maxwell, Hertz, and Poynting. N

N Maxwell's first equation expresses the dependence between the integral

]

o uarhey Sl pe

of the closed circuit magnetic intensity vector and the magaitude of the

TR R

NI ., 3 current penetrating this circuit. .
) Prior to Maxwell's treatise this dependence could have been formulated

. . as follows.

PO

The line integral of the magnetic intensity vector, H, for the closed

4P

; f 2 circuit, L, equals the current, i, penetrating this circuit. Analytically,

_é{ : this law can be expressed through the formula

A W kb

o
by E: .

. . ?H‘dl;;li.:'}’. (1v.1.1)

. ol where . ]
% - S H, is the component of the magnetic intensity vector tangent to the §

element di;

d{ is an element in the path of the closed circuit Lj

Yo s men

i is the curreat penetrating the circuit.

Maxwell provihed a generalized formulation of the law which associates
H

magnetic field strength with the current, the while expressing it in differen=-

+ial form. The generalization provided by Maxwell reduces to the following.
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Prior to Maxwell's formulation this law considered nothing other than

the conuucticn current. Waxwell, in his formulation, took displacement

currenc» in‘c consideration. Using Faraday's writings as his base, Maxwell

assumed thet s0 far as the formation of the magnetic fiele was concerned the

displacement current was equal in value to the conduction current.
An example of an electrical system in which the displacement current
prevails is that of a condenser in an alternating current circuit. The

alternating current can circulate between the plates cof zhe condenser, even

when they are separated by a perfect dielectric, or are in a vacuum; s0 no

conduction current can form. Another example in which the displacement °

current plays a significant role is that of the circuit shown in Figure IV.1.l.

Here the alternating emf is applied across the conductor and the conducting

surface. The current flows over part of the path in the form of the con~

duction current, i, along the conductor and along the conducting surface,

and over part of the p:zth in the form of the displacement current, id’ in

the space between the conductor and the surface.

Figure IV.1.1. Example of a circuit in which the displacement
current plays a significant role.
A - ld'

Strictly speaking, the displacement current flowing in a circuit is

alternating current. For example, even in an inductance coil, in which most

of the current flows along the conductors in the form of conduction currents,

somz of the current always flows through the interturn capacitance in the

form of a displacement current. .
The displacement current is proportional to the product of the rate of
chanpe in electric field strength and the permittivity of the medium.

iva displacemenl currsit deusity for an isotropioc medium can be expressed
.ma‘ytacally by the formula .
|, =90 06B_ ae
4 a9 Tar at ' (1v.1.2)
where
E is the electric field strength vector;
D = ¢E is the electric displacement vector;
jd is the displacement current density;

¢ 1is the dielectric constant of the medium.
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From equation (IV.1.2), the unique current, the displacement current, the

numerical value of which can be found through this equation, corresponds to \
the alternating electric field.

So, ih accovdance with Maxwell's opinions, formula (IV.1.1) is exceptional
because it does not take displacement currents into consideration.

In general
form the ratio of H to i must be formulated as follows '

fﬁzd‘=‘+1¢;- (1v.1.3)
: where

‘ i and id are the conduction and displacement currents penetrating

circuit L.

Equation (IV.1.3), expressing Maxwell's first law, was derived for

application to a circuit with finite dimensions.

Maxwell derived this equation in differential form for application to a
int in space.

L4
Let us transform equation (IV.1.3) so it will be applicable to an
infinitely small circuit, to a point.

,
‘

IIES

Let us imagine & plane circuit en-
| . compassing an element of area AF, the spatial orientation of which is
|

. 4
” 1 characterized by direction n, normal to its surface (fige. IV.1.2). é
.‘ - N Ny
k | . .
- .
. ' 5
; 3 Figure IV.1.2. . 1
i ] '
% ' Let the normal components of the displacement current density vector :
3 3 and the conduction current density vector remain constant within the limits ?
; ]| J__. of area AF. Then the sum current flowing normal to area AF equals ’ . ;
S ir (jn + i d)AF, X “(IV.l.h) ;
:E 3 where
é % jn is the conduction current density for the current flowing in :
3 direction n; §
i : ’ jn a is the displacement current density for the current flowing in
% 3 ) direction n. § 3
- g h The current densities jn and jn q are associated with the electric field f :
.: { strength by the relationshipsl 2
: : . he=teBe (IV.1.5) ’
: 3 g =BreeE, ' 3
1 , . . Lo e " (IVe1e6) (3 | ‘i
E 3 whera . 4
2 ' Y, is conductivity, measured in mhos per meter (mhos/m).

. —————
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A - Substituting the value for j . from formula (1v.1.6) in formula
; &’ (1Iv.1.4),
’ (I" )AF' o (1v.1.7)
. 2 In accordance with (IV.1.3), we have ~
B S ‘ f”t‘” aD")AF (1V.1.8)

Dividing the right and left-hand sides of equation (IV.1.8) by AF

PENF

f : and assuming that AF tends to zero, . )
] . § o
) oD
? A 3 “m f 2 3 (IV.J..9)
E aFs0 AF =t
s
. The expression shown in the left-hand side of equation (IV.1.9) is
\‘_ T ; called the component of curl H in direction n, normal to the plane in which
] ; f circuit L is located, and designated roth. ‘
P A ' :
f ' < Accordingly, .
o 4 .
1 ' . , oD, -
S 4 rolH = jot 5 (1v.1.10)
3 . Equation (IV.1.10) was composed as applicable to arbitrary direction n.
w_} Shifting to a rectangular system of coordinates, X, y, Z, we obtain
the following three equations 4
R 3D,
rot, H = —= . N
Oty 81 I+ o l f
: . <]
rot, H=j,+—x -}, (Iv.1.11)
. . , 4D '
rot, H = —=
* Je T } B

where rot H, rot}H, rot H, j vy J.y 3.y D, D}, and D are the components of

y' Y2’ x
rot H and of vectors j and D on the x, y, and z axes.

The relationships expressed by the system of equatiorns at (IV.1,.11) can

be written in vector form as

a (1Iv.1.12)

The equality at (IV.1.12) is Maxwell!s first law.

We know from vector analysis that the components of the curl of some

ﬁﬁiﬁﬁggggaﬁﬁﬂﬁmﬂ&&ﬂﬂmﬁnmﬂm%h\

vector A in the rectangular system of coordinates can be determined as
follows R
84, Ay )
rot, A = W e
i .
@ rot,A = ‘?if- % )
R B (Iv.1.13) &
0Ay _2Ag | o i
fot A = —— — . -,
ox oy ' o
)
AL I NPT e - O b, LI e KA TR P K R B TR yjﬁmmw‘anf: "Qf,“”g 25T ﬁ% :
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Substituting equation (IV.1.13) in (IV.1.11), we obtain the following

differential equations, which associate the comporients of vectors H, j, and Y
AN
, 9 .
OH, _Hy _ . , aD¢)
oy oz rj’lx—*‘ a
OH, _ OH, ab,
e e Tkt ( :
,af_’..-y.&a] +‘22£. Iv.1.14
ax ay T a

#1V.2, Maxwell's Second Equatlion

Maxwell's second equation is the formulation of Faraday's law, which

associateg the changing magnetic field aud the changing electric field
induced by it.

Faraday's law can be written

?5‘:,”‘____2_‘0'. (1v.2.1)

where
Et is the component:of the electric field strength vector tangent
to element di of circuit L, which encloses area AF;
% is the magnetic flux which penetrates circuit L;
§Etdl is the emf throughout the ciosed circuit L, induced by the changing -
L magnetic field penetrating this circuit.

Equation (IV.2.1) can be formulated a3 fOllbWs. The emf across the
closed circuit equals the rate of change in the magnetic flux penetrating
this circuit. .

Faraday derived this law during experiments with conductors placed in
a changing magnetic field.

Maxwell's second equation expresses the relationship at (IV.2.1) in

differential form. To obtain the second equation weo will write (IV.2.1)
80 it will ke applicabie to plane area AF, the orientation of which in space

.is in some direction n, perpendicular to its surfuce (fig. IV.2.1).

kY X * [

t L le- 8
; ) aF g
i

% : Figure IV.2,1. Derivation of Maxwell‘s second equation.

The magnetie flux penetrating area AF can be expressed as :

LMW,

n

i .
: o ‘ L 5
’ . Aé = B 6:" (IV.2.2) !
' }
|

oo g B NI
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: where .
1 Toi Bn is the normal component of the magnetic induction vector, B, assumed
A
3 ). .
N = constant within the limits of area AF. ’
4 B = PH,
X ~
3 where

M is the magnetic conductivity of the medium,

(Iv.2.1) takes the form

oAl

?Eﬂl:-—-‘?-%‘l-AF..‘ '

(1v.2.3) |

1 after the expression for % from equation (IV.2.2) is substituted in it.

Dividing both sides of {IV.2.3) by AF, and assuming that AF -»0,

?E‘dl
lim R (IV.2.4)
W0 AF at

T s TRl M e

*The left~hand side of (IV.2.4) is the component of curl E in direction n.
So (IV.2.4) can be written as :

s oy . 9Bg
ot B =~ =k . (1V.2.5)

s

- Shifting to the rectangular system oY coordinates x, y, z, We obtain
1
these three equations

. a8
rot B — e
0= at
08,
4 rOt,E:’—:‘-—a——*

(:U.2.6)
P ot 38
rot,E = i;

(IV.2.6) can be formulated in vector form as

rot k = -3B/dt (Iv.2.7) |

(Iv.2.7) is called Maxwell's second law. Expressing in (IV.2.6) the

component of the curl in terms of the comporent of vector E, in accordance

3 with (Iv.1.13), ,
O; _ 3By . _ 9B |-
oy 8z ot
e _O0E, _ 0By \
: oz o a 17 (zv.2.8)
, . O, _ 0E, 3B, ]

Cm Ty T T
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#IV.3. Maxwell's System of Equations

The following are also a part of Maxwell's system of equations

divD =g,
divB =0,

(1v.3.1)

(1Iv.3.2)

where

p is the electric volume density, that is, the charge incoming per

unit volume.

The divergence of some vector A at the peint specified is a limit to
which tends the ratio of the flux of vector A over the surface (AS) surround-

ing this point, to the magnitude of the volume (AV) limited by this surface
when AV tends to zero . §Ands

divA = lim .A_S—’
4 V0 AV

In the rectangular system of coordinates the divergence of vector A equals

. dAr , 0A, . 0A
div A w08 o 20y g s
on + E + peel

Formula (IV.3.2) demonstrates that' the flux of the magnetic induction

vector (B) has no outlets; the magnetic field force lines are closed. Con~
sequently, the total flux of the magnetic induction vector over any closed
surface always equals zero.

Similarly, formula (IV.3.1) demonstrates that in those expanses in space

which have no charges {p = 0), the flux of the displacement vector (D) over

.

any closed surface too equals zero. If there are distributed charges in

space every point in space will become a source of the displacement vector
flux, that is every point in space will become the origin of new lines of

forcz. And the displacement vector flux, equated tc unit volume, equals

the charge density {(p).

So, we have the following system of equations, which is the basis of

classical electrodynamics and, in particular, the basis of the theory of
radiating systems

-

: 0 : )
rotH=j+F‘- (a)
B
TotE= —- '(b)
divD=p - . . (o .
divB=0 - {d)
"D=eE . . < @ |.. (1v.3.3)
B=pH A 7
1‘:793 L. (9) ’
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3 #IV.L, Poynting's Theorem 1
- 3 - . . . . . . =

3 3,3 Emerging directly from Maxwell's equations is an equation which charac- ?1

: 1 v ) 'y

B terizes the energy balance in an electromagnetic field and points to the 2

o : possibility of radiating electromagnetic energy and propagating it in space. f :
' .1 ' ] Let us derive this equation. P,
A ¥ 3 Making a scalar multiplication of both sides of the equality at ?
. 3 (Iv.3.3a) by E, and both sides of the equality at (IV.3.3b) by H, and sub- E
o .3 4 tracting the first product from the second, we obtain 3

“ { V

l ¥ . . =5

. ) . JB oD . A

. » Hrot E) — (Erot H —_— Y [E =) ' 4
N ! { ( ) (E t ) = H at E at . (Ej), (Ivoll ’1) - 23
. : 3
= i b
° § From vector analysis data ) pi*

; (Hrot E) — (Erot ) = div [EH]). g

1 H Let us transform the terms in the right-hand side of the equality at i
AN - ; (Ivik.1): . 3
4 . 5

' ; 0B ] J [ uld .

' 5 H— H—(@pH —_—t 1 A

i ( 0t)=( o ))mat(z)' i

i 4

6D ] d («E* 3

: E'_" E—" SE —f — ) ¢ £

/ : ( a:)=( s B =5 {7) .

L. A 3
SR 3 (EJ) =1, (FE} = 1, E% . 1‘
3 Equation (iV.4.1) takes this form after the transformations indicated B¢ 3

3 1 . 9 k3 pR3 -
; : div (EH ==—-——(-—— -——)-—' E3, . :
= 4 [EH) =—or{Z+ 2 )% (1V.4.2) 4
o Integrating both sides of (IV.L,2) with respect to some voiume V, 'i

. =2

- . 3 E? H3 K

13 ch[EH]dV=—-%&(—-‘Tﬁ-ﬁa—)dV—S‘{,E’dV. 3

V ,lé V v (Iv.l*.3) .
+ B In accordance with Gauss' theorem, the volume integral from the Ci~ 5:
f ] vergence of a vector for the volume V can be replaced by the surface i1alegral &
3 - for this same vector for surface F limiting this volume, i
3 B : B
% . E Considering Gauss' theorem then, and transposing the terms in equa :ion 3
SONN : (1v.4.3), ) | 3
-2 (__E_ *‘_”i)dv =j (EH),dF + ( 1, E%aV, : .

ot 2 2 ) , g

v £ (Ivoll'li) ﬁ ‘.

where
dFF is an element of closed surface F, limiting volume V. Qv 33
The subscript n means that the component of the [Eh) vector normal to

the element of surface dF must be taken.
-,
i ? Thig is the Poynting equation.

Let us explain the physical sense of this equation.
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Here esz/z i4 the electric field energy in unit volume;

HH2/2 is the magnetic field energy in unit volume;

oy

(eE2/2 + uuz/z) is the total energy of the electromagnetic field

in unit volume.

. 2 2 . .
Accordingly, W = £(eE /2 + pH"/2)av is the energy in some volume V, of

the electromagnetic field.

The derivative oW/dt [the left-hand side of equation (IV.4.4)] expresses

L b . el
e ——

the reduction in the supply of electromagnetic energy in volume V per unit

time, that is, the consumption of electromagnetic energy in this volume per

unit time. The expression standing in the right-hand side of equation (IV.4.4)
shows that the energy being consumed consists of twe summands.

The summand fvade is the 'energy dissipated as a result of the conducti-

\' B
vity of the medium (Yv)° This energy is dissipated within volume V itself,

becoming Joule heat.

The summand r[EH]ndF is the flux of the [EH] vector along surface F
Y

¥
limiting volume V. The S=[EH] vector is called the Poyuting vector.

So, from what has been said, [[EH] dF is the energy leaving volume V,
< n A

that is, the energy being put out 7radiated) by the source of the electro-
magnetic field into the surrounding space.

Poynting’s theorem demonstrates that electromagnetic energy can be pro=-
pagated in space and that it is possible, in principle, to create that sourcze -
of an electromagnetic field, a considerable part of the energy fromw which .
will be expended in radiation. In radio engineering installations this
source is the generator feeding the antenna.

The simplest antenna is the Hertz dipole, the theory of which will be

discussed below.

#IV.5. Vector and Scalar Potentials. Electromagnetic Field Velocity.

. Maxwell's equaticns give the dependence between E, H, j, p and the para=-
meters of the medium ¢, y and Yy in general form. As a practical matter,
it is often necessary to golve pioblems in which the distribution of the
current and charge densitities, as well as medium parameters, are given, and
what must be found will be E and H. In cases such as these it is convenient
to find E and H by iatroducing new magnitudes, specifically the vector
potential A, and the scalar potential, a.

From vector analysis it io known that the divergence in the curl of any

vector equals zero, so, on the basis of (1V.3.3d), it is convenient to re~

present B as the curl of some vector A, called the vector potential h

B=xyot A or Ha=l/, rot A, (1v.5.1)
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4

Lo
N

; : g Substituting equation (IV.5.1) in (IV.3.3b), and replacing B by yH,

s 3 9
. 3 rotf = ~ "l (rot A),

from whence .
sl A
rotl (E + -:‘-)] =0,

AT 1T WA TR

According to the data from vector analysis the curl of the gradient of

G o

any scalar magnitude equals zero, with the result that the «(E + 34/dt)

vecto:* can be considered to be the gradieat of some scalar function called
the scalar potential )

F-o3

PR e

- (g + 95'3;) = grad g, (IV.5.2)
from whence . .
E=— Qﬁ-’—i-' rz;d .

(az € ?)' . (IV.5.3)

‘

L T4

By the gradient of a scalar at a specified point we mean a vector in
the direction of maximum change in this scalar, numerically equal to the
scalar's increase per unit length in this direction., In the rectangular
system of coordinates, by designating the unit vectors along the x, ¥, and

- z axes as i, j, and Kk, the expression for the gradient of scalar ¢ can be
< written 2 o o
' rade = 1— 4 j =4 k==, ) .

grade = 1— ’*‘.j_a,.'*' 5 " . .

Let us find A and . Considering the fact that D = ¢E, substituting
the expressions for H and E from formulas (IV.5.1) and (IV.5.3) in formula

(1IV.3.3a), and taking it that there are no losses in the medium (Yv = 0),

. a9 TA
rolrot A = pi—epgrad—= —ep—- . (1Iv.5.4)

It is known that

rolrot A = graddivA — g*A,

where

¥ A can be expressed in the following manner in the rectangular systen:

PATA L FA 0N

ey E KT A1 P A K S ST @ O Waahs o

T T (1¥.5.5)
3
. £
Substituting this expression in formula (IV.5.4), and converting, 3'
—_ VA o)t 02 A — ep 2A e e . ;
grad (leA*r‘P )TV A= G e (1V.5.6) 3
A a
Let us impose the additional condition . I
. a9 : » .
divA fep =2 =0, . -
ot N (1‘[.50?; . ’
7%
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Then equation (IV.5.6) takes the form )
A
VA —op o — (1v.5.8)

Substituting tiie expression D = ¢E in (1V.3.3c}), replacing the .
expression fovr E from formula (IV.5.3), and considering the condition at :
(1v.5.7),

RETYRUI i SO
Ve o =, (1v.5.9)

Equations (IV.5.8) and (IV.5.9) define the wave-like process in space

and are therefore called wave equations.

These equations have the following solutions }

-8
=~

A= jhj ("'7’7) (1v.5.10)

£
A
=Y r .

PENCANSE

(Iv.5.11)

|
¥i-
Sy
~
—
”~
]
< |~
o
g
‘f

where

dV is an element of the volume in which current density j and charge
density o are given;

. is ithe distance from the element of the volume to a point at which

PRIV, N P PPETIP PR T S

A and ¢ are determined;

.

itk

v  is the velocity at which the electromagnetic oscillations are pro-

pagated, N

v = 1/Yeu - (1v.5.12)

The symbol (t = r/v} means that the values of A'and ¢ (and consequently
of E and H) at time t can be defined by the values of j and p occurring at 3
time t - r/v. What this signifies is that electromagnetic perturbations
are propagated at a velocity equal vo Vv,

In free space, and approximately in air

s

I 1/4:7'9‘109 {farads/meter), y = bo = lm/lo7 (henries/meter)

and the electromagnetic perturbation propagation rate equals

v=c=1A €oho = 2.998 - 108,3 3 108 (meters/second).

-

e LA

By using the relationships at (IV.S.1), (IV.5.3), ((V.5.10), and
(iv.5.11) we can fird E and H if the distribution of the conduction current
density j, and the charge density p are known. These equations can be used

to calculate fi2lds around zntenaas for which it is assumed the current and

charge distrabutions are known.
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When computing the fields around line conductors in a non-conducting
medium the fact that in this case the conduction and charge currents are
only concentrated along the axes of the conductors should be taken into con-
sideration, and that correspondingly the volume integrals in expressions for

A and ¢ can be replaced by line integrals

(=4

A=t | — 7 14, {1v.5.13)
4= s
i 4 ('"L)

¢= L _dl, {1v.5.14)
4xe ¥ 4 . N

where

i is the conduction current flowing in the conductor;
g is the linear charge density.

But if it is the harmonic oscillations of the linear current that are
A)

. . . , i - i -or
under discussion then i(t - r/v) = Iel(u¢ OI'r); olt = r/v) = cyﬂe:"(mt ar) and
the expressions for A and ¢ become

f{orl=sar)

o (1v.5.15)
= L (ed
4ne IS F {1v.5.16)

where

« 1is the conduction curreant flowing in the conductor;
« = «/v = 2uf/v = 2a/);
f 1is the frequency.

There is a definite physical sense to the above accepted condition

at (IV.5.7). )

Substititing the expressions for A and ¢ from formulas (Iv¥.5.10) and’
(Iv.5.11) in formula {IV.5.7),

5.1_(_1:’;:—_1‘1‘,-*”&1%‘ ?(l——g-‘.?

= Jt Yy

Lodiv
4

This equation will reduce to

r

. dp \dV *
L v =\—=0,
4:S(dl3+0l)
from whence v

s o 98 (1v.5.17)
dl\j - o 0.

The relationship at (IV.5.17) is the formulation of the law for the con-
servation of an amount of electricity in differential form {the equation of
contindity).

Substituting the expression for p from ‘formula (IV.3.1) in formula
(1v.5.17),

divj + div ("—;’7) = div (] +Z) =0
. (1v.5.18)
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E " 4 Formula (IV.5.18) demonstrates that the sum of the conduction currents
i g 5 . .
' N and the displacement currents ontgoing from s unit of volume equals zeroo
, i Fox the case of current flowing along a conductor in space which has no

: L g conductivity, formula {IV.5.17) becomea

40, (1v.5.19)

B dend
&
(=14
-~

I where
<3

] is the current flowing along a conductor oriented along the z axis;

3 o is the linear charge density on the conductor.

P #IV.6. Radiation of Electromagnetic Waves

. The possibility of radiating and propagating electromagnetic energy in
4 E

space without conductors follaws, in essence, directly from the ihesea pro-

3 A pounded by Faraday and Maxwell, in accordance with which electric current
2 T
- . . . . » - Y
3 can circulate in a dielectric and in free space in the form of a displacement
: X . . .
P current. and so far as the formation of a magnetic field is concerned, the
L i
g

4 displacement current exhibits the same physical properties as does the con-

; v duction current. Faraday and Maxwell, in their assumptions, assigned the

properties of a conductor, a conductor of the displacement currant, so to

3 speak, to the dielectric and to free space. The propagation of the displace-

ment current in space is associated with the propagation of electromagnetic
;- energy because the field current cerresponding to it is the electromagnetic
: 3 energy carrier. Hence, any electrical circuit which can create a displace-
ment current in space can be used as a radiator of electromagnetic energy.

; ¢ Suppose we take a circuit consisting of a condenser supplied by an

i 3 alternating emf source (fig. IV.6.1). A displacement current will circulate

E . in the space beiveen the plates. Since the space surrounding the condenser

RodBrd ~ Sogis w7 el S W’xm‘n?.. Pz g v N
24
.
-,

i ) can conduct the displacement current, it is only natural that the latter

E should branch out into that space, just as would the conduction current if
i the condenser were located in space possessing conductivity. The process of
: this brainching of displacement currents, and conseguently of electromagnetic
E energy, into the space surrounding the condenser is, from the point »f view

: of Maxwell's theory, as natural a process as is the branching of energy in a
Pt : ¢onductor connected to some source of emf.

B
v

PR
v

[ S L

Figure IV.6.1. Explanation of the radiation process.

-

IS 1 TR Y VTR

s AL A F AL fabre,

Fin Svg g g 4

e

[



s TR e

R R R A et T | e ]

A e

o

e I Rt R dE LU P M o

5 " Ve m s R e L L T s —
T e -

~

‘ . RA-COR-GR 81

The principle that it is possible for electromagnetic energy to branch
{radiate) iato space can be proven by Poynting's theorem, which is the direct N ‘,
consequence of Maxwell's equations. % :

Keep in mind that while in principle any circuit which can create dis-
placement currents can be a source, or as usage has it a raéiator, of electro=-
magnetic waves, in practice the circuiis used as radiators of eleciromagnetic
vaves (antennas) meet predetermined requirements. A basic requirement imposed
on the practical radiator is that the energy involved be a minimum, that is,
that the energy noti be radiated into surrounding space {minimum reactive
energy). The greater the coupled (reactive)energy, the greater the loss, and
the narrower the antenna passband.

The radiavor shown in Figure IV,6.1 in the form of a condenser made of
two parallel plates is an example of an unsuccessful circuit, in the sense
of the foregoing, for in this circuit the coupled portion of the energy is
relatively great and much of the encrgy is concentrated in the space between
the plates. '

The reason is that the space between the plates of the condenser is
highly conductive so far as displacement currents are concerned.

A relative reduction in the coupled part of the energy can be obtained
by turning the condenser plates and positioning them as shown in Figure IV.6.2.

Cne variant of the circuit permitting intensive radiation for a com-
paratively small part of the coupled energy is the one shown in Figure IV.6.3, P
in which the plates have been replaced by thin conductors with spheres on
their ends, Heinrich Heriz was the first to devise this circuit, and the
radiator made in accordance with the circuit shown in Figure IV.6.3 is known

as the Hertz dipole.

/] T
v’ $

Figure Iv.6.2. Explanation Figure IV.6.3. The Hertz
of the radiation process. dipole.

#IV,7. Hertz' Experiments

The purpose of Hertz' experiments was to verify experimentally the pro-
bability that the electromagnetic waves anticipated by Maxwell's theory did
in fact exist. Hertz conducied a ceries of extremely complicated experimenis.

We shall 1limit ourselves here to just a brief description of these experiments.

e - - ~ - - « - B e Ve A SN IA ke W S A B e Y

Ay



U dr TR M M T NEN IR AT M TSNS

RA-008~68 82

.: ,,‘}J Hertz used a dipole, a conductor with a Ruhmkorff coil inserted in
E - 3 the middle of its spark gap, to excite electromagnetic waves. Metallic
E: B ; spheres were connected to the ends of the conductor (fig. IV.6.3). When the
;Qr 3 sparks shoot the spark gap in the dipole damped oscillations, the fundanmental

3 e i? frequenicy of which is determined by the natural frequency at which the dipole

oscillates, are excited.
Considering the displacement current density proportional to the rate

P s . of change in vhe electric field strength

e bt e o £

% 3 j o= . :
E jy = ¢ dE/at . ﬂ
- ’ I3

i Hertz triel to obtain the shortest possible waves. He tried to increase 3

the natural frequency by reducing the dipole dimensions. Hertz began his

first experiments with dipoles about 1 meter long and obtained waves
several meters long.
Later on Hertz experimenteq with dipoles a few decimeters long and ob~
tained waves some 60 cm long.
The loop with the spark gap served at the field strength indicator.
. The maximum possible length of the spark was proporticnal to the field
: strength. Hertz used the simple apparatus described to prove that the electro-
magnetic field arcund the dipole matches the theoretical data obtained by‘
using Maxwell's equations. '

Hertz used this same apparatus to prove experimentally that it was f

possible to reflect electromagnetic waves and he measured the coeflicients

i s A L
A

of reflection from the surfaces of certain materials. *

. Hertz, using the analogy of optics in order to obtain directional radia=-

ticn, used a parabolic mirror with the dipole Jocated in the focal plane
of the nmirror.
Hertz also made a theoretical analysis of the functioning of the

infinitesimal, or 2lementary, dipole, and this was in addition to the ex-

N AT e et s ¢

perimental verification he undertook of the general conclusions of the theory

<

of the radiation of electromagnetic waves.

RN

#IV.8. The Theory of the Elementary Dipole

{a) Expressions for electric field strength and the vector
potential of the elementary dipole

Mot Ha s SIS

Hertz, in his mathematical analysis of radiators used in the experiments,

. considered them as elementary dipoles, that is as extremely short conductors
compared with the wavelength, along the entire length of which the current has .
the same amplitude and phase. It is impossible to have a dipole of finite
dimensions with unchanged current amplitude and phase over its entire length, i *
so the elementary dipole is simply an idealized radiating system convenient .

to use for analysis. However, the dipole used by Hertz in his experiments
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(fig. IV.6.3) is an extremely successful practical approximation of this
idealized radiator. Becausec the spheres on the ends of the dipole have a
high capacitance, there is little chenge in current amplitude along the
length of the conductor.

Equations (IV.5.3) and (IV.5.1) can be used to find the strengths of the
electric and magnetic fields around the elementary dipole.

If it is assumed that oscillations are harmonic, we can readily express
© in terms of A. In point of fact, in the case of harmonic oscillations

dp/3t = iuwp. Substituting this relationship in equation (V.5.7),

R :
= is—divA. (1v.8.1)

Substituting equation (IV.8.1) in (IV.5.3), and taeking it that in the

case of harmonic oscillations dA/3t = suwA,

E=—-imA—i-‘-:TgraddivA, (1V.8.2)
This equation, in conjunction with equation (IV.5.1) makes it possible
ilo compute al the components of an electromagnetic field, if the vector
potential A is known. For linear currents A can be computed through
formuia (IV.5.15). )
In the case specified, and according to the definition of an elementary
dipoie, I remains fixed over the entire length {, and tan be taken from under
the iwtegral sign. Moreover, assuming that { € r, the terms dependent on r

can also be taken from under the integral sign. Accordingly.

Wwl—sr )
A=p e (1v.8.3)

(b) Components of the dipole electric and magnetic field strength
vectors in a rectangular system of coordinates

Using formutas (IV.5.1), (Iv.8.2) and (1V.8.3), we can determine
the E and H components along the three coordinate axes. Let us select the
coordinate system such that the z axis coincideé with the dipole axis, and
the origin with the center of the dipole. In this system the A vector has no

componehts on the x and y axes,
A = A = O' (IV.8.‘*)

A = A, (1v.8.5)

Based on formulas (IV.8.2) and (IV.8.3), we have these expressions for

. the components of the E and H vecto:rs
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{
1 4,
Ee=—tof,—im—grad divA =—i—— ' (IV.8.6)
1 &’A . N
E, x=—-iwA —x—rgrad dva=-—-l'$' 0z (Iv.8.7)
4 gL WA oA t24
E=—ich xq“ grad, divA = —iwA—1 2225 (1v.8.8)

Similarly, taking formulas (IV.5.1) and (IV.1.13) into consideration,

H, = -—-—rot A= 194.
A (1v.8.9)
1 1 a4 .
H, =x-;—rot,A=--—;-5; (1v.8.10)
’ .
H, = rot,A = 0, (1v.8.11)

Note that formulas (IV.8 6) through (IV.8.11) are correct for any
linear dipole oriented along the x axis.
Substituting the expression for A from formula (IV.8.3) in formulas

(1v.8.6) through (IV.8.10), and taking it that

r=V B4 Pt (1v.8.12)
e= 2 =aV o,

-

we obtain

H { . . ed
E,=-L.2 1L (-——-x—%»-}—ﬁz- +1—“—-)e’_‘“‘"’.
] r r

E = ..1..:"_{_[_’_(_.1 i..i..ai.*.i_‘.‘:)e‘("“")
’

4re 13 w

11 11[ j32—n | Ba-re + (1v.8.13)
Tad lad

i (B—r)ad ] e\(-i—-r) ) :
“r

(Iv.8.14)

In formulas (IV.8.13) and (IV.8.14) all lengths are in meters, current
is in amperes, electric field strength in volts per meter, and magnetic
field strength in amperes per meter.’

So, knowing the current and the dielectric constant for the medium, we
can determine *ue strengths of thg electric and magnetic fields at any

point around a dipole, so long as the conditiqn r » { is satisfied.
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{c)

Components of the clectric and magnetic field strength
vectors in spherical and cylindrical systems of
coordination

In view of the axial symmetry of the elementary dipole, it is
extremely convenient to use formulas which define the field in spherical or
cylindrical systems of coordinates.

Components Er’ E

o' %3 and H_, HG’ “¢ (fig. IV.B.l)1 characterize the

electric and magnetic field strengths when the spherical system is used,

while Ep Ew, Ez and Hp, Hw, H (fig. 1V.8.2) do the same when the cylindrical
system is used.
¥ .
Figure IV,8,i. Components of the electromagnetic field of a
dipole in a spherical system of coordinates.
LY

Figure IV.8.2. Components of the cleciromagnetic field of a dipole

in a 