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ABSTRACT 

In a multiple target environment a radar signal processor often uses 

weighting filters which are not necessarily matched to the transmitted wave- 

form.     In this paper expressions for the mean-square  range-estimation error, 

the detection signal-to-noise  (SNR) and the effects of sidelobes are derived in 

terms of the impulse response of an arbitrary mismatched filter.     It is desired 

to find that impulse  response which results in the minimum range estimate 

variance subject to preassigned constraints on the sidelobes and the detection 

SNR.     This optimization problem is first formulated in state-space in which 

the optimal control law is  sought.     Pontryagin's maximum principle is used to 

obtain necessary conditions for the optimum impulse  response,   from which it 

is possible to deduce the structure of the optimum filter.     Certain mathematical 

details which detract from the rigor of the time domain formulation are  resolved 

by formulating the problem in the frequency domain and applying Hilbert space 

techniques.     It is shown that for the problem of detecting the  radar target and 

estimating its range,   the optimum filter is a modified transversal equalizer. 

If only the detection function is to be performed the optimum filter  reduces to 

the transversal equalizer.     This establishes the optimality of this important 

practical device as the  solution to the  radar detection problem in a multiple 

target environment.     The tap weights and spaces of the delay line as well as 

certain other parameters upon which the  solution depends can be found by 

solving a  non-linear programming problem.     Numerical results are given for 

an interesting class of transmitted waveforms which shows the tradeoffs of the 

various filter parameters. 

Accepted for the Air Force 
Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 
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I.       Introduction 

It has long been known that the matched filter represents the   "optimum" 

means of processing data for obtaining estimates of target range.     Optimality 

in this case means that the estimates have the smallest mean-square error 

possible,   a result which is valid only when the  si gnal-t o-noi se ratio is large. 

In many applications target resolvability is a consideration almost as important 

as range accuracy,   and it is then not clear that the matched filter is the best 

receiver to use.     In fact,   for some waveforms,   a sinusoidal pulse,   for example, 

very good range accuracy can be obtained,   but the resolution is poor  because 

the envelope of the matched filter output signal has large  subsidiary  sidelobes. 

One approach to this problem is to assume that the receiver is a matched 

filter and then try to design the input signal that will produce good range estimates 

subject to constraints on the sidelobe  structure of the compressed pulse. 

Algorithms are now available to generate the solution to this problem [l],   but 

in most cases the resulting waveform is quite complicated,   and it is difficult 

to build the matched filter for it. 

The other approach is to use a known signal which can be transmitted 

easily,   and to use a mismatched filter.     This has been done for the  linear FM 

waveform [2] in an effort to reduce the sidelobes of the compressed pulse,   but 

at the expense of a loss in signal detectability and range accuracy.    Heretofore, 

no effort has been made to design a mismatched filter to simultaneously minimize 

the mean-square  range error and loss of signal detectability subject to pre- 

assigned constraints on the  sidelobe  structure. 



In this paper we assume that a given pulse is received in the presence of 

additive white Gaussian noise and passed through a filter which is not necessarily 

matched to the input pulse.    We assume that the range is estimated by locating 

the time at which the envelope of the filter output is maximum.     The performance 

of this estimation scheme has been analysed previously [3] with respect to 

measuring the loss of accuracy and detectability due to non-optimum filtering. 

It is shown that one's inability to build perfectly matched filters does result in 

a loss in performance.    However,   the advantages of mismatching with respect 

to improving the multiple target resolution is not discussed. 

In Section II we give a brief derivation of the equations for the mean-square 

range estimation error in terms of an arbitrary filter impulse response.     The 

effects of multiple targets are discussed and design constraints which provide 

for good resolution are developed.    Since the processor is no longer matched 

to the transmitted signal a degradation in detection signal-to-noise must be 

expected.     (The detection signal-to-noise ratio for the mismatched filter is 

derived).  Therefore,   we define the cost function as a weighted combination of 

the range estimate variance and the detection noise-to-signal ratio.     This 

quantity is to be minimized subject to the sidelobe constraints.     The weighting 

in the cost function can be varied to emphasize either the detection performance 

or the estimation performance of the filter.     This weighting factor shows up as 

a key parameter in the structure of the optimal filter.    We can then associate 

the detection and estimation functions of the filter with its various  substructures. 

The filter design problem is then formulated as an optimal control problem 

in state  space.     By following the recipe described by Pontryagin's maximum 



principle we can find the structure of the optimal filter.     Certain mathematical 

details concerned with the stability of the resulting structure on an infinite 

time interval detract from the usefulness of the state-space technique.    By- 

formulating the problem in the frequency domain and using the insights obtained 

from the optimal control solution,   a mathematically rigorous derivation of the 

optimum filter is obtained using the projection theorem in a suitably defined 

Hilbert Space.     The optimum filter is shown to be a modified transversal 

equalizer.     If the weighting factor were chosen to weight only the detection 

signal-to-noise ratio in the original cost functional,   the optimum filter reduces 

to the transversal equalizer.     Therefore,   the optimality of this structure for 

target detection is established rigorously for the first time in the published 

literature.    For weighting  factors which include some measure of the estimation 

performance it is further established that the transversal equalizer is not the 

optimal processor but it is an integral part of the optimum filter structure. 

Certain constants remain to be determined to completely specify the 

optimum filter.    For example,   the tap gains and spaces of the transversal 

equalizer have to be determined for a particular sidelobe constraint function. 

It is shown that these constraints can be  solved using nonlinear programming 

techniques.     To show the feasibility of the method and the tradeoffs of the 

various filtering parameters we conclude the paper with a numerical evaluation 

of the filter for an interesting class of transmitted waveforms. 



II       The Suboptimal Signal Processor 

In this section we shall derive the performance criteria to be used in the 

filter design problem.    We shall first concern ourselves with the variance of 

the range estimate when a mis-matched filter is used in the usual matched filter 

or maximum-likelihood-estimator configuration.     The derivation  closely follows 

that in reference [3] but is included here to make clear the essential assump- 

tions as these become important when the criterion is to be used for filter 

synthesis.     The  system analysed is shown in Figure 1.     The input consists of 

a bandpass signal S(t) plus white stationary bandpass Gaussian noise N(t).     The 

filter,  with the transfer function Q(w) = H(uu-uuc) + H(uu+uuc),   is square-law detected. 

The time-delay corresponding to the estimate of radar range is then taken as 

the time at which this envelope assumes its maximum value.     If the filter were 

matched to the signal,   then this processor is precisely the maximum likelihood 

estimator and has certain optimal properties.     Since the filter is not matched to 

the signal the processor is merely one specific suboptimal method of estimating 

radar range,   (it is widely used in practice). 

The complex envelope of the input signal is 

r(t) = Aej9p(t-ro) + n(t) (1) 

where 

A = the  signal amplitude 

p(t) = the complex signal envelope 

9  = the random phase of the received signal 
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n(t) = the complex noise envelope. 

We let h(t) be the complex envelope of the impulse response of the filter.     Then 

the signal at the output of the filter is 

CO 

x(T) =   J  h(T-t) r(t)dt 
_co 

=   Aej9 J  h(T-t)p(t-To)dt +   J h(r-t)n(t)dt (2) 
-CO _co 

We define the quantities 

cc (T) =J h(r-t)p(t)dt (3a) 

r\(T) = J h(r-t)n(t)dt (3b) 
-CO 

and then write for the filter output 

X(T)   = A€j9CD(T-To)  +T)(T) (4) 

It is at this point that our analysis first begins to digress from that in reference 

[3].    It is extremely convenient for the work which follows to restrict the class 

of waveforms and filters to be those for which the filtered signal (which we may 

sometimes refer to as the compressed pulse) is real.     This may appear to be a 

very restrictive assumption,   but in fact it is not.    It turns out that after we have 

solved for the optimum mis-matched filter this assumption is equivalent to re- 

quiring that the autocorrelation functions of the input waveforms be real.     This 

in turn will be valid for signals having symmetric spectral densities,   which is 

the case of most practical interest.     For example,   the linear FM waveform 



falls within this class.    We could have refrained from making this assumption 

until a later point in the paper,   but we felt that since we were going to make 

the assumption anyway,   we might as well do it earlier in the paper since it 

makes the manipulations at this point quite a bit easier.     Therefore the output 

of the envelope detector can be written as 

z(r) =  |A«J  CD(T-T   ) + r\(T)\ 

= AZrV
Z (T-TQ) + 2Ac£i(T-To)Re[«Jeri(T)] + |n(T)|2 

The time-delay corresponding to the target range is taken as the time at which 

Z(T) achieves its maximum value.     In other words the estimate of T     is the number 
o 

f where 

z(f) = m
r
axz(r) (5) 

In the matched filter case,   h(t) = p*(-t),   and in the absence of noise,   it follows 

from (3a) that 

00 2 
Z(T)   =    [    J   p(t)p*(t-T4To)dt] (6) 

which is the square of the autocorrelation function of the transmitted pulse.     This 

quantity is indeed maximized at the true parameter value T   .     In the mis-matched 

case and no noise 

Z(T) = A2[rr(r-To)]2 (7) 

The function cp(T) will achieve its maximum value at a point T,   which,   in general, 

may be non-zero.     In this case  it becomes clear that we  should choose as our 

estimate of T     the number f, -T, ,   where 
o b     b 



z(Tb) =    ^X   2(T) (8a) 

CD(Tb)   -    ^X   CD(T) (8b) 

It is possible to develope criteria describing the detection,   estimation and re- 

solution capabilities of the mis-matched filter in terms of an arbitrary bias 

T, .    However it can be shown   that r,   enters the performance equations only- 

through the term h(t-T, ).     Consequently the performance of the optimum biased 

filter,   h, (t),   can always be achieved by using an unbiased filter h   (t) by setting 

h   (t) = h, (t-T, ),   that is,   by inserting T,   units of delay in cascade with h, (t). 

Therefore,   with no loss in generality we can limit our attention to those filters 

for which the bias is zero.    Hence we need consider only filters for which 

CD   (0) = 0,   (the prime denotes the derivative with respect to the argument). 

The remainder of the analysis proceeds once again along the lines of that 

described in [3].     We want to point out,   however,   that the motivation in that 

paper was to determine the loss in accuracy as a result of using an imperfectly 

constructed matched filter.     No mention   is made there of the idea of synthesizing 

a mis-matched filter to give good range estimates and low sidelobes simul- 

taneously. 

We shall now return to the immediate problem of determining the equations 

describing the range variance of the ad hoc estimator.     First we write the 

output of the envelope detector,   Z(T),   as a  Taylor series in T about the point T , 

"(T)   =  Z(T    )  + z'(T    )(T-T    )   +yz"(T    )(T-T    )2   +  ... (9) 

For large signal-to-noise ratio the estimate f will be  "close to" the true value 

T    and we can expect that 
o r 



z(f) = z(T   ) + z'(T   )(f-T   ) +   i z"(r   )(f-T    )2 (10) v vo o o 2 o o 

But f is the value which maximizes z(T),   that is,   z ' (f) = 0.     Therefore it 

follows that the estimation   error is 

f-T     = -z'(T   )/z"(T   ) (11) o o o 

We eventually want an expression for the error which is to first order in the 

noise.     This can be obtained by noting that for large SNR the second order noise 

term in (4) can be neglected so that 

Z(T) = A2rp2(r-T   ) + 2Acr(r-To)Re[fJ
9

TI(T)] (12) 

and therefore we can write for z   (r) the equation 

z'(T) - 2ACD'(T-TO) |Aco(r-ro) + Re[^%(T)]} (13) 

J9 1 

Since all filters under consideration are unbiased,   cc'(0) = 0,   and therefore 

+ 2AcD(T-To)Re[^J   V(T)] 

z'(T   )  = 2AcD(0)Re[JeTi'(r)] (14) 

This  renders the  numerator in (11) to be first order in the noise whence it 

suffices to express the denominator to zero order in the noise.     Therefore we 

have from (13) 

z"(r   ) = 2A2co(0)cr"(0) (15) 

and the estimation error is 

f-T    = - Re[*i%' (T   )]/ACP" (0) (16) 



From (3b) it follows that 

00 

V(T   ) = J h'(T -t)n(t)dt o       J o 
-00 

which is a zero mean,   Gaussian random variable.    For the complex noise 

envelope one has 

n(t)n(s)= 0 

n(t)n*(s) = 2N 6(t-s) 

whence it follows that 

r\'(To)r)'(T0) = 0 

ri'(ro)Ti'^(To)  =2NQ J   |h'(ro-t)|   dt 
-00 

Then if we define the complex variable 

(17a) 

(17b) 

C   =   C      + jC      =  JBT)'(T    ) x      J    y o 
it follows from (17a) that 

~2 
C     =C     -C       +2JCC     =0 

X y J      X    y 

so that  C   C     =0 and C = C Using these facts and (17b) it follows that x   y x y ° 

CC*   =C       +C       =2C        =2N   f     |h'(-t)|    dt x y x o° 7 _ CD 

1 the bar over a quantity denotes the ensemble average. 

N    is the  (si ngle-si ded) noise spectral  density. 

10 



Therefore the estimation error,   Equation (16),   has zero mean and variance 

(f-To}      =   \   .  f|h'(-t)!2dt^"(0)] (18) 
A -«> 

From (3a) we find that 

oo 

T"(0) = J* h"(-t)p(t)dt (19a) 
_ 00 

CO 

h'(-t)p'(t)dt (19b) 
3 

where  (19b) follows from an integration by parts.     Combining (18) and (19) we 

conclude that for large SNR the mis-matched filter leads to unbiased estimates 

of the true time delay T .     The variance of the estimate is given by 

N /V(-t)|Zdt 
2 _     o _-»  (20) 
mmf 7 2 

J   h'(-t)p'(t)dt 

and this result is valid provided the signal and filter result in a compressed 

pulse,  CP(T),   which is real and has a maximum value at the origin,   namely 

cp'(0)= 0 or 
CO 

J"  h'(-t)p(t)dt = 0 (21) 

11 



If the filter is matched to the signal,   h(t) = rj't-t),   then (21) is satisfied and 

(20) becomes 

00 

a   mf = No/I     |P'(t)!  dt <22> 
-00 

which is the classical result.     It is well-known [4] that the matched filter pro- 

2 >    2 duces the smallest mean-squared range error so that a , - G       ,.     Then ^ ° mmf mf 

2                        fW{-t)\Zdtf\v'(t)\Zdt 
a          -              -co                     -oo 

2
mmf    =  *1 (23) 

CT    mf [fh'(-t)p'(t)dt]2 

_00 

measures the increase in the estimation err or as a result of using a mismatched 

filter. 

So far we have considered only the detrimental effects of mismatching in 

relation to the degradation in range performance as expressed in Equation (23). 

The major reason for using deliberate mismatching is to achieve better per- 

formance in the multiple-target environment.    In a typical application the 

waveform CP(T) will have,   in addition to a maximum at the origin,   subsidiary 

peaks,   called sidelobes,   at other values of T.     If these sidelobes are not 

significantly smaller than the mainlobe,   then in the multiple-tar get environment 

it is possible that targets in adjacent range cells with smaller radar cross- 

sections will be masked by the sidelobes of a large radar cross-section target. 

It is desirable,   therefore,   to design the filter to make these sidelobes small 

with respect to the magnitude of the central lobe at T .     This can be accomplished 

by requiring that the constraint'" 

We can assume that cp( 0) >0 since h(t) can always be replaced by -h(t) without 
changing the estimation performance or the zero-bias constraint. 

12 



-€(T)cp(0) =cp(T) = €(T)CO(0) (24) 

be satisfied,  where 0 = €(T) = 1 represents the sidelobe constraint function and 

is chosen to combat the particular clutter distribution under consideration.     In 

many practical problem nothing is known concerning the clutter distribution to 

be encountered and a useful constraint function is to set €(T) = 1 for  \T\< 6, 

€(T) = (1-Y) for  \T\> 6 where * is the width of a range resolution cell and y may 

be from . 9 to . 99 in extreme cases.     Notice that (21) in conjunction with (24) 

guarantees that the extremum of cp(T) at the origin is a global maximum.    Hence- 

forth we shall require (with no loss in generality) that 

Cp(0) > 0 (25a) 

-CD'(O) >0 (25b) 

Using (3) in (24),   the constraint on the structure of the compressed pulse will 

be satisfied provided 

CO 00 

|J   h(-t)p(t+r)dt|   = €(r) J    h(-t)p(t)dt (26) 
_00 _ 00 

In practice h(t) and p(t) will be bandlimited functions,   in some  sense and there- 

fore  "slowly varying" functions of T.     Therefore,   the continuum of constraints 

can be replaced by the finite number of constraints 

|  J °°h(-t)p(t+T.)dt|   = €. J c°h(-t)p(t)dt      j = l, 2 n (27) 
_oo •> -1      _00 

n 
where nand {T}      are chosen to provide a dense sampling of the compressed pulse. 

Jj=l 
The problem for which this approximation is not made has been studied recently 

in reference [5].     It is shown there that the mathematical framework needed 

to handle the continuum of constraints is so complicated that one not only loses 

13 



touch with the physical problem at hand but also finds it impossible to interpret 

the solution once it is obtained.    We shall see that the discretized problem can 

readily be solved and interpreted and we can then show that as the sampling 

becomes dense,   the sequence of optimum solutions converges with respect to 

an appropriately defined Hilbert Space norm. 

In order to complete the specification  of the filter design problem we must 

take into account the loss of signal detectability which must occur as a result 

of the filter-signal mismatch.     That such a loss occurs follows from the well- 

known fact that the matched filter results in the largest detection signal-to-noise 

ratio (SNR).     In order to develop a criterion which measures this loss we shall 

adopt a detection rule which is used in the matched filter processor.     That is, 

a radar target is said to be encountered if 

z(f)>\ (28) 

and that no target is present otherwise.     In this case f is the estimate obtained 

by solving (5) using the processor described above,  and X is a suitably chosen 
2 

threshold level.     Since cp   (T-T   ),   Equation (3),   represents the instantaneous 

signal power at the output of the filter,   and since 

ZNQ J°°|h(-t)l2dt (29) 
-CO 

represents the average noise power,   the detection noise-to-signal ratio is 

measured by the quantity 

00 2 ? 
2No L.l^-^l  dt/cp   (f"To) (30) 

A well-designed receiver will provide good estimates of T     so that f-T   «   0 and o o 

the detection performance of the mismatched filter is described by the noise- 

to- signal ratio 

14 



J  lh(-t)l2 dt 
. 00 

p = 2N   - 
mmf o      „ °° ? 

[ J^ h(-t)p(t)dt] 

for the matched filter case,   h(-t) = p*(t), and we have 

(31) 

Vf^V-f   IP^)'
2
^ <32) 

The ratio 

J      |h(-t)fdtj       |p(t)|2dt 
mmf       >  j (33) 

Pmf [  r°°h(-t)p(t)dt]2 

j 
.00 

represents the increase in the detection noise-to-signal ratio as a result of 

using a mismatched filter.    Since the signal p(t) is specified we can define 

°° 2 
J       |p(t)|    dt = E (34a) 

_ CO 

00 

J      |p'(t)|2dt   - B2 . (34b) 
2 

E represents the  signal energy which B   /E represents its mean square bandwidth. 

On the basis of the preceding analysis we can combine Equations (21),   (23), 

(27),   (33),   and (34) to formulate two important filter design problems:    From the 

class of admissible filters,   we want to find that filter,   which,   for a given signal 

p(t),   satisfies the multiple target resolution constraints,   Equation (27). 

00 00 

I J*     h(-t)p(t+T.)dt |   =   €. J     h(-t)p(t)dt j = l. 2 n   (35) 

15 



and satisfies the zero bias constraint,   Equation (21) 

JGO 

_ooh'(t)p(t)dt = 0 (36) 

and extremizes the cost functionals for the following problems: 

Problem 1:    minimizes the normalized detection noise-to-signal ratio, 

°° ? 
Equation   (33) B lh(-t)|dt 

E •  —  

[ f   h(-t)p(t)dt]2 (37) 
- 00 

Problem 2:    minimizes the normalized increase in the mean-square range 

estimation error    Equation   (23) 

J_>'(-t)|
2dt 

B2.  

[J    h'(-t)P'(t)dt]2 (38) 
_00 

subject to a constraint on the allowable increase in detection noise-to-signal 

Equation    (33) °° 7 

I      (h(-t)|2dt 

[J    h(-t)p(t)dt]2 
3 > 1 

(39) 

It is advantageous to combine these two problems into a one-parameter 

family of optimization problems which minimizes a linear combination of the 

detection and estimation performance indices.     Therefore,   we combine Equations 

(37),   and (38) and (39) and minimize 

2    p|h'(-t)|2dt Jro|h(-t)fdt 
B         -<=                                      ,,     ,    -°° <     < a -g   + (l-a) for 0 =a = 1 

[J    h'(-t)P'(t)dt]2 [f    h(-t)P(t)dt]2 (4Q) 

16 



subject to the zero bias constraint,   Equation (36) 

00 

J      h'(-t)p(t)dt = 0 (41) 
-00 

and sidelobe constraints,   Equation (35) 

00 00 00 

-€. J      h(-t)p(t+r.)dt = h(-t)p(t)dt =   6.J  h(-t)p(t+T.)dt 
J     _oo J _oo J _oo J 

j=l,2 n (42) 

By setting a = 0 we could obtain the filter which maximizes the detection 

signal-to-noise ratio subject to sidelobe constraints.     This might be a useful 

solution to obtain for some communications problems in which the signal must 

"stand out" of the noise.    For a = 1 the solution would yield a filter which gives 

the best range accuracy subject to sidelobe constraints.     It would be tempting 

to use this filter for pulse position modulation communications problems and 

for the radar tracking problem.     However,   one intuitively would expect the 

performance to depend on the ability to detect the target,   since if the signal 

does  not "stand out" of the noise,   it would not be possible to measure the 

location of the peak of the compressed pulse.     In fact we shall show that the 

case a = 1 leads to a mathematically ill-defined problem.     In addition,   the 

formula describing the estimation performance of the filter implicitly assumed 

a large signal-to-noise ratio.     This assumption can not be guaranteed unless 

a < 1. 

For the cases in which 0 < a < 1, we are merely putting different weights 

on the detection and estimation performance characteristics of the filter. By 

solving the problem for   several values of a we can choose the filter which 
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gives an acceptable detection performance and good estimation performance. 

It  can  be   shown   that  that  these   solutions   corresDond  to   those   of 

Problem 2 for appropriate values of P.     Therefore,   the problem which is de- 

scribed by Equations (40),   (41),   and (42) describes a wide class of problems 

which arise in radar and communications.     It is to this latter problem formula- 

tion that we shall direct our attention in the following sections.     In the next 

section we shall reformulate this problem in state-space and by using optimal 

control techniques we shall obtain necessary conditions for the optimum filter. 

From these conditions we can deduce the physical configuration of the optimum 

filter.    However,   certain mathematical difficulties arise in the time domain 

formulation which are difficult to resolve.    By transforming the problem to 

the frequency domain and using the insights obtained from the structure of the 

time  domain solution,   it is possible to use functional analysis to obtain the 

Fourier Transform of the unique optimum filter.     This solution specifices the 

optimum filter except for certain unknown gains.     The cost functional,   the 

zero bias constraint and the sidelobe constraints can be evaluated in terms of 

these unknown constants which in turn leads to a nonlinear programming 

problem.     Efficient computational algorithms which have been developed for 

this type of problem are then used to generate numerical results to illustrate 

the utility of this approach to filter design. 

18 



III.    State-Space Solution of the Design Problem 

In this section we shall formulate and solve the mismatched filter design 

problem using state-variable techniques.     Most of the section involves straight- 

forward details which will provide no new insights to anyone familiar with 

optimal control theory.     It is included at this point in the paper because this 

was the order in which we performed our research.     It shows that by following 

the recipe prescribed by the minimum principle of Pontryagin one can formally 

obtain the structure of the optimum filter.    With the solution before us,   we 

were then able to obtain a much more rigorous derivation of the  result which 

uses only the projection theorem of Hilbert Space  Theory.     The latter solution 

is presented in Section IV.     The point is that Section III can be left out by the 

casual reader without significant loss in continuity.     It is included for those 

who may have an interest in the methodology which must be followed to use 

optimal control theory to solve optimization problems.     Some limitations of 

the method are pointed out. 

In order to guarantee that the optimal control approach will result in a 

realizable impulse  response,   we  shall replace the function h(-t) which appears 

in all of our equations by h(T-t) where  T denotes some suitably large processing 

time.    We shall assume that h(t) and p(t) are real.     In addition,   we assume 

that p(t) and p(t+T.),   j = ;, . . . , n are zero outside of the interval [0, T]. 

We now proceed to the  state-space formulation by defining the control 

function to be the first derivative of the impulse response and let the first 
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component of the state vector be the impulse response*,   i.e. 

u(t) = h(T-t) (46a) 

Xj(t) = h(T-t) (46b) 

Then the first state equation is 

Xj(t) = - u(t) (47) 

In order that H(T-t) be well defined for all te[0, T] we require that x (0) = x (T) 

0.     In addition we define the state variables 

^(t) = p(t)K(T-t) (48a) 

x3(t) = p(t)K(T-t) (48b) 

<4< x,(t) = h2(T-t) (48c) 

x5(t) = K2(T-t) (48d) 

yo(t) = p(t)h(T-t) (48e) 

y.(t) = p(t+r.)h(T-t)     j = l,2,...,n (48f) 

Each of these variables is to have zero initial conditions,  whence it follows that 

T 
x2(T) = J    p(t)K(T-t)dt (49a) 

o 

T 
x3(T)=J      p(t)H(T-t)dt (49b) 

o 

T 
x4(T) = J    [h(T-t)fdt (49c) 

o 

T 
x(T)=J    [n(T-t)]2dt (49d) 

The dot denotes differentiation with respect to time, 
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T 
yo(T)=J     p(t)h(T-t)dt (49e) 

o 

T 
y(T)=J     p(t+r.)h(T-t)dt (49f) 

J 0 J 

j=l, 2, . . . , n 

Notice that these are all of the quantities needed to specify the filter design 

problem.     By substituting Equation (46) into Equation (48) we obtain the state 

equations 

Xj(t) = -u(t) Xj(0) = 0        xx(T) = 0 

x2(t) = p(t)u(t) x2(0) = 0 

x^t) = p(t)u(t) x3(0) = 0 

x4(t) = xx
2(t) x4(0) = 0 

x5(t) = u2(t) x5(0) = 0 

yo(t) = p(t)Xl(t)      yQ(0) = 0 

y (t) = p(t+T  )Xj(t) y  (0)  =  0     j=l, 2, . . . , n 

The resolution constraints, Equation (42) require that 

-€.y   (T) = y.(T) = €.y   (T)     j = l, 2, . . . , n (51) 
Jo j jo 

and the zero bias constraint,   Equation (41),   requires that x-(T) = 0.     The cost 

functional to be minimized,   from Equation (40),   can be written as 

x.m 2 x.(T) 
P[x(T)] = a •    -^7—   •  ^r  + (1-a) •    -X  

x2   (T)       ^ y     (T) (52) 

(50a) 

(50b) 

(50c) 

(50d) 

(50e) 

(50f) 

(50g) 
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Since all of the equations are homogeneous in h(- ),  we can normalize either 

x?(T) or y   (T).     Therefore,   the filter design problem is equivalent to finding 

the control function u(t),   te[o, T] which minimizes the cost functional 

x5(T) 2 
P[x(T)] =   a.^^   • B—    +(l-a)x(T) (53) 

x2
2(T) 

subject to the differential equation constraints 

x.(t) = -u(t)        x (0) = 0        x.(T) = 0 (54a) 

x2(t) = p(t)u(t)        x2(0) = 0 (54b) 

xx
2(t) 

x,(t) = u2(t)        x,(0) = 0 (54e) 

x3(t) = p(t)u(t)        x3(0) = 0        x3(T) = 0 (54c) 

c4(t) = xx
2(t)        x4 

2 
:5(t) = u   (t) x5 

yQ(t) = p(t)xL(t)        yQ(0) = 0        yQ(T) = 1 (54f) 

y (t) = p(t+T  )Xj(t)        y (0) = 0        j=l,2,...,n (54g) 

subject to the resolution constraints 

-€. = y.(T) = €.        j=l,2, .. . , n (55) 
J        J J 

Although the dynamics of the  system equations are relatively simple,   the 

inequality end-point constraints,   Equation (55),   makes this an interesting 

optimal control problem.    We shall deal with these constraints using the method 

suggested in [6] in which we imbed the original problem into a subclass of pro- 

blems in which the terminal conditions are fixed.     Therefore,  we shall solve a 

fixed end-point problem by requiring that 

yj(T) = y.f        j=l,2,..., n (56) 
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f n 
where the n-vector y   belongs to a set S c E    where 

S = fyf:    -£.  = y.f = £,       j=l, 2, . . . , n] (57) 

f 
For each vector y €S we have a fixed terminal time optimal control problem 

for which the necessary conditions for optimality can be derived using the min- 

imum principle [7].    Consider the general  control   system described by 

z(t) = £[z(t),u(t), t] 0 = t = T (58a) 

z(0) = z° (58b) 

g.[z(T)] = 0 j=l,2,...,r (58c) 

in which a minimum of P[_z(T)] is sought,  we first form the Hamiltonian function 

N 
H[z(t), _X(t),   u(t),t] =    I 1X.(t)f.[z(t),u(t),t] (59) 

where the costate variable X(t) satisfies the differential equation 

^j(t) = -|^-7j)     j=l,2,...,n (60a) 

with end-conditions 

aP[z(T)] r Sg.[z(T)] 
Xj(T) =       9z.(T)       +    i=ia i        9z.(T) (60b) 

J J 

The constants a. are unknown multipliers which are to be chosen so that the 

prescribed end-conditions,   Equation (58c),   will be satisfied. 

Applied to the problem at hand the Hamiltonian is, 

H - X1(t)u(t) + \2(t)p(t)u(t) + >,3(t)p(t)u(t) 

+ X4(t)xx
2(t) + X5(t)u2(t) + uo(t)p(t)Xl(t) 

n 
+ |=1Uk(t)p(t+Tk)x1(t) (61) 
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Therefore,   the costate variables satisfy the equations 

n 
V^t) = - 2X4(t)Xl(t) - UQ(t)p(t) -   S    uk(t)p(t+rk) (62a) 

k=l 

X'.(t) = 0        j=2 5 (62b) 

Cl.(t) = 0       j=0, 1 , a (62c) 

The end-point constraint functions are 

gl[z(T)] = xx(T) (63a) 

g2[z(T)] = x3(T) (63b) 

g3[z(T)] =yQ(T) -  1 (63c) 

g3+j[*(T)] =yj(T)- y.f     j = l,2,...,n (63d) 

and the cost functional is 

x,(T) 2 
P[z(T)]=a-   -\—   •   ^- + (l-a)x4(T) (64) 

x2   (T) 

Applied to Equation (60b),   the terminal values of the costate variables are 

X1(T)=0t1 (65a) 

x5(T) 2 
\   (T) = -2a-^_ * (65b) 

x2
3(T)       E 

VT>=a2 (65c) 

X4(T) = (1-a) (65d) 

1 B2 

\,(T) =a 1    • ±L 
5 x2

2(T)      E (65e) 

UQ(T) =a3 (65f) 

a (T) =a3+.     j = l, 2, ... ,n (65g) 
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From Equation (62b),   (62c),   it is clear that all costate variables except >(• ) 

are constants.     Therefore,   the Hamiltonian can be written as 

x,(T) 2 
H = [-X (t) -  2tt . _^—   .   *     p(t) + a   p(t)] U(t) 

1 x2
3(T)        E 2 

+     2       • %"'  u2(t)  + d-^^^t) +a3p(t)Xl(t) 
x2   (T) 

+ J=ia3+kP(t+Tk)xl(t) (66) 

The minimum principle  states that the optimal control must minimize H at each 

t^fO, T].     The minimization is performed over the class of admissible controls, 

which in turn,   is directly related to the class of admissible filters.     If any 

"buildability" constraints are to be incorporated into the  synthesis,   it is at 

this point that they are to be taken into account.     For the purpose of this  in- 

vestigation,   however,   we  shall assume that there are  no constraints on the 

filter's  structure.     Then Equation (66) can be minimized over the variable 

u(t) for each t^[0, T] by minimizing 

x   (T) 2 
H[u(t)] = [ - \  (t) -  2a^   .  ^_b(t) +a   p(t)] U(t) 

x,   (T)        ^ Z 

B2 

—2   '   FT u  (t) (67) 
x2   (T) 
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Recall the fact that the weighting constant Cie[0, l].    For 0<a= 1,   the function 

H has a well-defined minimum which is achieved by the control 

x2
2(T) x   (T) 

L a B^ * *2   (T) Z 

However if 00 = 0,   then the control is singular [8] provided 

^(t) - <X2p(t) • 0 for all te[o, T] (69) 

Otherwise the optimum control switches from ±°° which is a meaningless solution. 

Information regarding the nature of the optimum singluar control can be obtained 

by differentiating Equation (69) and relating the result to Equation (62a).    We 

obtain 

a2p(t)« Jf,(t) 
n 

=    -2Xl*(t) - UQp(t) -   ki1HkP(t+Tk) (70) 

where we have set M,   = G._      ,   k = 0, 1, . . . , n.     But by definition x.(t) = h(T-t), 

therefore,   the optimum impulse response is of the form 

n 
h*(T-t) = XlP(t) + \2p(t) +kS1 Hkp(t+Tk) (71) 

where X,, \-.li,, . . . , U    are arbitrary constants.     These are to be chosen to 
1^1 n 

satisfy the sidelobe and zero-bias constraints and to further minimize the cost 

function.    We shall discuss this idea at length at a later time.     The point we 

want to make here is that the optimal control methodology has led us to the 

form of the optimum filter,   at least for the case (X = 0.     But setting Ct = 0 in 

the cost functional,   Equation (53),   means that no consideration was being given 

to the range estimate variance; only the detection noise-to-signal ratio was 

being minimized.     Therefore,   the singular control leads to the structure of the 
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filter which maximizes the detection signal-to-noise ratio subject to fixed con- 

straints on the  sidelobe  structure.     Equation (71),   therefore,   proves that the 

transversal equalizer is the optimum filter for maximizing the detection SNR 

in a multiple target environment. 

Next we return to the case 0<CC = 1.     For this case the optimal control is given 

by Equation (68).     However,   since x (t) = -u(t),   then Equation (68) can be 

written as 

v      X?2(T) X^T) F    x?2  <T> 

We define a new function according to the equation 

*5(T) 
xj (t) =e(t) -^ryP(t) (73) 

which, when substituted in Equation (72) leads to 

F       x?   (T) F   
x2   (T) 

Mt) = -^. -^a— Vt,+5-Za—V^ (74) 
B B 

Since the derivatives of \,(- ) and p(- ) have been assumed to exist,   then 

F X22(T> • F     X22<T) 

8<*) = " ^ '  ^0— '   X !<*) + ^2 "To"- a2P^ <75> 

and then using Equation (62a) for >" .(•) ,   we have 

~    x2
2(T) n 

g(t) = " ^^—[-2(i-a)x1
::(t)-uop(t)- k|j ukp(t+Tk)] 

B 

F    X22(T) 

+ ^-4cT-a2^t) <76> 
B 

Then utilizing Equation (73) for x (t) we have the  second order differential 

equation for e(* ), 
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e(t)      --M-   ^ x2
2(T)e(t) = a2p(t) + HQp(t) +kZ=1ukp(t+Tk) (77) 

B 

and this equation is to be solved subject to the end-condition,   e(0) = e(T) = 0, 

which follows from Equation (73).    Assuming that we can solve this equation 

for e(. ),   the optimum filter impulse response for the combined estimation and 

detection problems is 

-lTTTTp(t) (78) 

We let 

dj = - x5(T)/x2(T) (79a) 

^^^^(T) (79b) 
B 

2 
It is clear that uu    is a positive constant.    It follows from (25) and the definitions 

of x,-(T) and x_(T) that CL must be positive.     Then the optimum filter impulse 

response is 

h*(T-t) = e(t) +CLp(t) a    > 0 (80a) 

where e(t) satisfies the equation 

2 n 

e(t) - U)  e(t) = <X2p(t) + U   p(t) + ,E . Ukp(t+Tk) (80b) 

e(0) = e(T) = 0 (80c) 

There  remains the problem of selecting the multipliers a.,   a_,  U   ,  U., . r b r r    2      o      r n 
in order to guarantee that the  specified constraints are  satisfied.     The discussion 

of this problem will be deferred until a later time.     The main point to make here 

is that the optimum filter is made up of parallel processors:    in one path is a 

u 
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matched filter,   in another a matched filter and transversal equalizer are 

cascaded with some   sort of unstable dynamical system.     For a fixed processing 

time a well-defined solution results,   but for the case in which T-*00,   an unstable 

mode arises in the filter's realization.     Furthermore,   we really are interested 

in obtaining a filter impulse response on [0,») and this is not possible using 

the  state-space technique directly.     Presumably we could use the method out- 

lined above to solve the problem for each T    and let T -*00 but it is extremely ^ n n 7 

difficult to study the behavior of the optimum solutions as a function of T 

except in the simplest case of minimizing the detection noise-to-signal ratio. 

Therefore,   there is a good reason to re-examine the filter design problem in 

the frequency domain where the problems of stability and fixed terminal time 

do not arise.     We do not mean to imply that the optimal control formulation has 

been useless,   since by following the recipe prescribed by the minimum principle 

we have  succeeded in deducing the  structure of the optimum filters.     This 

information indicates the appropriate inner product space to use when solving 

the problem in the frequency domain. 
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IV.    Frequency Domain Solution of the Design Problem 

2 
In this section we shall use the L  (-co,00) theory of Fourier transforms to 

transform the filter design problem described in Equation (40),   (41),   and (42) 

into the frequency domain.     Therefore we need assume that h(- ), h (. ),   p(. ), 

and p(- ) are members of the space 

00 *y 

L2(-»,oo) = [£(.):   J|f(t)|dt<~} (81) 
-00 

where f(.)may be a complex-valued function.     Then the Fourier Transform of 

f(. ),   is well-defined by 

F(UU) = J      f(t)e_:iUJtdt =3F[f(t)] (82a) 

f(t) = l      J^Me^^W)] <82b> 
C.TT    " 

_oo 

where the " = " signs mean "limit in the mean".    We shall have occasion to use 

Parseval's Theorem 
oo ao 

J_wf(t)g(t)dt = -^ [a F(ou)G*(uu)d<« (83) 

We also note that if F(uu) =#[f(t)],   then j(i)F(u)) =5*[f (t)] and that F*(«J) =3>[?(-t)]. 

Using these relations,   the filter design problem stated in Equations (40),   (41), 

and (42) becomes the problem of minimizing 

00 2 
, I" °° ,„2, ,2, P       |H(U))|   dcu 

R2 J       UJ   IH ('JU) |   duu J-» ' ' 
a^:_^ + (1-a)- 

00 
2 2 

[J  uu  H(uu)P(uu)duu] [J   H(a))P(uu)duu (84) 

0*0*1 
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subject to the zero-bias constraint 

00 

J     juuH(uu)P(uu)d'JU   = 0 (85; 

and sidelobe constraints 

oo co i{U'r\r < °° 
-€ J   H(uu)P((ju)duLi =  J  H((u)P('JU)e duu = €    J    H(uu)P(u))duu (86) 

_00 _00 _00 

k=l, 2 n 

The inequality constraints are as troublesome in the frequency domain as 

they were in the time domain.    However    we can use the same trick to eliminate 

them and first solve a problem with equality constraints.     With no loss of 

generality we can set 

f      uu   H(uu)P(u))S^ = B (87) 

because the equations are homogeneous in H('JU).     Furthermore we require that 

JUUT, 
J    H(uu)P(uu)e        ^- = yk k=0, 1 ,n (88) 

_ 00 

n 4-1 
where T     =0 and the (ti+1)-vector y belongs to the S c E        where 

s = W-   -%y0 = yk = ekyo,     k=l, 2 n) (89) 

If we consider only those cases for which a > 0,   then for each fixed y€S we 

want to minimize 

—|—.   rj V|H(u.)|2da. +^1.  ^ J°°|H(t>)|2dT] (90) 
BE-00 v -00 

'   o 

subject to the constraints 

CO 

J    jaiH(uu)P(uu)do) = 0 (91) 
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2TT/,.,IT^/   \duu      _2 |     uu  H(uu)P(uu)|£ = B (92; 

,dUJ J    H(uo)P(uu)^ = yo (93; 
-00 

kduu J   H(uu)P(uu)e g£ = Yk    k=l,2,...,n (94) 
_co 

From Parsevals Theorem we know that 

^rJ_jF(o))|2daJ=J_Jf(t)|2dt (95) 

2 
Therefore since h(. ). h(- ),   p(- ),   p(- ) belongs to L  (-00, ») then H(uu), uuH(uu), 

P(uu), uuP(uu) belong to L  (-00,00).     Let us now define a vector space //] over the 

real numbers as 

y^   ={F(UU):    F(IU), OUF(U)) €!?(-•,•), F(tB)P(«B)* F*(-ti))P*(-uu)}(96) 

The condition F(uu)P(uu) = F*(-uu)P*(-uu) is equivalent to the requirement that the 

complex representation of the compressed pulse be real.    We define an 

inner product on JW  as follows:    For any F(- ) and G(- )&°M   , 

<F(uu),G(uu) >= J    [uu2 +^_- ^-] F(uu)G*(uu)d«l (97) 
_oo y ^TT 

For convenience we set 

2 _ (1-q)        B2E 
a        ' ~~7T (98) 

y '   o 

and note that this is a positive quantity.     It is easy to verify that Equation (97) 

specifies a well-defined inner product.    Furthermore   it can be verified that 

the pair (//?,<• , •>) defines a Hilbert Space.    We can then imbed the minimiza- 

tion problem into this Hilbert Space and minimize Equation (90) which becomes 
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-V llH(w)||2 (99) 
BE 

o 
where ||F(uu)||     = <F(uu), F(uu) >.     The minimization performed subject to the con- 

straints,   Equations (91) through (94),  which can now be written as 

< H(uu),-^—2 F*(uo) >=   0 (100) 
uu  +X 

2 , 
< H(u>), -^—2P*(uu)>=B (101) 

uu  +X 

< H(uu),-i TP*(W)> = V (102) 
u>  +\ ° 

1 "jUJTk 
<H(uu),—£—2P*(uu)e > = Yk    k = l,2,...,n (103) 

uu  +\ 

These operations are well-defined provided the functions appearing in the inner 

product belong to the space7?7.    Since H(uu) and P(uu) belong to^Kl by assumption, 

it is easy to show that the functions appearing in the above inner products belong 

to77^  as long as \ 4 0.      Notice that X = 0 if and only if Cl = 1.     Referring to 

Equation (84),   this case corresponds to minimizing the estimate variance sub- 

ject to no constraints on the detection signal-to-noise ratio.    We have already 

given physical arguments based on the practical problem for requiring that 

a  4   1. Now we have a mathematical requirement that this condition be met. 

Next we define a set L to be 
5UU 2 

r 1 UU L = IF(uu):    F(uu) = a.-t—? p*(iu) + a--,—T p*(ju) 
Lw  +X w   +X 

1 n 1 "J^k, 
+ Uo^-2 • + kE=l ^-TT2^)e ] 

o +X OJ +X 
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where a.,  a_,   u   ,  u,,, . . . ,|i    are arbitrary real constants.    It is easy to 
1     c      o      1 n 

show that L is a subspace of 171 •     Then the projection theorem for functions 

in a Hilbert Space holds  [14] and we can express the function H(uu)€ 7/|as follows 

where 

H(uu) = HL(uu) + H±  (w) (105) 

HT (uu )€L and 

<Hj_((Ju),   F(u>) >= 0 for all F(tt> )€L (106) 

This decomposition of H(uu) is unique.     Then from Equation (99) the function to 

be minimized is 

-J_||HT(u.)||  +-J-  KMI2 (107) 
BE BE 

All of the functions appearing in the constraint equations,   Equations  (100) 

through (103),  belong to the subspace L and are therefore orthogonal to H    (uu). 

(Therefore only that part of H(uu) belonging to L is utilized in satisfying the 

constraints. )   Hence,   the problem reduces to minimizing (107) subject to the 

constraints. 

< H    (uu), ^—-2P*(w)> = 0 (108) 
(D  +X 

2 
< H   (u)),-^—jPKuu) > = BC (109) 

uu   +\ 

<HL(a)),-^-TR^)> = yo (n0) 

. "J,JL,Tv 
< H   (uu),   2     2 p':;(a,)e ' > = Y^    k = 1< 2   • • • • n (m) 

uo +X 
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It is obvious that the norm can be made smallest by choosing H    ('j') = 0.     Then 

the optimum solution H('X') belongs to L and therefore is of the form 

1 2 n "J!,Tk 
H(u>) = -£—?[ajiu+a2uu   -KiQ+   E    U^e ]F*(u)) (112) 

uu   +X 

Since the problem is to be  solved for a fixed a and y    with 0< a < 1,   y   ^ 0 and r ' o ' o 

since the constants a,.   a_ ,   a   , . . . ,U    are arbitrary we can replace a. by X a,, l2o n ' c 1    ' 1 

etc.   and obtain 

.2 n _Ja'Tv 
H(ai) =-^—2- [aijuu+a2u;   +UQ+ kI=1uke ]P%) (113) 

uu +X 

Since . 

X2 2 ,2        a2X 

-2—2 a2,JJ    " a2X     "       2     2 (114) 
uu  +X uu  +X 

so that the Fourier  Transform of the optimum filter impulse response can be 

written as 

2 >2 2        n "J!1JTk 
H(r) = a2X   P*(uu) + -£—2 [a.ju»+(u  -a2X   )+ X^e        K]F» 

(115) 

Since a      a_,  u   , . . . ,u    arbitrary real constants we can relabel them at our 1       c.       o n 

convenience.    Similarly the constaint points T,   can be relabelled appropriately 

and we can express the optimum solution as 

H(uu) = a F*(u>) + -^-2- [a2juu +   E      Uke ^P*^) (116) 
uu   +X 

The constants a,,   a.,  u      ,...,u    are to be chosen so that the solution satisfies 1      2       - n n 

the constraint equations (108) -   (111). 

Up to this point in the analysis,   the function H(JJ) has been interpreted as 

2 
the  L    -  Fourier Transform of the optimum filter impulse response.     It would 
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also be convenient if we could interpret H (iu) as the transfer function of the 

filter.     Let us define the functions 

K '      2 e (117a) 
n 

g(t) =  ki.n
a
k

6(t-Tk) (117b) 

Note that f(t) can be interpreted as the impulse response of a stable but un- 

realizable filter, while g(t) is the impulse response of a tapped delay line, 

(8 (t) represents the Dirac delta function).     Let us also define the function 

q(t) = alP(t) + f(t)*[a2p(-t) + g(t)*p(-t)] (118) 

where "*" denotes the convolution operation.    We can take the Fourier Trans- 

form of q(t) in the Generalized Function sense to obtain 

Q(u>) - a PKtu) + F(uu)[a2jtw + G(uu)]PK'Ju) (119) 

where F(uu),   G(uu) are the Fourier Transform of f(t),   g(t).     In other words 

F(uu) =-r—T 
uu   +1 (120a) 

n -jurr 
G('JU) =     E     u, e (120b) 

k = -n    k 

2 
But the function H (uu) in Equation (115) is the L -Fourier  Transform of h(t). 

Therefore it is also the Fourier Transform rT(t) in the Generalized Function 

A 

sense,   and H(uu) = Q(uo),   in other words, 

H(uu) = a   P<(u)) + F('ju)[a2juu + G^jJ^uu) (121) 

From this equation we can draw the block diagram for the filter as shown in 

Figure 2. * 

*Note that in Figure 2,   a_  = 0.     This corresponds to a result shown in Chapter V. 
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Fig.   2.     Block diagram representation of the optimum mismatched filter. 

37 



Therefore the optimal processor for estimating the target range and 

detecting the target in a multiple target environment consists of two parallel 

processors,   one of which is simply a matched filter,   the other a matched filter 

in cascade with a tapped delay line and a bandlimiting filter.     If we were to 

study simply the target detection case in clutter we would have chosen the cost 

weighting factor,  a,   in (84) to be zero and we would not have needed the 

normalization (87) but rather we would set y    = 1.     By retracing the steps used 

to obtain the above solution (this case is even easier) we would have found that 

the optimum filter was given by (121) with a    = 0 and F(uu) = 1.     Therefore the 

filter which maximizes the detection signal-to-noise ratio subject to sidelobe 

constraints is simply a matched filter followed by a tapped delay line.    We 

have therefore established the optimality of the classical transversal equalizer 

structure. 

In other cases,   in which a ^ 0,   the cost function gives some emphasis to 

the estimation performance of the filter and the optimum structure is that 

shown in Figure 2.     Therefore the transversal equalizer by itself is not the 

optimum filter,  when,   in addition to detecting the presence of the target in 

clutter,   its range is to be estimated as well. 

In Section VI we have evaluated the performance of the optimum filter for 

a particular transmitted signal.     The dynamics of the various filter parameters 

are shown at that time.    For our purposes at this time,   it suffices to say that 

the  solution to the filtering problem has been found using Hilbert Space techniques 

in the frequency domain.    All components in the filter are stable but the band- 

limiting filter is unrealizable.     No questions concerning  the duration of the 
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processing time arise in this case,   since the optimum impulse  response, 

- »^. _ 1 
h(t) = 3* ~  [H(uu)],   will be defined on the whole real line,   -<*> < t < °°.     Therefore, 

the frequency domain formulation does appear to have advantages over the 

state-space  solution.    We want to emphasize again,   that we found the form of 

the solution by using the optimal control techniques and used the insights 

gained from that solution to set up the  linear  space and the inner product 

which led to the mathematically rigorous  result.     Furthermore one advantage 

of the  state-space approach is that it leads directly to a  realizable filter. 

The problem of filter synthesis is  not completely solved,   however, 

since we have vet to determine the constants a, , a_ , u      , . . . , u   .     In the next 
' 1     2     -n n 

section we shall show how these parameters can be found by solving a 

quadratic programming problem. 
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V.        Reduction of the Filter Design to a Nonlinear  Programming Problem 

In the previous section we showed that for a fixed vector y_€S,  where 

the function which minimized the combined estimation/detection cost functional 

J     uo2|H(u))|2dU)  +^LJ    |H(u,)|2d«) (123) 
B   E "-» y 

' o 
subject to the constraints 

I     jU)H(uu)P(uu)|^= 0 (124a) 

00 
2 

J     uu  H(uu)P(uu)£i£ = B (124b) 

00 J^wi 
H(uu)P(u!)e      ^ = y,      k=0,±l, ... ,±n (124c) 

_ oo 

was of the form 

H(u>) = a.P*(u)) + a2 J^   2    ^^ 
uu  +X 

X2        r    » -JOTk 
+ -7—T[J   Jl, "2—?Lk^-nuke ]P*(u>) (125) 

UU    +\ J       \    / v 

The constants a.,   a_ ,   Li      , . . . , u    are to be chosen to satisfy constraint 
1     L      -n n 

equation (124).    In this section we propose to show that these constants can be 

found by solving a nonlinear programming problem.     Before we do this, however, 

we shall show that the (2n+l)-dimensional constraint set can be reduced by a 
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factor of two by assuming that the sidelobe  samples are taken symmetrically 

about T    = 0 and that the sidelobe constraint function is symmetric.     Only the o ' 7 

latter assumption results in some loss in generality of the results.    First we 

define the real-valued functions 

>2 

Fr(x)=a1+-_^      £_£   COSUT 
uu   +X (126a) 

a_uu\ 2        n 
Fi(,i,) ~~^^ ' ~^J kl- nUksinOTk (126b) 'ju    +X       'ju   +\ v ' 

and note then that Equation (125) can be written as 

H(uu) = [Fr(u>) + jF.(uu)]P*(U)) (127) 

Now we make the assumption that the  sidelobe sampling points W. } be 
k  k=-n 

chosen symmetrically,   i.e. 

Tk = "Tk (128) 

This assumption results in no loss of generality of the method,   but it permits 

us to rewrite (126) as 

x2 
Fr(m) =&1+  -^—T  [UQ + k|j (uk-Hi_k)cosujrk] (129a) 

2 
a-'a)X .2 n 

Fi<tl)) =  -Z—T —TTZ-  kil(uk-u-k)sinXTk (l29b) 

UU    +X ID    +X 

Let us define  new variables according to 

Uo=V   'Jn+l = ar   %+laa2 

Uk=Uk^-k'    \=Uk-U-k (130) 
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Then the function F   (• ) depends only upon the (n+2)-vector u while F.(- ) depends 

upon only the (n+l)-vector r\ .     These vectors are to be chosen to satisfy the 

constraint equation,   (124).     From (129) it is obvious that 

Fr(tu;u) = Fr(-uu;u) (131a) 

F.(uu;il) =-E(-U);r[) (131b) 

where we have explicitly denoted the respective dependence upon uand r\.     The 

optimum solution can be written as 

H(ur,u,T2) = [Fr(w;u)+jF.(uj;Ti)]P*(w) (132) 

We now substitute for H(. ) in the constraint equations and obtain the following 

set of constraint equations which are completely equivalent to those expressed 

in (124): 

J    <JuF.(uu;ri)|p(w)ri^ = 0 (133a) 
_oo x 2TT 

oo 

J w2Fr((u;u)|P('JU)|2g = B2 (133b) 
_ 00 

J°°Fr(u);u)|P(t,)|
2^=yo (133c) 

2d i. f    [F   (UJ;U )cosur, -F.(uu;ri)sinU)T, ]| P(uu)|   S^ = y, (133d) 
_ oo 

These equations follow from the fact that F (uu;u_) and | P(uu)| are even functions 

of !|'(CD (T) is real) while F.('ju;r[) is an odd funct ion of uu. For example since 

d'F   (uu;u)\ P(u))|     is  an odd  function of  iu r      — 

42 



J   U)F   (uu;u)|p(uu)|    dU)=Oforallu (134) 
_00 

and the zero-bias constraint is reduced to Equation (133a). 

The  cost function,   (123) depends on the vectors u and r\ according to the 

relation 

f[   *       *2 +-M-] [Fr
2(uu;u) + F.2(x;ri)]|p(uu)]

2d^ (135) 
_00 B      E V ' o 

In the equations for F   (• ) and F.(- ) we have been using the definition 

x2 = (h_o).^2E (B6) 
ex £ 

These relations have been derived using only the fact that T       = -71 .     It 

is now convenient to introduce the assumption that the  sidelobe constraint 

function is symmetric.     This condition will be satisfied for the so-called 

"thumb-tack" constraint function,   but there may arise cases where a non- 

symmetric sidelobe structure would be permissible.    We would handle these 

cases by applying the constraints  symmetrically which would implicitly reduce 

the degree of variation in the multipliers and result in an increased cost.    We 

would like to point out that the assumption is introduced as a matter of con- 

venience in reducing the dimensionality of the problem.    We could apply the 

same analysis to the case of non-symmetric constraint functions,   and thereby 

lose no generality of the method.     The symmetry assumption implies that the 

sidelobe constraint points satisfy the condition 

Yk = Y_k k=l, 2,...,n (137) 
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Using this condition and the fact that   T  ,   = -TV ,   it is easy to show that the side- 

lobe constraint equation (133d) reduces to requiring only that 

J   Fr(uu;u)cos'JUTk|P(uu)12dH = yk     k=l, 2 n (138) 
_ 00 

Therefore,   for each (n+l)-vector y in the set S,   where now 

S = {£:    -^o^k'Vo'      k=1'2 n] (139) 

we want to pick the constants V,  T) to satisfy the reduced set of constraint 

equations,   (133a),   (133b),  (133c),   and (139).     These are summarized below for 

convenience. 

J  U)F.((JU;J3)|P(UU|
2
|^ = 0 (140a) 

_oo ^'n" 

00 

J    0)2F   (uu;u)|P(u))|2d^ = B2 (140b) 

J  FrCju;u)|p(uu)|2d(£= y (140c) 
_oo "TT 

J  Fr(a>;u)cosuuTk| P(uu)|    duj = y k=l, 2 ,n (140d) 
_oo 

and the associated value of the cost functional is,   from Equation (135) 

03 

2   , 2ir„   2,       .   „ 2,       ,,, „,   ,.2 
-2L-   J    (a)  +\   )[Fr   (ou;u)+F.   (UL-;TI)]| P(uu)|   duo (141) 

Notice,   that for each fixed value of y€S,   that only the zero-bias constraint, 

Equation (140a),   depends upon the vector r\.    All of the other constraints are 

satisfied by the appropriate choice of_u,   independent of t\    At the same time, 

the cost function is increased for every non-zero value of x\.     From (129b) 

and (130), 
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uuX2 X2 n 

F (a);n) = .*_ n    j --jr-j   kfij VinUJTk 2) 
a;  +X u;  +X v       ' 

from which it is clear that zero-bias constraint can be satisfied and the cost 

functional minimized by choosingjrj = 0^,   i.e.   F.(uurn) = 0.     Relating this con- 

dition to the definition,   (13 0),  we see that this choice of n is indeed possible 

by picking 

a_   = 0,    u     = u k = l, 2, . . . , n (143) 

Therefore,   the symmetry of the sidelobe constraint function permits us to 

reduce the dimensionality of the constraint space by a factor of 2 and we no 

longer need concern ourselves with the zero-bias constraint since this will be 

satisfied automatically by the above choice of multipliers. 

Summarizing these  results,   we conclude that when the  sidelobe constraint 

function is symmetric,   the optimum solution to the filtering problem is 

H(w,u) = F((l);u)F*(uu) (144) 

•where 

x2 
F(U);u) = —-^ kE=0 ukcos.Tk +un+1 

w +x 

and the performance of this filter is measured by the cost functional 

00 

  J (a2+X2)F2(uu;u)| P(uu)|2duu (146) 

B2E 

where 

X2 = (1^)_B2^ (14?) 

and where the  (n+2)-vector u  is chosen to satisfy the constraints 
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00 

J (D2F(uu;u)| P(cu)|   ^ = B (148a) 
2TT 

J   F(U);u)|P(uu)|2g--yo (148b) 

J  F(uu;u)cosurr, | P(u))|   fj^ = Y^    k=l, 2 ,n (148c) 
K 2TT K 

_00 

In a crude sense,  we could imagine picking a vector y_ in the set S,   solving 

the preceeding (n+2) constraint equations for the (n+2) vector u which can then 

be used to obtain a value of the cost function for that particular y-vector. 

This could be done for all possible y-vectors in S and the particular y which 

minimized the cost could be found.     In the next few paragraphs we shall show 

how this search procedure can be performed in a systematic way using quad- 

ratic programming techniques.    We begin the analysis by first manipulating 

the constraint equation (148).    From (147) we notice that for each fixed value 

2 
of y  ,  X    is a fixed positive number.     Therefore,   if Equation (148b) holds, 

the following equation holds, 

fx2F(«,;u)|PW|2|E=<i#i. Sfl- 
2TT yQ (149) 

Then if (148b) holds,   constraint (148a) is equivalent to requiring that 

00 

J   (uu2+X2)F(o);u)|P(uj)|2^£= B2 [l+-^ -] (150) 
-co 2^ a        yo 

Therefore for each y_€S we solve for the vector u which satisfies the constraints, 

Equations  (148b),   (148c),   and (150),   namely 

J   F(uu;u)|P(uu)|2^ = y (151a) 
~ — 2TT ° 
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2du J*    F(uu;u)cosii)Tk|P(U))r|^ =yk      k=l,2,...,n (151b) 

J*    (U!
2
+X2)F   (^;u)|P(^)!2^=B2[l+^-^] 

ZF a    y. 

and the associated cost will be 

(151c! 

-%-   |    (uu   +^   )F   (uu;u)|P(ti))|   duu 
B E -• 

where 

X 
n 

F(u);U>   = £Q  UkCOS.Tk   + U^ 
U)   +A. 

Now define the complex vector-valued function V(uu) as 

(152) 

(153) 

V(uu) P(uu).X' 
-jU)+X 

1 
COS'iT. 

CO SUIT- 

COSUUT 
r 

2   , 2 
uu   +X 

X (154) 

and the (n+2) x (n+2) non-negative definite matrix 

00 

r = ~Z I   Y*(tt))V'(tt))S!!! (155) 
X -CO 

Here the asterisk denotes complex conjugate while the prime denotes vector 

transpose.     It is easy to show by straight forward manipulations that the con- 

straint equations,   Equation (151) can be written more compactly as 
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ru = ^2 

yn 

B2   rild-a) 
T2TL1+  a 
A. 

•f] (156) 

and for each value of U satisfying these constraints the associated cost is 

ax' f(u) ==V(u 'ru) 
BE"    ~ 

Since the vector y_GS,   then 

(157) 

-K?~ = yv = €or    k=1'2 n (158) 
"k'o      7k        k'o 

Because the constraints onJJare actually these inequality constraints there 

is a certain amount of freedom in the selection of the U-vector.    We would 

like to find the particular value of u within prescribed class which minimizes 

2 
the cost function.    Notice that for each value of y   ,   \    is fixed number and 1 o 

therefore the vector  V('JU) is a completely known function.     Consequently the 

matrix T is fixed also,   but it changes as y    changes.     Let us denote this 

dependence explicitly by writing V(uu;y   ) and F(y   ).     Then for each value of y 

we want to find the vector IJ which minimizes the cost function 
2, a\<-(yo) 

~    ° BE °~ 
(159) 

subject to the constraints 
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-i y n o 

Ts   r      a   y X    (yQ) yo 

Vo 

= r(yo)u^ 
Vo 

* y n' o 

2 
B 

7 o 
(160) 

which is a nonlinear programming problem.    Since  (160) represents linear in- 

equality constraints,   Hildreth's Method [9] can be used to transform this 

optimization problem to a quadratic programming problem of the form:    Find 

the vector x = 0 which minimizes the cost function   c_ x + x   Dx.     Efficient 

computational algorithms which guarantee convergence to an optimum x in a 

finite  number of steps are available to solve this latter problem [10]. 

Therefore for each y   ,   we can solve for the minimizing U  = u (v   ) which 
' o —     — ' o 

has associated with it the cost f(u(y   );y   ).    We then use conventional search 

techniques [ll] to search over all possible values of y    to find the pair (u* ,y   *) 

where U* = u(y  *) which minimized f(u(y   ),y   ) treated as a function of y   . 
—        — 7o — ' o       o ' o 

This technique can be implimented on the computer in a relatively straight- 

forward way.     The major difficulty lies in the evaluation of the matrix F(y   ) 

defined in Equations  (154) and (155).     For reasonable choices of the transmitted 

signal,   the evaluation can often times be performed analytically   without recourse 

to the digital computer. 
n+1 

Therefore the optimum set of multipliers [u   } ,    _ and  the filter pole 

location,   described by 

49 



2 _ (1-g)     B2E 
K    ~    a    "       Z~ (161) 

y 

can be found for any weighting factor a.       The resulting optimum filter is 

H(uu) = F(<JU;U)P*(W) (162) 

where 

\Z n 

F(U);o) = —^ kE0 ukcoswk + un+1 (l63) 

The actual estimate variance and detection signal-to-noise ratio can then be 

evaluated for   any   value of the weighting parameter 0..    We would construct 

a table of such values.     Then for a prescribed application the desired detection 

signal-to-noise performance would be specified and we would reference the 

table we had constructed to find the appropriate value of a.    With this weighting 

we could then solve for the correct values of the multipliers and thereby 

generate the filter which gives the desired detection performance and yields 

the smallest estimation variance.     In the next section we shall apply this 

methodology to a practical design problem. 
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VI.    Numerical Results 

In order to perform a numerical study of the dynamics of the parameters 

involved in the optimum mismatched filter,   it is necessary to evaluate the 

matrix 

00 

r(yo) = 4 1   Y*(»;y0)V'(«;y0) dgi 
ZTT 

(164) 

where 

*      P(u)X V(Ju;y      =     .    ' 
—        'o -jlL'+X 

1 
COS'XT 

1 

, 2 _ (1-a)        B   E 
K   ~ ~~a      —r 

COSUT. 

COSl'T 
1 

2      2 
x>   +X 

(165) 

(166) 

Conceptually this evaluation can always be done since once the transmitted 

signal is  specified,   P((J)) could be found and the integrations performed.     This 

could be a costly exercise if recourse to a digital computer need be made, 

since the matrix is of large dimension and would have to be evaluated for 

possibly many values of y   .     For our purposes,  we mainly want to demonstrate 

the feasibility of the design method and we shall therefore restrict our interest 

to a class of signals for which the matrix computation can be done analytically. 

We motivate our choice by noting that the vector  V(uL';y   ) could be written more 

generally as 
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in 1      P(s)X' 
;yo 

1    sri   1  "STi 
2e       +r 
1   ST2,  1   -ST, + ^e       2 T6 

,    ST        '-,      - sT 1 n  ,   1 n 

(-s+\)(s+\) 

X J (167) 
where we have merely replaced juu by the complex variable s = a+juu.     Then 

the integral,   Equation (164) can be viewed as the value of the contour integral 

of the complex function 

nyo) = ^rV(-s;yo)V'(S;yo)d s (168) 

where the contour is chosen in the s-plane along the juu axis.     Then if we choose 

our time functions so that 

m 
m 

P(s) "  mE=l  (s + s    )(s + (s + s      (s+s    *) m m  ' (169) 

then we can actually evaluate the integral using the residue theorem.     Our 

results are further restricted to the particularly simple signal for which 

P(s) (s + s   )(s+s   *) (170) 

We shall choose the constant,   a,   to normalize the transmitted signal energy, 

E=f |P(ju»|2|£ = l (171) 
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and we can then compute 

B2=J  a;
2|p(ja;)|2^ (172) 

_co 

which now represents the second moment bandwidth of the signal.    We can 

therefore change the signal bandwidth by varying the pole location s   .    We 

then used (170) in (168) and applied the residue theorem as proposed.     This 

left us with a closed form expression for T\y   ) in terms of y   ,   and this was easily 

programmed on the digital computer. 

If we  represent s     in (170) by o"    + JUJ   ,   the compressed pulse for a matched 
IT P r 

filter is given by 

-at a 
co(t) = e     p (cosyu  t + -2 sin JJ   t),   t 2 0 (173) p       uu p F P 

with cp(-t) = co(t).     The mean-square bandwidth of the signal is easily calculated 

to be 

2 2 2 
B     = U)     +a (174) 

P P 

By differentiating (173),   the  subsidiary peaks of the compressed pulse are 

found to be located at        t,    = kiT/uu   ,    |k|   = 1,2 with the peak magnitudes 
K. p •no        ^ 

given by  1 CD(t, )     = exp (-   kl   E).     The choice of uu    = 4irn     results in four 
" 7 k ' c x   '       m P p 

P A     -1 sidelobes within a  single time-constant ( =  a       ),   the first peak magnitude 

being   - 2.3Dbwith respect to the main peak.     The compressed pulse and its 

spectrum for a signal a     = 1,   uu     = 4TT are    shown in Figure 3. 
p p H 

To illustrate the techniques developed in this paper,   constraint levels 

corresponding to -10 Db and -20 Db sidelobes were considered.     In each case, 

the constraint was appliedat 51 evenly spaced points in the closed interval ("0. 25,2,0]. 
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Fig.   3a.    Matched filter compressed pulse. 
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Fig.   3b.     Compressed pulse spectrum. 
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Relating this problem to the development in Section 5,   we have chosen 

T   = ^\(T^r-T,) +T.,  €    = €,   n=l 51=N where T = 0.25 and T= 2. 0   . n      N-l    N    1        1      n 1 N 

For a fixed a-value,   the quadratic programming problem determined by (159) 

and (160) is solved for several values of y   .     The minimum cost function is 

plotted vs y    in Figure 4 for a = 0. 5    .      For any arbitrary a,   the minimizing 

value of y    can be determined by such graphical means and will be denoted 

by y  *(0t).     The solution of the quadratic programming problem specified by 

a,y  *(a) will be denoted by_u*(a).     The bandwidth parameter for this optimum 

solution can be calculated from (161) with y     = y   *(CX) and will be denoted by 

\*«x) 

Recall that the cost function given by (159) is a weighted sum of the 

estimation and detection performance terms.     We wish to determine the 

performance values separately for the optimum processors H*(uu;a ) which 

are obtained from (162) and (163) with U = u*(a) and X = \*(a).     The resulting 

estimation performance, £   = —*    ,   is obtained as a function of a   and is 
a   mf 

calculated by the formula 

£ (a) = B-2 J+V[F*(u.;a)]2 I P(u)))2 g 

where 
N 

(175) 

F*(«);a) A    L^— kS=Q u^cosaTk + u^ (176) 

The detection performance. JQ   -    -=- ,   can be calculated by 

^^-rfr^r fW>i2£ aw; [y*(a)J 
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From (175) and (177), the optimum trade-off between detection and estimation 

performance can be determined by constructing the graph given by the set of 

ordered pairs {(*£)"   (a), £ "   (&)):    0<a<l}.     For the particular  signal chosen, 

two such graphs corresponding to two sidelobe constraint levels are shown 
-i 

in Figure 5.     For any given level of detection performance  (^corresponds to 

effective SNR loss due to mismatching),   the graphs of Figure 5 indicate the 

best possible range estimation which can be attained subject to the appropriate 

sidelobe constraint (and,   of course,   the original assumptions on receiver 

structure). 

For purposes of comparison,   the performance of a well-known sub-optimal 

processor using the clutter-rejection filter was calculated.     The clutter  re- 

jection filter is specified by  [12],   |l3] 

HcrW •        7""    .jj (178) 

The sidelobe level achieved by this filter depends on p.     For our particular 

choice of signal,   the compressed pulse and the performance of H       can be 

analytically determined as a function of p   using  standard  La Place  transform 

techniques.     The analysis is  somewhat lengthy,   however,   so it is omitted. 

The performance of the clutter  rejection filter for  several sidelobe levels is 

indicated on Figure 5   for comparison with the optimal values. 

A typical compressed pulse and its  spectrum resulting from the optimum 

filter for a = 0. 5 is shown in Figure 6.     The sidelobe constraint level was 

-20Db,   corresponding to a peak  sidelobe  magnitude  of 0. 1      .     The  sidelobe 

structure of the compressed pulse actually exceeds this level by a  slight 
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Fig.   5.     Detection and estimation 
performance of optimum mis- 
matched filter. 
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Fig.   6a.     Optimum mismatched 
filter compressed pulse. 
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amount.     This is due to the fact that the constraint is imposed at only a finite 

number of points.     In between these constraint points,   the  sidelobe level may 

exceed the desired value.     This  effect,   if observed,   may be reduced by simply 

taking more constraint points in   the violated region.     This procedure does 

not necessarily increase the number of required taps in the delay line realization 

of the optimum filter as may appear to be the case.    A property of quadratic 

programming problems,    when interpreted in the context at hand,   states that 

the gain of a particular tap will be zero unless the constraint corresponding 

to that tap (Equation (160)) is satisfied with equality.     In other words,   if 

U* ,   the gain of the tap corresponding to a T     second delay (advance) is non- 

zero,   then the value of the compressed pulse at T    seconds must be either 

± €  y*.    In most cases,   the number of times this condition occurs is deter- 
nJ o 

mined more by the number of subsidiary peaks in the compressed pulse 

structure than by the number of constraint points chosen.     For the case 

studied here,   the number of non-zero tap gains  (single-sided) varied from 

one to four. 

60 



VII.     Conclusions 

The results of the preceding section show that the techniques developed 

in this paper can produce a  significant level of sidelobe  reduction whi le mini- 

mizing   loss in effective  signal-to-noise  ratio and range estimation accuracy. 

Specifically,   we have considered the problem of minimizing a weighted sum 

of the estimation and detection performance over a broad class of receivers 

subject to a sidelobe constraint.     We have obtained the  solution to this pro- 

blem for an extremely large class of signals,   specifically those with finite 

energy and finite mean-square bandwidth and with a symmetric  spectrum; 

furthermore,   the  structure of the optimum filter is quite  simple. 

For the case in which detection performance alone  is considered,   the 

optimal filter consists of a matched filter followed by a transversal filter, 

the  so-called transversal equalizer.     We have therefore   established the 

optimality of this well-known receiver  structure for the case of target detec- 

tion.     In the more general case where estimation accuracy is considered,   the 

transversal equalizer is no longer the optimum processor;  further filtering 

is required.     The  nature of this additional filtering is  such that the width of 

the main peak of the compressed pulse is increased as emphasis is  shifted 

to estimation performance,   a somewhat surprising result  since widening of 

the central peak is often considered synonomous with a  reduction in estimation 

accuracy.     In Figure  7,   the compressed pulses of the optimum filters for 

three different values of a are  shown.    As the estimation performance is 

emphasized (a is increased),   a widening of the pulse is observed.     In order 
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62 



to understand this phenomenon,   the basic equation for the  normalized 

estimation variance, —*    is written in the following form 
n rrf 

l~2        rj- \ (Jl        /rp2      \ /Pmmf\ 
mmf    mmf / I    mmf        rnf I I    p 

mf 

T f = l/\ — y(0)/y(0)   where y(t) is the compressed pulsed of a mismatched 

filter,   h(t).    IT , is the mean-square bandwidth of h(t).     Note that T .is 
mmf mmf 

a measure of the width of the compressed pulse.     For a matched filter this 

pulsewidth is written as  T    f and is given by 

T     , = 1/v ~7-           where a:    is the mean-square bandwidth of the  signal 
mf 

(and  the matched filter).     As the weighting is  shifted from detection to estima- 

tion performance,   the detection mismatch loss,   ,   naturally increases. 
Pmf 

Since the pulse width ratio,     T r/T     .. also increases with a,   as indicated r mmf      mf 

by Figure 7,   the only way the estimate variance can possibly decrease is for 

~2 
the filter bandwidth,   (JU r,   to be  reduced.     The necessary bandwidth reduction mmf ' 

is accomplished by decreasing the parameter \ ••-.     The table    in Figure  7 shows 

X* for the three pertinent values of a.     The characteristic of the optimum filter, 

at least for the  signal considered,   we note,   is that good estimation performance 

is achieved by allowing the   compressed pulse to spread by simultaneously 

reducing filter bandwidth.     In sharp contrast,   the clutter-rejection filter 

behaves in the opposite manner.     The compressed pulse of this filter is 

actually narrower than the matched filter output,   but the bandwidth is 

substantially greater,    [l3]. 

63 



The most restrictive assumption made in this paper was that the com- 

pressed pulse  (complex representation)   be real.     This restriction excludes 

the possibility of a non-symmetric signal spectrum.    Also,   the possibility 

of treating perturbations caused by an imperfectly constructed matched filter 

or by a distorted input signal is denied since both these situations lead to a 

complex compressed pulse in general.    If the compressed pulse is allowed 

to be complex,   the performance criteria (estimate variance and detection 

mismatch loss) must be modified to include a frequency bias term.     The 

more general formulas may be found in [3j.    Furthermore,   the sidelobe 

constraints will be quadratic in nature rather than linear.    An equivalent 

problem for this more general case would probably have to involve a more 

general convex programming algorithm and an additional search over the 

frequency bias term. 
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