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ABSTRACT

The necking process of an axisymmetric tension specimen made
of elastic-plastic, strain-hardening material is analyzed by a generalized
Jz-flow theory for large deformations. The governing equations are
solved in a Kantorovich type approach based on a variational principle.
The effects of both geometric nonlinearities resulting from large de-
formations and the physical nonlinearities arising from plastic material
behavior are considered. Numerical results have been found for the
stress and deformation histories in the specimen up to a 50% reduction

of the neck radius. The shape of the neck, for the first time, is rationally

calculated.
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I, Jutroduction

The conventional tension test is usnally considered to provide the
basic tensile properties of materials,  The test does provide knowledge
of the intrinsic stress=strain relation up to a point,  However, after
necking ocenrs in a tension specirmen, the distributions of stress and
strain bhecome very complicated and are not known.,  The information
obtainable from the test thereafter is only some kind of average stresse-
average strain relation. A tynical tension specimen after necking oceurs
is shown schematically in Fig. 1.

In order to provide a better understanding of the true stress=strain
relation, Bridgman | 1] studicd the stress distribution at the narrowaest
scection (section A=B in Fig. 1) of a necked=-down axisymmetric tension
specimen and obtained a semi-empirical solution. His analysis was
based un the assumption that the axial strain across the narrowest scction
was uniform. Davidenkov and Spiridonova |2], by an analysis similar to
Bridgman's, obtained another result for the stress distribution at the
neck. In both of tnese analyses the displacements and hence the shapes
of the necked profiles of the tension specimen were not calculated. In
fact, the determination of the stress distribution had to rely on measured
values of the neck diameter d and radius of curvature p (see Fig. 1).
These solutions, therefore, were not entirely rational. Thomason [3]
has calculated the profiles of the axisymmetrically necking tension
specimen, based on a "maximum unloading rate" hypothesis. But no
solution for the stress distribution was included in his analysis. Recently,
Segal [4] has studied the plastic flow in the neighborhood of the neck of an
ideally plastic tension specimen. He made some calculations both for the

stress and the displacement fields. However, the analysis did not provide
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a complete solution for the stress and the strain distributions. These
earlier investigations evidently do not provide an adequate analytical
solution to the problem of necking in strain=hardening bars.

In a rigorous analysis, it is necessary to find the displacement
and the stress in the whole specimen, not just at the neck; and for the
complete loading history, not just at a particular deformation stage.
The effects of plastic unloading must be considered; also, the large
changes in geometry that occur during necking must be taken into account.

The purpose of the present analysis is to calculate rationally the
deformation (and hence the necking shape) and the stress distribution in
a tension specimen throughout its loading history. The tension speci-
men considered is of finite length and initially has some imperfection
on the lateral surfaces in such a way that the radius at the middle is
slightly smaller than the radius at the ends. The specimen is subjected
to a uniform axial displacement at the ends and is elongated in such a
way that the ends remain shear free. The specimen material is assumed
to be isotropic, elastic-plastic, and stra‘n-hardening. A variational
equation of equilibrium for large deformation, in conjunction with the
approximation method due to Kantorovich [5], is used to solve for the
field variables. A generalized J’z-flow theory for elastic-plastic
materials with large deformation effects is used in the analysis. Thus,
both the effects of the geometric nonlinearities resulting from large
deformations and the physical nonlinearities arising from plastic material
behavior are included in this analysis.
II. Field Eqguations

A set of field equations for analyzing arbitrary deformations of
elastic-plastic materials will be presented. The equations involved are

written in a general form with the use of tensor notation.




2.1. Equilibrium

The notation and equations of equilibrium used in the present
analysis follow those of [6]. The pertinent results of [6] will be briefly
reviewed.

Let a material point of a solid body be identified by the coordi-
nates (El. Ez, 53) and let the vectors r and E_ denote respecitvely, its

position when the body is undeformed and delormed. The covariant

ar
basc vectors of the undeformed and deformed body are ¢, = _~T , and
or 13
E—i = —“; respectively, and the covariant components of the metric
9
tensors are
Bij = Ri 7 &y
Gij= & &
with inverses gIJ and G, The contravariant base vectorsare 2_1 = g”gj

and E_l = GIJE_j.
One defines the contravariant tensor components u' of displacement

= E - ¢ by the relation

A
=ule., . (1)

u
~ ~1
The Lagrangian strain tensor is defined by

1
n. =3(G

1 1 5 V.4t

i
where Vi denotes covariant differentiation in the undeformed body. The

stress tensor g in the deformed body may be written symbolically in

. ] i)
terms of its contravariant components o) as

- T
L97&i%; ' (3)
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Consider an arbitrary volume V of the undeformed body bounded
by a surface S; after deformation these become V and S, respectively.

Let n be the unit normal to S and define n, by the relation

.E:“i.&i 0 {

If body forces are neglected, the equation of force equilibrium governing
the stress rate and displacement rate given in [6] is

V(e + 49" + q90T) < 0 (4)

where qij = & o'i" is the Kirchhoff stress; here G and g are the deter-
minants of Gij and gij’ respectively, and where (') denote differentiation
with respect to a monotonically increasing quantity such as time t.

If surface traction rates ;I‘_ = 'i‘ig_i per unit original area are

prescribed, then
@ +q%u" + 70", = T (5)
on the boundary. Prescribed displacement rates ¥V = i/l’s_i are satis-

fied by letting atl = i’i'

A variational equation governing 4! and q”, which can be deduced

from the classical principle of virtual work, is

cije. L L ij 8y ,o .t (s,
Sv {q Gnij *t34q G[gst(viu )(Vju )]}dV = S‘S T Oui dS (6)

for all states él”, ixl, T! satisfying equilibrium, and all displacement

variations G{zi , with

Binyj = 7 {1900 + 9,00, + g [(Fu)(T08") + (T (¥, 00)])

Either the equilibrium equation (4) or the variational equation of equili-

brium (6) can be used, in principle, for analyzing plasticity problems
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involving large deformations. In the present analysis, the variational
cjquation (6) will be used, in conjunction with a Kantorovich approxima-
tion method, to solve for the field variables.

he ficld equations are still incomplete and must be augmented
by constitutive relations between stress and strain--or, more preciscly,
between stress rates and strain rates.

2.2. Constitutive Equation

There have been several forms of the constitutive equations for
elastic-plastic materials involving large deformations, such as those
suggested by Green and Naghdi [7), Lee and Liu [8], Cameron and
Scorgie [9]. Lee [10), and Willis [11]). However. in the present analysis
of the large deformation in a tension specimen, the new constitutive
equation given below seems to be more convenient to use.

The materials considered are isotropic, elastic-plastic and strain-
hardening. For simplicity, neither a Bauschinger effect nor the influence
of temperature is included. It is assumed that the actual strain rate hij
can be written as the sum of the elastic strain rate nfj and the plastic
strain rate nf; The elastic stress=strain relation as suggested by

Budiansky [12] is

nEoLll 4 Kk d ko d, k
;= gLz + WGy g (o)) + Gy g lop)] = vGy; Fe oy ) (7)

where 0'; = a‘ikaj is the mixed tensor component of the stress tensor,

E is Young's modulus and v denotes Poisson's ratio. This is a genera~-

lized Hooke's law which includes large deformation effects. Equation (7)
is not integrable and is not a rigorous constitutive relation derived from
the theory of elasticity for arbitrary deformation. But it will not result

in significant errors for the present analysis, because for infinitesimal
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strain Equation (7) is the exact statement of Hooke's law; and for large
deformation in the present necking problem, the elastic strain only
plays a minor role and is dominated by the plastic strain.

The plastic stress-strain relation is a generalization of the JZ
flow theory to include large deformation effects. Let us begin with
the J, flow theory for infinitesimal strains. Referred to the Cartesian
coordinates, the stress and strain tensor components are O’ij and eij’
the stress deviator is sij = cij - %aijckk’ and the effective stress is
defined by o_ = [%sijsij]%' The yield function is F = ¢_ - ¢, where c

is the initial yield stress or the maximum value of T, which has occur-

red in the stress history, and the flow rule states that the plastic strain

rate is
o

p_2,1 _1 e - r 2 & 2
eij- z(—'E E)_o' ij if o =c and & dt(a’) 0

t e
P _ .
eij-O if o’e<c,

or ¢ =c and ¢ €0
e e

where Et is the tangent modulus, which is the slope of the uniaxial

stress=-strain curve.

Next, let large deformation effects be included. Referred to

i

general coordinates, the contravariant components of stress are ¢ 7,

and the contravariant components of the stress deviator tensor g are

ij _ ij _ 1 .ij ki
s’ =0 3G°'C'kl

The mixed tensor components 33 are defined as

i i lgikl
5= 36j0' le
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) Oi ik . ] . kl . .
where i G Gk .8 the Kronecker delta and o le is the mean normal

stress.  The effective stross is

. [ |
e, (:‘3:}:{)-‘
3, ij kl 1 i ki s

and the vield function is #till F - oo The gencralized flow rule

states that

&
P 3,1 _ 1. Kkl P ¢ . - .
g 3(5.' U GkiGlj ,G‘jc le)—’c xfcc ¢ and &, 7 0
(9a
i):)j =0 if e <¢,
or @ v and & + 0 (M
¢ )

where, as shown later, the tangent modulus 8‘ is now defined as the
slope of the true stress=natural strain curve in uniaxial tension. Note
that the plastic strain given by (9)a satisfics the plastic incompressi-
bility condition. This can be seen by examining the rate of change of

volume which is

dv

4@W . & % dv) « i% cz”c';u

G Gl E, P
P

The cLange of volume contributed by the plastic strain rate is- %c”nugv,

-

whics by (9)a, vanishes.

Combining equations (7) and (9) gives the full constitutive equation



.9-

. 1] k k, _ k, . |

nij = zlt“ + v)(G"‘bj ’ij&i’ vGUbk] if ¢, - ¢and ire 40
e3(d -1y*c. G, -1c o ):5 (10
IE: E ki1~ 3% 'e s

1,1 k k k
Elz(l + v)(G"‘&’ ’cjkti) vcijbk] if o <c,

vrao zc and ¥ /]
€ @
(1)t
Physically, Equation (10)a applies in the plastic lcading rexion and (10)h
applies in the plastic unluading or elastic regiun. The strain rate given
by (10)a depends not only on the c\ rrent stress rates hut also %n the
whole stress and deformation histories.
In order to define 8‘ precisely, let us now consider uniaxial tersion.

The stress-strain relation then reduces tu

&
. 1 ! | i, 11 ,
m tElCHA)IE “El GG T M r rcanid 2 0

(11a
[] ' l
my €SN i e, <c,
ore =cand¥® < O (11>
e e
11 | 1l

where the effective stress c. ise G“ =, by EqQuation (8). Since ¢
is the tensor component referred to the base vector i'. which has tre

magnitude ’ G,, - the corresponding physical component of stress :s

ii. s L= |
'xx" cll Gll "l.'c

Therefore, Equations (11)a and (11)b become
n
Ll - 12:a

T, " E fxx



h, )
G-l—l = bex . {12)b
The natural strain is defined by
du
=« in(d % .41
n-ln(r(;)zln(l + ‘x)szln(l 021,“) {13)
where u, is the displacement along the coordinate x; ‘0 and fare the

original and the current length of a cylindrical bar subjected to uniaxial

tension. The rate of change of the natural strain is

- h n
"t TvE TG - LS
1 *n
By comparing (12) and (14), we obtain the following simple relations for

the uniaxial tension case:

- 1

nsi:b’“ “cxsc and b“"o
- 1

"'tbxx ) ¢“<c,

ore *c and b“‘o

Now the tangent modulus l:‘ is clearly seen to be th: slope of the true
stress-natural strain curve as shown in Fig. 2, and E is the linear re-
lationship between n and ¢ - when plastic unloading occurs (as well as
during loading in the absence of plastic flow). The constitutive equation

(10) is used under the condition that the ¢__ - 7 relation (or equivalently

x
Eand I:‘) in uniaxial tension is known.

The constitutive equation is complete, but its inversion (the stress
rate in terms of the strain rates) is still to be found. This inversion

must be used in conjunction with the variational equation (6), because
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we wish to write bu in terms of hij' and successively write hu in
terms of ﬁi and solve for &‘. The inversion of (10) is derived in the

Appendix; the result is

g - gl

i -
ks St rmarr
e')
t

Ukl ik -ji K
"(l"‘"ﬁn) : !v)°j° gy - (56, + 4Gty )

if ¢, =cand 'U"U 0 (15

i ik j1 4kl
’j"ﬂ":-)n de"kx’ﬂ__'c»v)ﬁ '-!v)ojo M)

. (c"‘c"nu + r"‘G"bH) i . <c,

ijo 4
orc.lcando nu'*o (150

The field equations are now complete for analyzing large deforma-
tion problems. Note that the Kirchhoff stress QU appears in the equa-
tions of equilibrium whereas the constitutive equations involve tu. In
the present analysis, however, qu can be apgro:dmaud by ,U. For
small deformations, C = g, so that qu . ? ,U = ,U. In the ne:king
problem large deformations occur, but since the plastic strain, which
is incompressible, dominates the elastic strain, the volume change
caused by the total strain is very small. Then, since -s- ® %g = 1,
it is still true that qu = ,U. Therefore, qu will be replaced by ,U
in the equations of equilibrium for simplicity.

Finally, by the use of the constitutive equation (15) we can obtain

another version of the variational statement that turns out to be convenient

for numerical analysis. It can be easily verified that
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&Uohij = “uh‘j

both for plastic loading and unloading. Therefore, if Il is defined by
- l * 'jo ‘j e 8,08 - 2 'o
[ 75; (¢ nij ¢eo [g“(ui )(uj)])dV S; T uldS (16)
T

where S.r is the part of the original surface on which traction rates are
prescribed, then
81:=0
is the same as the variational equation (6).
111. A Perfect Bar Under sion
Before we go into the necking problem, let us study the uniform
deformation of a perfect circularly cylindrical bar under uniaxial tension.
The bar has an initial length 2L and an initial radius Ro as shown in
Fig. 3. The ends of the specimen are subjected to a prescribed uniform
axial displacement UL' The radial displacement at the ends is unre-
strained so that the ends remain shear free during the elongation. The
following is the solution for the uniform deformation of the perfect bar;
this solution will be used for further comparison.
The physical axial displacement of the specimen is
u_=a-az

u
where a 2 —E‘ is the engincering axial strain. The natural axial strain

is n= In(l +a). Fora given engineering strain a, the uniaxial stress
in the specimen can be calculated by the uniaxial stress-strain relation.
In this paper, we will use the Ramberg-Osgood law [13] to relate the

uniaxial true stress ¢__ and the natural strain n as follows:

ns (:g-inx(-'i!)“ (1



UL
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/e\

FIG. 3 PERFECT BAR
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where n is the strain-hardening exponent, and K is a material constant.
o
As shown in [13], K is equal to %(—Eg)l " where o is a secant yield
o
strength at which the secant modulus Es = (-_3) = .7E. In the present

analysis, it will be convenient to use the dimensionless stress quan-
o
tity (-:—z). Rearranging equation (17) gives the following relation between

o s
z2 .
(T) and a given value of a:

8
T8\ T2z 3 % . %2z.n
(N +5(FNFT) =1n(l +a) . (17)a
8 8

The radial displacement is u, = br, where the engineering radial strain
b can be found by the use of the constitutive equation (10)a. Let i be

the component of the Lagrangian strain tensor in the r direction and let

o33 be the only non-vanishing contravariant component of the stress

tensor (i.e. consistant with the cylindrical coordinate system El =r,

2 _ 3_ ... _ 1.2 33 _ .3 _
§ =60, and §” = z); thennll-b+zb and o 033-63-¢re-¢zz.

One of the constitutive relations of Eq. (10)a reduces to

. Ts érzz 3 ‘Ts 922 .n-1 &zz
= Ve NST )~ e (g N ) ()
8 s s

where the metric tensor Gll =(1 + b)z. Integration of it gives
Ts 922 3 % czz n
'[V(_E':-)(T)+l_4(f)(r) ]
bze e e -1 . (18)
The radius of the specimen after deformation is R = Ro(l + b). Next,

the total load in dimensionless form is

o
2
—5— = (FZ2)1 +b)
7R .o s
0's

9 ., %2z..3,°7 92z .n
“UF U2 (FNUZ2)
= (=22) ¢ 5 o . (19)

o
8




-16-
(T. . T
Note that the values of b, (?ﬁ) and ( 3 ) depend on three material
) 17!?»00'S

paramecters only; namely, the strain-hardening exponent n, the ratio
T
(=) and Poisson's ratio v.
12 . o
For the particular values n - 8, (—E-s-) - 0.0072 (consistant with

the values E - 25.8 x 106 psi. and L 186 x 106 psi. for Cr-Ni steel),

. and R and "&r arc plotted in

ﬂ’Roo's 7R o

Figp. 4 and Fig. 5. A very simple approximation for the maximum value

1 .
and v J. curves relating a and

of the total load (found by neglecting elastic strains) is
1

a
(=) 0y = [3ne(2] "

2 max
0

TR o

S

and the corresponding values for the siress and engineering strains are

1

a
[(3n(g) "

(==2)
o's T=Tmax

(a)T=Tmax =

(b)T=Tmax =
Ts
This approximation should hold fairly well for n > 2 and n(-E—:) << 1,

For n = 8, for example, is . 133 and the corresponding

(a)T=Tmax

natural axial strain is (-;')T=Tmax =,125,

IV. Formulation of the Necking Problem

The tension specimen considered for the present necking problem
is an imperfect bar as shown in Fig. 6, of which the lateral surfaces
deviate slightly from the straight surfaces of the perfect bar of Fig. 3.

The initial length of this imperfect bar is again 2L, but its initial radius
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2
is R{z) Ro(i - ¢o *t ), where ¢ (assumed smail) is the maximum

deviation between the surfaces of the parfect and imperfcct bar at
4 - 0, and & is a positive decay parameter.

The specimen is assumed Lo be axisymmeltric about the z-axis
and to be symmetric with respect to the middle planc 2 : 0. The only
non-vanishing physical components of displacement are u, and U
perpendicular and parallel to the z-axis, respectively. The non-
vanishing physical components of stress are e %00 "za and L.
The stress and displacement components are functions of r and 2 and
the timee=like variable t; they are independent of § by axial symmetry.
The boundary conditions imposed at the ends are the same as those
imposed on the perfect bar; namely, at the ends, u (r, tL,0 . tu, (.
Aiso, the radial displacement at the ends is unrestrained so that the
cends remain shear free during the clongation.

Referred to the cylindrical coordinates (r, §, 2), the metric tensor

‘U has components

8, 82 By 1 o o

B;" 821 8 83 = 0 r O :

851 £32 By
The contravariant and covariant components of the displacement are

l
s ]
u \l' \l'

u’lu,lu.

and the stress tensor has contravariant components
v“ 0 'U

tul 0 '22 0 c

! 0 o33



.‘..

The rates of the Lagrangian strain tensor components are

*an u_ N
£) L ¢ 2 3

"IIL"’Dr or ar

hpp * (r tu o,

5 (20)
du @ du_ 3

e Wil QPO S |
h”'“’ u’az ¢ 9

ﬁ’l(‘“ra&r’“z“z)
9 'z or or '

du_ Ju v
; : )£, ol
hl) ny “ gl ¢ oz )ir ’2" Tl

The covariant components of the metric tensur of the deformed body arve

du du
r.é e .2
Or)’(ar’

G“-(lo

GZ& a (e ¢ “"Z

S (21)
u
G,’ s ()¢ -2

) a“l' 2
da

=)

& &u du_ v ou_

G I Tol TN T2 TR TR I

with the inverses

n, S
(G,,G

33 °

]

—

G”)

22 ]
G M r
a2
(22)
G

]

G” i

2

-3
Gu)

.Q'J

=3
(G)Cy;3 =~ Gyy)

(G

Thel

c'd.c¥.

The non=vanishing contravariant components of the stress deviator,

o' '. ou, o” and ou. are given by
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R E l,c"(c“c” * -“cu ’ -”c” *21°°G, ) (2%
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Four the present problem, let us continue to ase the Rantu: egeOsgodg
law (1 7) an the unianial true stressenatural strain reletion.  The tangint

maodu'us by definition is

7 -
Eopepiumt £
¢ .
In the fullowing we will use the convenient dimensioniess stress quantity
U M .
(-—) and alsu the dimensiunless quantities (-—p and (—) Sutstitution
h \

wf (25) into (15) gives

o). £ ictc) _s.___'
(,. ) Tr-'-T( NGTG hy, - Plg=1 (o= 1=, ]

i
-'——h—T-F-U”-.z_)l g’_n
0( * vl - v)(’.’c G N} l( '. )G b.' e )G Ill
(2¢)
where
(]
27n(-2)""3
——— ife, =cand 'U"’u s 0 @27
26(1 + v) + 18n(S)""!
4 s
P(—s) 2
s
|0 i(ce<c. °"’e=cand

.”n;j “ 6 (2%
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The constitutive relations in matrix form are

M
. Chh 2 €3 Sy hyy
W22
- Cai €2 €2y €y h22
* (28)
3
.o Cy1 ©Cj2 €3y Cy4 hyy
W13
o Cat Cq2 C43 Cua  2hyy
where the coefficients CU are
Mo e M
"
-;-,—,(-f-»l,.z,(o) - (2—)%pt ) - 41
I .
225 o 22
C: T""..‘ ’l'r"'z"(G .)P( .)l Z(T)o

33 4 33
L Eyl- 332 8 \2pi ). (%=
c”.T__”('.)|1—+, = (G - (2—=)"P(2)) - 25—1G

13 (4
E 11 33 | 13.2 e [
z"r'—( - v)( )IG G S ww (G ) - Z(—'. ) P( c, )}

v

1 13 3
- 3lgmie” e agmieh L=ty
%
C,2° Sy T BN 6!l - '" «-‘-z—z-m:!»l
12 21 fv( ) or LR .
1n 3 e
l)Z 11 33 l it d -2
cl) =C3 1'»_. ‘. ’“G _LTG ‘. N ‘. )P(c.“
IJ
- z(_)o 13
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11 13 e
11,13 s s
Cia*Car* THs ! 'Eh—z-.c G (GNP
H 13 13
-l(—)c H—-)G )
l l
22 3 e
1 22,33 s s @
Cz;'cu'h—.‘{:’ll‘-‘!;“ G - (TN P
ZZ 13 4
22 13 _ s e
Ca® 1,—v( )l-r"T'G ‘. )(-,-.—)P(;:)'
13 kX ) v
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With the use of the constitutive equation (28), the equation (10) of
the variational principle becomes

L R{s)
.z:( f (Cy b, +C,an2, + Coihly ¢ 4C uny + 2C, Sy b
1M *%22M22 7 %3333 M3 12M1M22

+ 2C, yhy hyy + 4C Jhy gy ¢ 2C, 00,50y ¢ 4C, 40000

T o 22
: 2 2 :
S TLIS LT ('c. Nget)™ ¢ (g )] e (!::""r)z

33 & g3 0u 80 Du
2
o(—',. Mg ¢ (520 e a4 Nk O A T T =2 rdrds .
(30)

The surface integral of (16) vanishes, since the prescribed tractions
vanish on all boundaries. Equation (30), with the use of the strain-

displacement relation (20) can be written in the form




L R(z)
-'L s ZIS S‘ [{Quadratic terms inu_, U_, and their
1 o Jo r s

derivativesjrdrda . (31)
The variational principle 81 s 0, with the I of (31), will enable one to
solve for ﬁr and ﬁ..
Finally, the geometric boundary conditions that must be imposed
on the displacements are

o (r,Lyt) = U, (1) (32)

at the end, and
\'a‘(r. 0,t) = 0 (33)

at the middle, by symmetry.

V. Method of Solution and Numerical Analysis

The governing equations of the present problem were approximately
solved by the Kantorovich approach 5] based on the variational principle
01 = 0, where I is given by Equation (31). In this method the displace-

ments were assumed in the form
u = ef(z,0) + s, 0) (34)
u, * giz,t) ¢ rzk(z,t) (35)

where {, h, g, and k are functions of the space variable z as well as the
time t. The axisymmetric conditions require that equation (34) contain
only odd powers of r and that equation (35) contain only even powers of r.
To analyse the necking process, we must calculate the stress ,U
and the displacement u, as functions of r, 2 and t. The details of this
calculation will be shown later; the following paragraph outlines briefly

the computation steps involved in the procedure.



Assuming knowledge of the histories of cij and u, at time t,
calculate the displacement rate (\'xi)t by the variational cquation for a
prescribed axial displacement rate l}l.. at the end. Then calculate
(hij)t and (&u)t by the strain-displacement relations and the cunstitutive

cquations, respectively. Next, extrapolate to find (cr“')wM ard
(u;)

. and then use this knowledge to calculate (\'xi) Repeat

t+at t+at’
the same procedure for successive small time intervals and thus obtain
the stress and displacement histories for a finite time span.

By this procedure, the displacement functions {, g, h, and k of
Equations (34) and (35) are assumed to be known at time t, and it is their
rates f, #, h. and k that are the unknowns to be found. Substitution of
the assumed displacements (34) and (35) into the equations (20) for the

rates of the Lagrangian strain tensor components gives

2

;,“ s(l+f+ 3r2h)(i + 3rzf\) + 4rkk

g = (1 +1+ r2h)(E + r2h)

5 I 2 C 2: 2 . 2:
N33 = r “z +r hz)({z +r hz) +(1 ¢+ g, +r kz)(gz +r kz)

g = Ry $e(f, + e2h )i+ 3e%h) # et + £+ 3e2nad + £2h )
#rk(g. +rik) +r(l + g +rik )k . (36)
z z z z

With the use of these relations, the expression (31) for the integral 1

of the variational principle becomes
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where the coefficients de are definite integrals with respect tor, For
example

R(z)

= 21 (C. (L+£f+3r2hn)2 +C (1 + £+ r’h)?
AR 11 22

D))

2 2 2 2
+ ZClz(l +{+3r h)(l +f+rh) +2Cl4r(l +f+ 3r h)(fz +r hz)

2 2 2 2, 2
+ ZCZ4r(l +{f+r h)(fz +r hz) +C44r (fz +r hz)

ot s o'zzrz} rdr

R(z)

_ 2 2 2
D,, = Zn‘o {Z(Cl3+C44)r (14 £+ 3r"h)(f, + r"h )

2 2 2 2, .2
+2C23r (l+£f+r h)(fz+r hz)+ZCl4r(l + f+ 3rh)

2 2 3 2 2
+ZC24r(l +f+r h)(l +f+ 3rh) +ZC34r (fz +r hz)

+ Zro'l3} rdr
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The rest of these 28 coefficients are calculated in a similar fashion,
but the results are not shown here. All the Do,p are, of course, func-
tions of z.

The condition 0I = 0 can then be imposed in order to solve for %,
g, i'x, and 1.<, as functions of z. Let the integral domain of (37); namely,
the plane bounded by z = 0, L. and r = 0, R(z), be divided intom x n
meshes, withm + 1 mesh points in the r direction and n + 1 mesh
points in the z direction (see Fig. 7). Numerical calculation at time t
starts by the computation of Gij’ Gij, Sij, ¢, and Cij by means of
Equations (21), (22), (23), (24), and (29) at each mesh point. In com-
puting Cij’ we have to know whether a mesh point is governed by the
plastic loading conditions or by the plastic unloading conditions in order
to calculate P(;ﬁ) by (27)a or (27)b, respectively. However, before the
solutions for ixi :re found, these plastic loading or unloading conditions
cannot be checked, and hence the position of the boundary between the
plastic loading region and the plastic unloading region is not known. In
the present analysis, this boundary is determined by an iterative process
which will be described later. For now we just assume a trial position
of the boundary in the specimen and calculate P(;e‘) either by (27)a or
(27)b. After Cij is evaluated at each mesh point, swe integrate numeri-
cally along the r direction by Simpson's rule to get the Do.p of (37). Then
let the discrete values of f, g, h, k and Do.p at z, (ith mesh point along
the z-axis) be fi’ g h,, k. and (Do.p)i' By the use of the trapezoidal

rule, Equation (37) can be written approximately in the summation form

n

I= Zli[Quadratic terms in fi’ fe10 B Bigpo h, h.. ) K ki+1’

1

(Dyg); and (Dyg); ]
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The variational principle 08I = 0, with the I of (38), implies that

oL,
of,

1

8L
agi

ol

L -0

Shi

- S (39)

ok,

i
for i = 2 ton. The natural boundary conditions of the variational
principle are
81
of)

=0

2L.o (40)
ahl

at the middle z = 0, and

]
afn-l-l
ahn+l

at the end z = L. In addition, the geometric boundary conditions (32) and

(33) become

31 =0

kl =0

Bntl © UL

k ., =0 . ' (42)



.’lo

Equations (39), (40), (41) and (42) constitute a system of 4(n + 1)
linear equations which contain 4(n + 1) unknowns .‘i’ i‘i’ i‘i and i‘i (for
i=1ton+1). These equations were solved by Potter's methud (see
Ref. 14) with the aid of an IBM 360/65 computer. After }i’ fgi, i‘i and
l.(i are found, the displacement rates ixr and \'Az can be calculated by
means of (34) and (35).

The calculated displacement rates br and \'xz arc not necessarily
the correct solution, because they were obtained on the basis of an
assumed position for the boundary between the plastic loading and plastic
unloading region. So after we calculate hij from \'xi, we must check the
plastic loading conditions —namely, 0o =€ (c is the maximum value of L
which has occurred in the stress history) and hijsij # O0—at each mesh
point in the assumed plastic loading region. If these conditions are not
satisfied, we redefine the mesh point assumed to be plastically loading
to plastically unloading. Similarly, we check the plastic unloading condi-
tions —namely, ¢, ,<c,ore, =c and hijsij S 0=—for each mesh point in
the assumed plastic unloading region and make the required adjustment
if necessary. Thus we obtain a new position of the boundary. Then we
calculate \'xi on the basis of the new boundary and do the checking again.
If this checking is successful, the last displacement rate ixi found is
taken as the right solutior.n.. From these values for bi, the strain rate
hij and the stress rate (-:,i:) are calculated by (36) and (28), successively.

The stress and the displacement at the time i + At are estimated

by a simple parabolic extrapolation of the form

: 1,
u zu, + [Eut Zut-At]M
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assuming a knowledge of the various rates at the time t - At (initially
att s 0, it suffices to use Ut \'JOM if at is sufficiently small). For
convenience, the time-like variable t was identified as the prescribed
end displacement UL("' so that fJL : 1l and AT = AUL.

Finally, after the tensor components of stress were found, the
physical components of stress were calculated. At the neck, where

shear strain does not occur, the dimensionless physical components of

stress are simply:

c" ._ll _ i

- % Sn G,
8 8

o 22

.e = '—

v "o G G,

[ ] 8

o 33

zz _ 0 . -~

s = o G332 Gy,
8 8

c 13

rz _ © - -
s =%~ G Gy =0
8 8

The dimensionless total load —-z— was calculated at the neck by inte-
R .o

[ o"s
grating (_z_z) over the current area A of the neck; namely,
Ts
T 1 g’ zz
== \ (5= : (43)
'ch tRo

Since dA = 2u(r ¢+ ur)d(r + ur) =27(l + £+ rzh)(l +f+ 3rzh)rdr, equation

(43) becomes

)
)

0¢c
T_ . _Z_Z s‘ T_E (1 +f+ rzh). (1L +f+ 3r2h)rdr (44)
Ro 0 s



with f and h being evaluated at z = 0. The value of the total load was
then obtained by the numerical integration of (44).
V1. Result sio

The results presented are based on the following conditions. The
initial half-lcngtﬁ of the specimen is L = 2, and the initial radius is
R(z)=1- (0-12, with the imperfection arbitrarily chosen as ¢ = 0,005
(the results are not sensitive to the magnitude of ¢). The strain-
hardening exponent is n = 8, the ratio (-;!) is 0.0072 (E = 25.7 x 106 psi.
and LA 186 x l‘\Ob psi.), and Poisson's ratiois v = -;- The results in-
clude the tctal load, the displacements and the stress and strain distri-
butions calculated at every stage of deformation. Each stage of deforma-
tion was specified by a different value of the engineering axial strain

U U

-ITL' In the present paper —l-? was varied with increment . 0025, from

0 to . 50, at which point the calculation was terminated for reasons
which will be given later. The spatial mesh sizes used in the numerical
analysis were a = .05 and a, - . 025,
6.1. The total load

Fig. 8 shows a plot of the dimensionless total load u’?'r:- (as cal-
culated by (44)) against the engineering strain % The totaol l.oad reaches
its maximum at L. 0.145. It is interesting to notice that the plastic

L
U
unloading (which starts at the ends of the bar) does not begin until —Lk

reaches 0,180, which is slightly after the total load has started decreasing.

U
For comparison, the plot of g versus _Lk as shown in Fig. 4

R ou's

for the perfect bar was reproduced in Fig. 8. It is seen that the maximum

value of the total load of the imperfect bar agrees quite well with that
predicted for the perfect bar. The discrepancy between the two total

loads begins shortly after the total loads start decreasing.
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The relation between + and the radius at the neck Ris shown

TR oo"

in Fig. 9. The results for the perfect bar were also reproduced from
Fig. 5 for comparison.

6.2. The displacements and the deformations

Fig. 10 shows the radial displacement u_on the lateral surface,
r = R(z), at different stages of deformation. During the carlier stages
of deformation, the inward radial displacement increases quite uniformly
throughout the length. But for later stages, the inward radial displace-
ment increases only locally at the middle. At the end of the specimen
the radius expands slightly when the total load decreases (see the enlarge-
ment in Fig. 10).

The axial displacement u, is shown in Fig. 1] for different stages
of deformation. In this figure the solid lines indicate the axial displace-
ment on the lateral surface, r = R(z), and the dashed lines show the axial
displacement along the center line, r = 0. The slopes of these curves

U
become much steeper at the middle for large values of e . This

L
implies that the axial strain, which is approximately equal to the slope
of these curves, becomes concentrated locally at the middle when the
deformation is large.

The localization of the displacements at the middle of the specimen
as shown in Fig. 10 and Fig. 11 can casily be explained qualitatively as
follows. The radius at the middle is initially smaller than the radius at
the ends due to the initial imperfection. As the elongation proceeds, the
stress and strain at the middle cross-section are larger than at the end

cross-sections; therefore, the discrepancy between the radii increases.

When the rate of decrease of cross=-sectional area exceeds the rate of
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increase of the average axial stresses at the middle, the total load
begins to decrease. Shortly after this, the effective stress decreases

at the ends, and hence plastic unloading begins. Once the plastic un-
loading occurs, the area contraction at the ends stops (in fact, the radii
at the ends expand slightly as a result of the decrease of the axial stress);
therefore, the discrepancy between the radii of the middle and the ends
accelerates. As the elongation increases further, the stress at the neck
becomes larger, but the cross=-section contracts at an even faster rate,
so that the total load decreases further. This results in larger plastic
unloading regions at the ends and aggravates the discrepancy in the radii;
thus, the displacements become localized at the middle.

The location of the boundary between the plastic unloading region
and the plastic loading region is shown in Fig. 12 at different stages of
deformation. To the left of this boundary is the plastic loading region and
to the right of this boundary is the plastic unloading region. This boun=-
dary moves toward the middle as the total elongation increases.

From the knowledge of the displacements, the shapes of the necked~-
down specimen at different stages of deformation were calculated and are

U

shown in Fig. 13. At —Ll—" = , 50, the localized necking results in a 53%

reduction of the radius at the middle, while the reduction of the radius
at the end is only about 6. 3%. The detailed deformation in the specimen

can be seen from Figs. 14 (a), (b) and (c). These figures show the de-~

U
formations of a square grid of the original body (see Fig. 7) at _ITL = 0. 30,

0.40 and 0. 50,
The shapes of the necked profiles of the tension specimen shown ob=-

viously resemble the shapes observed in tests. However, no precise

comparison has been made.
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6.3. The strain and stress distributions

The stress and strain distributions have been calculated in the
whole specimen during its loading history. Only some of these dis-
tributions at the neck will be shown.

Figs. 15, 16 and 17 show the Lagrangian strain tensor components
' U

across the neck section at -11—" = .25, .30, and . 35. The maximum axial

strain (n,,) is seen to occur at the center. It is interesting to recall
33'max

that the Bridgman [1] and Davidenkov and Spiridonova [2] analyses were

based on the assumption that the axial strain at the neck was uniform.

In the present analysis after the Lagrangian strain components

g t

i

G . .
are found, the value of -\‘ E , which was assumed to be close to | in order
. . ij ~ 1ij . .
to use the approximation ¢ = q*, was calculated. The maximum error

U

of this assumption was found to be less than 1. 5% for -I‘li under . 50.

The distributions of the physical components of stress, o Tee

and L at the neck are shown in Figs. 18a, 19a, and 20a for

-rL = .25, .30 and . 35, and the distribution of the effective stress at
these stages of deformation are shown in Fig. 18b, 19b, and 20b. The
U
analysis showed that for el less than .27, (o__) occurs at the
L zz'max
center as shown in Fig. 18a, and for _L£ over .27, (o__) moves
zz'max

between the center and the peripheral surface as shown in Figs. 19a and
20a, The stress distributions shown may be inaccurate at comparatively
large deformations, since then T does not vanish on the peripheral sur-
face at the neck. (The requirement L 0 on the peripheral surface at
the neck is a natural boundary condition of the variational principle; to
impose this condition is beyond the control of the present calculation pro-
cess. The error in o _.on the surface can be used as a criterion for

checking the accuracy; this accuracy can be improved by including more
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terms in the power expansions in r in the assumed displacements (34)
and (35).) The results of the present analysis show that L4 becomes
negative on the peripheral surface. However, these negative values

for o, are localized near the peripheral surface only. Therefore the

stress distributions obtained may not be too incorrect inside the recked

U
section. At —LI-'—' = .50, the negative value of o, onthe surface becomes

about half of (G'Z and for this reason the calculation was terminated.

z)max’
Also shown in Figs. 18, 19 and 20 are the stress distributions

calculated by the formulas of Bridgman, and Davidenkov and Spiridonova,

on the basis of the neck shapes predicted by the present analysis. These

stress distributions are given by the formulas

(1) Bridgman

[+
_e T
[+

=2 .= 1
me_(R” + 2RP) In(l + 3

o o o = =
o-rr=aez(e)1nR +2.R_p r
] ] ] 2Rp
P22 _ 7 Trr
———:—e + ————
o o o
] s s

e T
o =2
s 2 R
e R7(1 + 3P
Trr - “4 9___(2) §2_r2
O'S o‘s O'S Zﬁp
o, ¢ o
Zz _ e . _IL
o o o
s ) s
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Here the total load T is calculated by (44), r is the distance from. the
center, R is the current neck radius, and p is the radius of curvature
at the neck. Both R and P were measured from the calculated shapes
of the tension specimen shown in Fig. 13, The effective stress cal-
culated by [1] and [2) are seen to be close to the effective stress calcu-
lated by the present analysis. But this seems to be a coincidence since
the detailed stress and strain distributions of the present analysis were
not close to those of [1] and [2]). Perhaps it should be emphasized here
that the above comparison may not be too meaningful, since the radius
R and the radius of curvature p at the neck which were required for the
calculation of the stress distributions given by Refs. [1] and [2], were

provided by the present analysis.

VII. Concluding Remarks

The most significant result of the present analysis is that, for the
first time, the shapes and the deformations of a necked~down tension
specimen were rationally calculated. The stress and strain distributions
in the specimen dufring its loading history were also found, although the
numerical results for them are still far from conclusive.

Some improvements of the numerical technique will be needed for
the present analysis to obtain more accurate results. Then, on the
basis of the present analysis, the stress and the deformation of a tension
specimen throughout its loading history can be predicted if the elastic
constants and the strain-hardening characteristics of a material are
known. This will provide knowledge of the stress conditions in a necked=-
down tension specimen before it fractures; thus it perhaps will lead to a
better understanding of the fracture phenomena in a tension bar, such

as the cup-cone type fracture.
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APPENDIX

Inversion of the Constitutive Equation

Since
k
Syl = Gy 5 (" G31
i .kl K,
-Giijlcr +ZG.1kcr njl .
and
G. ¢ =g, LG,
&% T Y5k at il
i K1 Kl.
= G, G, b+ 2G 0y

equation (10)a can be rewritten as

. _1 k1 Kl. . .\ .k
nij-E[(l+v)(0' chl+c G LT Gy vGijcrk]

3.1 1. Kkl 1. k. e
2 (g, - BN GG 3G Sy - (45)

+

We multiply both sides of (45) b G 'G®) and rearrange it to get
y g g

., TS r1s_] 3,1 .1 rs_lrskl __e_
(1+v){c’ Gy mzlg CENT 30 T Gl }
v rs, k ri.sj,
+_l+vG - (0°°G nJ+0’ G nij) (46)
On the right hand side t're and 6'}}: are unknowns. In order to find 6'11:,
we multiply (45) by GY to get
(47)

i, _1 k1 Kl, | _ a4k
G nij = E [(1 + v)(& le + 20 nkl) 3v6’k]

. . . kl kl, d , kl k . .
in which (& le + 20 nkl) S a(cr le) E &k' Rearranging (47) gives
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k_ _E__ ~ij.
O = T=- 2y Oy

Next, in order to find &e’ we multiply (10)a by s') and obtain

si" =IE[(1 + v)sloJ] +35 —é— -IE 1o")-——

With the use of the relations s’ = o - lﬁftrk, 's% = ¢'ri. - loi.b'k and
i) 35K ) j 35k

31 iy cquan
fr =3 v sjsi, equation (49) becomes
ij. _(21l+w 1 1
sy ={3=g ¢ E, LA
whence
( a8
i J.
v el ~
e-c\‘_g_l-l-v.l_(_l___l_)
37 E E, E

(48)

(49)

(50)

Note that in (50), (= -l.—) is always positive, so that the loading condi-
’ F y ’ g

tionoe 2
e

into (46) gives the final form of the inverted constitutive relations

ij, 1l _ 1. Kkl
. - sUE "E)s 1y
PRSI E llleGth .5 > t T —
L e'3 E Et E

vE 1_] . jk ~il,
*a - 2v)© G hkl (e'“G g + 0 G i)

ife_=c and sh.. 2 0

ij
ij_ _E il vE 1_]

"’ =T +w° e M Y TF ol - 29 © G hkl

( - (e'*clln, + ¥Gily ) ife,_<c,

ore =c and sl"h

.o s
1

0 can be replaced by s JnJ 0. Substitution of (48) and (50)
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