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By 

Winston H.  Chen 

Division of Engineering and Applied Physics 

Harvard University ■  Cambridge, Massachusetts 

ABSTRACT 

The necking process of an axisymmetric tension specimen made 

of elastic-plastic,   strain-hardening material is analyzed by a generalized 

J?-fIow theory for large deformations.    The governing equations are 

solved in a Kantorovich type approach based on a variational principle. 

The effects of both geometric nonlinearities resulting from large de- 

formations and the physical nonlinearities arising from plastic material 

behavior are considered.    Numerical results have been found for the 

stress and deformation histories in the specimen up to a 50% reduction 

of the neck radius.    The shape of the neck,   for the first time,  is rationally 

calculated. 
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I.    liitroc|iu:tiun 

The coimtnlional lunHion UtMt IN uHtially coiiNidornrJ to |>rovlcJi! tho 

basif icnHÜt' pruportioH of mutorialH.    Th«; t«!sl »Ions (irovirlii l<riowl«;fli»«! 

of the inlriiiHic streHN-strain rulution up lo a point.    Ilowovitr, after 

lu-ckinn <)t'«iirH in a tunHion HpocirruMi,  tho diHtriljutioriH of str«'ss ;irif| 

slriiin livromu very cum plicated and arc not known.    Th«r information 

obtainable from the test thereafter is only Home kind of average stross- 

avera^e strain relation.    A typical tension specimen after nerkirifj; orrurs 

is shown schematically in Ki^.   1. 

In order to provide a better understanding of the true stress-strain 

relation,  Bridf»man |1| studied the stress distribution at the narrowest 

section (section A-B in Fi^.   1) of a necked-down axisymmetric tension 

specimen and obtained a semi-empirical solution.    His analysis was 

based on the assumption that the axial strain across the narrowest section 

was uniform.    Davidenkov and Spiridonova |<dj,   by an analysis similar lo 

Bridgman's,  obtained another result for the stress distribution at the 

neck.    In both of tnese analyses the displacements and hence the shapes 

of the necked profiles of the tension specimen were not calculated.    In 

fact,  the determination of the stress distribution had to rely on measured 

values of the neck diameter d and radius of curvature p (see Fig.   1). 

These solutions,  therefore,  were not entirely rational.    Thomason [3] 

has calculated the profiles of the axisymmetrically necking tension 

specimen, based on a "maximum unloading rate" hypothesis.    But no 

solution for the stress distribution was included in his analysis.    Recently, 

Segal [4] has studied the plastic flow in the neighborhood of the neck of an 

ideally plastic tension specimen.    He made some calculations both for the 

stress and the displacement fields.    However, the analysis did not provide 

1- 
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a complete solution for the stress and the strain distributions.    These 

earlier investigations evidently do not provide an adequate analytical 

solution to the problem of necking in strain-hardening bars. 

In a rigorous analysis, it is necessary to find the displacement 

and the stress in the whole specimen,  not just at the neck; and for the 

complete loading history, not just at a particular deformation stage. 

The effects of plastic unloading must be considered; also, the large 

changes in geometry that occur during necking must be taken into account. 

The purpose of the present analysis is to calculate rationally the 

deformation (and hence the necking shape) and the stress distribution in 

a tension specimen throughout its loading history.    The tension speci- 

men considered is of finite length and initially has some imperfection 

on the lateral surfaces in such a way that the "adius at the middle is 

slightly smaller than the radius at the ends.    The specimen is subjected 

to a uniform axial displacement at the ends and is elongated in such a 

way that the ends remain shear free.    The specimen material is assumed 

to be isotropic,  elastic-plastic,  and stran-hardening.    A variational 

equation of equilibrium for large deformation,  in conjunction with the 

approximation method due to Kantorovich [5],  is used to solve for the 

field variables.    A generalized .K-flow theory for elastic-plastic 

materials with large deformation effects is used in the analysis.    Thus, 

both the effects of the geometric nonlinearities resulting from large 

deformations and the physical nonlinearities arising from plastic material 

behavior are included in this analysis. 

II.    Field Equations 

A set of field equations for analyzing arbitrary deformations of 

elastic-plastic materials will be presented.    The equations involved are 

written in a general form with the use of tensor notation. 
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2.1.    Equilibrium 

The notation and equationü of equilibrium used in the present 

analysis follow those of [6].    The pertinent results of [6] will be briefly 

reviewed. 

Let a material point of a solid body be identified by the coordi- 

12     3 — 
nates (?   .f  ,?  ) and let the vectors £ and £ denote respecitvely,  its 

position when the body is undeformed and deTormed.    The covariant 

base vectors of the undeformed and deformed body are £. = -—r , and 

? . = —r,   respectively, and the covariant components of the metric 

tensors are 

c.. =   e .  •   e . 
^ij      *!      ^j 

G.. = i.  •   e . 
lJ     ^'l     ^J 

with inverses g ^ and G •'.    The contravariant base vectors are ^   = g   £j 

and e  = G ^ e .. 

One defines the contravariant tensor components u   of displacement 

j^ = j^ - j^ by the relation 

u  = u e .       . (1) 

The Lagrangian strain tensor is defined by 

r).. =T(G.. - g.) =T(VU- + Vu) +"?g ♦{Vu8)(V.ut) (2) 'ij     2V   ij     Bij'     2* j  i       i j'      2Bst    i    M j    ' *  ' 

where ^. denotes  covariant   differentiation in the undeformed body.    The 

stress tensor cr in the deformed body may be written symbolically in 

terms of its contravariant components er J as 

o- = or^I.I. (3) 
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Consider an arbitrary volume V of the undeformed body bounded 

by a surface S; after deformation these become V and S, respectively. 

Let n be the unit normal to S and define n. by the relation 

n = n. el      . 

If body forces are neglected, the equation of force equilibrium governing 

the stress rate and displacement rate given in [6] is 

*iWlr + V^jU1" + qijV.ür) = 0 (4) 

where q    -    — <r •' is the Kirchhoff stress;  here G and g are the deter- 

minants of C. and g..,  respectively,  and where (') denote differentiation 

with respect to a monotonically increasing quantity such as time t. 

If surface traction rates ,£ = T &• per unit original area are 

prescribed, then 

(qir + qiJV.ur + qijV.ür)n. = Tr (5) 

on the boundary.    Prescribed displacement rates X, = v £. are satis- 

fied by letting ü   = v.. 

A variational equation governing ü   and q   , which can be deduced 

from the classical principle of virtual work,  is 

J (q^hij +iqijö[g8t(Vüs)(v.üt)]}dv = J i^ü.ds (6) 
V s 

for all states q1^,  u ,  T1 satisfying equilibrium, and all displacement 

variations öü.,  with 

oh.. = -^{[V.öü. + V.ÖÜ.] + g J(V.u8)(V.öüt) + (V.U'HV.ÖÜ8)]}    . 'ij      2 ll j    i       i    jJ     BstLX  i J v j    M  i       'iJ 

Either the equilibrium equation (4) or the variational equation of equili- 

brium (6) can be used, in principle,  for analyzing plasticity problems 

. 
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Jnvolvin>j lar^c deformations.    In the prusunt analyxi»,  the variatiunal 

i quation (6) will be used,   in conjunction with a Kantorovich approxima- 

tion method,  to solve for the field variables. 

he field equations are still incomplete and must be augmented 

by constitutive relations between stress and strain--or, more precisely, 

between stress rates and strain rates. 

I. 2.    Constitutive Equation 

There have been several forms of the constitutive equations for 

elastic-plastic materials involving large deformations,   such as those 

suggested by Green and Naghdi [7],  Lee and Liu [8],  Cameron and 

Scorgie [9],   Lee [10], and Willis [11].    However,  in the present analysis 

of the large deformation in a tension specinnen,  the new constitutive 

equation given below seems to be more convenient to use. 

The materials considered are isotropic,  elastic-plastic and strain- 

hardening.    For simplicity,   neither a Bauschinger effect nor the influence 

of temperature is included.    It is assumed that the actual strain rate f).. 
r 

can be written as the sum of the elastic strain rate h.. and the plastic 
p 

strain rate if)...    The elastic stress-strain relation as suggested by 

Budiansky [12] is 

HM =F(7(1 + V)[G..  ^((rk) +G., ^:(<rk)] - vG..-£:(.rk 

'ij     E v 2 l   xk dt ^ j'        jk dtx i 'J ij dtx k 

i        ik where cr. = o-   G, . is the mixed tensor component of the stress tensor. 
J kj 

E is Young's modulus and v denotes Poisson's ratio.    This is a genera- 

lized Hooke's law which includes large deformation effects.    Equation (7) 

is not integrable and is not a rigorous constitutive relation derived from 

the theory of elasticity for arbitrary deformation.    But it will not result 

in significant errors for the present analysis,  because for infinitesimal 



■ 
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strain Equation (7) is the exact statement of Hooke's law; and for large 

deformation in the present necking problem,  the elastic strain only 

plays a minor role and is dominated by the plastic strain. 

The plastic stress-strain relation is a generalization of the J, 

flow theory to include large deformation effects.    Let us begin with 

the Jy flow theory for infinitesimal strains.    Referred to the Cartesian 

coordinates, the stress and strain tensor components are (r.. and c, 
» ^ ij ij' 

the stress deviator is s.. = <r.. - rrö..(r. , , and the effective stress is ij        ij      3   ij kk' 

3 - defined by o-   = [TTS. .s. .l2 .    The yield function is F = <r    - c, where c e     12   ij ijJ ' e        ' 

is the initial yield stress or the maximum value of <r   which has occur- 7 e 

red in the stress history, and the flow rule states that the plastic strain 

rate is 

ef: = h4r " F) ^r »:;    if    '   s c   and   fr    £ ^(a ) * 0 -ij      2xEt       E' (re    ij e e      dt    e 

e?. = 0 if    a   < c, 
ij e 

or   <r   = c   and   <r    ^ 0 e e 

where E   is the tangent modulus, which is the slope of the uniaxial 

stress-strain curve. 

Next, let large deformation effects be included.    Referred to 

general coordinates, the contravanant components of stress are «r ', 

and the contravariant components of the stress deviator tensor £ are 

s1' = (rlJ - "IG^G^      . 

The mixed tensor components s. are defined as 

s. = «r. - rrO.a    G. . j       j      3   j kl 



whoro Ö.     G    G,     .a the Krmioikor dt*lta and o-    G, . is ihe mrAn m»rin«l 

siivss.    Tlu* effective slross iit 

ami Iho viold luiu'tion i* *lill F      r    " tf.     The LiMu-rali/od flow ruU* 

si.iit-H that 

»)?*       4(7-  -  -FH^'C.  C.    -TC   ^'C..)-^   il «r       tand*    -   0 
'ij      -   ^i       *• ^,   0     ^    lJ kl 9 e e 

i)P        0 II .r     <C. 
»J • 

or     r    • c   and   *        o |9|k e e 

where, a« «howit later,  the lan^ent ntodulu« C   t* now drdnrd a« the 

«lope oi the true »tretfs-natural «train curve in untaxul tension.    Note 

that ihe pU«tic «train ^i\en b> (*))« «attsfie« the pUtttc mconipressf 

biliix condition.    Thi« van be «een by rxanumnu the rate oi chanpe of 

\olunie which t« 

^(dV) ^r f dv,. f fi c'^dv 

-. 2 O^Ch" ♦ nPWV 
$ »J      »J 

The «hanfe of \t>lum« contributed bv the platttc «train rat« !••   — C,,n|  dV, 

«rhicl- bv («la.  vanishes. 

Combtnin« equation« |T| and («» pi«e« the full constitutive equation 
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^ • t^1 ♦ ^^f Vf» - ^.A' lf % •*•-*.'• 

IJ      E   * ik j        jk i' IJ k' •■ 

or r    • r. «nd * 0 

fl«fk 

PhyttCAlly,  Equation (10)« «pplte« in the pUttic Icadmu rcuion and IIOiO 

applies in the pUttic unloadini or eUttic remon.    1 h« »train rat« gtvon 

by (10)« deprndt not only on the ci rrent tlret« rate« but alto on th* 

«hole ttrett and deformation hittoria«. 

In order to define E   precisely,  let us now consider umaitial t«r.%ion. 

The stress-strain relation then reduces to 

'»n'iicii*!>^r •ii',,ciicii r   »\  '*■■'■*,- ^     if  e   • c and fr    ' e e r 
(Hie 

or a    « c and *#  ' 0 fl lia 

where the effective streas a is a C.. • a.. o> Equation (a). Since e 

la the tensor component referred to the base \actor £.. which has the 

magnitude    C.. . the corresponding physical component ui stress .• 

• I    .      .   —^ j 
a     «a    " C..    C,,   ä a, • a 

K» 11        11        I       a 

Therefore.  Equattona (11 }a and (11 lb become 

^l i       I 
7r±  > —fr fl2.a 
^11     £x   " 

a 
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C|l      E   «x 

The natural strain i« defined by 

i|. In(f-) - In(l f-^) » jln(l ♦ in,,) 0 J» 

where u    i» the displacement along the coordinate x; 1. and f are the 

onpinal and the current length of a cylindrical bar subjected to umaxial 

tension.    The rate of change of the natural strain is 

By comparing (12) and (14), we obtain the following simple relations for 

the unlaiital tension case: 

n • 
"1 
j-t If r     • c   and  »      •* 0 

n **** »"«<«. 

or e     ■ c  and  *      * 0 
KK XK 

Now the tangent modulus E   is clearly teen to be tho slope of the true 

•tress-naturai strain curve as shown in Fig. i, and E is the linear re- 

lationship between r) and e     when plastic unloading occurs (as well as 

during loading in the absence of plastic flow).    The constitutive equation 

(10) is used under the condition that the e      • q relation (or equivalently 

E and E ) in uniaxlal tension is known. 

The constitutive equation it complete, but its inversion (the stress 

rate In terms of the strain rates) is still to be found.   This inversion 

must be used in conjunction with the vanatlonal equation it», because 
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wv wi»H to wriic 9 * in term« o( n   •  *"<* surcessively write h . in 

terms of u   and solve (or it .    The inversion of (10) is derived in the 

Appendi«; the result is 

ii. I        I • Wi 

♦ II > .iff • 0°"°% • <''ko\. * ^""V.' 
II   ee     c «nd s^hj.  '  0 <lS)s 

- (r^C^bu ♦ r»kCllhk|»      if  «r# < c , 

or r   > c and stJh.. < 0 (1Mb 

The field equations are now complete for analysing large deforma- 

tion problems.    Note that the Kirchhoff stress (| ' appears in the equa- 

tions of equilibrium whereas the constitutive equations involve t '.   In 

the present analysis, however, q ' can be approximated by e K    For 

small deformations. C « *    so that q1' *    * e,J * #,j.    In the nc king 

problem large deformations occur, but since the plastic strain, which 

is incompressible, dominates the elastic strain, the volume change 

caused by the total strain is very small.    Then, since     —     -rr ■ i| 

it is still true that qiJ • #,J.    Therefore, q,J will be replaced by e^ 

in the equations of equilibrium for simplicity. 

Finally, by the use of the constitutive equation (IS) we can obtain 

another version of the variational statement that turns out to be convenient 

for numerical analysis.    It can be easily verified that 



-13- 

'»J '»J 

both for pUttic loading and unloading.    Therefore, if I is defined by 

1 s * £ ('% * 'ij(«.t(">i>i>dv • I f'"i *        <i6) 
v sT 

where S— is the part of the original surface on which traction rates are 

prescribed, then 

6l i 0 

is the same as the variational equation (6). 

HI.   A Perfect Bar Under Umaxial Tension 

Before we go into the necking problem, let us study the uniform 

deformation of « perfect circularly cylindrical bar under uniaxial tension. 

The bar has an initial length 2L and an initial radius R- as shown in 

Fig.  1.    The ends of the specimen are subjected to a prescribed unifurm 

axial displacement U. .    The radial displacement at the ends is unre- 

strained so that the ends remain shear free during the elongation.    The 

following is the solution for the uniform deformation of the perfect bar; 

this solution will be used for further comparison. 

The physical axial displacement of the specimen is 

u    « a • a 

U. 
where a • -T* IS the engineering axial strain.    The natural axial strain 

is 7) • ln(l ♦ a).    For a given engineering strain a, the uniaxial stress 

in the specimen can be calculated by the uniaxial stress-strain relation. 

In this paper, we will use the Ramberg-Osgood law (l)| to relate the 

uniaxial true stress e     and the natural strain 7) as follows: 

nM-^MKC-^)" (17) 
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FIG.   3   PERFECT   BAR 
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where n is the strain-hardening exponent, and K is a material constant. 
-   «r    . 

As shown in [13], K is equal 10 -={-=■)       ,  where o-   is a secant yield 
<r 

strength at which the secant modulus E   = (■^) = . 7E.    In the present 
9 

n 
analysis, it will be convenient to use the dimensionless stress quan- 

(T 
Z Z 

tity {~T~)-   Rearranging equation (17) gives the following relation between 
o- s 

(•——) and a given value of a: 
s 

s s 

The radial displacement is u    = br, where the engineering radial strain 

b can be found by the use of the constitutive equation (10)a.    Let rj,.  be 

the component of the Lagrangian strain tensor in the r direction and let 

<r      be the only non-vanishing contravariant component of the stress 

tensor (i.e. consistant with the cylindrical coordinate system f    = r, 

2 3 1   2 33 3 ?    = e, and f    = z);  then n,,  = b t-rb   and <r    G-, = <r    = (r   = <r    . ' ^ ' '11 2 33        3       e       zz 

One of the constitutive relations of Eq.  (10)a reduces to 

s s s 

2 
where the metric tensor G. .  = (1 + b)  .   Integration of it gives 

-[v(^)(^)+^(^)(^)n] 

b = e s 8 - 1        . (18) 

The radius of the specimen after deformation is R = Rn(l + b).    Next, 

the total load in dimensionless form is 

T /zz,,,   . LV2 |- = (^)(l+br 
ffRft(r s 

0 s 

(f4)« s s (19) 
s 
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Note thai the values of b,   { '-) and ( T""")  depend on three material 

0  s 
parameters only;   namely,  the strain-hardening exponent n,  the ratio 

(rgr) .md Poisson's ratio v. 
tr 

For the particular values n     8,   (-sr)      Ü. 0072 (consistant with 

the values E - 25. 8 x 10    psi.  and <r    -   . 186 x 10    psi.   for Cr-Ni steel), 

1                                                      T                  —                T 
and v     -j,  curves relating a and j— ,  and R and T—   are plotted in 

^ iiRn<T rrR^ 0  s 0  s 
Fiji.   4 and Fij;.   5.    A very simple approximation for the maximum value 

ol the total load (found by neglecting elastic strains) is 
1 

<-T-W 17-<T')"" 
JTR.O- 

0  s 

and the corresponding values for the stress and engineering strains are 

1 
(T - (T -- 

.   zz v r j    ,   s .i   n 
(~)T=Tmax = l7n(E-)1 

s 

(a)T  _,    „    = e    - 1 T=Tmax 

(b)_  _ = e T=Tmax 
2n 

cr s 
This approximation should hold fairly well for n > 2 and n(-=-) « 1. 

For n = 8, for example.  (a)T_T is .133 and the corresponding 

natural axial strain is (r))'r-T = ' ^^' 

IV.    Formulation of the Necking Problem 

The tension specimen considered for the present necking problem 

is an imperfect bar as shown in Fig.  6,  of which the lateral surfaces 

deviate slightly from the straight surfaces of the perfect bar of Fig.   3. 

The initial length of this imperfect bar is again 2L,  but its initial radius 
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i 
!• R(*»     R  (I  • «. i.  whmrm < («••uin«4 •»» *u» is Ihm manimufn 

drvialton between Ihm •urUic« of Ihr p?rlrci Ami impvrUct b«r «I 

• ' 0(  «nd • I« • positiv<• dri «>  f>«r«M>rtr r . 

The «pn m-.n i* «••umed tu b« «xitymmvirlc «boat the «•••«• 

«nd to «»«• •»Mvnteirii   «nih remp9€l U> the middle pUne 4 • 0.     The only 

non-vantshing physic«! component« of dispUcomont «r« u   «nd u . 

pvrpondtcuUr And porellel to the C-«III»,  ro«p«cllv«ly.    Th« non- 

««ntshtni physiral romponent« of «tret» «ro 9    . Wm^ 9mm «nd 9    . 

Ihr «irr*» «nd ditpUcemeni rocnponent* «r« function« of r «nd « *nd 

ihr tlme-Ukc varUblr i; thoy «r«» independent of § by ««tei tymmotry. 

The boundary condition» imposed al the end« «re the »«me •« tho«« 

imposed on the perfect ben namely, at the end«, u Ir, tL.t» • ^U, (t). 

Al«o, the radial di«placemrnt at the end« I« unrestrained «o that the 

rnd« remain «hear free during the elongation. 

Referred to the cylindrical coordmata« (rtt(«), the metric tensor 

g    ha« component« 

•n    iti    «n      '    0    0 

•ii'   •«!    Hi    «u  '   0    '*   0 

»Jl     isi     »is,      0    0     l. 

The contravsnant and covenant components of the dl«placement are 

I 
«           Uj          uf 

u   • u% ■ u- 

tress tensor has C( »ntrs 

." 0 ," 

.'J.   0 9U 0 

." 0 .» 
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The r«l«s of ih» L«icr«n|ii«n •train l«n»or «.ompvcivnl» *r« 

•u      «hi #u     til 

'II     '        #r     ir        ir     ir 

n..     (r ♦   .  Hi <i r    r 

•u      *•        «u     «fa 
UOI 

tfU 0U •U.     tfu. #U      *u #U.   •Ü. 

Th* cov«rt«nl lompunrnl» uf the mrirtc lvn»ur ul iNr drformvd •»■•«..  ..rr 

C 

C II * <» ♦ -r» 

•■-.1. .%.! 
31 •«»♦If»   ^77» 

un 

•u fei du    du tfu    du 

wtih th« inv«rs«a 

.11 H. 
<ciici|-cis» 

.a      i 
'22 

n 1L 
<ciicii-ci/ 

cl,.c,, -c 
13 

<CllC33-C13> 

(22) 

Th« non-v«ni»h»ng tontr«««riant « orr.ponrnl» of th« •tr«tt d«vUtort 



.'i    ."-^CV,C11..«CM.."0„.».,»C,,.. M>| 

lt..  «tflcHtiv* *trttsa I» 

••      »jl**     lw,|»(»     I  C^ ♦ (%     |C$$WU     I C*, j 

* Urn     }C||C))»i*     %    G, $ ♦ 4%     »     ri|('|. 

♦ 4»l,»l,C|lCJJui U4i 

Kur thi  pr«»ont i.r-.».!« »»..   |. t   .» < Mtlinutt l»» ••*•» IK» R«ti.i«*rif*0%b*«*«<l 

l«w (I7| «« Ihv uniaM«! « r ..   »Ir«»»-natural »train r« l«tl*«n.    TK«  tanvnt 

ni.rfl.    .» I«) i|< tmili'.n la 

i    « » 

In thv fulluwinit wv will  »»« th« cc#nv«nittnt dina«n%i'«nl(;«% %tr«%* quantity 

(— I «nd aUo the dimanBlunlvn» Quantitt«» < T— » and < — >      S .•.»«.« .li-.r 
• • ■ 

wf US» into {IS) Klv«» 

»M 1 E Ik    II 9m        «^     »Ä, 

•       •       t 

i« 

* • » • 

whvr« 

f 
i7n(J»n-J 

■       if »    • c *nd »IJh     * 0      I27)» 
*• n-l * lj 

28(1 * ») * I8n(-»)n 

,0 if v   < c. or <r   ■ c and I • • 

•J 



-*J- 

The constttuliv« reUltun» in nuitrtK form ar« 

• 

11 

9 

*_ 
T 

rJ3 

13 

Cll      CI2     CIJ     CM 

C21      Cll     Cli     Ci4 

CJ1      CU      CJ3     CJ4 

C4I      C4i      C43      C44 

»11 

ni 

'JJ 

CM) 

ih li 

wh«r» the co«(ftct»ni« C    are 

cu • rh'f «f^t«8"»' " «T^"^'! - ^T^«5" 
t 

11 

• •      ■        • 

• • • 

1     . E 
r 

ii^u   .• 11       22       r 
ci2s c2i ■ rh^fHr^i;0 0  • «T-MT-^T1»! •        a 

«MJ ■ cii ■ rh«^'i'0,J»J 'r^T;c"c" - ^H^'fy 



I 

i4' 

• •        • • 

•W%->Ol,M*-IOl,I 

..    S1        .**     .31        9 

• •    •     • 
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W*) 

Wtlh «he us« of th« constlluttv« «quadun Ut), (H* equation (to) of 

ihr varuitoMl principle b«com«t 

t' * ^o ^o     1C||h'1 * C"h" * C3|l," * 4C44h*J * 2C,4,,|,h" 

*'CIJhll*,31 * 4Cl4hllhl3 *2C2JhÄZhJ5 * 4Ci4*,2i,,l3 

II       du du u 
♦ 4C34nJ,hl, ♦ (V-»i<Tr»'f (Tr»2J • (7-^/ 

.3J    *.   ,     di. ,        ,13   du, dür    ai.^ düa 

* r     l* d« * d* '  '       ' »    M Or   dt       dr    8t  ' 

(30) 

Th« turfac« integral of (16) vanish««,  sine« th« prescribed tractions 

vsnfsh on all boundaries.    Equation (30), with th« us« of th« strain* 

displacement relation (20) can be written in the form 



r
L
r

,l<»> 
^      if \     I (Qu«dr«tit t«rmt in u  ,  u  , and their 

d«riv«tiv««)rdrdt . (31) 

Tn« variationAt principle ö| ■ 0,  with «he 1 of ()l),  will «nable on« to 

tolv« for u   «nd ü  . 

Fin«Uy, th« geometric boundary condition« th«l mu«t be impo««d 

on th« diapUcemenl* «re 

u^r.L.t) a UJt) {U) 

«t th« end,  «nd 

ut(r.0,t)*0 ISSI 

«t th« middle,  by •ymm«try. 

V.    M«thod of Solution «nd Numerical Analvtu 

Th« governing equation« of th« present problsm wer« Approximately 

•olved by th« Kantorovtch approach |Sj ba««d on th« variational principle 

ÖI ■ 0,  where 1 is given by Equation (SI).    In this mathod th« displace- 

ment» war« asaumad in th« form 

ur • rfU.O ♦ rJhU,t) (34) 

u, « iU.O ♦ r2kU,t) (3i) 

where f,  h,  g, and k ar« functions of th« space variable s as wall as tha 

time t.    Th« axisymmatric conditions require that equation (34) contain 

only odd power« of r and that equation (35) contain only even powers of r. 

To analyse the necking process, we must calculate the stress e * 

and the displacement u   as functions of r,  s and t.    The details of this 

calculation will be shown later; the following paragraph outlines briefly 

the computation steps involved in the procedure. 



Ak»uming knowlcdKL* uf the hislone» uf a ■' and u. at time t, 

calculate the displacement rate (ü ). by the vanatiunal equation fur a 

prencribed ^xial dispUcement rate U.   at the end.    Then calculate 

(i)   )   «nd {o ')   by the »train-displacement relations and the cunstitutive 

equations,   respectively.    Next,  extrapolate to find <').>.., a'^ 

(u ),. A|. *nd then use this knowledge to calculate (u ).. At<    Repeat 

the same procedure for successive small time intervals and thus obtain 

the stress and displacement histories for a finite time span. 

By this procedure, the displacement functions f,  g,  h, and k of 

Equations (34) and (35) are assumed to be known at time t, and it is their 
• • • 

rales f. it. h. and k that are the unknowns to be found. Substitution of 

the assumed displacements (34) and (35) into the equations (20) for the 

rates of the Lagrangian strain tensor components gives 

On = 0 ♦ f ♦ 3r2h)(f + 3r2h) + 4r2kk 

h22 = (I ♦ f ♦ r2h)(f ♦ r2h) 

hjj - r2^ ♦ r2hi)(if2 ♦ r2hx) Ml t gz + ,\){kM ♦ r2k2) 

Öl 3 * hj! = 2 r(£x * r\,(' + 3^2*,, ♦ { '(I + ' + 3r2h><'2 
+ p\) 

♦ rk(g2 + r2k2) <• r(l + gi f r2k2)k (36) 

With the use of these relations, the expression (31) for the integral I 

of the vanational principle becomes 
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s     »'O 

t *y •• •• •• •■ •• 

22 z 23 z 24 z  z 25 zBz 26 z 27 z  z 

+ D33h
6 + D34hh2 + D35hgz + D36hk + D37hkz 

+ D44^ + D45Vz + D46\k + D47\K 

+ D558z + D56«zk + D578zk
2 

+ D66k2 + D67^z 

+ D__k2]dz 77  zJ (37) 

where the coefficients D fl are definite integrals with respect to r.    For 

example 

R(z) 
2, .2 

Dll = Zn ^        i0!^1 + f + 3r2h)2 + C22(I + f + r2h) 

+ 2C12(1 + f + 3r2h)(l + £ + r2h) + 2C14r(l + f + 3r2h)(fz + r2hz) 

+ 2C24r(l + f + r2h)(fz + r2hz) + C44r2(fz + r2hz)2 

A    II ^    22 2X    . + 0-      +0-    r )rdr 

R(z) 

D12 = Zlt | {2(C13 + C44)r2(l + f + 3r2h)(fz + r2hz) 

+ 2C23r2{l + f + r2h)(fz + r2hz) + 2C14r(I + f + 3r2h)2 

+ 2C24r(l + f + r2h)(I + f + 3r2h) + 2C34r3(fz + r2hz)2 

+ 2r(rl3}rdr 
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The rest of these 28 coefficients are calculated in a similar fashion, 

but the results are not shown here.    All the D  a are,  of course,  func- ap        ' ' 

tions of z. 

The condition ÖI = 0 can then be imposed in order to solve for f, 

g, h,  and k, as functions of z.    Let the integral domain of (37);  namely, 

the plane bounded by z = 0,  L and r = 0,  R(z),  be divided into m x n 

meshes, with m + 1 mesh points in the r direction and n + 1 mesh 

points in the z direction (see Fig.   7).    Numerical calculation at time t 

starts by the computation of G..,  G %  S   ,  <r   and C.. by means of 

Equations (21),   (22),  (23),  (24),  and (29) at each mesh point.    In com- 

puting C,  we have to know whether a mesh point is governed by the 

plastic loading conditions or by the plastic unloading conditions in order 
(T 

to calculate P(-*) by (27)a or (27)b,  respectively.    However, before the 
s 

solutions for ü. are found,  these plastic loading or unloading conditions 

cannot be checked, and hence the position of the boundary between the 

plastic loading region and the plastic unloading region is not known.    In 

the present analysis,  this boundary is determined by an iterative process 

which will be described later.    For now we just assume a trial position 

of the boundary in the specimen and calculate P(,r~) either by (27)a or 
s 

(27)b.    After C.. is evaluated at each mesh point, we integrate numeri- 

cally along the r direction by Simpson's rule to get the D ß of (37).    Then 
it- 

let the discrete values of f,  g, h, k and D Q at z. (i     mesh point along 

the z-axis) be f.,  g.,  h., k. and (D g)..    By the use of the trapezoidal 

rule. Equation (37) can be written approximately in the summation form 

n ^^^ • • • • • • 
I = ^ ^[Quadratic terms in f.,  f.+1, g., g.+1, h., hi+1, k., k.+1, 

(IVi and (Vi+ll     • (38) 
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The variational principle ÖI = 0,  with the I of (38),  implies that 

81 = 0 
9f. 

i 

# =0 
8«i 

8h. 

-¥• = 0 (39) 
8k. 

for i = 2 to n.    The natural boundary conditions of the variational 

principle are 

4=0 
M, 

*}-o 
ahj 

at the middle z » = 0, and 

81  . . 0 

<+l 

81 
• 0 

8hn+l 

(40) 

(41) 

at the end z = L.    In addition, the geometric boundary conditions (32) and 

(33) become 

kj = o 

*n+l = 0L 

kn+1=0 (42) 
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Equations (39), (40),  (41) and (42) constitute a system of 4(n «■ 1) 

linear equations which contain 4(n t 1) unknowns f ,  K ,  h. and fc   (for 

i = 1 to n -f 1).    These equations were solved by Potter's method (see 

Ref.   14) with the aid of an IBM 360/65 computer.    After f, K , h   and 

k. are found,  the displacement rates u    *nd u    can be calculated by 

means of (34) and (35). 

The calculated displacement rates u    and u    arc not necessanly r r « ' 

the correct solution, because they were obtained on the basi« of an 

assumed position for the boundary between the plastic loading and plastic 

unloading region.    So after we calculate 17.. from u.,  we must check the 

plastic loading conditions —namely, o       t (c is the maximum value of n 
e e 

which has occurred in the stress history) and r)•■*     *  0—at each mesh 

point in the assumed plastic loading region.    If these conditions are not 

satisfied,  we redefine the mesh point assumed to be plastically loading 

to plastically unloading.    Similarly, we check the plastic unloading condi- 

tions— namely, <r   < c,  or <r    = c and fj. .s1'' ^  0 —for each mesh point in 7'    e       * e 'ij r 

the assumed plastic unloading reg<on and make the required adjustment 

if necessary.    Thus we obtain a new position of the boundary.    Then we 

calculate ü. on the basis of the new boundary and do the checking again. 

If this checking is successful,  the last displacement rate it. found is 

taken as the right solution.    From these values for It.,  the strain rate 

t).. and the stress rate ( —) are calculated by (36) and (28).  successively. 
'' s 

The stress and the displacement at the time i + At are estimated 

by a simple parabolic extrapolation of the form 

ut+At = ut + ilüt ■ K-AtlAt 

. 



* 

w- 

«••uming a knowledv« uf th« vArtous rale» at th« time t • At (initially 

at t • 0, it aufficaa to ua« u      - ü04t if At la •ufftciantly tmall)     For 

conventenca, the time*like vanable t was identidad as the prescribed 

end displacement U, (t),   so that U.   ■ I and AT -  AU. . 

Finally, after the tensor components of stress were found,  the 

physical components uf stress were calculated.    At the neck,  where 

shear strain does not occur, the dimensionless physical components of 

stress are simply: 

9               11 rr  .  v       — _ 

s s 

~ ■ —    c^^    C2Z 
8 S 

9 «33 _ 

77=77     ^      033 

v 13       .   . 
77 = 7^   0ii    c»" 

T The dimensionless total load       \      was calculated at the neck by inte- 
ffR0's _ 

grating (—^) over the current area A of the neck;  namely, 
s 

Since dX = 2w(r + u  )d(r + u ) = 2ff(l + f + r h)(l + f + 3r h)rdr,  equation 

(43) becomes 

R0-c  9 

 1~ =~h   \ -^(1 + f + r2h).(l + f + 3r2h)rdr (44) 
ffR0ffs      R0   * 0 
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wuh t and h being evaluated at s - 0.    The value of the total load was 

then obtained by the numerical integration of (44). 

VI.   Re»ulu and Di»cu»«ion» 

The results presented are based on the following conditions.    The 

initial half-length of the specimen is L - 2, and the initial radius is 
2 

R('.l -  I - ce       ,  with the imperfection arbitrarily chosen as e = 0.005 

(the results are not sensitive to the magnitude of c).    The strain- 
er 6 

hardening exponent is n = 8, the ratio (-|r) >» 0.0072 (E = 25. 7 x 10   psi. 
i I 

and e   = . 186 x 10   psi.), and Poisson's ratio is v = T •    The results in- 

clude the total load, the displacements and the stress and strain distri- 

butions calculated at every stage of deformation.    Each stage of deforma- 

tion was specified by a different value of the engineering axial strain 
UL UL -T—'.    In the present paper -p-   was varied with increment . 0025,  from 

0 to . 50, at which point the calculation was terminated for reasons 

which will be given later.    The spatial mesh sizes used in the numerical 

analysis were A   ■ .05 and A    = . 025. 

6.1.   The total load 

T Fig. 8 shows a plot of the dimensionless total load —r—   (as cal- 

uL "V. 
culated by (44)) against the engineering strain -r-.    The total load reaches 

UL its maximum at -r— = 0. 145.   It is interesting to notice that the plastic 
UL unloading (which starts at the ends of the bar) does not begin until -r— 

reaches 0. 180, which is slightly after the total load has started decreasing. 

T UL For comparison, the plot of       ^       versus —r- as shown in Fig.  4 

0 s 
for the perfect bar was reproduced in Fig. 8.    It is seen that the maximum 

value of the total load of the imperfect bar agrees quite well with that 

predicted for the perfect bar.    The discrepancy between the two total 

loads begins shortly after the total loads start decreasing. 
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The relation between    --k      and the radius *i the neck R i« shown 

in Fm.  9.    The results for the perfect bar were also reproduced from 

Fig.   S for comparison. 

6. 2.    The displacements and the deformations 

Fi|{.   10 shows the radial displacement u    un the lateral surface, 

r - R(z),  at different stages of deformation.    During the earlier stages 

of deformation,  the inward radial displacement increases quite uniformly 

throughout the length.    But for later stages, the inward radial displace- 

ment increases only locally at the middle.    At the end of the specimen 

the radius expands slightly when the total load decreases (see the enlarge* 

ment in Fig.   10). 

The axial displacement a    is shown in Fig.   11 for different stages 

of deformation.    In this figure the solid lines indicate the axial displace- 

ment on the lateral surface,   r = R(z),  and the dashed lines show the axial 

displacement along the center line,   r - 0.    The slopes of these curves 

become much steeper at the middle for large values of -r— .    This 

implies that the axial strain,  which is approximately equal to the slope 

of these curves,  becomes concentrated locally at the middle when the 

deformation is large. 

The localization of the displacements at the middle of the specimen 

as shown in Fig.   10 and Fig.   11 can easily be explained qualitatively as 

follows.    The radius at the middle is initially smaller than the radius at 

the ends due to the initial imperfection.    As the elongation proceeds, the 

stress and strain at the middle cross-section are larger than at the end 

cross-sections;  therefore,  the discrepancy between the radii increases. 

When the rate of decrease of cross-sectional area exceeds the rate of 
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increase of the average axial stresses at the middle,  the total load 

begins to decrease.    Shortly after this,  the effective stress decreases 

at the ends, and hence plastic unloading begins.    Once the plastic un- 

loading occurs,  the area contraction at the ends stops (in fact,  the radii 

at the ends expand slightly as a result of the decrease of the axial stress); 

therefore,  the discrepancy between the radii of the middle and the ends 

accelerates.    As the elongation increases further,  the stress at the neck 

becomes larger,  but the cross-section contracts at an even faster rate, 

so that the total load decreases further.    This results in larger plastic 

unloading regions at the ends and aggravates the discrepancy in the radii; 

thus,  the displacements become localized at the middle. 

The location of the boundary between the plastic unloading region 

and the plastic loading region is shown in Fig.   12 at different stages of 

deformation.    To the left of this boundary is the plastic loading region and 

to the right of this boundary is the plastic unloading region.    This boun- 

dary moves toward the middle as the total elongation increases. 

From the knowledge of the displacements,  the shapes of the necked- 

down specimen at different stages of deformation were calculated and are 

shown in Fig.   13.    At —r— = . 50,  the localized necking results in a 53% 

reduction of the radius at the middle, while the reduction of the radius 

at the end is only about 6. 3%.    The detailed deformation in the specimen 

can be seen from Figs.   14 (a),  (b) and (c).    These figures show the de- 
UL 

formations of a square grid of the original body (see Fig.   7) at -r— = 0. 30, 
La 

0.40 and 0. 50. 

The shapes of the necked profiles of the tension specimen shown ob- 

viously resemble the shapes observed in tests.    However,  no precise 

comparison has been made. 
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6. 3.    The strain and stress distributions 

The stress and strain distributions have been calculated in the 

whole specimen during its loading history. Only some of these dis- 

tributions at the neck will be shown. 

Figs.   15,   16 and 17 show the Lagrangian strain tensor components 
UL across the neck section at —— = . 25,   . 30,  and . 35.    The maximum axial 

strain (n,,) is seen to occur at the center.    It is interesting to recall '33 max 0 

that the Bridgman [1] and Davidenkov and Spiridonova [2] analyses were 

based on the assumption that the axial strain at the neck was uniform. 

In the present analysis after the Lagrangian strain components 
i 

are found,  the value of  \   — ,  which was assumed to be close to 1 in order 

i i '^    i i to use the approximation <T 
J = q J

?   was calculated.    The maximum error 
uL 

of this assumption was found to be less than 1. 5% for -=— under . 50. 

The distributions of the physical components of stress,   tr     ,   Tfift, 

and cr    ,  at the neck are shown in Figs.   18a,   19a,  and 20a for 
UL     ZZ 

—— = . 25,   . 30 and . 35,  and the distribution of the effective stress at 

these stages of deformation are shown in Fig.   18b,   19b,  and 20b.    The 
UL analysis showed that for -r— less than . 27,   (or    ) occurs at the 7 L ,j      '      zz max 

center as shown in Fig.   18a,  and for —;— over .27,   (cr     ) moves 6 ' L '      zz'max 

between the center and the peripheral surface as shown in Figs.   19a and 

20a.    The stress distributions shown may be inaccurate at comparatively 

large deformations,   since then cr      does not vanish on the peripheral sur- 

face at the neck.    (The requirement cr      = 0 on the peripheral surface at 

the neck is a natural boundary condition of the variational principle;  to 

impose this condition is beyond the control of the present calculation pro- 

cess.    The error in (r      on the surface can be used as a criterion for rr 

checking the accuracy;  this accuracy can be improved by including more 
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terms in the power expansions in r in the assumed displacements (34) 

and (35). ) The results of the present analysis shew that «r becomes 

negative on the peripheral surface.    However,  these negative values 

for (r      are localized near the peripheral surface only.    Therefore the 
rr ' 

stress distributions obtained may not be too incorrect inside the necked 
uL 

section.    At -;—  - . 50,  the negative value of a      on the surface becomes L ' 6 rr 

about half of (cr     ) ,  and for this reason the calculation was terminated, 
zz max' 

Also shown in Figs.   18,   19 and 20 are the stress distributions 

calculated by the formulas of Bridgman,  and Davidenkov and Spiridonova, 

on the basis of the neck shapes predicted by the present analysis.    These 

stress distributions are given by the formulas 

(1)   Bridgman 

7ro-s(R2 + 2Rp) ln(l + \f) 

!j£ .lie  ,    %   ln R2 + 2R0 - r2 

s s s 2Rp 

(T (T 0- 
zz _ _e .     rr 

cr cr cr 
s s s 

(2)   Davidenkov and Spiridonova 

0" rr- 

S       770-  R2(l + 5^-) 
s      x        4p 

III - IM- / "e ) (R2 - r2) 
^ cr     ~ l cr   '       j-=n s s s 2Rp 

cr cr         a 
zz e .     rr 

o- - cr          cr 
s s          s 
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Here the total load T is calculated by (44),   r is the distance frotr. the 

center, R is the current neck radius, and p is the radius of curvature 

at the neck.    Both R and p were measured from the calculated shapes 

of the tension specimen shown in Fig.   13.    The effective stress cal- 

culated by [1] and [2] are seen to be close to the effective stress calcu- 

lated by the present analyses.    But this seems to be a coincidence since 

the detailed stress and strain distributions of the present analysis were 

not close to those of [1] and [2].    Perhaps it should be emphasized here 

that the above comparison may not be too meaningful,   since the radius 

R and the radius of curvature p at the neck which were required for the 

calculation of the stress distributions given by Refs.  [1] and [2],  were 

provided by the present analysis. 

VII.    Concluding Remarks 

The most significant result of the present analysis is that,  for the 

first time,  the shapes and the deformations of a necked-down tension 

specimen were rationally calculated.    The stress and strain distributions 

in the specimen during its loading history were also found, although the 

numerical results for them are still far from conclusive. 

Some improvements of the numerical technique will be needed for 

the present analysis to obtain more accurate results.    Then,  on the 

basis of the present analysis, the stress and the deformation of a tension 

specimen throughout its loading history can be predicted if the elastic 

constants and the strain-hardening characteristics of a material are 

known.    This will provide knowledge of the stress conditions in a necked- 

down tension specimen before it fractures; thus it perhaps will lead to a 

better understanding of the fracture phenomena in a tension bar,  such 

as the cup-cone type fracture. 
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APPENDIX 

Inversion of the Constitutive Equation 

Since 

and 

ik j ik dtx jl' 

= G., G.-tr     + 2G., ff    fjsl ik   jl ik       'jl     ' 

G.,^ = G..  -^(o-^G..) jk i jk dtN ir 

G-.G.,^1 + ZG.-o^V,     , jk   il jk        'iJ     ' 

equation (10)a can be rewritten as 

f).. =•?[(! + v)(6-klG,.G.1 + <rklG., fj., + o-klG., n.,) " vG..crk] 'ij      E lx M ik   jl ik'jl jk'il' ij  kJ 

.3,1 1  w  kl_    n 1 n     kl^    .   e 
+ ■srl'S"   -TTMO-   G., G., - rrG. .ff    G, ,) — 2XE EM ik   jl     3    ij kr o- 

ri   s i 
We multiply both sides of (45) by G    G J and rearrange it to get 

_rs E     r^.ri^sj. 3,1 1 w_rs      1 ^.rs_kl. 

(45) 

(1 TT){G   G   ^ij-I^ " E)(<r     "3G    *   Si)"} 

L   _v_/-.rs.k      ,  n^sj.      .     si—rj.    . ,.,. + T—r— G     o-    - (o-   G Jn.. + <r    G -"n..)      . (46) 
1 + v k 'ij 'ij 

k k On the right hand side cr    and cr,   are unknowns.    In order to find a, , 

we multiply (45) by G ^ to get 

G1^. 4 [(1 + v)(<rklGkl + 2^) - 3vfrk] 

in which (erklGkl + 2(rklrjkl) " ^^klOkl) = frk •    Rearranging (47) gives 

(47) 
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.k <r.   = •iju 
k " T^Tt G ^ij (48) 

ij Next,  in order to find o- ,  we multiply (10)a by g J and obtain 

3. 1 1 .l\-4Kl + ^+i^-iH-W>^ (49) 

With the use of the relations s. = (r. - -rö.o-      k. = 6". - -rö.fr,   and 
J        J      3   j  k'     j        j      3   j  k 

3   1     i.j = — — a  a-' (T     = 
e 

■5— s.ST,  equation (49) becomes 

ij?.        r 2 1 + v   .  . 1        1 
3     E     +(E;-E)}<re% 

whence 

•        J^ slJf?ii 
""e " o-    ■ 2  1 + v   .  , 1        1 

e   ' 3      E     + ^ Et  " E ) 

(50) 

Note that in (50),   {•=- - •=:) is always positive,   so that the loading condi- 

tion cr    >  0 can be replaced by s1Jrj.. > 0.    Substitution of (48) and (50) 
e ij 

into (46) gives the final form of the inverted constitutive relations 

<r J = A_ /'r.^nJ1 

(1 + v) 
G^GJ n kl 

ij, 1       1 v kl. 
3      SJ(E;-E)8    ^1 .1 

e'S Et     E 

vE  -ij^kl. . ik_jl.       . Jk^il.     . 
(I + v)(l -2v)G   G    \l ■ (<r   G   \l + ^ G   ^kl1 

«rij = TT^". G^GJ1^, + 

if <r   = c   and   slJfj.. * 0 
e 'ij 

vE 
(1 + v) 

 rijrkl. 
kl r (1 + v)(l - 2v) u   u   ''kl 

(«rikGjlf,kl + (T1^11^!) if «re < c, 

ore    = c   and   s ''h.. ^ 0 
e 'ij 
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