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Abstract 

This report discusses the estimation of range to target when range infor- 
mation is unavailable; triangulation methods are used which require two angle 
measuring radars.   Two separate means of estimation are presented:  the dif- 
ferential analysis approach and the incremental analysis. 
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!. Introduction 

ID an environment in which radar range information is not available, 
an estimate of the range to the target can be found by using triangulation methods. 
These require two angle measuring radars separated by a known distance along 
a base line.   The measured angles from the base line to the target and the mea- 
sured distance between the radars can be used to obtain an estimate of the range 
to the target. 

The range estimate found will in general not be exact because of errors 
in the measured quantities.   The range error for given measurement errors it. 
estimated by two separate means.   A differential analysis leads to a range error 
estimate valid when the measurement errors are small.   Assuming that the 
measurement errors are independent Gaussian random variables and using the 
differential analysis lead to a range error variance.   If the errors are not small 
or the range is very large, a more suitable range error estimate is obtained 
from an incremental analysis.   This analysis also leads to validity bounds for 
the differential analysis results. 

2. Range Computation 

The error-free triangulation problem is shown in Figure 1, where: 

d = measured distance between radar sites 

eu 8 2 = measured angles to target 

R = range to be estimated 

r, oj = reference polar coordinates. 

In terms of the measured quantities, the range is given by 

R = d (sin 0 2 ctn 0, + cos 0 2)"
! . (1) 

3. Differential Error Analysis 

For small perturbations in the measured quantities, the perturba- 
tion, p , in the range estimate is given by 

9R.    9R        9R   . 
H     8d      80,       902 

p ' (2) 
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where 

6 - the perturbation of d 

a. = the perturbation of e , 

ß = the perturbation of 02 

The partial derivatives of R are 

9R 
dd 

= (sine cl.n0j+ cos02)-1 

R 
d 

(3) 

8R 
rr = d (sin 0 2 cscfy sin 02 ctn 0, + cos 0 2) "2 

30 

_ R2 sin 0; 
d sin20t 

(4) 

9R 
rr* = d (sin 02 -cos 02 eta e1)   (sin 02 ctn Qx + cos 02) 
90 2 

R2 

= —   (sin 01 - cos 0 2 ctn S,) 
o ' 

(5) 

The error coefficients C,, Clt and C2 are defined as: 

Ld    ad (6) 

c, = 
90, 

°2 - 80, 

The behavior of these error coefficients determines the sensitivity of the range 
calculation to errors in d, 0,, and 02.   Because the angle error coefficients, 
C, and C2, grow as R2 as compared to R for C , they will dominate the range 

error as R becomes large.   For ranges such that — > 5 and for angles off bore- 

sight of I wl < 30 degrees, the coefficients C, and C2 are approximately equal 
and simplify to 

T>2 

(7) 
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In order to show the behavior of C, and C2 as a function of range and angle off 
boresight,  it is convenient to plot Cj/B and C2/B on a polar plot with a normal- 

ly 
ized reference coordinate - replacing r.   In Figures 2 and 3 constant contours 

of Ct/B and C/B are plotted by using the normalized coordinate. 

4. Gaussian Random Errors 

Equation (2) gives the range error as a linear function of the mea- 
surement errors ö, a, and ß. Therefore, if ö, a, and ß are zero mean, inde- 
pendent, Gaussian random variables with respective variances of <r A a 2, and 

0      a 
cr} , then the range error, p, will be a zero mean, random variable with a 

variance given by 

p        dö       l a       * p (8) 

A fractional error variance is defined by dividing a 2 by R2 to get 

e 2 = <T 2/R2 

P        P (9) 

A simple approximate expression for e   can be found when the angle error terms 

dominate the expression in equation (9).   By using equation (7) and assuming 
a   = v0 = ^2 a , 
a       p 

then 

R2tr 
e   et —- 
p      d (10) 

When a   = a. = N/2 a, the fractional error on boresight, where ßj» 02
= 0 > a       ß 

reduces to 

,     *6 e„ --3T +2cr'-T* 
R2 (l+ (sin^ - cosfy)! 

sin2! (11) 

It is easy to show that equation (11) has a minimum atfl = n/4.   When 6 = ir/4 
the distance r along boresight is half the separation distance and the measured 

range is T» .   The fractional error variance reduces to 

-***&#&»&***>***"■ 
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S+4 (12) 

5« Incremental Error Analysis 

In the special case of measuring ranges to targets on boresight, 
dt = 9 2, and equation (1) simplifies to 

R = 
2 cos e 

(on boresight) (13) 

The error estimates in the preceding section predict finite range error (more 
accurately — finite error variances).   But for every large target range the 
angle flj is very close to JT/2 so that even very small positive errors can give a 
measured angle of 7r/2 such that the range estimate and range error become 
infinite.   Therefore, the estimates [equation (8) or (10) ] must be useful only 
on a limited interval.   Estimates of this interval will be obtained by using the 
following incremental error analysis. 

In Figure 4 the effects of incrementing the measured quantities on the 
range estimate are shown. If measurement errors are bounded by the incre- 
ments shown, then the range estimate will be bounded between R       and R   . 

max min 
The "average" error in equation (14) will be used as the range error estimate 
for this analysis 

R R 

aR = 
max nun 

(14) 

As before, it is convenient to define the fractional error, e  , by dividing <j   by 
by the true range, R, to get 

UR 
eR=T 

R R   . 
max -   min 

2R (15) 

In Figures 5 and 6 contours of constant fractional error are plotted for two 
cases.   For Figure 5 the angle increments were a = ß = 0.01 radian and the 
separation increment was 1 percent of the separation with Ö = 0.01 d.   For 
Figure 6 a = ß = 0. 001 radian and ö = 0. 01 d.   Figure 5 illustrates the case 
where the range error becomes infinite. 

; 
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6. Differential and Incremental Errors Compared 

The fractional error, e , from the differential analysis and the 
P 

fractional error, e_, from the incremental analysis give similar results in a 
many cases.   Figure 7 shows e   and e_ along boresight as a function of the 

P K 
normalized range, r/d.   The errors are plotted for the two cases in which the 
variances and increments were as follows: 

Case I Case II 

variances 

a   = \/2 x 10~2 rad 
a 

<jß = \S x 10~2 rad 

^2 x 10~3 rad 

<s/2 x i<r3 rad 

- = N/2 x io-2 

d N/2 x io-2 

increments 

a = 1 x io-2 rad 

ß = 1 x io-2 rad 

- = 1 x io-2 

d 

1 x io"3 rad 

1 x io-3 rad 

1 x io-2 

The straight line portion of the e   curve corresponds to the region in 

which the simplification in equation (10) is valid.   A similar simplification for 
eR is found by letting 6=0 and a = ß = v.   Then along boreright equation 

(15) becomes 

R   _   . (1+ cos 2 0) 
e_ * -   2 sina -——r -r-.  . 

R     d 'cos 2<r+ cos 2 ) 
(16) 

If 0 + cr < 7r/2 and or i3 very small, then 

1 4- cos 29 
cos 2a + cos 0 «1. (17) 

-,,-. ,-. .-v-'--. - ■ 
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and 

sin <r « a ; 

substituting equations (17) and (18) into equation (16) results in 

(18) 

eRÄd20r (19) 

Thus as was illustrated in Figure 7, e  , and e  give similar results for large 
K p 

H/d as long as 0 + a < tr/2. 

7. Error Estimate '.imitations 

The differential analysis would predict that equation (10) and hence 
equation (19) are valid for arbitrarily large R/d.   But as R/d becomes very 
large, the exact value of e_ from equation (16) diverges from the estimate of 

equation (19).   The value of R/d at which this occurs will give an upper limit 
on R/d for which equation (19) is valid.   This limit is also the limit for the 
differential analysis and is found as follows. 

From Figure 8, equation (16) can be written as 

e   e. ^ 2 sina        (sin n cos g + cos ysiny)2 

R    d sin n (sin r\ cos 2cr + cos 77 sin 2a) (20) 

If it is assumed that the a is small and that - is large such that 77 is small, then 

by using the approximation sin x « x, equation (20) becomes 

e   ÄR2(r_ÜL±£L2 

R    d        77(77 + 2cr> (21) 

Equation (21) indicates that equation (19) is valid as long as <j< r\.   Equation 
(21) begins to diverge from equation (19) as <r becomes equal or greater than 

77.   The - corresponding to 77 = a is 

/R\ , sip(r2g) 
x '      cos\ö" °y 

« —      (upper limit on - 1 

(22) 
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For Case I in Figure 7, e_ diverged from e   at about R/d = 25.   This is equal H p 
to the upper limit which would have been predicted by equation (22) by using 
or = 0.01.   Thus, as long as R/d does not exceed the limit given by equation 
(22), the differential error estimates of equation (8) or (10) should be valid. 
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FIGURE 1.     BASIC GEOMETRY 
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FIGURE 2.     NORMALIZED COEFFICIENT C,/R = ~r/B 
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FIGURE 3.    NORMALIZED COEFFICIENT Cj/R = —/R 
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FIGURE 4.     INCREMENTAL ERROR GEOMETRY 
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FIGURE 5.     INCREMENTAL ERROR:   CASE la   = 0. 01 RADIAN 
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FIGURE 6.     INCREMENTAL ERROR:   CASE II a   =0. 001 RADIAN 
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FIGUBE 7.     INCREMENTAL VERSUS DIFFERENTIAL ERROR 
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