FTD-MT-24-451-69

FOREIGN TECHNOLOGY DIVISION

0206203

APPRAISING THE RELIABILITY OF A FINITE AUTOMATON, CONSIDERING ALTERNATING FAILURES

by

G. A. Volovnik

FTD-MT- 24-451-69

EDITED MACHINE TRANSLATION

APPRAISING THE RELIABILITY OF A FINITE AUTOMATON, CONSIDERING ALTERNATING FAILURES

By: G. A. Volovnik

English pages: 9

Source: Avtomatika i Vychislitel'naya Tekhnika (Automation and Computer Technology), 1968, No. 1, pp. 44-49.

This document is a Mark II machine aided translation, post-edited for technical accuracy by: Edwin P. Pentecost.

UR/0000-68-000-001

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-MT- 24-451-60

Date 5 March 19 70

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Blo	ock	Italic	Transliteration	Block	Italic	Transliteration
A		Aa	A, a	PP	Pp	R, r
Б	6	56	B, b	Cc	Cc	S, s
B		B •	V, v	Тт	Tm	T, t
r	Г	Γ .	G, g	Уу	Уу	U, u
Д	Д	Дд	D, d	ΦΦ	Φφ	F, f
E	•	E .	Ye, ye; E, e*	XX	XX	Kh, kh
Ж	ж	ж ж	Zh, zh	Цц	44	Ts, ts
3		3 1	Z, Z	Чч	4 4	Ch, ch
И	H	Ии	I, i	Шш	Ш ш	Sh, sh
Я		Я a	Y, у	Щщ	Щ щ	Shch, shch
K	ĸ	Kĸ	K, k	Ъъ	Ъ ъ	n
Л	Л	ЛА	L, 1	Ыы	Ым	Ү, У
M	H	Мм	M, m	Ьь	ь .	1
Η	H	Нн	N, n	э э	э ,	Е, е
0	0	0 0	0, 0	(d) (c)	10 vo	Yu, yu
Π	п	17 n	P, p	ЯЯ	Яя	Ya, ya

* ye initially, after vowels, and after b, b; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

APPRAISING THE RELIABILITY OF A FINITE AUTOMATON, CONSIDERING ALTERNATING FAILURES

G. A. Volovnik

A Markovian model has been built and a reliability function of a finite automaton has been obtained to the input of which a random sequence of input signals proceeds. The model reflects the connection of the process of functioning of a finite automaton with the process of structural changes which are caused by possible disturbances. Along with stable disturbances, the disturbances which bear an alternating character are considered.

The tendency to more fully reflect, when calculating reliability, the properties of an actual technical device leads to the necessity of studying the largest possible number of factors which determine reliability.

In this article a model of reliability of a finite automaton is proposed, considering the alternating character of failures and the disturbances of the automaton which are connected with it. Such disturbances, existing for some random time, can be self-eliminating (withdrawing). The moments of appearance of failures are also random.

Formulation of the problem. A finite automaton with the assigned structural layout is under the influence of random input signals, the

FTD-MT-24-451-69

law of distribution of which is known. Further, a list is shown of N possible disturbances, characterized by the probabilities of appearance, a_1 , and withdrawal b_1 , $i = (\overline{1, N})$, which do not depend on the cycle number.

We desire the function of reliability P(n) of the finite automaton for an arbitrary number of cycles n of its work and a number of other reliability characteristics, if the initial state of the automaton is known when n = 0. The function of reliability P(n) of a finite automaton is defined as the probability of correct (for n cycles) functioning of the finite automaton under the condition that on each of the n cycles in the automaton there can exist any complex of the considered disturbances [1]. Correct functioning of the finite automaton with disturbances corresponds to the requirement of fulfillment of such transitions, which are accomplished in a completely properly operating automaton with a coinciding sequence of input signals.

In the article we also make the following assumptions:

the work of the automaton is synchronous by cycles, i.e., the input signals are sent in equal time intervals;

the probability distribution of input signals does not depend on the number of cycles;

separate disturbances are independent;

the disturbances do not take the finite automaton beyond the limits of the structural alphabet;

the moments of appearance and withdrawal of disturbances coincide with the moments of reading of cycles.

Under these assumptions, for solving the problem at hand it is possible to use an apparatus of Markov chains. Below, Markov models of the process of structural changes, caused by the appearance and

withdrawal of disturbances, and also process of correct functioning will be obtained. Then a general Markov reliability model of the finite automation will be built, combining both processes.

<u>The processes of structural changes</u>. For a description of the process of structural changes let us determine the phase space of the states of the finite automaton $E = \{e\}$ by the criterion of the presence of disturbances in it. Let us carry out ordering of all the possible disturbances, allotting to them numbers from one to N. The state can be characterized by the set of numbers of disturbances which are present in the finite automaton, not distinguishing the sequence in which these disturbances appeared. If the state of the finite automaton with a defined complex of s, $s = (\overline{1, N})$ disturbances is designated by $e(1_1i_2...i_s)$ then in this designation, consequently, any transposition of indices i_r , $i_r = (\overline{1, N})$, which indicate the number of disturbances, is permissible. For a state of total good operating order the designations e_0 are used. Obviously, the total amount of states will be expressed by the number $l = 2^N$.

A change of the state thus introduced, which we will call the structural state of the finite automaton, is caused by the appearance and withdrawal of one or several disturbances in any combination. According to condition, these changes can occur in discrete instants at an interval, equal to cycle duration. In the presence of constant and independent probabilities of the appearance of a_i and withdrawal b_i , $i = (\overline{1, N})$ of disturbances, the sequence of states in time will form a uniform Markov chain. Elements r_{ij} , i, $j = (\overline{1, \ell})$ of the matrix of probabilities of transition R, for the obtained chain, are determined by the products of characteristics a_i and b_i , pertaining to those disturbances, with which the transition is connected of the finite automaton from structural state e_i to structural state e_i , $e \in E$.

Considering the smallness of values a, and b,, it is possible with sufficient basis to disregard the possibility of realizing in one cycle the events which are connected with two or more disturbances, as well as with the possibility of appearance and withdrawal of one disturbance in the same cycle. Under such condition matrix R is essentially simplified. As an illustration let us record the matrix of probabilities of transition, describing the process of structural changes in a finite automaton for the case N = 3:

where

$$b_{0} = \sum_{i_{r}=1}^{3} a_{i_{r}}; \quad b_{i_{1}} = \sum_{i_{r}=1}^{3} a_{i_{r}} - a_{i_{1}} + b_{i_{1}}, \quad i_{1} = 1, 2, 3;$$

$$b_{i_{1}i_{2}} = \sum_{i_{r}=1}^{3} b_{i_{r}} - b_{i_{0}} + a_{i_{0}}, \quad i_{1}, i_{2}, i_{3} = 1, 2, 3;$$

$$b_{123} = \sum_{i_{r}=1}^{3} b_{i_{r}}.$$
(1")

The process of correct functioning of the finite automaton. Let us assume that a set of signals, determining the functional state of a finite automaton, includes input, internal, and output signals. Then the functioning of a finite automaton can be represented by transitions according to functional states $u \in U$, where U - finite set.

During a random flow of signals at the input, a change of states of a finite automaton in the multitude of functional states U bears

a random character. To each transition of automaton from state u_i to state u_j the probability q_{ij} can be ascribed, which is established by probabilistic distribution of the input signals. The introduction of a matrix of probabilities of transition $Q = ||q_{ij}||$, i, $j = (\overline{1, k})$, where k is the number of functional states, determines the process of functioning as a uniform Markov chain [2].

The appearance of a disturbance in a finite automaton in general changes its law of functioning. However, in realizing a favorable sequence of input signals, action of these disturbances can appear in an arbitrarily prolonged time, since in a finite automaton the same transitions will occur as in a properly working automaton. The correct functioning of a finite automaton with disturbances can be described by a matrix order k, which is a modification of matrix Q. We will designate this matrix through $Q_{12}^{(1)} = Q_{12}^{(1)} = Q_{12}^{(1)}$

 $||q_{ij}|_{2} \cdots ||q_{ij}||$, if in the finite automaton a complex of disturbances of the type $(i_1 i_2 \cdots i_s)$ was formed. (For matrix Q, an equivalent designation in this plan will be $Q^{(0)} = ||q_{ij}||$.) According to the definition of correct functioning of a finite automaton with disturbances, for the formation of matrix

 $Q^{(i_1i_2\cdots i_s)}$ one should make those elements $q_{ij}^{(0)}$ in matrix $Q^{(0)}$, which correspond to the transitions not preserved in an automaton with disturbances, equal to zero. The transitions accomplished in an automaton with disturbances, like in a properly working automaton, have coinciding elements of matrices

 $Q^{(1_1 1_2 \cdots 1_s)}$ and $Q^{(0)}$.

¹In source [1], for a description of the functioning of a finite automaton with disturbances a stochastic matrix of order k + 1 is used, in which state (k + 1) is defined as a state of failure.

Let us move on directly to the construction of a model of reliability of the finite automaton, considering the interaction of the process of functioning of an automaton with the process of structural changes.

<u>A Markov model of reliability of a finite automaton</u>. Let us introduce the full set of states of finite automaton M as the direct product of the phase space of structural states E and the set of functional states U, i.e., $M = E \times U$, the elements of which are the pairs m = (e, u), where $e \in E$ and $u \in U$. In conformity with the building of phase space E, set M is also split into nonintersecting subsets $M_0 = \{e_0, U\}$ and $M_{i_1i_2\cdots i_s} = \{e_{i_1i_2\cdots i_s}, \dots, e_{i_li_l}\}$

U}, s = (1, N).

In examining the rules of correct functioning of a finite automaton according to the states of set M, which are reflected by matrices $Q^{(0)}$ and $Q^{(1)}_{12}^{(2)}_{12}^{(1)}_{12}^{(2)}_{12}^{(1)}_{12}^{(2)}_{12}^{(1)}_{12}^{(2)}_{12}^{($

		Mo	M_1	M_2	M ₃	M ₁₂	
	Mo II	$(1 - \delta_0) Q^{(0)}$	$a_1Q^{(0)}$	a2Q(0)	a3Q(0)	0	
	M ₁	b1Q(1)	$(1-\delta_1)Q^{(1)}$	0	0	a2Q(1)	
•	M2	b2Q(2)	0	$(1 - \delta_2) Q^{(2)}$	0	a1Q(2)	
	M ₃	b3Q(3)	0	0	$(1-\delta_3)Q^{(3)}$	0	(2)
T =	M12	0	b2Q(12)	b1Q(12)	0	$(1-\delta_{12})Q^{(12)} \rightarrow$	(2)
	M13	0	b3Q(13)	0	61Q(13)	0	
	M23	0	0	b3Q(23)	b2Q(23)	0	
	M123	0	0	0	0	b3Q(123)	
-	M or "	. 0	0	0	0	0	

•	M13	M23	M123	MOTK
	0	0	0	0
	a ₃ Q ⁽¹⁾	0	0	D_1
	0	a3Q(2)	, 0	D_2
	a1Q(3)	$a_2Q^{(3)}$	0	D3
-	0	0	a3Q(12)	D12
	(1-013)Q(13)	0	a2Q(13)	D13
	0	$(1 - \delta_{23}) Q^{(23)}$	a1Q(23)	D23
	b2Q(123)	b1Q(123)	(1-0123)Q(123)	D123
	0	0	0	1

(2 Cont'd)

The unit-matrices $D_{i_1i_2\cdots i_s}$, $s = (\overline{1, N})$ are matrices-columns of the order k (k - the number of functional states of a finite automaton), the elements of which are found from the condition of stochasticity of the matrix of probabilities of transition T. The last line of matrix T is composed of null matrices-lines and element $T_{i+1,l+1} = 1$, which determines the state of failure M_{OTH} as being absorbing.

The function of reliability of a finite automaton for n cycles can be expressed as

$$P(n) = \sum_{m \in M} P_m(n), \qquad (3)$$

where $P_m(n)$ - the probability of correct (for n cycles) functioning of finite automaton under the condition that in each of the n cycles any complex of the considered disturbances can exist, and in the n-th cycle automaton is in state m.

For finding the probability distribution $P_m(n)$ for the n-th cycle, characterized by a (lk + 1)-dimensional vector $P_m(n)$, it is necessary to solve a system of difference equations, using, for instance, the method of a discrete Laplace transform [3]. If one were to designate the image of vector $P_m(n)$ by $P_m(z)$, we will obtain

$$P_m(z) = -P_m(0)z[T-zV]^{-1}, \qquad (4)$$

where $P_m(0)$ - the vector of initial probability distribution of states; z - the variable of transform; V - the unit matrix; $[T - zV]^{-1}$ - the matrix, inverse to matrix [T - zV].

The function of reliability of a finite automaton, according to formula (3), will be obtained by adding all the components of vector $P_m(n)$, except the last, equal to failure probability. By grouping the components of vector $P_m(n)$ in a certain way, it is possible to separate the individual components of reliability function. Thus, for example, the probability of unfailing work of a finite automaton for n cycles in the presence in it of disturbances with numbers i_1, i_2, \ldots, i_s , regardless of the order of their appearance, is equal to

$$P^{(l_1 l_2 \dots l_d)}(n) = \sum_{m \in M_{l_1} l_2 \dots l_d} P_m(n), \qquad (5)$$

and the probability of unfailing work of a finite automaton for cycles in the presence in it of any s disturbances

$$P^{(a)}(n) = \sum_{\substack{(i_1, i_2, \dots, i_n)}} P^{(i_1 i_2, \dots, i_n)}(n), \qquad (6)$$

where summation is conducted on all sets $(i_1, i_2, ..., i_s)$, distinguished by subscripts designating the number of disturbances.

Let us note that in the case of showing the matrix of probabilities of transition T in form (2), it is assumed that a change in the logical structure can take place starting with n = 1, i.e., from the second cycle. In order to consider the possibility of changes in the structure from the first cycle, the matrix of probabilities of transition must be modified in the following way:

		Mo	M	M2	Ma	MIZ	
	Mo	(1-do)Q(0)	a,Q(1)	a2Q(2)	a,Q(3)	0	
	M	6,Q(0)	(1-01)Q(1)	0	0	a2Q(12)	
	Ma	62Q(0)	0	(1-02)Q(2)	0	a,Q(13)	
	M,	63Q(0)	0	0	(1-da)Q10	0	
T'-	M12	0	62Q(1)	6,Q(2)	0	(1- 612) Q(12) .	+
	MIS	0	62Q(1)	0	6,Q(0)	0	
	Maa	0	0.	63Q(2)	62Q(3) .	0	
	M120	0	0	0	0	63Q(12)	
	Merte	0	0	0	0	0	
		Mia	M23	M11	a Mor		
		0	0	0	0	-	
		a.O(13)	0	0	D'		
		434	a,0(2	s) 0	D's		
		a. O(13)	a2012	0 (6	D's		
			0	azQ	123) · D'	2.	(7)
		(1-1)()(13) 0	a2QC	123) D'	3	
		(1-013)4	(1-0-1)	Q(23) a,Q(123) D'	13	
		5-O(13)	b.0(2	3) (1-012	Q(123) D'	23	
		0	0	0	1		

Using the properties of a discrete transform, let us find the average number of cycles of proper work of the finite automaton

 $n_{\rm cp} = P(z)|_{z=1},$

(8)

where P(z) - the depiction of the function of reliability P(n).

For those of the considered (during the calculation of reliability) disturbances, which cannot be removed or which bear a stable character and do not possess the ability of self-restoration during work, one should make $b_1 = 0$.

The author expresses his gratitude to A. N. Sklyarevich for formulating the problem and for his useful counsel during work on this article.

FTD-MT-24-451-69

Bibliography

 Sklyarevich A. N. Furktsiya nadezhnosti konechnogo avtomata (Reliability function of a finite automaton). - Avtomatika i vychislitel'naya tekhnika; 1967, 3.

2. Tsertsvadze G. N. Stokhasticheskiye avtomaty i zadacha postroyeniya nadezhnykh avtomatov iz nenadezhnykh elementov (Stochastic automata and the problem of constructing reliable automata from unreliable elements). - Avtomatika i telemekhanika, 1964, 25, 2.

3. Tsypkin Ya. Z. Teoriya lineynykh impul'snykh sistem (Theory of linear pulse systems). Fizmatgiz, M., 1963.

Submitted 2 June 1967

(iteration elevation of stills hade at shares	MENT CONTROL DATA - R & D				
ORIGINATING ACTIVITY (Corporate suther)	DA. REPORT SECURITY CLASSIFICATION				
Air Force Sustana Company	UNCLASSIFIED				
U. S. Air Force					
ABPOAT TITLE					
APPRAISING THE RELIABILITY ALTERNATING FAILURES	OF A FINITE AUTOMATON, CONSIDERING				
DESCRIPTIVE NOTES (Type of report and inclusive d	le le a				
AUTHORIES (First name, middle initial, last name)					
Volovnik, G. A.					
REPORT DATE	74. TOTAL NO. OF PASES 75. NO. OF REFS				
January-February 1968	10 3				
CONTRACT OR GRANT NO.	M. ORIGINATOR'S REPORT NUMBER(S)				
- PROJECT NO. 6050202					
	FTD-MT-24-451-69				
	Sb. C"HER REPORT NO(8) (Any other numbers that may be assigned this report)				
DTA TASK NO TER-05-09					
DIA TABA NO. 100-00-02					
	Foreign Technology Division Wright-Patterson AFB, Ohio				
ABSTRACT	Wright-Patterson AFB, Ohio				
A Markovian model has been finite automaton has been of sequence of input signals p tion of the process of func process of structural chang bances. Along with stable bear an alternating charact	Wright-Patterson AFB, Ohio built and a reliability function of a obtained to the input of which a random proceeds. The model reflects the connec- ctioning of a finite automaton with the ges which are caused by possible distur- disturbances, the disturbances which ter are considered.				
A Markovian model has been finite automaton has been of sequence of input signals p tion of the process of func process of structural chang bances. Along with stable bear an alternating charact	Wright-Patterson AFB, Ohio built and a reliability function of a obtained to the input of which a random proceeds. The model reflects the connec- ctioning of a finite automaton with the ges which are caused by possible distur- disturbances, the disturbances which ter are considered.				

۰.

..

UNCLASSIFIED

KEY WORDS	LIN	K A	Lin		LIN	* *
	AOLE	••	ROLE		ROLE	-
Finite Automaton						
MARKOV Process	1	a 1				
and an					E 1	
						ł –
		1				
· · · · · · · · · · · · · · · · · · ·						2
and a second		1				
					- 1	
			ć - 1		1	
And the second						
and the second state and the second state of t	100	. –				
			= 1			
					5 B	
	10 m				1	
•						
				1		
				14		
	-					
		-				
		INC	LASST	RTED		
the second s		Security	Classific	stion		

.