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ABSTRACT

In this report, the exact solution for the electromagnetic field
diffracted by a perfectly conducting plane angular sector is determined.
The problem is a three-dimensional vector problem and the solution is

4L- presented in the form of a dyadic Green's function, which is the most
general form of solution possible. Thus the vector fields as well as
the current on the sector may be determined for any given source exci-
tation.

The corner angle of the plane angular sector is arbitrary, varying

between zero and ff. Special cases of the plane angular sector are the
half plane and the quarter plane. To find the fields for larger angles,
such as at the corner of an aperture, Babinet's principle can be used.

The dyadic Green's function is composed of vector wave functions,
which in turn are composed of scalar wave functions, The problem is
solved in a sphero-conal coordinate system. In this system, the plane
angular sector is one of the coordinate surfaces, so that the separation
of variables Lechnique is used to find the scalar wave functions. They
consist of spherical Bessel-s functions and Lam functions. The Lame

functions are solutions of two coupled differential equations. These
equations are solved for the special case of a quarter plane scatterer.

The first 192 eigenvalues and eigenfunctions are computed and tabulated.

The fields and currents close to the tip of the quarter plane are
presented. These fields and currents have been the subject of much
conjecture by several authors. It is shown that the dominant field
behaves as rV- -, where the lowest value of the eigenvalue v is 0.296.
The far fields for infinitesimal dipole sources very close to the tip are
also determined and several patterns are presented.

As with any exact solution of a complex problem, the results are
not simple. It is felt, however, that the exact solution obtained here
lays the foundation for subsequent work. For instance, it should be
possible to use this work to determine an asymptotic approximation and
thus derive a "diffraction coefficient" for the tip. This would be very
useful in Keller's "Geometrical Theory of Diffraction." Without any
additional work, there are sufficient numerical results presented in this
report to determine the fields within approximately one wavelength of
the tip for any source, or the fields everywhere for a source within one
wavelength of the tip.
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CHAPTER I

INTRODUCTION

The primary purpose of this work is to determine the exact solution

for the electromagnetic field scattered by a perfectly conducting plane

angular sector. A plane angular sector is the section of an infinite

plane bounded by two interesting straight edges which terminate at a

corner. This is a three-dimensional vector problem, so the final solu-

tion is in the form of a dyadic Green's function. The physical config-

uration is shown in Figure 1. The corner angle is arbitrary in the

range zero to H. For larger corner angles, such as the corner of an

aperture, Babinet's principle can be used to obtain the fields dif-

fracted by the complementary structure.

Diffraction by objects with edges, corners, tips, etc., has occu-

pied the attention of several authors.* The classical case is the half-

plane, which was solved by Sommerfeld, and has since been studied by

many authors. * The problem considered here is more general, the half-

plane being a special case of the plane angular sector. The solution

near the corner, or tip, is of primary interest in the angular sector

problem. A half-plane edge is a discontinuity in the scattering sur-

face since the normal to the surfa.e cannot be defined. A tangent can

be defined, however. The corner of a plane angUlar sector is a "double"

discontinuity si.nce even the tangent cannot be defined there.

*For extensive bibliographies, ee Reference 17, Ch. 12, and Reference 19.
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Several authors [2., 2, 3, 4, 5] have considered the field varia-

tion at this "double" discontinuity and have made conjectures based on

approximations and physical reasoning. Two of these cases are compared

with the exact solution in Chapter 6. The effect of the corner on the

far field is also of interest. By using the well known asymptotic

solution of the edge diffraction problem, and the reflection from a

plane, it should be possible to identify a "diffraction coefficient"

for the tip. This has not been done in this work; however, it is felt

that the exact solution presented here is a good starting poifit for

such an endeavor.

As far as the authors could determine, there is no published work

on the electromagnetic diffraction by a plane angular sector. The

scalar problem has been solved by Kraus [1], Radlow [2], and Kraus and

Levine [6]. Raclow has considered the problem of the diffraction of a

scalar plane wave by a quarter plane. He determined a two variable

integral representation of the scattered field. Using a generalization,

or extension, of the classical one variable Wiener-Hopf method, he thon

found the transform solution that forces the total field to zero on the

quarter plane. It should be emphasized that his scalar solution is not

applicable to the electromagnetic case.

Kraus has approached the problem from another point of view. In

his dissertation he developed a "uniformized" sphero-conal coordinate

system, and determined a scalar Green's function in this coordinate

system. His scattering body is a plane angular sector which is a

degenerate case of one of the elliptic cone coordinate surfaces. An



eigenfunction expansion was used to determine the Green's function for

both the bard and soft boundary conditions on the sector. The angular
/

functions in the eigen'unction expansion are called Lame functions and

are solutions of two coupled Lame equations. The first eigenvalue of

these equations for both boundary conditions was determined approxi-

mately for several sector angles.

The article by Kraus and L3vine was published several years later.

It contains some refinement of the problem and the general solution for

an elliptic cone scattering body; no numerical results were presented.

The "uniformized" sphero-conal coordinate system is used in this

paper to solve the vector problem. This is one of the six coordinate

systems in which the vector wave equation is separable. The coupled

Lame equations which occur are solved in this paper for the special

case of the quarter plane. The Lame functions are a very general class

of functions. They depend on an ellipticity parameter and two eigen-

values. As the ellipticity goes to one and the elliptic cones become
/

circular cones, the Lame functions reduce to Legendre functions and

trigonometric functions. For other limiting values of the ellipticity

and the eigenvalues, they become Tchebycheff polynomials and Mathieu

functions.

This report has been organized in the same order as the problem

was solved. In order to determine the dyadic Green's function, it is

necessary to have a complete set of vector wave functions, and in

order to have a complete set of vector wave functions for this problem,

two complete sets of scalar wave functions are needed. Before the
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scalar wave functions car. be determined, it is necessary to understand

the coordinate system.

Consequently, this report begins with a discussion of the sphero-

conal coordinate system in Chapter 2. The peculiarities of the coordi-

nate system are discussed and the effect of these peculiarities on the

scalar wave functions is discussed.

In Chapter 3 the scalar wave equation for this coordinate system

is presented and then separated into the spherical Bessel's equation

and the coupled Lame equations. The boundary conditions are examined

and the problem is separated into four different boundary value prob-

lems. The method for solving these problems is discussed and then the

first 192 eigenvalues and eigenfunctions are determined for the quarter

plane.

The vector wave funntions are determined in Chapter 4, and in

Chapter 5 the dyadic Green's function is derived. Since the vector

wave functions are a new set of functions, it is necessary to investi-

gate them in some detail. in order to determine the dyadic Green's func-

tion. This investigation is chiefly concerned with orthogonality pro-

perties and normalization. A suggestion concerning normalization of

the Lame functions is P-lso included in Chapter 5.

Some numerical results for the fields diffracted by and the cur-

rents on a quarter plane are presented in Chapter 6. The dominant

behavior of the fields and current near the tip and along the edges

is examined. This is done for both an infinitesimal dipole and a

plane wave source. The far field due to an infinitesimal dipole very
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close to the tip is also discussed and some patterns are presented.

The appendices are all connected with Chapter 3. Appendix A

includes a discussion of some of the self-adjoint properties of the

scalar wave equation. Appendices B and C describe the calculation of

the eigenvalues and eigenfunctions in detail, and Appendix D describes

another approach for calculating the eigenvalues and eigenfunctions.

I'



CHAPTER II

COORDINATE SYSTEM

This chapter contains a description of the coordinate system and

its peculiarities, and the effect of these peculiarities on solutions

of the wave equation.

Description of the Coordinate System

The uniformized sphero-conal coordinate system (r,e,e) [1,6] is

introduced by the following coordinate transformation:

x = r cos e l-k' a cos 2 c (2.1a)

y = r sinesn s (2.1b)

z = r cos cpi1-k2 cos a  (2.1c)

where

k' 2 =1-k 2, 0< k2 < 1

o< e< n

r>O

and x, y, and z are the usual Cartesian coordinates.

It is derived from the standard sphero-conal system in the follow-

ing manner.

Consider

r2 = x2 +y 2 + z2 (2.2a)
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--+ y2 z - 0 (2.2b)
[1 2 -22

- 0 (2.2c)
v2 b 2 -v 2  c 2 _v 2

and the inverse transformation

x- riv (2.3a)
bc

y =(2.3b)

z r c2_ 2 jV 2  (2.3c)

where

0 2< 0

b2 < 12 < C2

The surfaces r, V, and v are mentioned by Morse and Feshbach [7),

Byerly [8), Moon and Spencer [9], and several other authors under the

heading of conical coordinates.

In general, the surfaces r, V, and v intersect at eight points,

which introduces an eight fold ambiguity in fixing a point in space. In

order to achieve a one to one correspondence between (x, y, z) and

(r, i, v), the variables e and p, and the parameter k are used. They

are defined so that

cos e= v/b 0 < e I (2.4a)

sin p 22 0< 211 (2.4b)

€-
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k = b/c (2.4c)

In terms of the new variables, equations (2.3) become equations (2.1).

For a more detailed discussion of this "uniformization", see Kraus and

Levine [I,'6].

The surface e = el is an elliptic cone with its axis the x axis

and its tip at the origin. (See Figure 2). The angle between the x

axis and the surface of the cone in the z = 0 plane is el. The angle

be'mween the x axis and the line passing through the origin and one of

the foci of the ellipse in the .y = 0 plane at the plane x = constant is

given .y e and is related to k by

k2 2 2 (2.5)
1 + tan E Cos2 el

Note that for e = 0, the surface is a plane angular sector in the

y = 0 plane, centered around the positive x axis. For e = 11/2, it is

the entire x = 0 plane. For e = ii, it is again a plane angular sector

in the y = 0 plane, but it is centered around the negative x axis.

When = II, e is the semi-angle of the angular sector, and

k 1+ = cos 2  . (2.6)1 + tan 2 E

Thus, 0 = H, k2 = 1/2 corresponds to the quarter plane shown in Figure 3.

The quarter plane lies in the y = 0 plane and is symmetric around the

negative x axis. The corner angle is H/2. When k2 = 0, c = ./2, the

corner angle becomes 11, and the plane angular sector is a half plane.

When k2 = 1 ) = 0, and the plane angular sector reduces to the nega-

tive x axis.
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Note that for k2 = 1 the surface e = e, is a right circular cone.

Actually for this value of k2 the coordinate system becomes the familiar

spherical coordinate system.

Now consider the elliptic half cone sketched in solid lines in

Figure 4; it is the surface cp = (pl. The surfaces PL and 2H - (PI com-

pose a complete elliptic cone with its axis the z axis. Its character-

istics are described in the same manner as the e = el surface "sing the

parameter k'2 . For T = 0, the surface is a plane angular sector in the

y = 0 plane, centered around the z axis. For p = ]T/2, it is the half

plane z = 0, y 0. For cp = H, it is again a plane angular sector in

the y = 0 plane, centered around the negative z axis. For cp = 311/2,

it is the half plane z = O, y : 0, and for c = 211, it coincides with

the cp = 0 surface.

The intersection of 0 = el and p = cPi is a line in the r direction.

The intersection of this line with the sphere r = r, yields the point

(rj: el, cpa) as shown in Figure 5.

From equations (2.1) the unit vectors and metric coefficients are

determined using standard techniques.

(2.7a)
r r r

= - sin e4l-k2 cos 2 e 4l-k' 2 cod 2 .

4k2 sin 2 e + k'2 sin2 C

+ cos e sin 2 41-k 2 cos 2 e (2.7b)
ik 2 sin 2 e + k'2 sin2 p

+ k2 cos e 3in Q cos p

!k2 sin 2 + k'2 sin2 P
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k'2 cos e cos cp sinp 1

+ e cos y-i cosy (2.7c)2^

4k' sin2 e + k'2 sine

sin pl41-k 2 cos e Al-k' 2 cos e 2

.k2e ine + k 2 sin2 .p

The vectors r, 6, e form a right-handed orthogonal system with each

vector pointing in the direction of the increasing coordinate. (See

Figure 5.)

The metric coefficients are

hr 1 (2.8a)

he - r -k2 sin 2 e + k'2 sin2  (2.8b)
hlk (cos8e)

h T r 4k sin 2 e + k?2 sin2 C (2.8c)

T1-k'2 cos2 p

Using equations (2.8), the gradient operator is

r +  * 1 k cos e _

T r k 2 sin2 e + k,2 sin 2 CP p (2.9)
^ 4l.-k' ecosa __5+ C

r fk2 sin2 e + k' 2 sin 2 ( 6P

and the Laplacian is

V-- 1 r

rek _ _n _ _+ e2 e (si2  s) e1
r 2(k 2 sin~ 2e + k 2 sin 2 CP)e

+ i1-k 2 COY- J~ COS Cp (2.10)



The Effect of Peculiarities of the Coordinate

System on Solutions of the Wave Equation

From the description of the p coordinate surface in the previous

section, it is seen that the variable c is periodic with period 211.

Thus in the absence of any physical boundaries in the cp direction it is

necessary that solutions, *(r, e, cp), of the wrve equation satisfy the

following periodicity condition.

*(r,e,p) = *(r,ep + 2H) (2.11)

This is the same condition that occurs in cylindrical and spherical

coordinate systems; it is a necessary condition if the solution is to

be a single-valued function of cp.

Now consider the y = 0 plane. (See Figure 6). It is divided into

four sectors which are the surfaces e = 0, e = 1i, (p = 0,211, and (p = IT.

The cp = 11 surface is regular and presents no difficulties. The (p = 0,211

surface is described in two different ways, but this is taken care of

by the periodicity requirement just discussed. The e = 1 surface is the

scattering body, and will have boundary conditions prescribed by the

nature of the physical problem. The e = 0 surface is a singular coordi-

nate surface. A point on it is described in two different ways depend-

ing on whether the surface is approached from above or below. For

y = 0+, a point is described by (r,O,p). For y = 0-, the same point is

given by (r,0,211-cp). At (rOp), e = y, and 4 has a negative z compo-

nent. At (r,O,2-cp), -=y, and ( has a component in the positive z

irection. This is easily seen by observing that the unit vectors
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Fig. 6. Surfaces in, the y=O plane
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point in the direction of the increasing coordinate. It is also evident

from equations (2.7).

In order to have continuous scalar fields, it is necessary that

*(r,e,cP) and V*(r,O,p) be continuous. For continuity of i(r,9,t) on

the e = 0 surface.

*(r,OT ) = *(r.0,211 - (p) (2.12)

Using the periodicity in tp, this can be written

4(r,O,q) = *(r,O, - p) (2.13)

Inspection of equation (2.9) indicates that the following two equations

must be satisfied for the gradient to be continuous at e = 0.

(r,O,p) = _ 8 (r,O, - p) (2.14)

8_1 (r,O,p) = - (r,0, - p) (2.15)

Equation (2.15) is a necessary consequence of equation (2.13), so it is

not an independent equation.

Next consider the four lines described by (e = i1, cp = 0, 211),

(e = 1, p = H), (e = 0, p = O, 211), and (e = 0, cp = H). The two lines

bordering e = 1[ are part of the scattering surface and will have bound-

ary conditions prescribed by the physical problem. Consider the line

(e = 0, (p = 0). On the p =0 surface, c = y and 6 is in the y = 0

plane. On the e = 0 surface =yand is in the y = 0 plane. In

order to have a continuous gradient at the line (e = 0, P = 0), it is
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necessary that various components of the gradient behave properly as

the line is approached from different directions. For example, con-

sider the component of the gradient which is perpendicular to the

y = 0 plane. On the e = 0 surface, it is given by V4 6. On the

p= 0 surface it is given by V p. As the line (= 0, O) is

approached, it is necessary that

lim V*• = lim V* •

0 -4o+  0+  (2.16)

(P 0 0=

Kraus and Levine have investigated all of the necessary conditions on

the components of the gradient and have determined that they are auto-

matically satisfied for solutions of the wave equation. For details on

this rather ingenious derivation, see their paper [6].

To summarize, Lhe "boundary conditions" imposed by the coordinate

system are given by equations (2.11), (2.13), and (2.14).

(r,e,p) = *(r,e,cp + 211) (2.11)

*(r,O, p) = (r,O, - p) (2.13)

(r,O, p) = - 6 (r,O, - cp) (2.14)e
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CHAPTER III

SOLUTION OF THE SCALAR 1VAVE EQUATION

This chapter contains a description of the scalar problem and the

separation of the scalar wave equation into a spherical Bessel's

equation and two coupled Lame equations. The angular boundary values

are discussed and it is seen that the Lame problem can be decomposed

into four boundary value problems, the solutions of which comprise

two complete sets of functions. Each of these four problems is dis-

cussed in detail and then the solutions are tabulated.

Description of the Problem

As mentioned earlier, the primary purpose of this report is to

determine a dyadic Green's function for the plane angular sector. In

order to do this, solutions of the vector wave equation are needed,

and in order to solve the vector wave equation, solutions of the

scalar wave equation are needed. The solution of the scalar wave

equation is described in this chapter.

The scalar wave equation is

(V2 + K2 ) 4(r,O,4) = 0 (3.1)

where K is the usual wave number. Using the expression for V2

(equation 2.10) in the sphero-conal coordinate syster this becomes

20
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r2(a ,2r)) + rI- 2 sin2 6 + , 2 sin2 4) (3.2)

' l1 k2 co2 e 11: i k2 c052 e 0:11

r2 __1oscs22

+ [s2 , C11 - k'2 cos2 * - + K = 0

Using standard separation of variables techniques, the solution is

written as

C(r,e, ) =R(r) e)(6) f( ) (3.3)

and substituted into equation (3.2) which separates into

d (r2 d-r + (K2 r2 - v (v+l)) R = 0 (3.L)

and

[i I 2 2O 28CS 6

1( k - C2 c os2l k (o4)) (3.5)
+,-k 2 C 2 . 2 1~w cOs24).o

+ v (v+l) (k2 sin 2 6 + k'2 sin2 ) e4 = 0

Equation (3.4) is the spherical Bessel equation with solutions

iv (rr)= (Kr) (3.6a)

R(r) =

h(2) (Kr) - H(2 (Kr) (3.6b)
V2'r v+l/2 (r

The e+ji)t time convention is used here and thus h 2)(Kr) represents

a wave that is propagating away from the coordinate source. The

order of the Bessel function, v, is determined from equation (3.5) and

the boundary conditions on e and 6.
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Before taking a closer look at equation (3.5), the restrictions

imposed by the coordinate system "boundary conditions" will be

investigated. From equation (2.11)

()= 4(0 + 2,r) (3.7)

From equation (2.13)

e(o) t(f) = e(o) '(-) (3.8)

From equation (2.14)

e,(o) t(o) = -E'(o) s(-O) (3.9)

To see what the last two conditions mean, separate the functions

e(0) and *(o) into even and odd parts. Since e is restricted in

the range 0 < 0 < ff, the terms even and odd here simply mean that

0;(0) = 0 and eo(O) = 0.

O(e) = ee(0) + eo(e) (3.1oa)

4(4) = -e() + so(o) (3.10b)

Using equations (3.10) and the properties of even and odd functions,

equation (3.8) can be written

ee(0) Ie(f) + ee(o) eo(4) = e(o) e( ) - Oe(O) 4o() • (3.11)

This can be satisfied if

o = 0, i.e. 0(0) is even (3.12)

or if

Oe(O) = 0 (3.13)
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This last condition, along with the fact that 0' (0) = 0, implies

that 0e (8) 0- Thus equation (3.13) implies that

e0) is odd . (3.1h)

Using equations (3.10) and the properties of even and odd functions,

equation (3.9) can be written

I;(0) Oe) + e (0) o : - 00(0) ce(O) + 00(0) to() • (3.15)

This can be satisfied if

€e() = 0, i.e. €(€) is odd (3.16)

or if

0 0(0) = 0 . (3.17)

This last condition, along with the fact that 0o(0) = 0, implies

that 00(e) = 0. Thus equation (3.17) implies that

0(0) is even . (3.18)

In summary, equation (3.8) can be satisfied if 4(4) is even or if

0(0) is odd. Equation (3.9) can be satisfied if ¢( ) is odd or if

0(0) is even. The only non-trivial combination of these conditions

is both 0(0) and 4(,) even or both 0(0) and 4() odd. Thus the

coordinate imposed "boundary conditions" require the solution of

equation (3.5) to be written in the form

Ce(e) e(O)
O(O) ¢€) = (3.19)

E)0(0) o( )

w with €e(F) and €o(€) periodic with period 2P.
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The physical boundary conditions are imposed at the plane angular

sector and will be -inditions on 0(0) since the plane angular sector

is described by e = n. It will be seen in the next chapter that the

solution to the vector problem requires both Dirichlet and Neumann

scalar solutions; that is, two types of 0(0) functions are needed,

those that satisfy 0() = 0, and those that satisfy 0'(w) = 0.

To completely specify the problem, it is necessary to normalize

the functions. A convenicnt normalization is accomplished by setting

Oe(O) = $e(0) = 1 (3.20a)

and
eo(O) = vo(0) = 1 . (3.20b)

Equation (3.5) can be separated into the following two equations

il- k2 cos2 ( 11 k2 cos2 dO)
dO

+ (v(v+l) k2 sin 2 0 + p) = 0 (3.21)

1 -k,2 OS d@ ([11 k2 cos 2

I1 k' co 2  2

+ (v(v+l) k '2 sin2 @ - 'P) = 0 . (3.22)

Considering the boundary conditions, the solution of these equations

is actualiy four separate problems.

I. Dirichlet

A. Even

Solve equations (3.21) and (3.22) subject to the boundary

conditions

(1) Oel(0) = 1 Oel.() = 0

(2) @el(O) = 1 41el(O) = eel( + 2--)
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B. Odd

Solve equations (3.21) and (3.22) subject to the boundary

conditions

(i) eol'(O) = 1 e01(r) = 0

(2) €o1'(o) = 1 0ol(4) = %o(¢ + 2w)

II. Neumann

A. Even

Solve equations (3.21) and (3.22) subject to the boundary

conditions

(1) ee2 (0) = 1 0e2'(w) = 0

(2) €e2 (0) = 1 4e2() = Pe2(0 + 2w)

B. Odd

Solve equations (3.21) and (3.22) subject to the boundary

conditions

(1) 0o2'(O) = 1 Oo2' (7) = 0

(2) D21(0) = 1 42( ) = to2( + 2w)

Before investigating each of these problems separately, some

general results are discussed. First, note that each problem is two

two-parameter .turm-Liouville problems. Thus, for each value of v in

equations (3.21) and (3.22) there are an infinite number of V's which

can satisfy each equation. Kraus and Levine (6] have shown that only

a finite number of u's are needed for each v in order to have a

complete set of solutions. Also note that equation (3.5) is a two-

dimensional Sturm-Liouville type equation. It can be shown that the

two-dimensional Sturm-Liouville type operator is self adjoint and

positive definite and, therefore, that the eigenvalues v are all

positive. These results will be used to find the eigenvalues v and u.
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It follows from the self adjoint properties of the differential

equations that the solutions to the Dirichlet and Neuiilann problems

are orthogonal. The orthogonality relationship takes the form

fs On(O) On(f) Op(e) 4p(W dS = 0 n 0 p (3.23)

where the subscripts n and p indicate that the eigenfunctions

correspond to the eigenvalue pairs (Vn, Vn) and (Vp, pp). The surface

S is spherical. It is understood that all of the eigenfunctions in

equation (3.23) belong to either the Dirichlet set or the Neumann set.

Dirichlet eigenfunctions are not necessarily orthogonal to Neumann

eigenfunctions.

The self-adjoint property and the positive-definite property of

the two-dimensional Sturm-Liouville type operator are proved in

Appendix A. For proof of completeness and orthogonality, see Kraus

and Levine[l,6].

Method of Solution

IA. Even Dirichlet Problem

rihe usual approach to an unfamiliar differential equation is to

try a power series solution. By assuming a solution to equation (3.21)

of the form
00

Oel(6) = [ Am cosme/2
m=O

it is seen that there are two independent solutions, one with m even

and the other with r odd. By imposing the Dirichlet boundary condition,

the solution with m even can be eliminated. Instead of writing the

solution in the form
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Oel(O) = Am cos Me/2

it is found to be more convenient to use

Oel(e) = )' Am cts (2m - 1/2) e (3.24)
m

where the summation is over all m. The recurrence relstion for

equation (3.24) is

k2  (4m - 3)(4m - 5)
Am- -- V(V+l)) (3.25)I4

(4m -1)2 k2  v(v+l)k2

4 2 2

k2  (4m + l)(lm + 3) _(v+i)) = 0+ Am+l -I ~) 0
144

This set of equations can be written in matrix form, and a determinant

can be identified which must be zero in order to have a non-trivial

solution. Ince[O] has considered a similar problem which must have

the same solution as this problem. He sets up the problem in the same

way and identifies an infinite determinant which must be zero. With

some rather straightforward manipulations. an infinite determinant of

the type considered here can be written in the form of an infinite

continued fraction. The fraction for this problem is

1 + k2  (2v - l)(2v + 3) k2 /9 16 (2v - 3)(2v + 5) k2/225
h+

4 1 + k2 - 4h/9 + 1 + k2 -4h/25

36 (2v - 5)(2v + 7) k2/1225 (3.26)

+ 1 + k2 -4h/49 +.

where

= h - v(v+i) k2 . (3.27)
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Next, a solution to equation (3.22) is assumed. It is found that there

are two independent solutions that can be written in the form

el()= B M cos 2m 6 (3.28)
m=0

Co

SB2m+l cos (2in+l) 4 (3.29)
m=0

The recurrence relations for equation (3.28) are

B (v+l) k'2  k'2
B2 2 + B2 (2 - v(v+l)) = 0 (3.30a)

B0 (v(+l) k'2) + B2 ( k (2 _ ) + v(v+l) k'2 -

2 2 2

k'2
+ B2 (12 - v(v+l)) = 0 (3.30b)

k12
B2m- 2  - ((2m-2) (Pm-l) - v(v+l)) (3.30c)

+ B2m ((2m)
2  (v-) +1(+ ) k12

2 2

k' 2

+ B2m+ 2  .- 2 ((2m+2)(2m+l) - v(v+l)) 0 m > 2

and for equation (3.29)

B_ k 2 ((2m-l) (2m) - v(v+!)) (3.31)

+ Bp+.l ((V+) 2  _v) + (v+l) k'2 -)

2 2

+ BpM+ 3 -- ((2m+3) (2m+2) - v(v+1)) = 0

As before, these equations can be written in matrix form, and the

determinant which must be zero can be identified. The determinantal

equations can be written
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-(2-)()(+2 /h8 (_29)(v-P)(v+ll) k'4/(16)2

2- 2-k'2 -n/16
(! V225)(v-4)(v6) kI/(48)2

-2 ... . (3.32);'~ n/36 k 2 ...

for equations (3.30) and

(2 )(v1 k'4/(6)2
,=v(v+l) k12/2 + 2 -k -2 -)',! 2 - k,2 - n/9

(v2-16)(v-3)(v+5) k'4/(30)
2

2 k2_ 2 (333)

- 2 - k' 2 - n/25 -

for equation (3.31) where

1/2 (-n + v(v+l) k?2) (3.34)

In order to find the eigenvalues for problem IA, it is

necessary to solve equations (3.26) and (3.32), and equations (3.26)

and (3.33) simultaneously. The solutions are the eigenvalues (v,v)

of the even Dirichlet problem. The manner in which this is done is

shown in Appendix B. The eigenvalues are tabulated for the quarter

plane problem (k2 =1/2) in Table 1 (pages hl to 44i

Once the eigenvalues are determined, the eigenfunctions can be

found by solving the recurrence relations. This again involves the use

of continued fractions and is explained in Appendix C. The form of the

eigenfunctions is shown in Table 1, and the values of the coefficients

are given in Table 2 (pages 45 to 56).

IB. Odd Dirichlet Problem

Solutions to this problem may be expressed in terms of the

standard Lame polynomials. The eigenvalues v are integers, and there
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are exactly v i's for each value of v. The solutions can be found

in the same way as in problem IA. Series solutions are assumed, and

it is found that the series are finite for integral values of v if

they are written in the following forms. For equation (3.21),

N
001(6) = A2m+1 sin (2m+l) 0 (3,35)

m=0

N
0o1(e) = A2m sin 2m e (3.36)

m1l

N
001(0) = 1 - k2 cos2  A2m+ sin (2m+i) e (3.37)

m=0

2- N
001(e) = l-k cos 2 6 A2m sin 2m (3.38)

m1l

where N is an integer that depends on the eigenvalue v. Equations

(3.35) and (3.37) describe one independent solution; equations (3.36)

and (3.38) describe the other independent solution.

Each of these solutions gives rise to a recurrence relation and

a continued fraction equation for the elgenvalues. The recurrence

relations for equation (3.35) are

Al ((lk2  3v(v+l) k2 k2

2+ ) + A3  (6-v(v+l)) =0 (3.39a)

2m-i -Ik ((2m-1) (2m) - v(v+l)) (3.39b)
4

2 v(v+l) k2
A2m+l (2 _2m+l.2  1 -) + 2 + 

k22+ A2m+3 T ((2m+3)(2m+2) -v(v+l)) =0 m > 1
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The recurrence relation for equation (3.36) is

A2 -2 k2 ((2m-2)(2m-1) - v(v+i)) (3.40)

+ Am ((2)2 (_ _) + v(v+l) k2 + u)
2 2

+ A2m+2 - ((2m+2)(2m+l) - v(v+!)) = 0 m > 1, A0 - 0

The recurrence relations for equation (3.37) are

A((2 _1)  + 3v(v+l) k2 +v+A3k2A) + ) + A3 - (2 - v(v+i)) - 0 (3.41a)
2

k2  - v(v+l)) (.~bA-2m-l -4 ((2m+l)(2m) -(+l)(3.41b)

+ A +l ((2+1)2 ( 2 _) + +(+l) k2

2 2
k2+ Am+3  ((2m+l)(2m+2) - v(v+l)) = 0 m > 1

and the recurrence relation for equation (3.38) is

k2

A2m- 2 L- ((2m)(2m-1) - v(v+l)) (3.42)

+ Am ((2)2 (L -1) + v(v+l)k2 +
2 2

k2

+ A2m+ 2 k- ((2m)(2m+l) - v(v+1))= 0 m > 1, AO  0

Each of these recurrence relations can be written in matrix form and the

corresponding determinantal equations found. These equations written

in the form of continued fractions are, for equation (3.35) and

equation (3.37),
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-v(v+l) k2/2 + 2 k2- ( 2 -)(k-)(+ 3 ) (h/(6)22 -k 2 -n/

2_1-6)(v-3)(v+5) 0b/(0) 2

- 2 - - n/25 - ....

where

U 1/2 (n - v(v+l) k2) (3.44)

and for equation (3.36) and (3.38).

n = 4(2-k2 ) - (v2-9)(v-2)(v+4) k4/(8)2 (3.45)

2 - k2 - n/16

(v2-25)(v-h)(v+6) k4/(48)
2

- 2 -k2 -i/36

where p is again given by equatioj (3.44).

The same forms of solution are employed in equation (3.22)

with the coefficients B instead of A.

N

%01(4) 1 B2m+l sin (2m+l) € (3.46)
m=0

N
€0l(€) I B2m sin 2m) (3.47)

m=1

N

01)= 1- k'2 cos2  B2m+l sin (2m+l) 4 (3.48)
m=0
N

001(4) 1 - k'2 c Is2 € [ B2m sin 2m € (3.49)
m=0

The recurrence relations are the same hith k2 replaced by k'2 and

p replaced by -p. The eigenvalue equations are the same except that

k2 is replaced by k'2 . The definition of p is just the negative of

equaticn (3.44).

= 1/2 (-n + v(v+l) k'2 ) (3.50)
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The eigenvalues are found by simultaneously solving equations (3.44)

and (3.50). As previously mentioned, the eigenvalues v are integers,

and there are v V's for each value of v. For the actual method of

computation, see Appendix B. The eigenvalues are given in Table 1.

With the eigenvalues determined, the eigenfunctions are found

by using the recurrence relations. This is done in Appendix C. The

form of the eigenfunctions is shown in Table 1, and the values of

the coefficients are given in Table 2.

11A. Even Neumann Problem

Solutions to this problem are also standard Lame polynomials.

The eigenvalues v are integers, and there are v+l u's for each value

of v. The even Neumann solutions can be found in the same way as the

previous solutions. The solutions are expressed as suitable series,

and it is found that the series are finite for integral values of v

if they are written in the following forms

N
Oe2(e) = A+ cos (2m+l) e (3.51)

m=Q

N
0e2(e)= (3.52)

m=O

N

ee2(e) = 1 - k2 cos2 0 A2m+1 cos (2m+l) 0 (3.53)

N
ee2(e) 1 i- k2 cos2 e I A2m cos m0 (3.54)

m=O

where again N is an integer that depends on the value of v.
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With a few exceptions, the recurrence relations are the same as

for the odd Dirichlet problem. For equation (3.51), the recurrence

relation is

A2m-1 k ((2m-l)(2m) - u('..L)) (3.55)

+ A2m+l ((2m+l) 2 ( 2 -1) + v+vl1) .
2 2

+ A2m+ 3 - ((2m+3)(2m+2) - v(v+l)) = 0

A-1 = 0, m > 0

For equation (3.52), the recurrence relations are

A v(v+l) k2  
2

A0  1% 11) + A2 k2 (2 - v(v+i)) = 0 (3.56a)
2

A0 (-V(V+l) k2 ) + A2 (4S2 1) + v(v+i) k2 +
2 2 2(3-56b)

k2+ A4 72 (12- - v(v+l)) =-

A~m-2 i2 ((2m-2)(2m-l) - v(v+l)) (3.56c)

+ A2m ((2m) 2 ( -1 ) + + 1)
2 2

A2m+2 (('m+2)(2m+l) - v(v+!)) = 0
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For equation (3.53), the recurrence relation is

k2

A2m-1 - ((2m+l)(2m) - v(v+l)) (3.57)
4

1 2 Lv(v+l) k2A~m+l ((2rn+l) 2 (k_2_-i) + + u )

2 2

+ A~+ 3 k ((2m+l)(2m+2) - v(v+l)) - 0

A-1  0, m >0

For equation (3.54), the recurrence relations are

A0  + p) + A2  (v+l) k
2  0 (3.58a)

2 14

AOh-(2 -v(v+l)) + A2 (4(2 -1) + v(v+l) k2 + ~) (3.58b)
2 2 2

2+A 4  -v(v+l )) o
4

A~- 2 L ((2m)(2m-) - v(v+l)) ) (3.58)
14

r + A~m ((2m)2 (k _l) + vv)k 2 + )J2 2

2

+ A2m+ 2  2 ((2m)(2m+l) - v(v+i)) = 0 m > 2

As before, each of these recurrence relations can be written in matrix

form and determinantal equations found. These equations, written in

the form of continued fractions are, for equations (3.51) and (3.53),

n = v(v+) k2/2 + 2 - k2  (2 -4)(v-1)(v+3) k
4/(6) 2

2 - k2 - n/9

(v2 -16)(v-3)(v+5) k1 /(30)2

2 -k - n/25 - '(3-5v)I'' 'k t.s
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and for equations (3.52) and (3.54),

-(v2-1)(v)(v+2) k4/8 (v2-9)(v-2)(v+4) k4/(16) 2

2-k 2 - n/4 - 2-k 2 - n/16
(v2-25)(v-4)(v+6) kh/(48)2

- 2 - k2 - n/36  .

where

i = 1/2 (n - v(u+l) k2 ) (3.61)

Note that these are the same as equations (3.33) and (3.32) except

for k2 and k'2 .

The same form of solutions is assumed for equation (3.22) with

the coefficients B instead of A.

N
4e2() =  B2m+l Cos (2ml) 0 (3.62)

m=O

N
0e2(0) =  I B2m cos 2m 0 (3.63)

m=0

N

0e2() = [I - k'2 cos2  I [ B2m+i cos (2m+l) 0 (3.64)
m=0

N
1-k'2 cos2 0 [ B2m cos 2m 4 (3.65)

m=0

The recurrence relations are the same with k2 replaced by kt2 and P

replaced by -u. The eigenvalue equations are the same except that

k is replaced by k'2 . The definition of p is

1/2 (-n + v(v+l) k'2 ) (3.66)
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The eigenvalues v and P are found in the same way and are tabulated

in Table 3 (pages 57 to 60 ). The form of the eigenfunctions is

also shown in Table 3, and the values of the coefficients are given

in Table 4 (pages 61 to 72).

Together with the solutions of the odd Dirichlet problem, the

eigenfunctions compose a complete set of functions that correspond to

the Legendre polynomials in the spherical coordinate system. In fact,

as the parameter k2 approaches 1, the sphero-conal coordinate system

degenerates into the spherical coordinate system, and the Lame poly-

nomials degenerate into Legendre polynomials. For each value v = n

there are 2n+l standard Lame polynomials. In principle, the solution

to this problem could be found entirely in terms of these polynomials,

since they are complete and can be used to represent any piecewise

continuous function. In actual practice, the difficulties encountered

because of the boundary conditions would have made this approach

intractable. The Lame polynomials have been studied by several

authors. They are discussed by Ince[l0,111, Erdelyi[121, Prasad[13]?

and several others, and are tabulated as power series by Arscott[1 4].

IIB. Odd Neumann Problem

This problem is very similar to the even Dirichlet problem. A

series solution to equation (3.21) ir assumed, and it is found that the

one independent solution can be written in the form

002(e) = Am sin (2m - 1/2) u (3.67)
m

The recurrence relation is given by equation (3.25) and the eigenvalue

19_________ _______________________ ____________________ _____



38

equation by equation (3.26). Two independent solut.,ons of cquation

(3.22) are found in the for.

CO

'02() = [ B2m sin 2m € (3.68)

Thel '¢02(¢W B2m+l sin (2m+l) €(3.69)
m=0O

The recurrence relations and eigenvalue equations are the same as

for equations (3.36) and (3.35) with k2 replaced by k 2 and i

replaced by -. The simultaneous solution of the eigenvalue equations

yields the eigenvalues. The computational method is the same and is

shown in Appendix B. The egenvalues are tabulated in Table 3. The

eigenfunction coefficients are determined in Appendix C and are

tabulated in Table 4. The odd Neumann problem was also solved using

a variational method; this is described in Appendix D. The first

few eigenvalues and eigenfunctions were determined and compared with

the solutions obtained by the more exact method. The comparison is

reasonably good and is shown in Appendix D.

Discussion of Tables

Tables 1 through 4 show all of the eigenvalues and eigenfunctions

for v less than 9, and k2 = 1/2. In Table 1, both the even and odd

Dirichlet eigenvalues are tabulated, as well as the form of the

corresponding eigenfunctions. Note the grouping of the eigenvalues.

If n is an integer defined such that n - 1/2 <_ v <_ n + 112, there are

2n +1 P's for each v. Also note the pattern that is forming for the

values of v. As v increases, the value of v corresponding to large
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positive values of V is approaching n + 1/2. As v decreases for any

one group of eigenvalues, the value of v decreases until for large

negative v, v is approaching n. The same type of pattern is noticed

in Table 3 where both the even and odd Neumann eigenvaLues are

tabulated. For the Neumann eigenvalues, there are again 2n +1 pi's

for each v; v approaches n - 1/2 for large positive 1j, and n for

large negative V. Also note the pattern forming for the eigenvalues

of the odd Dirichlet and even Neumann problems (Lame' polynomials).

As v increases, the eigenvalues for these two problems are beginning

to coincide.

In Table 4, one should be careful when interpreting the

coefficients of I Am sin (2m - 1/2) e. Coefficients with zero and'

negative subscripts correspond to sine functions vith negative angles.

Thus if the eigenfunctions are expanded. in series of sines with positive

angles, it is necessary to reverse the signs of &ll coefficients with

zero and negative subscripts. This problem does not arise in the

Am cos (2m - 1/2) 0 eigenfunctions since the cosine function is even.

The eigenfunctions in Tables 2 and 4 are normalized such that

e(O) = *e() = 1 and o(0) = €o(O) = 1. Coefficients with magnitudes

less than 5 x lO-4 are not given. Eigenvalues should be accurate to

within + 5 x 10- 3 even in the cases of least accuracy. This accuracy

is not liited by the method and can be improved if desired. Since

some of the eigenfunction coefficients are very sensitive to

inaccuracies in the eigenvalues, it is expected that their accuracy

is not as good. The continued fraction method used to find the

eigenfunction coefficients, explained in Appendix C, tends to minimize
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this problem. In the case of the Lane polynomials, the continued

fraction method is not used, and it is expected that some of the

coefficients with large subscripts are not precise. This occurs

because the computation of the large subscripted coefficients usually

involves the subtraction of two large numbers in order to determine

a small number. These and other computational problems are discussed

in the appendices.

Two other eigenvalues were computed for different values of k2.

The lowest eigenvalues were computed for k2 = 0.1, corresponding to a

plane angular sector with a corner angle of 143.114, and for k2 = 0.9,

corresponding to a plane angular sector with a corner angle of 36.860.

These eigenvalues are given in Table 5 (page 73). The dominant

behavior of the vector fields near the tip of the plane angular sector

is governed by these eigenvalues; this is discussed in Chapter VI.

All of the computations for the eigenvalues and eigenfunctions

were -lone on the IBM 360/75 computer.

'5
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Table 2 - Dirchlet Eigenfunction Coefficients

E v=0.296 u-,.090

A0 = j..048 B0 = 1.036
A1 =-0.057 B2 =-0.034

0.011 B4 =-0.002
A2 =-0.003
A_.2 = 0.001

E v= 1.425 11=0.915 0 v=1.000 0=0.000 E v=1.130 i=-0.455

AO = 0.173 BO = 1.417 Al = 1.000 B1 = 1.000 A,0 = 1L.372 BI = 1.010
A1 = 0.845 B2 =-0.405 Am = 0,m>l Bm = O,m>l A1 =-0.299 B3 =-0.009
A.l=-0.021 B4 =-0.011 A- 1=-0.064 B5 =-O.001
A2 = 0.004 B6 =-0.001 A2 =-0.oo6
A-2=-0.001 A-2=-0.003

IE v=2.480 p=2.670 0 v=2.000 i=1.500 E v=2.290 P=0.215

o = 0.121 Bo = 2.470 2 = 0.500 B1 = 1.4 4 A = 0.343 B1 = 1.166
A1 = O.043 B2 =-0.015 Am 0,m>2 Bm O,m>l A1 = 0.831 B3 =-O.160
A-l= 0.842 B4 = 0.040 AI=-0.113 B5 =-0.005
A2 =-0.1006 B6 = 0.002 A2 =-0.056
A.2= 0.001 A_2=-0.001

A3 =-0.C03

m ~ --- _
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Table 2 - (continued)

0 v=2.000 )I=-1.500 E v=2.040 I=-1.705

A1 = 1.414 B2 = 0.500 AO = 2.297 Bo = .h09
Am = O,rP1 Bm = o , m?2 A1 =-1 .000 B2 = 0.862

A-1=-0.325 B4 =-0.003
A2 = 0.033
A_2=-0.007
A3 = 0.002
A-3=-0.001

E v= 3.4 9 5 V= 5.440 0 v=3.000 u=3.873 E v=3.410 11=1.535

A0 = 0.023 B0 = 4.944 A1 = 0.032 B1 = 1.968 A0 = 0.248 B1 = 1.539
A, = O~lO4 B2 =-4343 A3 = 0.323 B3 =-0.323 Al = 0.122 B3 =-0.552
A-.7l 0.009 B4 = 0.391 A= O,m>3 Bm = O,m>3 A 0.737 B5 = 0.013
A2 = 0.865 B6 = 0.007 A2 =-o.044 B7 = 0.001
A.2=-0.001 B8 = 0.001 A-2 =-0.059

A_3=-0.003

0 v=3.000 P=0.000 E v=3.145 v=-0.825 0 v=3.COO P=-3.873

A2 = 0.707 B2 = 0.707 A0 = 0.503 B0 = 0,276 Ai = 1.968 B1 = 0.032
Am= o,m>2 Bm = o,m>2 A] = 0.997 B2 = 0.820 A- =-0.323 B3 = 0.323

A-..=-0.341 B, =-0.092 Am= 0,m>3 Bi 0,m>3
A2 =-0.172 B6 =-0.004
A 2= 0.014
A3 =-0.003

0.001
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Table 2 - (continued)

E v= 3.010 P=-3.940

AO = 4.575 B1 = 0.141
Al =-2.744 P, = 0.860
A_1=-1.152 B5 =-0.001
A2 = 0.283
A-2= 0.030
A3 = 0.006
A_3= 0.001

E v=4,499 1=9.225 0 v=4.000 =7.190 E v=4. 4 70 wr3.790

AO = 0.020 Bo= 10.544 A2 = 0.026 B1 = 3.421 A0 = 0.077 B1 = 2.377
A, = 0.005 B2=-11.260 A4 = 0.237 B3 =-o.669 A1 = 0.208 B3 =-1.525
A17= 0.098 B4= 1.752 Am = O,m 4 Bm = 0,P3 A-1= 0.041 B5 = 0.145
A2 = 0.002 B6=- 0.035 A2 = 0.757 B7  0.003

A-2= 0.876 B3=- 0.00l A-2=-0.015
A3 = 0.065
A4 =-0.003

0 v=4.000 u=2.190 E v=4.280 u=0.335 0 v=4.000 i=-2.190

A1 = 0.109 B2 = 0.806 A0 = 0.374 B0 = 0.410 A2 0.806 B1 = 0.109
A3 = 0.435 B4 =-0.153 A1 = 0.192 B2 = 0.849 A4 =-0.153 B3 = 0.435
Am = 0,n?3 Bm O,m> 4 Al.= 0.701 B4 =-0.263 Am O,m>4 Bm = 0,m>3

A2 =-o.140 B6 = 0.004
A-2=-0.132
A3 = 0.007
A-3=-0,001
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II Table 2 -(continued)

E v=h.050 V=-2,575 0 v=4 .000 P=-7.190 E v=4 .005 u=-7.205

A0 = 0.751 B1 = 0.313 A1 = 3.421 B2 = 0.026 AO = 0.001 Bo = 0.023
A1 = 1.482 B3 = 0.76h A3 =-0.669 B4 = 0.237 A1 =-7.029 B2 = 0.107
A_.=-0.889 B5 =-0.074 A. = O,,>3 Bm = 0,m>4 A_1=-3.546 B4 = 0.871

i=-O.464 B7 =-0.003 A2 = 1.257
A-2= 0.103 A-2= 0.289
A3 = 0.014 A3 =-0.027
A-3= 0.002 A-3= 0.005
A4 = 0.001 A4 =-0.001

E v=5.500 =14.013 0 v5.000 u=11. 489 E v5.90 =7.110

A0 = 0.006 B0= 23.021 Al = 0.003 B1 = 5.809 A0 = 0.058 B1 
= 4.102

A1 = 0.016 B2=-27.689 A3 
= 0.020 B3 =-1.915 A1 = 0.021 B3 =-3.739

Al= 0.002 B4= 6.046 A5 = 0.188 B5 = 0.187 A-,= 0.195 B5 = 0.651
A2 = 0.093 B6 =-0.372 Am = 0,m>5 Bm = 0,m>5 A2 = 0.011 B7 =-0.013
k2= 0.001 B8 =-0.006 A2= 0.792 B9 =-0.001
A3 = 0.883 A3 =-0.004
Am = 0,m>3 A_3-.069

A-4=-0.003

0 v=5.000 u=5.196  E v=5. 499 p=2.110 0 v=5.000 u=O.000

A2 = 0.095 B2 = 1.319 A0 = 0.061 B0 = 0.658 A1 = 0.125 BI = 0.125

A4 = 0.306 B4 =-0.306 A1 = 0,379 B2 = 0.992 A3 = 0.437 B3 = 0.437
Am = 0,m>4 Bm : 0,m>h A-,= 0.032 B4 =-0.722 A5 =-0.087 B5 =-0.087

A2 = 0.704 B6  0.071 A= 0,m>5 =~ 0,m>5
A-2 =-0.026 B8  0.001
A=_0. 151A_-3= 0. 002
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Table 2 - (continued)

E v=5.150 P=-1.170 0 v=5.000 P=-5.196  E v=5.015 P=-5.335

AO = 0.551 B1 = 0.494 A2 = 1.319 B2 = 9.472 A0 = 1.220 B0 = 0.062
A1 = 0.245 B3 = 0.676 A 4 =-0.306 B4 = 0.306 A1 = 2.615 B2 = 0.228
A.l= 0.778 B5 =-0.172 Am = O,m> 4 Bm = O,m>4 A±I=-2.127 B4 = 0.785
A2 =-0.366 B7 = 0.001 A2 -=-1.247 B6 =-0.071
A-2 =-0.264 A-2= 0.438 B8 =-0.003
A3 = 0.046 A3 = 0.110
A_3= 0.009 -0 .010
A4  0.001 A4 = 0.002

0 v=5.000 p=-11.489 E v=5.000 u=-11. 493

A1 = 5.809 B1 = 0.003 *4O= 21.014 B1 = 0.020
A3 =-1.915 B3 = 0.020 A,=-15.824 B 3 = 0.096
A5 = 0.187 B5 = 0.188 A-.1 -9.110 B5 = 0.884
Am = O,m>5 Bm = O,m>5 A2 = 3.952

A_2= 1.261
A3 =-0.264
A-3=-0.023
A4 =-o.004

E v=6.5 up19. 805 0 v=6 .000 P=16.783 E v=6 .499 p=11.455

A0 = 0.005 Jb0- 44.205 A2 = 0.002 B1= 11.141 A0 = 0.136 B1 = 7.730
A1 = 0.001 B2=-57.427 A4 = 0.016 B,=- 3.973 A1 = 0.040 B3 =-8.84o
A-,= 0.015 B4= 15.840 A6 = 0.155 35= 0.438 A-l= 0.050 B5 = 2.259
A.2= 0.091 B6=- 1.644 Am = 0,m>6 B = 0,m>5 A, = 0.153 B7 =-0.147
A-3= 0.893 B8= 0.025 A 2:= 0.028 B =-0,002
Am 0 -M--3 B1 0= 0.001 A3 = o.6653 3 =- o. 0 1 o

A4 =-0.059
A5 =-0.003
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Table 2 - (continued)

0 v=6.000 u=9.114  E v=6.465 il=4.850 0 v=6.000 '=2.832

A1 = 0.015 B2 = 1.813 AO =-0.137 B0 = 0.995 A2 
= 0.103 B1 = 0.268

A3 = 0.074 B4 =-0.780 A1 =-0.080 B2 = 1.360 Al = 0.284 B3 = 0.652
A = 0.235 B6 = 0.083 A-,= 0.419 B4 =-1.641 A6 =-0.057 B5 =-0.162
Am = O,m>5 Bm = O,m,6 A2 =-0.045 B6 = 0.293 Am = Om>6 Bm = O,m>5

A-2= 1.016 B8 =-O.O06
A3  0.032
A 3=-0 .202
A4 =-0.002

E v=6.282 p=0.445 0 v=6.000 u=-2.832 E v=6.055 P=-3.380

A, =-o.411 B1 = 0.688 A1 = 0.268 B2 = 0.103 A0 = 1.056 B0 = 0.028
A = 0.688 B3 = 0,629 A3 = 0.652 B4 = 0.284 A1 = 0.396 B2 = 0.391
A-1=-0.189 B5 =-0.343 A5 =-o.162 B6 =-0.057 A.= 1.256 B4 = o.745
A2 = 1.002 B7 = 0.026 Am = O,n>5 Bm = O,m>6 A2 =-1.384 B6 =-0.163
A-2= 2.790 B9 = 0.001 A-2=-0.683
A3 =-0.347 A = 0.303
A_3=-0.037 A 3 0.063
All = 0.014 A4 =-0.008
A5 = 0.001 A_4= 0.001

0 v=6.000 p=-9.114 E v=6.005 u=-9.160 0 v=6.000 v=-16.783

A2 = 1.813 B, = 0.015 A0 = 1.781. B1 = 0.069 A1= 11.141 B2 = 0.002
A4 =-0.780 B3= 0.074 A1 = 4.462 B3 = 0,199 A3= -3.973 B4 = 0.016
A6 = 0.082 B5  0.235 AI=-3.923 B5 = 3.808 A- 0.438 B6 = 0.155
A.m = 0,m>6 Bm O,m>5 A2 =-2.850 B7 =-0.072 A m= O,m>5 Bm = O,m>6

A_2= 1.186 B9 =-0.003
A3 = 0.439
A 3=-0.085
A-4 =-0.009
A_ .=-0.001
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Table 2 - (continued)

E v=6.ooo tj=-16.783

A0 =4o.690 B0 = 0.003
AI="32.045 B2 = 0.015
A_I=-20297 B4 = 0.092
A2 =10.063 B6 = 0.890
A-2= 3.937
A3 =-1.139
A_3=-0.22hA4 = 0.018

A 4 =-0.003
A= 0.001

E v=7.500 p=26.597 0 V=7.000 u=23.0T5 E v=7.500 P=16.820

AOl= 0.007 B0=55346 A3 = .OO4 8l=:14.115 Ao = 0.124 BI= 13.374
A, = O.O4 B2=-75.696 A5 = 0.023 B=- 6.380 A, = 0.035 B=-17.621

Al= 0.002 B4= 24.784 A7 = 0.124 B5: 1.264 A-1 0.036 Bq: 5.898
A2 = 0.014 B6 - 3.603 A. = O,m>7 B 0.042 A2 = 0.012 B'- 0.661

A3 = 0.088 B8= 0.167 Bn: O,m>7 A_2= 0.154 89= 0.010
A4  0.886 Bld: 0.002 A3 = 0.007

A 3: 0.700
A4 =-0.003
A_-4=-0.062
A 5=-o. 003
Am OM>h



K .52

Table 2 - (continued)

0 v=7.000 1=14 .000 E v=7.492 u=8.695 0 v=7.000 ,-%.-r,44

A2 = 0.015 B2 = 3.314 A0 =-2.035 B0 = 2.647 A1 = 0.018 B1 = 0.338
A4 = 0.059 B4 =-1.591 A1 =-0.759 B2 = 3.500 A3 = 0.077 B3 = 0.747
A6 = 0.191 B6 = 0.191 A_-1=_.136 B4 =-6.936 A = 0.208 B -0.374
p = 0,m>6 Bm = 0,m>6 P.2 = 1.665 B6 = 1.917 A7 =-0.042 B; = 0.041

A_2=-0.660 B8 =-0.127 Am = 0,m>7 % = 0,m>7
A3 = 4.368 B10=-0.002
A..3= 0.453
A4 =-o.865
A_4 =-0.029
A5=-0. 001

E v=7.393 p=2.660 0 v=7.000 u=0.000 E V=7.157 =-1.500

A0 = 0.343 B1 = 0.970 A2 =0.221 B2 = 0.221 A0 =-1.751 B0 =-0.082
A1 = 1.527 B3 = 0.644 A4 = 0.389 B4 = 0.389 A1 = 0.852 B2 = o.644
A_1=-0.358 B5 =-0.736 A6 =-0.097 =-0.097 AB=-0.6i5 B4 = 0.745
A2 = 0.758 B7T = 0.123 Am 0,m>6 B= 0,m>6 A2 = 0.936 B6 =-0.329
A 2=-0.578 B 9 =-0.002 A-2= 2.628 B8 = 0.021

A3 =-1.024 A3 =-0.527 B10
= 0.001

A 0.199 A 3 =-0.594
A4= 0.140 A4 = 0.051
A_4=-0.009 k4= 0.017
A5 = 0.001 A5 

= 0.001i 5 A 5= O. 001

0 v=7.000 p=-6.444  E v=7.020 p=-6.66o 0 v=7.000 u=-14.000

A= 0.338 B1 = 0.018 A0 =-0.504 B1 =-0.086 A2 = 3.314 B2 = 0.015A3  0.747 B3 = 0.077 A1 =-0.194 B3 = 0.378 A4 =-1.591 B4 = 0.059

A5 =-0.374 B5 = 0.208 A =-0.547 B5 = 0.890 A6 = 0.191 B6  0191
A7 = 0.041 B7 =-0.042 A 1  2 .708 B7 =-0.183 Am = 0,m>6 Bm = 0,m>6
Am = 0,m>7 =m 0,m>7 A-2= 0.442

A3 =-0.903
A-3=-0 .072 I
A4 = 0.067
A54= 0.001
A5 = 0.001
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Table 2- (continued)

E v=7.000 j=-14.OlO 0 v=7.000 P=-23.075 E V=7.000 i=-23.075

A0 = 1.580 B0 = 0.075 A1 =14.115 B = 0.004 A =51.657 B1 = 0.003
AI = 5.199 B2 = 0.O4)4 A3 =-6 380 B-= 0.023 A =-41.656 B = O.Ol4
A/1=-3.923 B4 = 0.175 A5 = 1.264 B = 0.124 A-1 =-28.427 BR = 0.090
2-4.075 B6 = 0.778 A7 =-0.042 B = O,m>7 A2 =15.419 = 0.89
-2:: 1.556 B8 =-0.069 A= o,m>7 A-2= 6.990
A3 = 0.905 B1o=-0.003 A3 =-2.446
A-,3=-0.192 A_3=-0. 670
A4 =-0.054 A4 = 0.121
A4= 0.003 A-4= 0.010
A5 =-0.001 A5 = 0.002

E v=8.500 P=34.389 0 v=8.000 p=30.367 E v=8.500 p=23.191

A_,= 0.002 B0 =144.092 All = 0.002 B1 =33.142 A0 = 0.391 B1 =15.874
A_2= 0.013 B2=-62.390 A6 = 0.011 B3=-15.59L A1 = 0.101 B3=-22.791
A-3= 0.087 B4 =23.282 A8 = 0.116 B5 = 3.291 A-,= 0.109 B5 = 9.335
A 4 = 0.898 B6 =-4.316 Am = O,m>8 B7 =-0.200 A2 = 0.030 B-, -1.492
Am =0,m<-4 B8 = 0.336 Bm = O,m>7 A 2= 0.039 B 0.072

BI0=.
-0.004 A3 = 0.134 B11= 0.001

A-3= 0.022

All = 0.632
A-4=-0.008
A5 =-0.056
A6 =-0.002
Am =O,m<-4
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Table P - (continued)

0 v=8.000 u=19.876  E v=8.497 u=13.590 0 v=8.000 ,=,10.949

A1 = 0.002 B2 = 4.614 A0 =-5.594 B0 =-2.223 A2 = 0.017 B = 0.705
A3 = 0.012 B4 =-2.999 A1 =-1.931 B2 =-3.223 Ah = 0.059 B 3 = 1.233
A5  0.049 B6 = 0.678 A-g--2.044 B4 = 9.701 A6 = 0.165 B5 =-0.726
A7  .2 B8 -0.037 A2 -1.042 B6 =-3.670 A8 =-0.032= 0.092
Am O,m>7 Bm = O,m>8 A-,, 3.634 B8 = 0.428 Am : O,m>8 = Qm>7

A =-o.616 B 0=-0.007
A-.3=10.2ol4
All = 0.411
A_..:-1. 995
A5 =-0.026
A6 -0.001

E v=8 .463 I=5. 88 5 0 v=8.000 P=3.441 E v=8 .275 P=0.535

A0 = 0.378 B1 = 1.957 A1 = 0.048 B2 = 0.251 A0 = 2.827 Bn=-26.490

A1 = 0.170 B3 = 1.051 A 3 = 0.163 B4 = 0.386 A1 = 0.573 B2 =23.183
A 1 = 0.764 B5 =-2.712 A, = 0.267 B6 =-0.206 A =-1.267 B, =17.984
A2 =-0.127 B7 = 0.753 A7 =-o.o65 B8 = 0.023 A2 = 0.221 Bo=-16.021
A-2= 0.400 B9 =-0.049 Am 0,m>7 B= O,m>8 A-2 =-1.479 B8 =2.370
A3 =-0.224 B =-0.001 A3 =-0.776 B =0.025
A_3=-0.503 A_3 0.815 B12:-O.001

A4 = 0.076 A4 = 0.177
A-4= 0.070 A-4=-0.083
A =-o.oo4 A5 =-0.0065 5:-0.001

0 v=8 .000 p=-3.4 41 E v=8.073 p=-4 .170 0 v=8.000 p=-10.949

A2 = 0.251 B1 = 0.048 A = 0.245 B1 =-o.66o A1 = 0.705 B2 = 0.017
A4 = 0.386 B3  0.163 A =-0.005 B = 0.854 A = 1.233 B4 = 0.059
A6 =-0.206 B 0.267 A_1= 0.071 B3 = 1.254 A =-0.726 B6 :0165

B5=-o6 A2  5 5 = o6A8 = 0.023 B7 =-0.065 A2 =-0.0.; B1 =-0.476 A7 = 0.092 B8 =-0.032
Am = 0,m>8 Bm O,n>7 A-2= .014 B9 = 0.027 Am = 0,m>7Bm : 0,m>8

A3 = 0.004 B U= 0.001
A_3=-0.352
A4 =-0.001

A-4= 0.027

Li,
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Table 2 - (continued)

E V=005 i=-1.015 0 v=8.000 u=-19. 876  E v=8.000 i!=-19.879

A0 = 0.136 B0 =-0.312 A2 = 4.614 B1 = 0.002 A^ = 0.847 B1 = 0.127
A1 = 0.063 B2 =-0.230 A4 =-2.999 B3 = 0.012 A = 4.422 B = 0.037
A 1 = 0.i46 B2t = 0.491 A6 = 0.678 B5 = 0.049 A 1=-2.183 B3 = 0.161
A2 = 1.306 B6 = 1.312 A8 b-0.037 0.162 A-=-4.015 B5 = 0.744
A_ 2-0.163 B8 =-0.260 A, = O,m>8 =m O,m>7 A = 1.061 B =-0.066
A3 =-o.601 A3 - 1.163 BII=-0.003
"!3= 0.039 A-3 =-0.187
A4 = 0.078 Ah =-0.120

A_=-0.002 A_= 0.00
A5 =-0.001 A = 0.002

I.
0 V=8.000 i=-30.367 IE v=8.000 l,=-30.367

A1 =33.1112 B14 =0.002 A =142.222 B 2 0.002A--554 -.1 A -3-3393 B 0.013
A5 = 3.291 B8 = 0.116 A =-24.936 'B6 = 0.088
A7 =-0.200 Bm Om>8 A1 =14.399 ,, = 0.8967=,m>7 A2 = 7.316

A3 =-2.908
A-3=-0.982
A4 = 0.21
A-4= 0.043
A5 =-0.003
A-5= 0.001

0 v=9.000 P=38.660 0 v=9.000 u=26.751 0 v=9.000 u=16.413

A = 0.001 B =-11.517 A = 0.002 B =10.015 A = 0.003 B = 1.021
A 0 010 B1 = 6.208 A2 0.010 B4 -6.916 A1 = 0.014 11 = 1.612

7 . 3 =010 433
A0 = 0.103 B5 =-1.776 A6  0.041 B6 = 1.685 A = 0.047 B3 -1.405

O,m>9 B7 = 0.247 A8 = .40 B8 =-0.133 A7 = 0.137 B5 = 0.346
7 0 7

B= 0.116 Am = O,m>8 Br = 0,m>8 A =-0.027 B9 -0.028
B = 0,m>9A = O,m>9 Bm = O,m>9
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Table 2 - (continued)

0 v=9 .000 p=7.640 0 v=9.000 J=0.000 0 v=9.000 u=-7.640

A., = o.o48 B2 = 0.503 A1 = 0.055 B1 = 0.055 A2 = 0.503 B2 = 0.048
Ah = 0.123 B4 = 0.568 A3 = 0.172 B3 = 0.172 A4 = 0.568 B4 = 0.123
A6 = 0.202 B, =-0.375 A = 0.241 B = 0.241 A6 =-0.375 B6 = 0.202
A8 =-0.048 B0 = 0.048 A =-0.129 B5 =-0.229 A8 = 0.048 B8 =-0.048
Am = 0,n>8 Bm = 0,m>8 A = 0.014 B9 

= 0.01 0,m>8 B 0m>8
A = o,m9 B = O,m>9

0 v=9.o00 j=-1 6.413 0 v=9.000 0=-2 6.751 0 v=9.000 p=-38.660

= 1.021 B1 = 0.003 A2 =10.015 B2 = 0.002 A =-U.517 B5 = 0.001

A3 = 1.612 B3 = o.014 A4 =-6.916 B4  0.010 A1 = 6. 28 B 5 = 0.0

A5 =-1.405 B5 = 0.047 A6 = 1.685 B6  0.041 A =-1.776 B9 = 0.103
A7 = 0.346 B7 = 0.137 A8 =-0.133 B 0.140 =0.247 Bm = 0,m>9

=-0.028 B =-0.027 A = O,m>8 B = O,m>8 lit = 0.116
A9  90 m m = O,m>9
=0,m>9 Bm=0,m>91

E v=9.ooo U=-38.660

A0 =30.271 B3 = 0.002
SA1=-24.690 B5 = 0.013
A.=-18.818 B7 = 0.087
A2 =11.362 B9 = 0.898
A_2= 6.329 Bn = 0,m>9
A3 =-2.757
A_3=-I. 084
A4 = 0.321
A-4= 0.079
A5 =-0.013

0

A-5 OOo
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Table 4 - Neumann Eigenfunction Coefficients

E v=0.O00 p=0.000

A = 1.000 B0 = 1.000
Am = O,m>O % = O,m>O

E v=1.000 P=0.500 0 v=0.8 14 w=-0.194 E v=1.000 p=-0.500

A1 = 1.000 B0 = 1.414 A0 =-1.473 B = o.964 A0 = 1.414 B1 = 1.000
AM = O,m>1B = O,m>0 Al 0.214 B3 =0.010 Am = O,m>0 Bm = O,m>1

A-,= 0.030 B5 = 0.001
A2 = 0.007

A. 2 = 0.002
A3 = 0.001

E v=2.000 u=1.732 0 v=1.595 P=0.795 E v=2.000 U=0.000

A0 = 0.134 B0 = 1.866 A0 = 0.174 B1 = 1.160 A1 = 1.414 B1 = 1.414
A2 = 0.866 B2 =-0.866 A, = 0.689 B3 =-0.048 Am = 0,m>l Bm = O,m>l
Am = O,m>2 Bm = 0,m>2 A-1=-0.026 B5 =-0.003

A2 =-0.005
: A 2=-0 001

0 v=1.955 P=-1.552 E v=2.000 P=-..732

A0 =-1.360 B2 = 0.496 A0 = 1.866 B0 = 0.134
A1 = 0.568 B4 = 0.002 A2 =-0.866 B2 = 0.866
AI= 0.179 Am = 0,m>2 Bm = O,m>2
A2 =-0.016
A-2= O.004
A3 =-0.001
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Table h - (continued)

E v=3.000 P=3.950 0 v=2.520 P=2.625 E v=3.000 P=0.950

, A1  0.138 B0 = 3.856 A0 =-0.060 B 1 = 1.601 A0 = 0.389 B1 = 1.364
A3 = 0.862 B, =-2.442 A1 =-0.022 B3 =-0.193 A = 1.025 B =-0.364
Aya = O,m>2 BI = O,m>2 AI=-0.397 B5 ==-.00h O,m>2 B= O,m>3

A2 
= 0.033 5

A_2: =0.001

0 v=2.803 P=-0.350 E v=3.000 P=-0.950 0 v=2.990 P=-3.890

A0 = 0.346 B2 = 0.583 A = 1.364 B = 0.389 A =-1.720 B1 = 0.032
Al = 0.718 Bh =-0.038 A1 =-0.364 B0 = 1.025 A 1.025 B = 0.322
AI:-0.180 B6 -0.002 A = o,m>3 B2 = O,m>2 A1  = 0.429
A2 =-0.091 A71 - O.lOA 2 =0iA 2= 0.003 A 2 =-0 .011
A3 =-0.003 A3 =-0.002

A 3 =-0.001

E v=3.000 P=-3.950

A0 = 3.856 B1 = 0.138
A2 =-2.442 B 3  0.862
A, =,rn>2 B- =Om>3

E v=4.000 P=7.211 0 v=3.505 P=5.430 E v=4.O00 p=2.646

A0 = 0.019 B0 ; 7.246 A0 = 0.013 B1 = 2.505 A1  0.479 B1 = 2.350
A2 = 0.106 B2 =-7t120 A1 = 0.035 B3 =-0.524 A = 0.935 B =-0.936
A4 = 0.875 B4 = 0.874 A i: 0.005 B5 = 0.012 m= Om>3 Bm O,m>3
Am = om>4 Bm = 0,m>h A2 =0.275 B7 =0.001

C _______ _ ___ _ JA:2=-0-001
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Table 4 - (continued)

I -,'

0 v=3.617 v=1.260 E v=4.000 u=0.000 0 V=3.940 u=-2.315

A0 =-0.173 B2 = 0.718 A0  0.375 B0 = 0.375 A0 = 0.365 B1  0.071
A, =-0.088 B4 =-o.1o6 A2 = 0.833 B = 0.833 A = 0.714 B = 0.363
A_!=-0.455 B6 =-0.002 A4 -0.208 Bh =-0.208 A' =-0.409 B3 =-0.030
A2 =0.038 Am = O,m>h Bm = 0,m>1  A2=-0.211 B 0.001

-..2= m4oh A-2  m .044
A-3= 0.002 A3 = 0.005

A33= 0.001

E v=4.O0O p=-2.646 0 v=3.998 P=-7.195 E v=4.000 P=-7.211

A1 = 2.350 B1 = 0.479 A0 =-2.639 B2 = 0.026 A = 7.246 B0 = 0.019
A3 =-0.936 B 0.935 A = 1.836 B= 0.237 A20 =-7.120 B09 0.106
A= O,m>3 Bm O,m>3 A1 = 0.927 A= 0.874 B2 = 0.875m-14=

A2 =-0.327A = O,m>h B 0,m>4
A- =-0.075
A3 = 0.007
A33=-0p.001

E v=5.000 u=11.49i' 0 v=4.500 u=9.218 Z v=5.000 U=5.363

A1 = 0.020 B0 =16.709 A0 =-0.003 B1 = 4.281 A0 = 0.106 B1 = 3.133
A3 = 0.096 B =-17.796 A, =-0.001 B3 =-1.250 A2 = 0.363 B3 =-2.h68
A5 = 0.884 Bh = 2.501 A-I=-0.023 B* = 0.092 A = 0.946 B5 = 0.335
Am = O,m>5 Bm = O,m>4 A 2 =-0.210 B7 = 0.002 Am = O,m>4 Bm = O,m>5

Am =O,rn<-P
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Table 4 - (continued)

0 v=4.530 P=3.680 E v=5.000 P=1.369 0 v=4.795 P=-0.495

A0 = 0.028 B2 = 0.969 A1 = 0.471 B0 = C.704 A0 =-0.295 B1 = 0.112
A1 = 0.086 B4 =-0.245 A3 = 0.685 B2 = 1.151 A1 =-0.14l B3 = 0.420
A-,= 0,015 B6 = 0.006 A =-O.156 Bh =-0.442 .1=-0.459 B5 =-0.073
A2 0=,m>5 Bm = ,m'4 A2 = 0.157 B =-0.001
A 2=-0.006 

A 2= 0.125

A3 =-0.028 A3 =-0.015
A4 =-0.001 A_3=-0.002

E v=5.000 i=-1.369 0 v=4.984 P=-5.230 E v=5.000 P=-5.363

AO = 0.704 B = 0.471 A = 0.406 B2 = 0.059 A1 = 3.133 B = 0.106
A2 = 1.151 B3 

= 0.685 A0 = 0.867 B2 = 0.256 A3 =-.2.468 B2 = 0.363
A4 =-0.442 B5 =-O.156 A'=-o.702 B46 =-0.022 A = 0.335 B4m o.946
Am= 0,m>4 B 0,m>5 A2 =-0.409 B8 =-0.001 A = 0,m>5 0,m>4

A.;2= 0.143
A3 = 0.035
A3 =-0.003
A4 = 0.001

0 v=5.000 u=-11.491 E v=5.000 p=-11.494

A0 =-4535 BI  0.003 A0 =16.709 BI = 0.020
A1 = 3.417 B3 = 0.020 A =-17.796 B3 0=0963 -2 3
A_ = 1.967 B5 = 0.188 A = 2.501 B 5  0.884
A5 5 B 5  AI = 0,m>5
A=-0.854 Am 0 m

A_2=-0.272
SA 3 =0.057

A 3= 0.005
A4 = 0.001

4
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Table 4 -(continued)

E v=6.000 p=16.784 0 v=5.500 P=14.012 E v=6.000 w=9.165

A= 0.003 B =35.528 A = 0.003 B = 7.809 A = 0.118 B = 6.600
001

A2 = 0.015 B =-44.652 A2  0.018 B1 =-2.845 A1  0.324 B1 =-6.158
A4 = 0.092 B4 =11.067A3 = 0.170 B5 = 0.354 A = 0.972 B3 =0.972
A6 =0.890 B6 =-0.943 A = 0,m>3 B7 =-o.o06 P = 0,m>5 Bn = 0,m>5
Am = 0,m>6 Bm = 0,m>6

0 V=5.507 P=7.060 E v=6.000 P=3.507 0 V=5.627 P=1.692

A0 =-0.014 B2 = 1.439 A0 = 0.124 B0 = 0.789 A =-0.032 B1 = 0.171

A 0.0 B2 0-.3 A 0 01A =-0.005 B4 -o.534 A2 = 0.347 B2 = 1.104 A1 = 0.172 B = 0.503
AI1=-0.055 B6 = 0.042 A4 = 0.672 B4 -1.034 A-=-0.017 B5 -0.143
A2 =-0.003 B8 = 0.001 A6 =-0.142 B6 = 0.142 A2 = 0.330 B7 = 0.005
A-2=-0.223 Xa = O,m>6 ; = C,m>6 A-2= 0.015

A3 = 0.001 A3 =-0.076
A_3= 0.020 A_=-0.01
A_.= 0.001

E v=6.000 p=0.000 0 V=5.927 V=-2 015 E v=6.000 u=-3.507

A1 = 0.884 B1 = 0.884 A0 =-0.301 B2 = 0.099 A0 = 0.789 B0 = 0.124
A3 = 0.795 B = 0.795 A =-0.115 B4 = 0.282 A2 = 1.104 B = 0.347
A =-0.265 B5 =-0.265 A- =-0.365 B6 =-0.054 A4 =-1.034 B4 = 0.672
A= 0,m>5 B- O,m>5 A2 = 0.352 A6 = 0.142 B6 -0.142

A_-2= 0.187 Am = 0,m>6 Bm = O,m>6
A3 =-0.072
A43"--0. 016
A4 = 0.001
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Table 4 - (continued)

0 v=5.997 U=-9.120 E v=6 .ooo i,=-9.1 65 0 v=6 .000 u=-1 6.783

A0 = 0.552 B1 = 0.008 A1 = 6.600 B1 = 0.118 A0 =-8.470 B2 = 0.002
A1 = 1.376 B3 = 0.045 A3 =-6.158 B3 =0.324 A1 = 6.670 B 4 0.016
AI=-!.217 B5 = 0.197 A5 = 0.972 B = 0.972 A 1 = 4.225 B6 = 0.155

5 5 ~ 5 = 01-A2 =-0878 B7 =-0.017 Am = O,m>5 Bm  O,m>5 A2 =-2.095 Bm = O,m>6
A_2= 0.367 B9 =-0.001 A _2=-0.820
A3 = 0.135 A3 

= 0.237
A-3=-0.026 A-3= 0.047
A4 =-0.003 A4 =-o.oOh

A-4= 0.001

E v=6.000 P=-16.784

A0 =35.528 B0 = 0.003
Ao=-44.652 B2 = 0.015
A' =11.067 B4 = 0.092
A6 =-0.9h3 B6 0.890
Am = 0,m>6 Bm = O,m>6

E v=7.000 p=23.076 0 v=6.500 p=19.804 E v=7.000 =14.ol4

A1 = 0.003 B0 =84.943 A0 = 0.001 B =14.855 A = 0.022 B =10.906001 A0 1A3 = 0.014 B2=-110.135 A1 = 0.001 B3 =-6.317 A2 = 0.089 B3=-13.548
A = 0.090 Bb =29.321 A = 0.002 B = 1.102 A = 0.310 B = 4.005
A7 = 0.894 B, =--2.715 A2 = 0.012 B5 =-0.058A 0.903 B -0363
Am = O,m>7 B = O,m>6 Ah = 0.124 B9 =-0.001 A = 0,m>6 B 036

.... 001 9. . . . .. . .
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Table 4 - (continued)

0 v=6.501 i.=11.440 E v=7.000 i=6,708 0 v=6.540 l=4.675

A0 = 0.341 B2 = 2.299 A1 = 0.143 B0 = 1.693 A0 = 0.037 B1 = 0.266
A1 = 0.0i0 B4 =-1.125 A3 = 0.296 B2 = 1.763 A = 0.023 B = 0.646
A-,= 0.013 B6 = 0.154 A5 = 0.704 B4 =-2.446 A1I=-O.100 B3 =-0.274
A2 = 0.043 B8 =-0.003 A =--0.143 B6 = 0.403 A2 = 0013 B5 = 0.023
A_2= 0.007 Al = O,m>7 Bm = O,m>6 A-2=-0.234
A3 = 0.187 A3 =-0.009
A 3=-0.003 A-3= 0.049
A4 =-0.017 A4 = 0.001
A5 =-0.Uo1

E v=7.000 u=1.770 0 v=6.792 u=-0.630 E v=7.000 w=-1.770

A0 = 0.283 B1 = 0.852 A0 =-1.h92 B2 = 0.148 A = 0.852 B = 0.283
A6= 0.638 B = 0.611 A 1.244 B = 0.315 A3= 0.611 B = 0.638A2 = 0.638 B 3 -312A4 = 0.692 B5 =-0.534 A.=-0 .589 ;6 =-0.099 A5 =-0.534 B2 = 0.692
A6 =-0.200 B7 = 0.071 A2'= 1.520 B = O.004 A = 0.071 B4 =-0.200
Am = O,m>6 Bm = O,m>7 A-2= 1.486 Am = O,m>7 B = 0,m>6

A3 =-0.703
_3=-O.274

A4 = 0.051
A-4= 0.003
A5 = 0.001

0 v=6.980 u=-6.500 T, v=7.000 )=-6.708 0 v=7.000 u=-14.00::

A0 =-0.113 B =-0.056 A = 1.693 B1 = 0.143 A = 1.176 B = 0.008
A, =-0B043 B = 0.082 A = 1.763 B = 0.296 A = 3.852 B = 0.036
A I=-0.122 B = 0.223 A4 =-2.446 B3 = 0.704 A'=-2.930 B6 = 0.160
A = 0.556 B =-0044 A= 0.1403 B =-0.143 A-=-3.022 B =-o.o014

2 7 A6  7 2 8A_2 = 0.097 Am O,m>6 Br = Om>7 A,2
= 1.163 B 10=-0.001

A3 =-0.183 A3 = 0.672
A 3=-o.o16 A 3 =-0.143
A14

3- 0.013 A =-o.040

A 4= 0.002
A5 =-0.001

____________________________ ___________________5
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Table 4 -(continued)

E v=7.000 )j=-14 .01 4  0 v=7.000 p=-23.075 E v=7.000 i=-23.O76

A1 -10.906 B0 = 0.022 A =-17.244 B = 0.004 A =814.943 B = 0.003
A1=-13.548 B = 0.089 A0 =13.906 B3 = 0.023 A0=-110 135 BI = 0.014

A 2 1 = 9.490 =0. 23
A 5 = 4.005 B = 0.310 A B 0.124 A =29.321 B = 0.090
A =-0.363 B = 0.993 A-'=-5.147 A6 =-2.715 B5 = 0.894
Am = O,m>7 B6  0,m>6 A2 =-2.333 A = O,m>6 B7 = O,m>7rn A 2 0.816 m m

A-3= 0.224
Ah =-0.o4o
A_ =-0.003
A5 =-0.003

E v=8.000 p=30.368 0 v=7.7500 u=26.597 E v=8.000 P=19.880

A2 = 0.002 B =89.332 A = 0.001 B =28.305 A = 0.025 B1 =24.157
0.013 B =-126.26 A0 = 0.001 B1 :-13,473 A1 = 0.080 B =-32.109

13A6 = 0.088 B1 =44.337 A = 0.002 B3 = 2.988 A3 = 0.303 B3 =10.373A8 0.896 B6 =-7.370 A -0.012 B =.-0.266 A5 = 1.006 B5 =-1.008

Am =,m>8 B = 0.970 A 0.124 B = 0.004 A7 = O,m>7 B7 = O,m>7
Bm 0,m>8 Am 0,m> m m

0 v=7.500 !i=16 .816  E v=8.000 p=11.036 0 v=7.510 i=8.625

A0 =-0.025 B2 = 3.889 A = 0.030 B = 2.464 A =-o.048 B = 0.426
A =-0.007 B4 =-2.329 A0 = 0.101 B0 = 1.961 A0 =-0.031 B1 = 0.910
1 422 1 B3A =-0.007 B6  0.458 A = 0.276 B =-4.877 A'lz-0.047 B =-0.537

A2 =-0.003 B8 -0.025 A6 = 0.739 B6 = 1.597 A2 = 0.063 B5 = 0.077
28 --0.001A =-0.032 A =_o.146 B8 =-0.145 A ^=-0.028 BI =-0.001

A3-=-O.0A01m = O,m>8 Bm = O,m>8 A 3= 0.164

A4 = 0.001 A_3= 0.019
A-4= 0.013 Ah =-0.033
A5 0.001 A-4=-0.001Am O,m>4
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Table 4 - (continued)

E v=8.000 ui=.334 0 v=7.632 u=2.095 E V=8.000 I=0.000

A1 = 0.369 B. = 1.622 A = 2.224 B = 0.213 A = 0.273 B0 = 0.273
A3 = 0.530 B3 = 0.726 A =-.0.209 B = 0.363 A - 0.562 B2 = 0.562
A5 = 0.696 B =-1.115 A1 =.-0.188 B4 =-o.i66 A2 = 0.469 B4 = 0.4695 =-.96B=1 6 11
A7 =-o.181 B7 = 0.181 A2 =-0.098 B8 = 0.015 A =-0.348 B6 =-0.348= O,m>7 = O,m>7 A0-B-0.277 A = 0. 0 2 =O.O44A .0.162- = 0,m>8 B = O,m>8

A = 0.109
A' 3=-0.026
A.4=-O.007

0 v=7.923 u=-3.685 v v=8.000 u=-4 .334 0 v=7.995 u=-10.905

A0 =-0.035 B1 =-0.330 A1 = 1.622 B1 = 0.369 A = 0.067 B2 =-0.040
A1 = 0.003 B = 0.157 A3 = 0.726 B = 0.530 A1 = 0.031 B4 = 0.066AIA =-0.010 B53 = 0.303 A5 =-1.115 B3 = 0.696 A = 0.072 B= o.184
A-=0.002 B=-0.100 A = 0.181 B5 =-0.181 A-±= 0.654 B 6-0.3

0.0A 7=7 7  2 .62 8 =0036A2_2=-0.370 B = 0.005 Am= O,m>7 B = O,m>7 A -0.080
A3 =-0.002 A32=-0.300
A = 0.120 A.-3= 0.019A74=-0.008 A = 0.039

-4=-0-0008 A =-0.001As =-0. 001

E v=8.000 u=-11.036 0 v=8.000 P=-19.877 E v=8 .000 p=-19.880

A0 = 2.464 B0  0.030 A0 =-1.674 B1 = 0.021 A1 =24.157 B1 = 0.025
A2 = 1.961 B2 = 0.10) A =-8.728 B = 0.006 A 3=-32.109 B 3  0.080
A =-4.877 B = 0.276 A 1= 4.318 B3 = 0.028 A3 =10.373 B = 0.303
A6 = 1.597 B6 = 0.739 A2 = 7.926 B5 = 0.133 =-1.008 B5  1.006

=-o.145 B8 =-o.146 A =-2.097 B7  0.012 A = 0,m>7 Bi = Om>7B88 ~.1 mmS= O,m>8 Bm = O,m>8 A- =-2.?97 B9l=-0.001
A 3= 0.370 1

A3 = 0.230
A-4=-0019
A5 =-0.004
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Table 14- (continued)

0 v=8.000 u=-30.368  E v=8.000 P=-30.368

A0=-38.665 Bh = 0.002 A0 =89.332 B = 0.002
A1 =31.492 B6 = 0.011 A =-126.269 B = 0.013
A =22.833 B = 0.116 A =414.337 B = 0.088

B8  46
A2=-13.184 A6 =-7370 B8 0.896
A 2 =-6.699 A8 = 0.970 Bm O,> 8
A 3= 2.663 Am = O,m>8
A3 = 0.899
A- =-0.221
A 4 =-0.039
A 0.003

E v=9,000 v=38.660 0 v=8.500 v=34.389 E v=9.000 p=26.752

A3 = 0.002 B0=833.672 A =-0.002 B =48.438 A = 0.001 B1 =50.366
A 5 = 0.013 B2=-1ig7.523 A -0.011 B=-25.087 A2  0.019 B =-77.957
A= 0.087 B,=438.450 A=-0.109 BC = 6.664 A2  0.075 B3 =34.704
A9  0.898 B.=-76.676 Am =O,m<.-4 B' -0.831 A6 = 0.299 B _-3626,> 7 =340B -. 3 6  29B =-67 6

=,m>9 B8 =3.490 B 0.034 A8 = 1.o16 B7 = 0.249
Bm = 0,m>8 A o,.> 8 B = 0,m>9

0 v=8.500 p=23.190 E v=9.000 u=16 .438  0 v=8.503 l=13.570

A = 0.087 B =6.709 A = 0.033 B = 5.802 A = 0.087 B 0.727
B= A3 = 0.046 B2 = 3.126 A1 = 0.030 B1 = 1.474

A_l= 0.024 B6 = 1.195 A5 = 0.268 Bh=-11.245 All= 0.032 B5 =-1.142
A2 = 0.007 B8 =-0..13 A7 = 0.765 B 6 

= 4.147 A = 0.016 B7 = 0.241
A2  0.009 B10= 0.002 A =-0.1149 B8 =-o.417 A_2=-0.056 B7 =-0.014
A3 = 0.030 SO 0,m>9 B= 0,m>8 A 3= 0.010

A_3= 0.005 A 3=-0.157
A4 : 0.142 A =-0.031
A-4=-0.002 A-h= 0.031
A5 =-0.013
A6 =-0.001
AM =0,_<-___
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Table 4 - (continued)

E v=9.000 p=8.004 0 v=8 .545 i=5.630 E v=9.000 P=2.158

A0 = 0.098 B = 1.936 A =-o.146 B = 0.314 A = 0.365 B0 = 0.521
1 1 2 o 4 A 1 =o40B 2A2 = 0.265 B3 = o.46o A0 =-o.o66 B= 0.146 = 0.440 = 0.942

A4 = 0.490 B5 =-2.027 A'1 =-0.522 B6 =-0.292 A3 = 0.442 B = o.464
A6 = 0.741 B7 = 0.689 A2 = 0.045 B = 0.043 A5 -0.280 =-0.607
A8 =-o.18o 0 B o .059 A 2 =-0.270 B1 0=-0 001 A9 = 0.033 B8 = 0.093
Am= o,m>8 B9 =,m>9 A =0.078 "a =om>9 Bm = o m>8m A3 = 0.358

A4 =-0.028
A 4=-0.052
A5 = 0.001

0 v=8.787 ,=-0.770 E v=9.000 p=-2.158  0 v=8.980 P=-7.710

A0 =-0.211 B1 =10.313 A0 = 0.521 B1 = 0.365 A0 =-0.291 B2 =-0.269
A1 0.~B =~1 6 A 1=Al =-0.075 B3 =-1.546 A2 = 0.942 B3 = 0.440 A1 =-o.o60 B4 = 0.143
A_-I= 0.046 B5 =-2.326 A4 = 0.464 B5 = 0.442 A =-0.090 B6 = 0.275
A2 =-0.024 B7 = 1.138 A6 =-o.607 B7 =-0.280 A2 =-0.047 B8 =-0.092A..2= 0.045 B =-0.111 A8 = 0.093 B = 0.033 A =-0.346 B 0.005

A3 = 0.356 B1I=-0.001 Am = 0,m>8 B = 0,m>9 A-= 0.064
A-3=-0.033 1 m A3 = C.169
A4 = 0.005 A4

3=-0.016
A4= O.006 A-4 =-0.022

A5 = 0.001

E v=9.000 p=-8.oo4 0 v=9.000 U=-16.420 E v=9.000 u=-16.438

A1 = 1.936 B0 = 0.098 A0 = 0.136 B1 =-0.099 A0 = 5.802 B1 = 0.033
A3 = 0.460 B2 = 0.265 A1 = 0.080 B =-0.036 A2 = 3.126 B = 0.084
A5 =-2.027 B4 = 0.490 A-,= 0.155 B5 = 0.060 A,=-11.245 B = 0.268
A7 = 0.689 B6 = 0.741 A = 0.718 B = 0.173 A6 = 4.147 B5 = 0.765
A =-0.059 B =-0.180 A2 =-0.225 B7 =-0.034 A6 =-0.417 B7 =-0.149
A =O,m>9 B 0,m>8 A3 =-0.426 A =O,m>8 B= O,m>9

A-3= 0.073
A4 = 0.080
A-4=-0.078
A5 =-o.oo4
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Table h - (continued)

0 v=9.000 i=-26.751 E v=9.000 u=-26.752 0 v=9.000 u=-38.660

A0 =-0.218 B = 0.017 A1 =50.366 B0 = .004 A0=-89.784 B5 = 0.001
A =-2.958 B = 0.005 A3=-77.957 B = 0.019 A1 =73.229 B7  0.010
A = 0.548 B6 = 0.024 A5 =34.704 B = 0.075 A:1=55.812 B. = 0.103
A = 2.979 B8 = 0.114 A =-6.362 B6  0.299 A =-33.698 B = O,m>9
A_2=-0.311 B1o=-0.010 A = 0.249 B8  1.016 A2-8 .771
A =-1.056 A = O,m>9 Bm  O,m>8 A3 = 8.177
A3 = 0.071 A- = 3.216
A4 = 0.154 A4 =-0.951
A4=-0.0O6 A-4=-0.236
A5 =-0.007 A= 0.037A 5= 0.003

-5

E v=9.000 P=-38.660

A0=833.672 B3 = 0.002
Af -I97.523 B5 = 0.013
A4=438.450 B7 = 0.087
A6=-76.676 B9 = 0.898
A8= 3.490 Bm O,m>9
Am= 0,m>8
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Table 5- Lowest Eigenvalues of the Even Dirichlet and Odd

Neumann Problem for k2 = 0.1 and k2  0.9

Even Dirichlet

2=O k' 2 = 0.9 k 9 k' 2 =0.1

v I v 1Y

o.1407 o.208 0.171 0.0O

Odd Neumann

k 2 =O. k' 2 =0.9 k2 = .9 k 2 =0.1

Iv v ]y

o.613 0.188 0.970 -o.806

2i



CHAPTER IV

SOLUTION OF THE. VECTOR WAVE EQUATION

In this chapter the electric field in a scurce-free region

containing a perfectly-conducting plane angular sector is determined.

The medium surrounding the plane angular sector is linear, isotropic,

and homogeneous. Thus E satisfies the equation

V x V x -K 2 I= o (..l)

with the boundary condition

nx = 0 (4.2)

on the surface of the plane angular sector and a radiation condition

as r + =. The unit vector n is normal to the plane angular sector.

Since n is not defined at the edges and tip of the plane angular

sector, there are also conditions which must be satisfied there.

These will be discussed in Chapter VI.

Following the method described by Morse and Feshbach15] define

the following three independent vector wave functions.

T = ni (14.3)

M, = V x '2 R (4.4)

- 1
N1 = - V x V x (4.5)

K

714
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where * *i, and *2 are scalar wave functions and R = r r is a radius

vector. Since V E = 0, it is clear that only the latter two can be

solutions of equation (4.1). Checking M2 and NI in equation (4.2),

it is seen that *2 must satisfy the Neumann boundary condition and *1

the Dirichlet boundary condition. Thus VI and *2 are the complete sets

of scalar wave functions determined in Chapter III. Since the sets

*1 and ' 2 are complete, the sets M2 and NI are complete, and thus any

divergenceless vector can be expanded as a sum of these functions.

Performing the indicated curl operations in equations (4.4) and

(4.5), the vector wave functions can be written in component forms as

(Kr--

SZV (r) k2 Cos2  e () (4.6)
M0o92 =jk2 sin2 O+k'2 sin 2 0 L 0 2

11 - k,2 co 2  e^GL(0 ~

0 0L

zvA, (Kr)
Nel =Vu (vi1 +i-) S.l() *el (f) "  (4.7)

Oil Kr0'

(r zk3 (Kr))'

+ 1 k oetl(e)
Kr [k2 in2 0 + k12 sin2 (

+ k2 cos2  O (8) etl(

The subscript k is an ordering index. It is an integer which

identifies each (vz, P) eigenvalue pair, and is useful not only for

identification but as a summation index.
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z..(Kr) is a spherical Bessel function, its type depending on the

boundary condition on r. All primes indicate differentation with

respect to the independent variables r, e, and *.

Note that(v=0, p=0) is an eigenvalue pair for the scalar wave

functions, but it is not for the vector wave functions. Since Me 2

contains derivatives of the scalar functions and the scalar

eigenfunctions that correspond to (v=0, p=O) are constant,

i;2(v=O, P=O) vanishes.

It is a.so possible to define two other vector wave functions,

Me.,'o and NeZ2 . These do not satisfy equation (4.2) so they are not
0 0

acceptable as solutions of this problem. They are useful, however,

and will be used in the dyadic Green's function derived in the next

chapter. These functions are defined as follows:

- v9,I (cr) FI
--e = 1-k 2 cos 2 a e ;1(e) (4.8)
Ol isin2 e + k2 sin2

- 1 - k'2 cos2  ezl(e) 4g;l(O)

ZvV2 (Kr)

Ne12= V12( 2+I) Kr (12 (0) 81 2() r (4.9)

(r zvt2 (Kr))'; + i - k'2 cos
+ r k- sin2 e + k'2 sin

2 0

e 2(e) ', ,2(,) W + 1 - k2 cos2 0 01 (e) Wet2(, I
0 0 0 0
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These are related to M and N in the following manner:

eX et,

0 o

-P1 eg v e1  (4.1o)

N 7 X xM (4.11)

e 11

o12 0

V 2  x N (4.12)

1 -Ne * - V x Mel1  (4.13)K eio 0

All four of the vector wave functions defined by equations

(4.6), (4.7), (4.8), and (4.9) possess orthogonality properties on the

surface of a sphere. These will be discussed in the next chapter,

where they are used to find the dyadic Green's function. To facilitate

the investigation of orthogonality, the following auxiliary vector wave

functions are introduced at this point.

-- 11 - k2  cos 2  e
Met 0 -~c 6e (e) '~4, W (4.14)1k2 sin 2 0 + k'2 sin2  0 0 ei

11 - k,2 cos2 -- e (e) 4ekl(0 e
2k 6 + kt ol

k2 sin2  k 2 sin2

- [- k'2 o 2  
, 

0e (e) ) (4.15)0x i 1k2 sin 2 6 + k'2 sin 2  oi Oki@41

11 - k2 cos 2 8 e, () el

+ I

Ik2 sin2 0 + k?2 sin2 0 0
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=v (Lej vzI(Vzl+I) el(e) 4el!(  r (4.16)

The auxiliary vector wave functions me2, r x meZ2, ZeY2 are defined
ek22'

similarly except that Neumann functions are u-,,ed instead of the

Dirichlet. These functions are related to the original vector wave

functions in the following manner.

Me 2 - (K£2 me£ 2  (417)"

S zvt1 (Kr) _ (r z(r1 (Kr))' (r x m .) (4.18)

el1 Kr Keri + el
0 0 0

and similarly for Me. and N 2

For a more complete discussion of vector wave functions, see

Morse and Feshbach[15]. Vector wave functions are also discussed by

Stratton[16], Van Bladel[17], and Spence and Wells[18].



CHAPTER V

DETERMINATION OF THE DYADIC GREEN' S FUNCTION

In this chapter, the dyadic Green's function is derived. The

derivation is given in some detail since the Green's function is

composed of previously unknown ector wave functions. In the

process, some properties of these vector wave functions are determined.

Introduction

In orde.r to find the total field due to an arbitrary current J

in the vicinity of the perfectly conducting plane angular sector, the

following set of equations must be solved.

V xV xE- j2 E" _j, (5.1)

n x E =0 (5.2)

on the plane angular sector, E must satisfy the radiation condition

as r + , and as was mentioned in Chapter IV, there are also edge and

tip conditions which must be satisfied.

The solution to this set of equations can be written

S(*) = lJ f F (F,F') • J(R,) dv
v (5.3)

+ f [ (T") x V' x Tr ( " ,)] ds

79
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where R is the field point, R' is the source point, and v is a volume

enclosing the source current J. The surface S is the plane angular

sector. Ordinarily the surface integral is zero because of equation

(5.2). However, if the plane angular sector contains slots, n x

will not vanish in the aperture of the slots. Thus the dyadic Green's

function obtained in this paper can be used not only to determine the

fields radiated by an arbitrary current distribution in the vicinity

of a plane angular sector, but also to determine the fields raliated

by slots in a plane angular sector. r (R,R') is the dyadic Green's

function. It must satisfy the following equations.

V x V x K2 (5.4)

where e is the unit dyadic.

on the plane angular sector, r (RR') must satisfy a radiation

condition as r , and F (R,R') must satisfy conditions at the edges

and tip.

In order to make the derivation of I- (R,R') as simple as possible,

consider the following operation on equations (5.4) and (5.5). Let

an arbitrary unit vector, a, be dot multiplied to the right of the

two equations. The result is

V xV x G (K') - 2 (gW) -_ 6 (I -' I) (5.6)

x g (g,0') -0 (5.7)

where

T(gg) - - (gr ') a (5.8)
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The vector Green's function G (R,R') is the field due to a unit

vector point source a located at R'. Once d (R,R') is determined

it can be compared with equation (5.8) to determine r (R,R').

It 'ias determined in the last chapter that an arbitrary

divergenceless vector function could be represented as a sum over

the complete set of vector wave functions, Me 2 , and N Thu.012 1I"

S(RR') can be written

U (R,Rt) = [ [aq (K') Mq2 (T) + bq (T) Nql (T)] (5.9)

q

where the subscript q replaces the ek subscript used previously, and

is meant to include all of these functions. The subscript 1 or 2

means, as before, that Dirichlet or Neumann functions, respectively,

are used in the vector wave functions. Equation (5.9) automatically

satisfies equation (5.7). The coefficients aq (R') and bq (R') will

be determined in order to satisfy equation (5.6).

Derivation

The singularity at R' separates space into two regions. Let the

dividing surface S' be a sphere wit&h radius r' except for an infinitesi-

mal cut around the quarter plane. (See Figure 7) The volume within S'

is called region I and that outside of S' is called region II. Also

define a surface S with the same shape as S' but at a radius r. The

surface S is in region II. Within region I, the vector Green's

function has the boundary condition on r that the function must be

realar at r = 0. This implies that the Bessel functions used in the

vector wave functions must be of the first kind. Thus in region I,
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-aq R2 (W) + bq (F') (T) (5.1-)
q

where the superscript I means that zv (Kr) = JV (Kr). In region II,

the boundary condition on r is that the function must represent an

outward propagating wave for large r. This implies that the Bessel

functions must be Hemkel functions of the second kind. Thus in

region II

q (g,) = [ [a (') I (W) + bq (.') WII (R) (5.11)q2 q1
q

where the superscript II means that zV (icr) = h(2 ) (Kr).

In order to determine the unknown coefficients aq (B') and bq (R'),

consider the following equation, known as Green's second identity for

vectors.

VxVxA- , VxVx) dv (5.12)

f x V x B-Bx V x ^ ds

where n is a unit normal to the surface S which is pointing out of

the enclosed volume V. Let the surface be the same as the surface S

in Figure 7. Then V includes all of region I and part of region II.

Let

A=5(RT) (5.13)

p2
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The volume integral is readily evaluated. From equations (5.6)

and (5.13),

V x V x A = V x X x (RR') = 2 ? ( ,) - 6 (I-T'I) (5.15)

From equations (4.l) and (5.11),

V x V x B V x V x i 2 () 
2  

2 (B) (5.16)

Thus the left hand side of equation (5.12) is

(R*,) 6 T-j (5dv=-a. (1
- 2 

The evaluation of the surface integral is not quite as simple.

Consider the following vector identities.

Ax V x B • n = n • Ax V x B n x A V x (5.18a)

B x V x A • n = n •B x V x A= n x B V x A (5.18b)

Using these in the right hand side of equation (5.12), the following

is obtained.

fsnxG(R,) V x 2 (R) (5.19)

-n x 2 (W) " V x (T,T) ds

On the part of S that encloses the quarter plane

n x G (R,R') =0 (5.20)

and

n x 2 ( 0 (5.21)
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so that the integration is over the sphere with radius r. On this

sphere

n x G (±,W,) - r x [Ia ,±,) 1. (T 96')r x I()) (5.22)qq

+ bq (r) (r x -Iql (W

nl x M 2 (R~) =r x OF*) (5.23)

and with the help of equations (4.10) and (4.11)

v x ( , ,) = v x I ( , .) (5.25)

[(W [KI Tr, (nIF)gi
- !q N (*) +CbI ('q') q1

q

Using these results, the zurface integral is

X m (R) * ";2 ) x i(). .()
fs q q2- pq2

(5.26)

+ bq () ("xNq1  p2 " 2 ql

S [[q (*')Aq + bq ('Bq

q

First consider Bq

Bqf. (f) x' (R) - r.x (R) x (7)] ds (5.27)
s ql " p2 '2 ql
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Using the auxiliary vector wave functions introduced in the previous

chapter, Bq can be written

[(rh (2) (Kr))' (r) )' ) + r2  ((Kr)I Bq = - ql Jp2 ,Jp2 hqi

LK 2  1

(5.28)

fi fiT (ql " r x rap2) p d 4d 0 = f (r) Cq

0 -
qj

where the weight function p is

P =" deh6 k2 sin2 0+ k'2 sin2  (5.29)
r7 = I-k 2 cos2 e 11 - ks2 cos2

Using the definitions of the auxiliary wave functions, Cq is

Cq = pr p ( ) ep2(e) % 0)(5.30)

0o -7r 4()~i~

ql(O) o.1() 0p2 pdO

If the q1 functions and p2 functions are both even .,r both odd, the

integrand is odd with rebpect to 4 and Cq = 0. Thus the q1 functionc

must be even and the p2 functions odd or vice versa if Cq is to be

nonzero. Separating the 0 and 4 integrals Cq can be written

Pq 4'ql() %20 d4) f' 041l(0) Op2(0) dO (5.31)

" - [" * i(4) 4'p2(' 1 d 0 o ql(e) e%2(0) de
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Integrating the first 0 integral by parts, the following is obtained.

"T

f eql (e) eP2 (e) do = 0ql)eep2 (e) 0 (5.32)

- fe ql(e) 02(e) do

The end point contributions are zero because Oql( ) 0, and either

Oql(e) or 0p2(e) is odd so that the contribution at e = 0 is zero.

Combining terms, Cq can be written

Cq = - fo eql() eq2(e) do [P-T (0q1(4) o2f€ (5.33)

+ 4 iW 'p2(€)) d 1

The term in the square brackets is just Oq (€) ¢p2(0)1  which is

zero because of the periodicity of the €(4) functions. Thus Cq 0

and it follows that Bq = 0 for all q.

Now consider

Aq = fs[ x I g I(R)_ x gI(- I g]ds (5.34)
J q2 p2 p2  q2

Again using the auxiliary vector wave functions and manipulating the

dot and cross products, Aq can be written

h(2 ) (r)(r J (Kr))'- (Kr)(r h(2) (Kr))'

aq = [v 2  2 Vq2  (5.35)
f)r

fs ( p2 " q2) ds
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Using the definition of m, the surface integral can be written

S( 2  mq2)ds = r2 f LoP2(e) p 2 (  
2 (8) q2 ( *

mq2)ds s(he) 2

1ep2(e) ' ( ) ' ( he)

+ p2( 0 q2 q2 1 ds (5.36)
, (h )2

where the metric coefficients have been used for compactness. In

order to evaluate equation (5.36) a slight digression is necessary.

Consider the following vector identity.

,• p2 V q =p2 q2 p2 "Vq2

Integrate throughout a volume like region I in Figure 1, use Gauss'
theorem and V2  q2 = - K2  P to obtain

Is6 'p2 V *q2 " nds = - K2 .9q2 1bp2 dv + 4  "p2 " V 'q2 dv (5.38)

Expanding the functions into component form, the left hand side can be

written

fs 'p2 V q2 n ds

- Rp2 (r) R4'2(r) s5OP2(p) eq2(6) t,2( ) ds (5.39)

where the contribution to the integral along the quarter plane is zero

and the surface S is now spherical. The surface integral is the

orthogonality relation for the Lame functions so it is zero unless

q = p, and the left hand side of equation (5.38) is zero unless

q = p. The first term on the right hand side of equation (5.38) can

be written
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-K2 f ~24 v=f fi~ ds) dr (5.hO)

The reason the volume integral can be separated in this way is that

dv = hr dr (he he d9 de) = hr dr ds = dr ds (5.41)

The metric coefficient hr is not a function of 6 or 0 so the surface

integral can be integrated independently of r. But the surface integral

is the orthogonality relationship again so it is zero un3ess q = p, anud

thus the first term on the right hand side of equation (5.38) is zero

unless q = p. The conclusion to be drawn at this point is that the

gradient of the Lame functions possess an orthogonality relationship

over a volume, i.e.,

fv V )p2 * V ¢q2 dv= 0 q#p (5.42)

Again using the condition on the metric coefficients, this can be

written

f V p2 •V 'cq2 dv =r (fs V p2 "V V ' q2 ds) dr (5.43)

For q # p, the volume integral is zero, independently of the radius

of the spherical volume. This implies that the surface integral must

be identically zero, and thus the gradient of the Lame functions also

possess an orthogonality relationship on the surface of a sphere, i.e.,

,s (V • q2 ) ds 0 q p (5.44)

Expandinp the rradients in component form, this can be written
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fs ( V *p2 V )q2 ds = R 2 (r) Rq2 (r) fsOp2(e) 'p2() 0q2(e) 4q2(') ds

+ Rp2(e) P2( ) Rq2(°) 'q2()] ds (5.15)

(hs) 2

Again the first term on the right hand side is the orthogonality

relationship for the Lame functions. Thus it has been shown that for

q # p,

fsp2_ p2__2_q2_+__2______ q2 q2
(h) 2  (h)2Jds

r1 2 f5(rp2 * q2 do- (5.146)

and that the auxiliary vector wae functions mq2 are orthogonal on

the surface of a sphere. Thus in equation (5.35) Aq can be written

0 q0p

Aq [ ((2) l
(2) (Kr)(r ' h2(Kr)(rr h( 2 KrAp [h v p 2  JvP2(r -v2 vpr r 2

L Kr

(5.47)

12(e) D p2 2 + (s 0'2(h0  hP2))s q p

£:3s
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Noting th&t

h(2) (Kr)(r J. (Kr))' iv (Kr)(r hv (Kr))'.p2 p2  p2 p2 ( .8)

Kr

h(2) (Kr) J' (Kr) - Jv (Kr) h (2)' (Kr)
p2  p2 p2 p2 1

K 
or)2

and writing out the metric coefficients, it is seen that

= 7 f K7 ?2::24  ( 2(6) 1 4319)
- - f k-2 cos2  p 2

i - k'2 cos2 o (0p2(6) %2(o))2 dO do

11 - k2 coS2 0 J

and thus

ap (R') = K 1v p2 (v') " "  (5.50)
Ap2

where Ap2 is the surface integral in equation (5.52)

p2 - 1J K2 Ap (5.51)

Repeating the above procedure starting with equation (5.12) and

letting B = Np (T) instead of M 2 (B), bp (R') is determined to be

J K N ' 1  Ri') a
bp (') (5.52)

Apl
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where Apl has the same form as Ap2, the only difference being that

Dirichlet functions are used instead of Neumann. Thus,

G (RR,) jK [5 5 )q2  (5.) a
q Aq2

Nq1 (R) Iq1

AqI

Comparing this with equation (5.8), it is seen that

_Mq2 (if) Mq(F)
F (gg,') = j K: (5.54)

a1  Aq2

INq1  ~l q )1

,_ _qiI 1>_I 'I

Aql

where, with a = 1 or 2,

r IT 11i- k2 cos2 6

Aq ( ) (o) W 5())2.55)

if r [ 0 '1 - k,2 cos2 ~ a qct

1 - k,2 cos 2 0
+ -(0q (8) V 2i) de d4

_qa q

1- k2 cos
2 0

To find r (R,H2) for Igl < Ii' I, the same procedure could be repeated,

this time integrating throughout a volume external to the surface S,

and letting the surface S' be at R', where i'I > iRi, or the

symmetry property of Green's functions could be used. The result is
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_q2 (R) M q2r (Rj) K (556)
Aq2

-I!
N (T) N 6,)Nql . ql- _--

Aql

A point concerning the normalization constants is worthy of

note. It is shown in Appendix A that the Aq. occur in discussing

the properties of the two-dimensional Sturm-Liouville type Lame

operator. Using the notation in the Appendix

q= < Yqc' L Yqc >  (5.57)

But,

< yqa' L Yqa >

= . qa (5.58)
< Yqc' P Yqa >

Thus, if the normalization of the Lame functions had been chosen

such that

< Yqa, P Yqa > =  (5.59)

i.e., if the Lame functions had been orthonormalized, then

Aqa = qa= q (vqa + 1) (5.60)

From the point of view of the applied mathematician, this would be an

acceptable normalization of the Lame functions. This is especially

true for the Lame polynomials. Much confusion is caused by the lack

of a standard when reading the work of various authors. The same

problem exists with the Legendre polynomials. They are well defined,



however they are not orthonormal. This is the reason for the rather

complicated normalization constant found in eigenfunction expansions

in spherical coordinates.

The normalization constants, Aqa are given in Table 6. In

order to orthonormalize the Lame functions presented in Tables 1

through 4, it is necessary to multiply each 0 and 4, function by

Aqa . These numbers are also given in Table 6.
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Table 6 - Normalization Constants

A: Dirichlet Problem

1

1' A, __ 4___

0.296 0.090 2.940 0.601

1.425 0.915 35.103 0.560
1.000 0.000 8.378 0.699

* 1.130 - o.455 14.201 0.642

2.4.80 2.670 269.941 0.423
2.000 1.500 10.050 0.879
2.290 0.215 20.797 0.776
2.000 - 1.500 10.050 0.879
2.040 - 1.705 194.581 0.423

3.495 5.440 3073.608 0.267
3.000 3.873 19.175 0.889
3.410 1.535 67.639 0.687
3.000 0.000 5.741 1.202
3.145 - 0.825 37.245 0.769
3.000 - 3.873 19.175 0.889
3.010 - 3.91o i12.967 0.330

4.499 9.225 26302.376 0.175
4.000 7.190 48.982 0.799
4.470 3.790 370.670 0.507
4.000 2.190 6.276 1.336
4.280 0.335 39.904 o.867
4.000 - 2.190 6.276 1.33
4.050 - 2.575 153.114 0.605
4.000 - 7.190 48.982 0.799
4.005 - 7.205 4648.698 0.256

5.500 14.013 206778.639 0.115
5.000 11.489 157.321 0.661
5.490 7.110 2517.012 0.345
5.000 5.196 10.424 1.302
5.499 2.110 136.722 0.715
5.000 0.000 4.265 1.629
5.150 - 1.170 62.106 0.845
5.000 - 5.196 lO.424 1.302
5.015 - 5.335 970.112 0.420
5.000 -11.489 157.321 0.661
5.000 -11.493 73566.927 0.142

-I



Table 6 - (continued) 96

v I/ i

6.500 19.805 164299.188 0.131
6.000 16.783 533.201 0.530
6.499 11.455 11646.480 0.254
6.000 9.114 23.4OO 1.157
6.465 4.850 1172.142 o 450
6.000 2.832 4.679 1.731
6.282 0.445 1300.687 0.433
6.000 - 2.832 4.679 1.731
6.055 - 3.38o 470.9o9 0.549
6.ooo - 9.114 23.4oo 1.157
6.005 - 9.160 4881.64o 0.305
6.ooo -16.783 533.201 0.530
6.00o -16.783 4271489.535 0.099

7.500 26.597 523205.875 0.105
7.000 23.075 841.478 0.508
7.500 16.820 62918.11o 0.178
7.000 14.ooo 62.554 0.973
7.492 8.695 4111996.648 0.1
7.000 6.444 7.341 1.662
7.393 2.660 1053.201 0.493
7.000 0.000 3.448 2.007
7.157 - 1.500 1947.103 0.416
7.000 - 6.444 7.341 1.662
7.020 - 6.66o 1614.970 o.432
7.003 -14.ooo 62.554 0.973
7.000 -14.010 8308.581 0.287
7.000 -23.075 841.478 0.5o8
7.000 -23.075 992383.008 o.087

8.500 34.389 203797.938 0.141
8.000 30.367 5077.147 0.345
8.500 23.191 115954.96o o.162
8.000 19.876 156.869 0.823
8.497 13.590 866869.250 0.098
8.000 10.949 14.942 1.482
8.463 5.885 2928.812 0.407
8.000 3.441 3.745 2.094
8.275 0.535 464459.938 0.113
8.000 - 3.441 3.745 2.094
8.073 - 4.170 758.318 0.557
8.000 -10.949 14.942 1.482
8.005 -11.015 1130.930 0.502
8.oo -19.876 156.869 o.823
8.oo -i9.879 6703.902 0.322
8.000 -30.367 5077.147 0.345
8.oo -30.367 902867.680 0.091.
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9.500 ......
9.000 38.66o 677.44o 0.6o4
9.500 -- --

9.000 26.751 645.618 0.611
- 9 .50 ......
9.000 16.431 37.872 1.242

9.000 7.640 5.650 1.998

9.000 0.000 2.915 2,357

9.000 - 7.640 5.650 1.998

9.000 -16.413 37.872 1.242
-9.00 - -16.4 -- --

9.000 -26.751 645.618 o.61
-9.00 - -26.8 --

9.000 -38.660 677.44o 0.6o4
9.000 -38.660 607247.125 O.110

B: Neumann Problem

1.000 0.500 16.750 0.588
o.814 - o.194 12.233 0.589
1.000 - 0.500 16.750 0.588

2.000 1.732 12o.627 0.472
1.595 0.795 9.843 0.805
2.000 0.000 20.094 0.739
1.955 - 1.552 12.89o o.818
2.000 - 1.737 120.627 0.472

3.000 3.950 1058.871 0.326
2.520 2.625 14.021 0.892
3.000 0.950 45.070 0.718
2.803 - 0.350 6.998 0.11
3.000 - 0.950 45.070 0.718
2.990 - 3.890 22.573 0.853
3.000 - 3.950 1058.871 0.326

4.000 7.211 9332.023 0.215
3.505 5.430 30.317 0.850
4.ooo 2.646 178.674 0.578
3.617 1.26o 6.567 1.263
4.000 o.oo 40.897 0.836
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3.940 - 2,315 6817 1.300
4.ooo - 2.646 178.674 0.578
3.998 - 7.195 56.527 0.771
4.000 - 7.211 9332.023 0.215

5.000 ii.494 7618 .075 o.141
4.500 9.218 8r.544 0.733
5.000 5.363 1041'.489 o.411
4.530 3.680 8.176 1.323
5.000 1.369 73.363 .o800
4.795 - 0.495 5.281 1.515
5.000 - 1.369 73.363 .o800
4.984 - 5.230 10.556 1.296
5.000 - 5.363 1047.489 o.1411
5.000 -11.491 176.504 0.642
5.000 -u1.494 76184.075 o.141

6.000 16.784 617657.477 0.090
5.500 14.012 284.757 0.595
6.000 9.165 6926.720 0.279
5.507 7.060 15.340 1.236
6.000 3.507 236.801 0.649
5.627 1.692 4.679 1.6E)
6.000 0.000 62.880 O. 904
5.927 - 3.015 4.486 1.739
6.ooo - 3.507 236.8Ol 0.649
5.997 - 9.120 26.646 1.120
6.000 - 9.165 6926.720 0.279
6.000 -16.783 637.161 0.507
6.000 -16.784 617657.477 0.090

7.000 23.076 70189.938 o.168
6.500 19.804 1031.706 0.1466
7.000 14.014 46539.142 o.186
6.501 11.440 69.934 o.914
7.000 6.708 1135.994 o.471
6.540 4.675 5.719 1.714
7.000 1.770 102.166 o.860
6.792 - 0.630 169,150 0.748
7.000 - 1.770 102.166 O.860
6.980 - 6.550 4.261 1.901
7.000 - 6.708 1135.994 O.1471
7.000 -14.002 188.385 0.738
7.000 -14.014 46 5 3 9 .14 2  o.186
7.000 -23.075 2412.174 0.390
7.000 -23.076 701895.938 O.094
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8.000 30.368 943368.000 0.093
7.500 26.597 3927.403 0.357
8.000 19.88o 294906.848 0.125
7.500 !6.816 4.848 1.904
8.000 11.036 6352.965 0.326
7.510 8.625 9.765 1.599
8.000 4.334 292.966 0.704
7.632 2.095 94.074 0.915
8.000 0.000 85.737 0.957
7.923 - 3.685 6.299 1.830
8.000 - 4.334 292.966 0.704
7.995 -10.965 5.347 1.915
8.000 -11.036 6352.965 0.326
8.000 -19.877 819.559 0.544
8.0o0 -19.880 294906.848 0.)25
8.000 -30.368 14267.483 0.267
8.000 -30.368 943368.000 0.093

9.000 38.660 221153.000 0.142
8.500 34.389 11763.660 0.288
9.000 26.752 510399.188 0.115
8.500 23.190 462.985 0.66
9.000 16.438 36518.688 0.223
8.503 13.570 36.122 1.223
9.000 8.004 1233.913 0.520
8.545 5.630 36.915 1.219
9.000 2.158 131.879 0.909
8.787 - 0.770 2369.904 0.436
9.000 - 2.158 131,879 0.909
8,980 - 7.710 8.552 1.799
9.00C - 8.004 1233.931 0.520
9.000 -16.420 9.861 1.738
9.000 -16.438 36518.688 0.223
9.000 -26.751 86.694 1.009
9.000 -26.752 510399.188 0.115
9.000 -38.660 78706.980 o.184
9.000 -38.660 221153.000 0.142



CH1APTER VI

DISCUSSION OF THE FIELDS AND CURIRENTS
FOR SOME SPECIAL CASES

This chapter contains several numerical examples of the exact

solution given in Chapter V. First, the exact fields and current for

an infinitesimal dipole source are derived. These are then evaluated

in the vicinity of the tip of the quarter plane. Several source

locations and orientations are considered. The dominant behavior

near the tip of a wide angle sector and a narrow angle sector are

also discussed. The reciprocal case of a source close to the tip of

the quarter plane is also considered, and several far field patterns

are given.

Fields and Currents for a Unit Dipole Source

The dyadic Green's functions derived in Chapter V are to be used

in equetion (5.3) in order to determine the vector E field at R due to

a current source at R'. If the source is a unit dipole source at R0,

i.e., if

Wu () = a 6('-R:) (6.1)

where a is just a unit vector at R., the E field is simply

100
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- Mq2 (Rto) aq A i n  g( q2
q LMq2  RC Aq2 (6.2a)

z (.) (Nq (Ro) "a

+ Nql ) _r > r.
Aq2

.1 ( M) )C=
J q2
q Aq2

SRN (6.2b)--ql (Ro) .a
+ N ql q1r < r 0~AqI

The H field is easily determined using Maxwell's equations,

and the properties of the M and N vectors given by equations (4.10) -

(4-13).

-II M2a

- Yo Nq2 (R) ( q2
qAq2

- Nl (Ro) • ]r
+II ( ) r > r. (6.3a)

ql Aq-

H (() , x
Wj'

--IN Mq2"

q (2 Aq2

-II (R') J r

+ Mql AqI r < r, (6-3b)



102

YO is the admittance of the medium,

Y= (6.4)

The current on the quarter plane can be found by evaluating the

tangential H field at the quarter plane. In order to do this it is

necessary to consider the even and odd parts of the H field.

Equation (6.3a) is
_e (.R). *

=II Mek2

-- -YI (2f) (..£ Ae2

-I (Mof) a =j Ne1(Ro) a(+) )oz + Me.t1(R)(

N22 Ae£I

-II NoI (o a+ M11 (, ) a(6 .5 )

A

Recalling the notation that was introduced in Chapter IV, the

subscript q is used to simplify the group of subscripts o£ . Thus if

it is necessary to identify even and odd functions, the shorthand

notation q can not be vsed and it is necessary to use the more bulky

notation in equation (6.5).

The surface curren; on the quarter plane is

(h) n ai (r, e c=, 0 or) - (r, O=r, w < 2w) (6.6)

where nis a unit normal vecor and n=y.
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Performing the calculations, it is found that Ne 2 (R) and Mel(R)

do not contribute to the current. The actual calculation is very

compi'cated because of the different unit vector directions on

opposite sides of the quarter plane, and because a point is described

by (r, 8 = r, €) on one side of the quarter plane and by

(r, 0 a v, 2% - €) on the other side. The result, however, is

obvious after one realizes that Ne12(R) and Mo(R) are composed of

Lame polynomials. This implies that these ,ector wave functions are

free space solutions of the vector wave equation (no scattering body)

and are therefore continuous at the quarter plane. The contribution

of the remaining two terms to the surface current is

.1 (2)j MI2 (Ro) a - V(V+l) h( (Kr)
-() -2K Yo F e02 () Kr

(r h 2) (Kr))' 1l + sin2  2

€ + C 44 r4 )
Kr sin

+ Ne 1 (Rc) • a ()he KrlOz, r

Ae1 . r sin € J 7

For the sake of notational economy, the eigenvalue v has not been

subscripted. This will occur whenever it is clear that the eigenvalue

to be used corresponds to an identified eigenfunction.

Equation (6.7) was derived from equation (6.3e) and is thus good

for r > re . For r < r., the surface current is
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[go£2(Bc) •a J(r
()=-2K Y, 09, eI2 )-((K+ ) Wo2

z Ao£2-t r Z

(r iv (Kr))' l + sin2  
, )

Kr sin O02

-e 1(Ro)- a ezi1(n) J,(Kr) (+ e -l(o) r r < r, 6 S
Ae 1  sin 4, z r j

The variable in equation (6.7) and (6.8) is restricted such that

0 _,< ff.

Up to this point, no approximations have been made. In principle,

equations (6.2), (6.3), (6.7) and (6.8) for E, ff, and Y can be used

to determine the exact fields and currents anywhere due to a dipole

source with any location and any orientation. Admittedly the equations

are complicated but it is practicable to use them in calculations

where the source point or observation point is no more than one or

two wavelengths from the tip. Moreover, it may be possible to develop

asymptotic expressions starting with these expansions.

Fields and Currents Near the Tip of the Quarter Plane

Consider what happens as Kr becomes very sri-ll. The E field for

ro > r is given by equation (6.2b). The W dependent terms of the

field are M .NIl() First, consider q2RI From equation
fil r q2(R) and N q()

(4.17)

-Mq2 () =v (Kr) mq2 (6.9)
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For small Kr, the Bessel function can be written

jv (Kr) ~ I (Kr)' (6.1o)

2v+l r(v+l.5)

where r(x) is the Gamma function. The lowest Neumann eigenvalue is

v 0.81,4. For this eigenvalue

-I - 081 -
M02(R) Z 0.428 (r2 (v = 0.814) (6.11)

Note that the subscript £ has been suppressed. This will occur in all

of the following equations when it is clearly understood which

eigenvalue is being used. The next highest eigenvalue is v = 1. The

two corresponding Lame functions are even, and the vector wave functions

are

K-I - r me2 (v = , P =0.5)
M Me2 R) - (6.12)

eme2 (v = 1, P =-0.5)

Next, Nql(R) is examined when Kr is small. From equation (4.18)

--I _ JV (Kr) -- (r jv (Kr))' -

Nql(R) Kr) - + rr x mol) (6.13)Kr

For small Kr

(r Jv (Kr))' [- (v+l)(ir) - l (6.14)

Kr 2v (2v+l)r(v+o.5)

The lowest Dirichlet eigenvalue is v 0.296. The corresponding Lame

inction is even, and the vector wave function is

-I -- 0.7o4Nlel(R) 0.776 (Kr) [9el(v 0296)

(6.15)+ 1.296 (rx me! (v =0.2.96))]
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The next eigenvalue is v = 1. The corresponding Lame function is odd,

and the vector wave function is

Nl(Th i - (v =1) +2 (r m c (v=l)) (6.16)3[

Trhe dominant term for Kr very small is obviously NI(R). The

normalization constant associated with this term is (from Table 6)

Ael = 2.940 (6.17)

Thus the E field very close to the tip of the quarter plane can be

written

E(R) = j K (0.26h)(Nel (Ro) • a)

[ 9 + 1.296 (r x mel) ] ir < < 1 (6.18)

where it is understood that the eigenfunctions to be used in the vector

wave functions correspond to the eigenvalue v = 0.296.

Next consider the H field. Using the small argument approximation

for the Bessel functions, and evaluating the first few terms, it is

seen that the dominant behavior of the H field near the tip is

¢_ YO (o.024)( 02
1 (!o a) Cr)

- o 
1 8 6

2[ £ + 1.814 (r x ;', 2 ) ] Kr < < 1 (6.19)

The eigenfunctions in this equation correspond to the eigenvalue

v = 0.814. The normalization constant is

A02
= 12.233 (6.20)
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The dominant term in the surface current is the same as for H

and is given by

=II - r-o86J(R) =-2 K Yo (0031)(M (Ro) * a)(rJ(R) 02

o2(4) € + 1.228 sin , O2(¢) r Kr < < 1 (6.21)

Equations (6.18), (6.19), and (6.21) give only the singular

components of the fields and current near the tip of the quarter

plane. These equations govern the dominant field and current behavior

whenever they do not vanish. For certain source locations and

orientations a N and a M rill be zero and it will be necessary

to investigate other terms in the field and current expansions. This

will bo done later.

Next, the singular fields are examined at the edges and on the

surface of the quarter plane. From equation (6.18), the E field, for

a constant value of r is

A eel(e) el( r

B 11 + sin 2 4 Oel(O) ¢ei(€)
+sin 2 e 4 sin2 4'

B 1 + sin2

+ Isin2 e + si Oel(e) ¢el(O) 0 Kr < < 1 (6.22)I sin2 e + sin2 4

where A and B are constants. The edges of the quarter plane correspond

to (e = 0 = 0) and (o = , = n). Approaching the edge on the

0 sector (see Figure 8), it is seen that the r component goes to
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zero, the 0 component is zero, and the 6 component goes to infinity.

Similar behavior is found for the edge (a = .i, = i). Approaching

the edges from the quarter plane itself (0 = .), it is seen that the

r component is zero, the € component is zero, and the 0 component

goes to infinity (see Figure 9). This edge behavior is consistent

with the results from half-plane theory. On the quarter plane

itself, the parallel (r, 4) components are zero, and the perpendicular

(e) component is finite except at the edge.

From equation (6.19) the H field is

= C 002(e) ¢'2()r

D [1 + sin2 4
+ 002(e) 4 )2(*)

sin2 0 + sin2 '

D 11 + sin 2  e
002(e) ¢o2(¢) e

[sin2 6 + sin2

Kr < < 1 (6.23)

where C and D are constants. Approaching the (e= t, 4 =0) edge

from the 4 = 0 sector, it is seen that the r component is zero, the

$ component goes to infinity, and the 0 component is zero. Similar

behavior is found for the other edge. Approaching the edges from the

quarter plane itself (0 = r), it is seen that the r component goes to

zero, the 4 component goes to infinity, and the 0 component is zero.

This edge behavior for the H field is also consistent with half-plane

theory. On the quarter plane itself, the parallel components (r, 4)
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z

Fig. 8. Unit vectors on the =O sector

Fig. 9. Unit vectors on the O~tr sector
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are finite except at the edges, where the r component is zero, and

the component is infinite. The perpendicular component (0) is zero.

It was mentioned in Chapters IV and V that the electromagnetic

fields must satisfy edge ani tip conditions. These conditions are

necessary for uniqueness, and they do not occur in the case of

scattering bodies with well defined surface normals. A good summary

of this subject can be found in Jones [4,19]. Jones describes the

conditions imposed by several authors and concludes that although

their viewpoints are different, their results are in agreement. For

the quarter plane problem, perhaps the simplest way of stating the

condition is to require that no energy be radiated from the tip or

edges. Thus the condition can be reduced to satisfying

Re 'x? T ds = 0

on a surface enclosing the tip (or edge) as this surface shrinks to

the t~n (or edge). This can be done by inspecting the order of the

singularities of the proper field components as the edges and tip

are approached. The tip and edge conditions are satisfied by the

solutions given here. ..I

From equation (6.21), the surface current on the quarter plane

is
-} ^ l +sin 24 * ^

J(R) = E 0() ^ + F 1 sin ()r Kr < < 1 (6.24)02 sin4 402(

Figures 10, 11, and 12 are sketches of the r and 4 components of the

surface current, and the total surface current flow near the tip of

the quarter plane.



Jr

(From equation 6.24*)

L J,

0 7r

Fig. 11. Variaticn of J for -r<<l

(From equation 6.24)
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Fig. 12. Surface current flow near the tip of the quarter

plane (From equation 6.24)

,;

4c
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All of the fields end currents just described are the dominant

terms whenever they are not zero. In order to determine when these

terms vanish, it is necessary to examine the source terms. The source

term for the E field is

-II -- A 0.384 h,2) -(2r))=1 0.296(r,

Nel (Ro)e],a ei(8,) (el4o)roKr,

+ (r, (2)
0.296 (Kro))'

Kro Isin 2 0 + sin2 00

(1 + sin 2 *O eel(eo) 0l(o) *o a

11 + sin2 0o . 11(0o) @el(@o) ao " ) (6.25)

First, consider a source in the r~direction, i.e., a = r." Then
(2)(o.384) h0 .296 (Kro) Oel(Oo) el(o)

Nel(R,) • a =o (6.26)
icro

In general, this term is not zero for any 60 or 00 except of course

e0 = n. Next consider a source in the $o direction. Then

- (ro ho 296 (Kr.))' 1 + sin2 O' Qel(0) O e(jo)

Nel(R :) a =:
arc I[sin 2 e7, + sin 2 *

(6.27)

The eigenfunction *el(4o) is of the form

4el(o) B2m cos 2m 4o
m=O

so that
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llh4

m1l

Thus this term is zero for 0 = 7r/2, 3w/2, which corresponds to the

z = 0 plane. The vector a = is perpendicular to this plane. These

results imply that equation (6.18) for the E field close to the tip of

the quarter plane is not valid for this particular source location and

orientation. Equation (6.27) is also zero for *o = 0, r. A source in

the 0 direction at 0o = 0, ir is a source in the plane of the qudarter

plane (y = 0 plane) but not on the quarter plane itself, and oriented

perpendicular to it. It is not surprising that the current vanishes

for this case, since this type of source produces no scattered field.
A

It is also zero for 0o = r. Next consider a source in the 0o

direction. Then
h( 2 ) 

2

N (r, hu.)296 (Kr 0)) [17 sin2 c eel(Oo) el(0o)
Kr Isin 2 0o + sin 2 *o

(6.28)

This term is zero for 0o = 0. Again this corresponds to a source

located in the plane of the quarter plane and oriented perpendicular

to it; on the other hand, equation (6.28) is not zero for a source on

the quarter plane itself.

Since equation (6.18) does not describe the dominant E field when

the source is in the z = 0 plane and oriented perpendicular to it. it

is necessary to look for the next most dominant term. This term

corresponds to Ne(R) with v 1.130. The E field is
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E(R)=jK(0.011) (N(R o ,  a)(Kr)0 [.el + 2.13 (r x

Kr < < 1 (6.29)

The normalization constant is

Aei = 14.201 (6.30)

Note that this field is not singular at the tip. The edge behavior,

however, is the same as before.

The source term for the dominant H field and current is

-II( 2 h 14 (K r. )

M 2  " Isin 2 8, + sin 2 €o

IiY* sin2 0 0o2(00) o2("

- 1 + sin2  o 002(80) '2(€) 6, - a 3 (6.31)

This term is, of course, zero for a source in the ro direction. For

a source in the o direction,

-II() a h(2) (Kr) 1 + sin2 00 002(60)~)* =2 (6.32)MOO(O) a ho.84 (K,,)Isin2 e, + sin 2 - 6-2

This term is not zero, in general, for any source location except

= 0, which has already been discussed, and of course for 8o = I.

For a source in the 60 direction,

--II - (2) 1 + sin 2  40 002(00) 0()

M( a = - n0.81h , ____)  (6.33)

sin2 00 + sin2 4o
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This term is zero for o = f1/2, 3v1/2. Thus equations (6.19) and (6.21)

do not give the dominant behavior of the H field and current when the

source is in the z = 0 plane and in the %0 direction. Since the source

term is also zero for a source in the ro direction, it is zero for any

source in the z = 0 plane and oriented parallel to it. This is

r.,asonable when one considers the symmetrical nature of the source and

the antisymmetrical nature of the current shown in Figure 12. The

dominant current behavior for this ty-pe of source corresponds to the

eigenvalue v = 0.296. The current is

-II - )0296
2 KYO (0.172) (Nel(Ro) a.)(r) e()

sin €

Kr <<1 (6.34)

The corresponding H field is

!-I I - A 0.9
H (0.26)(Nel ) M)elr)0.296

Kr < < 1 (6,35)

These terms are not singular at the origin. The edge behavior of the

H field is the same as before, however, and is consistent with half-

plane theory. The surface cu"rent is in the r direction only, and

goes to zero at the tip. Its behavior for Kr < < 1 is sketched in

Figure 13, and tie current flow is sketched in Figure 14.

The dominant fields and currents near the tip of the quarter

plane for the various source locations are summarized on pages 118,

119, and 120.
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Fig. 13. Variation of J for Kr<<l (From

equation 6.34)

Fig. 14. Surface current flow near the tip of the quarter plane(From equation 6.34)
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Summary: Example 1

y
Source,

x

z

Fig. 15. Source in the z=O plane and
perpendicular to that plane

K(0)=j(O.Oi1) (Ige(Ro) •)(Kr) ° 13 [Tel + 2.13 (x el)

v 1.13 , Kr < < (6.29)

E(R) =-K Yo (0.024)(mI02 (R.) a)(Kr)

['f2 + 1.814 (Axm0 2) v= 0.814 , Kr < <1 (6.19)

022

J(R) -2 ,:Yo (o.o31)(M CR() " a)(Kr) - ' a

1_ + sin2 0'
2() + 1.228 s I (6.21)

v=0.814 Kr < <i
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Sumary: Example 2

Source-*

* y

x

/
Fig. 16. Source in the z-O plane and

parallel to that plane

(W) K (o264)(- (Ro) -)(Kr)-° ' °

tel + 1.296 (rxre 1 ) x v 0.296 ,Kr < <1 (6.18)

Y (0.264)(ii el)(r)0 296 -

v 0.296 ,Kr < < 1. (6.35)

2KYo (0.172) -II - (Kr)0.296
_____(lie 1(Ro) " )(*ezr)

sin *

v =0.296 ,Kr < < i(6.31)
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y

z

Fig. 17. Source location and orientation
arbitrary to the extent that it is not

in the z=O plane

K (0.264)(Nei (Ro) • (r) 0  4

[ -el + 1.296 (6 x -ei) v V 0.296, Kr < < (6.18)

,KY ,ii , -. 86

( -K Yo (0.024)0( o(To) a)(Kr)
02

[ £2 + 1.814 (r x 0 2 ) v = 0.814 ,Kr < < (6.19)

(R) =-2 K YO (O.031 )(M.-(1o) " )(0r)"°486

[-.*2(.) * + 1.228 )  (6.21)

v 0.814 , Kr < < 1
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Fields and Currents Near the Tip of Anular Sectors

,ith k2 = 0.1 and k2 = 0.9 for a Unit Dipole Source

The dominant behavior of the E field in the vicinity of the tip

is determined by the lowest even Dirichlet eigeuvalue, and the

dominant behavior of the H field and current is governed by the lowest

odd Neumann eigenvalue. In Chapter III, these eigenvalues were

determined for k2 = 0.1 and k2 = 0.9.

When the parameter k2 = 0.1, the corner angle of the plane angular

sector is 0.795n, thus as k2 becomes smaller the E field behavior

should be similar to that for the half plane. For k2 = 0.1,

Vel = 0.407, and it is evident that (Kr)ve l- , corresponding to

equation (6.18), is approaching (Kr)- 0 "5 as the plane angular sector

approaches a half plane. In order to compare this singular part of

the E field with half-plane theory, consider the z = 0 ( n = /2, 31T/2)

plane. In this plane the unit vector r corresponds to the radiaL

vector o in cylindrical coordinates. The unit vector 0 in the sphero-

conal system is the same as -z in the cylindrical system, and the

sphero-conal unit vector e approximates the cylindrical unit vector 4.

(See Figures 18 and 19. ) Only the r=p anj 0 components of equation (6.18)

exist in this plane. Thus in the cylindrical coordinate system, the

singular field3 are the p and 4 components. They vary as (KP)-1/2,

which agrees with half-plane theory. For a general discussion of field

behavior at an edge, see Jones(19].

_ t The dominant currentbehaves like equation (6.21). The eigenvalue

ccrresponding to this equation for k2 = 0.1 is v0 2 = 0.613. Thig

eigenvalue is also approaching 0.5 as k2 approaches zero. Thus the r

dependence of the dominant current is also approaching (r)l- 1/2.
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y

z

Fig. 18. A plane angular sector with a large
corner angle and the unit vectors in the

z=O plane

Y$

z

Fig. 19. A half plane in a cylindrical
coordinate system and the unit vectors

in the z=O plane
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A sketch of this current is given in Figure 20. The current is

predominantly pa: -l.e! to the edge and varying approximately as

(KP)-112 , which is in agreement with half-plane theory.

The above discussion is rather qualitative and by no means

describes the exact behavior of the fields and current as the plane

angular sector becomes a half plane. The purpose of the discussion

is only to indicate that as k2 -* 0, the various field and current

components do appear to be approaching the correct half-plane theory,

and that the half-plane problem could be studied if desired.

The lowest even Dirichlet eigenvalue and the lowest odd Neumann

eigenvalue were also determined for k2 = 0.9. This corresponds to a

plane angular sector with a corner angle of 0.2057r. This case will

not be considered in detail but will be used only to indicate the

variation with r of the fields and currents near the tip of a sharp

sector. The eigenvalue vel = 0.171, so that the dominant E field,

which varies as (Kr) vel-l, is approaching (Kr)- I . The eigenvalue

V02 = 0.970, so that the dominant H and J, vhich vary as (Kr) " 02 - l,

are approaching (Kr)0 . These are only limiting values, because the

ve;tor wave functions corresponding to these eigenvalues go to zero

for k2 = 1. The reason for this is that the scattering body is

becoming smaller as k2 approaches 1, and for k2 = 1 there is no

scattering body. The singular terms do not exist for this case.

The behavior of the dominant fields and currents is tabulated in

Table 7 for k2 0.1, 0.5, and 0.9.
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x

Fig. 20. Surface current flow near the tip of
a plane angular sector with a large corner

angle (From equation 6.21)

Corner Angle 0.205Tr 0.500r 0.7951

k2  0.9 0.5 0.1

Vel 3.171 0.296 o.407

Vo2 0.970 0.814 0.613

E (Kr)-0.829 (Kr)-0.704  (Kr)-0.593

H, (Kr)- 0 . 0 30  (r)-0.1 86  (Kr)-0.387

Table 7 - Behavior of Dominant Terms of E, H, and

J for Different Corner Angles
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The E Field Near the Tip of the Quarter Plane

for a Plane Wave Incident

In order to compare the present solution with earlier work, the

illumination of the quarter plane by a plane wave will be treated.

Consider what happens as the source is moved far from the tip, i.e.,

as Kr0 4 . For this case, the large argument approximations can be

used for the Hankel functions. In example 1 on page 118, the

source term for the E field is

(2)
(r, hl.1 3 (er))' ei(Oo) Oel(Oo)NeI(HO) " 0 1.414 ( 6.36)

icr0  II + sin2 eo

Correct to order 1/iro, the re dependence is

(ro h
(2 ) , ))' e(Kr,56 5,01.13 _ eJr 56 e-J~r,

*(6.37)
Kro Kr,

and the E field due to this souce can be written

(W)= j(O.107)eJO565w Ei 0el(eo)$€l(4o)(ir)0 13

11 + sin2 6,

E 'el + 2.13 (r x mel) r / = 12, 3-/2,

v= 1.13, Kr < < 1, ir 0 > > 1 (6.38)

where

eF 1 r =(6.39)

4n r,

is the incident field at the tip. Ei also can be considered as the
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field of a plane wave at the tip. In particular, consider a plane

wave propagating in the -y direction with the E field in the z

direction. The total field in the vicinity of the tip is

) = J (0.096) Ei eJ 56 5  (Kr) 0 "1 3 (Tel + 2.13 ( x mel))

, =1.13, Kr < < l, Kro  > > (6.4o)

If the plane wave is propagating in the -x direction with the save

polarization, the E field is

) = (0.078) Ei eJo5 65(Kr)o 13 (Tel + 2.13 (x k1))

V: 1.13, Kr < < 1, Kro> > 1 (6.41)

Next consider example 2. For a plane wave propagating in the -y

direction with x polarization, the total E field in the vicinity of

the tip is

() j(1.065) Ei e 0"lhSr(Kr)-0"704 ( +e * 1.296 (r x mel))

v 0.296, Kr < < 1, Kro > > (6.42)

Equations (6.38)-(6.42) really yield no new information concerning

the behavior of the fields very close to the tip. For the dominant

field terms, the range of the source for any of the three cases

considered on pages 118, 119,and 120 affects only the amplitude and

not the form of the fields. However, several authors have studied the

behavior of the scalar fields near the tip for scalar plane wave

illumination. Braunbeck(5] considered the form of the eigenfunction

r



127

solution of Laplace's equation. Using physical reasoning,, he

Adc#rmined that the solution varies F.s rc (c < 0.5). Radlow(31

used an integral transform technique to solve the scaJar problem. He

interprets his result as being the scattered E field due to an incident

plane wave with the E field parallel to the quarter plane. He estimates

that the E-field varies roughly as r 0 " 2 5 . Radlow also mentions

another calculation in which Noble estimates the variation to be r 0 "3 .

The eigenvalue in the present paper which corresponds to these

exponents is vel = 0.296. Radlow's treatment of the scalar problem

appears to be correct and the results ha obtins are a valuable

contribution to this problem; however his interpretation of his

solution as one component of the electric field is clearly in eyTor.

The vector solution given here shows that the scattered field depends

on the polarization of the incident plane wave and that it varies

as rV - .

Far Zone Fields and Currents Due to a Unit Dipole

Source Close to the Tip of the Quarter Plai

Next the reciprocal case is studied; i.e., the far zone fields

are determined for the source located close to the tip of the quarter

plane. Perhaps the simplest way to determine these fields is to start

with equation (6 .2a). Let r. be very small and use the small argument

approximation for the Bessel functions with argument Kr,. Then let r

be very large and use the large argument approximation for the Bessel

functions with argument Kr. The procedure is essentially the same as

before, except that r and r. are interchanged.
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Equation (6 .2a) is

-I A
Mq2()

qI ( 12 () aq

-qi(T) ( - ) r r0  (6.43)
Aql j

The source terms are examined for r. very small, and tt is seen that

the dominant term is

jv(Kr 0 ) -- (r. JV(Kr))'

*I(o)•a .a+
NeI  £el a+

Kr, Kr,

(rox mel) a a (6.44)

with v 0.296. Using the small argument approximation for the

Bessel functions, this becomes

-I

(R) • a 1.236 (Kr (el a + 1.296

(rox e) • a (6.45)

The R dependent term is

II h2)(Kr) - (r h(2) )'
el (R)  K! Tel + (rx mel) (6.46)

Using the large argument approximations for the Hankel functions and

neglecting terms of order higher than l/Kr, this becomes

-II .O14 8 T eiI~r A -

NI1 (T)- eJ -r (r x mel) (6.47)el Kr ml
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Now consider hhe source to be located in the z = 0 plane and in

the -bo direction. This corresponds to example 2 on page 119. In

particular, let the source be located on the line eO = r/2,
A A

a o /2, (-O0 = x). The E field is

E( " i 2.15 e0"148 r -0.7 0 4 e-lr
E('R) - j 2.157 e ( cr. (r x Mel) (6.48)

In the z = 0 plane this is

( 0.2.30 0 "70 e-Jir
u3r eele) e (6.49)

This pattern is normalized to unity at 0 = n and plotted in Figure 21.

C. T. Tai[201 has computed the pattern in this plane for the same

source but with a half plane scattering body. The two patterns are

essentially the same. As a matter of fact, the pattern has the same

general shape for any sector angle provided Kro < < 1.

In the x = 0 plane, the E field is

1666 eJO.1 4 8(ro )-0.704 e-Jcr

F ~AA
e() +(0.5hO) el() e04' +(050 (6.50)

1 sin2

Both components of this pattern are plotted separately in Figures 22

and 23. These patterns are normalized relative to Figure 21. Note

that the magnitude of E4 in Figure 22 is quite smali, in fact the

peak amplitude is more than 20db down from the peak amplitude of the

field in the z = 0 plane.

*
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The y = 0 plane is composed of four sectors, 4 = i, 0 = 0,

= 0,2n, and 0 = z. For 0 = 0, the E field is

- J(2.157) ej0"i 48 ( r ) - 0 " 7 0 h  e r

ll+ sin2 e 0ee (e) ;(6.51)

sin 6 e 0

For e =0, the Efield is

,(T) j J(2.157) e Ol~(r) - 0 . 7 0 4 e-47r

11 + sin2 0 %()0(.2

Isin 41

For = ir, the E field is given by equation (6.51). The fie]ds for

0, 6= 0, and = are all parallel to the y 0 plane. For

0 = f, the parallel field is of course zero. A field perpendicular

to the quarter plane does exist, however. It is

( J(l.06)(Kr )-0.70) ejo.148r e-  el() 0 (6.53)41rr Isin f1

This field exists on both sides of the quarter plane, the E vectors

pointing either into or out of the sector on both sides. The patterns

given by equations (6.51), (6.52), and (6.53) are normalized relative

to Figure 21 and plotted in Figure 24. Note that the edges of the

quarter plane appear to have a guiding effect on the field. This

might have some useful applications.
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The dominant far zone current is

jo.148(r) -O704 ej Kr

J(R)"-2j Yo (1.4o6) e (Kr,)4

sin

At a constant r, the behavior of J(R) is the same as that shown in

Figure 13. Equation (6.3h) is valid for the current near the tip

due to this source, so Figures 13 and 14 show the behavior of the

current there. Notice that the current in the far zone is decaying

as 1/r and the current near the tip is varying as r0"296 ; both

currents have the same behavior with respect to 4.

Next, consider the source location to be on the quarter plane,

still in the z = 0 plane and still in the -Bo(Y) direction. This

source corresponds to a vertical dipole on the quarter plane and

close to the tip. The only thing that is changed is that Oe = w

instead of v/2. Equations (6.48)-(6.54) are unchanged except in

magnitude. Multiply each of these equations ty (2.21) to obtain the

far fields and current for this source. -igures 21-24 give the

patterns. Actually, these figures give the patterns for any source

located in the z = 0 plane and parallel to it, and very close to the

tip of the quarter plane. Of course, the amplitude of the field is

zero for the obvious case of a source on the quarter plane and

parallel to it. The amplitude is also zero for the source on the x

axis and oriented in he y direction. This is the configuration that

produces no scattered field. In Figures 21 to 24 it is interesting
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to note that the- magnitude of E increa' es as the electric current

dipole approaches the tip. The domiuant term of the electric field

for these cases is entirely due to currents 4nduced on the quarter

plane. Thus E can be interpreted as a field scattered from the

quarter plane due to a current dipole in close proximity to the tip.

Now consider the source location shown in example 1 on page 118.

Tiet the source be in the z = 0 plane and perpendicular to it. In

particular consider a source in the -;, direction and on the *O = n/2,

ec = 7r/2 line (-00 = z). The dominant term for the E field corresponds

to the eigenvalue vel = 1.13. The far zone E field is

E(R) J(0.199) ej0"565w(ir )0"13 e-Jr(r x (6.55)

In the z =0 plane this is

(.J(0.291) e0"565w(Kr) 0 "13 eJ~r eel(e) z (6.56)

h r J l+sin2 0

This pattern is no'-,ized to unity and plotted in Figure 25. The

pattern in Figure 25 iLso agrees with Tai's half plane pattern,

which is to be expected, because the general pattern shape is good

for all sector angles.

In the x = 0 plane, the far zone field is

i0. 1  ri E(R) "-J(0.243) ei0"565w(ro0 13 e-Jr

[ 0.332 $el() e

fel() 0- (6.57)

22
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Both components of this pattern are norme!Lized relative to Figure 25

and plotted separately in Figures 26 and 27. The quarter plane

appears to have very little effect on Figure 26. The pattern in

Figure 27 is of a cross-polarized field and is down about 10db from

the normally polarized field.

In the y = 0 plane, the far field for the = 0 sector is

JO 565%(ro)0"13 e-jKr

e (0r0) 1) e
4nr

in8 el(e) (6.58)

sin e

For the e = 0 sector, it is

()'F J(0.199) eJ05
65(Kr )013 e-JKr

41rr

1 + sin 2

,i €ei(w (6.59)

Isin 4'

For = i, the field is given by equation (6.58). These fields

behave in the same way as in the previous exampl., i.e., they are all

parallel to the y = 0 plane. For e = r, there is a perpendicular

field given by

E(R) ,- -J(0.195) e J0"5651t(Kr,,) 0....- Dl (6.6o)
4ar Isin 01

Again, this field exists on both sides of the quarter plane, the

E vectors pointing either into or out of the sector on both sides.
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The patterns given by equations (6.58), (6.59), and (6.60) are

normalized relative to Figure 25 and plotted in Figure 28. Again

note the guiding effect of the edges of the quarter ple.e.

The current is

jO.565(r 013 e-JK r

J(R) 2 J Y (0.195) e 55(r)"

(6.61)

sin

At a constant r, the behavior of J(R) is similar to that shown in

Figure 10. Near the tip, equation (6.2h) is valid for this source,

so Figures 10, 11, and 12 show the behavior of the current there.

The current in the far zone is decaying as 1/r; the current near the

tip is singular, varying as (Kr)- 0"1 8 6.

One other source location is considered corresponding to this

case. Let this source be located on the x axis and oriented in the

z direction. Equations(6.55)-(6.61) have the same form, only their

magnitude being changed. Multiply these equations by (0.819) to

obtain tne far fields and currents for this source. Figures 25-28

give the patterns for this source and, in fact, for any source in the

z = 0 plane and perpendicular to it, and very close tc the tip of the

quarter plane. Again it is mentioned that the amplitude c' the field

is zero for the obvious case of the source on the quarter plane. In

Figures 25-28 it is interesting to note that the magnitude of E

decreases as the electric current dipole approaches the tip. The

dominant term of the electric field for these cases again is entirely
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d'; to currents induced on the quarter plane, and E can be interpreted

as a scattered field for these cases too.
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CHAPTER VII

CONCLUDING REMARKS

In this report a rigorous, general solution for the diffraction of

an electromagnetic wave by a perfectly-conducting plane angular sector

is derived in the form of a dyadic Green's function. Thus, for example,

the excitation of the plane angular sector by neighboring antennas or by

slots in the sector can be determined. This p'.oblem has not been solved

previously and although formal solutions to the corresponding scalar

problem exist, no numerical results have been presented.

The dyadic Green's function is expressed in terms of a complete

set of vector wave functions of the sphero-conal coordinate system. The

vector wave functions contain Lame' functions, which have been studied

numerica'.ly in the case of the quarter plane; the results are presented

in tables of the Lame' functions and their associated eigenvalues.

Except for the Lame polynomials, the Lame' functions and bheir eigen-

values have not been tabulated previously.

Numerical results for the behavior of the fields and currents near

the tip of the quarter plane are obtained and compared with estimates

and conjectures made by other authors.

The patterns of electric current dipoles very close to the tip are

presented. In the perpendicular plane of symmetry, the pattern is the

same as that of the half plane similarly excited. The patterns in the

vicinity of the edges of the quarter plane indicate that a substantial

amount of energy is guided away from the source along these edges. In

general, a dipole very close to the quarter plane tip excites a strong

surface current flow along the edges and near the tip; consequently,

14h
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the* patten of the electric current dipole is severely altered by the

presence of the quarter plane.

The examples that have bean given are-actually quite simple. They

are restricted such thnat either the field point or the source point is

very close to the tip of the quarter plane; in fact, so close that only

the first or second term in the expansion is used. From the tables in

Chapter III it is seen that approximately 200 terms of the vector wave

function expansion have been computed. Using these results it should

be possiblo to calculate the fields of sources up to one wavelength

from the tip with good accuracy. At this distance it may be possible

to determine the diffraction coefficient approximately and thereby

extend the solution by means of the geometrical theory of diffraction

so that the fields of sources remote from the tip can be calculated.

All of this, however, must await future work.

[
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APPENDIX A

THE SELF-ADJOINT AND POSITIVE DEFINITE
PROPERTY OF THE TWO-DIMENSIONAL

STURM-LIOUVILLE OPERATOR

The differential equation of interest can be written

Ly X p y 0 (Al)

where the Sturm-Liouville operator is

1 i11I k2 cs

L= - - t i - cos26 - ) (A2)

cos 2ll k2 os2e

and the weight function is

k2 sin2 6 + k'2 sin2  (A3)

1 -k 2 cos2 e  F-k'2 cos2

Let y be an eigenfui'ction

y = 0(e) €(P) (Ah)

corresponding to an eigenvalue

x = v(v+l) (A5)

1)46
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Equation (Al) is the same as equation (3.5). The weight fluction is

the same p defined by equation (5.29).

The self-adjoint property is defined by

< w, L y > - < y, L w > =0 (A6)

where < > denotes a scalar product, and y and w are eigenfunctions.

<w, Ly> f f [ k2cos2 -)

-1 - k'2 cos
2 o

+ - ( L- k, cos2 o de do (A7)

T -k2 cos2 0 
]

Performing the differentation and rearranging the integrals, this can

be written

< W, L y > = - 1 f0i -k2cos2 c w -y
, !-yk,2 cos 2  0 L 1e 2

k2 cos 0 sinO ay 1

+ e d d - f
il -k2 cos2 k2 cos 2 e

a% r k'2 cos sin ay
f 1l - k' 2 cos 2 4w w + w" do dO (A8)

1 - k,2 cos2 ) j

Integrating the first term of the first 0 integral and the first term

of the second 4 integral by parts, this becomes



A

Tr 1 y e=w

<w, L y > -f Fi [ - k2 cos20 V

F[ - [' se 0 O

1 0 I -k 2 cos 2  e~ de1 dI - k'O 1I  2 3ws287r
11-k Cos = _ i 2 cs (L)())dO de

3o f7cos 4, (-) (-) do1 de

(A9)

For both the Dirichlet and the Neumann problems, there are four

possible combinations of w and y. Either they are both even, both

odd, w even and y odd, or w odd and y even. For all of these

combinations for both problems, the endpoint contributions are zero,

or the entire integral is zero. In any case, < w, L y > can be

written

< w, L y > = fI k 2 cos2 4 3 39

1 - k' 2 coS2 (.w).3 y1
+ - 4, 4, dO do, (AlO)

1 - k2 cos
2 0

It is easily seen from the symmetrical nature of the equation with

respect to w and y, that it is also equal to < y, L w >, and therefore

< w, L y > = y, L w > (All)

and L is a self-adjoint operator.
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In order to determine the positive-definite property of L,

consider equation (Al). Scalar multiplication by y yields

<y, L y > x (A12)
<y, P y >

where y is the eigenfunction corresponding to the eienvalue X.

IT I y2 (k2 sin 2 e + k'r sin 2 *)
<y, P y > LI f . . dO do (A13)

f- 1 l-k 2 cos 2 e l-k'2 cos 2 ¢

IT [1 - k2 cos2 6 3y 2<y, Ly>= j f .
- 0r Ll - k'2 cos2 *

+ [I - k'2 cos 2  (3)2 dO do (Al4)

1 - k2 cos 2 6 ]
As a point of interest note that

< y, L y > = A (A15)

where A is the normalization constant employed in the dyadic Green's

function.

Inspection of equations (A13) and (AI4) shows that the integrands

are always positive and consequently

b < y, L y =A> > 0 (A16)

< y, P y >
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Thus the operator L is positive definite and X is always greater than

zero. Recall that A = v(v+l) so that equation (A16) implies that

V>0 (A17)

or

V < -1

Note that equation (Al) is synnetric around v =-1/2, -that is, the

differential equation is the same if v is replaced by -(v'.L). In

other words, for v =-0.4 or -0.6, or for v = 0 or -1, or for v = a

or -(a + 1), the differential equation is the same, and consequently

the solutions are the same. Thus, the eigenvalues, v, need to be

considered only for v > -1/2, or for v < -1/2. For convenience,

v > -1/2 is chosen. As a result of this choice and equation (Al7),

only positive values of v occur in this analysis.

4,



APPENDIX B

DETERMINATION OF THE EIGENVALUES

It is stated in Chapter III that the eigenvalues are determined

by simultaneously solving two continued fraction equations. The

purpose of this appendix is to explain how this is accomplished.

Consider the even Dirichlet problem. In order to have solutions

of equations (3.21), it is necessary that the eigenvalues satisfy

equation (3.26). This equation is an infinite continued fraction

containing two vnknowns, v and h. For a derivation of this equation,

the reader is referred to Ince's paper[10]. The difficulty here is

that the recurrence relations have no starting point. The coefficient

subscripts approach both plus and minus infinity. Ince has managed to

determine a differential equation which must have the same types of

solutions as the ones used here, but with solutions that can be

written as series starting with A0 and going toward A.. In this

way, the recurrence relations can be written as a matrix equation and

a tractable determinant can be identified. Diagonalization of this

determinant leads to the continued fraction equation (3.26) which is

written here as equation (Bl). An eigenvalue equation will be derived

in detail later to illustrate this procedure.

151
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1 + k2  (--i) (2v+3) k2/9
h - A

4 1 + k2 - iffh/9

16 (2v-3) (2v+5) k2/225 36 (2v-5) (2v+7) k2/1225

+ 1 + k2 - 4h/25 + 1 + k2 - 4h/49

4r2 (2v-21ri) (2v+2r41) k2/(4r21)
2

4h
+. ........ + 1 +k 2 - +r. .

(Bi)

and V is given by

p = h - v(v+l) k2  (B2)

The conventional notation for a continued fraction expansion is used

here, i.e., the term following the lowered plus is added to the

denominator of the preceding term. The dummy index r is simply an

integer. The continued fraction terminates for v equal to half

integers. For v = 1/2, h is constant. For v = 3/2, the equation is a

second-order polynomial with two roots; for v = 5/2, it is a third-

order polynomia1 with three roots; etc. Actually, there are an infinite

number of roots for each value of v. For example, for v = 1/2, the

equation can also be satisfied by equating the entire denominator of

the second term to zero; for v = 3/2, the denominator of the third

term is zero; etc.

For v = 1/2; h = 0.375, and p = 0. This gives one point on a

plot of p versus v. For v = 3/2, the lowest root is h = 1.009 and

p = 0.866. If values of p can be determined for v between 1/2 and 3/2,
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it will be possible to plot a curve of V versus v for the lowest root

of equation (BI). This is done in the following manner. For v = 0.6,

a value of h between h = 0.375 and h = 1.009 is assumed. The first

100 terms of the continued fraction are evaluated for this (v, h) pair.

If the difference between the left hand side and right hand side of the

equation is greater them 10 - 2, the value of h is increased or decreased

by 10-2 and the continued fraction is evaluated again. This is repeated

until either the difference changes signs or the magnitude of the

difference is less than 10-2. When this occurs, h is increased or

decreased by 10-3, The evaluation is continued until the difference

changes signs or the magnitude of the difference is less than l0-3.

When this occurs, h is incremented by 10- 4 . This time, when the

difference chiages signs or its magnitude is less than 10- 4 , the 3ast

value of h is assumed to be correct. The value of U is computed and

another point is added to the plot of U versus v. The value of v is

then increased to 0.7 and the process is repeated again. By incre-

menting v in increments of 0.1 between v=0 and v=9 and finding p for

each incrementation, a plot of versus v is obtained. The super-

script 1 on V is used to indicate the lowest root, and the subscript 8

indicates that it is a root of the 6 equation. Table 8 gives the

values of U8 for v = 0 to 9, k2 = 1/2, and Figure 29 shows the curve.

Curve p is obtained by starting with the second root at v 3/2.

* This curve is computed in the same way as curve pl. Note that the
fe

second root of equation (Bl) for v = 1/2, which can be obtained by

equating the denominator of the second term of equation (BI) to zero,

can also be obtained by continuing u2 back from v = 3/2 to v = 1/2.
e

I!

I;
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This is mentioned only to indicate that all of the v's which are roots

for each value of v can be obtained by using this method. It is seen

later that it is not necessary to determine all of the roots for each

value of v.

To be certain that u2 is the curve of the second root and not the

third or fourth, it is necessary to investigate the area between curves

Pi and v2. The same procedure is used to find h for a fixed value9 6
of v. It is found that there are no values of h lying between curve

i and U2 that will satisfy equation (Bl). It is also found that there1 

2
are no roots lying beneath curve p! and thus p and P2 are actually the

curves of the first and second roots of equation (Bl).

The rest of the roots are found in the same way and are tabulated

in Table 8 and plotted in Figure 29.

Some computational difficulties arise in computing the higher

order roots. The continued fraction varies rapidly for assumed values

of h close to the actual value, and the root is sometimes difficult to

find. For example, for a difference in an assumed value of h of as

little as 10-3, it is possible for the continued fractioi to ihange

from being smaller than h to being greater than h and back again to an

even smaller value than the first, When this happens, the computer

fails to find the root. Whether or not the root is determined in

cases like this depends to a large extent on the initial guess. This

accounts for the blanks in Table 8 and also the lack of four place

precision in some of the roots.

The choice of 100 terms of the continued fraction was somewhat

arbitrary. It was found that the difference in accuracy using 50 terms
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instead of 100 terms was usually insignificant, so that 50 terms is

probably sufficient; however, 100 terms were used tc -nsure confidence,

The extra computer time for 100 terms is insignificant.

The next step in de-1,erminining the eigenvalues is to solve the

continued fraction equations generated 'by solutions of equation (3.22).

There are two of these given in Chapter III by equations (3.32) and

(3.-33).

The derivation of equation (3.32) will now be given as an example.

All of the other eigenvalue equations used in this paper, except the

special one mentioned at the beginning of this appendix, can be derived

using the procedure outlined here. The recurrence relation is given by

equation (3.30). With some simplification in notation, this set of

equations can be written in matrix form as follows:

b0  c0  0 0 0 0 0 0 B0  0
a2  b2  c2  0 0 0 0 0 B2  0

0 ah b4  ch 0 0 0 0 . B4  0

0 0 a 6  b 6  c 6  0 0 0 S B6  0

0 0 0 a 8  b8  c 8  0 0 • B8  0 (B3)

0 0 0 0 alO blo c 10 0 B1 0  0

0 0 0 0 0 a 1 2 b 1 2 " B12  0

0 0 0 0 0 0 a14 * B14 0

0 0 0 0 0 0 0 . .

. . . . I- j

I. -
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In order to have a non-trivial solution it is necessary that the

determnnant be equal to zero. Thus the eigenvalue equation is

b 0  c 0 0 0 0 0

a2  be C. 0 0 0 0

0 at b, ch 0 0 0

0 0 a 6  b 6  c 6  0 0
- (B4)

0 0 0 ag b 8  c8  0

0 0 0 0 a,0 blo cl •

0 0 0 0 0 a12 bi 2

For the purpose of the derivation assume that the matrix in equation

(B4) can be truncated as a 7x7 matrix. Stazting at the lower right

hand correr, use standard techniques to diagonalizc the matrix. First,

multiply column seven by j-e and subtract from column six. This
0 12

creates a zero in column six, row seven. Vow multiply row seven by

clo and subtract from row six. This creates a zero in column sevn,

b I?

row six. The matrix now has the form

b0 c0  0 0 0 0 0

a2 b 2  c 2  0 0 0 0

o aL bi c 1., 0 0

o o a0 b 6  c: 0 0 (B)

0 0 0 a b c 0

0 0 0 0 ai (blo clO a 1 2 ) 0

0 0 0 0 0 0 b
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Note that the upper left 6 x 6 matrix has the same form as the

previous 7 x 7 matrix. Repeat the process on this matrix, and on the

succeeding ones until the entire matrix is diagonalized. The final

form of the matrix is diagonal with each term a continued fraction.

The term in the upper left hand corner is

a2 co a4 c2 a( c4  a8 C6

b2  b4  - b6  - b

alO c8  P-12 C1 O

- b10  - 2 .... (B6)

The second term is just the denominator of the second term of

equation (B6). It is

ba6 ch a8 c6  alO c8

b -bh 14 - b6 - b8 - blo

a12 cio

- b,2  (B7)

The rest of the terms follow this same pattern, i.e., the third term

is just the denominator of the second term of equation (B7), etc.

Although the matrix was truncated for the purpose of the derivation,

the pattern of the continued fraction for the infinite matrix is

obvious from the above equations. The eigenvalue equation is obtained

by requiring that the first term be equal to zero. Writing out the

am, bin, and cm terms, rearranging and simplifying, the eigenvalue
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equation can be written as equation (3.32) which is written below

as equation (B8).

(v2-I)(v)(v+2) k'l8 (v2-9)(v-2)(v+) k'h/(16)2
11=

2-k'2 - n/4 2-k'2 - n/16

(v2-25)(v-')(v+6) k,4/(48)2

- 2 - k'2 - n/36

(v2-(2r-l)2 )(v-2r+2)(v+2r) k'V/(8r(r-1))
2

2 - k'2 - ri/4r2  .... (B8)

and p is given by

= 1/2 (-n + v(v+l) k,2 ) (B9)

The continued fraction terminates for integer values of v. Using

the integers as starting points, curves of p versus v are computed

using the same procedure as before. These curves are labeled P1

P3, P5, etc. The roots for k,2 = 1/2 are tabulated in Table 9 and

the curves are drawm in Figure 29. Equation (3.33) is

l = V(V+l) k'2/2 + 2 - k - (v2-4)(v-l)(v+3) k'4/(6)2
2 - k 2 

-n/9

(V2-16)(v-3)(v+5) k'/(30)
2

- 2 - k'2 - n/25

(V2-4r2)(v-2r+l)(v+2r+1) 
k -4/(2(4r2-())

2

-2 - '2 - nl(2r+1) 2 . . . (BlO)
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and u is given by equation (B9). This continued fraction also termi-

nates for integer values of v. The roots are determined as before and

are tabulated in Table 9 and the curves are drawn in Figure 29. These

2 4 6
curves are labeled p,,, 1Y Y etc.

The intersections of the e and 0 curves in Figure 29 give the

(, v) pairs that satisfy both equations. These are the eigenvalues

of the even Dirichlet problem and are tabulated in Table 1. Even

though the eigenvalues are determined graphically, they should be

quite accurate. Accuracy is achieved b plotting each intersection on

a scale large enough to use the four place accuracy of V. It is felt

that the eigenvalues ietermined by using this graphical procedure are

correct to three places for most cases; however, accuracy is only

claimed to + 5 x 10- 3 . Better accuracy can be achieved, if desired,

by using finer increments of v.

'rom the pattern formed by the curves, it is evident wby all of

the eigenvalue pairs for each continued fraction are not needed. The

family of 0 curves is moving upward and the family of 4 curves is

moving downward as the order of the root is increased. The area

curve andotarearootbeneath the i curve and the area above the curve contain roots

of each continued fraction but no roots that can simultaneously satisfy

the 0 and 4 equations. Thus it is not necessary to solve the continued

fraction equations in these regions.

It is seen from the curves that the number of eigenvalues is

increasing as v increases. If the integer n is defined as it is in

Chapter III, n - 1/2 < v < n + 1/2, there are n + I eigenvalues

for each value of v. This agrees with the number of eigenvalues for
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the even Lame polynomials. It is interesting to notice the slope of

the curves. The slope of all the curves is decreasing as ' = 0 is A

approached. Actually, the slope will be zero at v = -1/2, and the

curves will be symmetrical around a vertical line at v = -1/2. This

is due to the symmetry mentioned in Appendix A.

Depending on the form of the eigenfunctions. there are two

continued fraction equations for the 0 eigenvalues of the odd Dirichlet

problem. Equation (3.43) is

v= - (+l) k2/2 + 2 - k2 -. (v2-4)(v-)(v+3) k 4/(6)2

2 - k 2 n/9

(V2-16) (v-3)(V+5) k4/(30)2

- 2 - k2 - n/25 .

2 C"r - 2r14/+2 . I( 2 (r2-l)) 2

- 2 -k 2 - n/(2r+i)2  .. .

and . is given by

= 1/2 (n - v(v+l) k2 ) (B12)

The roots are labeled I 1 3, , 5 , etc. Their negative values are

tabulated in Table 10 and the curves are shown in Figure 30.

Equation (3.15) is

(= '2-k 2 ) (v2 9)(v-2)(v+4)k4/(8)2 (v2-25)(v-4)(v+6)k4/(48)2

2 - k2 - n/16 2 - k 2 - n/36

(v2-(2r+1) 2 )(v-2r)(v+2r+2) k4/(4r(2r+2))
2

- , . . 2- k2 - n/(2r+2) 2 ..... (BI3)
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and p is given by equation (B12). These roots are labeled u2  I,

-6, etc. Their negatives are tabulated in Table 10 and the

are shown in Figure 30. The continued fraction equations for the

eigenvalues are the same as equations (BlI) and (B13) with k2 replaced

by k' 2 . For k2 = k'2 = 1/2, the equations are the same, and the only

difference is in the sign of i.

= /2 (-n + v(v+l) k' 2 ) (B14)

Thus the family of 4 curves is the mirror image of the family of 0

curves. The eigenvalues satisfying both sets of equations correspond

to integer values of v, and the eigenfunctions are Lame polynomials.

There are n eiganvalues for each v = n, so that the Dirichlet problem

has a total of 2n + 1 eigenvalues for each value of v. This is

indicated by the grouping of the eigenvalues in Table 1.

Accuracy is better for the odd Dirichlet problem than for the

even Dirichlet problem, since it is known that the intersections occur

when v is an integer, and the eigenvalue p has been computed for

integer values of v. Thus no graphical interpolation is necessary.

This remark also applies to the eigenvalues of the even Neumann

problem.

The even Neumann problem is also similar to the odd Dirichlet

problem in that the continued fractions for the 0 and 4 solutions are

the same. The continued fractions for the 4 equation are equations

(B8) and (BlO)which have already been solved. The curves for the 0

equation are the mirror image of the 4 curves. The roots of the

equations and the negative roots of the 0 equations are tabulated in
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Table 9. The curves are shown in Figure 31. The eigenvalues

correspond to v = n, an integer; and there are n + 1 u's for each v.

They are tabulated in Table 3.

The continued fraction for the e equation of the odd Neumann

problem is given by equation (Bi). This equation has already been

solved and the roots tabulated. The curves are shown in Figure 32.

The continued fractions for the € equations are equations (Bll) and

(B13) with k2 replaced ty k'2 . The roots are tabulated in Table 10,

and the curves are shown in Figure 32. The eigenvalues are tabulated

in Table 3. There are n eigenvalues for each v, where

n - 1/2 < v < n + 1/2, makii,, a total of 2n + 1 eigenvalues for each

v of the Neumann problem.

The lowest roots of the even Dirichlet problem and the odd

Neumann problem for k2 = 0.1 and k2 = 0.9 were also determined. The

roots are tabulated in Tables 11, 12, and 13, and the curves are

drawn in Figures 33 and 34. The elgenvalues are given in Table 5.

Values of v and h for the cases when the continued fractions in

this appendix terminate have been computed by Ince[ll] and Arscott[14].

They are in agreement with the numbers presented here. Ince has

also discussed some properties of the continued froctions, such as

convergence and asymptotic characteristics. The convergence property

is the main reason for the use of the variable n in some of the

continued fractions. The reader is cautioned that Ince has used

differential equations different from the ones used in this paper. A

simple change of variables converts his equations into the equations

used here; however, a direct comparison of the eigenvalues is not easy.



163

44



40 PO9

30 -- ___

20

-10

-0

-10/

-40



165

40
3PO

20

-Ic8

-20PO

-30

'-48

0 J8 I pq4 5 6

j 1/

Fig 31 ievlu10rte vnNuan rbe

F.>



166

40

30 - U8I 8 ~

20

20 0.

-10
Joe

-0

-30

-401 -_ _ I _ _ _ _ _ _ _ _ _ _

Fig. 32. Elgenvalues for the odd Neumann problem
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k2  0.1 k 2  6O.9 k2  0.9 k' 2 - 0.1

0.4 P 0.4 IL

0.3 1 0.3
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Fig. 33. Elgenvalues for the even

Dirichlet problem
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Fig. 34. Eigenvallies for the odd
Neumann problem
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V =1 B2 P3 14 $I. .. tU7 " U9

0.0 0.1794
0.1 0.1541
0.2 0.1235
0.3 0 0881
0.4 0.0170
0.5 0.0000
0.6 - 0.0531
0.7 . 0.1127
O.b - 0.1702
0.9 - 0.2528
1.0 - 0.334 1.1915
1 1 - 0.4232 1.1314
1.2 - 0.5207 o6
1.3 - 0.6m I.033
1.4 - 0.74i18 ).9360
1.5 - 0.8860 0.8659
1.6 - 0.936 0.7937
1.7 - I.1,25 0.7188
1.8 - 1.2955 o.641.
1.9 - 1.4586 0.56o9
2.0 - 1.6313 0..773
2.1 - 1.810 0.3902 3.0856
2.2 - 2.0068 0.2992 2.9795
2.3 - 2.2097 0.2V42 2.8708
2.4 - 2.4227 0.i7 2.7:952.5 - 2.645 o.oo .w5
2.5 - 2.8789 - 0.1097 2.5300 6.7376
2.7 - 3.222 - 0.2253 2.4122 6.6053
2.8 - 3.3756 - 0.3L.75 2.2927 6..696
2.9 - 3.6,.)0 - 0.4763 2.1715 6.3305
3.0 - 3.9126 - o.6123 2.0487 6.1882
3.1 - 4.1962 - 0.7559 1.9245 6.0427
3.2 - 4.4898 - o.9o76 1.7991 5.8941
3.3 - 4.7936 - 1.0677 1.6723 5.7427
3.1. - 5.1073 - 1.2366 1.5444 5.5M
3.5 - 5.4312 - 1.4146 1.4150 5.4312
3.6 - 5.7650 - 1.6o02 1.2842 5.2714
3.7 - 6.1090 - 1.799 1.1519 5.1092 10.7300
3.8 - 6.4629 - 2.0060 1.OWr 4.9446 10.5527
3.9 - 6.82E8 - 2.2226 0.8814 4.7777 10.3718
4.o - 7.2OO8 - 2.496 0.7428 4.6087 10.1879
4.1 - 7.5848 0.6015 4.4377 0.0007
4.2 - 7.9789 - 2.9339 0.4569 4.2651 9.8103
4.3 - 8.3829 - 3.1913 0.3087 4.0907 9.6109
4.1 - 87970 - 3.4593 0.1566 3.9149 9.4204
4.5 - 9.221. - 3.738 0.0000 3.7379 9.2211
4.6 - 9.6552 - 4.0p6o o.1618 3.5591 9.018)
4.7 -10.0993 - 4.3247 -0.3291 3.3807 8.8137
4.8 -10.5534 -0.5023 3.2077 8.6081
4.9 -1..0175 - 4.9533 -0.6872 3.0199 3.')'.7
5.9 -11.4916 - 41.2829 -o.8619 2.8389 6.1830
5.1 -11.9758 - 5.6627 -.10535 2.6573 ?.679 14.9590
5.2 -12.4699 - 5.9730 -1.2661 2.4750 7.7507 14.72'10
5.3 -12.7140 - 6.3332 -.14769 2.2926 7.5306 14.1h319
5.4 -13.4882 - 6.7037 -1.6969 2.1093 7.3089 14.2537
5.5 -14.0124 - 7.04t- -1.9253 1.9260 7.08 2 14.012L.
5.6 -14.5466 - 7.4753 -2.1641 1.7410 6.8593 13.7682
5.7 -15.0908 - 7.8763 -2.4125 1.5565 6.6320 13.5213
5.8 -15.6419 - 8.2873 -2.6706 1.3693 6.4029 13.2712
5.9 -16.2091 - 8.7054 -2.9392 1.1818 6.1732 13.0185
6.0 -16.75%3 - 9.1399 -3.217" 0.9917 5.9419 12.7633 21.1,)
6.1 -17.3675 - 9.5810 -3.5012 3.8010 5.7085 12.5050 20.930
6.2 -17.9617 -10.0325 -3.8061 o.6o48 5.4751 12.2446 20.651
6.3 -18.5659 -10.4939 -4.11 4 o.4o0O 5.2408 11.9819 20.3012
6.4 -19.1801 -10.9657 -4.4366 0.2036 ! .0060 11.11 8 2o.08,1
6.5 -19.8043 -1.4472 -L.7673 0.0000 4. n7 11.4485 i ,8045
6.6 -20.4385 .11.9390 .5.1091 -0.2115 11.1792 1.,.5183
6.7 -21.0827 .12.4408 -5.4611 -0.4265 4.21 10.90"15 19.2293
6.8 -21.7370 .12.9525 -5.8254 -0.6487 i0.6322 18.9379
6.9 -22.4011 -13.47,6 -6.1987 -0.87W 3.8251 10.3557 18.6431
7.0 -23.0753 -14.0066 .6.5819 -1.1131 3.5849 I0.0772 18.3454
7.1 -23.7579 -14.5483 .6.9711 -1.3550 9.7989 18.0451 27.87
7.2 -24.4537 -15.1003 -7.3815 -1.6053 3.1167 9.5196 17.7416 27.56
7.3 -25.1579 .15.6627 -7.7fo -1.8657 2.8819 9.2352 17.4353 27.23
7.4 -25.8722 -16.2347 -8.2201 -2.1353 2.6478 8.9546 17.1279 26.91
7.5 -26.596> -16.8169 -8.6582 -2.4129 8.6694 16.8177 26.5,-69
7.6 -27.3308 -17.4088 .9.1048 -2.6949 2.1753 8.3811 16.5034 26.2696
7.7 -28.0750 .18.010 -9.5608 -2.9879 1.9383 8.(Y)66 16.1361 25.9387
7.8 -28.8292 -18.6232 -10.0283 -3.2959 1.6932 l.Su4 15.8699 25.6057
7.9 -29.5935 -19.2454 -10.5049 -3.6173 I.4603 1.51-19 15.5488
8.0 -30.36Ti -19.8779 -10.9905 -3.9el7 1.2211 7.2176 15.2292 24.9283
8.1 -31.1519 -20.5199 -.1.4896 -4.2698 0.9570 6.9422 14.9050 24.5871
8.2 -31.9462 -21.1722 -11.9963 .4.6150 0.7237 6.6570 14.5738 24.2414
8.3 -32.7504 -21.8345 -12.5155 0.47L7 6.3y-08 14.2496 23.8972
8.4 -33.5646 -22.50Y72 -5.3459 0.2286 6.0796 13.9214
8.5 -34.3889 -23.1893 -13.-839 -5.7369 0.0000 5.7674 13.586, 23.1908 34.39
8.6 -35.2231 .23.8814 -14.1271 -6.1196 -0.2705 5.4662 13.2389 22.8382 34.03
8.7 -36.0674 -24.5840 -14.6889 -6.5250 -0.5654 ;.1991 12.9328 22.4826 33.65
8.8 -36.9216 -25.2961 -15.2553 -6.9455 -0.7995 1.934o 22.1193 33.28
8.9 -37.7858 -26.o188 -15.8327 -7.3579 -1.0618 4.6367 12.2436 21.7501 32.89
9.0 -38.66o -26.7510 .16.426o -7.8065 -1.3339 4.3595 11.8892 21.4041 32.51
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V PI P2 P3 P4 35 Pe P me8 p9

0.0 0.0000
0.1 0.0253
0.2 0.0555
0.3 0.,)907
0.4 0.13)3
0.5 0. 1"771
0.6 0.2293
0.7 0.2872
0. 0.3514
0.) 0.4222 -0.5328
1.0 1.500O -0.5000
1.1 0.5851 -0.4645 -2.366O
1.2 0.6777 -0.4261 -2.301

t
.

1.3 0.TI83 -0.3848 .2.23 8
1.4 0.8873 -0.3404 -2.1665
1.5 1.0048 -0.292' -2.0,,
1.6 1.1313 -o.2416 -2.02V6
1.7 1.2671 .0.1870 .1.95.34
1.8 1.4123 -0.1287 -1.6V)3
1.9 1.5672 -o.o64 -1.b065
2.0 1.7320 0.0000 .1.7320
2.1 1.9069 0.0707 -1.6,0 v V- o
2.2 2.0921 0.1461 -1.5811. 9.0 -38.6601
2.3 2.2875 0.2263 -. '52
2.4 2.4934 0.3117 -1.4281,
2.5 2.7095 0.3L025 -1.3510
2.6 2.9367 0.491 -1.2727
2.7 3.17

L  0.6018 -1.1936
2.8 3.34220 0.7108 -1.1135
2.9 3.6805 0.8266 -1.0321 -4.0'r3
3.0 3.9495 0.9495 -0.9495 -3.9495
3.1 4.2289 1.0798 -o.8653 -3.8205
3.2 4.5188 1.2180 -0.'793 -3.6907
3.3 4.8192 1.3644 -0.6913 -3.56o2
3.4 5.1299 1.5193 -0.6012 -3.4293
3.5 5.4510 1.6831 -0.5086 -3.2983
3.6 5.7825 1.8561 -0.4133 -3.1672
3.7 6.1242 2.0386 -0.3151 .3.0362
3.8 6.4762 2.2308 -0.2137 -2.93%
3.9 6.8385 2.4331 -0.108! -2.7155 -7.3869
4.o 7.2110 2.6457 v.0000 -2.6457 .7.2111
34.1 7.5937 2.8687 01128 -2.5166 -7.0330
4.2 7.9866 3.1023 0 2300 -2.3880 -6.8528
4.3 8.3896 3.3L66 0.3520 -2.2599 -6.6708
4.4 8.8028 3.6018 o..91 -2.1323 -6.34871
4.5 9.2261 3.8679 0.6116 -2.0050 -6.3021
'..6 9.6595 4.1449 0.7499 -1.8781 -6.1157
1.7 10.1030 4.4330 0.8944 -1.7511 -5.9284
'. 10.5566 4.7319 1.0455 -1.6241 -5.74103
4. 1..0203 5.0,20 1.2035 -5.55)7 -'1.7138
s 0 1.4941 5.3629 1.3688 -1.3688 -5.3629 -1.4941
5.1 11.9779 5.6948 1.418 -1.2401 -5.1740 -11.2717
5.2 12.34718 6.0375 1.7230 -1.1104 -. 9854 -11.0466
5.3 12.9757 6.3911 1.9127 -0.9794 -4.7972 -10.8190
5.4 13.348 6.7594 2.1.12 -0.8468 -4.6096 -10.5889
.5 14.0136 7.1305 2.3190 -.07123 -4.34228 -10.3566
5.6 14.5476 7.5162 2.5363 -0.5756 -4.2372 -10.1220
5.7 15.0916 7.9126 2.7635 -0.4363 -4.0526 - 9.8855
5.8 15.6457 8.3196 3.0009 -0.2942 -3.8694 - 9.6470
5.9 16.2098 8.7371 3.24887 -0.1489 -3.6875 9.L068 -". 0458
6.0 16.7839 9.1651 3.5072 0.0000 -3.5071 = 9.1652 -16.7839
6.1 17.3680 9.6036 3.7765 0.1528 -3.3282 - 8.9221 -16.5190
6.2 17.9621 10.052L .0569 0.3099 -3.1507 - 8.6778 -16.2512
6.3 18.5662 10.5116 4.3485 0.4717 -2.9747 -8.4326 -15.9807
6.4 19.1804 10.9812 4.6513 0.6386 -2.7999 -8.1867 15.7073
6.5 18.806 11.4610 4.9655 0.8L/o -2.6263 -7.9402 -15.4313
6.6 20.4387 11.9511 5.2912 0.9863 -2.4538 -7.6934 -15.1527
6.7 21.O829 12.34515 5.6282 1.1739 -2.2821 -7.41465 -14.8715
6.8 21.7371 12.9621 5.9767 1.3652 -2..110 -7.1999 -14.5879
6.9 22.4013 13.4828 6.3367 1.5637 -i.944 -6.9536 -14.302') -23.3792
7.0 23.0755 14.0138 6.7080 1.7697 -1.7697 -6.7081 -14.0138 -23.0755
7.1 23.7597 14.5549 7.09' 1.9838 -1.5990 -6.l634 -13.7235 -22.7688
7.2 234.4539 15.1062 7.484, 2.2063 -1.4278 -b.2198 .13.4312 -22.4592
7.3 25.1581 15.6675 7.8899 2.14376 -1.2559 -5.9/76 -13.1370 -22.1465
7.4 25.8723 16.2390 8.3063 2.6781 -1.0827 -5.7370 -12.8409 -21.8310
7.5 26.5965 16.82(6 8.7339 2.9283 o.9.A -5.4980 -12.5433 -21.5126
7.6 27.3308 17.4123 9.1725 3.1883 -0.7317 -5.2610 -12.2442 -21.1914
7.7 28.0750 18.011 9.6221 3.4587 -0.5531 - .0261 -11.9437 -20.5675
7.8 28.8292 18.6259 10.0825 3.739C -0.3718 -3.7933 -1.621 -20.509
7.9 29.5935 19.2478 10.5539 4.0315 -0.1875 -4.5627 .11.3395 -20.1173 -30.7131
8.0 30.3677 19.8799 11.0360 4.3344 0.0000 -4. 3344 -11.0361 -19.8799 -30.3678
8.1 31.1519 20-.5219 11.5288 4.6486 0.1914 -4.1084 -10.7320 -19.5457 -30.0195
8.2 31.9461 21.1740 12.0323 4.9743 0.3871 -3.8846 -10.34276 -19.2091 -29.6680
8.3 32.7504 21.8361 12.5464 5.3116 0.8574 -3.6629 -10.1229 -18.8701 -29.3137
8.4 33.5646 22.5083 13.0711 5.6607 0.7929 -3.4433 - 9.8183 -18.5288 -28.9563
8.5 3L.3888 23.1905 13.6062 6.0216 100=4 -3.2256 - 9.5139 -18.1853 -28.5960
8.6 35.2231 23.8827 14.1519 6.3944 1.2208 -3.0096 -17.8398 -28.2328
8.7 36.0673 24.5850 14.7079 6.7791 i.4443 -2.7951 - 8.9070 -17.4922 -27.8668
8.8 36.9216 25.2973 15.2744 7.1757 1.6747 -2.5819 -8.6049 -17.1427 -27.4980
8.9 37.7858 26.01o6 15.8512 7.5841 1.9125 -2.3696 - 8.3o04 -16.7475 -27.1264
9.0 38.6601 26.7520 16.4383 8.0044 2.1581 -2.1580 ,8.0046 -16.367 -26.7522
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V PI :,2 $13 P4 W5  P. LA Pa

0.0 - 0.7178
1 - 0.6789

0.2 - 0.6329
0.3 - 0.5797
0.4 - 0.5193
0.5 - 0.4515
0.6 - 0.3763
0.7 - 0.2936
0.8 0.2034
0.9 - 0.1055
1.0 0.0000
I 1 0.1133
1.2 0.2346
1.3 0.3635
1.4 0,5011
1.5 0.6465
1.6 0.8003
1.7 0.9624
1.8 1.1330
1.9 1.3122 - 1.6168
2.0 1.5000 - 1.5000
2.1 1.6965 - 1.3775
2.2 1.9020 - 1.24,,
2.3 2.1163 - 1.1150
2.4 2.3396 - 0.9747
2.5 2.5720 - 0.8284
2.6 2.8136 - 0.6757
2.7 3,M644 - 0.5167
2.8 3.3246 - 0.3511
2.9 3.5940 - 0.1790 - 4.0173
3.0 3.82-9 0.0000 - 3.87.9
3.1 4.1613 0.1858 - 3.7245
3.2 4.4592 0.3787 - 3.5719j
3.3 4.1667 0.5787 - 3.4150
3.4 5.0838 0.7860 - 3.2538
3.5 5.4105 1.008 - 3.o882
3.6 5.7470 1.2231 - 2.9180
3.7 6.0931 1.4530 - 2.7433
3.8 6.4491 1.6908 - 2.5639
3.9 6.8148 1.9366 - 2.376 - 7.3712
4.o 7.1930 2,1903 - 2.1904 - 7.19
4.1 7.5757 2.4523 - 1.9962 - 7.00(,
S.2 7.9709 2.7226 - 1.78 - 6,8187
4.3 8.3759 3.0013 - 1.5921 6.6278
4.4 8.7909 3.2885 -1.3820 - 6.4337
4.5 9.2158 3.5843 - 1.166 - 6.2361
4.6 9.6506 3.8 - 0.9'51 - 6.03

4.7 10.0952 4.2022 - 0.7179 - 5.8306
4.8 10.5499 4.5244 - 0.4848 - 5.6627
4.9 11.0145 4.8557 0.2455 - 5.4112 -11.101
5.0 11.4890 5.1961 0.0000 5.1;,o1 -11.4891
5.1 11.9735 5.556 0.2519 - 4.V75 -11.2651
5.2 12.4679 5.9043 0.5109 - ,.7551 -11.0379
5.3 12.9723 6.2724 0.1775 4.5288 -10.8078
5.L 13.4867 6.6498 1.0475 4 4.2988 -10.5747
5.5 14.0111 7.0367 I._265 - 4.0647 -10.3386
5.6 14.5454 7.4330 1.6127 -3.8267 -t10.0<96
5.7 15.0897 7.8389 1.9061 3.5844 - 9.8576
5.8 15.644o 8.2544 2.2070 - 3.3379 - 9.6127
5.9 16.2083 8.6795 2.5154 3.'870 - 9.3650 -17.050
6.0 16.7826 9.1142 2.8315 - 2.8316 - 9.1143 -16.7828
6.1 17.3669 9.5587 3.1555 - 2.5715 - 8.8607 -16.5175
6.2 17.9611 10.0128 3.4874 - 2.3067 - 8.6042 -16.2492
6.3 18.654 o.4768 3.8274 - 2.0370 - 8.3448 -15.9780
6.1 19.1796 10.9505 4.1757 - 1.7623 - 8.0824 -15.7039
6.5 19.8039 11.4341 4.5323 - 1.424 - 7.8170 -15.4268
6.6 20.4381 11.9275 4.8973 - 1.1972 1.5487 -15.1470
6.7 21.0824 12.4307 5.2709 - 0.9064 - 7.2773 -h.8643
6.8 21.7366 12.9439 5.6532 - 0.61O - 7.0028 -14.5789
6-9 22.4008 13.4669 6.0443 - 0.3081 - 6.7251 -14.2908 .23.3790
7.0 23.0751 14.oooo 6.4442 o.O000 - 6.4443 -14.0000 -23.0753
7.1 23.7593 14.5427 6.8531 0.3140 - 6.1602 -13.7065 -22.7685
7.2 24.4535 15.0954 7.2711 0.634 - 5.8727 -13.4104 -22.4587
7.3 25.1578 15.6582 7.6981 0.9)612 5.5817 -13.1117 -22.1A45)
7.4 25.8720 16.2309 8.1344 1.2945 - 5.2872 -12.8104 -21.8302
7.5 26.5963 16.8135 8.5800 1.6345 - 4.9892 -12.5o66 -21.5115
7.6 27.3305 17.4061 9.0341 1.9813 - 4.6874 -12.200 -21.1900
7.7 28.0747 18.0087 9.4992 2.3352 -4.3817 -11.8913 -20.8657
7.8 28.8289 18.6212 9,(930 2.6963 - 4.0722 -11.5798 -20.5387
7.9 29.5932 19.2437 10.4563 3.0647 - 3.7585 -11.2658 -20.2090 -30.7131
8.0 30.3674 19.8762 10.9492 3.4405 .3.4406 -0.9493 -19.8764 -30.3678
8.1 31.1517 20.5187 11.4516 3.8240 - 3.1184 -10.6302 -19.5414 -30.9O
8.2 31.9459 21,1712 1-.9638 4.2152 2.7918 -10 3086 -19.2036 .29.6680
8.3 32.7501 21.8337 12.4856 4.6143 - 2.4605 - 9.9844 -18.8634 -29.3135
8.4 33.5644 22.5061 13.0172 5.0215 - 2.1245 - 9.6576 -18.5206 -28.9561
8.5 34.38M6 23.1886 13.5586 5.4367 - 1.7836 - 9.3282 -18.1753 -28.5958
8.6 35.2228 23.8811 14.1097 5.8603 - 1.4376 - 8.9961 -17.8276 -28.23P5
8.7 36.0671 24.5836 14.6707 6.2923 - 1.0861 - 8.6613 -17.4774 -27.8664
8.8 36.921. 25.2961 15.215 6.7327 - 0.7299 - 8.3236 -17.1249 .27.4975
8.9 37.7856 26.o186 15.8221 7.1818 - 0.3678 - 7.9832 -27.1258
9.0 38.6598 26.7510 16.1127 7.6396 O.co00 - 1.6398 -16.4127 -26.7513 -38.6598



Table 11 - Eigenvalues of the e Equation for

the Even Dirichlet and. Odd Neumann
Problem for k 2 = 0.1 and k2 = 0.9

k2 
=0.1 k 2  0.9

0.0 0.2372 0 0.0928
0.1 0.2318 0.1 0.0557
0.2 0.2253 0.2 -0.0092
0.3 0.2179 0.3 -o.ol080
o. 4 0.2o94 0.4 -0.1173
0.5 0.2000 0.5 -.0.2000
0.6 0.1895 o.6 -0.2976
0. 7 0. 178o 0. 7 -o. 4112
0.8 o.1653 0.8 -0.5417
0.9 0.1516 0.9 -o.6895
1.0 0.1369 1.0 -0.8552

Table 12 - Eigenvalues of the p Equation for
the Even Dirichlet and Neumann
Problems for k,2 = 0.1 and
k 2 = 0.9

k' 2 = 0.1 k' 2 = 0.9

0.0 0.0000 0.0 0.0000
0.1 0.0054 0.1 0.0369
0.2 0.0119 0.2 0.0825
0.3 0.0193 0.3 0.1377
o04 0.0277 0.4 0.2038
0.5 0.0372 0.5 0.2821
0.6 0.04'(7 0.6 0.3738
0.7 0.0592 0.7 o.4803
0.8 0.0717 0.8 o.6029
0.9 0.0853 0.9 0.7425
1.0 0.1000 1.0 0.9000
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Table 33 - Eigenvalues of the (p Equation for
the Odd Dirichlet and Neumann
Problems for kI2 = 0.1 and
k' 2 = 0.9

k12 = 0.1 k' 2 = 0.9

0.0 -o.9490 0.0 -0.371
0.1 -o.9408 0.1 -0.3114
0.2 -0.9312 0.2 -0.2400
0.3 -0.9200 0.3 -0.1565
o.4 -09074 o.4 -o.06o7
0.5 -0.8932 0.5 O.080
0.6 -0.8776 o.6 0.1700
0.7 -0.8605 0.7 0.3057
0.8 -o.8418 0.8 0.4557
0.9 -o.8217 0.9 0.6203
1.0 -o.8ooo 1.0 0.80 0

f4



APPENDIX C

DETEPMINATION OF THE EIGENFUNCTIONS

The recurrence relations for the 6 solutions of the even

Dirichlet and odd Neumann problems are the same. The relationzhip

is given by an infinite set of three term equations, the set extending

toward infinity in both directions. One way of presenting this set

of equations is

a A+b 2A 2+c 2A 1 = 0 (Cla)

a=A_2+b-1A l+ c A0  0 (Clb)

a0 A l+ bo A: + co A, 0 (Cc)

aa A + b, A + cI A2= 0 (Cld)

a A + b A A c A 0 (Cle)
101

i 21 2 2 2 3

Since there is no starting point, the evaluation of the coefficient

is not simple. However, a continued fraction expression similar to

the ones used for the eigenvalues can be determined. For example,

equation (Cld) can be written

A 0  b cl/al

Al al Al/A2

173
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but, from equation (Cle), AI/A2 can be written,

Al b2  c2/a2

A2 a2 A2/A3

This can be repeated as many times as desired; however, it is already

evident that the infinite continued fraction will have the form

A0  bl cl/al c2/a2 c3/a3 c4/a4
-- " +(c4)

Al al b21a2 + b31a3 b a4 + b5/a5 + ......

It is also possible to start with equation (Clc) and go in the other

direction to determine that

A1  b0  a0/c 0  a-l!c- 1  a-2/c_2

A0 co b-1/c.1 +b-2/c_2 + b-3/c_3

a-3/c- 3

+ b-4/c-4+ ..... (C5)

By equating (C4) and the inverse of (C5) a relationship between

the eigenvalues v anC. p can be obtained. This is in essence what was

done in order to determine the eigenvalues. The eigenvalue equations

are actually consistency equations, since they must be satisfied in

order to have a consistent relationship between the coefficients of

the eigenfunctions.

The coefficients am, bp, and cm are functions of v, p, and o.

Since the eigenvalues have been determined already, am, be, and cm

are known quantities and it is only necessary to calculate the value
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of the continued fraction in equation (C4) tc determine AO/AI. For

convenience AO can be set equal to unity, so that A1 is known; next

AI/A 2 can be determined, then A2 is known. This can be repeated for

as many coefficients as are desired. In order to compute A.1, one

could use equation (Clc) to write

A-1  b0  co/ao (c6)
A0 aC A0/Al

and use the information just obtained from the computation of the

coefficients with positive subscripts, or one could use equation

(Clb) and generate a system of equations like equation (C5). In

either case, the common factor is A0 . It was found that by starting

with A0 and working toward coefficients with large magnitude subscripts,

a cumulative error was generated. This occurs because the coefficients

with small subscripts are generally larger than the coefficients with

large subscripts; thus a small percentage error in Al might be very

large relative to A5. For this reason it is better to start with An,

n large, and work back to A0. This is the way the eigenfunction

coefficients were computed in this paper.

The series converge rather quickly, so it was decided that

approximately 20 terms should be more than sufficient. Initially

All is assumed to be unity. Then A1 0 /All is determined and thus A1 0

zs known. This is repeated for Ag/A10 , A8/A9 , etc. until A0 is

determined. Next A-1 1 is assumed to be unity. AlO/A&ll is determined

and thus A-10 is known. This process is repeated until A0 is

determined again. The A0 found by starting at A-1! is set equal to

[F=
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the Ao calculated the first time and all of the negative subscripted

coefficients are scaled accordingly. Then using all of the

coefficients from AI to All, the eigenfunction is normalized so

.,hat it has unit magnitude or unit slope at zero argument according

to whether it Is even or odd respectively. The normalized coefficients

iwhich are greater than 5 x 10- 4 are tabulated in the tables in

Chapter III.

The continued fractions used in the calculations described in

the previous paragraphs are

Am_, bm cm/am cm+i/am+l

Am am bm+i/am+l + bm+2/am+2 + ....

where
k2  (4m-3)(4m-5) - v(v+l)) (C8a)

4 4
_ (4m-l)2 Ic2  v(v+l) Ic2

bm = ( ( 2  k + 2 k2 (C8b)

k2  (4m+l)(4m+3) _ v(v+l)) (C8c)

Equations (07) and (C8) are just the set of equations (3.25) written
in a form suitable for calculating the coefficients. Although these

equations are good for all m, they are used only for m > 1, i.e.,

they are used to calculate only the coefficients with positive

subscripts. For the coefficients with negative subscripts, the set

of equations (3.25) are written in a different form.
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Am+l bm am/Cm am-i/cm-i
- 4.

a CM bm-1/Cm-1 + bm-2/Cm-2

am-2/cm-2

+ bm_3/Cm3 + . .... (C9)

where am, bm, and Cm are the same as before and the equation is used

for m < - 1.

Equations (C7), (08), and (C9) are used to calculate the

coefficients of all of the eigenfunctions of the even Dirichlet and

odd Neumann problems, except those for which v is a half integer.

For these cases, either am or cm is zero for some value of m, and

either equation (07) or (C9) becomes singular. For v = 2n + 1/2,

n an integer, it can be shown that A_nnl = 0, which implies that all

of the coefficients with m less than -n-1 are zero. For

v = 2n - 1/2, it can be shown that An+l = 0, which implies that all

of the coefficients with m greater than n + 1 are zero. For each of

these cases, one of the infinite continued fractions becomes a finite

continued fraction. For example, for v =7.5, Am = 0 for m > 4.

Thus it is assumed that Alt = 1 and equation (7) is used to find A3 ,

A2, A1 , and A0. The rest of the calculation is the same as before.FThe recurrence relations for the 0 eigenfunctions of the even
Dirichlet problem and the odd Neumann problem are not the same, but

g the method of determining the coefficients is. For both of these

problems, the eigenfunctions are represented by infinite series, but

unlike the previous case the summation begins at m = 0. There are
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four different eigenfunction types. As an example for this discussion,

consider
CD

-el() I B +1 cos (2n+l) * (c1o)
m=0

From equation (3.31) the recurrence relations are

B1 v) (+i) k'2  u) + B3 k (6 - v(v+l)) = 0 (Clla)

2 2

k'2  k'2  v(v+l) k,2

B1 . - - (2 - \(v+ )) + B3  (9 (- - + 2

M12
+ B5 - (20 - v(v+l)) = 0 (C1b)

B2m-1 -L ((2m-l)(2m) - v(v+l))+ B2m+l ((m+1)2 ( -i

v(v+l) k'2  k12
+ - + Bm+3 -- ((2m+3)(2m+2) - v(v+l)) = 02

(Clic)

The easiest way to solve this set of equations is to set B! equal

to unity and solve equation (Clla) for B3 . Then equation (Cllb) can

be solved for B5 , etc. As was the case with the e eigenfunctions,

starting with a large coefficient and working toward the smaller

ones generates a cumulative error. By using all of the recurrence

equations except the first one, an infinite continued fraction can be

generated. For example, if equations (ClI) are written in the form

bI B1 + cI B3 = 0 (Cl2a)

a3 B1 + b3 B3 + c3 B5 = 0 (Cl2b)

a5 B3 + b 5 B5 + c 5 B7 =0 (Cl2c)
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the equation for BI/B 3 can be written

BI -b 3  c3/r,3  c5/a5 c7/a7- + (013)
B3  a3 b5/a5  by/a7 + b ./ .9  + .....

and similarly for B3/B5, B5./-, etc.

Note that equation (C02., can be written

- (Clh)
B3  bl

Equation (C14) can be equated with equation (C13) to obtain the

eigenvalue, or consistency, equation. The eigenvalue equation,

equation (3.33), was actually derived by using standard procedures

on the coefficient determinant. Manipulating the determinant and

equating (013) and (Cl4) are essentially two different ways of

handling the same mathematical problem; the final result using either

approach is the same. The determinantal method is more straight-

forward and systemmatic, whereas the method described in this

appendix lends some insight into why the eigenvalue equation must be

satisfied.

From equations (C11), the continued fraction for the coefficients

is

B2m-l b2m+l + C2m+!/a2m+]

B2m+l a2m+l b2m+3/a2m+3

c2m+3/a2m+3  c2_+5/2_+5

+ b2m+5/a2m+5 + b m+7/a 2m+7 + .....

M 1 (c15)
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where

k,2
a2m+1  - ((2m-!)(2m) - )(V+1)) (Cl6a)

b2m+l ((2m+l) 2 (+ v(v+) k -- (1))k,
2 2

k2
c2m+l ((2m+3)(2m+2) v(v+l)) (Cl6c)

To solve for the coefficients, B41 is set equal to unity, B39/B41 is

calculated, and thus B39 is known. This is repeated for B37 /B39 ,

B3 5/B3 7, etc., until B1 is knon. Then using all of the coefficients,

Bl through B41, the eigenfmuction is normalized. Tabulated values

appear in Chapter III.

Convergence properties of the eigenfunction expansion ca be

determined by considering the continued fraction expression for the

ratio of two successive coefficients, such as An/Anl, as n

approaches infinity. The subscript n can be m or 2m, depending on

the type of eigenfunction. Ince has investigated this and determined

that

lim An 2
n -l An-1

He concludes that the series do converge, and that the convergence

is more rapid than a power series expansion. For a more cowplete

discussion of this subject, see Ince[10,11].

When v is an integer, the above procedure for determining the

eigenfunction coefficients breaks down, because eithur a2m+1 or
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c2m+l is zero for some m. For integral values of v, the eigen-

functions are Lame polynomials and the series are no longer infinite.

All of the e and * eigenfunctions of the odd Dirichlet and even

Neumann problem fall into this category. Although these eigenfunctions

are written in eight different forms (see equations (3.35)-(3.38) and

(3.51)-(3.54)) with eight different sets of recurrence relations, the

method of determining the coefficients is the same. A typical

recurrence relation is given by equation (3.42), which appears below

k2

A- 2 "- ((2m)(2m-l) -v(v+))

+ A2m ((2m)2 (k 2 -1) + v(v+)k 2 +)

2 2

+ ((2m)(2m+l) -v(v+l)) = 0

A 0  0 m > 1 (17)

This set of equations is very similar to the set of equations (ll).

The first equation contains two coefficients, A2 end A4 ; the second

equation contains A2 , A4, and A6 ; and the rest follow a three term

recursive relationship. The main difference between this pr-oblem and

the previous problem is that there exe only a finite number of

coefficients. When v = 9, the largest value considered here, the

maximum number of coefficients is four; A2 , A4, A6, and A8. These

coefficients are found simply by solving each equation one at a time

starting with the first. With a simplified notation, the set of

equations (C17) can be written (for v = 9)
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b2 A2 + C2 A4 =0 (Cl8a)

a4 A2 + b4 A4 + c 4 A6 0 (C18b)

a6 A 4 + b6 A6 + 6 A8  0 (Cl8c)

with the am's, br's, and Cm's easily identifiable from equation

(C17). With

A2 =i

A4 b - (Cl9a)C2

A6 ! b4 A4 (Cl9b)
c4  c4

A8 _a6 b6- A4 - A6 (Cl9c)

The coefficients are then normalized and tabulated. The fact that

the eigenfunction has a finite number of terms is indicated in the

tables by the statement Am = 0, m > 8. There are seven other sets

of recurrence relations for the odd Dirichlet and even Neumann

problem. They all contain a finite number of terms, they all have

integer value,; of v for eigenvalues, and they are all evaluated

using this technique.

The same problem concerning accuracy exists here as before,

i.e., a cumulative error is generated. The problem could be cast in

the form of a continued fraction, but it was felt that this would

unduly complicate it. The number of coefficients involved is small

enough that the accumulated error is usually insignificant. However,
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it is recommended for the sake of accuracy that the continued fraction

metbod be used if eigenfanctions are computed for v > 9.

Arscott has tabulated the Lame polynomials for the values of v

from one to thirty, and for k2 = 0.1, 0.2. ..... , 0.9. They are not

in the same form As the Lame polynomials calculated here, but they

can be converted with the help of some trigonometric identities.

Several of his polynomials were converted and compared with the

functions computed in this paper. The comparison indicated good

accuracy for most cases, however it did show some evidence of the

cumulative error problem. For v = 9, the eigenfunction contains

four or five terms. For some of these eigenfunctions, the magnitude

of the coefficients is decreasing as the subscript is increasing.

For these eigenfunctions, the last coefficient usually lacks

precision; however, this is relatively unimportant because it is

always small. This lack of precision is a consequence of subtracting

two large numbers which are nearly equal.



APPENDIX D

VARIATIONAL METHOD FOR DETERMINING
EIGENVALUEE AND EIGENFUNCTIONS

It was shown in Appendix A that

< y, L y > = (Dl)
< y, p y>

where L is the two-dimensional Sturm-Liouville operator defined by

equation (A2), p is the weight function defined by equation (A3),

A is an eigenvalue, and y is the corresponding eigenfunction. It

was pointed out in Appendix A that the pertinent eigenvalues e're real

and positive or zero. The method employed here is essentially the

Rayleigh-Ritz method with some modifications due to the two-dimensional

nature of the problem ani due to computational difficulties. Thus

< w, Lw> > (D2)

< W, p W >

where w is any function in the domain of L, and Al is the lowest

eiscnvalue. Equation (D2) is the basis for a method of determining

the eigenvalues and eigenfunctions.

Consider the following eigenfunctions of the odd Neumann problem:

0(e) = -A 0 sin 8/2 + A1 sin 30/2 -A 1 sin 50/2

+ A2 sin 70/2 -A 2 sin 9e/2 + ..... (D3)

184
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B1 sin + B3 sin 3¢ + B5 sin 5¢ + ..... (D4)

w (0, ) = e(e) (D5)

As a first approximation, let

B1 = AO =1 (D6a)

A_= A2  A_2 B3 =B 5  0 (D6b)

Thus,

w (o, €) = (-sin 0/2 + Al sin 36/2) sin € (D7)

Insert this into equation (D2) and evaluate the two-dimensional

integrals. The result is

(A )2 T + A1 U + V > )L (D8)
(A1 )

2 X + A1 Y + Z

where T, U, V, X, Y, and Z follow from the integral evaluation.

Minimizing the left hand side leads to a quadratic equation in Al.

A basic assumption in this method is that AO = 1 is the largest

coefficient, ThuG if either or both roots for A1 are larger than one,

they are discarded. If both are less than one, the smallest is used.

Inserting this value of A1 into equation (D8), the first approximation

for X1 is found.

Next, assume that

,, (e, 4) = (- sin 0/2 + A1 sin 30/2 - A_ sin 50/2) sin 0 (D9)
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The procedure is repeated for the new unknown, A_,, and a second

approximation for Al is found. This procedure is repeated until all

of the coefficients Al, A_,, A2 , A_2 , B3, and B5 are known.

Next the process is repeated again for small changes in the

coefficients, i.e., w (0, ) is assumed to have the form

w (e, #) = (-sin 6/2 + (A1 + AAI) sin 30/2

- A 1 sin 50/2 + A2 sin 70/2 - A_2 sin 90/2)

(sin * + B3 sin 3 + B5 sin 5) (D!o)

where AAl is the unknown. This first order correction is determined

using the same procedure as before. It is repeated for AA-1 , AA2 ,

AA_2 , AB3 , and AB5 . The process could be repeated again for a second

order correction if desired. This was not done for the eigenvalues

and coefficients of the eigenfunctions given in Table 14.

The computation of other eigenvalues is similar. The first

eigenvalue was found by assuming that A0 and B1 are the largest

coefficients. Other eigenvalues are found by assuming that other
4

coefficients are maximum; for example, the second eigenvalue in

Table 14 results from assuming A1 and B1 to be maximtun.

The main difficulty with this method is that it is based on

assumptions which, in turn, are mostly based on intuition. Thus

there is no assurance that all of the eigenvalues will be found, or

even if all of the numbers are actually eigenvalues. The method
2a

works quite well for the lowest eigenvalues, however, as can be seen

in Table 14.
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I The coefficients in this table were normalized so that the

maximum values for both sets of coefficients agree.

Am



Table 14 Compaxr son of Eigenvalues and 188

Eigenfunctions Determined by
the Variational Method and the
Continued Fraction Method

I

Variational Fraction

v 0.815 o.814
Ao -1.473 -1.473
A3 0.215 0.214
A-, 0.030 0.030

A2  0.007 0.007
A-2  0.001 0.002
B, 0.964 o.964
B3  0.011 0.010
B5  0.001 0.00.

v 1.597 1.595
Ao 0.183 0.174
A, 0.689 0.689
A-, -0.028 -0.026
A2  .. o5 -0.005
A-2  -0.001 -0.001
B, 1.160 1.160
B3  -0.049 -0.048
B 5  -0.002 -0.003

v 1.997 1.955
Ao -. 360 -1.360
A- 0.581 0.568

A7.1  o.186 0.179
A2  -0.018 -0.O16
A-2  O.004 0.004
B2  o.496 0.496
B4  0.001 0.002

v 2.806 2.803
Ao o.414 0.346

A, 0.718 0.718
A--, -0.209 -o 180
A2  -0.092 -0.091
A-2  O.004 0.003
B2  0.583 0.583
B4  -0.038 -0.038

v 2.984 2.990
Ao -1.720 -1.720
A, 1.032 1.025
A-,1  o.427 o.429
A2  -0.105 -o.o4
A-2  -0.010 -0.011

B1  0 0.032

B3 0.322 0.322
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