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V 
ABSTRACT 

The  relationship   between   the weighting  matrices   and  the 

design   objectives   for   finite-final-time  linear   regulator 

systems   is   considered.      An   iterative  algorithm   is  presented 

for   selecting  a  weighting  matrix  that   reduces   the  absolute 

difference  between   the actual  and desired values   of  a   vector 

design  measure.     The  algorithm  utilizes   the  sensitivities   of 

the  vector   design  measure  to  determine   changes   for   the 

weighting  matrix.     These   sensitivities   are  approximated by 

finite-difference perturbations   of   the  weighting  matrix 

elements.      Examples  are  presented  that   illustrate   the 

design  procedure. 
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I.      INTRODUCTION 

•The  linear   regulator   is   one   of   the  most   extensively 

studied and  well   known  problems   of   optimal   control   theory, 

Ll,2,3,4,5j6,7,8j.     This   importance   stems   from   the  fact   that 

many  practical  control  problems   can   be  formulated   in   the 

linear   regulator   form.      Its   most   desirable   feature   is   that 

the  optimal   control   law  employs   linear   state-variable feed- 

back. 

A.      THE  GENERAL LINEAR   REGULATOR   PROBLEM 

A  linear   regulator   problem may  be  formulated as   follows: 

Consider   a   completely   controllable,   completely   observable 

multivariable  time-varying   dynamic   system 

x(t)   =  A(t)x(t)+B(t)u(t) (1-1) 

and  the performance   index 

J  =  Jpc(tf)THx(t   )+h f  f(x(t)TQ(t)x(t)+uT(t)R(t)u(t))dt,      (1-2) 
0 

where   the  real   symmetric   nxn  weighting   matrices   Q(t)   and  H 

are non-negative   definite,   and  the   real   symmetric  mxm  weighting 

matrix   R(t)   is  positive   definite.     >c( t)   is   the nxl   state  vector, 

u(t)   is   the  mxl   vector   of   controls,   B(t)   is   an   nxm matrix,   A(t) 

is   an   nxn  matrix  and   the  final   time,   t    ,   is   fixed.     The  optimal 

* r i control   u   (t)   minimizes   J,   and   is   given  by  L1,2J 

u*(t)   =   -R"1(t)BT(t)K(t)x(t), 

(1-3) 
u*(t)   £   -   F*(t)x(t). 



K(t)   is   the  nxn  positive   definite  symmetric  matrix  solution 

to   the Riccati   equation 

K(t)   =   -AT(t)K(t)-K(t)A(t)-Q(t)+K(t)B(t)R_1(t)BT(t)K(t)      (1-4) 

with   the  boundary   condition 

K(tf)   =   H. (1-5) 

Because   the  system   is  assumed  to  be  controllable  and 

observable,   it   is  possible  to achieve arbitrary   dynamics   with 

state-variable  feedback  L7J.     The practical  application   of 

optimal   linear   regulator   theory   to   system   design  leads   to 

the problem  of   selecting   the weighting  matrices.     The  state 

trajectory   of   the   optimal   system   given   by   the   solution   of 

x(t)   =  tA(t)-B(t)F*(t)Jx(t) (1-6) 

is   dependent   upon   the weighting  matrices   chosen.      It   is 

therefore  desirable  to   establish a   relationship   between   the 

weighting  matrices   and  the   design   objectives   (such  as  percent 

overshoot,   time   to   overshoot   and settling   time)   with   the  ob- 

jective   of   developing  a   design  procedure. 

B.      A   RESTRICTED LINEAR   REGULATOR   PROBLEM 

This   thesis   considers   only   the   time-invariant,   single- 

input,   finite  final-time   (t     < «°)   linear   regulator   problem. 

For   this   problem  A,   R,   and Q are   constant   matrices   and   B  is 

the constant   nxl   vector   b. 



C.  LITERATURE SURVEY 

None   of   the  literature  surveyed proposes   a   systematic 

procedure   for   finding  a   suitable  weighting  matrix  Q  for   the 

finite  final-time problem   (t    <  »).      The   infinite   final-time 

problem  has   been   considered   by   several   authors   L5)7j8J. 

The  most   extensively   used  method  for   selecting   a   suitable 

weighting   matrix   Q   is   to  make  an   educated  guess,   observe   the 

result,   and update   the   guess.      The  major   fault   here   is   that 

there   is   no guarantee  that   an   acceptable   Q can   be   found   in   a 

feasible   number   of   trials. 

The  most   definitive  procedure   for   finding  Q  in   the   infi- 

nite  final-time problem  has   been   developed  by   Chen   and   Shen   L 7J ■ 

In   their   procedure  a   weighting   matrix   is   selected   to  yield a 

set   of   desired closed-loop   eigenvalues.     A  direct  relationship 

between   an   incremental   change   in   the   closed-loop   eigenvalues 

and   the  corresponding   change   in   the  weighting  matrix   Q   is 

established  using  Jacobi's   sensitivity   formula   and perturbation 

of   the   steady-state   solution   of   the  Riccati   equations   (K   =  0). 

Two   iterative  algorithms   are   given   for   the   determination   of 

the   elements   of   the  weighting  matrix  Q. 

This  procedure  would  be   difficult   to  extend   to   the   finite 

final-time problem  because  a   desired  set   of   time-varying   eigen- 

values   would  have   to  be   formulated.      It  was   felt   that   this 

extension  would  not  be  beneficial. 



A different approach was taken by Wakeland in his doctoral 

dissertation [8j„  He considers the system given by 

e = Ae (1-7) 

where   A   is   an   nxn  matrix   in  phase-variable  form  L9J   and  e 

is the vector difference between the system output c and the 

desired  system   output   r_.      The performance  criterion   used   is 

00 

=J       eTQedt (1-8) J 
■"o 

where  Q   is   an   nxn   diagonal  matrix.      Wakeland's   empirical 

results   show   that   the   elements   of   the weighting  matrix 

Q   =   diag   L 1 , q22 , q33 , . . . , q^j (1-9) 

are   directly   related   to   the   slopes   of   the   elements   of   the 

cost   functional   with  respect   to   the  parameters   of   the  system 

matrix,   where   the   cost   functional   is   expressed  as 

00 j-   CO — CO 

J   =\        e^dt   +   q        1 e_dt   +...+   q       )       e   dt. (1-10) 
Jo     1 22jo      2 nnJo     n 

The  weighting  matrix   elements   are   defined   in   terms   of   these 

slopes   for   second-,third-and  fourth-order   systems.     Analytic 

relationships   between   weighting  matrix   elements   and   system 

parameters   are   developed,   and  graphs   and   tables   that   repre- 

sent   these   relationships   for   second-,third-and  fourth-order 

systems   are  given.      These  graphs   and   tables  present   the   re- 

lationships   between  weighting   matrix   elements   and  certain 

time-response performance  characteristics   such  as   overshoot 

and  settling   time. 
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Schultz and Melsa, L5I,   consider the infinite-time problem 

(t  = <») where the system is assumed to be in phase-var iable 

form and show that the cost functional given by 

J =J  (xT(t)Qx(t)+ru(t)2; )dt (1-11) 

may be reduced to 

0 L 
(t))2+ru(t)2  dt+xT(»)Sx(«»)-xT(0)Sx(0).  (1-12) 

S is an nxn symmetric constant matrix whose n    row and n 

columns are set to zero, in order to make the reduction in- 

T dependent of the system (A,b).  Since the term, x (O)Sx(O), 

depends only on the initial conditions, x(0)' it has no 

. . . T 
effect in the minimization of J.  For the term, x (C0)Sx(°°), 

to have no effect, the system must be asymptotically stable. 

The reduced performance index has only n weighting factors 

to be considered which can be related to the concept of 

modeling ,L 51 •     The elements of the weighting vector, y_, form 

the coefficients of an (n-1)st-order differential equation 

dln _1) 
vLy + y2v + y3y+=°-+rn —^-13 = ° (I-13) 

which  must   be  satisfied by   the   output   of   the  system  under 

consideration   to  minimize  J.      Therefore,   equation   (1-13)   is 

regarded  as   a   model   for   which  a   desired  response   is   formulated; 

the  model   is   adjusted  to   satisfy   classical   response   charac- 

teristics,   such   as   rise-time,   overshoot,   phase  margin,   and  so 

forth.     The  adjusted  coefficient   vector,   y_,   is   the  weighting 

vector   for   the performance   index. 

11 



II.      FORMULATION  OF  THE  WEIGHTING-MATRIX  SELECTION PROBLEM 

A.  INTRODUCTION 

The basic  system  considered  is   a   controllable,   observable, 

multivariable,   time-invariant,   single-input,   linear   dynamic 

system  given   by 

x(t)   =  Ax(t)   +bu(t). (II-l) 

The performance index to be minimized is given by 

;J   (xT(t)Qx(t)+ u2(t))dt. (II-2) J = h 
0 

The optimal control that minimizes equation (II-2) is given 

by 

u*(t) = - bTK(t)x(t). (II-3) 

K(t)   is   the   solution   to   the  reduced  Riccati   equation 

K(t)   =   -   ATK(t)-K(t)A-Q+K(t)bbTK(t), (H"4) 

which has the boundary condition 

K(tf) = 0. (II-5) 

B.  TRANSFORMATION TO CANONICAL FORMS 

It  was   decided,   from  a   computational  standpoint,   that   the 

number   of   non-zero  elements   of   the  Q matrix   should  be   small. 

For   this   reason,   transformation   of   the  system  to  two   canonical 

forms   was   examined;   the  diagonal   state-matrix  form and   the 

phase-variable  form. 
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A  system  that   has   no  multiple  eigenvalues   may   be  readily 

transformed  into   one   that   has   a   diagonal   A matrix   by   the 

following  procedure.     The  system   has   a   column-partioned matrix 

of   eigenvectors   given  by 

E  = [e^.-.e^ (II-6 

where each eigenvector _e. is associated with its eigenvalue 

X..  This matrix may be normalized to 
l 

A 
E  = 

A A 
e   . . . e 12       —n I (II-7) 

by   normalizing   the   individual   eigenvectors   to  unit  magnitude. 

A 
By letting x(t) = Ez(t), the new system is given by 

A(t) = A1£(t)+b1u(t), (II-8) 

wher e 

An = 
A _i A 
E  AE (II-9) 

and 
*-l 
E  b. (11-10) 

The matrix  A     has   the  form 

A±     0     0      . 

Al   = 

o     X2o 

o     o   A, 

.    o   A 

(ii-ii) 

13 



With   the  system   in   this   form,   a   diagonal   Q matrix  may   be  used 

and  still   have   complete   influence   on   feedback;   but   the  elements 

of   the  matrix  A,   may   be   conjugate   complex.     This   requires   that 

all   computation  be  done  using   complex  arithmetic. 

Since  the  system  under   consideration   is   completely   con- 

trollable,   it   can  be  transformed   into   the phase-variable  form 

with  a   linear   non-singular   transformation  matrix T,   by  letting 

x  =  Tz   as   in   Rane C9J.      This   leads   to  the phase-variable   system 

£   =  AQÜ   +   b^u 

where the system matrix has the form 

(11-12) 

A0   = 

0 10 0 

0 0 10 

0        0        0        1 

0. . 

0. . 

-a. 

1        0 

0        1 

-a 

(II-13) 

and bn   =   L0O....O1].     The   elements   in   the   last  row   of  A„ 

(a.,   i   =   l,...,n)   are  the  coefficients   of   the  characteristic 

polynomial   for   the  original   system  matrix  A.      This  polynomial 

is   given   by 

n n-1 n-2 s   +a   s       +a     , s       + +a_ 
n n-1 1 

The   transformation  matrix  T   is   given   by 

T   =   C-Vl2' >±J 

(ii-i4) 

(n-15) 
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where  the   element   vectors   may   be   formed by   the  recursive 

relations 

t     =  b 

t     .    =  At   +t  a 
—n-1 —n  —n   n 

t     _  =  At        +t  a —n-2 —n-1 —n   n-1 

*!   =  Ai2+tna2 

(11-16) 

C.      DIAGONALIZATION  OF  THE  Q MATRIX 

Kriendler,   L4Jj   states   and proves   the  following   theorem. 

If  a   linear   time-invariant  plant   is   in   the phase-variable 

form,   then   for   any  positive  semidefinite matrix  Q   in   the 

quadratic  performance   index 

J  = h]     (xTQx 
0 

Qx+u   )dt, 

there exists a unique diagonal matrix 

Q* = diag[qil,q22,....5q^lsn_l5qn5n] 

which   yields   the  same  optimal   control 

u   (t)   =   -   b K(t)x(t) 

and is related to Q by the formula 

(11-17) 

(11-18) 

(11-19) 

(11-20) q..   =   q..-2q.   ,     .      +2q.    _    .      -.. „ . Mn        Hn      Mi-l,i + l      4i-2,if2 

where   the  alternating   sum   is   continued until   all   of   the avail- 

able  q's   are   exhausted.      Even   though_ Q_is— required  to  be^  

positive   semidefinite,   Q     needed  not  be  so  restricted.     Let 

Q be   the positive   definite matrix 

15 



Q = 

10 0 2 

0 10 

2      0      1 

(11-21) 

Then 

Q     =   diag   [l0,-3,l] (11-22) 
■* 

where  Q     is   unique. 

* 
It   should  be  noted  from equation(11-20)   that   Q     does   not 

depend   on   the   elements   q..   of   Q where   i+j   is  an   odd  number. 

Therefore when   the   system   is   in   the phase-variable   form,   an 

equivalent  matrix  Q     (simpler   than  Q)   may  be  considered, 

where   q   . .   =   q. .   if   i+j   is   even   and  q   . .   =  0   if   is   i + i   odd. 

The  matrix  Q    retains   the positive  definiteness   or   semi- 

definiteness   of  Q. 

The   optimal   feedback   control   law,  p_,   defined by 

A      T 
P  = b K(t), (11-23) 

th 
is   a   time-varying   row  vector   consisting   of   the  n        column 

of   the  Riccati   solution,   K,   for   a  plant   in  phase-variable 

form.      For   the   infinite-time problem,   the   diagonal   weighting 

matrix  Q     is   unique  and  yields   the   same   feedback p_ as   that 

corresponding   to   the  original   matrix  Q,   where 

T T   * 
p  =   b K     =  b K   . 
*— CD —        03 

(11-24) 

D.  INITIAL CONDITION CONSIDERATIONS 

Designing a system for a specific initial condition does 

not necessarily produce the desired time response for other 

initial conditions.  A conservative design approach is adopted 

16 



here  by   assuming   that  worst-case   initial   conditions   occur. 

Worst-case   initial   conditions   are   defined as   those which 

maximize   the  minimum  value  of   the performance   index  as   given 

by 
Jmin   =  a£T(°)K(0)x(0). (H-25) 

J   .      is maximized when x(0) is colinear with the eigenvector 
min —v ' 

associated with the largest eigenvalue of K(0),[2]. 

17 



III.      PROBLEM   SOLUTION 

A. SEARCH   IN   Q  SPACE 

The  most   direct   approach   to   selecting   the  weighting 

matrix,   Q,   would  be   to perform  an   exhaustive  search,   evalu- 

ating   the   state  trajectory   for   each   of   several   selections 

of  Q.      Even   for   a   low-order   system,   this   is   a   formidable 

task. 

A  more  reasonable  approach   is   to  make an   estimate   for   Q, 

evaluate   the  state   trajectory  and   then  change  Q based  on   the 

closeness   of   the  state   trajectory   to   the  design   objectives. 

This   procedure   is   continued  until   the  state   trajectory   is 

acceptable.     As   this   requires   a   subjective  decision,   time- 

shared  computer   operation   is   a   necessity. 

B. STATE-TRAJECTORY SENSITIVITY 

The   sensitivity   of   the  state   trajectory   with   respect   to 

Q    -j=   ,   can   be   evaluated  by   using   the   sensitivity   function 

approach.     This   involves   solving   the  Riccati   equation 

K   =   -   ATK-KA+KbbTK-Q (III-l) 

with  the   boundary   condition 

K(tf)   =  0 (IH-2) 

simultaneously with its associated sensitivity equation 

d    fh^\ AT   oK        dK       k  6K       T T   ÖK        iS /TTT   ,1 
dt(dQh-A     dQ  "  ÖQA+ÖÖ^  K   +  K^    SQ  -   ÖQ (III"3) 

with   the  boundary   condition 

äK(tf) 
= o. (in-4) 

dQ 

18 



Then the state equation 

x = Ax + bu *(0) = xo (III-5) 

must be solved simultaneously with its associated sensitivity 

function equation 

d { **(t)\        ,n   KKT„, 
d*   KKT  ÖK 

~t   {SO-)   = (A"^K) 6Q+  bb TO* 

with the boundary condition 

a(x(o)) 

(Hl-6) 

5Q 
=   0. (iu-7) 

th For  an  n     -order   system,   Equation   III-5  contains   n  first« 

2 
order   differential   equations.      Equation   III-l   contains   n 

n•(n+1) first-order   differential   equations  of which   —"^"»^^ are 

unique  since  Q,  K,   and K  are   symmetric  matrices.     Equations 

III-3  and  III-6  contain I—»-s H       and nl—*-—-*-)     unique 

first-order   differential   equations,   respectively,     Table  I 

demonstrates   the rapidity  with  which  the  computational   com- 

plexity   increases. 

Table   I.     The numbec   of differential   equations,   N, 
that   must   be  solved  for   a   system   of  order 
n   to  evaluate   the  state-trajectory 
sensitivity,   tJx/'dQ 

1 
2 20 
3 63 
k 15b 
5 320 

10 11025 
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dx 
The   state-trajectory   sensitivity  matrix,  ~r—    must   be 

oQ 

observed over the entire trajectory to obtain a relationship 

between it, the state trajectory and a new weighting matrix. 

A subjective decision in the selection of a new Q is required 

since there does not exist a direct analytical relationship 

between the design objectives for a finite final-time problem 

and the weighting matrix Q. 

C.  THE DESIGN MEASURE m 

1.  Definition 

The approach that seemed most promising required the 

formulation of a vector design measure, 

m = f(Q;x ,t). (III-8) 

Typical   examples   of   the  elements   of  m are   listed  below 

a. Max|u(t)| 0  £   t  £   t 
t 

b. Percent overshoot 

c. Time to maximum overshoot 

d. Time to first zero crossing 

e. Time to reach and remain within 5 percent of the 

final value 

f-      |x.(tf)| 

i   u( s2 , _(t)   dt 

0 

,/ 

%f dx(t)T
s   _x(t)dt dx(t) 

,   where —r  is   the   state- ________   —_        wneic       -v 
d   a ä   a, da 

0 

trajectory   sensitivity   to   variation   in   system parameters,   a_, 

and   s   is   a   symmetric  positive   definite  matrix. 

20 



The elements of m are further restricted to be defined 

so that they will be positive.  (It should be noted that an 

analytical expression for the partial differential of the 

elements of m with respect to the elements of Q does not 

generally exist.) 

The desired vector design measure was defined to be 

m ; the vector, _f, has the elements defined by 

A 
f . - 

3 
m .-m . 

3     3 
3   = 1,2,. . . ,L (III-9) 

where L is a positive integer.  The elements of f are to be 

made acceptable by adjusting the weighting matrix Q. 

2.  Difference Approximation to the Sensitivity Matrix dm/dQ 

am 
The sensitivity matrix, TT= can be approximated by 

oQ 

perturbing   the weighting matrix   elements   q..   to  form  a   finite- 

,.,, .       .  ..      . . .   dm./dq...  The 
difference approximation to the partials,  —I   n 

vector differential dm is given by 

dm   T 

>m 
where r— has   the  form 

6Q 

«3m 

dm 

dmn 

dm. 
1 2 

dm dm, 

dq^2        bT 22 

dm. 

dq dq nn 

(111-10) 

c)m 
L 

^11 

am. 

dq 
L 

nn 

(III-ll) 
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and dm and dQ are both column vectors, with dimensions (Lxl) 

and (mxl) respectively. Equation (111-10) is used to select 

a dQ that will reduce as many of the elements of the design- 

measure difference vector, f_, as possible. 

3.  Computational Algorithm for Selecting Q 

The steps of the basic algorithm for finding the "best" 

weighting matrix are outlined in Flow-Chart 1, with details 

given by the following list. 

a. Transformation of the system into the phase- 

variable form, in order to use a diagonal weighting matrix Q. 

b. Selection of an initial diagonal weighting matrix. 

c. Formation of the design measure m by: 

(1) Integrating the Riccati equation 

(2) Finding the worst-case initial conditions 

x(0) from K(0). 

(3) Integrating the state equations with K(t) 

and x(0). 

(4) Setting m = f(Q;x ,t,tf). 

d. If m   is   not   defined   or   is   unreasonable,   a   restart 

is  made   at   step  b;   m   is   not   defined   if  some   element   does   not 

exist.      For   example,    if   the   optimal   system   is   overdamped, 

percent   overshoot   has   no meaning. 

e. Formation   of   the   design-measure   sensitivity   matrix 

Öm _=   by: 
ÖQ 

(1)  Perturbing the Q elements, q. . ,i = l ,2 , . . . ,n 
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(2) Integrating the n sets off  1, H Riccati 

equations, K , with Q  = diagonal ( q,, ,qn„,. . . ,q. .+dq ,q  ) a     v^ll ^22'   'nn  Mn     ^nn 

for i = 1,2 , . . . ,n. 

(3) Integrating the n state equations using K (t). 

(4) Forming the perturbed vector performance 

i      •   _   i measures,   m   ,    l   =   l,....,n. 

dmj        raVra. 
(5)   öT"    "c--1 i = 1>2>••••»";  J = 1,2,....,L. 4ii ii 

dm 
f. Selection of a normalized dQ, using a TT—, that 

— oQ 

will improve as many of the elements m. as possible.  This 

procedure is discussed in more detail in section III c4- 

g. Selection of the magnitude, <X,   for dQ and 

evaluation of m  by: 

(1) Initializing Ot 

(2) Setting  Q'=   Q   + CXIdQ where   I   is   the  nxn 

identity  matrix. 

(3) Forming   the   vector  performance  measure  m 

t 

for   this   value  of  Q     by: 

(a) Integrating the Riccati equation's 

using Q . 

(b) Finding the worst-case initial con- 

ditions x'(0) for K'(0). 

(c) Integrating the state equation's with 

x'(0) and K'(t). 

(d) Setting m' = f(Q*;x',t,t ) 
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h.      Formulation   of   subjective  decisions   based  on 

£i   =   |™£-™i   I       i  =   1,2,...,L (111-12) 

and 
t * 

£i  =   12, "Hi   I      i  =  1»2,...,L (111-13) 

(1) f  is considered to be an improvement on f 

if any of the following conditions exists: 

(a) f. ä f.   i = 1,2,...,L 

(b) The  number   of   values   of   i  for   which 

f.   ^   f.   is   greater   than  L/o 
li ^ 

(2) f      is   considered   to   be  acceptable  at   this 

step   if  any   of   the   following   conditions   exist: 

(a) f.   ^   e!   for   a   majority   of   the   elements 
v    ' l l 

f.   where  e.    is   a  positive  small   number;    i   =   1,2,...,L. 

(b) Of  ^   £p;   where  Sp   is  a   small  positive number. 

(3) f_     is   considered   to   be  acceptable  for   the 

design   if  any   of   the  following  conditions   exist: 

(a) f.   *>  e'.'   for   a   majority   of   the   elements 
v l l 

of  f     where  e.    is   a   small   positive  number   (eV  <   £.)   and   it   is 
— i r x    l i' 

clear   that   no   further   significant   improvement   can   be  made   in 

the   other   elements   by  moving   locally. 

(b) Ot  ^  e     where  £      is   a   small positive v P P 

number   and   the   inequality  £     «   G      holds. 
P P 

(4) (a)      If  h.    (1)   is   true,   increase Of and  go 

to   step  g . (2) . 

(b) If   h.(l)   is   not   true,   decrease Oi  and 

go   to   step   g.(2). 

(c) If  h.(2)   is   true,   go   to   step   e,   with 

•Q =  Q'. 
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Flow-Chart   1.      Basic  Steps   of One  Iteration   of   Design  Algorithm 

Select   Initial   Diagonal 
Weighting Matrix  Q 

■*-0> 

Form   Design-Measure  m 

Form   Design-Measure 
Sensitivity  dm^^Q 

Select A Normalized dQ That 
Causes 

dm f 
dm = T— dQ 
—   dQ — 

To Reduce The  Elements   Of 

f   =   |m-m   I 

Initialize    OL 

-<-© 

Form  Design  Measure  m 
From  Q*   =  Q+CCldQ 

V 

Acceptable   Design   If 

1.   f!   £   eV   For   At  Least  ^  i's 
11 2 

2.  a £ e 

or 

or 

3- No Significant Improvement 
Can Be Made Locally 

\' Acceptable    Not\»Acceptable 

G> (S) 
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Flow Chart 1.  continued 

Test for Global Improvement 
By Selecting New Initial Q 

© 

m  Acceptable For This 
Iteration If 

l.  a < e 

or 
2.   f'   S  e"   For   At  Least ^  i's 

ID 2 

Acceptable Not Y Acceptable 

Q = Q 

^ 

m  Is An Improvement On 
m If 

f.   ^   f.   For   At  Least —   i's 

Yes 

Increase 
a 

No 

Decrease 
a 

@ 
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i.  Testing the weighting matrix found by perturbing 

t 

Q  to determine if a significant reduction can be made on the 

elements of f .  If a significant improvement can be made go 

to step e, with Q = Q . 

4.  Considerations for Selecting d^Q 

a.  Problem Formulation 
am . 

The  vectors, <* ,   j   -   1,2,...,L,   are   normalized 
oQ 

to   the   vectors   w .   by 
-J 

dm 

~3       ÖQ j   =   1,2,...L. 
n 

i=l 

om.\ 

(111-14) 

There  exist  L  hyperplanes   H.   defined by 

H -j: fuLj > £0\] =   0 j   =   1,2,...,L (111-15) 

where   (.    ,    .   )   denotes   the   inner   product   in   n-dimensional 

Euclidian   space,   E   .     w   is   in   the   direction   of   the   largest 

rate  of   increase   of   dm..     Therefore   the   best  fcQ   to  select 

for   a   particular   dm.   is   colinear   with   -fw ..     The  sign 
-J —J 

l    *l selected must be that which causes dm. to minimize f .= m.-m. 
—J D   ' J     J1 

For L >   1, a systematic procedure must be established to 

select a dQ that will minimize as many f .'s as possible. 

The unit normals, n., j = 1,2,...,L, that result 

in a reduction of f . are given by 
3 

n . 
-J 

w . 

-w 

m . ^ m 

m 
j   = 1,2, . . . , L . (111-16) 
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Defining ^ =  ö_Q,   there   exist  L  half-spaces   S.,   where  S. 

is   the   set   of   all j/   that   satisfy   the   relation 

/üj>y\ 2   ° J   =   1,2,...,L. (111-17) 

Thus the hyperplane H . and its normal n . define a half-space 
3 -J F 

S. which is the set of all points that reduce f.. 
J J 

The intersection of all the S.fs, given by 

L 
S = D  S ., (III-18) 

j=l  J 

defines   the   set   of  all   points   that   reduce  all   f .   simultaneously, 

provided   that   S   is   not   the   set,   cp ,   which  contains   only   the 

origin.      If   S   =9,   some   of   f .'s   must   be allowed   to   increase 

so   that  a  partial   improvement   can   be  made  at   this   step.      This 

relaxation   should be  made   only  for   one   iteration. 

b.      General  Problem  Considerations 

(1)     First-Order   System.     All   normals   n .,   for   a 

first-order   system,   must   be  of   equal   sign   to   improve  all 

components   locally.      If   this   is   not   the  case,   the   selection 

of   dQ  becomes   subjective   for   a  particular   trial  point. 

(2)      Second-Order   System.     A second-order   system 

is   considered  next  with  L <   2.      Since  all   the   normals,   n., 

have   been   normalized   to   be  unit   vectors,   the   inner   products 

R±.   =/ni,n.\  ;   i,   j   =   1,2,.. .L;    i  /  j (HI-19) 

indicate   the  nature   of   the  sets,   S. .,   given   by 

S. .   =   S.Hs.. (111-20) 
IJ 1        j 

R.. = 1.0 implies that n. and n. are parallel, therefore 

S. . = S. = S.. (111-21) 

as indicated in Figure 1. 
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Figure 1.  Intersection of 2 half-spaces in 
2-space. R.. = 1. 

R. ii  =  -   1.0   implies   that  n.   and  n.  are anti-parallel;   there- 

fore 

(111-22) S. .   =  H.   =   H. 

is indicated in Figure 2 

Figure 2.  Intersection of 2 half-spaces in 
2-space. R. . = -1. 
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If  R..  /   +  1.0  then   there  exists  a  region,   R   ,   where both 
1 j s 

inner   products   /n . ,^A and /n . ij/V    are  greater   than   zero 

required   to   reduce   the  design-measure  difference  elements 

f.   and  f .   simultaneously.     This   is   depicted   in   Figure   3. 

as 

i •1, 

^j "^*z 

A 

Figure   3-      Intersection   of  2   half-spaces.   R..   /  +  1 

Suppose  that  L   =   3 for   a   second-order   system. 

If  R        /   +   1   then   n     and  n     are   linearly   independent   and n 
L<£       — —1 —■£ —3 

can  be  expressed as   a   linear   combination   of _n     and _n     by   the 

relationship 
n3   =   Na 

where N   is   the partitioned matrix  given   by 

N  = 
—11 —2 

(111-23) 

(111-24) 

and a   is  a   column   vector   with   components   a   ,   a 

For   example,   Figures   4   thru   11  depict   the 

relationships   that   can   exist   between   half-spaces   S1,S„   and  S_ 
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for various combinations of a  and a .  in Figure 4, S 
12 3 

contains   the   intersection   of  S     and  S   ;   therefore  S.   may  be 

dropped from  consideration. 

Figure  k-     Intersection  relationships  for   a >0     a >0 
1  '  2 

The same situation holds in Figures 5 and 6, where S  and S 

respectively, may be dropped from consideration. 

Figure 5. Intersection relationships for a >0, a <0 
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Figure 6.  Intersection relationships for a <0, a >0. 

In Figure 7, S  = S  and in Figure 8, S_ = S0; therefore S 

may be dropped from consideration in both cases. 

Figure 7.  Intersection relationships for a =1, a =0, 

*y»3 

Figure 8, Intersection relationships for a =0, a =1, 
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In Figures 9, 10 and 11, S,^S„flS  = 0; therefore at least 
J-        **•        o 

one  S.   must   be  dropped from consideration   to  have  a  non-zero 

Figure   9.      Intersection   relationships   for   a  =-1.,   a   ~°. 

Figure   10.     Intersection   relationships   for   a   =0., 
a2=-l. 1 
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Figure 11.  Intersection relationships for a <0, a <0, 

s±n s2^s   = o. 

The general results related to these figures are tabulated in 

Table II. 

Figure  a   a 

5 

6 

7 

8 

9 

10 

11 

>o 

>o 

<o 

>o 

=o 

<o 

=0 

<0 

>0 

<0 

>0 

=0 

>0 

=0 

<0 

<0 

Relationship 

s^> sin s2 

Dr op  Fr om 
Consideration 

s22s1f\s3 

s2 =s3 

S1^ S   =H1=H   jSj^H S2^ s  = cp     Sj^   or   S 

sins2ns3=cP;s2As3=H2=H3   s2 or s3 

Sir)s2ns3=cp sl OI  s2  or   S3 

Table   II.     General   relationships  for   sets  S., 

j   =   1,2,3  for   a   second-order   system 

when /n   JJ2O\  ^ JL 1 • 
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As an example, if Table II has indicated 

that S should be dropped from consideration, the normals 

_n, ,_n may be used to form a vector, dg , that lies in the 

region R.. given by the angle Ci in Figures 12 and 13. dQ 

is defined by 
dg ' • [£l ! £2] £ (111-25) 

where £  is a column vector with components c ,c .  If c  and 

c  are restricted to be positive, then dQf lies in the region 

R  which is contained by R  if /n ,n \ £ 0, as in Figure 12. 

R' contains R  if /n ,nA < 0, as in Figure 13.  For dQ* to 

lie within the region R , the angles 0 , and 9  must both be 

less than or equal to 90 degrees.  Let 

dQ 
dQ =     — 

^(dQ^ + fdQ^)* 

Then the restrictions on 6  and 9     become 

(111-26) 

(111-27) 

Figure 12. Region relationships for /n »J2-A a 0, 
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Figure   13.      Region   relationships   for /n   ,n_V <   0. 

The procedure  discussed above  considers   only 

three normals,   n.,   j   =  1,2,3,   at  a   time,   but  can  be  extended 

to the  case where L >  3  in  an   iterative  fashion.     At  each 

iteration,   one _n .   is   dropped  from  consideration  using  Table   (II) 

This  process   is   continued until  all   n.'s   have  been   considered. 
^ -D 

(3)     Third-Order   Systems.     For  a   third-order   system, 

similar   reasoning   is  used to develop  a  basis   of  three  linearly 

independent   ri.'s.     A fourth  normal  n,   can  be  represented  by 

224 = * !£].   + a
2ü2   + a3£3 

=f^l ! ^2 ! %]   * 
=  Na 

(111-28) 

(111-29) 

(111-30) 
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3 
If   all  a.  a   0,    then  S3     D  S .  and   S,    can   be  dropped  from 

consideration.      If  all   a .  <   0,   f\    S .   = cp   and   one   of  the 
3 j=l   3 

four   S.'s   must   be  dropped  from  consideration.     Table   III 
3 

gives   the  appropriate  relationships   for   n   =   3,   L   =  k,   where 

any   3  of   the   normals   n.   are  linearly   independent. 

a a a Relationship Drop   From Consideration 
J. £ 0 

SO      SO      so      s=>  s^s.ns, s, 
7f     1        2        3 4 

L 
<0       <0        <0 7     s .   = cp S,    or   s„   or   S„   or   S, 

j=i J 12 3 4 

=0     >o      <o      s^DS-Hs^ns, s„ 
2    13        4 2 

4 
=0       <0       <0 n    S.   = cp S„   or   S»   or   S, 

j=l  D 234 

>o     <o     <o     s-DS0ns,ns, s, 
1— 234 1 

>o     >o     <o     s,nson s0 is 
J-        £        5 

intersected  by   S, 
in   such  a   way   as 
to  form  a   fourth 
bounding   hyperplane. 

Table   III.     General   relationships   for   sets   S., 
j   =   1,..,4  for   a   third-order   system 
when   n   ,n     and   n     are   linearly 
independent. 

The  relations hips   that   exist   for   a     >   0 

a     >  0   and   a     <   0   in   Table   III   imply   that   many   boundary 

hyperplanes   could   exist   for   systems   of  order   higher   than 

two when   the   number   of   hyperplanes,   L,    is   greater   than   the 
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order of the system under consideration.  Results from linear 

algebra Lioj can be used to show that there may be L-(n+l) 

bounding hyperplanes and therefore L-(n+l) normals to con- 

sider.  For this reason, the algebraic development was not 

pursued further for cases where L ^ n+1. 

The set of hyperplanes not excluded from 

consideration form a convex polyhedral cone in n-dimensional 

Euclidean space.  Unit vectors, u.,   defined as being colinear 

with the extreme edges of this cone, when summed with positive 

weighting, form an interior vector of the cone.  These unit 

vectors, u., can be found using linear programming techni- 

ques [ 11J . 

The problem may be reformulated into the 

Simplex format as follows.  The linear function 

n 
z = ?  y. (111-31) 

1=1 x 

is to be maximized subject to the constraints 

/H-j'Z)* °     J   =   1|2,...,L (111-32) 

yj i   1,2,.. .,n (111-33) 

E  y. * B (111-34) 
i=l x 

where B is a positive number.  If z can be maximized by the 

Simplex routine, Z will be equal to B, and there may be more 

than one solution, v..  If there is no solution, one of the con- 

straints in equation (111-32) must be relaxed. If there are multiple 

solutions, each solution, y_ ., forms a vector which is colinear 
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with an extreme edge of the polyhedral cone formed by the set 

s = n s. 
3=1 J 

(111-35) 

(See Figure Ik. ) 

Figure l4-  Intersection ol 3 hyperplanes in 3-space. 

The Simplex approach requires from one to 

L - n applications of the Simplex routine.  It was felt that 

the computation required was too complex and time-consuming 

to allow the overall algorithm to be a feasible design tool. 

If L is restricted to be less than or equal 

to n + 1, the algebraic procedures considered previously may 

be applied to find the normals of the boundary hyperplanes. 

For ease of computation and to make the algorithm feasible, 

L was further restricted to be less than four. 
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Problem Considerations for L ^ n + 1 

If the partitioned matrix 

N r_nl5n2, . ..,nLj (III-36) 

is considered, the rank of N, r(N), gives the number of 

independent normals.  If r(N) = L then all normals are 

independent.  The vector dQ' given by 

dQ' = Nc (111-37) 

will   be   interior   to   the   set 

L 
s = n s. (in-38) 

j=i J 

if   the  elements   of  c_ are non-negative.      If  r(N)   <   L then   the 

L-r(N)   half-spaces   S.,   associated with   the   linearly dependent 

normals   removed  from  N   (for   this   step   only)   to   give the  re- 

duced  matr ix   N   .      Then   dQ      is   given   by 

dQ'   =  N'C (111-39) 

where c_ is now an (r(N)xl) row vector with positive equal 

elements. 

Table II gives the general relationships that 

exist for an n  -order system when L = 3 and r(N) = 2. 

Similar relationships are given in Table IV for an n  -order 

system with L = 3 and r(N) = 1.  Table V gives the relationships 

that exist for an n  -order system with L = 2 and r(N) = 1. 
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Table IV.  General relationships for sets S., S. 

and S. where n = 2, L = 3 and r(N) = 1. 

n, = a n. • n . = an. 
—k    l—i  —3 2—x 

a             a             Relationship Drop   From Consideration 

>0          >0           S.   =  S .   =   S, none i          3           k 

>0         <0          S.^S.AS,    =H.    ., S.,   or   S.   and S, i        3        k          i,j,k 3                l               k 

<0          >0          S.^S.AS,    =H.    .   , S, ,   or   S.   and  S. l        3        k          i,J,k k               l               j 

<0          <0          S.OS./1S,    =  H.    .   , S.,   or   S.   and  S, 13k           i,n,k 13k 

Table V.  General relationships for sets S. and S. 
1      J 

where n ^ 2, L = 2, r(N) = 1.  n. = an. v '       —3    —1 

a       Relationship        Drop From Consideration 

^0      S. = S . none 
1    3 

<0      S.^iS. = H. or H.   S. or S. 
1   3 1     D 1     J 

The  vector   dQT   found  by   Equations   III-37  or 

III-39,   when   normalized   to  unit   length   gives   the  dQ  required 

in  step   f.   of   the  algorithm  for   selecting   a   new weighting 

matrix  Q. 
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IV.      EXAMPLES 

A.      A   SECOND-ORDER   EXAMPLE 

The second-order   system  selected  for   consideration   is 

given   in  phase-variable  form  by 

x(t) 
0.0 1.0 0 

-20. -5.0 
*(t) + 

1 
u(t) (IV-1) 

The final time, t , was arbitrarily set at 2.5 seconds.  The 

design measure, m, selected for examination, had the following 

elements; 

m  - percent overshoot for x (t) 

m  - time to maximum overshoot for x (t) 

m  - max |u(t)|, 0 £ t £ t 

which had the desired values 

* 
m     = 

5.0 
0.925 

% 
seconds 

0.0 

Percent overshoot is defined by 

overshoot of x (t) 
ml   = x^O) 

clOO, 

(IV-2) 

(IV-3) 

1.      Estimation  Procedure 

The  first   method  used   to  select  a   suitable weighting 

matrix   Q was   to  guess   an   initial   Q,   solve  for   the  design 

measure  m  and   then   make  a   new   estimate   for   Q  based   on   m.      This, 

of   necessity,   was   accomplished  on-line  with   the   IBM   36O-67 

computer   in  a   time-sharing   mode. 
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The estimation procedure used is given in the 

following steps. 

a. Guessing Q 

b. Evaluating m 

c. Repeating steps a. and b. until one element of 

* 
m, m., was close to m.. 
~   3 3 

i+1 . * d. Selecting Q    so that m. remained close to m. 
3 3 

and improvement was made on one of the other elements of m. 

This was accomplished by 

(1) Perturbing Q 

(2) Evaluating m 

(3) Repeating   steps   (1)   and   (2)   until   a   direction 

of   change  was   established   that   improved   one  of   the   other 

elements   of  m while  keeping   m.   close   to  m. . 

(4) Changing   Q     as   far   as   possible   in   the 

direction   determined above. 

e. Step   d.   was   repeated  until  all   of   the   elements   of 

m  were  as   close  as  possible   to  their   associated  elements   in 

m   .     This  procedure  changes   Q along   a   contour   of  m.   in   the 

qirq22plane- 

Using   this  procedure  led  to   the weighting  matrix 

Q =   diag  [85.6,   13.61,   with   a   computation   time   estimated at 

25  minutes. 

2.     Exhaustive   Search 

The   exhaustive  search   for   the   second-order   example 

was   arbitrarily   restricted   to   the   region   R   defined   by 

/0   *   qn   *   100. 
R:   < . (IV-4) 

\0*   q22   *      20. I V 
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R was divided into grid points with intervals of dq  =2.0 

and dq  =0.25; dq?2 was re<3ui-red to be this small by the 

low sensitivity of m  and m_ with respect to q  .  This 

low sensitivity can be seen in Figures 15 and l6.  Approxi- 

mately 100 minutes of IBM 3^0-70 computation time was re- 

quired to complete the evaluation of m at all grid points. 

Figures 155 16 and ,17,   obtained from this search, 

give contours for selected values of m , m  and m .  Figure l8 
l   <£      j 

is a composite of these figures.  Graphical construction 

indicates that the desired weighting matrices is in a neigh- 

borhood of Q = diag L8l.0, 12.8J. 

3.  Application of Design Algorithm to Select Q 

The algorithm given in Chapter III was applied with 

all three elements of m being considered in the selection 

procedure for _dQ, for three initial Q s.  Two initial Q s 

were selected to test the algorithm with only m  and m  being 

considered in the selection procedure for dQ.  The results of 

these, trials are given in Table VI. 

Attempts were made to test the algorithm with only 

m  and m  or m  and m  being considered in the selection 
J- ^ £ Z) 

procedure   for   dQ.      The  moves   made  by   the   algorithm   did  not 

tend  to   improve   the   element   not  being   considered,   or   approach 

a  best   Q  for   all   three  elements   of  m.     This   is  partially   due 

to   the   insensitivity   of  m   ,   with  respect   to  Q.      This   insensi- 

tivity  was   exaggerated  by   the  non-continuous   nature   of   time 

in   the   digital   computer   calculations. 
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Figures 19, 20 and 21 show the initial iteration 

moves made by the algorithm for trials 1, 2 and 4 in the 

q,-.~ci?2 plane.  For the initial points tested, the largest 

number of iterations required to move Q  (the superscript 

i refers to the latest iteration number) to close proximity 

to the best Q was eight.  (No claim as to the uniqueness of 

a best Q is made for this algorithm as this depends on the 

system, initial Q , and design measure being considered.) 

From the point, Q , which is in close proximity to the best 

Q, at least 20 and not more than 30 iterations were necessary 

to arrive at a locally unimprovable weighting matrix, denoted 

by Q .  The Q 's thus found were not equal, although all de- 

sign measure elements were considered to be satisfactory. 

The largest variation being in q  , to which all elements of 

m are relatively insensitive in this region. 

Table VI.  Results for Second-Order Example 

L  m . 's 
Cons ider ed 
to select 
dQ 

3  m1,m2,m 

3  m1,m2,m 

3  VVm3 
2  m1,m3 

2  m ,m 

Initial 
Q 

1,1 2,2 

10.0 1.0 

1.0 10.C 

100.0 1.0 

10.0 1.0 

100.0 1.0 

Final 
Q 

1,1 2,2 

81.37 12.897 

83.46 12.864 

80.44 12.683 

79.81 12.916 

81.41 12.914 

Final 
m 

12 3 

5.0057 0.925 2.075 

5.016 0.925 2.062 

5.08 0.925 2.044 

5.0001 0.925 2.076 

4.9999   0.925  2.0226 
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B.  A THIRD-ORDER EXAMPLE 

The third-order system considered was taken from L4J- 

It is for the linearized incremental longitudiual motion of 

an aircraft..  The system is given by 

x(t)    = 
■0.0016        1.0 -.0002 
•0.1569      -0.0015      -.1131 
0.0 0.0 -.666 

x(t) 

0.0 
0.0 
0.666 

u(t) (iv-5) 

The   final-time,   t   ,   was   arbitrarily   set   at   2.5   seconds.      The 

design  measure,   m,   selected  for   examination,   had   the  following 

elements: 

m  - percent overshoot for x (t) 

m  - time to maximum overshoot for x (t) 

m  - max j u( t) | , 0 <■   t ^ t 
6 t 

which were assigned the desired value 

m 
4-5   % 
0.91  sec 
0.0 

(IV-6) 

The system  was   transformed  to   the  phase-variable  form   in 

the   manner   of   L5J•     The   transformation   matrix 

T = 
-41.329     -O.O8026 
- 3.41561  -41.329 
52.809      1.406 

0.0 
1.536 x 10 ' 
6.71141 

(iv-7) 

results in a system matrix given by 

A, 
0. 1. 0. 
0. 0. 1. 

53. -8.88 -6. 
(iv-8) 
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Therefore the system is given by 

i(t) = A0£(t) + u(t) . (IV-9) 

The   design   measure,   m,   is   defined with  respect   to   the 

original   states.      Since   it  was   desired   to   observe   the  state 

trajectories   for   both   the  phase-variable  form and   for   the 

original   states,   the  computer   program  was  written   to   trans- 

form   the phase   state _z(t)   to  x(t)   a-t   each   integration  step, 

in   order   to   evaluate m„     A more   direct   method   is   to   trans- 

form   the   diagonal   weighting   matrix   to   the  general   form,   Q 
9 

and perform all integration in the original state form. 

Q  is given by 

Qg = (T'VQfT"
1) (IV-10) 

Kriendler's   Zkl   selection   for   the   original   system 

weighting  matrix   is   Q     =   diag  [lO.O,   0.5,   0.0].     This   Q 
g g 

led to the design measure 

m 
4.497 
1.1 

97.2 
(IV-11) 

No  attempt   was   made   to   guess   the   best   Q,   or   to  use   the 

exhaustive   search  method,   as   it was   felt   the   expected  results 

would   not   have   been   worth   the   time   or   effort   involved. 

The  algorithm  given   in   Chapter   III   was   applied   to   the 

third-order   example,   with   one,    two  and   three   design-measure 

elements,   m.,   being   considered   in   the   selection  procedure  for 

dQ.      The   results   of   this  application,   with   test  points,   are 

tabulated  for   all   trials   in   Table   VII. 
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Favorable results on any one trial depended on the initial 

weighting matrix, Q , selected and on the elements m., being 

considered.  The first trials (1-8 in Table VII) were made 

considering either all three elements, m., or elements m, 
J 1 

f * 
and m .  Most initial points resulted in an m  close to m , 

f *   f 
but m  could not be reduced to m • m  was at an apparent 

local minimum in Q space.  Those trials that considered all 

design measure elements in the selection of dQ tended to 

reduce m  more rapidly in the local region. 
3 

Since m  seemed to be least changeable for these first 

trials, a starting Q was selected that had resulted in m 

close to m .  A trial (9) was then made considering only m 

for selecting dQ.  The result was a significant reduction in 

m -m    while m1-m1 did not increase unreasonably.  Sub- 

sequent trials alternated between considering m_ and con- 

sidering both m  and m  in the selection procedure for dQ, 

with a resulting Q  that reduced both m   -m and m2_m2 

to  an  acceptable  level.     The   Q     thus   found was   used as   the 

initial   Q     in   a   trial   (l4)   where  all   three   elements   m.,   were 

considered   in   the   selection procedure  for   dQ.      This   trial   (l4) 

significantly   reduced both m   -m and m2-m2 
in   two 

iterations.     Tests   in   the   neighborhood  of   the   Q     found   in 

trial   (l4)   showed  that   the   element,   q      ,   was   zero  for   this 
3D 

s y s t em. 
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TABLE   VII      .   RESULTS   OF   TESTING ALGORITHM   ON A   THIRD- 
OROER   EXAMPLE 

TRIAL   ACTIVE                OMNITIAL      1 Q<I , I ) M ( I 1 
MC.         CONSTRAINTS   F:FINAL 

ELEMENTS           T:TEST 
1 1,2                        0                           1 17000.000                4.6 

2 850.00 1.1 
3 l.OE-9 95.8 

F                            1 17200.00 4.56 
2 855.80 1.1 
3 1.0E-9 96.17 

2 1,2                        0                           1 1232.0                     5.55 
2 649,0 1.48 
3 1.0E-9 32.46 

E                           1 11526.0                     4.50 
' 912.5.                   1.175 
3 1.0F-9 73.89 

3 1,2,3                   0                           1 11530.0                     4.5 
1 812.5                      1.175 
* 1.0E-9 73. 8Q 

E                            1 11524.2                       4.511 
2 811.2 1.175 
3 1.0E-9 73.884 

4 1 ,2                          0                            1 17090.0 .4.5584 
2 855.0 1.1 
3 1.0E-9 ^>5. 776 

F                           1 17439.83                   4.4969 
2 366,6843     1.1 
3 1.0E-9 07.231 

T           1 174Q0.0        4.4968 
2 866.7 1.1 
3 1.0E-9 ^7.231 

5 1,2,3       0           1 17489.3         4.497 
2 866.68       1.1 
3 l.OF-9 97.231 

F           1 17490.21        4.5021 
2 865.9717     1.1 
3 l.OF-9 97.231 

6 1,2         0          1 10000.0 16.717 
2 1.0        1.05 

0.00C1 65.6 
F          1 10034.00       9.53 

2 586.23 1.0125 
3 -    28.93 65.45 

0                           1 10031.27                   6.78 
2 585.9265 1.15 
3 0.01 66.95 

F          1 10049.01       4.5028 
2 736.7891     1.225 
3 4.6321 67.561 

0           1 10049.01        6.78 
2 736.789] : 1.225 
3 4.6321 67.561 

F           1 10049.07       4.491 
2 786.2485     1.225 
3 5,4707 67.596 

F           1 10049.07       4.6164 
2 736.2485     1.2 
3 0.01 67.353 

F           1 10057.14       4,5021 
2 802.4175     1.2 
3 -1.65517 67.338 

7 1,2,?       0          1 10057.14       4.5021 
2 802.4175     1.2 
3 -1.65517 67.333 

F           1 10057.13       4.4764 
2 802.783 1.2 
3 -0.72456 67.38? 

0                           1 10500.00                   4.5053 
2 802.00 1.1875 
3 1.0F-8 69.40 
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TARLf   VII       .   CONTINUED 
TRIAL   ACTIVE 
NO. 

OrlNITIAL      I Q( I r I ) M( I ) 

1C 

12 

13        2 

C 
C 

CONSTRAINT F IFINAL 
FLEMFNTS T:TFST 

F 1 10523.85 4.1638 
2 83 .5637 1.2 
3 l.OE-8 69.56 

It? 0 1 20000.00 3.7668 
2 1000.00 1.0875 
3 1.0E-7 106.12 

F 1 20007.16 4.5032 
2 836.54 1.075 
3 l.OE-7 106.CO 

2 0 1 20000.00 4.5115 
2 6 36.0 0.9 
3 l.OE-7 105.98 

F 1 46490.00 5.4 
? 836.0 0.9 
3 1.0F-7 178.14 

1,2 0 1 -+6490.0 5.4 
2 d-ib.O 0.9 
3 l.OE-P 178.14 

F 1 46493.05 4.4895 
? 1039.55 0.925 
->i l.OF-8 178.33 

2 0 i 464P3.05 4.4 395 
2 1089.55 0.925 
3 l.OE-7 1^8.3 3 

F 1 ^7493.05 5.29C6 
2 Ql>. 547 0.9 
3 1.0F-7 180.45 

lt2 n 1 47493.05 5.2906 
2 914.547 0.9 
3 l.OE-7 180.45 

F,0 1 47242.65 4.5338 
9 1033.722 0.9125 
3 l.OE-7 180.03 

F 1 46246. 18 4.5065 
2 1033.933 0.Q25 
3 l.OE-7 177.76 

2 0 1 46246.18 4.5065 
2 1033.933 0.925 
3 l.OE-7 177.76 

F 1 50000.00 4.6105 
2 1033.933 0.Q125 
3 l.OF-7 136. 19 

0 1 50C00.0C 4.610? 
2 1083.933 0.9125 
3 0.01 186. 19 

F 1 51000.OC 4.6371 
■j 1033.933 0.9 
3 0.01 138.33 

1,2,? r 1 51000.00 4.6371 
2 1033.933 0.9 
a 0.01 188.33 

F 1 51001.OC 4.5005 
-> 1116.933 0.9125 
3 0.01 188.42 

T,0 1 51001.00 4.5007 
2 1116.933 0.9125 
3 l.OF-7 188.4? 

F 1 51000.85 4.5015 
2 1116.74 0.0125 
3 l.OE-7 188.41 

T,n 1 51000.85 4.5015 
? 1116.74 0.9125 
3 C.001 188.41 

F 1 51000.85 4.5033 
2 1116.75 0.9125 
3 -0.0997 138.41 

57 



TABLE   VII      .   CONTINUED 
TFIAL   ACTIVE. 0:INITIAL 
NC.        CONSTRAINT 

ELEMENTS 
15 1,2,3 

0(1,11 M( I ) 
F:FINAl 
T : T F S T 
T,n 1 51000.85 4.5056 

? 1116.754 0.9 
3 -0.198 1«8.40 

F 1 510000.84 4.5014 
2 1116.33 0.<U25 
3 -0.0131 188.41 

T 1 51000.94 4.5011 
2 1116.83 0.9125 
3 1.0F-7 188.41 

T 1 51000.84 4.5011 
2 1116.83 0.9125 
3 0.0 188.41 

T l 51000.0 4.5011 
2 1116.83 0.9125 
3 CO 188.41 

T i 51000.0 4.5044 
9 1116.0 0.9125 
3 0.0 183.41 

T 1 51000.0 4.5008 
-> 
L. 1116.9 0.9125 
3 0,0 188.41 

T 51000.0 4. 5004 
7 1117.0 0.9125 
3 0,0 188.41 

T 1 51000.0 4.4984 
c 1117.5 0.9125 
3 0.0 188.41 

T 1 51000.0 4.4994 
-> 1117.25 0.9125 
3 0.0 188.41 

T,n 1 51000.0 4.5000 
ö 1117.1 0.9125 
3 0. 0 188.41 

F 1 51000.0 4.5 
2 1117. 1 0.9125 
3 CO 188.41 
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The  best   Q  found,   using   the  algorithm,   transforms   to   the 

original   system  form,   Q   ,   given  by 

%- 

29.87207 

-O.II2076 

-O.II2076 

6.54338 

-1.39   x   10 
-6 

2.705  x   10 -9 

-I.393   x   10"        2.705   x   10"9      6.497   x   10-1^ 

(IV-12) 

which   is  positive  definite. 

C.      DEMONSTRATION   EXAMPLE 

A  second-order   example,   that  had not  been   considered 

previously,   was   selected  for   a   comparison  of   the   trial-and- 

error   estimation  procedure  and   the   design   algorithm.     This 

system   is   given   by 

i(t)= 0.0    1.0 
■1.0   -1.0 

x(t)    + 
0.0 
1.0 u(t) (IV-13) 

The final-time was   arbitrarily   set   at  2.5   seconds.     The   design 

measure,   m,   considered   had   the  following   elements: 

m     -   percent   overshoot  for   x, (t) 

m     -   time   to  maximum  overshoot   for   x   (t) 

m     -   max   |u(t) 
3 t 

which   had   the   desired   value 

0  <.   X <.   X 

m 
5.0 % 
0.925     sec. 
0.0 

(IV-14) 

The   estimation  procedure  was   applied  for   several   starting 

* * points,   with   no   success   in  satisfying  both  m     and m   . 

Q  =   diag   [500.0,   O.o]   was   the  most   satisfactory  point   found; 

the  design  measure  for   this   Q was   m     =  [4.629,   .925,   21.97]. 

CPU   time  was   seven   minutes. 
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The design algorithm was applied for an initial 

Q = diag LlOO.O, O.lJ, with only m  and m  being considered 

in the selection of dQ.  After five iterations, an unimprovable 

weighting matrix, Q = diag L1OO.56, 0.11539], was obtained, 

T 
which had the design measure, m  = L5-026, 1.4, 9-59].  With 

only m  and m  being considered in the selection of dQ, an 

initial Q = diag [500., O.l] resulted in Q = diag L499.9998, 

-I.I25J and mT = [5.0022, 0.925, 21.966'] in one iteration. 

Considering all three elements of m in the selection of dQ, 

an initial Q = diag [500., -I.I25] resulted in Q = diag [499-5, 

-I.II969] and m  = [5.OOO8, 0.925, 21.955] in six iterations. 

Five minutes of CPU time were required to perform these cal- 

culations. 

Application of the algorithm, considering one, two or. 

three elements of m in the selection of dQ, for the initial 

point Q = diag [1000., O.l], failed to result in a satisfactory 

design measure.  All moves stayed in close proximity to the 

initial point.  This failure was apparently due to the relative 

insensitivity of the time to overshoot with respect to Q, 

which was exaggerated by the discrete time intervals used in 

the calculations.  Fourteen iterations were performed in 4.6 

minutes CPU time. 
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V.      SUMMARY   AND CONCLUSION 

Since   the  optimal   state  trajectory   for   a   linear   regulator 

system  depends   upon   the  weighting  matrices   chosen,    it   is   de- 

sirable   to   establish  a   relationship   between   the  weighting 

matrix,   Q,   and   the  design   objectives. 

Many  authors   have  considered  methods   for   selecting  a 

weighting   matrix  for   the   infinite-final-time   (t     = °°)   problem 

that  result   in   a   s„ystem   that  meets   their   requirements.      The 

only  methods   surveyed   that   can   be  applied   to   the  finite- 

final-time problem   (t     <  «)   are   exhaustive   search   in   Q  space 

and  trial-and-error   adjustment   of   the   Q matrix. 

The   exhaustive-search  method appears   to  be  a   feasible 

method  for   selecing   Q under   very   restrictive  conditions.      The 

region   that   is   investigated must  be   small   or   computation   time 

borders   on  the   ridiculous.      This   method   is   only   feasible  for 

systems   where  only   two   elements   of   the weighting  matrix,   Q, 

are  allowed  to   vary. 

The  estimation  procedure   does   not   require  as   many   calcu- 

lations   as   the  exhaustive  method   does   for   the   same  system, 

provided   the  subjective   decisions  are made  properly  and with 

efficient   use  of   the   computer.      The procedure   could   be   applied 

in   situations   where  more  than   two   elements   of   the  weighting 

matrix  are   allowed   to   vary,   but   the   information   that   must   be 

processed  by   the   designer   becomes   excessive. 
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It   has   been   shown   that   the   sensitivity   of   the  optimal 

state   trajectory  with   respect   to   the weighting  matrix   can   be 

evaluated using   the   influence  function  approach.      Because 

this   evaluation   is   computationally   complex,   and   it   is   necessary 

to   consider   the   time-varying   trajectory   sensitivity   to  select 

a   change   for   the  time-invariant  weighting   matrix,   it  was 

decided  that   this  approach  would  not   be fruitful. 

The procedure   selected  for   development  required  the 

formulation   of   a   vector   design   measure,   m.     This   design 

measure was   composed of   generally   used   time-domain   system 

characteristics   such as   percent  overshoot,   time   to  maximum 

overshoot,   etc.,   and  desired  values   were   selected  for   each 

element   of  m.      The purpose   in   selecting   Q,   therefore  became 

the  minimization   of   the  absolute   difference  between   each 

* element   of  m  and   its   desired  value   m..     This   difference   is 

denoted  by 

f     =   |m   -m*|;   j   =   1,2,...,L. (V-l) 

am 
The  sensitivity   of   the   design   measure,   denoted  by  r-r, 

OQ 
am 

must  be  approximated  by   finite-differences.     •r—   is   related 

to   the finite   differential   dQ by 

'dmT 

dm   =  g=-   dQ. (V-2) 

This relationship was utilized to develop a procedure for 

selecting a dQ that results in the reduction of as many of 

the elements, f., as possible. 
J 
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The procedure  for   selecting  dQ was   incorporated  in  an 

iterative  algorithm  that attempts   to select  a  weighting 

matrix  Q  that  minimizes   each design-measure  difference,   f.. 
D 

The algorithm was   tested  on   three  examples,   two second- 

order   systemsand  one  third-order   system.     These  tests  were 

carried out   on  the  IEM  36O-67  computer   system  operating   in 

a   time-sharing  mode.     Operation   in   this   mode  was   mandatory 

due   to  the  subjective  decisions   that  are  required by  the 

procedure  for   selecting   dQ. 

Computer   CPU  time for   the  third-order   example was   approxi- 

mately   91-3  minutes.      It   should  be  noted   that   this   time   in- 

cludes   many  calculations   that   were  made  solely   to  check  out 

the  algorithm.     A   designer   who  was   reasonably  familiar   with 

this   algorithm  should  require  no  more   than   one-third  that 

time  to  develop  an acceptable  design  for   a   third-order 

system. 

The  tests   indicate  that   the procedure for   selecting  dQ 

is   a   valid  extension   of  Equation   (V-2),   and  does   lead  to a 

reduction   in   the   elements   f .   in  a  neighborhood  of   the  Q  in 

question.     The  test further   indicates   that   the algorithm  does 

lead  to a  minimization  of   the  elements   f.,   for   a   third-order 
3 

system,   if   the  number   of   elements,   m.,   used  in  the   selection 

procedure  for ^Q  is  alternated  in  a  judicious  manner   between 

one,   two and  three.     Consideration must  be  given   to   the 
dm . 

relative magnitudes of the various sensitivities, T-T^- , 
dQi 

i  =  1,   2,...,n,     j   =   1,2,...,L,   and  to  the  current   values 

of  m  so   that  needless  and useless   computation   is   avoided. 
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The algorithm  developed   in  Chapter   III,   modified  by   the 

consideration   discussed above,   appears   to  be  a   feasible  pro- 

cedure   for   use   in   designing   optimal   controls   for   first-, 

second-,   and   third-order   linear   regulations.      An   extension 

of   the  algorithm  to  linear   tracking   systems   can  be  readily 

made. 

The extension of the algorithm to higher-order systems 

should be limited in feasibility only by the computer time 

required to integrate large-order systems of differential- 

equations.     The   selection  procedure  for   dQ  developed   in 

th Chapter   III  applies   for   n     -order   systems,   provided   that 

the  number   of  design   measure   elements   is   less   than   or   equal 

to  n+1.      This  presupposes   that   the L   hypersurfaces   in   n- 

dimensional   Q-space,   corresponding   to  the   elements   of  m   , 

have  a   common   intersection. 

It   is   felt   that   further   testing   of   the  algorithm  should 

be  undertaken   before   incorporation   in   a   general   design  pro- 

cedure.     This   testing   should   include  higher-order   systems   and 

different   combinations   of   design  measures. 

A possible   direction   for   future  research  concerns   a   time- 

varying  weighting   matrix,   Q(t).      A  less   time-consuming   inte- 

gration   scheme,   such  as   on   a   hybrid analog-digital   computer, 

could  make   the   evaluation   of   the  state-trajectory   sensitivity, 

Ox 
-—,   feasible  for   higher-order   systems.      It   seems   reasonable   to 

dx 
assume r-r could be used to adjust the weighting matrix, Q(t), 

to reduce the absolute difference between the elements of the 

state vector and those of a desired state vector. 
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