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COMPUTING. EQUILIBRIUM COMPOSITIONS
< OF IDEAL. CHEMICAL SYSTEMS
. James H. Bigelow”
) The Rand Cérporation, Santa Monica, California
S
I. INTRODUCTION
! © A single~- or multi-phase chemical equilibrium problem
: may ‘be expressed as a nonlinear programming prchlem. Thus
L.
§ ’
E ‘to find the equilibrium composition of a chemical system
1
A one need only minimize a particufar nonlinear Ffunction (the 5
i « .
- free energy) « £ composition subject to certain linear con-
, straints (the mass-taldnce laws). The free enérgy is defined
] y? ’ 2
8 on the nonnegative orthant of n-space, where it is ¢ontinuous,
. : )
fw ( convex and homogeneous of degree one. In the interior of
: its .domain it is infinitely differentiable; but at the bound-
- X
@é . _ ‘ary, tlie directional detivative may become infinite,
: In this paper, the phrase 'chemical equilibrium problem"
1 B . )
: p refers only to a problem with a particular mathematical form,
d : veal torm
;‘ > Problems of this form arise in many situations not classically ‘
s denoted chemical equilibrium problems. Fof examplé; the dual
% X
S to @ geometric progiamming problem [1, 2] ‘has this form.
: g Also; steady-state problems, many of which arise naturally
R \
A " in the chemical laboratory, or in industfy, can often be
T . g ‘
AU represented in this foum.
L - , sy s , .
j " The chemical equilibrium problem, then, is the problem )
2 I N ; 7
L SR PRECEDING PAGE BLAR |
: f ) Any views expressed in this papexr are those of the author.-
kb They should not be interpreted as reflecting the views of The
| -y Rand Cerporation or the official opinion or policy 9f any eof its
1L governmental or private rescarch sponsors. Papers -are reproduced
} , by The Rand Corporatiom as a courtesy to members of its staff,
;) v e B O T o s — - e e . ]
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of minimizing a function F(X15 X9, w.:5 X,), defined below,

subjéct to .theé: linear constraints

n ,
(‘Io‘l) L a..x, = bi, i - 1,» ’2, cveey M

SN

and the inequalities;

t(i‘z) X 2 0) j = 1, 2’ evey Do

s

The 3y 5 and b, afe givén real constants. We assume: that
the m equations (I.1) are linearly iridependent and, so
that the problem will-be nohtrivial, that m < n.

The: n variables xj are,partitioned:into P nonesipty

subsets: called compartments, or phases. We derote the

compartmernit containing the Variablgmxj by <j». We may
indicate ‘that %, andﬂxk‘aﬁc in the same compartment by

writing:
je<ks of ke<j> or <> =<ks .,
Each compartmient has associated with 4t a sum,

(I 3) e

% - @
J\~<1§.>‘ P JCJ, L]

‘/\ ]

Je<k>

=X

Each variable has agsociated with it a variable

fraction,

(1.4) PR

‘The objectivVe fynction to be minimized is:

P P e VR DT B YV s otes v
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. F( “on = 3 x,(cs + log £.).
, i e - (I 5) F(xl’ H xn) J'gl j( J g rj)
%;‘ o
. The ¢y, €3, +..s €y &re given real constants.
- ‘ X .o > 1
» When xj = 0, elther 3m = 0 (if x<Jb 0) or ij s
R ¢ . - o L . ~ ) N
E - undefined (if x<j> = 0)., ‘In elthet case, log.xj 1s' unde=
g P fined; but to maintain the continuity of F at the boundary
ﬁ of the constraint set we define X3 1og.£>1 = 0 whenever \
. xs = 0. (3], p. 3649 ‘
. © N s
gl It will be convenient to use matrix notation., Thus
34
A ‘we let A be an m X n .matrix whose ith' element is aij‘
L - ) i3
a That is,
Fé 1\ . a\ll. 8.12 D) aln N
s’ i
o (1.6) A =|
E . /f' . L] e
L, | fml %m2 vt B
i o A
; Similarly; we let b be the ms=vector whiose igh com= . {
o ponent 1s bi’ or:
ok :
E.’ ;
3 ;
| )
3 ‘
C i 7
P (1.7 ;
e |
; " s
: v ,
t e
Yoo ,
D g !
g n y
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; In the same fashion we let x be the n-vector with -components "
i ' xj; % the n-vector with. components %.; ¢ the n-vector with f
E ' components cj; and log & the n=vector with cdmpqgents.log,fj. ¥
? Using vector notatifon, we may writé the chemical equi= |
é\ Iibrium problem in the following compact form:
i (1.8) Min F(x) = Min x *+ (¢ + log %)
é s.t. Ax = b.
‘ x>0,
i
- The notation x « (c + log %) denotes the inner product of (
ke ) :
! the vectors x and (¢ + log x).
= It will be convenierit to. definé two sets.
& , .
. ) . r
‘ (1.9) H(A, b = fx > 0lAx = b] .
: i
. .Clearly this is theé set of aLi.feasible points X,
FS l (‘F,10) M(FIH) = {x ¢ HRE(y) > E(x) v y ¢ H}.
Evidently, for any function F défined 6n. a sef H, the set
| v N !
E ' M(FIH) is the set of all points in H wheré T achieves its :
; siindmum., In particular, if we take F to be the function i;
‘ defi.ned by (I.5), and H = H(A, b) from (I1.9), then M(FFH&A%'b}Q ;
o is the set of points x which are solutions to the problem (I.8). :
AN e . . . -
o In previous papers e have eéxplored sevéral Ways in
T which problem (*.8) is related #o physical phchomenz, and ?
i i Some dmathematical difficulties @§sociated with Solving it.. L
‘E In this paper we will discuss séveral methods for finding a ig
ey L - . - ; !
o soittion to (i.4). ‘ f 1
1% | g
i ”Thisspapér is the third in a serigs of threé, The first &
3 was "Chemistzy, Kinetiés; and Thermodynamics;!' the second, .
{ - "Degéneracy in Ideal Chemical Equilibrium Problems. i
oo,
1 b |
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I1. DPRIMAL METHODS

oy

We séparate methods for solving the. chemicak equilibrium

problem into primal and dual methods, -according ‘to whether the

the:pufpdée of an iteration of the: method is to find an

improved composition vector  (primal methods) or @ better

vector of Lagrange multipliers (dual methods).

In an

extension of Clasen's terminology 14, 5], thé methods

would be called, respectively, first< and second-order

methods,

Fucthe?¥, wezsepafaté prima1;megH9ds according ito whether

the set of wariables is expanded to in¢lude. the

augmented forh, due to Clasen {[5]), or whéther the

X_..'8 (the

<j>

> H

are ignoéred during, each. iterationm, and updatéd only at the

ewd of the iteration (the reduded £omi, due to the author

161, Both forms may be tfeatéd a5 spdcial cases of a more

gencpal problém, the linear-]logaxithmic problem.

The first primal method, called here the Au

Approximation Method, was .devaloped by Clasen (&, 5]

ament od Lineaft

.
..

Tn his

work; he assumed dégeneracy awdy, and failed to present any

means of coping with it. We Will do the same in thie ced<

tion. Ia Sections III and IV we will deal with the préblem

of degengrar,.

1. The Aupmented Form

The form in which the chemical equilibriuwm problem

was' originally presenteéd; (I.8), 4is to find a +ector x

satiéfyiﬁg:
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(I1.1.1)

Min F(x) = E#j(cj>+ log ﬁﬁ)

sit. Axi=b

x>0

It 1S move convenient; héwever, to change thé Jorm by

expandifg the Gibb's functiofi. Remembeéring that

R, = xﬁ/iéi?’ we:-write:

11.1.2 ) =T w. (e, + Tog x:) = BN X_. log X_...
(1I1.1 ‘) F(%). & 3 yg(cj Tog XJ) ey x<J>log x<j>

1f we inciddecthé sums X_.:, in the vector of vatriables,

andvxemembér~ghat(§;j> = 3

of (II,1.1);

(11.1.3)

\

J
R Kyes wé may solve, i nlace
Ke<j> *

Min: I;;(X) = (;; Xj(‘fcj) + élO'g" xj> - <j

<j>

s.t.

Y oXg = K= O V<y>
ke<j> & 97

_Zd v j‘ ’ <j>o

If there are n species and p: compartments, there will

‘be: M = n + p vartableés in problef (IL.1.3). Similarly;

If the equations Ax = b. ate m i number, then there will

be a total of M= m + p equations in the constraint set

of (1I.1.3). Vhes the chemical equilibrium problem has

‘beeni cast in the £orm of (I1I.1.3), wé say 4t 1is ihlaugménted

forni,

)

X x..>log x<j

L mes e e e A e i e =

.
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Notice that we may define a matrix &, called the
augmented mattix, in such a way that it is the .detached

coefficient matrix for all M equations of (11.1.3). @&

is an MxN matrix. Define d, an N-vector, by:

1A
g=!

N _ 1 if 1< j
(11.1.4) d, = .

ifn+1<j<N
Define ¢, an N-vector, by:

_ k‘c. if 1
(1I.1.5) ¢, =1 J . B
J “lO~ ifn+1 <

A
‘—‘.
In

3

N

A
S—JO
IA

Define an M-=vector b by:

o
-
Hh
+
A
I
I‘A
3

(II1.1.6) b, = )
< M,

(H.
o
s .
h
=4
+
(]
!\A
ol

Augment ‘the vector x -of unknowns by lgtﬁinglxjibe

the appropriate §<j’> for n+ 1 < j < N. Then ve may write

(I1.1.3) as:
N -
Min % x.(c, 4+ d. log x.).
) 56¢5 * dy Llog x5

(11.1.7) $.t. Ax=Tb

¥ 30,

It ¢an be shown (171, Theorem I1.1) fhat if (11.1.7)

. . L e . X -
Jpossesses a s;rlctly positive solution x", then there exist

Lagrange multipliers, M in number; such that X* also sst—

isfies the Kuhn=Tucker conditions [8) for problém (II.L.7J,

I B e s R L o
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2. The Reduce:. iurm

the constants: ¢

‘Suppose the onigingi problem (I.8) possesses at least

one strictly positive optimal solution x¥., It néed not be

unique. For each j, 1 < j < n we define new values for

J.tq be:

_ % , b
¢11.2.1) c(;j = cj -1 - 1°$'xzj>;

Theorém 11.2.1: Consider the following two: problems:

(11.2.2) Min F(X) = Min %, (e, + log %;)

|
s.t. AX = b

x>0

and a second problem,

=

(11.2,3): Minh W(x) = Mid 'r.xj {c

i

% + log x,)
3+ 108 %)

(&

s.t., Ax =

b
x>0

vheté c; is defined by (II.2.L), and x* e M(F|H), x* > 0,

Then k* 1§ the unique solution to (17,2.3),

;Pfébgz First& note that the function g(t) = t log t is

striétly convex for t > 0. (Wé define>g(0) =Q so- that 2
‘will be coritinuous for it 3\0:) To see this, note that for

t >0, g'"(t) -\% >Qd. As the §gmrdf.g linear function:

B S N S 3 O g O L S Oy oy P S,

.

)

;A -

'
g Ry + bty Bt e

e e

1

gty

e W,
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and functions such as. g(t), W(x) is a strictly convex func—
tion oh the nomnegative oxrthant ofUn%SQacc. Therefore,
(11.2.3) has at most a single solution, .

To see that x* is that point, wWe look at the Kuhn-
Tucker optimality conditions { 871. Theré must exdist m* such
that

W) aTx L, 1<j<n
'\x'j“ j ’ ’

(Ve have cquality since x* > 0% Were one .of the x; = 0,
we would replace the ‘equality by >0.) Evaluating this,
we find that x* is the solition to (1I1.2.3) if and only

if for somé #*,

Substitute for c? from. equation (I11,2.1), and we find that:

(11.2.4) e + log ﬁg = Agn*, 1€ 3<n.

3

But equations (II1.2.4) «constitute the optimality conditions
for thé original problem (T1.2.2). Since x* solves (II.2.2), we

know that the recquirad = .oxists {@ED.

When the problem has been th in the form (1I.2.3)
we say it is in the reqqqed form. The ch;efldiﬁficuity
with this form is ‘that we don't know what ﬁhe’ié?xfs will
be. In the course of using this form in computational

methods; we shall use instead tlie E;j>‘s currently avail-

able, those corxesponding to -our current solution;

9.
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. 3. ?he General Lincar~Logaritbmic Problem
- Clearly hoth the auzmented and reduced forms of the
2 chemical equilibrium problem may be considered special
? : \cases»of'the following problem!
: <
i : Min F(x) = ¢ Xy (c:,j oS dj logwxj)
Fod (I1.3.1) s.t. Ax =b
| %20
é . The matrix A and the vectors b, ¢, d are constant quanti-
L ties, and what they are, as well as theit dimensiéns,
é j depends on whicli of the two forms we choose forvthe*problem.
%.:. We take A to have dinmension M x N,
§%: Notice that unless for each j, dj is nonnegative,
E*' F(x) s uot convex. It may, however, be convex on the
] domain H(A, b), where (A, b) = ‘x> Olax = b?, as &t is
% f in either the augmented or the reduced form of the chemical
F equilibrium problem.

10
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3 ) .
SR
3 "
. &,  The Lincar Approximation iethod
o This mothod is due to Clasen 4, 51i.
4 < i . P g Al N
. If we blindly apply the Kuhn—Tucker theorem to the
i general linear—logaritimic problem, (II.3.1), wé may
SR believe we are looking for a vector (z¥*, =¥} satisfying:
- :
- o ;},(.X\'" ‘rr"f ' Q—L(X* TTH .
. (11.4.1) X, r)>oop BELT)o0 1<,
o 3 i T
. 1 <1 gM
' < AL(,{';\‘ n'v'f
P where ——5 >0 only if xj = (0, and whexe :
. 4 b s 3
L s J
. (I1.4.2 Lix, ) = F(x) - & (Ax = b).
;- e Performing the partial differentiation indicated in
T (I1.4.1), we find that (x7, w ) must satisfy:
. &
(1£.4.5) o, + d, log xi +d, > AT w, with equality
3 3 J J— -
if %7 > 0.
-]
(11.4.4) AxX”™ = b.
: We will assume that x> > 0, so that (17.4.3) is
satisfied as aa equation fox cach j. Solving (11:4.3)
foxr log x? we find that:
l J
" P dad 4
(I1.4.5) = log xi = AT 5 e, - d.z .
X I I B B
Suppose we are given a starting solution y satisfying
RE
- T T T e T - TR T s e R e e L O e i e V]

VNP
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e amncan
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¢
& Ay = b, y > 0. We may expand the function (log xj)4arognd
o the point yjfin a Taylors =xpansion. Then:
X, = ¥s |
‘ (11.4.69 log xy = log yy + —117——1 + (higher-order teérms).
1 ' | LR |
: Igno¥ing the higher-order terms, we substitute
S' (1X.4.6), evdluated at x?, into (IL.4.5)+ Then:
2 - ’ 1
° . . LI, T %
g I1.4.7 xF ok, =y, d, ClAT 7T~ ¢, - d lo
\ (12.4.7) i B e I i} i} gl
y ‘ ‘
C L To f£ind the value of the’rightahand\side of (L1.4.7),
o .
we must first ivaluate n*v This is fot, of course, possible,
i but we cad find an approximatica m £o m* b$~substitutiﬁg
- - (11.4. 7\ into (I1.4.4), as is done below in (I1.4 8)
: Let D be a dlagonal matyix whosc ggiw ~rement iS‘dj'
2 Assume d #0, 1<j<N,
4
3 Let Y be a dlagonal matrix whose JJE— element is Yy
£
- 1l<jix N.
3 - Frow (I1.4.7) we write:
= (11.4.8) b = Ax = (D A )w - avD™Y(¢ + d log ¥).
E , Define:
E ) .
S . ) . o
b (1T.4:9) R ﬁ»(AYD'LAI)
v :
o
fg : Thker )
e ¢ <
; ; Y li- % RNy 1 ."l 2
) (11.4:10) R = b+ AYD™"(c # d log y)
&8 ; E
. i ] <
S } :
N 17
:’.; e e o e e et o et 7= - - - e e o e e e o “ e # m e e mems s o o s o O e e
4
2]
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' 5 In the reduced case, it can be shown that R is. non—
L singuiar if and only if the matrix A, obtained from A by
¢
?K deleting those columns‘Aj with yj = 0, has full rank m.
- <X .~
P A more complex comment appliés. to the matrix R obtained
b i L 5 A N . 3 . -~
Z§ N in the augmented case, Surely; if R is .nonsingular, .chen
: equations (II1.4.10) possess a solution T,
o To find our new point x, we substitute m from equation
;’ (I3.4.10) into. (IT.4.7% in place of m",
= Unfortunately, we cannot .insure that theé new x will
tf be positive, and so we carnot in general use x as our
next iterate. Instead, we use a vector u satisfying:
; (1I:4.11) u=ax + (L - a)y
S B o
.2 for some 0 < & <1, We insist u > 0,

Section 1I1.6 will give ah algorithm using this develop-
B ment, and an indjcation .of when it might work and ‘wheiy
o it might €ail.
A
[
S
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5. The Quadratic Approximation Method

To circumvent some 'possible convergence difficultics

of Linéar methods, -one might try to insure that the new

Fbdeh 3 PRI . TN LT e e e ek e A ety sty

point x computed from y could be uscd @as the next iterate.
This suggests ‘that we Zestrict x .to be: nonnegative.

The most straightforward way of doing this is to
expand F(x) around theé initial sclution y and minl.l:e
thé sccond degree Taylor's approximation, subject te  ae
constraints Ax = b, x >'0. In place of proh!l 1 (i1.3:%) :
we solve the‘quadratic prograaing problem:

2
_ d.(x:-y:)
NS 4 (, — 3 o J J \«J, R T . ' A
Min (x) = % % = 2=d + N(x -y )(c.Hd.log y.+d.) + F(y)
Y. J 733 J 3
3
(11.5.1) s.t. Ax = Db
x> 0,

Sivice A(z) is convex on H(A, b), Q(x) will also be convesx, ‘
Thus a vector x will solve (1I1.5.1) if and only if it i
satisfies the Kuhn-Tucker optimality conditions [81. ’

. That Is, x sélyes (11.5.1) if and only if fhere exists :,
an M-vector w ~ud an N-vgctor 8 sueh that (x, 7, 3)
satis€ys
[G¥s
N Podosh o XTH + (e, + 4 . . . .
B 'X( y; :\1 \\j . log /j‘) = 6j 1 f: J 5 N
4;4':,“ ‘ ) -A, . t
¢11.5.2 2Af. - b =0 »
<
’ ~ . N . 2 ‘
x 20, 620, ngs, =0,
i
~ i4 B
S T
T
* 1
L
B

. e i s s -
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In matrix notation, the problem of finding (x, m, 6

to satisfy (I11.5.2) may be writfen:

fa a1 T 1T
1 L s :
5 ST ST cytdy log yy 51
. | I . . .
. . ; . .

(1I1.5.3) ___I:I_ -A . +

=
=
=%
~()
%
=
H
Q
aQ
3
2
il
[o]
A

e
L

. D X.0, = : 7
- J—:Q’\{J,,J 0 1§J‘SN

This #&s recognizable ds the sort of problem considered
in compiementary\pivot theory (9], Ong might also decide
to solve préblem (II.5.1) directly, using one of the .many

‘quadratic programming algdrithms available (sece, for example
[10}y. |

¥
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The Basic Algoriithm

[#2Y

similar,

its

The Lineaxr Mathod and theé Quadratic Method ave quite

using the Linear Method must satisfy:

. )
( _J,A.- AT + (¢, + d, log v = 0
y ) J

(11.6.1) 3
Ax - b = 0

Compare these equations with -equations
quadratic metiwd, In tue sume way as for (TX
isfying egquations (I1.5.1)
vam to solv

guadratic pregram, The gquadzutié prog

s
s

§ is precisely the same 4.

\fete

o

solution x is not censtrained to be nennggativ

Theovam Z7.6.1. Let F(x) be convex on Ui, b). et

y > 0, y e H{A, b)Y be the initial solution (either i

lincar or the quadratic method), zsd et x be a solukion

16
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(71.5.2) of the
.5.2), sat—

(17.3.1) except that th

We may in fact write that the new point x found '

-

is equivalenst to solviang &

T o Yiyemdee
A _}Lloz_.

he quad-
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Denote the derivative of F at y in thé direction

!
e“by'Fe(y)v ‘Then:

F/;(y)‘ <0

with equality 1if and only if y is a solution to ‘the original

problem (II.3.1).
Proof: It can be showd that since y > 0,

{I1:6.3) Fé;(yf) = T ej(‘cj +\dj, log y; + dj').

In the quadratic case, we may write (from (II.5.2)):

d.(x; - v.)
11.6.4 J j I = 0. +‘AT - - +d. log v. + d
(11.6.4) 7 3 PR (e Py T g dp)

In the linear case, we -have from (II.6.1) that

equation (11.6.4) 1is stil;,tnqe‘witn‘sj set equal to zero,

Multiply (I1.6.4) by 9 and sum over all 1 < j < N.

The result is:
d. 9%
(11.6.5) v —~1-l = =% y5by - Fgl(y)
- J J
since in both the linear and the quadratic methods,
b xjﬁj = 0 (in the linear case because 6j = 0) and
since A6 = 0,
The 1eft-hand£31de of (1I1.6.5) is JUSt‘
2

r(y + )] >0
t=0

(11.6.6) ™ .L.l

J

e kP ok e s
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which is. nonnegative because F is convex on H(A;b). 'fhuSk

A
d,9 |
=% -l . v.5, (Quadratic) |
Yy 73] A

{11.6.7)- - Fg(‘?) A ) d,6% =0
{3t (Linear) |

1f y is not an optimal solution of (II.3.1), then
there exists y* e H{A,b) such that F(y™) < F(y). Let:
% S
9‘=y+”y.

Since F"is convex on H(A,b), clearly:

F' (y) <0.
alr

1f wé let x(a) = y + @3¥ for some 0 < a < 1; then x(¢) e H(A; b).

TFurther,

27

A
: d. (5%) , .
(11.6.8)  G(x(a)) =&~ J_?;L— 1a%, 0¥(c,Hd, log yy4dy) + F(y).

Since T is convex on H(A,b), surely Q(x(s)) is a convex

“function of o, and
Y 1
%—gl a=0 = ~Eq*("¥) < 0.
‘Thus fbrisome a >0,
(11,6.9)  Q(x(=)) < Q(x(0)) = Qy) = F(y).

That #s; 1f y is not an optimal solutiog‘to (11.3}1),

then the. solution x° to (I1.5.1) or (11.6.2) satisfies:

18
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(I1.6.10) Q(x%) < Qly) = F(y).

Now suppose x° is a solution to (11.5.1), or (11.6.2)

and 9 = x° ~ y. Further, let:

< j(xj - y-])z . . .
From (I1.6.7) we (see that % 7 de . = (0, Substituting
. j
this into<Q(xo), we have:
‘ . %y, )”
(11.6.11) Q) =% % _L-J—-l-— + 7, (c g Log yyidy Y+ (y).

J
= 0+ Fyly) * F(y) =-F(y).

That is, Féfy) = Q0 implies Q(xo) = F(y). DBut we showed
that this in turn implies that y solves (II.3.1).
QED o ‘

The algorithm based or either of these methods may

be stated as follows:
I, Given y > 0, y & H(A,b), find (x,m) satisfying
(11.5.3) in the quadridtic case; oxr (IL.6.}) in

the linear case. Let 8 =X -'y.

2 )
d.8, .
2, If 2 -.-1}7-1— ¥ %‘j'yj (‘6j = 0 in the linear case)

ve sufficiently small, tefminate, 1f not, go

to. step 3.

3, Let u=y + ap for some ¢ < a <1, The vector

u nmust satisfy u > 0 and F(u) < F{y).

19 .
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4. Replace y by u in step 1, and continue the cycle:

from theve.
The termination criterion of step 2 does not sdy how

d, o2
small 2-ﬁ$—1-+ 5. bjyj must be, This is a matter to be
3 ;

decided by the requirements of the problem:..

Combining the two forms of the chemical equilibrium
problem, augmented and reduced, witl the two methods of
solving the linear-logarithmic problem, linecar and

quadratic, yiclds four different methods for sdlving; of

at least tiying to solve, tiie chemical equilibfium problem.

We name these methods the Auygmented Linear Method (ALM),
the. Augmented Quadratic Method (AQM), the Reducc.. Linecar
Method (RLM), and the Reduced 'Quadragic Method (RQM).
Reduced methods nave the advantage that the number
of variables, and hence the size of the problem, is
smaller in the reduced casc Ehén in ‘the augmented. Lincax
methiods hold an advantage over quadratic methods in that
each iteration requires less time, oxn at least no moile
time. That is, the finding of a new direction ia 2 linear
method is never a more 2engthy process, and s somctimes
a sﬁortex one, than in.a quadratic miethod, Whether this
advanéag@ is counterbalanced by a possible saving in the

number of iterations required by the quadratic methods,

the author cannot say.

20
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Thé 1incar methods, however, need not converge to
a solution y* of (II.3,1). If (11.3.1) has a bounded
solution set, it can be 'shown that the sequence of iterates
{y(k)l generated by the method has a limit point., But it
may Happen. that the‘suc;essivé\stepnsizeé,a(kj\@onverge to
zero, allowing the quantity ¥ i%i;»gd'remain bounded away |
from zero. ‘This might o6ccur if;ifor'éxampie, oné of -the
iimit'points;yd of {y(K)} has 'some component f; -0,
With somé giodificatiens, it can bg shpwn'fand‘will
be shoWwn) the¢ the quadratic method applied either to the
réduced or tha augmented forim yfelds a solution to a
slightly modified probieém,
Thé author recommends that whatever primal method
is useé,:gléqks be included in. the formulation (see {7]).
To include slacks in the problem is equivalent to ‘including
in e2ch comparctment a. tiny amount .of a»§ubs££ﬁc¢ that. will
nét diffuse fo(aﬁy other -compartment and will not partici-

péte in any reaction. Thi§ can be done by rgplacing'iéj5\

by Yess + s<.>,rand'y' by-ﬁ;&”? . wherever they occur in
3 Al AR §éj5 S<y> ' '

the formulas, where each skj>'is some small positive number,
fhis will insure that if an answer -exists, it will be
unique, and so: that if a sslution méﬁhdd generates a
sequence {y(k)aﬁoﬁ iterates with some'y* as a limit point,
and 1f Ty*] = M(FlH)y,thep the~gﬂ;ite'sequénce‘fyckjl

converges to y.

21
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4 III. A _CLOSER TI0OK AT THE REDUCED QUADRATIC METHOD

This séection deals with a method, first proposed by

¢ the .authox in l6), for solving the chemical equilibrium
g problem. Bécause .of its derivation, one migh¥ call it

: the Reducéed Generalized Lincar Programming Method. How-
él : ever;, it turns out in the end to be‘thé_samevas RQM, We
% : » retain the derivation, even though if leads to wothing

; | }new; because it is both interesting in its own right and
é- ; ‘because it leads us to suspect that RQM might be moxe

g powerful than supposed.

Z' 1.. The Reduced Generalized Linear Program

§~‘1 I1f the oqucpive function of a chemical equilibrium

T T

problem were linear; we would have a ready-made, efficient
method for solving the problem, the sSimplex method. Since

it is fot linear, we try to make it so. We will find it

: ] convenient to use the reduced foxrm (I1X.2.3) in place of
the .original form (77.2.2).
Instead of solving (II1.2.3) directly; let us "linearize"
it by dintroducing n new variables aji 1 <3 <, and solving

the problem:

(I;I.i.i)“ Min #(y,a) = Min % yj(g?\~ log «

e -y
, 3’
: s.tv. Ay =D : im
? a,. <1 ' (%}
é P32t #xy)
g yz0
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é { Each Gy may be chosen independently .of every y.
S Clearly, given any y ¢ H(A,b), we can find a corre-
: sponding feasible solution (y,x) to (II1.1.1) by choosing®
i,
i ‘l/yj if y; >0
a, = 1<j<n.
- I ll if y; = 0 , 7
: Alterhatively, given a feasiblé solution (y, a) to (I1i.:.1),
1 the vector y is a feasible solution to the original problem
; (17.2.3) — i.e., y = H(A,b).
L Fuither, if (y, @) is a feasible solution to (III.1.1),
? it may easily be improved unless (
E (111.1.2). yjaj = 1 Vi & yJ > 0.
i ; ) .
; ) We may consider (111.1.1) to be a generalized linear
ﬂa o program {{11), p. 434). Thus we wish to minimize & linear
§  form subject to lineax constraints, where the vector éf
éf;ﬁ coefficients of a variable yj is not constant, but rather ;
E‘ ; can vary over some set, ’
;; ‘ The quantities ﬁrand (~xj) appearing torthe right of |
Elf thgfconstraints of (II1.1.1) are Lagrahge,multipiicrsu_
; L Thé multiplieré m corresponding to equalip& cénstraints
é%; are unrestricted in sign, but the multipkier3~(-xj) /
%fi, corresponding to ﬁngqualities must satisfy; ] ) ;
L | | | ;
iié (111.1.3) X5 2 0 1<jz<n ' ¢
%ié Suppose we have an initial; feasible solutiénv(y a)
| - ’
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to (IIT1.1,1) which is strictly positive, Let (ILI.1.2)

be satisfied for each j.

Consider the o, as constants. For the given a,,

3
assume that the sclution y is the optimal solutidn: to

(III.1.1). (This will surely be the case if H(A, b) is
bounded. The reader may easily check that in this case

y is the only solution.) Under this assumption therc

must exist multipliers (m, x) such that (y, W, x) satisfi.s

the Kuhn-Tucker coiids.tions [ 8], namely:

A

(IIL1.4) £,(a;) = cf - log &y - Ay + ;=0 123 2n,

To improve the solution (y, @), we must find new
columns of coefficients from the sets. mentioned beforxe
which it would;be‘profitable to introduce--i,c., which
"price out”«ncgatiyély, That is, we must find necw valucs

dg'forjﬁhe variables.aj satisfying:

(II1.1.5) £i6a3) <0, L)<,

with strict inequality feor at least one j.
The function fj(aj) is defincad for o > 0 and is convex,
d fact easy to check. To satisfy (INI.1.5) we would b.

well-advised to minimize the function fj’ subject to «, » 0
A . J

The minimum occurs where the derivative vanishes.

) df, 1
(II1.1.6) Fr = 0= - 2+ Xy
- J 3
1f xs 2 0, we should therefore choose aj = ﬁL-. We
) s ‘ 3
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wilkl deal with thexgaQe that xﬁ = 0 later.

We have so far only asserted the existence of multi-
pliers (m, x). Conditions (III.1,3-4) are in general
too few iﬁ‘numbér to determine theif values., But equations
(IIL.1.6) suggest thet the multipliers xj be interpreted as
.composition varidbles. Thus we demand that x ¢ H(A, b).

This latest condition, with (III.1.4) requirés that

(m, x) satisfy (substituting ?L-for aj~gnd ¢y - 1 ~ log §;ﬁ>
. j 3 .

Xy -
—i - T; P 1 - = ] < <
7 Ajn + (cJ og 93 12 0 1<j<n
(111.1.7) ' Ax - b = .0
x >0

We have gone from one extreme tg'andther;‘xThe
equations of .(II1I.1.7) are those of the Reducéd Linear
Method. It can be shown that if the~métri£‘A has dei
rank thet~ is a uniqué solution x. to these equations.
However, this solution need not bé nonnegative,

To insure that x > 0, we relax the first n equations

as follows:

X: :
1. AT ' - 1) =
F : 43“ + (gj.+ log 93 1) = 3

(II1.1.8) | Ax -b . =0

Ll v s
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- (TI1.1.10)  g(r) 2 g(l) =1 =1 = 1og I =0
? with equality if and only if r = 1.
= . |
o Theorem I1T.1.2, Let y ¢ H(A, b), y > 0 be an initial ]
;:‘1; = P - o B A B - _V )
< point, .and let (x, W, 8) satisfy (1II.1.8). Define
& ‘A= x -y, and u(a) =y + a8, Then: :
: (1) F(u(a)) < Fly) V0ogac<l
26 - g
8 - '-
e ‘ }
S S|

B £ v e, kst OV s
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We find that the reduced generalized L. P. method leads
back to the Reduced Quadratic Method.

This suggests, however, that as in a generalized
L. ?‘,,thelnéwwsclgtion x will itself be strictly better
than the old, In fact, this is the case.

To prove our theorem, we will need the following,

lemma.

Lemma ITI.1.1. let g(r) = r — 1 — log r be -defined for

r > 0, with g(0) ==, Theu g(r) > 0 for all r, and g(x) = 0

if and’only ifr=131,°

Proof: .It is well known that g(r) is stxictly eccavex
in x, and differentiable for r > 0., Its minimun occurs

‘where the derivative wvanishes. Thus:

(III;lo'Q.} g'(x) = 1 - %R

implies.the minimum occurs at x = 1, and nowhere else (by

strict convexity)w- Sibstituting, we find for each r >0,

o
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and:

(11) F(u(d)) = F(y) if and only if either « = 0
or y is a solution to the ‘original problem
(i.Sax(or I1.2.2), 1In this case, x =y,

In this theorem, F refers to the original Gibbs function.

not the objective of the linear=logarithmic problem.

Proof: x satisfies:

X
(III.1.11) L oala 4 (e, +log 9.) - 1 = 6,
‘ yy j j j
where 6j<3 0 and‘xjéj =0 for 1 < j <n. Multiply (ITT.E. 11)

by (yj‘~ uj(a)) and sum over 1 £ j < n. After rearranging

terms: this gives us:

u., uy \
(1I1.1.12) F(y)y - F(u(a)) = a S6,y. + T u{-L . 1 . 1og';l) :
s 373 53\ ey
J J J J-
Ve - Vs
+ovE 22 Gy L peg 2i2)
<> <J>‘\Uf<j> ) =
\ Uy
} 92 Ce
+ ol - a) » =L,
i3

Equation (ITI.1.12). holds for all 0 <a <1,
Taking, the right-hand side of (III.1,12) term by

texm,; we Sce that:

(ITI.%,13)
v M,
¢I11.1.14) <~ u (L
3 N

where g is defined in

27 -
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(IT1,1.15) 7 &«<j>(:_ﬂ.>. - 1 ~ log :._J...)n

<j> \ Y<i> Heg> !

Y< \> < O>

S u,.. 8 ] .
<> - — [
<> 3 Ugys :
This term must be modified if a = %, For a < 1, note that :
E<i>(a) s 0 for every phase <j>., But at & = 1, u =X, and
.sqﬁe‘§<j>\may be zero. Thus we wrdite (111.X.15), for
a = %, as’
'9- \
i — — . P>
(I11.1.16) * ( Feogs = Ty = Regs log ==- |2 0 if @ = 1.
9>\ ' ] *<ye
For each <j> such that §<j> s> 0, this is the same ag for
e <l, If §<j> = 0, then the only nonzero iteifm of the
eum (II1.1.16) eqials ¥, > O.
Finally,
0%
(1T1.1.17) - el ~a) =l >0,
J 3
Combining (ITII1.1,13-17) we have;
(TTI.1.18) F(y) - F(u(e)) > 0 0<a <1
prbvingvstatemeht\(i).
To shov statement (ii), note that if a = 0, then
~u(a) =y, so that surely F(u(a)) = F(y),.
Suppose, on the other hand, thak o > 0, and Flulw)) = 7{y}.
We first take ¢ L. From (ITI.1.14) we see that
‘ . 2
F(y) — F(x) = 0 onky if for cach j, ;
28
) - ,MW%,_ﬁi~h S

i et Vi A\ o5ttty ok W B S e £ i st - ot O




Rl e APV o)

Oy o

R Ty

< Ar R

Deu YL EaE e ImagXs

praan ;‘w."mf’. X

'
(111,1.19) x, g(=L) =0
J yj’
which 1s trué if and only if either xj = 0, or xj 7 yjn by

Lemma III.2,.1. If A # 0; then for .at least one j, X; = 0,

But this implies that X

ties (IIT.1.15) or (I11.1.16) apply, proving that:
(IX1.1.20) F(x) < F(3) if x # vy.

For 0-< a < 1, we need only note that F is convex, so
that, for every o, 0 <« < 1, F(u(a)) < F(y) if x # y.
We-have shown that F(u(a)) = F(y) if and only if

& =0or x=1y. To complete the proof, wé must show that

in the latter case, y solves (I.8).
But if x = y, then 6 = 0, so that Fa(y) = 0. Thus by

Theorem II.4.1, y solves the original problém. QED.

25
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2. Liower Bounds

e may separate feasible solutions y into 'bad' points
and “good" points. 'Bad' points arc points y e H(A, T')
whizh -axe not interior to thz nonnegative orthant.
other feasible points are ''good.

The reason for this terminology, particularly with
regard to RQM, is easy to see upon exdmining equations
(I1I.1.8). 1If we have as our initial point y a "bad"
point, aq@*we try to: generate a new point x from it, then

x must satisfy:

h'd a2
P

(111r.2.1) N A?n + (¢c; + log § - i £ < <.
£y 3 3 3 3 - =
J

if yj =0, this is undefined. Large values of yj prasent
their own difficulties. Similar veasoning poincs out that
bad points are bad for any of our primal methods.

As it happens, the only "bad™ points that ordinarily
concern us are those satisfying Yj = 0 for some j. This

is a consequence of the following tesult,

Lemma ;II.Z.l: Let y ¢ H(A, b), and define:

(111.2.2) S(y) = {x e H(A, D)|F(x) £ F(y)).

Then S(y) is bounded if and only i€ the solution set M(F|H)

of the orizinal’pwobfem (11.2.2) is bounded and non-empty.

30
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Proof: We know that since F is convex, S(y)- must be convex:
If S(y) is unbounded, then by a well-known résult (see, for
example, [12], Lemma 3), there exists a vector v # 0 such

that for all x ¢ S(y) and all ¢t > 0,
(1131.2.3) x + tv ¢ S(y).

Notice that this implies in particular, since

x 4 tv ¢ H(A, b), that:

(T11.2.4) Av = 0
v_‘:q).

Furthermore, for every t > 0,
F(y + tv) < F(y).
By the hoiogeneity of F
F(v + £ y) - B(E y) 20,
Letting t ~ =, we have; since F(0) = ovand F is continuous.,,
(111.2.5) F(Q).i 0.

By [12], Theorems 4 and 5, it is implied by Equations
(I77.2.4-5) cthat M(F|H) is either unbounded ox empty.

Conversely, it is clear that M(F|H) < S(y). (This
does not rule out the chance that M(FlH)inggmpty.) Thus
instead of solving ‘the original problem (11.2.2), we could

replace it with:
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Min F(x)

s.t. x & S(y).

If S(y) is bounded, then it is compact (since by the con-
tinuity of ¥ i* must be closed). And a continuous function
alway$ achieves its minimum on a compact set. Thus
M(F|S(y)) is nonempty, and (since S(y) is bounded) M(F|S(y))
is also bourded.

Clearly, M(FIS(y)) = M(¥lH). QED.

The set S(y) has for us the significance that if we

. ey e . \ ') ) (0
bezin the algorithm at an initial point 40) e H(n, b v
o & l j 3 o -

>
P k. s ~ AU
then every iterate y( ) must also be in the set b(y* ).

If M(F.H) were bounded and noncmpty,; then the sequence of

£
iterates {y\&)} generated by any of the primdl aigerithms

would be a bounded set.

Furthexrmore, even if J(FIH) is either cmpty 6r unbounded,
we may continue generating new pointe until some y§k) grows
too large to be handled. This will merely be evidende that
the sclution we are chasing is a will-o-~the-wisp. In adai-

tion, we may rule out the possibility that M(FLH) ie unbounded

by introducing slacis into the problem, as suggested in

{7]! i

. . (k) L

On the other hand, that some yj # = 0 does nol sug-
gest that the problkem is without a solution. More than thlic.

. . -~ vl- i - - . )
in a practical sense yj(‘) aced not actually be zero to cause

trouble; it need only be sufficiently small that the electrouic

32
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computer cannot work with it, We must liave some means to
insure that no iteration has a component y}k) too cloSe to

Zero.

The, obvious way to accomplish this is to modify the
problem by placing lowexr bounds on each variable, Thus we

might solve:

(117.2.6) Min F(x) =% Xj(cj + log Sﬁ)
s.t. Ax =D
Xx>4>0

where ¢ is dn n-vector of lower bounds, each )j? 1<j<n,
being a small, positive number.

By expanding the number of variables and the number
of lineax' constraints, we may cast (III1.2,6) into the form

of a classical chemical equilibriua problem.

111.2. Min . = % x.(c. + 1 %.) + % s, R s,
( .7) Min F(x) x.;'(cJ + log xJ) + I §J (CJ+n + log SJ)
s.t. Ax = b '

X, = 5§, =

) [

3
x>0, s3>0,

Each variable S5 is taken to be in a new compartment, angd

is the only species there. Its free-energy constant C54n
is set to zero.

It is not necessary, however, to expdnd the problem
in this way. Lower bounds can be included without increasing
the size of the problem at all. For the RQM, in place of

equaticns (I11.1.8), we would let:

33
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(I111.2.8) x"=x -

and require x' to satisfy:

xj':\_056 >0, 6 'x:.;mo,ljjf_n.

Cde

3
It is easy to show that if x satisfies (111.2.9), then
x = R" 4+ 1 {from (II1.2.8)) solves the quadratic program
(11.5.1) for the reduced quadratic case, with the non-
negativity conditions x > 0 replaced by xVZ t. It is also
easy to show that (X, s) will be the point generated by
RQM applied to the expanded problem (I1I.2.7), where
s =x' =x - 1 are the new values for the additional
variables.
This observation insuree that all the theorems that
~-have been proven for the problem without lower bounds

still are true for the problem with lower bounds.

34

- N b T
1 T ) 10,
7 ,-Al ; le’ !cl + log 5] 1+ \7-1- g1
o NN . v
, ) ! . ! . . ; t 4 ! .
(II1.2.9) S '
. . . ,
1 1T, 1 n 3
’ = CAL 0 c o F loe Yo 1 fm n
yn i n Cn of, n - ‘Q
: w f - - T ’
: B I T by 43’5 9
! P ; ’ . .
?Al . . . t\n: 0 ‘ ! . , ; : ; .
" - bﬁ + aijJ o

e A A4 -~ v R A R AR e O T e S T Tt A T S e ey

LA e e e e s




R ey

LI Yt

T

Y A L A

R T o

e b v - o
"

il o oo icd

ey TR R b TR R R B T FERRE TR IR e L ST A TR T TR S CSAREN
= R AT A s e
b ms v s ey e

H

3. The Modificd RQM Algorithm

The algorithm fox the RQM may be modified as a result

of Theorem II1.1.2, and to include lower bounds., These

two modifications, as we shall see, insure that the algorithm

will yield a solution y¥ which is optimal for the lower-

bounded problem (L11.2.7)

1. Given y £ 4, y ¢ H(A, b), solve (111.2.9)

for x', and let x = x' + 1. We may use

complimentary pivot methods, or we may choose

to solve this as a quadgatic program.
B

: e ey, IE Tk TS (ys - L) is
2. let A=x~-y. If 5. 3(¥3 1) i

sufficiently small; terminate. I1f not, go to

step 3.

3. let a and % be prechosen numbers. Pick as

a step size any @ satisfying:
0<e<a =<t <l

tThat is, we bound « awdy from zero and if ve

wish, from one. A perfectly adequate choice

{s o = @, and hence a constant step size,

4. Let u=y + af, Replace ¥y by u, and

return to step- 1.

The convergence criterion of step 2 has been modified

to take account of the lower bounds,

2
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What follows is a proof that the algorithm finds a
solution to (IXL.2.7). Throughout, we will use the
following notation:

(y(k)} is the sequence of iterates generated

by the modified algorithm,.
{x(k)} is the sequence such that x{k)-~{ satisfies
(I11.2.9) if y is replaced by y(k).
G(k> =~x<k> - y<k) for each k.
@ is the 150 step size, satisfying 0 <a < . €6 <1
for all k; so that:
yUH) L (0 g 400

We will also assume that the solution set M,(FIH) of (I1.2.7)
is bounded and ronempty. The "subscript! /7 dendtes lower
bounding. It is easy to show, using {121, Theorcms 4 & 5, rhot

ML(FiH) is bounded and nonempty if and only if M(F|H),

the solution set of the non-lower-bounded problem, is

bounded .and nonempty.

Lomma ITI.3.1:  lim alX) = g,

[EET

Proof: Since ML(F[H) s nonempty, F(x) is bogndcd below
_on H,(4, b) = {x > 1]Ax = b}, Thus the monotone decreasing

‘sequence {F(y(k))’ must have & limit.
Using the function g from Lemma IIT.1.} and equationr
(111.1.12-17) From Theorem 111.1.2, we have that:
: ,(k+l)\

- (k) (1) (ed1) {75 .
(ITE.3.1)  F(yYY) - Fly ) 2Ty, g\ ~t—rgy) = 0.
i J Yj /
36
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Substituting foxr g, and taking the limit as k -~ «, we find

that for cach I < j < n, by Lemma III.1.1, -
letl ket1
(1) y, >\

. .3.2) (k'*‘l) - —

Since for every k, j (k) .Jj > 0, we sec that by

Lemma TIX.1l.1,

) (k1)
- '] e

m Ty @ T

oxr .
y.(k-i-l) _ y.(k) 5. (9
3 J s J -t ik~ -]

(11X.3.3) &32 e = lim o 1(r7 0.

&

But y(k) € S(y(O)), a bounded set, and the o We uniformly

bounded away from zero by a¢. Thé conclusion follows.

Q.E.D.
Notice that since K, (FIH) is bounded and nonempty,
S(y-(())) is bounded. Thus the set of iterates {‘y(k)} is a

bounded, infinite set, and hence must have .a limit point.

Theorem I171I.3.2: ILet N be a subsequence of integers

{1, 2, ...) such that fy(:k)-}keN converges, and let:

(I11.3.4) v = 1im y(K)
keN

Assume there exists v > / such that Av = b, and suppcese

the matrix A has full rank m. Then,

37




TR T

BRI

TR

TR R T

2w iigpatrl

TN

TX 0 md PabR

I AR WA £ i

.
&

AT L PR

2 et A

< v e M, (FlH).

Note: 1t

such that Av = b.

A0

is nc hardship to assume the existence of v > t,

The appendix shows a method For finding

an initial, strictly posicive solacion , AE o wutls e
. . et (0D .
We may always Set the Lower bounds 4 to sacisfy y - = .
Proof: Surely y© is feasible. That is, y > 4 and &y =
From (II¥.2.9) we write that
' NONRES
(k) LT (k) sk L o
11.3.5 c, + log ¥ = AT O ) ‘
(I ) J [+ ./J j J‘ '\": o
J
. s - 1‘1( N A .'\ 4 0\ N Ly
Since v b sy s ¢, and y(h £ S(y( 7Y {a bounded
J - 3(_
s . - (K . v .
sety implies that y,;g) is bounded, we bave:
\J/‘
‘ . ;
(Y1X.3.6) ji = ~L = Ldw ?S&) > 0. 1 <3 <n.
Vs  KEN J
Parcition the indices into two sets, I = {jly. = xj},
J :
J={ilyY > t.}, and let v > 2, Av = b, Dafine a reaction
J 3 J y d 3
vector r by:

(11X.3.7)

.

[

i}
)
]

4

Clearly, rj > 0 foxr j e 1.
Laltiply each equation j of (III.3.5) by rs and

over 1 < j < n. The result is:

sum

© g mem amrmmeag e
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p
3 (k) _ (k)

‘ 3. (k)y o 4 k) A N "
- (I11.3.8) ; ry(e; 4 log 977) = My 65 4 % y J_y_jmj___)

Notice that for j ¢ J, we must have for k ¢ N suf-

ficiently large that ygk) > {‘j’ and -since for each j,

- j(k) -+ 0, we will also have, for k ¢ N sufficiently large and } € J,
g ‘ xgk) > Ljf But from (III.2.8) and (II1.2.9) we see that
’ for every k,
- () )
5 1110309 . - 4., 6T = .
x i ( ) (xJ {:.]) j 0
: K Thus for k e N large enough and j e J we have 5j=(k> = 0,
|-
2 ® 50 we can write:
S (II1.3.10) n 6% 20 g ¢ g
e KeN 3 ‘
. From Lemma IIL.3.1 we have that:

e (II1.3.11) Tip & (575"

s oJdu ’ im 4 X ’ it v .

R ke § PO e

And from (II11.3.6) we know that there exists a bound B

such that for every k = 1, 2, ...,

4
ey

2 (111.3.12) Lin ¥ r,(c, + log 9y <5,
1 . KeN J 7

Take the limit of each side of (I1I.3.8) and, using

i;;: e
& (I1I1.3.13) 1im £ r, 8K < B,
(| keN jeI I ;
k
: .

3 39
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But for each j € I we have r, > 0, and certainly each
s (k) >0, Thus for each j ¢ I, the sequence {6 ( )}k N is

J, .

a boundéd sequence, and must have a limit point, Let Nl

be & éubseqﬁqnce of N such that for each j ¢ I the sequence
(k’) 'y ‘ .

{6j lkéNl converges. Let:

(1I1.3.14) 8% = Lin a§k) ¥yjel
keNl

Take the limit of each side of (III.3.5) as k ¢ Ny

tends to », Note that [A§"(k)}ch must _have a limit for
1
each j, since every other term has a limit, Thus, since

A has full rank m, {ﬂ(k)}k Nl must have a limit.
Let:
(II1.3.15) 7% = 1im  7CK)
keNl
Then:
(I11.3.16) ¢ + log 9% = Aln® 4+ &%,

Looking at the bounded problem (I11.2.6) we see
that (XII.3.16) is just the optimality condition, wﬁerér
-6? ?s the multiplier on the lower bound inequality Ky 2 Ly
Alternatively, if we look at the expanded chemical
equllibrium problem (111.2.7), and taking ~6§ to be the
mult;?ller Qn the equation X5 - s, = 4, we see that (XI1.3. 16),

J J
togethér with the equationsu.

IA
(3
1A

o]

(111.3.17) log s§~-'a 6? 1

40.

. L S




REMAENGRCIN ¢ Mg
.

(ISR M e~ S

MY CITArPIARTYY ML A

TR g e

TR

TR YT

LT L v s T e )

et

R
n

TR TR TR T e

b e o b -
i .

e

T
-,

S T
N

iR

form the optimality conditions for (III.2.7) . Note that
for y? > ‘j’ we have s? > 0, so S§\- 1. In this case,

(II1.3.17) is satisfied, since 7 = 0. If yJ = ty, then
*

we must have §§ <1, But from (III,k3.17), g? - eXp(-éi),

and since c? > 0, clearly, s; <1,

Thus y* ¢ M((FIH). QED.

Corollary III.3.3: If 6*'£rom Theorem III1.3.2 satisfies

8™ = 0, then y* ¢ M(F[H). That is y* solves the original

problem, In particular this will be the case 1f y* > .
Proof: From (IIX.3.16), if ¥ =0, then
(I11.3.18). c + log 9% = Alpx,

This shows y ¢ M(F|H). Clearly &% = 0 if y* > s, QEp.

Corollary I1I.3.4: If ﬂ((FIH) contains exactly one point

% (K .
x", then [y(k>J 1s a convergent sequence; .and:

(k)

<,
w

x* = lim y .
ke
Proof: Obvious.
41
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4, The Other Methods

One may use lower bounds in the Augmented Quadratic
Method (AQM) in a fashion similar to the way they are used
in RQM, and indeed, if the successive step sizes a, are
intelligently chosen, the method will then converge.

This is relatively casy to prove, because on the set
{x > ¢} the sccond partial derivatives of F(x) =
T xj(cj + dj log xj) are bounded.

Linear methods, recall, had trouble with the oxrig—

inal lower bounds of zero. They can have the same diffi-

culties With nonzero lower bounds. While it might be

possible to modify the direction found bv a linear method
so that it would not violate the bounds, this would make
the method ruch the same as a quadratic method., There
seems to be no convenient way to use lower bounds in the

linear methods.

42
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3 s IV. DUAL METHODS

We will present two dual methods. The first, called
here the Dual Augmented Linear Method (DALM), was developed
by Clasen [4, 5], as a method for refining the solution

obtained from his primal, or first order method, ALM.

T T

The sccond dual method solves a form of the dual of ;

the chemical equilibrium problem. The author had believed
that this dual formulation was new. A closer study of

é? " Rockafellar's work in duakity (13, 14, 15, L6], of the

;: work of Duffin, et al [1] on Geometric Programwing, and

‘ | of a paper of Hamala and Milan [2] reveals a problem of
the foxﬁ of the chemical equilibrdium problem may be con=
sidered to be the dual of a geometric program. Becausé

;| ‘ the relation between a problem and ;ts:dgai is reciprocal :
‘ —1l,e., the dual of the dual is the primal-—so may a geo=

metric program be considered the dual of the chemical,

equilibrium problem. 7Thé dual formulation presented here,

for the problem without slacks, may, By a simple change of )

k. s = A
-

variabkcs be shown to be a geometric program.
This dual problem requirxes one té6 maximize a linear
] function 'subject to nonlinear constraints:; Experiénce has
, shovin that problems with nonlincar constraints are in gen-—
; exral more difficult and less efficient to solve than prob-—

lems whose sole nonlinedrity is in the objective function,

Therefore, we suggest that a primal method be used first

r, to obtain an approximate solution t6 a chemical equilibrium
s . 43
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problem perturbed by slacks and (in the case of quadratic
methods) lower bounds. With the resulting values of the
dual variables as a starting solution, a method may be
applied-fo the dual problem of the original chemical equi-
, 1ibsium problem—unperturbed by slacks or lower bounds—

to refine the solution obtained by a primal method.

1. The Dual Augmented Linear Method

From Section II.l, we know that x > 0,

. x € K(A, b) solves the chemical equilibrium problem in
augmented fo-m if and only if there exists a vector n such that:
- . I

.+ d. 1 x.-l-d.'-“--A-'.‘W 1l <3 <N,
(Iv.1.1) cJ 3 og 3 3 j A

AW 5 ek

For definitions of X, b, © and d, see Section II.1

Solving (IV.1.l) for X;, We find that:

x, = exp 4. Y@&n - T, - T,
(IV.1.2) x5 = exp | 5 (AJ'T < J)]

Suppose we have initial estimates of the number§ T,
1 <i <M, perhaps from the final solution from a primal
method. Surely, for any w at all, the vector x computed
from (IV.1.2) will satisfy the optimality conditions (IV.1.1).
s _ But such an x may not be feasible. The nature of the expo-

nential function insures. x > (, but perhaps:

(TV.1.3) b -8 =73+#0.
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Suhstituting (IV.1.2) into (IV.1.3) shows that g may
Al
be considered a function oi @w. Then we wish to find

so that:
(IV.1.4) g(7) = 0.

If our initial guess © is close to =", then, tdking a
Taylor's expansion of g around ¥ to first order, it is

approximately true that:

—— KA — )_ ” ,;v
(.iV;I,.5> 0= g(-’x") P g(*?) - .—&é.;).. (n’(._ -1)

— "\;,
"\,f’ 1 Ay N Sy q X 1 th .. . -
where -2 is an MxM matrix whose 1j~ clement is ==,
e IS - T :
LY .. ‘. ~
1 <1, j <M. The matrix =2 is computed in {3}, p. 24,
to be:
‘:; .,7 .o * e
(1V.1.6) L= o i = R

Substitute into (IV.1.5) o gei:
2

(Iv.1.7)

9|
{~

o= og(r),

K is the matrix . 1t occurs in the primal lincar method
appiicd to the augmented fomm. See Section 11.5.
The algorithm based on DALM is as follows:

0. Let the problem be in augmented form, and

let @ be an initial estimate of =™,
1. Evaluaterxj by means of (IV.1.2), g(=) |
means of (IV.1.3), and R by means of

(1V.1.6).
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2, Tind .» satisfving, (IV.1.7).

3. Replace = by ™.~ and vecurn to step 1,

There are two possible temmination criteria. We might
stop if g(*) cowputed in step 1 were sufficientiy small.
Alternately, we could stop Lf am conputed in step 2 were
small enough,

This method dees not in general converge. In the
first place, rthere must exisi an x > 0 solving uhe oxri~inul

problem, or sone of the vaciables 1 nuct becone infinlre,

In the second pluce, even winn this condltion is savislin.,

2 N R HEP T " e . . R
il the initial =~ ig¢ tuy far Ly the oocimal , R merand

LI . N O B - 2 .
may diverge, just 3s any Newtoa'z method Ny QLvarse,
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2. The Dual,FormulaEion ,

Since the reduced form of the problem is also written
as a linear-logarithmic problem, one might think that we
could devélop a Dual Reduced Linear Method. However, if
we substitute the appropriate quantities for 33 and 35, we

discover that in the reduced case (IV.1.2) becomes:

(1v.2.1) X = s

exp (Agﬂ - cj) 1<j<n.
In this case we have no way of defining the xj's in termé
of the ﬂi's@ but only.of e;pressing the xj's as functions
of m,
This dees, however, lead to a dual method. 1In fact,
it suggests a new form for the dual problem,
From [7], Théorem 1I.4, we know that x ¢ H(A,b) solves
the original problem (I.8) if and only if there exists a |

vector of virtual mole fractions Z > 0 satisfying:

((a) 5y = ﬁj ¥V j such that E<j> >0
(1v.2.2) }(b)' Egj> = T g <1 vy compartments <j>
k€<_‘]‘>
(¢) ¢ + log § = ATﬂ for some m-vector T,

Of course, this depends on the existence of y ¢ H(A,b), y > 0.
Compare (IV.2.1) and (IV.2.2) (a) and (c). This sug-
gests. we consider 7 as a function of w. That is, we let:

(Iv.2.3) §j(ﬁ)»= exp (A?ﬂ - cj)
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Thean §<j> defined by (IV.2.2) (b) is & function of =, and

we have the constraints oan w that:

(IV.2.4) E...(7) <1 ¥ <§>,

(IV.2.5) iffﬂf(ﬂ) = k:i- Ay & (7)) = é<j>(n)
l_\ w ‘

wherc the symbel ¥ indicacres a definition. Alse,

(IV.1.6) 7

" q‘

<5>{7)

Loae
i
A3

. 2 2 . - .
Since aﬁ(ﬂ) > 0 foxr every =, V T<j>(ﬂ) is positive semi-
definite. Thus the function ?;i’(ﬁ) is convex, and the
constraint set defincd by (IV.2.4) is a convex set.

the dual way be fomalated for the prodlem willh or
without slacks (cee (7], or the comment at the end of S=ction
11.6 above). Ve will do it both ways, and show thal the dual
without slacks 1z a liniting case of the daal wich zlacks.
1 what follows, we assume that there exises y o= H(A,D)
satisfying v > 0, and that the solution set M(FiH) of the

problem wichout slacks ilg¢ Lounded and nonempry.

Theorer. IV.2.1: Let the problem have slack s

<35> > 0 in

Yo
[y

cach phase <j>. Let 7" solve:

~e

(b*n + <3'> s<j> log (1 - .;:<J>('7)>]

i

] ( Max w(w)
(Iv.2.7) "}
I's.t. Elﬁ>(ﬂ) <1 V<>
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We take log 0 = =~

Define .5 = — ] - for each j, 1 < j <n.

Then x" is the unique solution to the chemical equilibrium
problem with slacks s<j>.

Proof: Since M(FiH) is bounded and nonempty, and since

there exists y > 0, y ¢ H(a,b), [7], Theorems III.1 and IXI.2

us that there exists a unique, strictly positive solution

yv* to the problem with slacks, and an associated vector of

multipiiers ™. Clearly,
-k
% Vs
7.2 8 7 *y 5: 73 = =32 <1
(I\.z.u) C,<j>(?? ] = c- = A = —— Caare .
ke<I> Yags + S<i> Yags T Segs

., N - . e
It is easy to see, then, that = must also satisfy
<

1, or elsc w(n¥) = e,

3 .
[7}, Larena IIT.2.1 shows that w(~) is a concave func-
tlon of =. Thus, since 7" is surely in the interior of

its constraint set, we know that

yer /e Ava_, 2. (7" .
(1v.2.9) T ap ooow iR ) cb o~ A = D
N & e A P
1 - c_.. (=
J <J > ( ! )

Also, x; > 0 and finite.

Finally,
) w ! Gy / S
Xe S . r‘- ' S
(Iv'h.l ) :'. B -; B (°<]> ‘3 )\; !/ J = s <~s'.
J P t - FNT g - X ~ B,
Fege T 8qgs AL 7 Ty (7)) (L - <5 (7)) J
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Thus, by the definition of Ej(ﬂ) (Equation (1V.2,3)) we

know that::

(IV.2.11) c; + log ﬁ? = A?"* 1<j=<n,

Therefore, by (IV.2.9) and (IV.2.11l), x* solves the prob--

lems with slacks. QED.

Problem (IV.2.7) is the dual problem with slacks.

"

To show it is truly a dual, we must show that w(=") i

equal to the optimal value of the primal objective Ffur 2tion.

Theoren IV.2.2: Let w solve (IV.2.7), and z° selve che

primal prooblem with slacks. Then:

N - e " ' ve . L
(IV.2.12) F(x™, s) = % xj(cj + log ﬁj) + Te<j>log S<j> = w{w

Proof: The quantity §_._ =1 - * ﬁ{

since in each compartment, the mole fractions (including

that of the slack) must sum to one. Thus by (IV.2.10);
(1v.2.13) Soio =1 - F__ (7).

Now substitute (IV.2.11) md (IV.2.13) inte (IV.2 12) to

T, s) = w(n™), OLD.

Note that for amy x ¢ H{A,b), F(x,s) > F(x*, &), anc

Fey LP o o P ey Pd o - of
for any 7 satisfying «<j>(n).§ 1 v<i>, W(“).ﬁ w7}
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Thus weak duality is also satisfied. The theorem proves
strong duality.

The dual problem without slacks is similar.

Theoror IV.2.3: Let w solve:

(Iv.2.14) Max b~

T ke ¥ 3 P . T g 7 E -~ s
Lek R<j> be the value of the multiplier X<j> ot thc
optimum.

Define x. = A\l., &.(7").

M(FIH).

[¢]

Y,

Proof: Note that since the constraints are inequalities

PR P r s s %
of the sense (<), and we are meximizing, X.._ > 0, and
—r 2 <y 3> — 3

Hi
o
[¥N
h
Al

A
\'4
~
.1- R
~
A
'.J

the unconstrained Lagrangian problem:

¢

’ 15 awe ibiy P AT T
\IV-.?'J.D> IJ“‘\- iD L - ).- }\<j>("’~<'-}>K.'T) i l).!.
§3> ~

X

achieves its maximum where its gradient vanishes., Thus

{from (IV.2.5))

(IV02.16) b - ¥ l; g;w (WN) = b -~ Ax". = 0,
S5k
vy
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Since kﬁﬁ> > 0, clearly x* > 0. Since if X:j> > 0,
2 . ‘ps . =k *
E;j>(n“) = 1, we may make the identification x;j> = X<j>’

R
and be assured that if x<j> > 0, then:

(IV.2.17) &F = g, (7).

That is, x* ¢ H(A,b) (because of (IV.2.16) and
X > 0), and E(r") is a vector of virtual mole fractions
satisfying (IV.2.2} for x = x*. Thus by [7], Theorem IIL.4,

x* ¢ M(F|H). QED.

It is easy to show that both strong and weak duality
hold in the case without slacks. The proof is much the same
as for Theorem IV.2.2.

Problem (IV.2.14) is the dual problem without slacks.
We now wish to show that it is a limiting case of the

dual with slacks.

Theoren IV.2.4: Let A have full rank m. Let {s(k)} be a

sequence of slack vectors satisfying s<k) > 0, lim s(g) = 0.
k-0

Let (k) solve (IV.2.7), the dual with slacks s(k>. Then
(i) (k) is the unique selution to (IV:2.7)
with slacks s<k>
(ii) The sequence {W(k>}has at least one limit
point (ie subsequence converging to) m¥.

(iif) 7" solves (IV.2.1%), the dual without slacks.

Proof: Since M(F!H) is bounded and nonempty, and there
exists y » 0, y eyH(A,b),[7], Theorems IIIX.1l.1 and IIX.1.2 show
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that the primal problem with slacks s(k)

strictly positive solution x(k>. By Theorem IV.2:1,

ciearly

2«0y w20 Ly,
By [7], Lewma IXI.11, ?(v(k)) is unique. But by definition
¢ + log €(ﬁ(k% = ATk

(Iv.2.138)

. )}
Since A has full rank, and 5(W(k)) is unique, (%) is
nique, proving (i)..

By {7}, Thoorem %IT.1.5, there exists a subsequ nee ¥

(L, 2, ...) such that ¥ = jim %{=""/) is a vector c¥
1’\ < 17
virtual mole fractions for the prodlem without slacks.
ots
Since 2 > 0, we take limits as k - =, k ¢ N, ot (IV.2.18).

\
. . 1 X - . .
Clearly then, Lim A*w'</ exists, and since A has full
ke

. e oo (k . . .
rank, 7" = lim (k) also exists, proving (ii).

Fiaally, by continuity,

Al

7 - E(ﬁ'}r>.

Since *7 is a vector of virtual mole fractions for the

original proble = by Theorem IV.2.3, =" solves (Iv.2.14).
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3. Solving The Dual

A pair of vectors (w', 1”) solves the dual:

(IV.3.1) Max brn
E<j>
if and only if they satisfy the Kuhn-Tuckew conditions,

s.t. (1) <1 : A ¥o<j>

<j>

derived in the usual way from the Lagrangian.

1V.3.2) (v, ) =b - T X v AL (W) =0
( 24 ) <> < ke<i> Kk

(1v.3.3) Z45(7) <1 Vv <j>

als
o

(1V.3.6) %55 20, and a5 (1 = T () =0V <p>

1f instead we have an initial solution (1, 1) which
may not satistfy (IV.3.2-4), wc may compute corrections of
(7, \) by expanding g(w, ) and E?j>(“) around the known
initial point. Using always linear approximations, and
making the associations:

(IV.2.5) x5 = x<j> Ej(ﬂ) 1<j<n

we have from (IV.2.5) that Aw and A\ must satisfy:

(IV.3.6) Ram + ‘3?3<j>‘“<j> = g(m, A)

_5<j>&ﬂ > (E;j>(ﬂ) ~1)

where R = AXAL,

~

Hoticing that g(w, 1) = b - ¥ X<j>8<j>’ we may let

Xéj> be the new value of the multiplier, and write (IV.3.6)

as:
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- - f.
Fi < - ~ 1
: (Iv.3.7) R&™ + £ 3., N = D = 0
g ) J
3 BN g .y £ R
i ! S > ‘. = V <i>
; where we have included the complementarity conditions
- (IV.3.4).
- Notice that (IV.3.7) is equivalent to the quadratic
P program,
- - .. 1 T . T
‘ (IVv.3.8) Min 4({am}" Rav) - b aw

. - o
: . - s - .ot s
- s.t. ,*-:){j?[.n > (Ta(m) - 1) A<j> V <j>,
)
3 . - - ¢
SR Notice .also that the matriz R is exactly that found in RLM
: For these reasons, we call the method based on this develop-
j ment the Dual Reduced Quadratic Method, or DRQM.
f rheoran IV.3.1: If M(F|il), the solution set to the oripi-

nal. provlem, Ls nonempty, there alwavs exists Aw such rhat
= —S<j>aw > ?;j>(’) - 1, for every <j>. Tuhat is, the quré-
< ratic program (IV.3.9) is alwavs feasible.
§3:

v we . , %% .

" 2roof: Let %" ¢ M(F!d), and 77 be an associated vector of
> .
i mulcipliers. Then clearly,
X
Ff Teys(T) 21 v <.
: Since Eéj><ﬁ> 1s a convex function we know that (from
l‘ ) . {(1v.2.5)).
) . o Sy L o S S SR

(.LV0309) l -._ x_><j>(" ) :. ’\<.>(n) f’ p<j‘>(” - s ).
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Thus A = w' s n ic fedsible for every m. GED:

Unfortuna;ely, it is. not always true thac‘(IVUS}B)
has a solution. The quadratic form, thougn always :positive
semi-definite, need not be strictiy convex (1e: positiva
dofinite). In this case, (IV.3.d) may be unbounded.

The casiest wethod for coping‘wiﬁhkpfoblems‘of
unboundedness would be to é;bityanily*bound A,  Other
methods may suggest themscélves to the readér.

The algorithm for DRQM is as follows:

0. Fiand an initial (#; A). = éould be, for

example, the fingl mqltipliers'f6Uﬁ& by
a primal reducad method. Aej> couid be

set equsl to E?j>’

i, Ggmpute.xi = 1<j>§j¢n), a§i>(w), and R.
2. Solveé tite complémentary pivot psoblem

(1V.5.7) for Aw and 1'.
3. If A is sufficientl, sall or if Raw
‘ is sufficiently small; terminate. -
Otherwisé feplace X by L' and 7 by

- 7Y = w + A, Then réturn to step 1.

The convergence criterion ''if AT is sufficiently small" is

qleaf. Note that Ram=b - ¥ If this is

. f, & .
' r.<j >’B<j>(ﬂ;) .-

small, thnnukj @ x;jb §j(ﬁ) is nearly feasiblé. The other

. Quantity that one should check is %

Sgj> Bug th;s cannot
much exceéd 1 if aw Is small, i )
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- 4. Comparison of the-Dual Methods ’
f Simple algebra shows that the matrix X, defined by

S (I1V.1.6) can be partitioned as follows: o ’ 5

[R | Bags e v v Py 4 <
i — : - \

) 0 |
L T ’
3 B s<p> i ¢
o - -
- where R is the matrix AXA" of Section IV.3,
H
! and each B> is defined, one for each compartment, by:
e
(V4. 2), Bess = 5 ALK . »
EPL S \ K H
3 k€<i> k™
: If we rename the variables Mo, m+ 1 <1 <M in DALY,
: ealling them T Ve have from (IV.1,7), (IW.1.3) and
3 , (IV.4.1) that we wish to solve:
3
E ) ) , \ )
E ; (fI\Voli,g 3) RaT  + ? S"< -,>AT‘|'2~:.:> =, !b - t\x
;- <j> 3 3
x 3 _. . Am =X i = % ox ‘
. <i> <j . K’
£ J 97 keggs ®
3 Clasen [5] suggests that the right-hand sides of
: equations m + 1, ..., m + p = M be replaced by zexro, but
Lo v the author :seeé no reason for doing -so. ‘ :
.- In our new notation, given multipliers (¥, n) we may
%f N comptte from (IV.1.2) and the definition of X (see Section
PR : ‘
E‘:'f “ IIm‘ﬂ-) “ 7 - -
- 57 ,
&
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(IV.404) %y = exp (p;%’ﬁ ey s lkag) L<js “

ig the multiplier in the equation ﬁ, Ky~ §;j>‘='0.
L . ke<j>
Combining (IV.4.4) and (1IVs4.5), we find that computing

n<j >

ﬁj from (IV.1.2) ahd=computing,ﬁj(ﬂ}‘from,(IV.2.3) yield

the same result, That is,.

(IV.4.6) &, =k = exp (AlW ~ ) = E.(m).
iz Y j 3
, Key> x
That is, compatving (IX.4.2), the definition of ng>, and. !
(iV.2.5)., the definition of \‘Es<i>, we see that: :
(IV.47) Pgn ™ RegnPegn (™
Let us theft maké the following changes. in (IV.4.3):
(i) TLet x€j> =~x<j>y o
(11) Tet M., = X . bn ., and X' .o S .+ Ak .,
]2 - J> <J> <.}/ <J‘* <J>\'
(iii) Divide each of the last p -¢quations of (IV.4.3)
by the appropriate "Xy
., R ]
Then (A7, \') should satisfy:
(IV.4.8; Raw 4+ % A_ . i'_._=b
( - ) ’ <j> <J3> <3>
,..‘Q(<j>[\,ﬂ o= :Eﬂj) - 1.
Compare (IV.4.8) with (IV,3.7). The matrix of detached
coéfficienﬁs and &1l the constant terms axe -the same. r
The difference is that in DALM, the variable X'<j> nay ;
: N
. B
T i
|
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Secomé negative, whereds in DRQM, it must be rionnegative;.
and. that the conditions that were inequalities in DRQM

are equations in DALM.

The.reason for these differeénses Iies in the Ffact

that DATM ‘and DRQM treat the vaxfébies&%’<j>, from which

the now sums X(,, are computed, differently. Making the

substictutions from (i)+(iii) above, we isee that in DALM,.
_ . AY .
(IV.4.9) Rlil = X, “ 2

Xeq> 5> exp (Aq<j$)-= Acsn€Xp

I DROM,. onr the' other hand,

i : v = - o ) = ‘
(IV.A..LO) }‘<j>, 7 '\<j)>(l + *}<j>> Xéj>”

That the two methods are diosely‘rélated is already evident:
Additional evidence 6f this is the fact that (IV;ﬁulO) may

be considered a first-order Taylor's approximation. of
(IV.4..9).

59 , o

<
%
. v - = > P [T EN Y g P Y ., Yo ¢ L ot R /":{(QQ 3 :




T RACTRIEAIVITRITA e xwa:;uhm MWW'?W'WWW’YE‘ LTI VTR s

]

5. Degenexacy dand ‘the Dual Meihods

We found that none of the piimal metheds could .cope

with a degenerate problem in a natural wdy, It was

4

[

ecgssary to insure that the solxition set M(F|H) contained
dt. least one strictly positivé point, eithér by using lower
bounds or sladks. It was .at least helpful to insure that
if the problem had a solution at all, it was unique.

This was done by adding slacks.

DALM has similar difficulties. DBy Equation (IV.1.2)
every xj, including the éums E<j>’ must necessarily be
positive, They can approach zero only if the wmultiplier
approach infinite values. Thus if a problem has only
degenerate solutions, or if all solutions are too nearly
degenexrate, this method will fail.

DRQM,. cn the other hand, or any method used for
solving the problem in its dual form, can accomodate
problems Wicﬁcdegenerate solutions. It s only necessary
to insure that no vector of Virtual mole fractions the
method anrives at is dégenerate, or neardy so, If % is

the veator in question, then for some m,

¢+ log & = Alm,

1f g = 0 o . < e for some small ¢ >0, thenh one or more
of the m, must be large. Of course, Ej must be vezy small
indeed béfore log Ej is a large negative numbér, This

problem rarely occurs, and when it does it is usually
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. evidence that some species  has been iticluded that has
. fo¥ all practical pur¥pgs:s no imporiance in thé system in :
question. :
The: author suggests that theé problem first be solved :
using one of the primal methods with slacks, and if
necessary, bounds. If the slacks used are lakge eéunough,
) and the primal solution sufficiently accurate, the multi-
4 , e e s C .
pliers 7 corrXesponding to the final wxtérate of the primal
procedure will satisfy:
Fegs(m 21 Vg,
A method for solving the dual problem may therefore start
with a feasible point.
Starting with the point ™ described &dbove, .a method
> - s ] - . . - N 3
. for solving. the dual can £ind not only a solution t® the
original problem (i.c., without slacks or bounds), but
S can express all the solutions. That is, if in problem
N (IV.3.7), we find that Aw = 0, thén .every solution may be
r:¢uvered as a solution of:
T8 X.a.=Db
; S
¥ 3> >0
¥ * : <
N — - N »
¢ Kool =T . D)) =0
: <i>< RS ->7
H ¥ - <
2 - .
Li v See (7} Lenma III.2. ) ' f
K ) ‘ _
¥ ]
B
I lir.{‘ 61},
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6. Convergence of Dual M-thods

ps

Ags they stand; neither dual nethod is assured of
converging to- an optimal solution 7', although if the
starting 7 is sufficiently .clese to 7* each method will
generally find an optimal solution.

There are, however, other methods fcr sclving the

e e
T O RNIRE Gy = Fomm o0 § et o vreswe s

dual problem (IV.3.1), some of which are sure of converg-

irg, whatever the imitial point. Examples of such methods

include Rosen [L7], Kalfon, et al. [187, Daniel .[19],

Fletcher & Powell [20, 21], Zoutendijk {22}, sevcral

methods found in [10], particularly in a chapter by Wolfe,

and Uzawa [23].
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APPENDIX

The Initial Solution:

The Generalized Projection Méthod
The Linear Programming Method
Degenerate Cases

Remarks

63

e SNV e




B ‘7 S :.4,

e an o s

g

e

L TP p——
s

\'.
[ <
4
. !
) K
o
‘ .
A 2/
& %
3
b
"‘,
4
V'L
1
f
H
;o
.
ARl
Ik
-k
f

oty o --

P

Appendix: The Initial Solution

The primal algoxithms presented in the bddy of this

work all require a starting composition x safisfying:

Ax =D
x> 0,

Clasen [5] has developed two methods for finding such an

X, the projection method and the linear programming metho’.

1. The Cenexalized Projection Mzthod

It is actually nof true that the primal algorithms
tequire a starting composition which is feasible and strictly
positive, although all of them must start with a vector y > 0.
One may simply forget that Ay ¢ b and use any primal method
to find a new composition x. Clasen (i3], p. 5) sugpests
that y be "... the exact [optimal] solution of another probs-
lem which differs from the on2 being considéred in relatively
ainor ways."

If an initial infeasiblé but: strictly positive y
is used in either of the linear methods (ALM or RLM),
it mdy be that the x obtained, althourh it will satisfy
Ax = b, will not be positive. One may either admit defaat
and usc the linear programming mcthod, or use a new scarte
ing point u = ay + (1 - ®)x, for some O ¢ o < 1 such that
u > 0, The projection method of Clasen [5] iz equivalent
to using the vector y > 0, Ay % b as the starting point in

ALM,
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: The author thinks it better to use y > &, Ay % b as

{ =

] a starting solution in ong of the quadratic meéthods with

i3

- lower bounds. The new point x that Is generated will sat-

p . e . ; ..

I isfy AX = b and x > 4 so long as such an x exists.

) | . .

t pos 2.  The Lineatz Programming Method

% This method can be found in Clasen [5], pp. 9-14.

g If an fhitial gucss y is not availdble for the pro-

b iy

, jection method, or if projection has failed, oné may use

% the L. P. method instead.

;1

o « . ' e . . -

L We wish to find a point x satisfying:

; 2 .

?‘ 3

: : Ak = b

5 {A.2.1)

:;J‘f ' X > O- ]
S ,~ . o e s . .

S But x > 0 £f and only 2f its smalles: cénnorent x, is also
I positive. Thus for any poiat %, wé lét:

S > :

L v £ nin ¥,

I J

q e

;& ’ ; ..

B and define new varigbles y by:

- o
: Yi 3 R. =V,

3 73T

b2 . -

3 Substituting in (4.2.1), we wish to find (y, v) such thdt:
A n ‘

1 {(A.2.2) PA;yy F| T K fv o= b

THEY J kel ™

{é Lt

: f y > 0y v> 0.

ARES 65 -

| e

s ’bv(i -

T

B @
) v R o i e el S Y DV S g VA U O = . ‘ & -

OF TSRS 0t s A BF QORI TS et 1 SRR T T L A e T

el

AN A w




SN

O
l, ~
\

2 o
JNS
N 3
>
3
o<
5
9
S
4 e
At
.
<>
¥
S
‘C
ben
T 2
K
A3
: .
3
A
<
.S
‘O:
E_\\j
E{-\ N
%‘:U .
L ¢
;’\ E
. L
<
N
a
Yy
1")
A
4.
]
.;%
:
1
£k
¢
ANRN

N

)
A
ot
55
SR

>

bl 2% YR

£

e R T ARSI T

Letting G = E Al’ the- obvious thihg t6 do is to find the
C ok o=l
optimal solution (y*, v¥} Lo:

(A.2.3) S.t. Ay + Qv = b

If v+ > 0; then the feasible composition x, defineéd by:
‘A, 2. L) X, ® Y& 4+ v
(A.2.£) 5 =Yy

satisfies ¢A.Z2.1).

3. Degencrate Cases
The advantage of the L. P, mcthod over the projec—

thod using the quadratic algoritihms is that vhile

Soth will find a strictly positive feasible x if one &xists,

the L. P. method e¢lso discovers (1) if the matrix A hos

ful® rank {and if not which rows arce linmear combinacions

of the others), (ii) if the cyuations Ax = b, x >0 eun

be satisfied at all, and (iii) if there is a feasible x

but no strictly positive feasible X, wiich vaviables x

are constrainced to be zerd., A discuqs&on of thesc poi

[N
f]
T
N

may be found in [6], pp. 23-25.

{i) The Rank of A.
To solve the linear program (A.2. 3), one must fixst
find a basis, i.e., 2 set of m colums of the matrix (4, Q]

which form a nonsingular matrix. Tt is easy ko show that

66
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; since Q is a linear combination of the columns of A, [, .Q]
A possesses a basis if and only if A does. The matrix A has

] ¢ rank m if and only if it possesses & basis.

i ,

E (ii) Infeasibility

;T f If a basis can be found, then the equations Ay + Qv = b
? are always solvable. Furthermore, there is a solution with
: y > 0. (This is because if Ay = b, we may let v = min ng
% and let yj' =¥y -V Then y" >0, and Ay" + Qv = b?)
i, ‘ Let {y*, v*) be an optimal solution of (A.2,3). 1If

; v ¢ 0, then there is no feasible wsolution to the problaem.
t £ That is, thexre is no compogition x 2 0 satisfying Ax = b,

If there were, of course, we =ould have y = x, v = 0 a

&t “ feasible solucion to (A.2.3), and v > v,
f‘ " £131) Positivity ‘

If v* » 0, we muzi Find abt least one Xy constrained

to be zexro by the conditions

i
&l
i . A= b
v (A.3.1)
I x> 0.

ﬁ ; To find such an cquaticn let A~ he the vector of optimal
SRS 4 )
S Lagrange multipi irs assccisted with the optimal solution
E -
2 (y*, v} of (A:1.3).
3 ; From the duclity theorem of linear programming,
L: § - N )
| T
i} (A.3.2) biax = v =0,
% <y -
|
a;’ . .
:,‘ "’ 6('7
{
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¥ Since ve are maximizing, each column should 'price
3 >
: out" negative, Thus:
: E
S T' «
«, (A.3.3) 1=Q %<0
? .
3 .and for each other column: 3
< J
: e
: (A.3.4) ;T < 0. ‘
2 n N .
g Because Q = ¥ A,, we see from (A.3.3) that: i
4 3= b
5 ey 1eaTrs0 1
: l
¢ n o 1
: for at lecast one j. ?
2 ) - . . . . : s i
3 Let us form a newv equation by taking the linear com- 1
3 ; ! %
binatiof \* of the original equations (A.3.1). )
.
. j
AL3.6 L a.x, =0 ;
( ) 3F ;
where o, = A4rx*, and the right—hand side comes from (A.3.2).
4 J ;
By (A:3.4), o >0 for all 1 £ j < n, and (A,3.5)
insures that at least one ¢, > 0. “Thus (A.3.6) shows that
J .
at least one xj must-be zeroy
We may delete each column Aj from the problem such :
that ‘a. » 0, and solve (8,2.3) again. While there is no
J :
guarantee that the new v# for the reduced problem will be ,
positive, we know that v# cannot be negative, We may con-=
tinue solving and déleting either until v* > 9 6y the nui-
ber of columns is exactly m. At this point we know that f
- - J
(4:3.1) has a unique»solutéon X.
68
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: Tha procedure never allows us to strxike out. a basic:
E column, since each basic column ''priceés out' to zero.
by
¢ Thus there will always be at least m .columns rémaining, .
J
U - . . § v . » .
: i - and the rank of the matrix can never diminish.
A 4. Remarks
L, Usually, if a strictly positive feasible solution x
g cannot be found, it is evidencée that the problem is incor—
: rectly formulated. The same is true if tlie equations Ax = b
5 .
= arc redundant, so that a basis in the L. P. method cannot
P
- be found.
The author suggests that if any of the .degeneracies
; - of Section 3 accur, the problem solver stop 4nd éxamine _ ,
5 ) his data, instead of dropping redundant equations or var—
3 ) iables constrained to be zero.
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13 ADSTRACT

A single- or multi-phase chemical equilibrium problem nray be expressed as a

i f ming prablem. Tims to find the qujlibrium composition of
3?“3;2§?§a r?ggggg:agepnged only minimize a pqrtiguiar non11neag %unct1qn
(the- free enmergy} subject to certair linear equality consiraints (the'mass-
balance Taws) and nonnegativity cenditions. The free énergy is defined and
continuous on the nonnegative orthant of n-space, In the interior of its démain
it is infinitely differseziabley but at the boundary, the directional derivative
may beceme infinite.

The phrase “chem*cal equilibifium problen” refers only to a. problem with a
particular mathematical form, Such problems arise in many chemical problems
not classically denoted ar equilibrium problems. In addition, the dual ‘to 2
gecmetric programming problem has this form.

Ye.present six iterative methods for solving the chemical squilibrium

"problen, four primai and two dual. In chemical tenns, each composition pro-

duced by a primal method satisfies the mass-baiance laws while sucéessive
Tterates more nearly satisfy the mass-action laus. Dual- methods do thé reverse,
He present two Tormulations of the chemical equilibrium problem a$ a
more general Tinear-logarithmic problem, and two methods for snlying the general
peohiem. Of the four resulting primal methods, two éthe Linear ‘methods) need
2t converge to an optimal solution. The other two (the (uadratic wethnds)
if applied to an appropriaiely modified chemical equilibrium problem, will certatrly
converge, f :
heither dual method need converge Lo the optinum, unless the starting point
is sufficienty close to the optimal solution, MNor has the aubhor been able
to modity the Linear dual methad so that it is sure to converge, However, the
Quadratic -dual method is derived from a formulation of Lhe dual problem to the
chemical equilibrium probiem as a-geematric programming problem, Many standard
metnods of nonlinear pregramming will certainly coaverge when applied to this
dual, Amy such method ailows one to ignore the possibility that the sriginal
prablem a5 & ronusigue or a degenerate solution,
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