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COMPUTING EQ ILIBRIUM COMPOSITIONS

OF IDEAL CHEMICAL SYSTEMS,

James H. Bigelow'l

The Rand Cbrporation, Santa Monica, Califorhia

T;, INTRODUTION

A single- or rulti-phase chemical equlibrium problem
may 'be expressed as a nonlinear prograiing prcblem, Thus

to find the equilibrium comfposition of a chemical system

one need only minimize'a particular nonlinear 'function (the

free ene'y) -f composition subject to certain liinear con-

straints (the mass-tadnce laws). The free energy is defined

on the nonnegative orthant of n-space, where it is cohtinuous,

convex and homogeneous of degree one. In the interior of

its dOmain it is infinitely differentiabi&,; but. at the bound-

:ary, tle directional derivative may 'become ihfinite.
,In tis paper, 1he phrase "chemical equilibrium problem"

refers only to a problem with a particular mathematical form.

Probems of this form arise in many situations, not classically

derioted .chemical equilibrium problems. For examp ej the dual
to a geometric- prog-amming problem [I, 2] has this form.

Alsoj, steacdy-state problems, many of whjch, arise naturally

in ,the chemical laboratory,, or in industriy, can often be

represented in. his fort.

'The chemical equilibrium 'problem, then, is the problem.

- '~Anyviews PRECEDING PAGIE B
Any view expressed in, this paper are those of the author.,They should not be infterpfe'ted as reflecting the views of The

Rand Ccrporation or the official opinion or policy ,.)f any, of' its:
goVernmental or private r&csearcfi sponsors. Papers are reproduced
by The Rand Corporation as a courtesy to members of its, staff.,
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of 'minimizing a. funct'ioln F (xli. x2, n.. , ),dfndbow

subject to the l-,inearc conistraints

(1.1)E a bi, L

and the inequalities,

Th'e a..j and b a~e, givdn, real constants. We assume, tha-t

the m, equations, (I.1), are- linearly inidepend'ent and, so

Ihat 'the problem will-be- nofi'trivial, that m <i.

Thie n Variables x. are partitioned "int~o p -npne.pty

subsets ca-lled compartments, or sas. Wie deniote the

compartmedt containing 'the Variable by <j,>. 'We may

indicate -,that x. and,, ar ntesaekw.-ra~tb

writing:

j -lo. or kce <j> or < <k>,

Each compartrient has- associatqd'7vwith It ,a 6um,,

( .3 ) < k > - 1
<.>,

Each ',iariai5ke has associated titif it d variabld

fraction,

Te, obj;ctlv fnto to be'mildInlized is:



x •

<j>

(1.5) F(Xl, .. , xn) us mt xi (nci +Thus,

The Cl, c2, .. c n are given real constalnt.
i When Xj- 0, either -j 0 (if -< > 0) or s

urndefjned (if xij -0). "in either case, log ] is' unde-

i~o " fined;: but to maintain the continui~ty of F at the boundary

of the constraint set we define x. log Aj 0 Whenever

Xj 0.. ([31]) p. 364)

It will be convenient ,to use matrix notation. Thu's

we let A be an m x n .matrix whose i t  elem~ent is a11:.

That is,

a1 l 12 . amn

a a2 2 " a2n

(-.6) A ,

aml am2 "" amn

thSimilarl-,j we let b- be the m-veptor whose i-co-

ponent is bi, or:

/I• t Q, / )Yb

2-
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In the same fashion we let x be, the n-vector with- -cpkponents

x.; k the n-vector with domporents A ; c the n-vector with

components cj ; and log k the n-vector with compqoents log., J.
Using vector notation, we may write the chemical equiz

11'brium problem' in the, following compact form:

(1.8) 'Min F(x) = Min x (c + log k)

s.t. Ax =b,

x> 0

The notation x,' (c + log A) denotes the inner product of

,he vectors x and (C + log x).

It wil be convenient to define two sets.

(I.9) H'(A, b = rx > O[,Ax = b

Clearly 'this is the set of all feasible points x.

j,(i]'. rO) kI(F] ) "-II 'j1,(y) > F(k) V y €Ib'

Evidently, for any function F: de;fined 6n a set II, the set

N(FIH)- is the set of all points in, 11 where F 'acfieveslits

%ninin?.um. In particular, i'f we. take F to b(,, the fun'tion

def,..iied Iby. (T',.5), and H ={(A, 1b) froa n(d.9'), tInn M(F', bY)

is the ,set of pdints x which are, solutions to :thc problem ,(1.8).

In 'previous papers -we have explOrekd seVeral pays in

which problem i.8) is related .oto physicai phCnomena,, and,

A some inathematica, difficulties dssdciatcd with §olving' it.,

In t is paper we will discuss' several methods for fin'Ing,.a

49-)ltktiof to'-,; A

This paper is the third, in 'a series of 'threCe. The first
k "i was "Chemist.y.,, Kindtics, and Thermodynamics ;" the second,

"Degeneracy ii Ideal Chemical Equitibroium Problems.'"
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Iii PRIWK.L ?,ETIIOD.S

Wie separate methods for solving the. chemical equilibrium

problem into, prifal and ,dual' methods, acpording 'tp whether the

the 'purpose of, an iteration of" the- method is to find, an

improved dcomposition vector, (primal methods)' or a better

Vector of Lagrange multipliers (dual methods). In an

extension of Clasen ts .termninology '[4, 51, the methods

wodId' be called, respectively;, first. and second-order

metfhods,.

Furth .. , we ,separat& prima. ;methods adcording to whether

the set 'of? -riables is expanded to in iude, the x > (the

( autilented forbi,. due to Clasen [ 5),, or whdther the xjs

are ignored during, each. iteration, and up4atdd only at the

e d of the iteration ('the' reduded form,. due to, he auti16r

[ 6 I]. Both forms may be Leatdd as spcial cases of a more

geheral problem, -the linesr-logaritmic problenm.

The first primal .mgthod, ca )21ed here the Augmnt ed iLi..aea

Approximation Method, i4as .dcvcl'oped by ,C]}asn [4, 5,] In his

worki he assumed dqoeneracy away, and failed to present, any

imeans of coping witi, it. We i Wll do the same in this se,-

-Lion.. In Sections i]i and IV we, will deal with the- problem

of degendrae'.

1. The AiUnented.Fom
6,. . .°... .

The form in which the chemical equiiibrium problem

was: originally presented., (1.8), is to fiid a vector x,

satisfyi'ng:



Min F(x) = Yx.(c +log

. Ii.l I ) ~t.Ax:,,b

It is move convenienti, however, tb change the .orm "y

expafiding' the Gibb's functiof;,.. Remembering, that-

= x1J<> we' write:

.( x"T' (.c + log x.) - iog

I we include ,the sums x<j>i the vector of variables,

and, remember- that, x<,> ke > Xk, we, may .solve, in. place

of (II.•.'i4)',

m " Mi(x) .( x(-c. + Iog x.) E > 1
V 4 < > o7;<<j>)

,, (IL 1. 3)
X- o, u V<j>

If there are n species and ,p compartments, there will
'beN n + p var 'Iabdfs in problem ,(I1.1.3). SimiIarl. ,

if the equations Ak - b are m th numiber,, then there will 4

be a total of 'M = m + p equations iii the constraint sdt,

of (II.I.3) Whei the chemical eqUilibrium problem has

'been cast in the fbrm of, (11.1.3), we say- t is 'in augmented

I form.

6
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Notice that we may define a matrix 2 , called ,the

augmented matrix, in such a way that it, is the detaib(c

coefficient matrix for &ll M equatitn6 of (I1.I.3).

is an MxNmatrix. Define U, an N-vector, by:

' if I j <

1--l ifn + I< j < N

befine C, an N-vector, by:

c, if 1 j< ni> (11.1.5) c. = j i i

Define an M-vectOr by:

(11 6)b. if < i m

F 0 if m+ I1 i < M.

Augment the ve.ltor x of unknowns by letting, x. ,be

the appropriate x<j> for n, + < j: < N. Then we may write

(11.1.3) as:

'N,
Min.. x(. +U. log'x.

72--l 3J I

It can be showin ([,7], Ther eam I1.1), that if (IIJ1.7)

Cpossesses a strictlvO Psitive solution x*, then there exist"

Lagrange multipliers, M in numbet such that x* aiso sat-

isfies the Kuhn- Tucker conditions [S] for problem (II. 17).

7



2. The Reduce, k&rm

'Suppose the original problem (1.8). possesses at least

one strictly positive optimai solution-x*. It need not be

unique. ,For each j, 1 < < n we define new values for

,the constants, cj to be:

(I.,2. 1) cY = Cj - i - log,

Theorem 11.2.1: Consider the following two- problems:

(11.2.2) Min, F(x) = M .x (c + log R

s.f. Ax b-

x > O,

and a second problem,

(A 1I2.3), Miii W(x)= 'Mii ,x. (ct + log x.)"

s.t. Ax = b

x> 0

where c. is defined by (II.2.1)', and x' c M(-FIH), x > 0.

Then x* i's the unique solution to (I'.2.3).

-kOf: First, note that the function g(t) - t log t is

strictly convex for t > 0. (1e define g(0) -- '0 so- that g

- - Will be COtinuous for t > 0,) To see t his,, note that ,for

2 t-> o, g'"(t), - >0. As the sum of a linear function-

8
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and functions sudh as. g(t),, W(x) is a, strictly convex func-

tion 6t, Ehe nonnegative orthant of'n space. Therefore,

(11.2.3) has at most 'a single solution.

To s'pe that x* is, that point, iwe look at .the Kuhn-,,

Tucker optimality conditions [81. There must exist -a* such

that
T" " ""I < j < n" 0

(We have equality since x* > 0. 'Were one o1Z1, = 0,

we would replace the"equality by > .,) Evaluating this,

'we find that x is the solution to (11-.2.3) if and only

if for Some i*

C: + +log x"= ATT < j <.

Substitute for c': from, equation (11.2. 1), .and -we find that:

(11.2.4) c. + log Rt. ATr" ' -' jy<n.

But equations (11.2.4) constitute the optimality conditi6n.§

for ,the original problem ('11 .2.2). Since x* solves (II.22)',j, we,

know ehat the req, uir-d ('Xists ,QED.

When the problmefi has been putt inh,,,he form (1,1.2.3)

we say it is in the reduced forn. The chief difficulty

with this forih is 'that we don't know what the '<' 3 s wiJ 1

be. in the course Of 'using this form in computatiohai.

mthods i w6e shall use instead the -'s currentlyavail-
able, those corresponding to ,our current solution.

I
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3. The General Lin er-Logarithric Problem

Clearly Iboth the augmented and reduced forms of the

chemical equilibiYium problem may be considered. special

cases of the following problem:

Min F(x) = Z xj (c. + d. log x)

(II.3i1), s.t. Ax = b

x> 0

The matrix A and the vectors b, c, d are constant quanti

ties,, and what they are, as well as theit dimensi6ns,

depends on which of the two forms we choose for the- problem.

IWe take A to have Uimenoion M x N.

Notice that unless for each j ,, d. is nonnegative,"1

F(x) Is aot convex. Ttt may, however, be convex on the

domain H(A,, b), where t-(A, b)= ,x > OlAx - b ,, as it is

4 in either the augmented or 'the reduced form of the chemical

equilibrium problem.

(0
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. The Li-ner Appro,limation Method

This miouthod is due to Clasen [4, 5J.

If we b.lindly apply the Kuhn-Tudker theor-rn to the,

Sgcncai lincr-logaritumi/c problem, (11.3.1), we may

believe we are looking for a vector (x*, -*) satisfying:

(.14.1) 0'(x , > ; =  1 j < N,

J3. < i <MN.

w)ere > O only if x. = 0, -and where

(1-1.4.2) (x, ) = F(x) - (A b).

Performing the partial diCCerentiation indicated in

(11.4.1), we find 'that (,-) must satisfy,

S(,./.S) c. + d. log x? +d.z T ,, with equality:3 :3 : 3 - "

k. > 0.

K (11.4.4) Ax" b.

tla will assume that :+ > 0, so that (If.4.3) is

,;atisJCied as aa equation for oach j. Solving (1] 43).

for log x we find that:

(1.4.5) lori x = T C

Suppose we are given a starting solution y satisfy'ti-

I:

oI)
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Ay- b, y > 0. We may expand ' he function (log x.4tound

Ehe point y in d Tayl6rs 1,xpansion. Then:

x. - y.
(11.4.6) log x r= log yj + + (higher-order telrns).

,Yj

Ignoring the higher-order terms, we substitute

(iI.4.6), evyluated at x., into (I1.4.5). Then:

(1."4.7) ×* = j d) * - .- log
j - I . 3

To find the value of the right-hand side of (11.4.7),

we must first valuate .. This is rot, of course, po..,-jst"A,

but we can find an approximaticn in to TT* b substitutin'g

4(i.4.7) 4nto (11.4.4), as is done beio " (I.i4.8).

Let D be a diagonal natrix whose jjt-- ,::ment is, d..
j,

Assume, d. O, 1<j<N.

Let Y be a diagonal matrix whose jjL element is y,

I<j<N.

F:"o'< (I-.4.7,) we write

(~L4.) h Ak A~b~1 ')rr- AY'(d- +d logy.
4.4.k '

efine:

( - (IX.14.z9) R =(AYD 'AT)

Theni

(I-1,4.0) Rrr' b + AYD'(c + d log y)
(c l y)

-+ ,-2

- ----,- -

2 -
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In the reduced 'case, it can be shown that 'R is. nor -

singular if and only if the matrix , obtained from A by

deleting those columns A. with yj 0, has full rah;,m.

A more complex comment .applies to the matrix R obtained

in the augrmented case. Surely1 if R is, nonsingular, hen

equations (II.4.10) possess a solution vT.

* To fiiid our new point x, we substitute TT from equation

S(1 .4.10) into, (I1,.4.7'- in place of TT.

Unfortunately, we cannot insure t[.lat th. new x 'will

'be positive, and so we cannot in general use x as our

next iterate. Instead, 'we use a vector u, satisfying:

II.11) u =ax +(1 a)y

for some 0 < a r 1. We insist u > 0.

Section 11.6 will give an algorithm using this, develop-

ment, and an indicati6n of when it might Work and when,

it might -ail.

13,
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5.,The,quadrati. Approx nation Method

To circuiiivent some pos'sible convergence difficultics

of L-inear methods, -one might try to, insure that the new

point X computed from y could' be used !as the next iterate.

This suggests that we rtrict, x to heb nonfiegativ~e.

The most straightforwardway of doing this is to

expand F,(x) around the initial solution y and ini..-'e

thd second degree Taylor's approximation, subject to c

constraints Ax b., x > 0. In place of pro',! (11.3.1)

we solve the quadratic progrning problem:

MinQ(x) = ' - - + (xd-y )(c..-kd.log y.+d.) + F-(y)

yj 3 2 2

- ~ 1 (l5_l< St. Ax ='b

A ' 0.

-i6c ,F.(x) is convex on H(A, b), Q(::) will also be convex.

Thus a veqtor x will solve (lL5.), If and only if it

satisfies the Kuhhn-Tucker optima-lity conditions 18.

That is, x solves (11.5,.): if and only 'if Ohere exi'sts

-in >[-vector rr nd an, N-vdccor 6 such that (x,, T, 6)

a -tsatisfy::

-- : , .. . . ( d ' " + ( C . + ed . l o g . 6 . <

• , 32 2' - --

(1 .5.2) Ax b = 0

'0", 6 a.'

14,
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In matrix notation, the problem of fiding (x, YT,. ,)

to satisfy (iI.5.2) mdy be- writeen:

. d xi log y 1
IyI

(11.5.3) Y AT X + cN+d N1
RN, N N l =NN

I I '1
Nj , -- J-- -- --TT 0

X. >0, 6. 0, X.6.a0= 1 l<j<N.

This 1:s recognizable As the sort of problem considcred

in comp'lementary pivot theory [9]. Ondl might also decide

to solve problem (11.5.1), directly, using one of the .many

quadratic programming algorit hms available (se, for example,

i ,

1

S- ,-" C



6. The Basic Algorith arai

The Liheiar Met~hod andl the 0udai IMenthod are cqui'e,

similar. Wie may in fact write that the new point x fouid

using the Linear Method must -satisfy:

T J -{ (ILGJ)A. v + (c. d. -log v. 0

Compare thdse equations wfth, ecqu6.ti6ns O(H.5.2) 6f tlve

qua6'raLLc ianeLitoe.. in ttuc suame vi~y as Zo 1.52 sat--

isf Yic, a,.Uations (IT .6- 1) is. cjuivalcl;t to z'~in

Cjuladratc X ro-rau-n. Thec cuac -- tid6 prograt-O~ to Slve A.s just:

Min (:."k )2

VIQ:. 6') S Q(.ec )el ,h sam C!' 1) ex thty

-ir~ c. m.±lL t--at

lincar or the quirtc Ieh ) ; .,-t x be~ a so).utio n

to0 th II ssociated Quadl~atkic Pro-rarm (1.5.1' in the u a c-

ratic casc., (17.6.2) in, the Linear cas,-),

e et ' x -Y. -

- 16



Denote the derivative of 'F at y in the direction

Oe by F (y)., Then:

F, (y)_< :0

7: With equality if and only if y is a solution to the original

problem (M,.3.1).

Proof: It can be shown that since y > 0,.

(I:;6.3),F8(y) = r 0 (C +,dj log y. + di).

In the quadratic ca'se, wfe may write (from (-1..5,.2)):

(1.6.4) .( - - 6. + A (q, a log- + )- . yi, A, +c y j

In thcl linear case, ,we have from (Ii.6.1) that

equation (IT.6 .4), is still, trqe with, 6 set equal to zero.

Multiply (11.,6.4) by q and sum over all 1 < j < N.

The, result is:

e~

since in both .the Linear- and the quadratlc methods,

r x 0 (in the linear case 'because 6.4 0) and

since A 0'..

The left-hand side of (11.6.5) is just:,,

'2S(1.,6,6) , - ' .(y + t')2, > '
,tz F(y
tt-0

1 7



which is n6nnegative, because F is convex on H(Ab). Thus:

8, ,'y~ (Quadratic)f

( I. .2, < 0,

ryy (Linear'

If y is, not- an optimal, solution of (Ii.3.1),, thevt,

there exists y* e H(Aeb) such that F(y*) -, F(y). Let.,

y y0* = y* - y.

Since F'is convex on H"A,b), clearly:

F1(y) < 0.
4

If we let x(a) - y + al*'for some 0< a < li then x(q) e :H(A-i b).

Further,
J, d 2

(11.6.8) Q(x(cL))- i r A IC +d log y +d + F(y).

Since 'F is convex on H(Alb), surely Q(x(q )) is a convex

'function of a, and

," OL=O *(Y) < 0.

'Thus for some a > 0,

'(ft.6 .9) Q(x(M)) < Q(x(0)) - Q(y) F(y).

ThAt ,1 if y is not an optimal solution to (11.3.1),

,then ,the sOution x0 to (,1.5.1) or, (I1.6.2) Satisfies:

i 18
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(1i.6.10) Q(xo) < Q(Y) = F(y).

Now suppose x0 is a solution to (T1.5.1),, or (1i.6.2)

and A -o y. Further, let:,

From, (11..6.7) we isee that y 0. 0 Substituting
yj

this into Q(x°), we have':

(II.6.11) Qx°); = -(cd log +d)+(Y)

0 F +y) + F(y) =F(Y).

That is, F;,(y) 0 implies Q(x°) = F(y). But wc showed,

that this in turn implies that y ,sbives (II.3,.1).

QED .

The algoritun based on either of these methods m y

be stated as followqs:

i. Given y > 0,. y P H(A,b), find '(-x,,rt) satisfying

(11.5.3) in th, quadratic casej or (11.6.1) in

the linear c3se. Let 0, - x - y.

d.A. 2

2. If, E + rT6Yj (6 j -: 0 in the linear case)

Vi sufficiently smalUl, terminate. If not, go

to, ,Step 3.

3. Let u= y + d for some 0 a < 1. The vetor

,u niust satisfy u > 0 and F(u) < F,(y),,

o19-
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4. Replace y by u in step 1, and continue the cycles

from there.

The tlermination criterion of step 2 does not say how

d 0
small . + r, must be. This is a, matter to ,be

decided by the requirements of the .problem-.,

Combining the two forms of the chemical equilibrium

problem, augmented and reduced, with the two methocds, of

solving, the linear-logarithmic problem, linear and

quadratic, yields four different nethods for sblving, or

at least trying to solve, the chemical equilibriuM problem.

We name ,*hese methods the Augment-ed Linear Method (ALM),

the. Augmented Quadratic Method- (AQM), the Reduce,. Linear

Method (tdLM), and 'the Reduced Quadratic Method (RQM).

Reduced methods, liave the advantage that the number

of variables,. and hepnc the size,,of the problem., is

tn.aller in the reduced case than in 'the auV:iented. Linear

methods hold an advantage over quadratic method'S in that

each iteration requires, less time, or at least 1o', more

7 time. That is., the finding of a new direction 11: z linear

method is never a more i/engthy process, and is sometimges

a shorter one, than in a quadratic miethod. h1-ether this

advantage is c'6unterbalaficed by a possible saving in- the

number of iterations required by the quadratic methods,

-the author cannot say.

20'

gt I-



The lifnear methods, however, need not converge to

a solution y* of (11.3.1). If (i1.3.1) has a bounded

solution set, it can be shown that the sequence of iterates

M(k)) generated by the method 'has a limit point. But ft

,may happen that the successive step-sizes a( -converge to
d 02

zero, allowing the quantity r 1. -to rema-in bounded away
V,

from zero. This might 6ccur if,. ', for example, one of the

limit, point, yO ( k, has sn~e component yj- '0

With some ,iodifications, it can be shown (and will

be shown) tthlp.t the quadratic method applied either to the

reduced-or t,, augmented form yields a solution to a

slight y moidifiedj problem.

The au th6r reconuTnends that whatever prifal method

is used, §lAcks be included in the formulation (see [71).

To i nclud6e sla-cks, in the',problem is equivalent to including

in eo-ph comPaotment a tiny amount of a substafice that. will

nc't diffuse to any other compartment and will not par tici-

p6 te in any reaction. Thig can be done by replacing Y, J>'

by y<j> + s<j>, and by. "-J'.- wherever they occur in

the formulas, 'where each s<j'> is some small p6sitiVe number.

This will insure that if an answer -exists, it will be

uni± ue, and so that if a solution ithod generates a

sequence ('k)1 of iterates with some y* as a 'limit point,

aid if fy*i - M(FIIH), then the .entire sequence [y(k)

converges to y*.



4III. ACLOS-f-'R LO00K AT TILE RE.DUCED QUADRATIC METHIOD

This section deals with A method, first proposed by

the author in [ 61, ffox solving -the chemical equilibritzri

problem.'t bcause' of its derivation,, one migh4: call it

the 'Recduc~c1 Generalized Linear Progratmming 'Method'. iiowe

[eve it turns out in the end to be the same ;as RQM. We

retain the derivation, even though it ,leads to nothiing

*new, becau4se~ it is both interesting in its own right and

'because it 1-eads us to suspect that RQMl might be more

Pouqrful than supposed.

1.The Reduced GeneralizccLinear .Progroqm

If the objective function of a chemical equilibrium

problem were linear, we would have a ready-made, effidient

-method for solvitig the problem, the siri lex metho.. Since

it is niot linear, we try to make it so. We -will find it

convenient to use the reduced form (11.2..3) in plade of

the-original form (TTr. 2,2).

Insteaa-of solving (11.2.3) directlyi let us "linearize"

iby intrpdqqing n new Variables a., 1 <J n,, And solving

kJ

the problem:'

(I..1 in. -,,(y, 6) -7 MinriS y,. (c..- log a

s.t,. 4y b bT

ii-

i-y > 0

22
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Each a.; may be chosen independently ,of every Yk'3

Clearly6 given any y 1(A,b), we can find a corre-

sponding feasible solution (y,a) to (II.1.1) bY choosing:

I I/yj if Y. > 0

< n
( if y. 0

Alternatively, given a feasibld solution (y, a) to (Ixi.l.l),

the vector y is a feasible solution to the original problem

(11.2-,3) - i.e., y H(A,b).

Further, if (y, a) is a feasible solution to (I1l1.1),

it may easily be improved unless

['~~ (11..2 yj. Vj 3yJ1 > 0;

(We may consider (III.i.) to be a generalized l-inear

progi-am ([ii, p., 434). Thus we wish to minimize 4 linear

form subject to lineak constraints, where the vector of

coefficients of a variable yj is not constant, but rather

can Vary over some set,.

The quantities f, and (-x.) appearing to the right of

the constraints of (111.1.1) are Lagrahge, multipliers.-

The multipliers n corresponding to equality constraints

are unrestricted in sign, but the multipl iers (-x.)

corresponding to inequalities must satisfy:

" (HIi. .3,) X. > 0 I < j <

Suppose we have an initial, feasible solution (y, a)

23Vi ........ --....



to ,(11I.1.1) which is strictly positive. Let (1ii.l.2)

be satisfied for each J.

Consider the a as constants. For the given a

assume that the solution y is the optimal soluti6n, to

(.iaI.l.). (This will surely be the case if H(A, b) is

bounded., The reader may easily check that in this case

y is the only solution.) Under this assumption therc

must exist multipliers .(, x); such that (y, T, x) satisi1,.s

the ,Kuhn-tucker coihditions 8 ], namely:

(1. 14) f) f(a.) c log 6- AT.r + d.xj = 0j, <j n.

J4 ) J c 3 J-

To improve the solution (y, a-), we must find new

columns of coefficients from the. sts, mentioned before

which it would' be profitable to introduce--i.e., which

'price out" negatively. That is, we must find- new values

d!' for ,the variables a. satisfying:

J J

(~II1.1. 5), f (a!) <0, <j <n

with strict inequality for at least one j.

The function f.(a ) is defined for a. > 0 and is conve:,

d fact easy to check. To satis fy (111.1.5) we would b,,

well-advised to minimize the function f., subject to u,. > 0.
'1 3

The minimum occurs where the derivative vanishes.

(1111.6)df. 1, i .Ii .i. ) = 0 = - --

3 j
If x > 0- we should therefore choose a' We

g .x.

24
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will deal with the case that x. - 0 later.

We have so far only asserted the existence of multi-

pliers (r, x). Conditions (III.1.3-4)' are in general

too few in number to determine their values. But equations

(iIL.1.6) suggest that the multipliers xj be interpreted as

composition variables. Thus we demand-that x e H(A, b).

This latest cohdition, with (111.1.4) requires that

(it, x) satisfy (substituting L for 'And c- 1 -log

for -*)'"

+A(c + + log -j 1) 0 n
yj ( j ,j ) ,,0J _

(II1.17) Ax - b -,0

x > 0

We have gone from one extreme to another. The

equations of.(.IIi.l.7,) are those of the Reduced Linear

Method. It can be shown that if the matrix A has full

-rank thei- is a unique solution x to these equations.

However, this solution need not be nonnegative.

To insure that x > 0, we relax the firstn -equations

as foilows:

-- :- A n + (c + log '-1) -

(III.l.'8) Ax - b .*

x > 0, 6 > 0, xT6  0

.5 -- < -- - -
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We find that the reduced generalized L. P., method leads

back to the Reduced Quadratic- Method.

This suggests-, however,, that as in a generalized

L. P, the 'new solution x will itself be strictly better

than the old. in fact, this is the case.

To prove our theorem, we will need the following,

lem=a.

Lemma III.1.1. Let g(r) w r 1- -'log r be diefined, for

r > 0, 'with g(0) --. Thii g(r) > 0 for all r, and g(r) 0

if and 'only if r - I.

Proof: It is well known that g(r) is strictly ccnvex

in r, and differentiabl"e for r > 0. Its minimun occurs

'where the derivative vanishes., Thus.

(III.i.9) g'(r) - 1 - ,i,0

implies the minimum occurs at r - I, and nowhere else '(by

strict convexity)o- S'ibseituting, we find for each r > 0,

(i. 1. 0) _g(r) ;> g(1) - 1 - 1 - log I 0

with equality if and only if r li

: ,, QED.

Theorem II1.1.2. Let e H(A, b), y > 0'bd an initial

point, .and lt. (x, n, -6), satisfy ('I11.1.8). Define

A-. -x - y, and u(C,) - y + PS. Then:

(i) F(u(a)), Y) V 01
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and:

(ii) F(u(d)) F(y) if arid only if either a v 0

or y is a solution to the 'original problem

(I.8) ,(or I!.2.2). In this case, x y.

In this theorem, F refers to the original Gibbs function.

not the 6bj'ective of the linear-1ogarithmnic problem.

Proof: x satisfies:

x
(III.I.II) -1- - ATh + (c + log 9)yj j J ) -I = .1

where 6 > 0 and x.6 = 0 for ,I _ j < n. Multiply (. .!l)

by (yj- uj(a))' and sum over 2 < j < n. After rearranging

-terms, this gives us:

(111.1.12) F(y) - F(u(m)) = a. 61y. - log

+ <, (Y<j> - g

2U>

+ c(1 - a) A.
j Yj

Equation '(ftII.12). holds for- all 0 < . < 1.

Taking the right-hand side of (III. .12) term by,

- term; we see that:

C (111..1 3) %.>
,. a.v 6 y. >, 0"

(IIA.4) 3 u.i(.i --I - log r u g .--

where g is defined in Lemma 1 Ii.1.1.
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(1 1 u<j. - I - log(11..115 <> <> u~>

, -g , > 0).
U<j > \ /

<j g

This term must be modified if a= 1. For a < 1, note that

>(a) 50 for every phase <J>., But at a= 1, u = x, and

Some x may be zero. Thus we write (111.1.15), for

(111.1.16) . x~ x o > 0 if a, 1.,j < > j <j 'log

For each <j>-such that -. 0, this is the same as for

a < 1. if 3 = 0, then the only nonzero !rt' tm of the

•un (IIL1.16) eqaals y<> > 0..

,Finally,

-> O,
J-J

Combihing (IITi. 3-17) we, have:

S(.,.18') F(y), - F(u~a.)) > 0 0 C<. 1

proving statemeht '(i-).

To show statement, (ii), note that if a 0, ,then

u(a) - y, so that surely F(u(a)) , F(y),

Suppose, on tbe other iand, t)a L o > 0, and F{(1t(()) (y).

We first take a T T* From (111. 1..14) 'we see that

F(y) -F (x) = 0 only-if for each j,

28
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(111.1.19) x. g0 0

which. is true if and only if either X. = 0, or X, y, by

Lemma 111.2.1. If A # O, then for at least one J, x = 10.

But this implies that # y<j>. Hence the iequali-

ties (III.I.15) Or (111.1.16) apply, proving that:

(111.1.20) F(x) < F(y). if x 0 y.

For 0 < a < 1, we need only note that F is conVex, so

that, for every a, 0< <a < 1, (u(a)) < F(y) if x -A y.

We.-have shown that F(,U(a)) F(y) if and only if

a 0 or x = y. To complete 'the proof, we must show that

in the latter base, y sdlves (,I.8),.

But if x -y, then 0 0, so that F-(y) = 0. Thus by

Theorem 11.4.1, y solves the original problem. QED'.

29
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2. Lower Bounds

We may separate feasible solutions y into "bad" points

and "good" ,points. "Bad" points arcpoints y c H(A, 1-)

whi'.2h are not interilor to th - nonnegative orthant.

other feasible points are "good".

The reason for this terminology, particularly with

regard to RQM, is easy to see upon examining equations

(111.1.8). If we have as our initial point y a "bad"

point, and we try to:generate a new point x from it, then

x must satisfy:

(Ii.2.i) - A n + (c. + log ^ " " 3 < n

if yj '0, this is undefin ed. Large valcs of yj present

their own difficul-ties. Similar reasoning poii:s out that

bad points are bad for any of our primal methods.

As it happens, the only "bad" points that ordinarily

concern us are those satisfying y, = 0 for some J. This

is a consequence of the following result.

Lemma 111.2.1: Let y e If(A, b), and define:

(111.2.2) S(y) = (x e HA, b)IF(x) < F(y)).

4 Then S(y) is bounded if and only i i the solution set M(FIIto

of the ori7ina -problem (I1.22) is bounded and non-empty.

30
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Proof: We know that since F is convex, 'S(y)Y must be conveax.

If S'(y) is unbounded, then by a well-known result (see, for

example, [121, Lemma 3), there exists a vector v # 0 such

that for -all x e S(y) and al'l t > 0,

x + tv C S(y).

Notice that this implies in particular, since

x + tv e H(A, b), that:

(111.2.4) Av = 0

Furthermoroc, for every t > 0,

F(y + tv) < F(y),.

By the homogencity of F

v + : y) - t( y). < 0.

Letting t - , we have; since F(0) r- 0 and F is continuous.,

S(1.2.5) F'(v) < 01.

By [12], Theorems 4 and 5, it is implied by Equatians

(1!1.2.4-5) chat M(FIH)' is either unbounded or empty.

Conversely, it is clear that M(F]i) C S(y). (This

does not rule out the chance that M(FIH) is :,empty.') Thus

F ' instead of solving -the original problem (i1.2.2), we cou).d

replace it with:

31
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Mn F(x)
S. t. x e S(y).

If S(y) is bounded, thIen- it is compact (since by the con-

tihuity of F i- must be closed). And a continuous function

always achieves its minimum on a compact set. Thus

%M(FIS(y)) is nonempty, and (since S(y) is bounded) M(FIS(y))

is also bounded.

Clearly, M(F['S(y)) =M(F]H)., QED.

The set S,(y) has for us the significance that if '.c

begin the algorithm at an initial point Y) : I(A, b), v 0,

then every, iterate v(k) must ,also be in the set S(y,'U)

If N(F!.H) were bounded and nonemptyj then the sequence of
iteates generated by any of the prima1 algcrithms

'wotild, be a bounded set.

Furthermore, even if M(FIlH) is either empty or unbounded,
(k)grw

we may continue generating new points until some y. groWS

too large to be handled. This will merely be evidence that

the solution we ate chasing is a will-o-the,-wisp. In addi-

tion, we may rule out the possibility that M(F1,H) is unbounded

by introducing slacks into the problem, as suggested in

[71.

On the other hand, that some. 0 does not: su&-

gest that the problem is without a solution. More than th-:'.

in a practical sense yj need not actually be zero to _,.u.,

'trouble; it need only be sufficiently small that the electronic
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computer cannot work with it. We must -have some means to

insure that no iteration has a component y) too close to

zero.

The obvious way to accomplish this is t6 modify the

problem by placing lower bounds on each variable. Thus we

might solve:

(II.2.6) Min F(x) 'Y x- (c. + log )

s.t. Ax=b

where t is an n-vector of lower bounds, each I < J <n,

being a smal;, positive number.

By expanding the number of variables and the number

of liiear constraints, we may cast (111.2.6),into the form

of a classical chemical equilibriun problem.,

(111.2.7) Min.F(x) = r x.(c. + log R-) + S S. (c + log s.)

s.t. Ax =b

x> O, s >O.

Each variable s. is taken to 'be in a new compartment, and-

is the only, species, there. Its free-energy constant c

is set to zero.

It is not necessary, however, to 'expAnd the problem

'in this way. Lower bounds can be included without increasing

1 the size of the problem at all. For thie RQI, in place of

'{ -° equations (1II.1.8),, we would let:
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(111.2.8) x'= x -

and require x' to satisfy:

_ -c + log - + '
' 1 1 Yl' "

:(111.2.9) ' ' ' +
.AT
- x c + lot, 1 -1_I_: 

1n n

" ' + = -  blo" -' alj ,
yb- 

7 aa
A,- A . L0 . J J"

n'
n -b +a am .'

x, >0- > -0 6. x 0, _< j _< n.

It is easy to show that if x" satisfies (Iii.2.9'), then

- x. + z (from (111.2.8)) solves the quadratic program

(,.5.1) for the reduced quadratic case, with the non-

negativity conditions x >0 replaced by x > I. It is also

easy to show that (x, s) wil! be the point generated by

RQM applied to the expanded problem (111.2.7), where

s = X' = x - , are Vhe rnew values for the additional

variables.

This observation insur-es that all the tIeorems that

-have 'been proven for the problem without lower bounds

still .are true for the problem with lower bounds.
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The Modifihd MrA Al or M i ayf

The algoritl forthe RQ may be modified as a-result

of 'Theotem 111.1.21 and to include lower boun~ds. These

two modifications,.as we shall 
see, insure that the algorithm

will yield a solution y* which is 
optimal for the lower-

bounded problem '(111.2.7)

I. Given y y , Y 4(A, b)', 'solve (111.2.9)

for x', and let x x' + 1.. We may use

complimentary pivot methods, or we may 
choose

to solve this as a auad-at4c program.

2. Let A- y. If - + .(Y. - is

sufficiently ,small, terminate. If not, go to

step 3.

S3. I.et x and E be prechosen ntrbers. Pick as

a step size any a satisfying:

-0 <. < < <1.

That is-, we bouind q away from zero and if we

wish, from one. A perfectly adequate choice

is 0 . , and hence a constant step size.

4. Let u y + MA. Replace y by u, and

return to step 1.

The convergence criterion of step 2 has been modified

to take account of the lower bounds.

35
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Vfhiat follows is a proof that the algorithm, finds a

solution to (111.2.7). Throughout, we will use the

following notation:

(y(k)} is the sequence of iterates generated

by the modified algorithm.

(X( k ) } is the sequence such that x(k)-; satisfies

(111..2.9) if y is replaced by y

O(k - y(k) for each k.

ak is the kt h step size, satisfying G < a < a- <

for all k, so that:
(kil) (k) L ,(k).

We will also assume that the solution set M,(F!H) of (1-1.2.7)

is bounded and nonempty. The "subscript" A denotes lower

bounding. it is easy to show, using [12-3,, Thto., & 5, &,."

M(FIH) is bounded and nonempty -if and only if M(Fli),

the solution set of the non-lower-bounded problem, is

bounded and nonempty.

Lemma, i.3'..: lim (k) 0

Proof:. Since Mt(F1RH) is nonempty, F(x) is bounded below

on H,(A, b) = x > 1'Ax b". 'Thus the monotone decreasing

sequence (F(y(k)) must have a limit:.

Using the function g from Lerwgna -lT. .i and equa tionr

(111.1.12-17) from Theorem 111.1.2, we have that:

.(k+)(I I-.3. 1) FY( k )  Fty k l ) > i 9 k]),[ ) > 0.
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Substituting for g, and taking the limit as k - 0 , w find

that for each I < j < n, by Lemna III.I.1, -

(111.3.2) 1i - log 0 ( 0.

(k)Since for every'k, yjk * > 0, we see ,that by

Leim'na I I.1. i,
y(k+l)

k yj
or:

• (k+!) _ (k) kl)
(111.3.3) 1rn . = rn a1 Y ' a

Yj

But y(k) C S(y(0)), a bounded set, and the aC we uniformly

bounded away from zero by a. The conclusion follows.

Q.E.D.

Notice that since i4I (Fi') is bounded and nonempty,

S(y (0 ) ) is bounded.. Thus the set of iterates (y(k) is. a

bounded, infinite set, and hence must have .a limit point.

Theorem 111.3.2: Let N be a subsequence of integers

('1, 2, ...) such that k converges, and let:

,', (111.3.4) y*=lira '(k).

y Y
keN

Asstme there exists v > J such that Av = b, and suppose

the matrix A has full rank m. Then,

*i
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Note: it is no hardship to assume the existence of v > t

such that Av = b. .The appendix shows a method for find..ng

ai initial, st i.""CL-Yo p. , fl' :

We may always Set che lower bounats g to ,;acisfy y(0) .

Proof: Surely y is fcasible. That is, y > a. ad y'" b

From (I1.2.9) we write that

c(_ (k) jk)+ log+(k)= ) . L__.--- . i.(l. i (11 3 ..5 ) c, log- J ':"

.(k)> . 0 ad (W y(0)3
SSince > 4_ 0, andy- S'( )( bounde:d

se'-4 implies that 7 ( % i"buneSeQ ~ ~ j inle hts bounded, We bave:

(t ,3L.6 ) Y' =-, . j'jf y. ' 0.- -< j"~>"

Partition the Lnices into two sets, i =j Y = . .

J= (jly > . and let v > A, Av b. Define a zeaetion

Vector r by: 4.

- (111.3.7) v - y*.

Clearly, r. > 0 for j c i.

hultiply each equation j uf (111.3.5) by r. and sum

over i < j < n. The result is:

8-38



4-I-

(11..) ~(~(k))-v r 6 (k) + /~k) (k)'

(II. .S rr +i log ) j _1j-j

Notice that for j e J, we must have for k e N suf-

ficientiy large that y(k) , , 'and since for each J,
1 ( k) _ -, we will also have, for k c N sufficiently large and j e J,

S(k) > t. But from (111.2.8) and (1II.2o9) we see that

for every k,

(1113.9) (x(k) )(zk)

Thus for k e N large enough and j e J we have 6, (k) m-

so we can write:

(111.3.10) lim o J, Ce,

From Lemma III, 3; we have that:

((k) x(k)\i"j

keN j

And from (11.3.6) we know that there exists a Bound B

such that for every k - 1, 2, .... ,

(I-1I.3.12) ri r(z 1 +-log 9 -k)) B

keN

Take the limit of each side of (III.3.8) and, using

(III3.1O-12) we find that:

(111.3.13) 1 *n r1 6 (k) < B.
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But for each j 6 i we have r> 0 and certainly each

6(k) > 0. Thus for each j 1i, the sequence f6j(k)keN is

a bounded sequence, and must have a limit point. Let N1

be-a subsequence of N such that for each j c I the sequence

converges. Let:
-6k) }kN i

(111.3.14) UM 6 m V(k j
3 ken 1

Take the limit of each side of (111i3.5) as k e N1

tends to-w. Note that (A Tr(k) I must.have a limit for

each J,, since every Gther term has a limit. Thus, since

A has full rank m, r(k)}kcn1 must have a limit.

Let:

(11.3.15) = lim f(k)
keN1

Then:

(111. 316) c + log " ATr* + 6*.

Looking at the bounded problem (IIL2.6) we see

that (111.3.16) is just the optimality condition, where

-6,* is the multiplier on the lower bound inequality x. > .

'. Alternatively,, .if we look at the expanded dhemical,

U equilibrium problem (III.2o7), and taking -A* to be the

multiplier-on the equation x. " sj - )j we see that (IMI.3.16),

together with the equations,:.

(IN .3,17) log A - - j _ n
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form the optimality conditions for (111.2.7) . Note that
.for yY > ., We have s> 0, so .- 1. in this case,

(111.3.17) is satisfied, since 6* 0. If y* t . then

s 0, 'so by the virtual mole fractions theorem 11.4 of [71,

we must have s' < 1. But from (111.3.1-7), 9 exp(-"

and -since 6* > 0, clearly, t < 1.3 J- J -
Thus y* C Mt,(FIH). QED.

Corollary 111.,3.3: If 6* from Theorem IIlt3.2 satisfies

6 '0, then yf c M(I'tl). That is y* solves the original

problem. In particular this will be the case if y* > t.

Proof: From (111.3.16), if 0 0, then

(111.3 .1S) c + log, AT T *.

This shows y r M(FIfH). Clearly 6 0 if y> J. QED.

Corollary, 111.3.4: If ' (FIR{) contains exactly one point

then l -y is a convergent sequencei and:-

(k)

x I im y

Proof: Obvious.

4
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4. The Other Methods

One may use lower bounds in the Augmented Quadratic

Method (AQM) in a fashion similar to the way they are used

in RQM, and indeed, if the successive step sizes ak are

intelligently chosen, the method will then converge.

This is relatively easy to prove, because on the set

-(-x > -t} the second partial derivatives of F(x)

X x.(c. + d. log x.) are bQumded,

Linear methods, recall, had trouble with the orig-

inal lower bounds of zero. They can have the same diffi-

culties with nonzero lower bounds. While it might be

possible to modify the direction found bv a linear method

so that it would not violate the bounds, this would nial<e

the method rmuch the same as a quadratic method. Tho~re

seems to be no convenient way to use lower bounds in the

linear -methods.
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IV. DUAL In-'rHODS

We will present two dual methods. The first, called

here the Dual Augmented Linear Method (DALM), was deVeloped

by Clasen [4, 5], as a method for refining the solution

obtained from his primal, or first order method, ALM.

The second dual method solves a form of the dual of'

the chemical equilibrium problem. The author had belieVed

that this dual formulation was new. A closer study of

Rockafellar's work in dualoity [13, 14, 15, 16], of thc

work of buffin, et al [I] on Geometric Programfiing, and

of a paper of Hamala and Milan [2] reveals a proble- of

the form of the chemical equilibrium problem may be con-

'sidered to be the dual of a geometric progrdm. Because

the relation between a problem and its dual is reciprocal

-i.e., the dual of the dual is the primal---so may a gqo",

metric program 'be considered the dual Of thei che.ical,

equilibrium problem. The dual, formulation presented, here,

for the problem without slacks, may, -by' a sinple change of

variablzs be shoxm to. be a geometric :program.

This dual problem requires one to maximize a linear

function subject to nonlinear constraints-z Experience has

shown that prQblems with nonlinear constraints are in ger-

eral more difficult and less efficient to solqe than p.pb-,

lems whose sole nonlinearity is in the objective function.

Therefore, we suggest that a primal method be used first

to obtain an approximate solution to a chemical equilibrium

-
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problem perturbed by slacks and (in the case of quadratic

methods) lower bounds. With the resulting values of the

dual variables as a starting solution, a method may be

applie6 to the dual problem of the original chemical equi-

lib_ium problem--unperturbed by slacks or lower bounds-

to refine the solut).on obtained by a primal method.

1. The Dual Augmented Linear Method

From Section IiA, we know that x > 0,

x C K(A, b) solves the chemical equilibrium problem in

augmented fo-m' if and only if there exists a vector T such that:

(IV.I.I) C. + dj log x. + d. =< j < N.J JJ J J- _

For definitions of T, S, c and-, see Section II.1

Solving (IV.l.l) for x., we find that:

(IV.I.2) x. exp L-U(j., A - - U.)].

Suppose we have initial estimates of the numbers- Ti,

I < i < M, perhaps from the final solution from a primal

method. Surely, for any r at all, the vector x computed

from (IV.l,2) will satisfy th-e optimality conditions (IV.l.t).

But such an x may not be feasible. The nature of the expo-

nenti-al function insures- x > 0, but perhaps:

-(W.l.3) -40
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Substitutlif (IV.1.2) into (IVl.3) shows that g may

be considered a function el. Then we wish to. find rr'

so that:

(IV. 1.4) 3O

If our initial guess r is close to '9*, then, taking a

Taylor's expansion of g" around IT to first order, it is

aproxiiately true that:

A TT

th
where *~is a-bi MxM mat-rix whose ij elv'nient is

i, j < M. The matrix g is comp-uted in 5], p. 24,

to be:

(XV.1.6) -7C ) -

Substitute into (!V.1.5) o geL:

(I'.1.7)

is the matrix tt occurs in the primal Iinpar method

appiied to the augmented formi. See Section 11.4.

The algorithm based on DALM is as fo2.ows:

0. Let the problem be i.n augmented form, and

let be an initial estimate of -*

1. Evaluate x. by means of (IVL.2), g( ) by

means ,f (IV. .3), ana d by meanis of

(IV.1.6).

45r,
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2. rind ' si, fy ,: (IV. 1.7),

3. Replace by '-.,, and rocurn to step I.

There are two possible termxination criteria. We might

stop if g(-) cor'putcd ir step I were suCficiently small.

Alternately, e could stop if .T cor.putud in step 2 were

small enough.

This method does not in general converge. In the

first place, there must ':,is." an x > 0 solving ,c original

problem, or so:,,.e of tic vTiTbes n rut oocoi,.e "-L:>Ln"-

rn the second placc, eve- ',Kv n- ce-,itln "

i.E the ini Ltial is
may, divr-,

b

4



I-

2. The DualFormaulation

Since the reduced form of the problem is also written

as a linear-logarithmic problem, one might think that We

could develop a Dual Reduced Linear Method. However, if

we substitute the appropriate quantities for U- and we
jE

discover that in the reduced case" (IV.I.2) becomes:

(Vy2.1) xj =<.> .exp (ATn - c) i < j < n.

In this case we have no way of defining the x. 's in terms
• J

of the T.Ts, but only of expressing the A.'s as functions2. J

of rr.

This does, however, lead to a dual method. In frct,

it suggests a new form for the dual ptoblem.

From [71, Theorem 11.4, we know that .x* e H(A~b) solves

the original problem (1.8) if and only if there exists a

vector of virtual mole fractions z > 0 satisfying:

(a) V j such that 'K<j> > 03 J

(IV.2.2) (b)- <j> - < z V compartments <j>
k kkc<j->

(c) c + log = AT - for some m-vector 7.

Of course , this depends on the existence of y e H(A,b), y > 0.

Compare (IV.2.l) and (IV.2.2) (a) and (c). This sug-

-gCsts. we consider as a function of T. That is, we let:

(IV).32) (r exp (-ATr-, C)

47
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Then defined by (IV.2.2) (b) is a function of , and

we have the constraints on vr that:

(IV.2.4) < i <j>.

if we compute derivatives of we find that:

~(IV 9.5) 3<>()= Ak N.~, <>r

where the syfool indicates a definition. Also,

(IV.6) Ak k(,)Ak<j > ke.<j>k ()k

. 2  4- S i
Since < (r,) > 0 for every , - , is positive se<i>-

definite. Thus the function is convex, and the

constraint set deficd by (IV.2.4) is a convex set.

7,.e dual way 'ne .oriauatec for th, problem wit-h or

without slacks (See [£71, or the comxent at the end of 5. ction

1.6 above). Ve will do it both ways, and show '",, t!-. dual

Without slac1s a i'stg case of the daai wich -lacks.

.-- w ,at follows, we assmic that there exisis y U(A,b)

.atisfy Ing V > 0, and rbac the solution set "'1(F111) of'the

problem without slacks is Lounded and noneopty.

Theore;r. IV.2.L: Let the problem have slack s<i> > 0 in

e: each phase <j>. Let ' solve:

imax w(,) (b r + .s log ( -)j> s<j> >

(IV.2.7) '

I-S.t. 9< >(7 V N j

48,
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We take log 0 --.

s
Define -<> for each j, 1 < j < n.S 1 - Vj(*

Then x* is the unique solution to the chemical equilibrium

problem with slacks sn>.

Proof: Since M(F[H) is bounded and noriempty, and since

there exists y > 0, y W L(A,b), [71, Theorems II!.1 and 111.2

us that there exists a unique, strictly positive solution

y* to the problem with slacks, and an associated vector of

multipliers 7*. C3.early,

* Y<j>
(IV.2.3) 7< (- ) = ; = <i.

k<jj >7
k-j> + s<j> y<j> +<>

It is easy to see, then, that must als -. sa .sy

< *I , Or cl~qc. w(V') -CO

[71, Lcrr, III.2 L Thows that w() Is a. concave func-

tLon f '. .us, si:;ce is sureLy in the interior of

its cunstraint -et, we know that:

. ,, .',, A . " . ,' ,*
b - Axv: 3

j 1 -

.%lso, x? > 0 and finite.
-' - 3

Finally,

... [ <j>.- 2J.. . ' -/ -

(LV. 2. i0) k -__ __ _ ____.,__,

," + s<3 > >' ,,,Ti. " ." ,49 •. S <j

' ' '49
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Thus, by the definition of .(r) (Equation (IV.2.3)) we[i J

know that:

(IV.2.11) c. + log :k = AT.1 1 < j < n.

Therefore, by (IV.2.9) and (IV.2Ai), x* solves the prob-

lems with slacks. QED.

Problem (IV.2.7) is the dual problem with slacks.

To show it is truly a dual, we must show that w(;:" is

equal to the optimal value of the primal .objective fur 2tion.

Theorei IV-2.2: Let n solve (IV.2.7), and : solve rCie

primal problem with slacks. Then:

(TV.2.12) F(-*, s) = x>*(c. - log i) + F~s>og w(.

Proof: The quantity > 1 ;
<j > ke<j> A

since in each compartment, the mole fractions (including

that of the slack) must sum to one. Thus by (IV.2.10):

(V.2.13) -> 1< ->

N. substitute (IV.2. I) Ind (IV.2.13) int,, (IV.2 12) to

find that

(×,s) =(T QED.

Note that for any x ,(A,b), F(x,s) > F1(xI", S), an

for any n satisfying r<j() < 1 "-j>- w(r) <

50
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Thus weak duality is also satisfied. The theorem proves

strong duality.

The dual problem without slacks is similar.

Theorci- IV 2.3: Let V' solve:

(iV.2.14) Max bT

<.j><.>s . > C< 1 : %<j> Vj

Let X> be the value of the multiplier X at th.

optimum.

Define

Th"aen:

xe M(F 11)

",roof: Noe t-t since the constraints are inequalities

of the sense (<), and we are maximizing, > 0 and

,< >= 0 ifZ 7 -(v= <I

That (&*, \) solves (IV.2.14) requires that -- solve

Jhc untconstrairin Lzagrangian problem:

('V.2.15) Max ib r. - ,><. - ).
<j>

Clearly, this is a concave, differentiable fui.ction hl'at

achieve6 its maximtu where its gradient vanishes. Thus

(from (IV.2.5))

(!Vo2.16) b - S X>.).(, ) = b -A;'. = 0.
S <j >
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Since X'j > 0, clearly x* > 0. Since if Xj> > 0,
<j>(n*) =lwe may make the identification x<j <j>)

and be assured that if x<j> >0, then:

(IV.2.17) J J

That is, x* H(A,b) (because of (IV.2.16) and

x > 0), and (r*) is a vector of virtual mole fractions

satisfying (IV.2.2) for x = x*. Thus by [7], Theorem IIL4j

x c M(FH) QED.

It is easy to show that both strong and weak duality

hold in the case without slacks. The proof is much the same

as for Theorem IV.2.2.

Problem (IV.2.14) is the dual problem without slacks.

We now wish to show that it is a limiting case .of the

dual with slacks.

(k)
Theorem IV.2.4: Let A have full rank m. Let (s k  be a

sequence of slack vectors satisfying s(k ) > 0, lim s(k ), = 0.k-.O

Let ,.(k) solve (IV.2.7), the dual with slacks s(k) . "Then

(i) -r(k) is the unique solution to (IV;2,7)

with slacks s(k)

(ii) The sequence (r (k)}has at least one, limit

point (ie subsequence conve rging to) T-x.

-(iii) n' solv s (IV.2.14), the dual without slacks.

Proof: Since M(F!-I) £s bounded and nonumpty, and there

exists y 5 0, y e H(A,b), [71, Theorems I!I..i and IIIA1 2 show
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thst he primal problem with slacks s(k) posscsses a unique,

strictly positive solution x(k). By Theorem iV.2;1,

clearly

(k)
By [7], Lemma I1.11, ( ) is uni.que. But by definition

(i.(2.18) C + log()

Since A has full rank, and (k) is unique, 7) is

unique, proving (i).

By [7T, Th1oren Ii.5, there exists a subseq, ne ZY of

(1, 2, Such that () kis a vector Cof

virtual mole fractions for the problem without slacks.

Since > 0, we take .iits as k -, e, k c- N, of. (IV.2.18).

Clearly th-en, im exists, and since A has full
kFN

rank, n* lim 7:.(k) also exists, OVSng (i

Fiaally, by continuity,

Since =* is a vector of virtual mole fractions for the

r i inal proble- by Theorem IV.2.3, " solves (iV,2J4)._ ,
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3. Solving The Dual

A pair of vectors ( v *) solves the dua:

(IV.3.1) Max b T T

s.t. <j>(1) < 1 : -Yj>

if and only if they satisfy the Kuhn-Tucker conditions,

derived in the usual way from the Lagrangian.

(IV.3.2) g(r*, x*) b A <J> k k 0
<p'j k,<j>kk

(V.3.3) >( < V <j>

(IV.3.4) Xj> > 0, and <>(l - 0 V <j>.

If instead we have an initial solution (ir, x) which

may not satisfy (IV.3.2-4), we may compute corrections of

(TT, x) by expanding g(1-, x) and Ec<j>(-r) around the known

initial point. Using always linear approximations, and

making the associations:

(IV.3.5) x1 = Xj> %() . < j < n

we have from (IV.2.5) that Ar and 6. must satisfy:

(IV.3.6) RAn + 71§<j> A <j> = g(TT, x)

.<j>- j

where R - AAT.

,oticing that g( , X) b - 5 ><j>, we may let

1j> be the new value of the ,multiplier, and writ! (IV.3.6)

as:

54
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A

>0j >- X 0 V <i>
' 0, c<j> 0 , G<j> <j>

where we have included the complementatrity conditions

(IV. 3.4).

Notice thalt (IV23.7) is equivalent to the quadratic

program,

I T
(IV.3.8) Min 1( ''' .',: bTAr,

S.t. .- j _"(<>n ):X > V <j>

Notice .also that the matrix R is exactiLy that found ln RUM.

For these reasons, we call the method based on this develop-

ent che Dual Reduced Quadratic Method, or DRQM.

'2heC'r TV.3.!: f M(YiJ). the solution set to the orii-

.v.. pro)ler Ls nonempty, there always exists Av such t-hat

A..; (-) - i for every <j>. That is, the qt, d-<j > -3 :'%> . ,

ratic program (IV. 3., .-- always feasible.

2roof: Let z* e M(F!H), and '" be an as-sociated vec;toi of

mUl'cipliers. Then clearly,

< 1 V <i>

Li: Since T..@ is a convex function, we know that (from
T %

(X.2.5)).

J> > (, <j(r .. i)

---- (-- V.3 9) - - - ". -. '-.- - -- - , - n "- .- - - -,) - - - - - -



Thus V, is feasible for every r. QEDx

Unfortunately, it is. not a-lways true that -(IV.3.8)

has a sOlution. The quadratic form, thoug, always :positive

semi-definite, need' not be strictly convex (ie positive

definite). In t1is case, (IV.3,.6) may be unbounded.

The oasiest n'othod for coping with pkoblems -of

unboundediegs would be to arbitrari y .bound Ar. Other

mtbods may suggest themselves to the readdr.

The algorithfr f-or DRQM is as follows,:

0. Find afi initial (T x). r co-uld be, for

example, the finel multipliers f6ui6d by

a primal reduced method. Xj> could be

set equE.1 to X<j>

i. Compute .. r, <(), and R.

2. aOlVd Lild' tomplem.ntary pivot p-.obe

(iV.5.7) for Anr and X'.

3. If A is sufficientl, all or if IRi

is sufficiently small terminate.:

'Otherise kepiace X, by P" aiid , byz

- , Y =,+ A*. Then return to step 1.

The cqnvergende criterion "if AT i. suff-iciently sffiali" is

clear. Note that RM - b - F >kT<."< ) I f this, is

small, thn k; F X (m) is nearly feasible,. The- other

qpantity that one should check is; >. But this cannot

much e e if A is small.



4. Comparison of.the-DualMethods

Simple algebra shows that the matrix. IT defined .by
(IV.6) can, be partitioned as follows:

(i-ve 4;+') T
<1>

where R is the matrix-AXAT of Section IV.3,

and each 5> is defined, one for each, compartment,, by:

ke<j >

If we rename ;the variables yi,? m + 1 < i <',M in 'DALM,

calling -them ,-., we ha,%,L from, (IV.l.7-, (:IVyi.3.)nd

(IV.4.)1) that we wish to solve:

>G1V. 4.) R Ar + <, $ b Ax
< k>

8<j >Mi Xx. - > .

Cl,'asen [5] suggests that th-e right-hand sides of

equations m + 1, ... , m + p - M be rep].aced by zero,. but

the author sees no reasoni for doing so.

In our new notation, given multipliers (ii, nj we may

compute from (IV,1.2} and the definition -of (see Section

,57
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(;V. 4.5) .Kj,= exp j - ry +

-1<j> is-the multtiplier in thd-equation k-j > Ak - x<j> 0.

Combining (IV.4.4) and '(iV'A.5), we find that computing

A from (1V.12) and; computing '( from, (IV.2.3) ylield"

the same result, That is,.

(IV.4.6) A. . =ep'(A'r c.

That is, comparing (IX.4.2), the def'ifition of 8<j, and,

(iV.2'5)., the definition bf 0 <j>, we see that-:

M ,~4..7'), <j X i>:5 .( -)-

Let us theh make the following changes .r 3

(i), Let x,<j>

(ii), !.et n " x n and- + <. +

(iii) Divide each of the last pp equations of (IVo4.3)

by the appropriate -X<j'>

Then (ATt,. x) should satisf.y:

-(IV.,4.8) R:A r+ , b

<j > <,>
*. -.& t> .. = <., -1I

Compare (IV.4.,8) with (IV.3o7)o The matrzix of detached

coefficients and all the cofistant terms are he ,same,.
The difference is that in DALM, the variable X'<> may

t rx
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become negative, whereas in DRQM, it must' be nofinegative;,

and that the conditions that were inequalities in DRQM

are, equations n DALM.

The. reason' for these ,differelnces lies. 1# the fact

that DATM and 'DRQM treat the va-k~ab-les ),',j:, from which

the nw sums X are c6mputed, dif-erently. Making t he

substitutions from (i)a(iii') above, we see that iSi DALM,

(IV.4.9) >= x<> exp ( . > .. <,3J>.

InDR oh, the, other hand,

(IVi,4.1o) 7' X.>(l + > ) '.j > x > <jI~ . > .,

That the t Wo methods are ciose, y rlate is already evident.

Additional evidence, Of this is the facE that: (IV,4.l0) m.ly

be considered a first-order Taylor's aPproximariohn of

59
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5; Degeneraey and ;the Dul, iet:hods

We found that none of the piimal methods could cope

wth a degenerate problem in, a natural way. It was

necessary to insure that the solit'Ion Set M(FIl). contained

at, least one strictly ,positive point, either by using lower
bounds or slacdks. It 4as .at least helpful to insure-that

if the probllm had a solution at all,, it was unique.

- Thi.s Was- don by adding slacks.

DALM has similar difficulties. By Equation (-IV, 1.2),

every x., including 4the suns _X<>, must necessa-i~ly be

positi?.,e. They can approach zero only if the multipliet,,

approach infinite values. Thus if a problem 'has only

,degenerate solutions, or if all solutibns are too neatly

degenerate, this mgethod will fail.

DRQM,, on the other hand, or any method used for

solving, the prqoklem in its dual form,;, can accomodate

problems wich degenerate solutions It. its, only necessary

to insure that no vector of ,Virtual mole fractions the

methdc! a 'ves at is degenerate, or nearly so. If r is

the vector in question, then for' some T1,.

c ± log ATn.

If . 0 o o < o'r some Small e > N0, then one or more

of the Tri must be large. Of course, , must be ver-,y small.

irideed before log is a large negative nunbdt.. Th.:-

pr6bem raeJ.y dccurs, and when it does it is usually

'60
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evidence that some spedie- has been ificluded that .as

fok all pract.cal pufp6,sss no, impori;anqe in th. sys ten, in

ques.tion.

The, author suggests that thd problem first be solveqd

using one of the primal methods with sladks, ando if

necessary, bounds. If the siacks Used' are larges 6nough,

and the primal solution sufficiently accurate, the mpu'ti-

pliers i7 corresponding to the fin'al :terate of the 'prinial

procedure will satisfy:

A- method for solving the dual prbblem ma-y there.ore start

with a feasible point.

Starting with the p!pint T, described above, a me'Ehod

for solvin.g, the dual can -find not only a s:olution to the

original probcm (,i.c.,, without slacks or bounds)-, but

can express all the ,solutions., That is, if in problem'

(IV. 3-7) , we find that A ' 0,. teLi .every solution. may be

r .dovered as 'a solution of:
__3

<J:> ",<j >

j > -0

i <>(] -. .:> ,,)) = 0

; Se :[7]} Lenmia ili.2. -

j X,
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6. Convergence of Dual HI-t hods

As they stand: neither dual nmethod is assuxred of

converging to- an optimal solution ", although if' the

atarting T is sufficiently close to '7* each method will

generally find an optimal solutidn.

There' are, however, other methods for Soziving the

dual problem (IV.3.1), some of which are sure of conver.g

1,'g, whatever the initial point, Exaxiiples,, of stidh meth6ds

:riclud.. Rosen [17], KaIfon, et al. : [18^], Daniel -1191,

Fletcher & Powell [20, 21], Zoutendijk [22];,, seVeral

inethods found in [10], pa'ticularly in a chapter by. Wolfe,

and Uz-awa [23 ]..

1C

3
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Appen .ix" The Initiai-lution

The piimal algorikt).-ns presented in thd body of this

11ork all requir~e a starting composition x satisfying:

A" b

x> 0.

Clasen [5]1 has developed two methods fok finding such an

x, the projection method and the linear progranuning mctho,'.

1. The cneyalized Proectio Method

It is actually not true thaL the primal algorithrs

require a sta-rtin-' composition which is feasib:e and Strictly

positive, although all of thcm must start with a vector y > 0.

One may simply forget that Ay } b and use any primal method

-to find a new composition x. Claseu([5], p. 5) s.ggests

4that y be "... the exact [optimal]3 solution of another probe.-

].em which differs from the onva being con6_.cd in relatively

ninor ways.

If an initial infeasible but strictly positive y

- is used in either of the linear methods (ALI or RLM)

ft may bh that the x obt:ined, althougvh it 'ill satisfy

bAx b will not be positive. One may either adnit eea'ti)and use the linear programming nicthod, or use a. new start-

ing point u - ay + (1 - ), for some .0 < a < 1 such that

u > 0, The projection method of Clasen [5], is equivalent

to using the vector y > 0) Ay + b as the starting point in

644
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The author thinks it better 'to use y > -, Ay 4 b as-

starting solution in one of the ,quadratic m'dthods ith
-lower bounds. The new point x ,that- 'is ,tmnerated till sat-

isfy Axk b and x > t so long as such an x exists,.

2.3 The Linear Pjrogrammihg Method

This method can be found in Clasen [51, pp. 9-14.

if an ihitial guess y is not available fo, the pro-
jection method, or if proj'ection. has failed, one may tuse

the 1. P. method instead.

We wish to <Znd a point x, satisfying;.

A.-- - b

(A.2.1)
>OQ.

But x > 0 if and only if its smallez- cmmotent x. is also

positive. Thus or ,any poiat x, wd ltt:
i

v < rin x.
3 j .3

and define new variables y by:

: yj 3o- _~ V.

Substituting in (A.22i), we wish to find (y, v) such thdt.:

(A.2.2), y S AIv =sb
j. k=l..

,*3 y>O', v>O.

1, 65
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n
Letting Q Z A, the obvious. thiihg t6 do is to find the

k4
optioal solution (y*, v,*), -to:

Max v.

(A.2.3) s Ay + Qv b

y > 0.

'If v* > 0', then the feasiblc composition x, defincd by:

(A.2.') x- yjA + v"t

satisfies (A. 2').

D cg en- -ct Cases:

SThe advantage uf the L. P. mcthQd over the prOjec-

tion mrethod using the quadratic Uigor".ti~s is that while

b'oth will find a strictly pos-ive feasible if one , : '4
the L. P. mothod e-Iso discovers (1) if tbe ratrit A his

full rank (and if not which rows are linear co"bini-"orts

of the others).., ('ii) if the equationts A: - b, x > 0 c n

be ,sati~fied at all, and (iii) if thcre is a -feas-iblc x

A but no 'strictj.> positive feasible x, ,,aich vari,bl n x
are constrained to be zer6. A discuszoa o. theseoin.,.

1may be found in pp.

S'(i) The Rank of A.

To solve the linear program (A.2.3), ona must first

fInd a basis,, i.e., a set of m columns .of \the matrix (A,, Q,
which, fomn a n6nsingular ma'trix. It is, easy, to show that
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since Q is a, linear combination of the, cblumns of A, [,A, Q1

possesses a basis -if and only if A does. The matrix A has,

rank m if and' only if it possesses a' basis.

(ii) Infeasibility

If a basis can be found, then the equat-Lns AY + Qy- b

are always. solvable. Furthermore, there is, P solution with,

y > 0. (This is because if Ay =, we may let v min yj

and let yj yj - v. Then y' >0, and Ay' + Qv = b.)

Let (y*, v*) be an optimal solution of (A.2.3). If

v* < 0, then there is no feasible ,solution to the problem.

That is, there is no composition x > 0 satiksfying Ax - b.

If there, were, of course, we -'ould have y x, v = 0 a

Ceas-bl, aoluuion to (A.2.3), aid v > v..
I< ('ii) oritivity

If v- ," 0. we must finC at least one x constrained

to be zero by the conditions

b
(A.3.1)

x> 0.

To find such ao ecuation let *X 1,e the vector of optimal

Lagrangc ult . pi i -rs asreci-te6 with the optimal solution

(y*, v+) of (,.".3)

Fo-i thc du, lity theor'nm of 11near programming,

(A.3.2) bT," v*'" = 0.

C'-- 4 i),



Since we a3'e mak .izing, each colmn should 'price

out" negative. Thus:

(A. 3. 3) 1 QT X~ < 0

and for each other ,column:
3 I

(A.3.4) -A. X* < 0.

n
Because Q ' Z Aj we see from (A.3.3), that:

(A. 3.5 YX* > .AX* > 0,

for at least one j,.

Let us form a newi equation by taking the nca co-,

bization X* of the original equations (A.3.1).

(A'.3.6) Z

where a. A; and the right-hand sd.de comes from (A.3.2).

By (A.3.4)', j GE ,br all I < j, < -o, and (A.3.5)

insures that at ieast; one a. > .Q0. -ThLis (A.3.,6), sho4s that

at l'Aast, one xj. must be zeroi;

We may delete each coma-nn A,. from the problem such-i * J

that '> 0, and solve (A.2.,) again. 'While there is no

-gurntee that the new ,Vo for the, reduced problem will be

- positive, we know that v* cannot, be negative. We may con-"

4 ' tinue solvling and deleting either until v* > 0 6r the nu x-

' ber of' co1umns is exactiy m. At this point we know that

"(A.3.JI, has a unique solution x.

68,
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The procedure never allows us to strike out u basic

coluin, since each basic column "prices out" to zero.

Thus there will always be at least m ncolumns remaining,

and the rank of the matrix can never diminish.

4., Remarks

Usually, if a strictly positive feasible solution ,x

cannot be found, it is evidende that the ,problem is incor-,

rectly formulated. The same is true if the equations Ax = b

are redundant, so that a basis in the L. P. method calinot

be found.

The author suggests that if any of the ,degeneracies

of Section 3 occur, the problem solver stop and exafiine

his data instead of dropping reduidant equtations or var-

iables constrained to be zero.
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