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DEGENERACY IN IDE CHMI4CAL

EQUILIBRIIH PROBLEMS

James H. Bigelow*

The RAND Corporation, Santa Monica, California

I. INTRODUCTION

"- A single- or multi-phase chemical equilibrium problem
may be thought of as the problem of minimizing a particular

nonlinear function (the free energy) of composition subject

to the conditions that the composition vector be nonnegative
and satisfy a system of linear equations (the-maas.a.tnce

laws). It was pointed out in a previous .paperft5Ea•he

free energy is convex and homogeneous of degree one, but

that as a variable approaches zero, the free energy may

behave badly.

t .his••ape7, the second in a series of three**,

-- he p~iirase chemical equilibrium problem"refers only to

a problem with a particular mathematical form. Problems

of this form arise in many situations that are not clas-

sically denoted chemical equilibrium problems.C-For example,

-)'-Any views expressed in this paper are those o the
author. They should not be interpreted as reflectin the
viev-s of The ivRND Corporation or the official opinion or
policy of any of its goverru:'ental or private zesearch sponserO.
Papers are reproduced by The RAND Corporation as a courtesy
to members of its staff.

* *The first is "Chemistry. Kinctics and Thermodynamics;"
the third, :Coaput.ngf Equilibrium Comiposition-$ of Ideal
Chetnical Systems".
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the dual to a geometric programming problem [21, [3], has

this form. Also, steady-state problems [4], many of which

arise naturally in industry and in the chemical laboratory,

can often be represented mathematically by problems of

this form.

We call the problems under i-onsideration "ideal" be-

cause they are derived from chemical equilibrium problems

which take the simplest form possible. As a consequence,

the free-energy function is as simple as it can be [1].

The ideal chemical equilibrium problem, then, is the

problem of minimizing a function F(xl, x2, o.., Xn), de-

finded below, subject to the linear constraints:

n
(E.1) Z aix = b , i = 1, 2, ... , mj=l ijx

and the inequalities:

(1.2) xj >02, , j = i, 2, ... n.

The a.. and b. are given real constants. We assume that

the m equaticns (1.1) are linearly independent, and so

that the problem will not be trivial, that m < n.

The n variables xj are pnrtitioncd into p nonen.pty

subsets called comnpartments, or phases. We denote the

compartment containing the jth variable by <j>. We may

indicate that x, and xk are in the same co:mpartmcnt by

writilig:
2



J c3 <ac> or k e <J> or <J> <k>.

Each compartmant has associated with it a Lum,

(1.3) %P> " j
X~k> ">

Each variable has associated with it a variable fraction,

(1.4) fC = M •

The objective function to be minimized is:

n
(1.5) F(x, ... , x,) a E xj(cj + log

The quantities c1 , c2, ... , cn are given real constants.

If x M 0 for some J, then either "* - 0 (in the event

that 3<j> > 0) or ^c is undefined (if '<j> a 0). In either

case, log xi is undefined; but to maintain the continuity

of F at the boundary of the constraint set, we define

xJ log kJ = 0 whenever xj = 0 ([5], p. 364).

It will be convenient to use matrix notation. We

let A be a matrix whose ij-h element is aj. (The firs

index refers to the row number, the second to the column.

Thus A has m rows and n columns.) Similarly, b is a
th

column vector of dimension m, whose 1,= component is bi



In the same fashion, we let x be the n-vector with

components xj; A the n-vector with components •j; log ^

the n-vector with components log Xcj; and c the n-vector

with components cj. All of these are column vectors.

Using vector notation, we may write the chemical

equilibrium problem in the following compact form:

Min F(x) = Min x • (c + log A)

(1.6) s.t. A= b

x>O.

The notation x • (c + log k) denotes the inner product

of the vectors x and (c + log 7^).

As we shall see, the singular behavior of F at the

boundary of its do-main., the noenegative orthant, makes it

difficult even to recognize a solution to (1.6). In this

paper we discuss a method for surmounting tbis problem,

called degeneracy, and a method for avoiding it.

14



II. VIRTUAL MOLE FRACTIONS

In this section we will discover how to recognize

when a vector x is a solution to Problem (1.6). We

couched on this question in [1], where we showed a way

to recognize whether x solved (1.6) if x were strictly

positive. In this section we extend the result to include

all feasible x.

It will be convenient to define the concept of an

admissible direction.

Definition: Let a composition vector x be feasible in a

given chemical equilibrium problem. That is, x satisfLes

Ax - b, x > 0. An n-vector 0 is sai6 to be admissible

at x if for every t > 0, t sufficiently small, x -. to is

feasible.

We will have occasion to consider several different

chemical equilibrium problems with different constraint

sets. When we refer to the concept of admissibility, we

mean that a direction o is admissible for the problem then

under consideratin.

Vote that 0 is admissible at x if and only if Ao - 0

and 0, > 0 for every j such that x. 0.

The difficulty in recognizing solutions arises from

the behavior of the Gibbs function F(x) when some of the



xj 0. It is well known -Chat since F(x) is convex, F

achieves a minimum &t x if and oniy if for every reaction

vector 9 admissible at x,

F6(x) > 0

where F$(x) is the derivative of F at x in the direction

B. This derivative is linear in 0 whenever x > 0; but it

may be non-linear--indeed it may be infinite--when some x= 0.

Much of the content of this chapter was anticipated by

N. Z. Shapiro, who proved a restricted form of the

main theorem, 11.4. Theorem 11.4 in all its generality was

proved by the late Dr. Jon Folkman, although the present

author never saw that proof. The proof appearing here is

original with the author.

It will be convenient at this point to define two sets.

H(A, b) =xe EnAx = b, x > 0)

M(FIH(A, b)) = fx e H(A, b)IF(x) _< F(y)Y y e H(A, b)).

(One might as easily define N(FIW) for a general set W and

general function F:W - E1 . Thus M(FIW) = (x c WIF(x) < F (y)

V y e W].) Then H(A, b) is the set of all x which satisfy both

the mass balance and non-negativity constraints of problem

(1.6), i.e., H(A,b) is the set of feasible compositions of

the chemical system. M(FIIH(A, b)) (written M(FI1I) if there

will be no confusion) is the set of solutions to problem

(1.6), and hence the set of equilibrium compositions of

the chemical sysLem.
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In this section we will derive a characterization of

M(FIII). The name, "Virtual Mole Fractions," arises from

the fact that in equilibrium chemistry it is convenient

to express the variables in units of "moles" and to call

the variable fractions "mole fractions." It may happen

that at equilibrium, one or more phases of a chemical

system are empty. In this case, the mole fractions of

the variables in the vanished phases are undefined; but

we will show how to define quantities to take their place,

quantities called "virtual mole fractions."

Before we can do any of the real work of this section

we must satisfy ourselves that Problem (1.6) may be solved

using Lacran-e multipliers.

Thcorecm 11.1: Assutme there exists x e H(A, b) such that
x > 0, and suppose that M(FJH(A, b)) is nonempty. Let

R = fx • Enix > 0). Then there exists wo c Em such that:

M( H( b)) a 1(x - °)O(Ax - b)IR).

Rc-.:,arR: This statement says exactly that each solution

of (1.6) must also minimize the Legrangian form

F(x) 0 (Ax - b) among all non-negative x.

Proof: From [5], Theorem 8.13, p. 368, we know that F is

convex on R. Hence, the Lagrangian is convex.

Let xO c M(FI11(A, b)) (which we assumed was noncmnpty),

and define the compact, convex set RI > Oz-0  ° K < 1i.

7,



From [6], Theorem 6, p. 478, we know that there

exists ITo c Em such that:

(1ol) F(x°) = Min [F(x) - 1°(Ax - b)].
xc RI

Suppose. F(xI ) < F(x°) for some xI e R. By choosing I > X > 0

sufficiently small we may construct y = (XxI + (I - X)xO) eg ,

which by convexity must satisfy F(y) < F(x°). Thus:

(11.2) F(x°) = Min [F(x) - r°(Ax - b)].
xcR

The result is immediate. Q.E.D.

For any x > 0 we partition the indices (1, 2, ... , n]

into two disjoint sets:

i Z. I" 0)= <j >

(j > 0).
J = j i<j> >0.

Given any vector c En, we separate it into two terms,

1 and 6j

if j c I

( = otherwise

8--8 - 0I .

With the above notation, we may use [5], Theorems

8.10 and 8.11 p. 368, and the vector notation developed

in section I to write the derivative of F at x in the

direction 0 in the following compact form:

8



(11.3) Fe(x) =e.(ci + log ) + ei.(c + log xi).

This is defined for all e admissible at x. We understand
!

that F I(x) may take on the value-•. Thus if for some

j s J we have x. 0, we see that log =-. In this
T

case, e9 > 0 implies that F6(x)

Theorem 11.2: Let x e H(A, b). Then x e M(FIH) if and

only if Fe(x) > 0 for all e admissible at x.

Proof: [5), Theorem 10.2, p. 372.

QED.

Corollary 71.3: Let x e H(A, b) and x > 0. Then x e M(FIH)

if and only if:

"(11.4) 8Q (c+log.) = 0 qi 0 3 Ae = 0.

Proof: [5], Theorem 10.3, p. 372. This also follows

in=modiately from Theorem 11.2. since x > 0 implies I is

eir~ty.

QED.

Notice that if x e H(A) b), and x > 0, the optimality

cona.dcion in Corollary 11.3 requires a knowledge only of :.i,

not of x. it is the mole fractions, not the moles that cou-It.

In the event that I is not empty, we -uld like something

to take the place of '. in (11.4). This motivates the

following definition and theorem.

9



LI

(JI.5a) ý(x) = (p c Encp.> 0, e.(c + log cp) =.O m 3 AO 0,

and yp j ~ j C 3.

Eltcaentary linear algebra shows that we may write the

equivalent definition:
(II. 5b) ý (x) = En > 0, c + log y = AT• for some r e

and 9=, j A je J.

Theorem 11.4: Assume S y c H(A, b). 9 y > 0, and let

x e H(A, b). Then x c M(FIH) if and only if

a ye ý(x) 3 ,<j> <.1 for every <j>, where 9.<> = kc~j> yk"

To prove Theorem 11.4, we will need the following

lenmma.

Lemma 11.5: Let cp e EP satisfy o > 0. Then for zny

e c e P 0,

S0 o- -log l0 og Ej=j -( •l ee Pi- j =1 k=lk

kl

p p a
Proof: Let = Z 0 W POk, W • = =LC

k=l k1 --- I

Rearranging terms in (11.6) we find it equivalent to:

(11.7) (log - log ^j) > 0.

This function of 0 is of exactly the same form as Gibbs

function, with c . -log - j. If we minimize the function

in (11.7) subject only to the constraint 0 > 0, we will be

10



solving a chemical equilibrium problem. The absence of

mass balance constraints tells us that every vector v e EP

is a reaction vector.

Let' > 0, and take the derivative in the direction

v. By (11.3) this becomes:

P
F (e) Ejl v (log - log sj)

Clearly this is non-negative for every v e EP if and only

if for each j,

ej M 'Ij.

Thus the function is minimized if and only if for some

0;>0, = acp.

But clearly 4 = implies that (11.7) is zero. Q.E.D.

Proof of Theorem 11.4: Define the Lagrangian problem P(r)

to be:

(11.8) P(r): Min G(x) = Min [F(x) - TT(Ax - b)]

s.t. x 0.

Let x° e H(Ab). By Theorem J1.1, it will be sufficient

to show that the following statements are equivalent:

(i) a Q C- (x°) 2) vl<j> <ý I V<i>

(ii) -a o 0 Em :D xo solves P(rO).
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Note that for each Tr, P(v) is just a chemical equi-

librium problem with no linear equality constraints. Thus

by Theorem 11.2, x° solves P(rrO) if and only if

(11.9) G (x0 ) = o1.(c, + log ^6) + ej.(cj + log Xcý) - G.ATrTo > 0

9o admissible at x0 .

Clearly, e is admissible at x° in this problem if

and only if ej .0 whenever x? = 0. Inumediately we see

that if x? 0 for some j c J., we can find e with a > 0,
!J

j t Ci J.

It is obvious that (11.9) cannot hold unless,

AD ToI
(•I.10) cj + log 7- AS°

If we define a vector ýp by:

(II.ll)c + log CP -- AIT,.

then clearly, since x? > 0 for j c J, E ý (x°). (See

definition (II.5b).) Substituting (II.11) into the inequality

(11.9), we find that x° solves P(TrO) if and only if:
A

(11.12) al-(log 91 - log ci) > 0 9 01>0.

Let I* be the set of compartments <j> whose indices

are in i. Then (11.12) becomes:

(11.13) E E13 0o(og 0. - log >) > 0 - _ 0.
<k>GI* jc<k> - j 3 _

12



Lemma 11.5 considered exactly such quantities as the

inner sum. Thus (11.13) holds if and only if:

- l .og- ;0 o
<k>cI- je<> e '<k> > 0 % >c 0

It is easy to see that this is true - 01 0 if and only

if

(ZZ.14) 5~c<k> !i • k *

Since j °, and 0 A 011f.eJ,

jG <k> X

(11.14) holds if and only if statement (i) above is true,

completing the proof. Q.E.D.

For each x c M(FIH), we may define a subset of (x)

as follows:

(11.15) C() - W I ý(x) < V *,<j>3.

We call •--, the set of virtual mole fractions associated

with x.

There is no reason to suppose that M(FIH) consists

of but one point. Problems exist which possess no solu-

tion, and others can be constructed which possess many.

However, whencvc,: M(F1jH) is non-empty and H(A, b) contains a

y > 0, we can prove uniqueness of a sort.

13



Theorem 11.6: Suppose a z c H(A, b) 3 z > 0. Then for

any x, y e M(FIH), ý*(x) =*(y). That is, there is a unique

set * of virtual mole fractions associated with problem (1.6).

Proof: Define the carrier of a vector x e En, x > 0 by:

c(x) =jjx. > 0)

Earlier in this section we defined a set J of indices of

variables in compartments which did not vanish, and in

the course of Theorem 11.4 argued that if x c M(FIH), then

j e J =' x. > 0. Thus for x c M(F1H), J = C(x).

Lemma 9.7, pg. 370 of [5j states that if M(FIH)

00

is non-eimpty, then there exists x° a M(FIH) such that:

C(x) E C(x°) V x G 11(FI111)

From this ind [5. Lemma 9.5: pg. 370, (which states that if

x, y e M(FiH), then whenever both are defined) we

know that for every x E M(FI H),

(11.16) x = -o V j c c(x)

Clearly, then,

(11.17) -,(x°) c V*(x) V x c M(FIH)

Suppose o e PX(x). Let e = x° - x. Let us now eval-

uate F (x). We may do this since clearly ej > 0 if xj = 0.,

and hence 0 is admissible at x. Further, x, x° C M(FIH1).

Thus:

114



(11.18) Fe(x) jC(x) "j(cj + log *i)

+ :j "(c + log 40j) O.

On the other hand, o e *(x)" tells us that:

(0).19) Co ej'(Cj + log ,pj) M 0
jec(x

Subtracting (11.18) from (11.19) we find that:

0 eOj (log epj: log .

jeC(x°)-C(x)

jeC(x)-.C(x)

The first inequality holds as an equality if and only if

e for each j, by Lemima 11.5. The second inequality

holds as an equality if and only if 1<i> m 1 for each' <J>.

That is, o e *(x) cp = ^ - j e C(x°). Hence
j

CP *(x°). Thus

(1121) O*(x) C_ (x°).

Combine (11.21) with (11.17) and the theorem is proved. Q.E.D.

We can more fully describe §* as a. consequence of the

next several results. We let:

P* (n Em I c + log cp ATr for some P e 0 3.

15



Lemma 11.7: *P* is convex.

?roof: Let x e M(FIH(A, b)) have a maximal carrier J C(x).

Then we may say that n e P* if and only if r satisfies:

AT ji Cj + log •

(11.22)

Sexp(AT-c) < for each j j J.
kc<j>

If we theL. let oj = exp(A~ n - c.) for any r satisfying
(II.2i), the vector e .

Since 'exp' is a convex function, it is clear that

the constraints (11.22) describe a convex set. Q.E.D.

Lemma 11.8: Suppose there exists y c H(A, b) such that

y > 0, and let the matrix A have full rank m. Then P*

is compact.

P27o0: P 'the set of 1T satisfying (11.22), is surely closed.

If it is not compact, it must be unbounded.

Since p* is convex, if it is to be unbounded, by [4],

Lemma 3, there must exist a ray + :f 0 such that for any

T c 1P*, v + t•7 c P* for every t > 0. Clearly (11.22) implies

that 7? must satisfy:

AT =Q 0 if j e J

(11.23)

AT < 0 if j j J

16



Let x c M(FjH) as in Lemma 11.7, and let y e H(A, b)

satisfy y > 0. If e = y-x, then clearly ej > 0 if j 1i J.

Further, since x and y e H(A, b), Ae = 0.. Thus, by (11.23),

(11.24), ET~l T j 1=0

Again by (11.23), since e > 0 and AT < 0 if j • J. we must

have ATn - 0 if j I J. Hence,

(11.25) ATN . 0.

Since A has full row rank m, (11.25) impli4's-*sr .i• [
(11.26) 0.

Thus P* is bounded. Since it is closed as well, P* is

compact. Q.E.D.

Corollary 11.9: Q* = (a . En I a = ATn for some n e'P*]

is compact if there exists y e H(A. b) satisfying y > 0.

That is, Q* is compact whatever the rank of A.

Proof: Let A have rank r < m, and let B be an m X m non-

singular matrix such that BTA ( where W is an r x n

matrix of rank r, and "0" denotes the (m - r) x n matrix

consisting entirely of zeros. Let(0T= B b. Clearly,

M(FIH(A, b)) - M(F(H(X, S)).

Define •. to be the set of r-vectors n such that:



C + log X

E xp(W,7 Cj ) Vjj

ke<j> ep cCk )~ kjJ

Clearly,' W e V* if and only if for some arbitrary (m - r)-

vector y, B( r e P*.

Let:

(a e En[= = Tfor some ? e 14).

By Lemma 11.8, P* is compact. As the range of a con-

tinuous (in fact linear) function whose domain is compact,

surely Z* is compact. But it is easy to see that Q*

Q.E.D.

Theorem I1.10: @* is compact if there exists y e H(A, b)

satisfying y > 0.

Proof: wc T ,* if and only if oi = exp(a. - c.) for some

a e Q*. Since ý* is the range of a continuous function

whose domain Q* is compact, ý* must itself be compact.

Q.E.D.

It is not true that •.* is a convex set in general.

We defined -* in such a way that for any compartment

<j> which need not be empty at equilibrium (i.e., such

that for some x c M(FIJi), 2<j> > 0), 1= 1 for every

g z *, and further, any gi, 2 9 2 . agree in compartment

<j>. The next result extends this idea slightly. It will

prove important later.

3-8



Lemma 11.l1: Suppose for every e T •*, I for a par-

ticular <j>. 4Then for eaach k e <J>, and every 9L Cz

gk-

Proof: Suppose e, ý * , and for some k e <J>.

Let vi., TT2 6 P*, be such that:

i = exp(AT i._c) i 1, 2.

Since P* is convex (Lemma 11.7), ? T 1 + - is an element
2

of PP. Let:

y exp(AT7? - c).

Clearly, then,

7<J> ke<j> k k

But for any a., b > 0, a # b, it is well known that:

(ab) 2 < a + b

Thus, since for some k e <j>, l + §k, we have:k 2
k2)1 k k/ QED.

Y<J> kcj> Kk <k<j>'.. iE



III: Overcoming Degeneracy With Slacks

Although we now know how to recognize whether a comr-

position x is a solution to problem (1.6) we still face

several difficulties in trying to solve the problem. One

of them is constructing the vector which satisfies the

assumption made throughout the previous section, that there

exists a vector x e H(A, b) such that x > 0. This is discussed

in [7].

Other difficulties concern degcneracy. It iMay be,

for example, that the solution set o(F:I:. of a particular

problem contains more than one vector x. Or it may bo that

for some x c M(FIII), at least one phase i'. c(.2pty. To cope

with this last difficulty, w:e have construce;d L-he . laborate

theory of Section Ii. This chapter develops from that theory a

method that avoids both of these difficulties.

I. Slacks: G'ýn--ral iowrr

Ve iay insure in io: ' cases that the problem we ac-

tually . ':il! have a unique, strictly positive solution

by addin; on c•::tra variable to each compartment. These

extra v.riales are called slacks. With them, the problem

becces:

I



( ~X.S
Mi Ex.1 c +og + S J o ý~(C3<J> + s-j> <j> s3> <j> + s<j>)

(1I1.l.1) s.t. Ax'= b

S<J> 8<i>> 0

x 0

The mole fractions are of course, changed by the addition

of slacks. Thus in (IIi.I.1)

x. ^ S<J>(iil.l.2) ••c. = ------ ; s.>
3ý<j> + s<j> <, <j> + s<j>

where x<j> is as it was before.

Notice that this method of handling degeneracy does

not require that the problem actually be expanded. Instead,

we may treat the slacks implicitly, choosing a small pos-

itive a<k> for each compartment <k> and solving:

Mmin Z x.(c. + log •j) + E log 8'kn <j> lo> 8<j>.

(111.I.3) s.t. Ax = b

x>0

AA

To compute Xi and 8<j> in (111.1.3) we have substituted
,<j> for S<j> wherever the latter occured in (111.1.2).

We define:

21



(111.1.4) F(x) F x.(c. + log 8<) + j>E log

where e is the vector whose components are the e<j>.

Theorem III.1.1: Assume there exists y c H(A, b) satisfy-

ing y > 0. For each e > 0, let M(FJIH(A, b)) be nonempty.

Then it contains exactly one point x(e), and that point is

a strictly positive vector.

Froof: Suppose M(FgIH) is non-empty. Looking to (III.1.1)

we see that by adding slacks to the problem, we have in-

sured that the sum of variables, including the slacks, for

each phase, must be strictly positive (in fact it can be

no smaller than a .>> 0). Thus the set J (of indices in

non-vanishing compartments) must always include every index

J.

But we know fro-, Theorem 11.4 that the solution must

be strictly positive for each index in J. Hence every

x c M I(FsIH) is strictly positive.

Lemma 9.5, p. 370, of [51 states that if

*x, y a M(F~Ai), then since x, y > 0:

j j • , 2, ... , n

where x^ and •j are defined according to equation (111.1.2).
J Yj

In particular:

J> + e<> +
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Thus •<j> : y<j>. Simple algebra shows from this that

x=y. QED.

Theorem 111.1.2: Assume there exists y e H(A, b) such that

y > 0. For each e > 0, M(F8 IH) is non-empty if and only

if M(FIH) (the solution set of the problem unperturbed by

slacks) is bounded and non-empty.

Proof: (=) Suppose M(FIH) is empty or unbounded. Then

[4], Theorems 2, 4 and 5, state that there must be a non-

zero vector e . En satisfying:

F(e) < 0

(III. .5) Ae - 0

0 > 0, and e'+ 0.

Choose any y c H(A, b) such that y > 0. (We know from

the previous Theorem II.I..1 that only such y are candidates

for a solrution to the perturbed problems.) Then:

F(y + to) < F(y) + tF(O)

by the convexity and homogeneity of F. Thus

(111.1.6) F (y) = lIm F(y + t) - F(y)i' t F(O) < 0

From equation (11.3) we may compute the directional

derivative of F8 at y in the direction n to be:

(1.1.7) 0im d (y + to) = F (y) + F 16<j.log
t-00 F y F0(> + < >



Since e > 0, each of the sums @<j> is nonnegative. Because

e + 0, for at least one <j> we must have -<,> > 0. For
every <J>, the fact that "<j> > 0 insures that:

(111.1.8) log - y-< - < log I = 0.

y<j> + >

Combining (VI.I.6-8) we find that:

( . ) d Fe(y + to) < 0.
t-0+

Thus by Theorem 11.2, y 4 M(FIH). Since y > 0 was arbitrary,

and since y c M(FIH) implies y > 0, we know M(FjH) is empty.

(=) If M(FgIH) is empty, then by [4], Theorems 2, 4 and 5,

there must exist a vector e satisfying (111.1.5). This

in turn implies, by [4] Theorems 4 and 5, that M(FIH) is

either unbounded or empty. Q.E.D.

We will assume throughout the remainder of this chapter

that M(FIH) is bounded and lionempty. In addition we will

suppose that there exists y c H(A, b) satisfying y > 0.

This will save us from including these assumptions in the

hypotheses of each theorem.

Theorem 111.1.3: For each vector a > 0, let M(FP1L1(A, b))

=Ix(s)). Then x(p) and x(e) are continuous functions of

e>0.
Note: This statement is equivalent to saying that x(S)

solves (III.I..). By the previous two theorems, x(f) is a

positive, single-valued vector function of the vcctor e.
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Proof: Since x(e) > 0, XA(e) is well defined and continuous

if x(e) is continuous. To see that x(e) is continuous, C

see [8], Cor. 1.2.4, p. 528. QED.

It is our purpose in this section to show that the

continuity of x(e) and X^(e) extend in some sense to e = 0,

which characterizes the original problem, (1.6). That

is, we wish to show that if each component of e is chosen

sufficiently small, then the solution x(e) will be as close

as desired to some solution of the original problem, and

q(g) will approximate a vector of virtual mole fractions.

Lcmma 111.1.4: Let f0 3 be a sequence satisfying ak > 0 -Yk

and gk _ 0. Then there exists an infinite subsequence

S of (1, 2, ... ) such that x° = lim x(81) exists, and forkcS
each such subsequence,

(ii. i.i0) x° 0 M(FIH(A, b)).

Proof: [8], Corollary 11.3.1, p. 545, and Theorem 1.2.2,

p. 526; and Theorems 111.1.1-2 above. Q.E.D.

kk
Ther T-11.1'.5: Let (P-k) be as in Lcmm-ia 111.1.4. Then there

exists a subsequence S of (1, 2, ... ) such that =lim u (k)
kc S

exists, and for each such - we have that:
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.k1
Proof: Since for every j and k, 0 < •.(ek) < 1, we can

find a subsequence S of (1, 2, ... ) so that g = lim R^(ek)
keS

exists.

By*Lemma 111.1.4, we may find a subsequence S' of S

such that x° = lim x(Sk) exists, and x° e M(FIH).
kkeS' kSince x(e ) E M(FJH), and since x(e ) > 0 for each

k (making every reaction vector admissible at x( 8 k)), we

know that for each o satisfying AG = 0, we must have

0.(c + log ^(ek)) - 0. Taking the limit of this expression

as k e S' becomes infinite, we find:

(111.1.12) o.(c + log ) 0 'e 3 Ae = 0.

Clearly, for each phase <j>,

(111.1.13) T<j> = lim, ( Z j (e&k)) < i.

kcS' >

It is easy to show that for each j such that A is

defined,

and that for every j,

(111.1.15) > 0.

By (111.1.12-15), and Theorem 11.6,

Q.E.D.



2. Slacks: Special Form

The mo.st natural sequences (ek] one may conýsider ate

those which take the form,

(111.2.1) ek = tka

where a is a constant veccor with one strictly positive

element corresponding to each compartment and (tk] is a

sequence of positive real numbers whose limit is zero.

In this section we will explore the properties of the

sequence of solutions [;,(ek)) to problem (111.1.3), where

pk takes the form of (111.2.1).

We shall change our notation somewhat. Instead of

writing F,(x), we will write F(x; t), where:

I, X.
(111.2.2) F(x; t> + log

+ E log < j><j> tj> x<j> + ta <j>

The sums x do not include the slacks, ta<j>. Also,
in writing F(x; t) we understand that the vector a Will

be constant, and so do not mention it. In the same way,

we will replace x(ta) by x(t), leaving the constant vector

a out.

We shall show that R(t) approaches a limit as t - 01

and we shall identify the limit. We shall attempt to do

the same for x(t), but, as the reader will see, we fall

somewhat short of complete success.
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Take A(t) first. Define the sets:

In addition it will be convenient to define the related

sets:

J* = (<j>J4 C J) = [<j>IT<j> = Y§

I*= (<J>lj C I) = (<j>V *

We know that for j c J, X.(t) must converge as t - 0,.

since it is bounded, since by Theorem 111.1.5 every limit

point of k(t) must be an element of X*-, and since by Lemma

II.11, there is for j e J only one possible value for

if § 6 -.

For each j, define a function of u as follows:

(111.2.3) (TT) = exp(A'rr - c.)(1112.3 3 3

We know from Theorem I1.4, and definitions (II.5b) and (11.15)

that if Tr(t) is the vector of Lagrange multipliers cor-

responding to the solution x(t), then i.(t) = F(()3 t

Substituting for xi.(t) from equation (111.1.2), we may solve3

for the quantities xj (t), I < j < 9? in terms of the quantities

S(iM(t)), I < j < n and the slacks tr<j>. The result is

just:

8t <J>§i (n(t)

I - .Z<j>(T(t))

P.8



Suppose that x° e M(FIH). Then we know that:

(111.2.5) Z Ax(t) E- A (xj(t) - x).

jeI jxj JeJ

Substituting (111.2.4) into (III.2.5) for j e I we find that:

(111.2.6) Zta >Ai(Tr ( t)) E. A.(x.(t) - x).

j CIJI - -ý<j>(OT(t) ) jeJ 3

A simple computation from (111.2.3) shows that if:

8t(n) <jE lt<j> log (1- (

then:

ta<. jA.•. (n)
(111.2.7) ,--j>. 3 .j = vgt(r).

jel (1 - T-j>(rr))

By (111.2.7). equation (111.2.6) is the optimality condi-

tion for the problem:

Min gt(7)
(111.2.8) s, t. A• C + log X•j(t).

That is, if we knew for any fixed t the values of XYO.t

then r7(t) would be a solution of (111.2.8).

Leivma 111.2.1: If the matrix A has full rank m. then (111.2.8)

possesses a unique solution r,(t).

Proof: We know that (111.2.8) is feasible. That is ,r(t)

satisfies AT, (t) =c-. + log xj(t).
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For t > 0, we may compute the matrix of second partial

derivatives of g. This becomes,
".AT A AT

2 ta> .1
(111.2.9) vg(n) 

+ E +

jel (I - T<j>) <j>lo* (1 -

where > E Ak" Clearly V2gt(Tr) is a positive
' kc<j>

semidefinite matrix for all v such that <j> (r) < 1, j • I,

so that g(r) is convex on P*.

Further, for any v e Em

(111.2.10) vT(v 2 gt( ))v = 0 T

vAiv = 0.

To see that (111.2.10) is true, let Y be a diagonal

matrix with as many columns as there are indices in I. The
ta -§.

jjh component of Y shall be yj = -: <1-1- > 0. Then theI The h>

first term of (111.2.9) becomes A!YAI; by elementary linear

aaebra one may show that AkiTv= 0 if and only if ATv = 0.

A similar comment applies to the second term of (111.2.9).

If there are two solutions Wl and T 2 to (111.2.8) they must

differ by such a v. Further, since each solution satisfies

the constraints, l - r2 = v must also satisfy Ajv = 0.

Hence Av = 0. Since A has full rank m. v = 0, so the solu-

tion rr(t) of (111.2.8) is unique. Q.E.D.

Next we wish to establish that X(t) must approach a

limit as t 0. We will again assume that A has full rank

m.
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Theorem 111.2.2: 9 lir r (t) exists, and 9 =(Tr*), where
t-0

Tt* is the unique solution to:

(111.2.11) Min [E.. a<.. log (1 (T)

s.t. AT= cn + log 9.

(gj = limn Xj(t), which we know exists.)
t-•0

In particular T<j> < I for each <j> e I*.

Proof: For each t > 0, TT(t) must satisfy:

(111.2.12) Min [ZCa<> log (I- -<j '(T)

s.t. ATj = cj + log ^j(t).

This is just (111.2.8) where we have divided the objective

function gt(r) by t.

We !mow that 9. (t) is continuous for j c J. and is

bounded away from zero. Thus the right-hand side

(cJ + log kJ(t)) of the constraint set of (111.2.12) is

continuous at t 0.

Furthermore at t = 0, problem (111.2.12) has a unique

solution by Leimia 111.2.1. Thus by [8], Corollary 11.3.1

and Theorem 1.3.2, wo know that the solution i.(t) to

(III,2.12) is continuous at t = 0; hence X^(t) is continuous

at zero, and limr (t) must satisfy (111.2.11). Q.E.D.
t-0

Next we w:Ish to work on -,(t) itself. As we stated

caril.Ur, we have been utnable to pxove that x(t) approaches



a limit as t ' 0. For the reasons that folloq, we conjecture

that x(t) does have a limit.

Let 9 e * be the limit of I(t) as described in Theorem

111.2.2. By E5], Lemma 9.7, p. 370, we know there exists

ye 1M(FIH) such that for every compartment <j>, 70 0

implies that R<,> = 0 for each x e M(FIH). We define the

index sets:

SjlT<l> < ; K* = t<j>Ij E]
J = ji-Y<°j > 0) J* = [<J>lJ G J)

K ( j J Jl:•-<j> 1)] K * = (<j > Ij c K)

Lemma 111.2.3: Let M(FIH) be bounded and nonempty, and

suppose there exists y a H(A, b) such that y > 0. Then

there exists a unique solution x* to the problem:

'(1ii.2.13) Min g(x) = Min, I a<lo> lg

s.t. x r M(FIH)

Further, for each j e J, x7* > 0.

Proof: From [5], Theorem 9.5, p. 370, we can write M(FIH(A, b))

ts the set of solutions to a system of linear equations together

with nonnegativity constraints. Let yo c M(FI1I) satisfy

Y? > 0 for each j c J, and define:

(111.2.14) E Ak(% j J J.<> kc <j> ky

Then x c M(FIH) if and only if:
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(a) x^ y for every j e such that x<j> > 0,

(111.2.15) (b) x. = 0 for j V J

(c) E • = b, > 0.<j>eiýJ>.<3> <J>

If we find any solution K to (III.2.15c) we may reconstruct

a unique element x of M(FIH(A, b)) by using (i11.2.15a-b).

Further, that element x will satisfy, x > 0 for each j c J

if and only if x<j> > 0 for every j e J.

Thus (111.2.13) is equivalent to solving:

(111.2.16) Min g(x) = Min (-Ea<j> log 'R

s.t. Z R b
<j>C j,-X><J>

,<j>

It is easy to see that g(x), as a fuiiction oi the R'zs,

is strictly convex. Since the constraLnt set is bouaded

(i.e., M(FIH) is bounded), (111.2.16) has i .... solu-

tion. Since there exists a positive feasible solution,

and since g(x) is infinite if some xj> 0, j E J, It

is clear that the solution x• to (111.2.16) is positive on

J. Q.E.D.

We conjecture that x(t) has a limit as t - 0, and

that lim x(t) = x*.
t-0



By definition, x(t) is the u'niquce Ant in M(F( . , t) IH).

Thus, x(t) is also a solution (though not necessarily the

unique solution) to:
(111.2.17)

Min G(y, t) = Min E yj(cj + log-- + log •<j>(t) +IUK y~>•j(t) + ta~j
y<j> :<><>

+ yj (c + log yj - t !og(<log(7<j> + t'7<j>r <j>GJ* 7<21 + tG<j>)

s.t. y e H(A., b).

It is easy to see that G(y, t) is convex for fixed t, though

it is not necessarily strictly convex; and surely x(t) sat-

isfies the condition that:
r

BG(x(tQ, t) = c. + log Rj(t) = A TT(t)-- yj j (

We separate G(y, t) into two parts. Let:

(IYI.2.13a) g(y, t, 0) = Z yj (cj + log --Y-)Y<j>/

+ ýz 7> log<J>C!"xyj x<j> + t"<j>

(Iii. 2.18b) h(y, t, 0) = f[G(y, t) - g(y, t, n)].

If we then define the set:

(111.2.19) S ( y) fy I8 g(y, t, P) < g(x(t), t, P))
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then it is obvious that for any t > b,

(IMI2.20) y s S (t) =* h(y,. t,)'• h(r,(t); ti

Equivalently we may write:

(111.2.21) x(t) c 'H(h(-, 't, I) Sow')i

Lemma 111.2.4: Let M(F(', 0) jH) be bounded and nonempty.-

Then for any 0 < • < 1, M(F(., 0) fiH) c S (t), for all t > 0

sufficiently small.

PrcoF: Note that g(y, t, P) is convex in y for fixed t

And •. Let x% c M(F(., 0)1H).

Notice rhat g(y, t, P) is a Gibbs function with each

j, .Lor j s 1, r!od.ifid to:
t 4 l g>(t); j

+ log c +

Let f, lim •(t): as in Theorem IT1.2.2. We know that
c-h0

{ .+'. If we replace ca by d i for every j c I whete:

di c. + log k,. j > I

and log k<,:, log j, then clearly t defined by -TJ

is an elemnrent of the new z-*, so that x is a solution• to

the- perturbed problem.

But for given P < i, we can always pick

r > 0 sufficiently small so that for 0 < t < t ,
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Thus xoc0  S s(t) f or 0. < t < tpv Since S(x,. t ~)is, coir-

stant on M(F(., O)j H),

Q.EE'D.

The next item we must study is the function h(y, t,P)

This we deal. with in two lebmias.

Lemma 111.2.5: Let xO e 14(F(., 0) JH) be' fixed. Then

(I > og-0 -E a if C(x") Jý

t-,0 a<> log <i <J:C> J

0'0

P ro of: S'Inc 6 x e 14(FQ 0) If), X? 0 if j e I U K.

Thus f rom (111. 2.17) and (111. 2.18b),

1 -0
1jeJ X <t>

-ZEj a j.1og(08.(A <+ to<3).

Suppose for some j e J, K.Oj 0. Then:

"0-

X og log 0 by def inition, for all t > 0
"J> + to
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A>

and: o lo+ taj - ýj log ,.<j>st 4ýO.we that:

On the other hand, if x- > 0, we see that:

Ro•i x to
<i> <+oa<j>. <j - >

Alsoo

-<J> xlog(i> + to<j>) -O<i> log x

Thus the lemna is proved. QED.

Lemnea 111.2.6: Let [tin be a sequence satisfying tn > 0

for every n, t. 0 and x(tn) y9 e M(FIH{) as ni

Let hn - h(x(tn), tn, n). Then if the carrier C(y) J

lim hn m . Otherwise (i.e., if C(y°) - J)
n-.

lim hn (1- E)Z:~j• log E a>J

n- -<-j> . -<> 1J>CK*UJ*

Proof: From equation (111. 2.4.) if j eI.,

(111.2.22) lit j>(t) ,>og 09() " '> l "

IC'
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If J c J U Ki,t re-see that:

*•+ t 2<j>tiogý' <<J> ,, ~ ,•, 0
lj .... -" > + t'<a <J"ýJ

Multiplying by7 and taking the limit as n -.

clearly the error term vanishes. We are left with:,

(tA

n' im• njtJ ~> (tn) <j>

= .-O<j> (i J U K).

The remaining term is easy.

(111.2.24) -lim E a,.. log (I>(t) + a• n-co <3>ej-V•>tn<>

, a> log •o<j> i yf .qyo) j

"if C(yO) CJ.+
Putting Equations (111.2.22-24) and (III.2.18b) together,

yield the result we wish. QED.

These last three lemmas enable us to prove the following

theorem.

Theorem 111.2.7: Let M(F(., 0) 11) be boundedi Let (tn) be

such that t > a for each n, t -. 0 as n-., and x(tn
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O kM(F('. 0)1H) as n - -, Then:

0log

<j<J>

Proof: For sufficiently large n (i.e., sufficiently small

t > 0), Lemma II.2.4 tells'us that

x* S(t)

since x* e M(F(., O)IH). Thus for n sufficiently large,

we have by (111.2.20) that:

(111.2.25) h(x*, tn, P) > h(X(tn). tin' ).

Thus, taking limits as n - of both sides of (111.2.25)

we find that Lemmas VI.2.5-6 imply:
S '°.

a<i><> log
(111.2.26) - E a<> log R*< >> (I- P) <-!jI*

.5j>eJ* JjeI

<*J> log

Clearly, since the left-hand side of' (II.2.26) is finite,

the right-hand side cannot be •; hence, C(y 0 ) - J, by Lemma

111.2.6.

SFurther, by Lemma 111.2.4, Equation (111.2.26), is true

for every • < 1. Thus letting 8 = (1 - P) > 0 be as small

as we wish, we see that, as the theorem says,
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!(II.2.27) 0 .- E "a . log <-o a-<J>J*€3• :x, <j> <j >eK*<j

The left -hand inequality is -a. consequence of Lemma Ill.2.3,

since y?'.e M(F{-, 0)IH). QED.

The important corollaries of Theorem 111.2.7 are as

follows.

Corollary 111.2.8: If yo c M(F(., 0) JH)'is a limit point of

x(t) as t -0, then C(yO) . J.

Proof: Immediate.

Corollary 111.2.9: If K is empty (i.e., if for ever-yj J,

< 1), then x(t) has a limit x* as t 0.

Proof: If K is empty then the upper limit on
-E a <J> log

is zero. Thus:

-E a log --. E a log<>j<D> <j° 2 - < j>*<j>
<j>cJ*X.

By Lenna 111.2.3, since x* uniquely solves (111.2.13>

we must have yO = x*, for each limit poiht yO of x(t).

hQED.
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We conjecture that regardless of whether K iS empty,
x(t)" has a limit, and lim x(t) - x-w. The reasons support-'t-0
ing this. conjecture are three. First, every example we
have tried leads us to the limit x*. Second, we have the

following result.

Lemma 111.2.10: Let every compartment <J> satisfying j e J
be identical to every other. That is, if ji and j 2 are
any two indices in J, with <j 1 > a <J2>, then for every
kl e <jl>, there is &a e <j 2 > such that columns k and
k2 of the 'matrix A are identical, and - ck2. In-this

20case x(t) - x*.

Proof: Clearly,

(111.2.28) ck + log A t) ( A rr(t) -ck + log •k (t)

at the equilibrium solution, since Ak - 2Ak Thus:
1 2

-(II1.2'.29) Xk (t) Xk (t)
1 2

Summing over all kI e <jl> and k <j 2>, and perform-
ing some simple manipulations, we.find that there exists
a numb-C kt) for each t > 0 such that:

( I 1 .2 .3 0 ) • x- > ( < D -'I ,<.
"V<J t + tor<J>

If we let:
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Atýj>()-• kt),. .
kk<j>

S~ (11.2.31!)
b(t) Eb A- x A (t).

keIUK :

we noti-,e.: that by (111.2.29), each P<.>(t),, for <j> ,

is identical to every otl-nr, and- that since:

we ,see that b(t) must be a multiple of <j>(t). Let

-b(t) k(t) (t). Then Equation (111.2.32) is equivalent

Li to:

'(111. 2.33) (K<j>Kt) + taj>) k(t).

Equations (II 2i-3 0). say ,that x(t) solves the problem:

Min - a log( + t<><j><j j.×<j>J

(TIl. 2.34) s.t. E (R<j> + ta<,>) k(t)

x C 1HI(A, b)

Since (111.2.32) and (111.2.33) are equivalent, problem

(111.2.34) is the same as minimizing the same function sub-

ject to x c H(A, b) and x satisfying (111.2.32) in place

of (111.2.33).
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But =cj(:t) Is continuous at t 0, so fhat,•,.(t)
Is-c'tohtinuous at t 0 0, and x1 UK(t) teind to zero at t oil,

D :so that b(t) is continuous and tends •to b at t • 0. Thus,

in the limit as t - 0, problem (111.2.34) is eequivalent to'the problem that ,defines x-%, i.e., .problem (1,2.16). Thus

by .[8], Corollary I-.3.1 and Theorem 1.3.?,

liimx(t): x*.
Qt--0

The third bit of evidence supporting the corjn-vctare
A is that in :two senses, a problem with a non-empty set of

indices K is the limit of a sequence of problems with K

empty.

,Lemma III.2.11: Let

A

q•K
where g 6 ý. (By Lemma II.11, every c . is the same

for indices j F K.) Let:

H6 =xjAx b + 6PK" x> 0].

Then

lim+ M(FIH 6) M(FIH)

'Note 1: The limit of a set is as defined in [8].
"Note 2: The effect of this perturbation is to move each
index originally in K to J. j

W.

'4.



ýroqf: Notice that this perturbation allows us to con- •

struct a solution x to the problem from any solution

c M(FjI-j(A, b)) by

if j e J

xj= 0 ifj I

{6j if j K

[y' p5]) Theorem 9.5, p. 370- we know that any element of

M(FIH6) must be quasidependent on this solution x. That

is, we have for' the perturbed problem the same 6* as for

tfi A original.

But we argued in Lemma 111.2.3 that we could write a

set of linear constraints describing M(FIH(A, b)); and

we'may do the same for M(FIH6 )'. Thus x c M(F I H6) if and

only if the sums x<j> (for j c J U K) satisfy,

(111.2.35) Z-j,~ > =b + 8 I
<j >C JU-.Vu <I-<a> +6

x. >0<j>

'L > -.

where

1%< j> : j> Akgk .
k<j> A;

But by [8]. Corollary 11.3.1, the limit of the sot

of x satisfying (111.2.35) is exactly the set satisfying:



(111.2.36) b

Sx-< > 0 '1<j> .

However, (111.2.36) implies ;that x <j>= whenever

j e K; for if not, then there would be an x e M(FIH(A, b))

such that x. >0 for j e K, contradicting the definition

of K.' Thus (Ill. 2.36)-describes M(FIH(A, b)), and:

lim M(FIH.) = M(FIH(A, b))

QED.,

It would be easy but pointless to prove that if k19

solved:

oMin f- a <j> log 3<j>

ý<j >c J*'UK*

s.t. E 3<j>x<j> =b + 6 K

<j > J''UK'

x~> 0 j J U K,

then lim+ x-M x*. where x* is defined in Lemma 111.2.3.6--40
There is a second way we can perturb the problem so

that it satisfies the condition that K be empty. This

is by changing the c values.
4..

:I

'1



Lemma I11 2.12: Define new values for the cjs as follows:

c. if j CI UJ
j,- j+ g•if j C K-

for some small e 0.

For the new problem let the objective be:

'(111.2.37) F(x) - E Xj(jj + log Xij)

= F(x) + a x.

Then:

(111.2.38) M(TIH) M(FIH), for each a > 0,

and if .4is the set of virtual mole fractions associated

with the perturbed problem, there exists §(8) e 4 such

that:

(111.2.39) •<j>(C) < I -Y j c I U K.

Note: The effect of this perturbation is to move each j,

originally in K to I.

Proof: To show (111.2.38) we note from (111.2.37) that since

x> 0,

T(x= F(x) + E • x. > F(x),
jCK -

with equality if x c M(F IH) (since then x. = 0 if j 1 K).
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Thus:

IM(1H) M(FI).

I To show (111.2.39), pick any g e •* (the set of virtual

mole fractions associated with the unperturbed problem)

satisfying:

1j> 1 for j e I.

Let ý(8) be defined by:

if j cI U J

e-7 if j e-K.

Clearly, for j e K,

9 <j>8) e -<1.

It is trivial to check that §(8) c •. QED. {
Again. it would be easy but pointless to prove that

lrn. x(t) is continuous as a function of the,. erturbation
t-.o
a at 8. 0. (The reader is refered to Theorem III.2:2.

Notice the similarity between this problem and that of prov-

ing x X- x, mentioned imrncdiately before Lemma 111.2.12.)

Experience has led the author to believe that the

solution of the chemical equilibrium problem is continuous

in nearly every conceivable perturbation, as one would

expect of a physical system. Unfortunately a proof of the

general statement that x(t) x* as t - 0 has been elusive.

1i7
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