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CHEMISTRY, KINETICS AND THERMODYNAMICS

James H. Bigelow*

The Rand Corporation, Santa Monica, California

I. INTRODUCTION

In this paper, the first of a series of three**, we will

discuss the equivalence of three ways of viewing the classi-

cal chemical equilibrium problem. From the point of view

of classical chemistry, this problem can be stated as follows:

Given the set of reactions that may occur among all the

species of a chemical system, their equilibrium constants,

and the initial composition of the system (i.e. the amounts

of each species present in the system initially), find the

equilibrium composition of the system.

From the point of view of kinetics, the problem is to

determine the evolution of the various parameters describing

the system from their initial values. When the parameters

cease to change, the system must be in equilibrium.

"Any views expressed in this paper are those of the
author. They should not be interpreted as reflecting the
views of The Rand Corporation or the official opinion or
policy of any of its governmental or private research sponsors.
Papors arc reproduced by The Rand Corporation as a courtesy
to members of its staff.

*-The other two papers are, in ordcr, "Degeneracy in
Ideal Chomical Equilibrium Probloins," and "Computing Equtilib-
rium Compositions of Idcail Chcmi:Hal Sy, ,.Lms."
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Given the same system, thcrmodynamics seeks that

composition at which the usable (or free) energy remaining

in the system is at a minimum. It can be shown that the

system will then be at equilibrium.

Much of the materiel contained herein is old. It is

presented here in a consistent notation, and in a way

intended to emphasize the common aspects of the three points

of view.



II. CLASSICAL CHEMTST11Y

Classically, the composition of a single- or multi-

phase chemical system in equilibrium has been computationally

determined by solving certain systems of simultaneous equa-

tions. These equations included linear equations (mass

balance laws) as well as nonlinear equations (mass action

laws). It is possible, however, to formulate the problem

as one of minimizing a particular nonlinear function (the

free energy) subject to linear constraints. This was first

done by J. Willard Gibbs (1), in his famous paper "On the

Equilibrium of Heterogeneous Substances." It was later

shown in a different way, and the equivalence proved with

greater mathematical rigor by Shapiro and Shapley [2].

This sectio-ii restates the first part of Shapiro and Shapley.

1. The Chermical Syst cm

We will consider chomical systems composed of a finite

number (not excluding one) of homogeneous phases. A ho-

mogencous phase is a mixture of chemical species which

is homogeneous in chemicol, composition, pressure, and

temperature. The question of under what circumstances

a phase should be regarded as homogeneous can only be

answered as part of the process by which we formulate a

model of an actual chemical system.

For e:ample, a chemical system consisting of a vapor

over a liquid solution inwght be regarded as having two

phases, a gas pa•ia;e and a liquid pha;c. A chemical system



consisting of two solutions separated by a semipermeable

membrane might be regarded as having two liquid phases.

All this model requires of a phase is homogeneity. A

phase ne,.,d not, for example, occupy contiguous portions of

space. Thus in [3], the interiors of all the red blood cells

of the body are usefully regarded as forming a single phase.

The entities in a phase are called species, by which

we mean molecular species. Examples of species are 1120,

NaCl, Na+. When a species is defined, its molecular or

ionic structure is implied, as well a- the number of atoms

of each element composing a molecule of the species. Thus

the molecular formulas of two distinct species might be

identical. (An example of this would be right-handed and

left-4anded amino acids.) Also, we will find it mathemat-

ically convenient to regard a species which can occur in

two different phases as two different species. Thus if

1120 can occur in both a liquid phase and a gaseous phase,

we would refer to two different species H20, perhaps calling

them H2 0 liquid, and H2 0-vapor. When a molecule m6ves from

one phase to another (by evaporation, conrdnsation, migra-

tion across a semipermeable membrane, or black magic) we

will regard a type of chemical reaction as having occurred.

By saying that a spc~cies can occur in a given phase,

we do not mean that at equilibrium any positive amount of

that species will be found in the phase. We only mean

that we have made provisit.i for tlic possibility. The



qurs5tic1 of which species should be provided for in what

phas,;es can only be answered by judgment and experience,

and by some knowledge of the system under study.

It should be pointed out that if a phase is a chemical

solution, then the solvent itself is one of the species

occurring in that phase.

We number the species in the chemical system 1, 2,

n. Let x be the number of moles of species j in the

system. (By definition, a mole is Avogadro's number of

molecules, approximately 6 x 102 3.) We denote the phase

containing species j by <J>, and we may indicate that

species j and k are in the same phase by writing:

j C <k>, or k C <j> or <j> - <k>.

Each phase hz.s associated with it a sum,

(*. .l)×<k> ' ,
jc<C> Xj.

Each species hms associated with it a mole fraction,

(11.1.2) A: . x/<j.

It is casy to see that R is the concentration (on

the mole fraction scale) of species j when the system has

conlp"I.tion x •.(xl, x2, ... ,n)



2. The Mass Dalan'-. Laws

Following ['1, we w:tll express the mass balance laws

as linear conditions on x. Let B1, ... s Bi, ... , Bm be

a set of fundamental building blocks, such that each species

j is a unique combination of these building blocks.

For example, Bl, ... , Bi ... , Bm might be taken to

be the atomic elements. However, it is often better to

choose more complex structures as building blocks. (See

[4] and [5].) Let each molecule of species j contain aij

units of Bi. Thus, the vector (alj, a 2 jO .... amj) is

essentially' the molecular formula for species J. Note

there is nothing to prevent two different species from

having identical molecular formulas. Let bi be the total

number of units of Bi in the system. We then have the

conditions:

n(11.2.1) z a x i
Jsi aijxi bi.

The description of thosc• aspects of the sys'tem'con-

cerned with such questions as which species are permeable
to interphaso boundaries can be implemented by an appro-

priate extension of the set of fundamental building blocks.

This process has been described elsewhere [4]. In addi-

tion, it may be desirable to impose a condition of elec-

trical neutrality on one or more phases. This too may be

expressed in thc. form of (11.2.1) ([2] p. 357). Other

6



constraints, such as those on the volume of a particular

phase, can 'be similarly handled.

Finally, from the definition of xj it is clear that

ve must have

(T.L2.2) > 0



3. Reaction Vectors and the-Stoichiometric Conditions

In equilibrium chemistry, a reaction is described

i-by writing two formal sums separated by a dquble arrow.

If we denote by N. the' name or chemical symbol of species-

j, then a reaction would be described by thp "equation"

(11.31)E r. N. ZŽ p. N.

Each of the terms in (11.3.1) consists formally of a- posi-

tive Xa,'• number, rj or pj, called a stoichiometric coef-ý-

fic•t-'-t, multiplied by the symbol for some chemical species

of 'the system. The species occurring in the left-hand

formal sum with a positiiýe coeefficient r are called.

reactants; the spccies occurring in the right-hand fo'mal

sum with a positive coefficient pj are called products..

The two fora! soa sl separated- by a& -double. arrow -fdtnie Ld

stoichiome:tric ecquation• of the reaction. Note that math.-

ematically speaking, the stoichiometric equation is not

an equation at all, unless the N. are interpreted •is vectors.

We can nvmasure the extent to which the reaction (11.3.1)

takes place by an extent of reaction parameter 9. '"Equation"

(113.1) is interpreted to mean that If tht extent of rcac•

tion g changes to g + R., then an amount rld§ of species

N1, r 2 dg of species N2, ... , and rndg of species Nn have

reacted to form an amount p1 dr of 'species N1 P 2 df of spocies

N2, ... and pnd" of species n

8f - '' -



Given any such stoichiometric equation, we shall de--

fine a vector e, with -components 8 (1i < j -n) by viewing

the expression (TI.3,4) as though it were a mathematichl vec-

tor equation) and- treating the double arrow (#).as though it

were an equals sign (=)., Bring all the terms to- the left

(changing the signs in the process), and collect the coefficients

of each N. Then if we let:

o0 - r - P

we will have the "equation":

n(1... E 61 Nj 0.
j=l

We call any vector e so obtainable from a reaction a

roaction vector. Observe that different reactions may

have the same reaction vector.

As a condition th,"t 0 be a reaction voctor, we have

that:

n(11.3.3) E a.8=0 (1 < i < M)
j=l 1 j- -

Swhere the ai are those of equations (11.2.1). The condi-

tion can be made sufficient as well as necessary; in actual

practice, the model maker judiciously designs (11.2.1)-

that is, detenrines the a. -- so that (11.3.3) will be a

sufficient as well as a necessary condition. (For a simple

example, sec [2], pp. 358-359.) We shall regard any vector

0 that saVifivs (11.3.3) a. a reaction vector.

' t



:.,,ile (11.2.1) and (11.3.3) are closely related, they

are not identical. Unfortunately, the chemical literature

refers to. both sets of conditions as mass balance laws.

V We-shall reserve the term "mass balance laws" for (11.2.1)

'and call, (11.3.3) the. stoichiometric conditions.

10I
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T4..he Mass, Action Laws
r-° or the time being, we shall -confine -our-attention-

: .. to systems which exhibit the simp1est form of the mass-

vaction'laws. Such systems are called "ideal" in [63. A

further discussion of idea!-ity can be, foun& in [71. We

will discuss nonideal systems in a later section.

The mass action laws can be stated as follows: For-

any reaction having a reaction vector a, there is an equi-

librium constant k(e), such that, for any comprisition vec-

tor x representing an equilibrium state of the system, we

have

S~n •
S(11.41) n k(o).

j=l j

Note that k(o) does not depend on x. (11.4.1) is a condi-

K tion that x must sadtsfy if it is -to be an- cquil-ibr-ium %,.om-
[~•. ~position

We shall find it useful to poc.form certain manipul.a-

tiongs. on (11.4.) Le, us first take the logarithm of

ea.,h s.de to get

n
j(11.4.2) log X^= log k(a).

Equation (11.4.2) is thus satisfied for all reaction

vectors 8Y that is, for all vectors 0 which satisfy the

stoichiometric conditions (11.3.3). It should be noted

Lthat the form of (11.3.3) implies that if 0 and c arci two

i11
h' lHi .

N
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reaction, vectorsm then (a0 +. po) is also a reaction vector,

for any real numbers a and ,. By the same token, the form

of. ('1.4.2) :shows that for the same- -e and P,

"log& le(+ a, log,. k(O)\ + P log k(p)-.

Thus. log, k(e) is a linear function of 0, so that there

muls exist 'constants cj such that:

"n
(11.4.3) -og k(0) -

i Is

Substituting the value of log k(d) from (II.4.3) into

(11.4.2) allows us to restate the mass action laws as fol-

lows: 'There are constants, cj (I < j < n) such that if 0

is any reaction vector, and if x is any equilibrium com-

position, then

[ n-'-(11.4.4) E2 0(e+ o A 0

This form of the mass action law, which is quite equiva-

lent to the standard forms, is more convenient for our

purpose.

Another form is often useful for computational pur-

poses. Consider (c + log R) as an n-dimensional vector,

whose j- component is cj + log k• If we also think of

the rows ai of the matrix A as n-vectors, then (11.4.4) ma.,
k2.

be restated as: If x is an equilibrium composition, then

(c + log X) is orthogonal to ovory vector n which is in

turn orthogonal to all the vectors ai. But it follows



jfr'br elementary lineqr ,algebra ,thqt th~s condition is isat-sfisf ied If and. only -if (c+l~ is represenAtable a~s, a.;

linear -combination of the, rows ai. -of A Tha t is., con-.

4itio~n (11.4.-4) is satisfied-ifa ad only if'thee eexists,

avector's i -O -iv2  .,7)such thý4tý, 'in mattix nota-I

M1.4.5) C +log X^A reT

I 13



We will, have. frequent ,occasionx to refer to thee f-ree

energy-of a. systm,. In .SeciO iv 6we wAll discuss this

more :ful'iy;. for now, ýwe note -that-. since, we. are 4doaling

with,'idel systems, with. each.,phase at constant temperature

and pressure, the :free- energyimay be written as a functibon

of composition as follows [6), [7)

n
( ) F(x) E X. (6 -1l

The -numbers cj, are called freeý energy parameters, but still

they satisfy (II.4.3),i

The least-action pirinciple ([6]1, p. 29) for thc free

energy states that the system is in equilibrium if and only

if its free energy is a minimum, subject -o the constraints

"(II.2. 1-2); that ts, -a componiit16n vector kO kepresents •an

equil.ibrium. state if and only if F(x°) < F(:) holds for all

states x w.hich satisfy the conditions (11.2.1) and (11.2.2)

and which are. sufficiently close to xO.

Note that the least-action principle, as stated here,

requires only that F have a local minimum at x°. However,

it has been shown ([2], Theorem 8.13, p. 368) that F(x)

is convex on its domain-the nonnegative orthant-so that
every local minimun is in fact a global minimum, and the

underlined phrase above can be climiinated.

14



All,~

ý4.

L-tt x be ,a c ip9sitioh vectok of, tha gyptein stisfying&

the mass& balance, laws (11.L2.1), anid the nonnegativi'ty ;ondi-.

tins(ý 2. 2). -Suc'h d, dmpqsition vcctor--we shall, call,
fdasible, We with -to. demonstratd 'that x either Isatisf ies
both- the mass.-actionlw (t44 or (IIA4.6)), and thc

J.", least-action pdncdipla for the free energy, or that, x sat-ý

isifs "neither. Actuallyý this is ýonly true when the vec-

tor x is positivc, -i.e., whenc Xj >--Oý im lp I~..~

If lor some j., xj -, 0, ý*hr ,thae ma's,-adtion l-aws no 1onedt

make sense (except in trivial tcases.)., so that; no -comparison

is possible.

LThis question is dealt uwi!:h at lenL;.hi in [,2]; we will

treat here only the simplest case, the case when x > '0.Ltcnh ho tha~tdY 7 s4mniizdat-x subject to-

exits n mvac~or-a uc tht x miimies hcLagrangian
function,

-(-L 6 J-) L (x, ro) F (x) - tr(Ax - b)

subject only to the nonnegacivity conditions (IT..2.2,

But: X rurely cannot minimi~zo L(x, w0) subject to

x > 0 unless for UVery n1-VCCtor 0 -tisf-yinig xo + to > 0

for t > 0 suffteckrxity .;aJlthe derivative of L(x, Tr 0 )

15



51ý1

-CIi6.'62)' 0~x' w' 0.

1If •x" > 0, ,hen the got obf _0w dmst onsider includes

every knvoctor. Furthed, it canbe stown ((2], Theorem

:8•, p. 368) thac fo0•.,c o 0o}.x6.93) :, c•: -b J- AJ•- Ir
wher7A tes, f- h weu 'ofe the ,matrix A.

( .FuIth.e. . from (*.1.6.3)` we See that

(11. 6.#4-) to) L 8•0(x0. 0o

so that if (I1.6.2) is to be sat.,sfied both for O and-0,

we must- have, (if x0 > 0):

(11.6.5) L (.,to T.ro 'Y D e e E

'But we see- from (11,6.3) that (11.6.5), is -satisfied for

all n-vcctors 0 if and-only if:ISic (+lg.6 Ao 0 ATo

Compare the result (11.6.6) Ath (11.4.5). We have shown

that x° > 0 satisfies the mass action laws if and only if

x° minimizes the Gibb's function, in each case subject to
the consLraints (11.2.3.) and (11.2.2).

16



kA
7. •Nonideal Chemical Syrtems

"In; nonideal chemical systemsi only thie mass-actibnb

laws change. The mriss balance laws vemain linear. i- is

'i I. usual, however, to cast the mass-action laws into the ideal

form by substituting functions called "activities" for con-

&centrations. The "activity' of a species J is thbught of

44 as its "effective concentration'i, when-the system has

"* composition -x, and is a function-of the composition. Thus:

(11.7.) a aj - W.

As will- be shown in Section 111.7, the activity is a

function -homogeneous of degree zero in the composition,

so that:

(1I.7.2) %a(x) aj(tx), t > 0.

Often, activity coefficients are used. The activity

coefficient of species j is simply the ratio between its

activity and ics concentration.

It can be seen by (11.7.2) and (11.1.2), that X.(x) is

also homogencous of degree zero.

Using activities, the nonideal mass-action laws wnmy

be stated as follows: For any reaction having reactio1 ,

vector n, there ib an cquilibriumn coastant k(a), such th, t,

for any composition vwctor x representing an equilibriumn

"17
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ttatev of the Syýstem Vwe hav-a: I

j-41

The same de elo cnt as used in Sectionm 11.4 can be

used to-show that there must exist -constan"s c. ýsuch that
if x is an equilibrium composition- then there must exist

a, vector n: (Or, ", ) satisfying:

S(II.7.4) Co + log a(x), AT.

Alternately, if:

(.7.5) (x) 0 + log (X)

J we may write (11.7.4) as:

(11.7.6), C(x) + log X^ ATTr.

"It can be shown by the use of (11.7.2) arid Euler's

Theorem on homogeneous functions (see, for example, [8]

p. 234) that if x is strictly positive-i.e., x > 0-then

x can satisfy (11.7.4) or (11.7.6) if and only if the
function F(x) auhieves a minimum at x subject to the mass

'I ri baltnce laws (11.2.1), where:

n
(11.7.7) F(x) E x.(c? + log a.(x))

j=l +o

n
E xj(c (x) + log

j=1

One might argue that some x satisfying (11.7.4) (and

18
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•i i•- (IL7.6)• migh~t maixiblize F(x) rather thian minimize it. •

S~~As.will -be :shown latcr, however, F(x) mus.t be a convex

:• • " fun ct'ion, ruling out this possibility.

-C)
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III. T1IIERNODYIAMICS

The Gibbs function is an example of what is known in

thermodynamics as a characteristic function. Characteristic

functions are the central element in thermodynamics. From

the characteristic function of a thermodynamic systew, one

may compute every quantity of interest to the thermodynam-

icist. In this section, therefore, we will explore the

concept of a characteristic function, and the consequences

of the laws of thermodynamics on such functions.

1. Theimodnamic Properties

Properties of a thermodynarr c system form the starting

point of any study of the system. They are defined (more

cr less) as the results of certain measurements done on

the system, and certain computations done with these mea-

surements. Thermodynamics is the study of the relation-

ships of such properties, although, strictly speaking, at

least one property of interest should depend on whether

the system is hot or cold.

It is not our purpose to define these properties or
to describe their physical interpretations. We are con-

tent to list a few of the more common ones, These include

composition, volume, pressure, energy, temperature, entropy,

enthalpy., chemical potential.

20



2. The State of a System

Once we have listed all the properties of interest

of a thermodynamic system, we note that the various rela-

tions among them, as described by thermodynamics, allow

some to be computed from the others. Suppose the exper-

imentor chooses from this set of properties T a subset S

satisfying the two conditions below:

(i) Independence - it should not be possible

to compute any one of the properties in

S from the others in S.

(ii) Completeness - it should be possible to

derive every propcrty in T from a know-

ledge of only thos in S.

Then S is one possible representation of the st-ate of the

system. To describe the state of the -:y-roc.-ei one must

evaluate each of the properties in S.

From a mathematical point of view, ithe properties are

simply variables, and the state of the :cv:•U .. is described

by specifying a sufficient number (cc.,,4 plctcnc.•.;) ,y.L ih -

pendent variables.

Which of the subsets S satisfying (i) and (ii) is to

be chosen is 1 matter for the thri.inodynamicist to

decide, on tl hasis of convenience and good taste. Or-

dinarily he would choose as indepcndent those variables

most ca 'i.].y inca irnALc and contro'L]. hl, so long as this

choice kous not Violate (i) and (ii.).

21



For example, for a chemical systcic, most of whose

phases are liquid and hence incompress. ble, one would

not choose volume as an independent vr':viabl e. One would,

rather, choose to measure and control the pressure of each

phase. Similarly, temperature can be controlled and mea-

sured more easily than internal energy; hence one chooses

the temperature of each phase as another independent variable.

The description is completed by specifying the composition

of each phase.

In more complex sy temn•, a state description might

require additional propf rties. For a more complete dir-

cussion of these matte).s, see [1], [6].

2?
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3. Characteristic Functions

Suppose we have listed for our sys;tom all the proper-

ties in which we are interested, and have somehow chosen

from among them a subset to use as our description of state.

We must now somehow relate the state variables (i.e., the

properties used in the description of the state) to all

the others. This is the duty of the characteristic function,

a function of the state of the system from which it is

possible, by various manipulations, to compute all the

propertieo; of interest which are not themselves state

vaz i~labIe.

In 161, p. 24, one may see an example of this. Gug-

genthiiii shows there how to compute from the Gibbs function,

Sts dc..::i acLves of various orders, and the state variables
t -Is case temperature, pressure, and composition of

each 'azc), such quantities as entropy, enthalpy, volume,

energy, chem'ical potunti Is, and others.

Every char'cceristic function of a given system is

e(j.quivaltnt to every other; given any ch, racteristic func-

tion, expliciLtly a function of one description of state

Sj, we are told by the unplicit function theorem that it

can also be considered as a 3.unction of any other descrip-

tion of state S2. Hiowever, for particular sysoms and

particular problcms, one charactanristic function is usually

more convi oicnt than any other. In our casr , t)c Cibbs free

cncr,gy function h.1-, be, i found most; approp)ii ...

23
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Characteristic functions generally have the inter-

pretation of energy, or something closely related such

as energy divided by temperature.

i2



4. fThe Global Least-Action Principle

One of the uses of a characteristic function is to

indicate what changes in a thermodynamic system may occur,

and what changes may not. This is because if the thermo-

dynamicist chooses wisely, his characteristic function

will obey a global least-action principle.

Given a ther, odynamic system, one may observe that

its state changes over time. It may be in state sI at

time tl, but in state s2 . sl at time t 2 . A function F

of the state of the system is said to obey the global

least-action principle if for any two such states sI and s2,

r(x2) < F(sl).

Thus if we consider as the systcm evolves, that its statu

is a funct-'on of time, then F, also con.idered a function

of time, must be monotone decreasing. (This can be stated

as well with F a monotone increasing function of time.

Then, of course, -F will be monotone decreasing.)

There is one other condition that F must satisfy if

it is to obey the gobal least-action principle. This is

the local lcast-'ction principle introduced L,: Section ii.

Thus a state. so may be a staLionazuy state if and only if

F achieves a local minlr.um at s

In this, sc-Lt)L1 %,' Wi.ll show that CvJI:y cIa,'iac.trisLik

function, f1 CI1o7( Q \:Lsi].y 0L L"'y S )Sh ki: c. :'.



obeys the global least-action principle. It is only neces-

sary to assume that the system obeys the second law of

thermodynamics. We shall do so only for systems with one

phase, and only for the four most widely known and used

chpracteristic functions. In fact, it would be_ sufficient

to demonstrate this for a single characteristic function,

and then note that all characteristic functions are

equivalent.

We will require the following thermodynamic quantities:

P is pressure

T is tempci'ature

is the chemical poLential of species j,
a function of the state of the system.

V is volume

q is heat absorbed by the system

w is w:ork doi. . oil the system

x. is the amount of species j.

The. characteristic functions we will consider are:

G is the Gibb s function

II is enthlalpy

U is energy

A is the 11cn.holz function.
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Finally, weý require:.

-S is -entropy.-

The-laws of .thermodynamics are concerned with changes•

in the state of a system. .These changes are calledProcesses.

It is usually most convenient to-consider only inftnitesimal

processes, about which Guggenheim ([6] p. 12) has this to

say:

All the independent infinitesimal processes
that might c0nceivably take place may be divided
into three types: natural processes, unnatural
processes, and reve qi-L" cs- s. -

Natural processes are all such as actuallydo occ-i ur "h-e- in a direction towards
eulilibrivj.

An unnatural pr:ocess is one in a direction
away frol Wrf~J•ri-iii;f-ch a process never
occurs,

As a limiting case betwcen natural and
unnatural processes, we have revers ible pro-
cesses, which consist of the passsage In
*U"Mi E direction through a continuous series
of equilibrium states. Reversible processes
do not actually occur, but in whichever direc-
tion we contemplate a reversible process we
can by a small change in the conditions produce
a natural process differing as little as we
choose from the reversib].e process contemplated.

¶

When an infinitesimial process occurs in a thermodynamic
system, we are told ([6], p. 10) that the change dU in the

energy of the system is equal to the sum of the heaL absorbed
by the system and the work done. on it. That: is
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••(1.4.1) dU - q, +,-w.,

If heat is: lost or if work-is, done by, the system, 'then

q nr w appors 4s- 4egative number.I

The work, tcrm w may be reiated to -the pressure and

•volume f thes:

(-IA.4.2) w- -PdV.

If the systam expanrds by an amount dV, its pressure being

P, it has done work on its surroundings.

The Second Law of thermodynamics is stated in terms

of entropy. It says that any naturally occuring process

will increase the entropy of an isolated system. An

isolated systemis one which neither mass nor energy (in

the form of heat or work) is permitted to enter or leave

the system.

When the system is not isolated the change in entropy

is partitioned into an external and an internal contribu-

tion. The external. contribution is the ratio of the heat

absorbed to the termperature at which the heat is absorbed.

The internal contribution is, according to the second law,

nonnegative. In general, then, the second law says that

for any natural infinitesimal process,

(111.4.3) dS > q/T.
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SEquality ho•ds for reversible processes.

SThe entropy function- may be considered as a charac-

teristic function, in fact tie most convenient character-

istic fuhction to uqe for systems- whose energy, volume and

-material content are constant. Note that this describes

an- isolated system,. for which the second law takes its

simplest form. In general given any infinitesimal process,

the change in entropy may be computed ([6], p. 23) by the

"f rMula:

(111.4.4) dS T' 1 dU + T'IpdV - T" E ijdxj.

Substituti 3 Equations (111.4.1) and (111.4.2) into (111.4.4)'$

we see that:,

(111.4.5) dS T- T E .Pd,-.
ST 3 j

Tcnperature in thermodynamics is absolute temperature.

It must always be a poaitive nu'aber.. Thus the second law

siLnply states that for any natural process,

E). .j & < 0.

Equality h0 olda: 2c vi', 1i(, ic':
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* As previously mentioned, each cW:f'-:. Iteristic function

is particularly well suited for one particular description

of the state of the system. If the state of the system

is described by the pressure, the temperature and the

compositior• then the Gibb's function is best. Then for

any process,

(111.4.7) dG =-SdT + VdP + V pjdxj.

If the state is described by entropy, pressure and com--

position, then the enthk'lpy is best:

(111.4.8) dHI TdS + VdcP + . jdx.,

If the state is described by entropy, volume and composi- ZJ

tion, the energy is best:

(III.4.9) dU TdO - PdV + i sjbxj:t

Finally, if the state is described .by temperature, volume

and composition, then the Helmholz function is best.

(111.4.10) CA -Sdt - PdV + Z Pidx..

Just as the second law otated in terms Of entropy

takes a particularly simple form in the case of an isolated

systcm, so if it is staLod in terims of different characteristic
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functions will it take a simple form for other, noniso ated

systems. Thus for a system whose temperature and pressure

are constant, we look to the Gibb's function. We have,

dT - dP - 0, so that from (111.4.7), dG becomes:

(111.4.11) dG- pjd

If entropy and pressure are constant, we have dS dP? 0,

and the change in enthalpy (111.4.8) becomes:

(111.4.12) dH E Pdx.

If entropy and volume are constant, then dS dV 0, and

the change in enezgy -(-III.4i9) is- just:-

(111.4.13) dU E pjdx,.

And if tempcrature and volume are constant, then dT= dV O,

and the Helmholz function (111.4.11) changes by:

'(111.4.14) dA =E. Pjdx .

If we appeal to Equ, tion '(111.4.6), we ,see that the

second law may be restated in a smnplc form for any system.

. Given any, natural process,
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(a) if the tcmperti ure and *prQ'ure are cons tant

throughout, then the -Gibb s function is monoton-

ically decreasing--i.c., obeys the least-action

principle;

(b) if the entropy and pressure are constant through-

out, then enthalpy obeys the least-action principle;

(c) if entropy and voltune are constant throughouit

then the energy obeys the least-action principle;

(d) if temp.craturc and volumne are corstant throughout,

then thc Holmholz function obeys the least-action

principl e.
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5. The Form of Characteristic Functions

We may consider a thermodynamic system, to be completely

-defined by its characteristic function F (which obeys the

least-actior.. principle), and a set of constraints on the

state variables. In, the case. of chemical. system, the

characteristic function is the Gibb!s function, and the

constraints are (1) the mass-balance laws and the non-

negativity conditions on the composition variables, and

(2) the constraints that pressure and teml-erature be

constant.

If this is all we know about our system, we cannot

be content with Guggenheim's classification of infinit-

esimal processes. Maintaining those definitions as far

as possible, we say:

Definition 111.5.1: An (infinitesimal) pr6cess is a vector

0 and an ini' ial state so satisfying the constraints of

the system such that s° + tO also satisfies the constraints

for every Sufficiently small positive real t.

In our case, thLe state s includes composition x and

tcmpenratures Ta aud pressures- P of each phase. Since the

a aT , Pa ar constrained to be given constants, a process

0 must have its changes in these variables equal to zero.

Hence only composition need be considered, and a process

reduces to a reaction vc tor such that x + tO > 0 for t > 0

sufficiently sillall. Such a 0 is called admissible at the

composition X.
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Since the characteristic fUnction satisfies the

least-action principle, we khow that any process that

does occur lcads to a decrease in the function.i Turning

this ar6uncd we define'

Definition 111.5.2: A ,process (s6, e) is called an n-process

'(a mnemonic for natural, but a different name to avoid

confusion) if:

(111.5.1) lim F(s°,+ tý) - F(s°) < 0.t40+

It is called a uxp~r~ocess (for unnatural) if:

(111.5. 2) liU + t()- F(s 0 )>tmO+ I
"~ ~ ~ + t O.. 0.

t-'0t

It is called an r-process (for reversible) if:

(111.5.3) limr F(s + t) F(s° 0.
t.,0+ t

This definition limits us to those systems whose char-

acteristic- functions possess ,all thle limits necessary in

the definition; but this includes all Lhe systems that we

have ever seen.

The correspondence between Guggenheim's processes

and ours is as follows:

(a) A process is unnatural according to Guggenheim

if and only if it is a U-process.

(b) Every natural process is an n-process,

(c) Every -reversible process is an r-procoss.

The converses of statements (b) and (c) are not true.

\lot every p~rocesis c :ificd b)y Cogenhem.
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Guggenhelim ([6], p. 9) states the first law as follows:

When several systems interact in any way with
one another, the whole set of systems being isolated
from the rest of the universe, the sum of the
-energies of the several systems remains constant.

Here the word "isolated" means that neither mass nor energy

is permitted to enter or leavec the set of systems.

Suppose, however, that we perm't energy to enter or

l'eave; the Set of systems, but close the systems from the

entry or exit of mass. Then clearly the first law will

still hold for those processes such that no energy actually

does enter or leave. We have carnfu-l1y defined r-processes

to satisfy exactly this condition.

The second law, of course, is simply the statement

that the characteristic function satisfies the least-action

principle for the system under consideration. These two

laws have important consequences for the form of the charac-

teristic function.

Consider a chemical system consisting of a single

phase, with composition x and characteristic function G(x).

We also call G(x) the free energy.

*: .

•n
0 :

*.- . n

iIf we divide the phase into n identical parts, then the

e • free energy of each part is the same.

* 0 •

* '
* 0 0



If we again put these parts togcter, we find the-

result is -indistinguishable from -the original phase. -What.

we have done and u'ndOne trust have been an r-process, so

thIe first law applies. That is, theý free energy of the

"system is conserved, and:

1G(- x) G ! Gc).n n

Clearly, G(•I x) is the free energy of one of the parts, each

of which -has composition I X.n

We may take any m of these- parts (if we wish,, we may

let m > n) and mix them, and by the same arguments as above,

x) =x) G(x).

n n

Characteristic functions are always considered to be

continuous. Thus we write that for any nonnegative real

-number -a.

S(IILS.' ) G(ax) aG(x).

The first law also tells us something about multiphase

systems. Let a chemical system have p phases. Let the kth

phase have composition vector x(k) and characteristic (or

free energy) function G(k)(x(k)) when considered as a separate

system.
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On the ýother hand, we may €onsid- .ALI tdie phases to-

gether, as though they are a single system. In this case

the characteristic function willbe G,( x(2) .. x(P)).

But such a '1conceptuaJ. change, being n9 change at all,

is an r-process, and hence conserves free energy. Thus:

(1-1.5.5)G(x) .. x(0-) t- o(k)(k)).
k-l

Property 1: The free-energy function (or characteristic

function) of any chemical system, ideal or not, can be

partitioned into a sum of functions, one for each phase of

the system. Each of these subfunctions is a function only

of the state of the phase for which it is written, and is

homopencous of dc.jee one in the composition of that phase.

Lcwana T11.5.3: The ideal Gibbs free energy function,

F(x) = ' (c + log R), has property 1.

p
PrgooZ: in .this- Case- if F-(x)ý > -we see that:
---- k=l

r(k)(,,(k)) 1= > x.(c. + log q
j c<k> j 3.

Multiplying each x. in a compartment by the same factor aL

changes •j not at all, so that F is clearly homo-

geneous of degree one. Q.E.D.

37,
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'Next consider two chemical systems, each with a sing" d
compartment. 'hpy will have compositions ,x and y respectively.

* ' We can arrange their free

energy functions in a suf-

X fic'iently general.- way, to

insure that the first has

free energy G(x), thje

second, G(y). We can do this by allowing in G for an energy

contribution from• every species that occurs in either

-compartment, although any species may be at zero, level in

one or the other of the compartments.

'Experimental evidence indicates that if x is not a

scalar multiple of y, then mixing the two co..partments

together is, an n-proco,,cs. In this event, assuming- that

x, y O,

(111.5.65 00~: + Y) < G~x5 + G(y) (if x #ay).

Definition 111.5.4: Let x and y be two composition vectors

of a multicompartr-ented system. Let x be the composition

of the kth compartment when the whole system has composition

x., and similarly for y. Then x and y are said to be quasi-

dependent (written x - y) if for each compartment <k> there

exist numbers a<k>, P<k>, not both zero, such that:

a+ p<y (k) = 0 for every compartment <k1>.

This notation ,was first introduced in [2], p. 362.
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Lemm, 111I.5.5: If x -y, then for every species J, one of

-the -following hodds=:

(4) IN (if R~> 0 and i~>>-)

-(ii) Either R - 0 or i -- is0 or both.

'Proof: Clear from Definition IV.3.2. Q.E.D.

0 Using the :notion of quasi-dependence, and inequality

(III.5.6),coupled with the Property L in a simple way, we

can state:

Poperty_2: Let x and y be two compositions of a multi-

compartmented chemical system with free-energy function G.

Then G is linear on the line joining x and y if x -y,

and strictly convex othervwise.

In particular (and much more simply), G is convex.

Lema 111.5.6: F(x) = x • (c + log R) has Property 2.

Proof: [2], Theorem 8.13, p. 368.

It should be pointed out here that the author realizes

that some substances are only partially miscible. An example

is oil and writer. One might argue that such a system is

an exccception to Prope.rty 2, since a phase consisting of

oil saturated with water cannot be mixed with a phase con-

sisting of water saturated with oil. Indeed, if the attempt

is made, the phases will spontaneously separate. Thus the
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free energy of the mixture must be greater than the suinr

of the free energies of the tx:o separate solutions.

This proposed countereuample to Property 2 neglects

what wa,' said in Scction ,I.1, that, molecules of the same

substance but in different phases would be doisidered as6

different species. This is not simply a "cheap way out"'

of the dilemma. A molecule in a solution is not simply

an isolated objcct. It 'has interactions with ot'her moldý-

cules, both like and unlike, in the solution. It is these

interactions an~d the consequent configuration of' the poten-

t-a! field surrounding a molccule, as well as the atoms

of vwhich it is mada, that dcto-:mine the characteristics

necessary to de-ine a specics. All these characteristics,

save the bui.ding blocks of which the molecule is made, are

rel ::-esented. by ja p)-ramnce-r called the "chermical, p~eta,

and whcinh is different. for a water molecule surrounded by

•oil -,jolecules than for a water molecule surrounded by other

water molecules.

More detailed information on .tUis, poin'c may be obtained

from any book on statistical mechanics.

This comilbetas the e:-position of the desirable- properties

of characterist:ic functions, save for pointing out that it is

ialways assumed that whenevur x " 0, they are (at least) twice

continuoasly differ.ntiable, and that they are continuous on

Sthc •entirn set (x j x > 0)'.

The iiuthor is, gre.'teful to Dr. N. Z. Shapiro for permlission

to uso his rsiu.lt.s, the derivartions, of Proper ties 1 and 2,

in ispap
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6. Boundary Behavior of-Free-Energy Functions

If we assume that x > 0 and-compute the partial

derivatives of the ideal Gibbs free-energy function, we find

that,

(111.6.1 BF= ec log A..

If we then allow x. to approach zero, while retaining

> >0, we find:

(o1. 6.2) lira BF- -

x' -0 j

S>0

It appears from various theoretical considerations

(e.g., fl], p. 135) that (111.6.2) is generally true for

arbitrary free-energy functions..

We have explored this question elsewhere from the point of-

view of statistical mechanics, and it appears as though the

only assumption, concerning the behavior of particles in

the system one requires in order to prove (III.6.2).is that

interactions between pairs of partici es. are of short range

only (and so can be neglected at low concentrations).

Let x be a composition vector, and e a vector such

that x + to > 0 for sufficiently small positive t. One

defines for such pairs x, O, and for eachi free-energy func-

tion F, the derivative of F at x in the direction e to be:

(111.6.3) F 0 (x) li (x to)
t--40"



If we admit e tended' real, numbers then this limit always

-exists for any free-energy function corresponding to 'a.

real physical system. (It must exist for alnost all pairs

(x, 0) by virtue- of the fact that F is convex..)

If we define:

* -=(j>Ix.->06<3

J=(jf x > 01

K X<j >, 0 ~but x.= 01.

then since free-energy functions are always highly dif-

ferentiable and because Of the homogeneity property.

(111.6.4) F (x) = .. F<J>(<>) + X x
<j>GI j~j

if 0j = 0 for cvery j. K, and:

(111.6.5) F;(x) = -•

if for some j C K, 0j > 0.

It can be sho•in ([2], p. 366), that the ideal free-

energy function

F(x) =,xj (cc + log A.)

satisfies (11i.6.4-5).

It must be pointed out that (111.6.4-5) are only

assertions. They cannot be obtained as consequences of

previous results.



7. Impliations for Chen'ical. Sys .em.

Consider a chemical system with ciharacteristic func-

tion F(x). According to Sections 11.5 and 1I.6, this

functioh must be phase .separable, and the function written

for each phasq_ must be homogeneous of degree one, and

strictly-convex except on rays passing tirough the origin.

Let F (x<) be the function associated, with the

<k,>L.h phase. By Euler's Theorem, for homogeneous functions,

(see [83, p. 234), 'i7 may .write., for x<!C> >,b (the interior.
of the dO;min of

•j~k>( x<k>)

Suimilig (1:1.7.3.) over all phases we find:

But by the same argument as produced (111.7.1) we know tha't:i

(i11.7.3) F(x) =Ex -•

Clear:ly, then" ~ In addition., since F
is homogenQous of degree oric., must be homogeneous of

degree zero.

For each j, we arbitrarily choose a constant c

and define:
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(111.7.4) aj(x) = exp -

Substit;jting (i11.7.4) into (111.7.3) shows that F(x) may-

be written:

(II.7.5) F(x) = Lx (c + log a.i(x)).

Compare (11I.7.5) and (11.7.7). It is in the manner above

that :fte activities of species in a nonidcal chemical system

may ,be computed.

We'-an see, though, that if the activitieds are computed'

in this way, they must satisfy certain conditions.

(i) From Equatiun (111.7.4), and the fact that F is

phase separable, we find that ai'(x) is homog neous

of degrce zero, and depends only on the variables

xk such that k c <j>.

(ii) Since F(x) is convex, we must have

(111.7.6) b2F (x) > 0

If the phase <j> contains more than one species,

then the infinitesiMal change implies by partial

differentiaation is in a direction along which IF

is strictly convex, Thus the inequality (111.7.6)

holds strictly, and:
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S•~~~_2F= I a x ~aa.x))

Since a (x) > 0 (it is an exponential), a-

must be a strictly increasing function ofX,

other variables being held constant.

(iii) If phase <j> contains more than one species, _
then x3 may tend towards zero Rhile > rerna~ns

bounded away fr#w, zro. Thus from (111.6.2) we

(111.7.8) 1tim Fjm j(cj. + log a ) -X ,00 (X J_ aj()

Clearly, then,

Thus the activity, or effective concentration,

of a species must be zero when none oi that

species is present-not a particularly surpris-

ing result.
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V~. KrUETI.CS

Every chemical systen, and likewise every thermo-

.dynamic system, is a. kiinetic system, t.iose evolution can

be described by differential equations called kinetic laws.

It is reasonable to ask what kinetic systems• correspond to

- -theodynamic or chemical systems. The method we will use

to e:zamine this question will be to construct from the

kinetic system a function satisfying ihe least,-action

principle. Then if the function also happens to have the

appropriate propc ;, Xes, we will 'know the kinetic system

may be considc.red a thermoCynamic one also.,

hi

1*



1. Kinetics and the' Jast Action Principle

The chemical system considered in this section is a

special' case of ,what. are called primitive systems in [9].

It is a two-ph':!e chemical system satisfying the assumptions:

1. There are no charged species.

2. There, is only one possible reaction; the,

migratlion of molecules of one particular

species from one ph,:se to the other.

Molecules of all other species are re-

strictcd to remain iii the phase they

initially occupy.

3. The species in each phase are miscible in

all proportions.

We name the two phases Phase I and Phasc II. The

composition vectors of the t\ o phases will be x

(XJ, x2  x n) and Y y-( Y2 -' Yn) of Phase I

and of Phase I1 respectively. We consider that a mblecule

of species j .In Phase I (with corresponding composition

variable x.) is chemically indistinguishable from a

molecule of species j in Phase II (with composition

variable yj). The only difference is that they occupy

different phases. Note that if ve wish some nonpermeable

substance (i.e., a substance not allowed to pas, s from one

phase to the other) to appear in (say) Phaise I only, weN
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miay• sct the agunt of t'he same substande in; Phase II to

zero,. Thlius we, are not, kept from consideri.ng mixtures of

very di-f-feront compositions indeed.

'Y Foxr notationaTl cohivenience, we

assUme that it is. -species 1 inth ooe phs.

each phAse that can migrate to
the otaier phase.

SConsider this primitive system as a kinetic systei,

Sthat is, with its evolution described by differential

equations. Furt-her, suppose that the functions expressing

the unidiredtional flows of species I front Phase I to

Phase II, and from Phase II to Pho:si - are knowfi..to be

J and Jll respec'tively, and 01'ýIt:

(v ai) Ji = (

(:IV.1.1b) - J(Y)

Thus, the utidirctional rata of flow of species I from

one phase to thu other is a:dsu,.vd to depend only on t".lh,

statU of that phIOe fron ,,hich the flow originates; -Inp]

the function d scribing tho unid Urcctional floo! is th':

saMie regardless of thc dircul:ion of flow.

Next, I."a ;Clnsibly as'uine that:

(IV.2) (x) > 0
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for -all compositions x > 0 (it may be zero if xl -0)

Finally, we assume that J is continuously differenti-

:able in each- variable, whd~eneer that variable is pbsitiw.,

and to avoid a trivial ,probl½Tn that the gradient of J is

never zero.

Our aim in this section and the next is to construct

from this primitive kinetic system a function for which

the global 'least-actioh principl.e holds,

We may write the differential equations describing

the evolution of this simaple system as follows:

dx 1  Jy) J)

(Iv.l.5) 1 - )- = J(y) -)

We wish to f d a function G cor'.-.-sponding to the function

J, such that G has the following properties:

1. G should be phase separable. That is, we .assume

that G may be written as:

(IV.1.6) G(x, y) 0(x) + G(y).

We enpect the sommWetry of G as a 6onsequence of the synmetry

of the kinetic systuem.

4 9 -
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2. We assume G to be continuous for x > 0 and tw6e

c€ontinuously differentiable for x > 0. Thus we assume

that if:

• (IV. 1 7) b() •G-(5)

then • and vw, its gradient, are defined for x > 0.

3. We assume G satisfies the global least-action

principle with respe(ct to J. -Thus:

SdG dG(x) . () dy(P..8) .- M 'I + a 0.

MWe further assume that G satisfies the global least-

action principle with respect to J nontrivially. ThusdO
rG• =0 if and oILly if:

dtx1 dy.-

We obtain an immediate consequence of these three assump-

tions by substituting (IV.1.4-5) and (:IV.l.7) into (IV.l.8).

After some Simple manipulations this yields:

, t•

(IV..1.9) - ()(x) - I(y)]EJ(x) - J(y)J > 0.

By assumption, we have equality if and only if:

J(x) - J(y) 0.
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Suppose. the states of the two phases are very nearly

the same;, then we let:.

x y+ to.

Substitute these expressions into (IV.1.9), divide by t 2 ,

and take the.limit as •t - 0. We find, then, that:

(I.i,10) eT(vO)T((vj)e > 0.

We have taken e to be a Column vector.; BT is its -transpose.

The gradient vc•tdrs Vý and VJ are considered to be row

vectors, and in (IV.I.IO) they are evaluated at the point y..

Equation (IV.1.1O) is true for every vector e, so

long as all the partials used exist. (Certainly so long

as y > 0.) Thus the matrix (vw)T(vJ) must be positive

semi-definite.

Alternately, we may view (IV.1.lO). as requiring that

the product of two linear functions of 0 be nonnegqtive.

Clearly, this condition is satisfied if and only if Vw is

proportional to VJ with a nonnegative constant of propor-

tionality. It is obvious that if vý = kvJ- for some k > 0,

then:

T} T

. (V4.)T(VJ)O kII(VJ)0112 > 0.
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It- on -the, other ýhind& (w)ý # k(-Vj),-, then since ~(VJ). 0

and (v) 0' (else Vý k(vJ)- with k '0>, the 'two sets,

[eIj(v'J)O "I)1 and [oJ"vMo A-!)' describe hypelpanesi

which-. by assumiption cannot be ,parallel. At, aniy value of

e where they meetU, (IV.,5.1O). is violated.

Finally, if" vz.- k(VJ,) :'or, k < Q, then (IV.1.11) is
stilltrue with the. f 1ni). inequality' reversed. Bly t-hne

assumpt-ion tha t (VJ) -- 0, the11crce w-ill exist 0' such that

(Vi) 0' A 0. Henc,.-e w.e. ma:,y e,ýsil'y violate' ("V.I. I0).

We mny' thckefcor wvrite:

-,heara k(y) is a nlorlnegat-Lve (Scalar) fu-.-nctioný. '(See: for

o Jmpe [L~p 32'-2.') To 6s-attisf y out, condli-ti~on that -G be

twice cont-5.7-mousl3y if:.nib1e we will insist that

k~v b cnti~.ou; nd to -void trivial. C andt satisf y
t~±econiiton ~: l&: dy1

-that k.(y) beý strictly posi~tive,.

XI; s ccnv%.nL(..-t, Z'S we s11hall. seeI toCh C as our

LntC~rat~fuaciciorn k(y), Ithe. function k(y)
J ()

Sý' s t: it u SA-1 tt-Lis cholicc into (XV.1..12) and inte~prating.,

52



'(IV. 1.3) =c + log J(y)

where c is a constant of 'integration.

WA cannot for general Jlexplicitly integrate (IV.l.13)

to find' :an equation for G.

53'

,i>

53



,I

L2 Generalized Mas'.. Action Laws

Let us consider a icinetic system with a single reaction,

(IV. 2. 1.)" 1Z i'N 4 E p jN

The fo•rward&rate of ,this reaction shall be ? (x)., and the

backward rate J-(x). Thus if species j is a reactant

and, not a product (rj > 0, pj = 0), then its rate of

disappearance "is:

dx.
(IV. 2.,2) Dis = . ),

Similarly, its rate of' appearance is:

dx(IV, Z.j.()
(IV. .•3).•(•''Ap-

If a species j is a product but not a reactant.

(rj O p > 0), then the similar-quantities are:
Ji

dx- dx.
(IV.2.4) a.Dis -( ;Ap

For spov i, which are both products and reactants

(r. > 0, pj > 0), the appropriate expressions are sums

of the above.

As in the previous section, let G(x) be a least-actio,

function for this kinetic system•. Then G(x) must satisfy,

5
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n dx-.
(TV. 2.) dG E__ .1

a M

with- equality if and only if' =,O. We may substitute,
from Equations (IVM2.2-4) into (IV.2.5), to find:

(IV.2.6) E i [(r (x) + pj X)) (r J+(x) + pjJ(x))]' < 0.

Collecting terms, we find that:

(IV.2.7) [ (r - 1(() J+(x)) < 0.
j=l j

Equality wail hold if and only if J-(x) = Jl(x).

Looking back, one may see that Equation (IV.2.7) is

quite similar to Equation (IV.1.9). We define a rcaction

vector 0 as before by:

(IV.2.8) (r.- p.), 1_< j<n.

Then the developmelt of the last section shows that. if

we find G satisfying:

n J+(X)
(IV.2.9) ( >E - log

jl 0j xJ-(x)

then G will be a least-action function for the kinetic

sys tern.
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In fact, this equation is exactly the equivalent of

one of the forms of the mass-action laws developed in

Section 11.4. We have seen (Secti.on II, and [2], p. 360)

that the mass-action laws can be stated as follows:

n e(Iv.2.1o) .r X J = k(a)
j=l

where as before 0 is a reaction vector. The mass-action

laws are such that when they, the ma.s-balance laws, and

the norazegativity conditions on x are all simultaneously

satisgi.:4, then tho system is in equilibrium.

These laws are easily derived from ideal chemical

kinetics (and from many other forms of chemical kinetics)

as folli-is.

Fcr the reaction (IV.2.1), the simplest form of

chemical kinetics (10, p. 10) assumes that the unidi.rec-

tional rate of disappearance of reactant- j can be written:

n rk
(IV.2.11) rPi1 T kX

and that its unidirectional rate of appear.ince can be

written as:

7d Ij + P
(IV.2.12) rjP- 1  11 n k

(arsuniing that pj 0).
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The numbers P1 1 p-I are called respectively the forward

and backward rate constants for the reaction. Similar

expressions hold fo.- those xj which are products.

Taking the ratio of (IV.2.11) to (IV.2.12) and noting

that at equilibrium spe'cies j should appear exactly as

fast as it disappears, we see that at equilibrium,

n (r-p) P
(IV.2.13) I x. = - -l

If we let = r for eachj l, 2, ... , n (as in

Scction II) and k(e) - we see that (IV.2.13) is

identical to (IV.2.l0).

Note that we arrive at the same expression even if

we multiply both P 1- and P1 by an arbitr.ary positive

function.

On the other hand, if the system is not at equilibrium,

it is still true that:

(IV.2.14) E 7 - log 1 x

where F is the original Gibbs function. It is clear that

Equation (IV.2.14) is the same as Equation (IV.2.9) in the

case of ideal chemical kinetics, and that the analog of

the mass-action law in the case of a more general kinetic

system is that if x is any equilibrium composition, then:

(IV.2.15) :!(=X 1
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3. Kinetic Systems with Several Reactions

In general, a kinetic system will have more than one

reaction. Let us say that it has a total of K reactions,

numbered I < k < K, each one of the form:

j=l j J jNl

Typically, an experimentor will not measure the forward

and backward rates of each reaction. Instead, using tracers,

or some other marking method, he will measure the unidirec-

tional rates of appearance or disappearance of various species.

From those quantities we must compute the act.:..l reaction

rates.

Clearly, the equations relating the rates of appearance

and disappearance of the species and the reaction rates are

sums of terms of the sort (IV.2.2-4). Thus:

dx. K (k jk7 K-
Pk + Wj

(x (K K
(•_.•)K (k) +. K pk)j_.(x)"GTtlA E rj Jj~(x) + E pk)+)Dis k=1 k=-l J

We assume that the reaction vectors 9(k) (defined by

e (k) = r _k) , ) 1< j < n are linearly independent.

In this case, whencver Equations (IV.3.2) possess a solu-

tion, it will be unique. Thus if we let:
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dx. dx dx1
(IV.3.3) - (-i) A Dis --;

then we may write the difference of the two Equations

(IV.3.2) as:

dy.. K_(IV.3.4) J. -kf

where fk(x) + jk(x) - Jj(x). If (IV.3.4) has a solution

(i.e., if dx is a linear combination of the reaction vectors

e(k)), then the solution is unique. A properly formulated

kinetic problem will surely possess a solution..

It is a simple matter to substitute tfhe solution f(x)

to (IV.3.4) into either of Equations (IV.3.2)'. We choos,

to use the second of thcr:e eqdatiuns. Then:

dx.. K (1c.) K *i'ik)~
(IzrE.5) (Ut L) r 4f~)-ze"j(Y

Dis k=l -' kEI 1

Again, if Equations (IV.3.2) arise from an actual kinetic

system, (IV.3.5) must possess a solution Jjk(x), 1 < k < K.

Once we have arrived at expressions for the unidirec-

tional reaction rates J+ and J-, we may use the results

of the last section. Thus if G is to be the least-action

function for this kinetic system, we require that G simul-

taneously satisfy the K indepen:.i-nt equations,

n ''ZG_ J"-(X)
(IV.3.6) E ^(k) -G log - < k <K.*fl ". "ix. a•x- -

S.Jj (x)
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4. Kinetics and ThernonI,&namcs

Given a kinetic systcm such as that described in the

last section, we wish to decide if it may be considered a

thermodynamic system. To be so considered, the function G

satisfying conditions (IV.3.6) must have the usual thermo-

dynamic properties: it must be phase separable and homo-

geneous of degree one; the function Gek> for a particular

phase <kc> must be strictly convex except on lines through

the origin; ard .- must behave in the appropriate wayJ

as x. approachcs zero. These conditions on G will imply

conditiors cn the kinctic law:s J+ and J-.

Positivity: For Equation (IV.3.6) to be defined, the

ra tio

must- be positive. This will be. assured if the kinetic

systcm is a real systcem, for in that case we will have the

following: Let th• raction associated with reaction k be:

n (1)01, Z! :n kl'Z p.

jPl j=l 3

with forward rea.ction rtec nd backard rate()-

Then:
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(IV. 4.1) Jx>O0 and -.J (x) > 0 'x

and

(.4.2a) Jk(x) - 0 if and only if xj- 0

for some J such that r) > 0,

(IV.4.2b) Jjk(x) - 0 if and only if xj w 0

for some j such that p(k)- >pi > 0.

Co nuit:_V a. • nfcrc!,•i,.bili~: We will insist

t1hat G bc -wicc co,.Linuously diffcrentiable for x > 0,

and cont,:nuov•s for x > 0. Ono sccs immcdiately from (IV.3.6)

thai: if this i. so. then

log (-I e--)

v'ust be co-.irnuously dificrntiable for x > 0. It is not

true that.

log (-k)

must bc continuous for -/ > 0.
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Homogeneity and Phase SepaabiLJitj: If G is to be
bG

homogcneous of degret one and phase aeparables titen x

must be homogeneous of degree zero and phase separable.

rrom (IV.3.6) we see that fti;r the kinetic system to be

considered a thermodynamic system, the kinetic laws ik

and Jk must satisfy the following conditions: Let x and

y satisfy:

(IV.4.3) Xjy<j> - yjX<j>, 1 1 i < n.

One may easily vcrify that G should be linear on the line

joining x and y Hcnce alcug that line, m- munt be

constan.t. Thus (IV.3.6) 
axlie:

J;1 (y)
(IV,4.4) log (j01;Jlo

Notice thndi; rncith(,r n o x J-1(;:) naccd be hcxo-

accoiaouf 0Z any doZrec. T'10 restriction 'is on their ratio

only.

Conive,.'ti: Let 0 be ally rc-.,.ction vectzor. Clearly

we may e:.)rr!:; , as a n.n'car Ceobinttion of the vect'orsSK(10~ ) * We !Jupj•e:,e tha:l,,:

K "
(.V.4. ) v o6
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If C is to be convex, we know that:

d2

(IV.4.6) d2 G(x + s8) Is - T(v2G(x))g > 0

where v2 G is the matrix of second partial derivatives of G.

Substituting (IV.4.5) into (IV.4.6) we find that:

K n (k) / K , > 0.
(IV.447) Einlk :-~ [Ie TXj),o

The quantity in squareo brackets is recognizable from

(Iv.3.6) as

oJS(x)log ( )

Thereforc, if we define:

(IV. 4.8) Ilk t(X) n E / k J() ~ ~ 7x

£ý J'"(X) i

and if the matrix U(x) is taken to be a K x K matrix whose

kt•t element is PkV then (IV.4.6) simply states that

U (X) is a oiiasridfn arx

Wc also know that G is to be strictly o:..vex wherever

phase-saparability and homogeneity do not imply that it

is linear. Thus for any vector vi. (vl, v2, ... , Vk),

(iv.4.9) v T(U(x))v > 0
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K

wtcnvr Vk6(k fails. to satisfy:

(IV.4.1O) W-~x ejR<j> I < 1 n T.

But what if e satisfies (IV.4.1O)? In that case

we notice~ that:

kn

Jt(x+ so)

n 37(x + so) I-0

dct, o c::o t/ .1, 11(T11co 1for thurc0 v Wa mtust Iiava

v OT()- 0 , 1,

It can e!;siJly be vr:t ~.lzhcU: jii, t:,10 c,,i~o (f tile

rc~vearto ti cozrHitl.on 1:1iLt t~he r Lc oZ fl~ow of n spcciecs

Out~ Of lt.,, ~ brc- I moiio,1tonc 1.'a l:ca.;ngy Zlf-iot

OZ 1:11c. a1',110!Jn o1' sh pruc~'i.; pt~;xi: tlc hr:-,,s beiii-

Not~.cc '1i..;w 0I~htt U(~:,) ~n:1zbe a symmoil:...ic 111-1tr.m:..:



n bt
(!V.4.12) P'kL E 01x 3Z (x ):

n W a(k n '

. -. r J:l i OXj.

n at a n 0(k) LG)-E 6E
jinl L ORj.

j~ 0lx O-J k- -)

B~oundary Bchlwiort ror some fixed k, lot 0(k) > 0.

(We could as easily use some <00) Let x be such

that ench x is greater than zero, i A j and x tends

toward zero. Then we must havu:

(wv.4.13) Lirm F 0 "t C -W"
X-,O) i=].% . ' ,-0 i J

Sub z'k. • :L.o.•i (Y:V. 3 6) , find LhaC the kinetic ..

cannot lo. a h::;•dn••i ,•,te• n c••

(IV.4.1/:) , ( ') ", -
_._g .. ... ...1:

Con,; dc',.J d3'6
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.j=l j=J.

Clearly., for any species jsuch~ th~at r. k > 0 and

pj(k) _0, or for W~ci d~C 0 and > 0, Equations

(IV.4.2a-b) imply (IV.4.14). Only in the case that both

r > 0 and p. k > 0, and r.(k) +Lp (k) does (IV.4.14)

constrain the kinetic system.

Cyc~ling:, Sunps thU-i n x 0 such, that if the

kinetic systcrn is initicl' y at x then it will eventualliy

return to xo having- 1pa-sed through state sy:x 0  ThI-L
C. A.. n.''j! sy n..c.Aec-.

I. noncnlon is callc vli' a

cy(-lc Cannot10 be~~oy.:.csys-cai for the t-I n---r

dya:i.c tcr Cwcu~.L .;ctodcc~ stricL' tly u~r~

Out tZhc Cyce>, uan6 '-hc vz--!Xz of G vouold not be . (:cpf:*,Yeci

ait any1 pLty inllh cycle.

Evenwon the, 'kiMciic las jr a~nd 3 satisfy - all Che

above cici-oiiiy ifrnibltec.i

m.ay be d lficulc "o cornstru.zt- a function G Zor the 'tner-.mo-.

syst~. Indac, ~ iwe no cst.-Olishcd that for

all such a EUnc-Li;on" G nmust- c-xist.

.Ina mknCI~c' sys-cm. does, --nti atrzoyaiC

darrtohoa:cyc):, 4t'.e:cj is som,,c assurutnce that11 i4ts

lcast-zacLion f~tinet1-ior. may be -intLIrpretcd as a measure oil

66



frce, or usable, energy. One cau imagine, for example, a

machine whose motive power is obtained from a reaction

procecding in one direction faster than the other, and

which yields useful work in the process. Thus there is

some physical, as well as a mathematical basis for calling

a kinetic system that admits this type of description a

thermodynamic system.
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