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CHEMISTRY, KINETICS AND THERMODYNAMICS

James H. Bigglow*

The Rand Corporation, Santa Monica, California

I. INTRODUCTION
In this paper, the first of a series ofwthree*?;~we.will

discuss the equivalence of three ways of viewing the classi-
cal chemical equilibrium proble@, From the point of view
of classical chemistry, this problem can be stated as follows :
Given the set of reactions that may occur among all the
species of a chemical system, their equilibrium constants,
and the initial composition of the system (i.e. the amounts
of cach species present in the system initially), £find the
equilibrium composition of the system.

From the point of view of kinetics, the problem is to
determine the evolution of the various parameters describing
the system from theilr initial values., When the parﬁmetcrs

cease to change, the system must be in equilibrium,

“Any views cxpressed in this paper are these of the
authox. They should not be interpreted as reflecting the
views of The Rand Corporation or the official opinion or
policy of any of its governmental or private rescarch sponsors,
Papere are reproduced by The Rand Corporation as a courtesy
to members of its staflf,

Sl
The other two papers arce, in order, "Degeneracy in
Ideal Chemical Equilibyxium Problems,' and "Computing Equilib-
rium Compositions of Idcal Chemizal Systoems,"



Given the same system, thermodynamics seeks that
composition at which the usable (or free) energy remaining
in the system is at a minimum, Ié can be shown that the
system will then be at equilibrium,

Much of the materiel contained herein is old. It is
presented here in a consistent notation, and in a way

intended to emphasize the common aspects of the three points

of view,



1T, CLASSICAL CUHFMISTRY

Classically, the composition of a single~ or multi=-
phase chemical system in equilibrihm has been computétionally
determined by solving certain systems of siﬁultancous equa-
tions. These equations included lincar equations (mass
balance laws) as well as nonlincar equations (mass action
laws), It is'possible, however, to formulate the problem
as one of minimizing a particular nonlinecar function (the
free encrgy) subject to linear constraihts. This was first
done by J, Willard Gibbs [1], in his famous paper '"On the
Equilibrium of leterogencous Substances,'" It was later
shown in a different way, and the equivalence proved with'
greater mathematical rigor by Shapiro and Shapley [2],

This sectilon restates the first part of Shapiro and Shapley.

1. The Chemical Systom

Vle will consider chamical systems composcd of a finite

number (not cxcluding one) of homogencous phases, A ho-

mogeneous phase is a mixture of chemical species which
is homogencous in chemicol composition, pressure, and
temperaturc., The question of under wvhat circumstances
a phase should be regarded as homogenecous can only be
answered as part of the process by which we formulate a
model of an actual chemical systonm,

For example, a chemical system consisting of a vapor
over a liquid solution might be regarded as having two
phases, a gas phase and a liquid phase., A chemical system

i



consisting of two solutions scparated by a semipermeable
membrane might be regarded as having two liquid phases.

All this model requires of a phase is homogeneity. A
phase ne:d not, for example, occupy contiguous portions of
space. Thus in [3], the interiors of all the red blood cells
of the body are usefully regarded as forming a single phase,

The entities in a phase are called species, by which
we mean molecular species. Examples of species are H,0,
NaCl, Na+. When a species is defined, its molecular or
ionié structure is implied, as well ar‘the number of atoms
of each element composing a molecule of the species. Thus
the mqlecular formulas of two distinct species might be
identical. (An example of this would be right-handed and
left-handed amino acids.) Also, we will find it mathemat—
ically convenient to regard a spccies which can occur in
two different phases as two different species. Thus if
Hy0 can occur in botl a liquid phase and a gaseous phase,
we would refer to two different species HZO’ perhaps calling
them H,0 liquid, and Hy0-vapor. When a molecule moves from
one phase to another (by evaporation, condensation; migra-
fion across a semipermecable membrane, or black magic) we
will regard a type of chemical rcaction as having occurrcd.'

By saying that a spcucies can occur in a given phase,
we do not mean that at cquilibrium any positive amount of
that specics will be found in the phase. Ve only mean

that we have made provisica for the pogsibility. The



question of which species should be provided for in what
phases can only be answered by judgment and expcricnce;
and by somc knowlcdgc of the systcﬁ under study.

It should be pointed out that if a phase is a chemical
solution, then the solvent itself is one of the species
occurring in that phase.

We number the species in the chemical system 1, 2,
.+.y N, Let X5 be the number of moles of species j in the
system. (By definition, a mole is Avogadro's number of

23.) We denote the phase

molecules, approximately 6 X 10
containing species j by <j>, and we may indicate that

species j and k are in the same phase by writing:
j e <k>, or ke <j> or <j> = <k>,
Each phase has associated with it a sum,

(I1.1.1) X = T x.,
<k> je<k> 3

Each speciles has assoclated with it a mole fractionm,

. 1.2 . o %
(I1.1.2) }'j xj ‘{<j>

It is casy to sce that %, is the concentration (on
o
the mole fraction scale) of species j when the systein has

composition x = (x .o
D 2Y ( 1’ x2, (3] Xn)o




2, The Mass Dalance Laws

Following [4], we will express the mass balance laws
as lincar conditicns on x, Let Bl, veey Bi’ veey Bm be

a set of fundamental building blocks, such that each species

j is a unique combination of these building blocks.

For example, Bis eeey Bi’ ;.., B, might be taken to
be the atomlc elements, However, it is often better to
choose more complex structures as buildipg blocks. (See
[4] and [5].) Let each molecule of species J contain ay,
units of By. Thus, the vector (alj, 8955 +ees amj) is
essentially the molecular formula for species j. Note
there is nothing to prevent two differcnt species from
having identical molecular formulas. Let by be the total
number of units of By in the system. We then have the

conditions:
n

The description of thos: aépects of the éys%cm'con—
cerned with such questions as which species are perﬁeable
to interphase boundaries can be implemented by an appro~
priate extension of the set of fundamental building blocks.,
This process has been described elsewhere [4]. In addi-
tion, it may be desirable to impose a condition of elec-
trical ncutrality on one or more phases, This too may be
expressed in the form of (II.2.1) ([2] p. 357). Other



constraints, such as these on the volume of a particular

phage, can be similarly handled,
Findlly, from the definition of xj , it is clear that

we must have

(11.2.2) x, >0,
o
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; § 3. Reaction Vectors and the Stoichicmetric Conditions
: % In equilibrium chemistry, a rcaction is described
i "-by writing two formal sums separated by a double arrow:
f If we denoté by Nj the name or chemical symbinl of speéies
| j, then a reaction would be described by thge “equation
’:\ ; % (II.B.]-) E r- No ;—’ z (3 N‘
AN % I I T B
¢ ‘ Each of the terms in (II.3.1) consists formally of a posi-
; tive ra*l number, Iy OF Py, called a stoichiometric coef—
ficiont, multiplicd by the symbol for some chemical species
of the system. The species occurring in the left-hand
formal. sum with a positive coeefficient rj are called
3 reactants; the species occurring in the right—hand formal
i .
et sum with a positive coefficient pj are called products.
3 The two formal swms separated by a -double arvow form the
- stoichiomebric equation of the reaction. Note that math-
;" . » - 3 0 ) )
g ematically speaking, the stoéichiometric equation is not
: an cquation abt all, unless the Nj are interpreted as vectors,
% Ve can maasure the extent to which the reaction (II.3.1)
] takes place by an cxtent of reaction parameter €. "Equation
i (I1.3.1) is interprected to mean that if the extent of reace
o ]
L tion § changes to § +4 d§, then an amount r1d§ of species
o \
:: s' é 1 \ - ~ 3 "7 g £ o
G Ny, rzd; of species Noy eves and rndg of specics Nn have
i % reacted to form an amount pldg of "species My, pzdg of spucics
B ‘h
: hz, , and pndg of species hn.
o
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Given any such stoichiometric equation, we shall de-

fine a vector 6, with components ej"{l <3 £mn) by viéWing

the -expression (iI.Srl) as though it were a mathematical vec-

tor equation; and treating the double arrow (&) as though it

were an equals sign (=), Bring all the terms to- the left

(changing the signs in the process), and collect the coefficients

of each Nj' Then if we let:
-r-
83 = T3~ Py
we will have the “equation":

n
(II.B.Z) z ej N- ;! 0'

We call any vector § so obtainable from a recaction a

reaction vector, Obscrve that different reactions may

have the same reaction vector.

As a condition thot ¢ be a reaction vector, we have
that: ‘
(11.3.3) g a,. 8, =0 (L<i<m)

j=1 A - -
whexe the a; are those of cquations (II,2.1). The condi-
tion can be made sufficient as well as neccessary; in actual
practice, the modcl maker judiciously designs (II.2.1)—
that is, detemmines the a; 4§80 that (II,3.3) will be a
sufficient as well as a necessary condition, (For a simple
cxample, sce [2], pp. 358-359.) We shall regard any vector
o that sazisfics (11.3.3) as a rcaction vectoc,
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While (II,2.1) and (11.3.3) are closely rclated, they
aké,hot.iéegtical, Unfortunately, the chemical literatﬁre
féferélto‘bp;h Qeté of conditions as mass balance laws.
Ve -shall rg-se}:ve the term "mags balance laws" for (II.2.1)

and call. '(IfI.fi",S) the stoichiometric conditions,
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4. the Mass Action Laws . ’

" For the time being, we shall confine ogr”attentiéﬁ‘
to -systems which exhibit the simplest form of the mass-
action 'laws, Such systems ar¢~ca;1ed*"idealf in [6]. A
further discussion of ideality can be found in [7]. We.
will discuss ponideal systems in a later section.

The mass action laws can be stated as follows: TFor

any reaction having a reaction vector 8, there is an cquis-
Librium constant k(g), such that, for any composition vece—
tor ® representing an equilibrium state of the system, we
have
n B
(IT.4.1) %, 3 =%k(C0).
=L
Note that k(9) does not depend on x., (IT.4.1) is a condi-
tion that x must satisfy if it is to be an cquilibrium om-
posiiicn,
We shall f£ind it useful to pesform certain manipul.a—

tions on (IX.4.1). Leo us first take the logavithm of
cazh side to get:

n
(11.4.2) T 8y log &. = log k(q).

1] J J

J

Equation (II.4.2) is thus satisficd for all reaction

veetors ei,that is, for all vectors g§ which satisfy the
stoichiometric conditions (II.3.3).

It should be noted

that the form of (TL.3.3) implies that if o and @ arce two

11
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reacticn vectors; then (ag + Bw) is also a reaction vector,

for any real numbers o and B. By the same token, the form

of (I1X.4.2) shows that for the same -8 and o,
'ioguk(de«+‘5@) = a log. k(e) + B log k(w).

Thuscibg;k(e) is a linear function of ¢, so that there

mus: exist ‘constants cj such that:

(I1.4.3) Tog k(o) = -jgl c{040

Substituting the value of log k(8) from (II.4.3) into
(11;4.5) allows us to restate the mass action laws as fol-
lows: ‘There are qonstants=cj (1 £ j < n) such that if ¢
is any reaction vector, and if x is any equilibrium com-
position, then ‘

D) =0,

o n
(I1.4.4) | z ej(cj + log %y

j=1
This form of the mass action law, which is quite equiva~
lent to the standard forms, is more convenient foxr oux
purposc,

Another form is often useful for computational pux—
poses. Consider (c + log &) as an n—-dimensional veetor,
whose jEE component is cj + log &j' If we also think of
the rows a; of the matrix A as n-vectors, then (II.4.4) ma
be restated as: If x is an equilibrium composition, then
(¢ 4+ log &) 1s orthogonal to cvery vector M which is in
turn orthogonal to all the vectors a,. But it follows

1n
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from elementary linear algebra that this condition is,gat~>
isfied,if‘aanénry,if (¢ + log %) is vepresentable as a:

linear -combination of the rows ai of A, That is, con-

~dition (II.4. :4) is satisfied if and only if there exists.

a vector m = (M, My, +sep W) such that, in matiix nota—

tion,

(11.4.5) ¢ + log & = ATn,

13
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5. The -Gibbs. Freg ,’Elié;:fgy Function

We will have. frequént occdsion to fefer to the free
mo;e:fuliy; fbr'nqw;=w§ notg;chag~Sigce>wé;qrevdbéliﬁg
with idedl systems with each: phase at constant temperature
and pressure, the free encrgy may be written as a functlon
of composition as follows [6], [7)

n ! 4 ( " - .
(1105:1)’ F(x) = j§1 XJ(cj'i' log &J)'

The.nuTbcrs cf are éélled free: energy parametcrs, but,ﬁcill
they satisfy (II.4.3).

The least-action. principle ([6), p. 29) for the free
energy statcs that the system is in equilibyium if and only
if its free cnergy is a minimum, subjcct to the constraints
(11.2.1-2); that is; a composition vector x° représents an
equilibrium. state if and only if F(x®) < F(x) holds for all
states x which satisfy the conditions (II.2.1) and (II1.2.2)

and which are. sufficiently close to x9,

Note that the least-action principle, as stated here,
requires only that F have a local minimum at x°, However,
it has been shown ([2], Theorem 8.13, p. 368) that F(x)
is convex on its domain—the nonnegative orthant—so that
every local minimum is in fact a global minimum, and the

underlined phrase above can be eliminated.
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‘6. Relation.of Gibbs Function tOvtﬁﬁaﬂnssfﬁctﬁopﬁLaﬁs

e

Let x bie-a ¢ aposition vector of the system satisfying.
the mass balance laws (11.2,1) and the nonnegativity condi~
‘tions (11;2;2), Such d ¢omposition vector we shall éq;g.
feasible, We wish to demonstrateé that x either satisfies
both' the masg-action laws. ((I¥.4,4) or (II1.4.6)) and the
least-action pyinciple for the free energy, or that x sate
isifes neither, Actually, this is only true when the vee-
tor x is positive; i.e., vher X; >:0, J=1,2, ia, N
If for some j,‘xj = 0, fhen the mass—-aétion laws no Yonger
make sense (except in trivial :cases), so that no -comparison
is possible,

This question is dealt wigh at lengih in [2]; we will
trcat here only the simplest case, the case when x > 0.

It can be shown that F isamipimizedugc;xpfgubjecc to:
the coastraings (I1.2.1) and (II,2.2) if and only if thexre
exists an m~veesor ™° such that x° minimizes the Lagrangian

function,
(II.6.1) Lix, ©°) = F(x) = n°(Ax ~ b)

subject only to the nonnegativity conditions (11.2.2,
But x° rurcly camnot minimize L(x, no) subject to

x > 0 unless for cvery n—-vector § satisfying x° + to >0

for t > 0 sufficiently sunll, the derivative of LGx, w°)

. ’0 . . .. [} -~ - ' - .
at x~ in the dircetion & (weitten Le(x, no)) satisfios

15
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foid(?go;@thpn'thé sot of § we must consider ‘includes

every n-vector, Furthor, it cdn be shom ([2], Theoren
8,11, p. 368) that for x°>.0,

IE.6.3) L '(x® 0 = & 1o 20 = AT:Oy
(11.6.3) Lg(x°, 7i") = jgi 84(ey + log &y = Ayi°)
whengwﬁjfdgnotes~thg‘jgslcolumngpf*the,matrix A.
.Fuithér, from (II.6.3) we see that
. ' * 1 .
(11.6.4) g;e(x°, 1°) = -Legx°, 7°)

so that if (I1.6.2) 4s to be satisfied both for 6 and —g,

we must have (if x° » 0) ¢
1. . .
(11.6.5) Lg(x% n°) =0 ‘% geE",

But we see from (I1.6.3) that (II.6.5) is satisficd for
all n<vectors ¢ if and only if:

(11.6.6) | ¢ + log £° = At |

Compare the result (I1,6.6) with (II.4.5). We have shown
that x® > 0 satisfies the mass action laws if and only if
x° minimizes the Gibb's function, in cach case subject to

the constraints (IL.2.1) and (11.2.2).
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For any reaction having reaction %
p

:‘\h "\"'A :_ ’,‘) - o o) ,é ;\& ‘:‘a.i-:;“ E P ~ jxt‘,fl_‘:: > 7
;f% A "? . ‘:" ;fi) o < ,\,:“\ g & ’ EY A * ,,x,;\ f B * A
iy
& J.« _‘Nonideal Cliemical Systems :
L T e ( - %
R ¢ In: nonideal chemical systems; only the mass-dction: :
: ( laws changé. The mass. balance laws. temain linear. It is :
b usual, however, ‘to: cast the mass-action laws into the idecal :
4 form by substituting finctions called "activities" for con- %
l centrations. The "aétivity“ of a species j is thought of ;
ST as its "effective concentration", when- the system has 3
S , | ;
§§ % composition x, and is a function -of the composition. Thus: f
& .
A 11.7.1 a, = a,(x).
b (.71 Sy
RERS As will be shown in Section III.7, the activity is a
: ! ’ function honiogeneous -of degree zero in the composition,
T .
s so that: .
1B |
E;g g J j
%7: =
o Often, activity coefficients are used. The activity
f; i coefficient of species j is simply the ratio between its
;; activity and iis concentration.
i1 a, (x)
; (11.7.3) Ay(x) = A
»;:» }:o "
3 It can be seen by (II.7.2) and (II.1.2), that xj(x) is £
I % also homogencous of degree zero. i
C# Using activitiles, the nonideal mass-action laws may i
TN
Pfi; be stated as follows:
!
{

vector 6, there is an cquilibrium coustant k(8), such th. t

( X
s " i
7!5 for any composition vector x representing an cquilibrium .
S b
il i} oi
S 17 :
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state of the systen, we have:

. » n o By
(IL.7.4) m_(a0x)) 3w k(o).
| =L

The same dcévelopment as used. in Section 11.4 can be
used to show that there must -exist constan’s cg_suéh that
if x iS“anveqﬁilibriqm composition; then there mist exist

a vector m: (W, ..., ) satisfying:

(11.7:4) ¢® + log a(x) = Alm,
Alternately, if:

(I1.7.5) c;(x) = cg + log As(x),

we may write (1I1.7.4) as:

(II1.7.6) c(x) + log % = Alm,

It can be shoun by the use of (I1.7.2) and Euler's
Theorem on homogenecous functions (see, for example, [8]
p. 234) that if x is strictly positive—i.e., x > Of-then
x can satisfy (I1.7.4) or (II.7.6) if and only if the
function F(x) achieves a minimum at x subject to the mass
balence laws (II.2.1), where:

n
11.7.7 F(x) = T x.(c° o a.
( ) (%) i x.J(cJ + log aJ(X))

n
= 3 . . .
yo xJ(cj(&) + log hJ).

One might arguc that some x satisfying (11.7.4) (and

18
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(11.7.6)) might maximize F(>) rather than minimize it.

As will be shown later, however, F(x) must be a convex

3

function, ruling out this possibility.
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The Gibbs function 1s an example of what is known in

thermodynamics as a characteristic function. Characteristic

functions are the central element in thermodynamics. From
the characteristic function of a thermodynamic systewr, one
may compute every quantity of interest to the thermodynam-
icist, 1In this section, therefore, we will explore the

concept of a characteristic function, and the consequences

of the laws of thermodynamics cn such functions.

1. Themodynamic Properties

Properiies of a thermodynar .c system form the starting
point of any study of the system. They are defined (more
cr less) as the results of certain measurements done on
the system, and certain computations done with these mea—
surements, Thermodynamics is the study of the relation-
ships of such properties, although, strictly speaking, at
least one property of interest should depend on whether
the system is hot or cold,

It is not our purpose to define these properties or
to describe their physical interprctations, We arc cone
tent to list a few of the more common ones. These include
composition, volume, pressure, energy, tcmperature, entropy,

enthalpy, chemical potential,

20
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2. The State of a System

Once we have listed all the properiics of intercst
of a thermodynamic system, we note that the various rcla-
tions among them, as described by thermodynamics, allow
some to be computed from the others. Suppose the exper-
imentor chooses from this set of preperties T a subset S

satisfying the two conditions below:

(i) Indecpendence — it should not be poscible
to computec any onc of the properties in
S from the others in S,

(ii) Completeness — it should be possible to
derive every propoirty in T from a know-

ledge of only thos in S.

Then S is one possible representation of the state of the
system, To describe the state of the syrican one must
evaluate cach of the properties in S.

From a mathematical point of vicw, 1the properties are
simply variables, and the state of the usystiom is dcgcribed
by specifying a sufficient number (cowploetenes.) on ilia -
pendent variables,

Which of the subscts S satisfying (i) and (ii) is to

be chosen is a matter for the thermodynamicist to
decide, on tlI hasis of convenience and good taste, Or—
dinarily he would choose as independent those variables
most casily mea urable and centrollable, so long as this

choice does not violate (1) and (Li).
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For cxample, for a chemical systcn, most of whose
phases are liquid and hence incompress.ble, one would
not choose volume as an independent vowiable, One would,
rather, choose to measure and control the pressure of ecach
phase. Similarly, temperature can be controlled and mea—
sured more casily than internal energy; hence onc chooscs
the temperature of each phase as another independent variable,
The description is completed by specifying the composition
of cach phase,

In more complex sy tems, a state description might
require additional proprrties, Tor a more complete dis-—

cussion of these matte.s, see [1], [6].
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3. Characteristic Functions

Suppose we have listed for our system all the proper—
ties in which we are intecrested, and have somchow chosen
from anong them a subset to use as our description of state.
Ve must now somchow relate the state variables (i.e., the
properties used in the description of the state) to all

the others, This is the duty of the characteristic function,

a function of the state of the system from which it is
possible, by various manipulations, to compute all the
properties of interest which are not themselves state

vax lables,

In [6), p. 24, onc may see an example of this. Gug~
genheim shows there how to compute from the Gibbs function,
its dewivacives of various orders, and the state variables
(in this case temperature, pressure, and composition of
cach 1 ase), such quantitics as entropy, cnthalpy, volume,
encrgy, chamical poteati ls, and others.

Lvery charrcteristic function of a given system is
equivalont to every other; given any ch racteristic func—
tion, explicizly a function of one description of state
Sl’ we are told by the implicit function thcorem that it
can also be considered as a runction of any other descrip-
tion of state 82' However, for particular sys.cms and
particular problems, one characteristic function is usually
more convenicnt than any other, In our casc, the Cibbs [ree

encersy function has beva found most appropuiaf .o,




Characteristic functions generally have the intex-
pretation of energy, or somethiug closely related such

as energy divided by temperature.
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4. 'The Global Least-Action Principle ' é
Onc of the uses of a characteristic function 1s to
indicate what changes in a thermodynamic system may ocecur,
and what changes may not, This is because if the thermo-
dynamicist chooses wisely, his characteristic function
will obey a global lecast-action principle,
Given a ther odynamic system, one may obscrve that

its state changes over time. It may be in state s, at

time t;, but in state s, ¥ s; at time t,, A function F Y
of the state of the system is said to obey the global

least—action principle if for any two such states $1 and S9,

S row

F(xz) < F(sl).

Thus if we consider as the system cvolves, that its state N
is a function of time, then F, also con:idered a function .

of time, must be monotone decrcasing. (This can be stated

iy ro

as well with T a monotone increasing function of time,

Then, of course, -F will be monotone decreasing,)

g

There is one other condition that F must satisfy if

it is to obey the global least—action principle, This is

Fow -

the local lecast—rction principle introduced in Section LI
Thus a state s° may be a stationacy state if and only if
F achieves a local mininum at g©,

In this scolion we will show that every chasactoeristic

function, if choscn wiscly Lor the systoa bein- coidered,
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obeys the global least-action principle. It is only ncces—
sary to assume that the system obeys the second law of
thermodynamics, We shall do so only for systems with one
phase, and orly for the four most widely known and used

characteristic functions, In fact, it would be sufficient

to demonstrate this for a single characteristic function,
and then note that all characteristic functions are
equivalent,

We will require the following thermodynamic quantities:

P is pressurc
T is tempevatuxe

K. is the chemical potential of species j,
J a function of the state of tha system,

V  is volumec
q is heat absorbed by the system
w is work doi: on the system

X is the amount of species j,
The characteristic functions we will consider are:

G is the Gibb's function
I is enthalpy
U 1is enecrgy

A i

W

the Helnholz function,
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- § 1is -entropy. :
SRR
i ;
(I The laws of -thermodynami¢s are concerned: with -changes :
. in the staté of a system. These changes are called processes. ‘
52 N . _ T ———- 3
;o It is usually most .convenient to. consider only infinitesimal :
) e y , : :
’ ’ processes, about which Guggenheim ([6] p. 12) has this to :
L . ' '
v
Lo
Lt .
S  All the independent infinitesimal processes
gt that might conceivably take place may be divided
. into three types: natural proccsses, unnatural
: ¢ processes, and reversible Proceésscs,
% %1, R e B
S Natural processes are all such as actually
S do occur; they proceed in a direction towards :
A 4 equilibrium, ;
;- ; An unuctural process is one in a direction :
o away from eyuilibrium; such a process never ‘
: § occurs,
&
f

) As a limiting case betwecen natural and
N unnatural processes, we have reversible pro-

;
S cesses, which consist of the Passsage iu
D cither dircction through a continuous scries
; s of equilibxium states, Reversible processes
. : do not actually occux, but in vhichever direc—
} : tion we contemplate a reversible process we
X : can by a small change in the conditions produce
‘ g a natuxal process differing as little as we
{ choose fxrom the reversible process contemplated,
&
o) 3
Y When an infinltesimal process occurs in a thermodynamic
| system, we arce told ([6], p. 10) that the change dU in the
t.; .
CF encrgy of the system is cqual to the suwm of the heat absorbed
- f by the systom and the work done on it. That is,
8]
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5(11'1,'4.:1»,) - dUi= g w

If heat is lost, or-if work is: dorc by the systcm, then
q or w-appears -4s a fiégative number.
The. worK. term w“maylﬁe related to the pressure and

volume -6f the system ([6]; p.. 16), Thus:
(111.4.2) : W= —PdV,

If the systam expands by an amount dV, its pressurc being
P, it has done work on its surroundings.

The Second Law of thermodynamics is stated in terms
of entropy, It says that any naturally occuring process
will increase the entropy of an isolated system., An
isolated system is one which ncither mass nor energy (in
the form 6f heat or work) is permitted to enter or leave
the system,

When the system is not isolated the change in entropy
is partitioned into an external and an internal contribu—
tion, The external contribution is the ratio of the heat
absorbed to the termpcrature at which the heat is absorbed,
The internal contribution is, according to the second law,
nonnegative. In general, then, the second law says that

for any natural infinitesimal process,

(III.4.3) ds » q/T.
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’fﬁquaiityshoiaa for reversible processcs.

’The'entrogy funcgion-may be considcited as a charac—
teristic futhiong in fact the most convenient character—
istic function to use for systems-whose«epe:gx, volumc and
‘material contént are constant. Note that this describes
an isolated system,. for~which the second law takes its
simplest form. 1In .general given any infinitesimal process,
the change in entropy may be cpmgdted ([6), p. 23) by the
formula:

(rrrns.)  as = vhau 4 oleav - v g owgax,.
. j

Substituti  Equations (III.4.1) and (III.4.2) into (IIL.4.4),

we see ‘thaty

(IIT.4.5) as =31t 5 ax,.
g\ 3 J J

Temperature in thermodynamics is absolute temperature,
It must always be a poaitive nuabex,.. Thus the second law

simply states that for any natuxal process,
(LI0.4.6) X uth. < 0.

K 3=

Equality holds fZov raversible preocesces,
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As previously mentfbned,'each chatactoristic function
is particularly well éuﬁtcd‘for one particularx description
of the state bf the system, If the state of the system
is -described by the pressure, the temperature and the
.compositicr, then the Gibb's function is best, Then for

any process,

(II1.4.7) dG = ~SdT + VAP + T ujdxj.
' k|

If the state is described by entropy, pressure and com—

position, then the enth.lpy is best:

J

If the state is described by entropy, volume and composi-

tion, the encrgy is best:

(I11.4.9) dU = TdS -~ PdV + z ujdxj .
3 )

Finally, if the state is described by temperature, volume

and composition, then the Helmholz function is best.

(111.4.10) dA = ~SdT -~ PaV + X% pjdx-j.
j

Just as the seccond law stated in texms of ontropy
takes a particularly simple form in the case of an isolated

systam, so if it is stated in temms of diffcront characteristic

30
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functions will it take a simple form for other, nonisotated
systems. Thus for a system whose temperature and p;esSuxe
are constant, we look to the Gibb's function. We have

dT = dP = 0, so that from (IIL.4.7), dG becomes:
(IIIQ4011) ‘ dG = 2 u 'dX’ . s
' 3 J 3

If entropy and pressure are constant, we have dS = dP = 0,

and the change in enthalpy (III.4.8) becomes:

(111.4.12) dH = ¥ pn.d%..
3 J J

If entropy and volume are constant, then dS = dV = 0, and

the change. in..enesgy (IIL.4:9) is. justs

(111.4.13) dU = I ydx,.
3

And if tempcrature and volume are constant, then dI = dV = 0,

and the Helmholz function (III.4.11l) changes by:

(111.4.14) dA = T p.dx..
jJJ

If we appecal to Equ.tion«(III.&:B), we see that the
second law may be restated in a simple form for any system,

Given any natural process,
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(a)

(b)

(c)

()

if the temperature and pressurce are constant
throughiout, then .the -Gibb's function is monoton-
ically decrecasing—i.e,, obeys the lcast-action
primciples

if the entropy and pressure arc constant through-
out, ‘then enthalpy obeys the least-action principle;

if entropy and volume are constant throughout,

then the energy obeys the least—-action principle;

if tempeorature and volume are corstant throughout,
then thue Holmholz function obeys the Least-action

principle,
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5. The Form of Characteristic Functions

We may considér a thermodynamic system. to be completely.

-defined by its characteristic function F (which obeys the

least—action principle), and a set of constraints on the
state variables. In the case of chemical. system, the
characteristic furction is the.Gibb's function, and the
constraints are (1) the mass-balance laws and the non-
negativity conditions on the composition variables, and
(2) the constraints that pressure and tem)erature be
constant., ‘

If this is all we know about our- system, we cannot
be content Qith Guggenheim's classification of infinit-—
esimal processes, Maintaining those definitions as far

as possible, we say:

Definition III.5.1: An (infinitesimal) process is a vector

6 and .an ini’' ial state s°

satisfying the constraints of
the system such that s + t0 also satisfie§ the constraints
for every sufficiently small positive real t,

In our case, the state s includes composition x and
temperatures ™ and prcssures\Pa of each phase. Since the
Ta, P¥ ave constrained to be given constants, a process
o must have its changes in these variables equal to zero.
lience only composition nced be considered, and a process
reduces to a reaction ve ftor such that x + t6 > 0 for t >0
sufficicntly swall., Such a g is called admissible at the

composition X,
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Since the characteristic function satisfies the
Iegét;agtion principle, 'we know that any process that
does occur leads to a decrease in the function, Turning

this around, we define}

Definition ITI.5.2: A process (s°, 8) is called an n-process
(a mnemonic for natural, but a different name to avoid

confusion) if:

o) .0
F(s” + ;23 -TF(s) . 0.

(III.5.1) lim
t-0t

It is called a u-process (for unnatural) if:
F(s® + t8) r‘F(so),> 0

(111.5.2) 1lim U .
t-0"

It is called an r-process (for reversible) if:

F(s® + £0) - F(s%) _
- e t o

(I11,5.3) lim
-0

This definition limits us to those systems whose char-
acteristic functions possess all the limits necessary in
the definition; but this includes all the systems that we
have ever scen,

The corxespondence between Guggenheim's processes
and ours is as follows:

(a) A process is unnatural according to Guggenheim

if and only if it is a u-process.

(b) Every natural process is an n-process,

(e) Every reversible process is an r-process,

The converses of statements (b) and (¢) are not true.

Not cvery process is classified by CGuggenheim,

3k




T Y T

P et

e ey s e

Guggenheim ([6], p. 9) states the first law as follows:

When several systems interact in any way with
one another, the whole sct of systems being isolated
from the rest of the universe, the sum of the
engrgies of the scveral systems remains constant,

Here the wo¥d "isolated'' means that neither mass nor energy
is permitted to enter or leave the set of systems.

Suppose, however, that we permit energy to enter or
leave: the 'set of systems, but close the systems from the
entry or exit of mass, Then clearly the first law will
still hold for thosec processes such that no energy actually
does enter or léave, We have carefully defined r—processes

to satisfy exactly this condition,

The second law, of course, is simply the statement

that the characteristic function satisfies the least-action

principle for the system under consideration., These two

laws have important conscquénces for the form of the charac—

teristic function,
Consider a chemical system consisting of a single

phase, with composition x and characteristic function G(x).

We also call G(x) the frece encrgy.

“seeecssecreces
® ® © 0 OO e 0O 0 09
® ® O & 8 "0 OoO e O

\ .
1 2 L] L] * n

If we divide the phase into n identical parts, then the

free energy of each part is the same,
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If we dgain put thesc parts togcther, we find the
result is indistinguishable from the original phasé, What
we have done and undone rust have been an r—process, so
the;fifst,law applies. That is, the free energy of the

system is congerved, and:
1 _ 1
G(z x) = = G(x).

Clearly, G(%»x) is the free energy of one of the parts, each
of which ‘has composition %»x.
We may take any m of these parts (if we wish, we may

let m > n) and mix them, and by the same arguments as above,

G x) = 2 6(x).

Characteristic functions are always considered to be
continuous, Thus we write that for any nonnegative real

number ¢,
(I1I.5.%) G(ax) = aG(x).

The first law also tells us something about multiphase

systems, Let .a chemical system have p phases, Let the kth

phase have composition vector x(k) and characteristic (or

free energy) function G(k)(x(k>) when considered as a separate

system.,
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On the -other hand, we may considi:” il the phases ‘to-

gether, as though they are a single system. In this case

the characteristic function will be G(x(l), x(z)g .l.; k(P)).

But such a‘conceptual change, being nu change at all,
is an r-process, and hence conserves free energy. Thus:

(r11.5.5) 6V, ..., x(PY)y = 3 R (k)y |

k=
Property 1: The free-energy function (or characteristic
function) of any chemical system, ideal ox not, can be
partitioned into a sum of functions, one for each phase of
the system, Each of these subfunctions is a function only
of the state of the phase for which it is written, and is

homogencous of dr. -ee one in the composition of that phase.

Lexma TTI.5.3: The ideal Gibbs free energy function,

F(x) = x + (c 4+ log R), has property 1.

p
Proof: In ithis case, if F(x) = S»=F(k){x£kajy:we~seé"thatr
' k=1 o

F(k)(x(k)) = % x.(c, + log %)
je<k> + J

Multiplying cach xj in a compartment by thé same factor a
changes ﬂj not at all, so that F(k>(x<k>) is clearly homo-

genecous of deprea one. Q.E.D,

37

P




[y i syt

T L Canr s
TR RANEE S

"

Next -consider two chemical systems, each with a sing'c

compartment, ‘They will have compositions x and y respectively.

1 1 We can arrange their free

; ‘ -energy functions in a suf-
Cox :N‘Yq,ww“vf°* X + ) ficiently general way to
y 1 insure that the first has

free energy G(x), the
second G(y). Wec'can do this by allowing in G for an energy
contribution from. every species that occurs in either
-compartment, although any species may be at zero level in
one or the other of the compartments.
‘Experimental evidence indicates that if x is not a
scalar multiple of y, then mixing the two coipartments

together is an n-process. In this event, assuming that

X, Y‘II’O:

(III.S.G)_ G(x + y) < &(x) + G(y§ (if X # ay) .

Definition II1.5.4; Let x and y be two composition vectors

of a multicompartrented system. Let x(k) be the composition

of the kth

compartment when the whole system has composition
X, and similarly for y, Then x and y are said to be quasi-
dependent (written x ~ y). if for cach compartment <k> there

exist numbers a<k>, B<k>’ not both zero, such that:

<k>x(k) + B<k>y(k) = 0 for every compartment <k,

This notation was firvst introduced in [2], p. 362.

38

R N S




Lemma IXL.5.5: If x ~'y, then for every species j,‘onc of

the following holds:
(1) %y = 9, (if'i<j> 50 and §<j>v>Ao)

(i1) Either X 4, = 0-or yo55 = 0 or both.
Proof: Clear from Definition IV.3.2. ‘Q.E.D.

Using the motion of quasi-dependence, and inequality
(II1.5.6),coupled with the Property 1 in a simple way, we

can state:

Progcr%x"g: Let x and y be two compositions of a multi-
compartmented chemical system with free-energy function G,
Then G is linear on the line joining x and y if x ~ y,

and strictly convex otherwise. '

In particular (and much morc simply), G is convex.

Lemna 117.5.6: F(x) = x + (¢ + log &) has Property 2.

Proof: [2], Theorem 8.13, p. 368.

It should be pointed out here that the author realizes
that some substances arc only partially miscible, An example
is oil and water, One might arguc¢ that such a system is
an cxception to Property 2, since a phase consisting of
oil saturated with water cannot be mixed with .a phase con-
sisting of water saturated with oil, Indeced, if the attempt

is made, the phascs will spontancously separate, Thus the

39

A1 A A PR Pr e b TmaITe A3 1 S Seat

2 AR~ g e e 5



SN

YR

AR

free enexgy of the mixture must be greater than the sum
of the free encrgies of the two separate solutions.

This proposed counterc:ample to Property 2 neglects
what waé sdid in Scction II.l, that moleccules of the same

substance but in different phases would be considered ag

different species. This is not simply a ''cheap way out"

of thé dilemma, A molecule in a solution ig not simply

an isolated objcét, It ‘has interactions with cther molc-
cules, both like and unlike, in the solution, It is these
interactions and the consequent configuration of the poten-
tial field surrounding a molccule, as well as the atoms

of which it is made, that detemmine the characteristics
necessary to define a speeies. All these charactéristics,
save the building blocks of which the molecule is made, are
rejesented by a parameter called the "chemical potential,"

and which is different for a water moleccule suriounded by

611 wmolecules than for a water moleccule surrounded by other

water molecules.,

Moxe detailed information on tiis poinrc may be obtained
from any book on statistical mechanics.,

This comjletes the exposition of the desirable properties

of charactexistic functions, save for pointing out that it is

always assumed that whenever x >-0, they ave (at least) twice

continuously diffcrentiable, and that they arce continuous on

the entire set {x | x » 0}.

The author is griteful to Dr, N, Z. Shapiro for permission

to use his vesults, the devivations of Propertics 1 and 2,

in this papar ., 40
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e 6. Boundiry Behavior of Free~Energy Functions
- - . SR -
P If we assume that x > 0 and compute the partial ;
derivatives of the ideal Gibbs free-enexgy function, we find ’5
that. ;g
| : 5F R
: 1f we then allow x; to approach zero, while retaining - o
? ' !-:1
| ’§<j> > 0, we find: {3
- 4
' . oF- ;
‘ (T11.6.2) lin o = e, k
i 40 0% |
i :
it appears from various theoretical considerations ;

(e.g., [1], p. 135) that (IIL.6.2) is generally true for

arbitrary free-cnergy functions.
We have exploréd this question elsevhere from the point of

view of statistical mechanics, and it appears as though the

T

only assumption. concerning the behavior of particles in

AR T

;o ~ the system one requires in order to prove (III.6.2).is that

interactions between pairs of particles are of short rangeé

woartn Y g

only (and so can be neglected at low concentrations),

ii Let x be a composition vector, and § a vector such .
: that x -+ tg > 0 for sufficiently small positive t, Une ‘
i -

| defines for such pairs x, §, and for cach free-cnergy func— g

tion T, the derivative of ¥ at x in the direction § to be:

:

-

EEEN ] Sl e 4 T

'L ‘ (IIL:G . 3) T (x) = 1im J (4\ l Le). r(-u) .

\ e t_.o"‘ t é
| "




AR Rt

i ot SR e g <

If we admit extended real numbers then this Limit always
-exists for any frce-energy function corresponding to a.
real physical system. (It must exist for almost all pairs
(x, 8) by virtue of the fact that I is convex.)

If we definc:

= 0}

I=1{<j> | ’§<j>

(S
i

{jlxj>0}<

K

1l

{3 | §<3> > 0. but X; = 01.

then since. free-energy functions are always highly dif-

ferentiable and because of the homogeneity property,

1. . . '<j> <j>
(I11.6.4) T (x) = 5 FP (9% 4 5 o X7
<j>el jeg d *3

1if Gj = 0 for cvéry j. € K, and:
(IIL.6.5) Fl(x) = o

if for some j ¢ K, Oj > 0. _
It can be shown ([2], p. 366), that the ideal free-
encrgy function

F(x) = Exj(cj + log ﬁj)

satisfies (111.6.4-5).
It must be pointed out that (IIL.6.4-5) are only

assertions. They cannot be obtained as consequences of

preavious results.,
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7. Twplications for Chomi al Systems

Consider a chemical system with charactéristic func—
tion F(x). Aécording to Sections II.5 and TI.6, this
function must be phasc separable, and the function written
for each phasc must be homogeneous of degree one, and
strictly -convex except on rays passing through the origin.

~ "A
Let F<k?(x<‘>).be the function associated with the
th

<k>-—— phase, By Euler's Theorem for homogencous functions,

(sce (8], p. 234), wé may write, for x<l>

{ the damnin of r<k>),

(Inn ey o g o, EIEE)
je<lks 3 %3

Sumaing (TIL.7,1) over all phases we find:

< L] N AR ]
TTT () = ¢, S T AKX T ).
(1317.2) ‘ F(x) =% hj s

But by the same argument as produced (III.7.1) we know that:

(1I1.7.3) F(x) = % x, ELD
§ TN

a <35> 5>
Cleaxly, then, §;~ = OE\ ).

In addition, since F

L] - - a
is homogengous of degree one, oz must be homogeneous of
J

degree zeno,
For each j, we arbitravily choosc a constant €4
and defina:

43
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(1II.7.4) a; () o (x) )0

exp (TT - CJ

Substituting (III.7.4) into (III.7.3) shows that F(x) may

be written:
(I11.7.5) F(x) = Z,Xj(cj + log<aj(x)).

Compare (III.7.5) and (IL.7.7). It is in the manner above :
that the activitids of species in a nonideal chemical system '
may be computed, |

We -an see, though, that if the activities are computed

in this way, they must satisfy certain conditions.

(i) TFrom Equativa (IXL.7.4) and the fact that F is
phase separable, we find that aiﬁx) is homog ncous
of degrece zero, and depends onl; on the variables
X such that k e <3>.

(1i) Since F(x) is convex, we must have

‘J

(IT1.7.6) __~§ .

0X .
J

If the phase <j> contains more than one specics,
then the infinitesimal change implies by partial
differentiation is in a direction along which ¥
is strictly convex., Thus the inequalicy (IIL.7.0)

holds strictly, and:

bk
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Since aj(x) > 0 (it is an exponential), aj(x)
must be a strictly increasing function of.xj,

other variables being held constant.
(iii) If phase <j> contains more than one species, oo~
then x; may tend towards zero while 2<j> remaing

bounded away frem zavo, Thus from (III.6.2) we

2 o A
P

haye: (agsuming ¥ <5 ‘

(I11.7.8) 1lim (%) . lim '(ﬁj + log aj(xﬁ) = o,

. - [¢) 4 P
’ < j 0 J .wj 0
Clearly, then, N
(II1.7.9) Lin  au). = 0. : 3

x,.=0.
J

Thus the activity, or .effective concentration,
of a species must be zero when none of that ;

species is present—not a particularly surpris—

ing result, %
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TV, KINETICS

Every chemical system, and likewise cvery thermo-—

dynamic system, is a kinetic system, whosc -evolution can

be described by differential equations called kinetic laws,

It is reasonable to ask what kinetic systems. correspond to

theymodynamic or chemical systems. The method we will use

to ciamine this question will be to construct from thé
kinetic sysitem a function satisfying the least--action
principle. Then if the function also happens to have the
appropriate prope i"las, we will know the kinetic system

may be considured a thermodynamic one also.,
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1. Kinetics and the Least Action Principle

The chemical system considered in this seetion is a

special casc of what. arée called primitive systems in [9].

It is a two-ph:ge chemical system satisfying the assumptions:

1. There are no charged species,

2,  There is only one possible reaction; the:
migratiion of molecules of one particular
speciés from one ph.se to the other.
Molecules of 2ll other species are re—
stricted to remain ii the phase they
initially occupy.

3. The species in cach phase are miscible in

all proportions.

We name the two phases Phase I end Phasc II. The
composition vectors of the tvo phasés will be x =
Qxl, X, sies xn) and y = (yl, Yos sees yﬁ) of Phase 1
and of Phase IT respectively., We consider that a molecule
of species j «n Phase I (with correcsponding composifion
variabhle xj) is chemically indistinguishable from a

molceule of species j in Phase II (with composition

variable yj). The only difference is that they occupy
different phasces, Note that if we wish some nonperxmecable

substance (i.e., a substance not allowed to pass from onec

phase to the other) to appcar in (say) Phase I only, we

Y
¢

AT e,




St A tae e

Pt e oo

K

RN A Y o/ st tion

S ?"\.:.g»xw; o
Yra kS
VX

A

nay set the ampunt of the same substance ifv Phase II to
zero., Thus we are nok kept fiom considering mixtures of

very dififerent compositions indeed.

For notational convenience, we

assume that it is .species 1 in

\\wn‘z;rl‘.g%w

each phase that -can migrate to

-—.—-——.—qmu-—w

“Phase L Phase 11 ,
the other phase,

Consider this primitive system as a kinetic system,
that is, with its cvolution desciibed by differential
equations. Turther, supposc that the functions expressing
the wnidirectionnal £lows of species 1 from Phase I to

Phase II, and from Phase IL to Phost T ave knowa. to be

i

J. and J.. respentively, ond that:
T 11 P Y,

(Fv.1.1a) .= S
(IV.1.1b) Jpp = 3(3).

Thus, the wijdirectional rate of flow of spocics I from
one phase to the other is asscuwa-d to depend only on the
state of that phase from waich the flow originatgs}«ﬁﬂ@
the function describing the wnidirectional fLlov is the
same regandless of the dixcction of f£low,

Next, we sensibly ascume that

(Av.1.2) Jx) » 0

138 ' V
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A for -all compositions x >0 (it may be zero if g =Q0), "
[ Finally, we assume that J is continuously differenti- ;<%
:able in each variable, whénever that variable is positive, .
and to avoid a trivial problém, that the gradicnt of J is f
g Never zZero, Vij
o
Ouxr aim in this section and thie next is to construet R
S f . 3 . 3 * . [ “g i
: from this primitive kinetic system a function for which s ]
the global least—actionh principle holds. °£§
. We may write the differential equations describing ;}
the evolution of this simple system as follows: "
< o
’ dizy 1
(IV.]..[.'-) ae = J(Y) - J<x)
dy ds: .
1 _ ; ‘L *
! 5 —— 2 ) - B e o
(Iv.1.5) T J(x) - J(y) T >3
- We wish to (i d a function G cor.usponding to the function ]
J, such that G has the following properties:
‘ L. G should be phase scparable, That is, we .assume
that G may be written as: :
- ;
g (Iv.1.6) G(x, y) = G(x) + G(y). :
A 7
é We expect the symmetry of G as a éonscquence of the Symme try
. of the kinetic system. ;
- kg
%:1 e 2
5 ;




2. We assume G to be continuous for x > 0 and twice
continuously differentiable for x > 0., Thus we assume

that‘iﬁs
(IV.1.7) ' 3(x) = Egéfl

then ¢ and Vé, its gradient, are defined for x > 0.
3. We assune G satisfies the global least-action

principle with respect to J. Thus:
) '

. ~ di dy
dG _ 3G(x) L . 3G(y) "L |

We further assume that G satisfies the global least—
action principle with respect to J nontrivially. Thus

$ =0 if and ouly if:

dx dv
L = J].‘ =0
ac = 0

We obtain an immediate consequence of these three assump-

tions by substituting (IV.1.4-5) and (IV.I.7) into (IV.1.8).

After some simple manipulations this yields:

[3(x) = ¢(NIIG) - I(W] > 0.

i

(IV.1.9) -2

By assumption, we have equality if and only if:

C Iy ~ J(y) =0,

50
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Suppose. the states of the two phases are very nearly

‘the same; then we let:.

X =y-+ to,
Substituté these expressions into (IV.1.9), divide by t?,
and take the limit as t ~ 0, We find, then, that:

(IV.1.10) ESORCHTI

We have taken 6 to be a ¢olumn vector; eT 1s 1its transpose,

The gradienf veetors V¢ and VJ are considered to be row
vectors, and in (IV,1.10) they are evaluated at the point y, -
Equation (IV.1.10) is true for every vector 8§, so
long as all the partials used exist, (Certainly so long
as y > 0,) Thus the matrix (Vé)T(VJ) must be positive
semi-definite, ‘
Alicrnately, we may view (IV.1.10). as requiring that
the product of two lincar functlons of ¢ be nonnegétive.
Clearly, this condition is satisfied if and only if v§ is
proportional to VJ with a nonncgative constant of propor-
tionality, It is obvious that if v§ = kvJ for some k >0,

then:

(w111 " (v (e = k[ (vaye)? > o.
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If oh‘the'othcr—hqug (vs) # k(vJ), then since (vJ) # O
and {v3) # 0 (else V& = k(VJ) with k =0), the two sets
{o](v3)o = =1} and {0](v3)0 = 41} describe hypetplancs;

»which:by assumption cainot be -parallel. At any valuc of
8 where they meet, (IV.5.10) is violated,

Finaliy, if vo = k(vJ) for k < 0, then (IV.1,11) is
still true with the final inequality rcversed., Dy the
assumption that {VJ} # 0, there will exist ¢ such that
(v3) 6 # 0. Heace we may easily violaie (IV.1.10).

We may thorefore write:

C(IV,1.12 via(y) = k(y) - vI(y)

where k(y) iz a nomnegative (scalar

~

Sce. Tor

”

function.

.

example, [8] p. 322.) 7o satisfy our condition that G be
twice continuously diffevontiable, we will insist that
k(y) Ve conmtinuous; end to avoid irivizl G and satisfy
the condi.ti T 0 untess ok = Dk 2 g, ]
TOE cOondLoLon -::“ at - | 4"‘ 20 e, 2 = o Tra aie

WL CLOY 121 XS < untess Fita dt s we insist
that k(y) be strictly positive,

Ii is ceavenient, as we shall see, to choose as our

integrating fuaction k(y), the Ffunction k(y) = -y

d\))
Substituting this choice into (IV.1.12) and integrating

L%

we find that

52
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(IV.1.13) %‘IL)-?@(;?) = ¢ + log J(y)

where ¢ "is_,a constant of ‘integration,
We cannot for general J-explicitly integrate (Iv.1.13)
to find ‘an equation for G.
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2; . Generalized Mass-Action Laws

Lét us consider a kinetic system with a single reaction,

) (’ -«.» . Q .
(1v.2.1) ji:k rJNJ‘ @ 321 ijj

The forward rate of this reaction shall be'J%(x), and the
backward rate J (x). Thus if species j is a reactant

and not a product (rj > 0, Py = 0), then its rate of
disappearance "is:

is

(.2,2) GeD , = 77 6.
Similarly, its rate of appearance is:

ax,
(1.2.3) G, = 236,
Y
If a species j is a product but not a reactant:
(rj‘a 0, Py > 0), then the similar quantities are:

dx.

(IV.2.4) (g) = p.I(x); (dxj> = p.Jt).
2. T Pj P e, 7P .

Dis
For spov:.  which are both products and reactants
(rj > 0, Py > 0), the appropriate expressions are sums
of the above.
As in the previous section, let G(x) be a least—actio:

function for this kinetic systew., Thoen G(x) must satisfy,

5k
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(17.2.5) -

KKM:S

0 %o
j=1 0%y GE

with equality if and. only if H" = .0, We may substitute
from Equations (IV:2.2-4) into (IV,2.5) to find:

n . ) Ay + ‘
(W.2.6) B Sl "6 + 2yt G0 = (ryd7G0 + 0T G0)] < 0.

Collecting terms, we find that:

n
(1v.2.7) [‘El (r - p ) ](J*(x) < J (x)) < 0.
. J=
Equality will hold if and only if J™(x) = jt(x).
Looking back, one may see that Equation (IV.2,7) is
quite similar to Equation (IV,1.9). We define a rcaction

vector § as baforc by:

Then the development of the last section shows that.if

we find G satisfying:

n -
(1V.2.9) (= o oG ) g I (%)
j=1 J‘(X)

then G will be a least—action function for the kinetic

system,
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In face, this equation 1s exactly the equivalent of
6ne of the forms of the mass—action laws developed in
Section II.4. We have scen (Section II, and [2], p. 360)
that the mass—action laws can be stated as follows:

' n o
(1V.2.10) n %3 = k(o)

j=1 J
where as before § is a reaction vector. The mass—action
laws -are such that when they, the mass~balance laws, and
the nonregativity conditions on x are all simultanebusly
satisficd, then the system is in equilibrium,

These laws are easily derived from ideal chemical
kinetics (and from many other forms of chemical kinetics)
as folleus,

Fcr the reaction (IV.2.1), the simplest form of
chemical kinetics (10, p. 10) ascumes that the unidirec—

tional rate of disappearance of reactan: j can be written:

dxi - no_r

and that its unidircctional rate of appear.nce can be

written as:

dxi-H' n Py

(arsuming that pj = 0).



The numbers Py, P_l'are called respectively the forward
and baclward ratc constants for the reaction. Similar
expressions hold fox those xj which are products.

Taking the ratio of (IV.2.11) to (IV.2.12) and noting
that at equilibrium species j should appear exactly as

fast as it disappears; we see that at equilibrium,

n (r.~p:) P_
(IV.2.13) nog, 03 et
j=1 J 1

If we let 8y = Ty --'pJ for each j =1, 2, ..., n (as in
Scction II) and k(p) = »—l, we sce that (IV.2.13) is
identical to (IV.2,10). E

Note thot we arrive at the same expression even if
we multiply both P_, and Py by an arbitr~ry positive
function,

On the other hand, if the system is not at equilibrium,

it is still true that:

y ;L

(Iv.2.14) E 9. S = log ( H %Y 0
-1

3=1 3 ")‘j

0
h
where T is the original Gibbs function, It is clear that

Equation (IV.2.14) is the same as Equation (IV.2.9) in the
case of idecal chemical kinetics, and that the analog of

the mass—action law in thec case of a more general kinetic

system is that if x is any equilibrium composition, then:

(IV.2.15) e g,
J(32)
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3. Kinetic Systems with Several Reactions

In general, a kinetic system will have more than one
reaction, Let us say that it has a total of K reactions,

numbered 1 < k < K, each one of the form:

(1Iv.3.1) g rgk')Nj 2 g pgk)Nj.
=1 =1
Typically, an experimentor will not measure the forward
and Qackwafd rates of each reaction. Instead, using tracers,
or some other marking method, he will measure the unidirec~
tional rates of appearance or disappearance of various species.

From these quantities we must compute the act.:l reaction

rates,
Clearly, the equations relating the rates of appearance
and disappearance of the species and the reaction rates are

sums of terms of the sort (IV.2.2-4). Thus:

dx. K K
J - (k) T (k) i+
( )Ap kzl ¥ @) + kzl p (X)

(1v.3.2)
K

dx K
(Ei)nis - I et + =z p(k).]—(x}.

We assume that the reaction vectors e(k) (defined by
egk) = rgk) —'p§k), 1 < j < n are linearly independent.
In this case, whencver Equations (IV.3.2) possess a solu-

tion, it will be unique. Thus if we let:
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dx. dx, - dx ‘
(1V.3.3) el = (aEi)Ap - (Erfi)Dis 1<jg<n

then we may write the difference of the two Equations

(Iv.3.2) as:

dx. K

(IV.3.4) s = 2 oW  1gign

where fk(x) = J"(x) - Jk(x) If (IV.3.4) has a solution
(i.e., if EE is a 1inear combination of the reaction vectors
e(k)) then the solution is unique. A properly formulated
klnetic problem will surely possess a solution..

It is a simple matter to substitute the soiution f(x)
to (IV.3.4) into either of Equations (IV.3.2). We choos:
to use the second of thone.eqdatiun§. .Tﬁen:
(1V.3.5) (?éi)mss él e - klél o) 7 x
Again, if Equations (IV.}.Z) arise from an actual kinetic
system, (IV.3.5) must possess a solution JE(x), 1 <k <K,

Once we have arrived at expressions for the unidirec—
tional recaction rates J% ana J~, we may use the results
of the last scction, Thus if G is to be tée least-action
function foé this kinetic system, we require that G simul—
tancously satisfy the K indepencint cqﬁations,

3o

n
(1v.3.6) & ng) 0 -10g K 1ckgK
j=1 j Jy (%) - T T
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4. Kinetics and Thermodynamics

Given a kinetic systcm such as that descriled in the
last section, we wish to decide if it may be considered a
thermodynamic system. To be so considered, the function G
satisfying conditions (IV.3.6) must have the usual thermo—
dynamic prope;ties: it must be phase scparable and homo-
genecous of degree one; the function G<k> for a particular
phase <k> must be strictly convex except on lines through
the origin; argd %57 must behave in the appropriate way
as xj approaches zero. These conditions on G will imply

conditions c¢n the kinctic laws J+ and J .

?osﬂtivigxz For Equaticn (IV.3.6) to be defined, the
ratio
3
J&c(}:)

must be pocitive, This will be assured if the kinetic

system is & real cystem, for in that case we will have the

following: Let the raction associated with reczetion k be:
n 1 n ]

Py, 2z pMy,

31 3 J 3=1 3 3

. . -t-
with forward reaction rate Jf(x), and backward rate J;(xﬁ.
< (I

Thene
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(Iv.4.1) J:(x) >0 and J‘;'(x) >0 ¥x,
and

(I.4.20) Jf(x) =0 1if and only if x4 =0
for some j such that rgk) > 0,

(IV.4.2Db) JE(x) = 0 1if and only if Xy = 0

fer some j such that png > 0.

Continuity and Nififercntinbility: We will insist

+hat G be twice couibinucusly differentiable for x > 0,
and continuous for x » 0. Onc sces immediately from (IV.3.6)

that 4f tbhis is co, then

nust be continuously differentiable for x > 0, It is not

true that

must ne continuous Lor % > 0,
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Homogencity and Phase Scpavabllity: If G is to bq

homogeneous of degres onc and phase separable, tuen %g-
must be homogeﬁeous of degree zero and phase separable,
From (IV.3.0) we sec that fur the kinetic system to be
considered a thermodynamic system, the kinetic laws Jz
and J must satisfy the following conditions: Let x and

y satisfy:
(1IvV.4,3) xj?§j> ™ yj§<j>’ l<j<n,
One may casily verify that G should be linear on the line

joining x and y  Hence aloag that line, %g- must be

constant, Thus (IV.3.6) implics:

.!" .F

J;, () J1(Y)
(IV.4.4) 105 (om0 L0y (o) o

I G Jk<y>

Notice that neither Ji(x) now Ji(x) need be homo-
gencous of any degrec, The vestyiction fs on thelr ratilo

only.

Converity: Let @ be any reaction vector, Clearly

= Gmente 5o gt comash as *

we may cxpress § as a Linear combinetion of the veetors

K
{6(k>] . We guppese that:

Taral

K
(IV.4.5) p =Y

(k)
el Vkﬂ .

1
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If G ic to be convex, we know that:

2
(IV.4.6) 5;2 G(x + 80) |5 = 07(v2G(x))6 > O

where v2c ig the matrix of seccond partial derivatives of G.
Substituting (IV.4.5) into (IV.4.6) we f£ind that:

K K
(k) C (4) 36
(Iv.4.7) kflvki-l £y ( Lv Lflej oxj] ) >0,

The quantity in squarc brackets 1s recognizable from
(1Iv.3.6) as

I5 (%)

J&(‘)

log ().

'fherefore, if we define:

oo

, ?I(x) 3T (%)

(.0.0) g ) = 3 of (Sho ST L ST
iwl T % ) e

and if the matrix U(x) is taken to be a K x K matrix whose

ktEh element is Miys then (1V.4.6) simply statcs that

U(x) is a poritive semidefinite matrix,

We also know that G is to be strictly co:.vex wherever
phasc-separability and homogeneity do not imply that it
is lincar. Thus for any vector vy (Vi, Vy, «.., vild

(IV.4.9) ViUV > 0
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K :
whenever 0 = kzl vko(k) fails to satisfy:

(1v.4.10) Tegs®y ™ 05%css 1<ign,

But what if ¢ satisfies (IV.4.10)? In that case

we notice that:

J*(x)

J (%)
4 J+(x+se)

= ag (log Jo(x + so) s=0

)]

(IV.4.11) kzl Vigle, ™ £ Vi o) 9 1o (4

due to condilion {(IV,4.4). lence for those v we must have
VTU(x)v 2 0, as wequired,

Lt can cagily be veridi’d that: ln the case of the
primiisive kinctle system of Scetlon IV.1, Equation (IV.4.6)
reduces to the condition that the rate of flow of a speelcs
out: of Lts phase must he a monotone itneneasing funztion
of the amount of thal specices preswnt, other things being
equal,

Notice also that UG wmust be a aymmelile matrisx,

Thuass
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jm1 9%y “ya] Xy
n n

- (V) _3_ (k) 3G
j'z'l ej d}-j (ifl ei Oxi

- g e('c) ( L ﬂt ~L .::.l_‘.)
13 e Ky 3 %

= Mk

Doundary Behavior: Tor some fixed k, let egk) > 0.
(We could as easily use some egk) < 0.) Let x be such
that cach x, is greater than zero, i % § and Xy tends

toward zero, Then we must have:

n .
(1V.4,13) 1im 7 (M 3?_. —
. bid :i -.Q , inl L ..i
Ai;"o:. 'J.‘/"j

Substeleuting fron (IV.3.6) we £find that the kineiic syute:

o

cannol be a themmwadynanie sysion unless:

o ~ (;C)
: Iy, G4 (wr Lo (3% >0
(IV.4.10) Linn  (Lop eatemn %)
249, Ny L g o889 (0,
:".i‘,‘-(tz. L, ~ J
Conusider the wen fion:
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Clearly, for any spccics j such that r.(k) > 0 and

pj(k) = 0, or for which rj(k) = 0 and Pj(k) > 0, Equations

S 8 . R R

(IV.4.2a-b) imply (IV.4,14). Only in the case that both

rj(k) > 0 and Pj(k) > 0, and rj(k) 0 Pj(k) does (IV.4.14)

constrain the kinectic systcm.

‘Cycling: Suppose thexe is an x° such that if the

o L] o
kinetic system is initicl®y at x7 then it will cventually
return to x°, having passed through states y 4 x°. Thir

phenomenon is called ewveling, A kinetic system wiiich can

cyrle canaecr be o thoomodynamic system, for the thorme-

. .

dynamic Zunctien © weuld linve to decrease stricily threough-
- - et ) Pl PPN e . - -
out the cyele, and tue valuc ol G would not be wel

)
b
[
&)
H
Pt
o]
¢}
(e}

at aay point y in thia cycle,
e
Even wiien the kinetic laws JV and J~ satisfy all the.
above critovia-—positivity, differentiability, cte.—it )

may be difficult Zo comstruszi a function G for the thermo-—

cdynamic systam., Indzed, wa have not cstallished that for

”~

ail such J a funcition G must cxist.
When o Rinctic system does admit a thermodynamie
denceription, howevoer, there is some assurance thot its

least-aciion funciion may be inlzrpreted as a measure of
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frce, or usable, encrgy. One can imagine, for example, a
machine whose motive power is obtained from a reaction
procecding in onc direction faster than the other, and
which yields useful work in the process. Thus there is
some physical, as well as a mathematical basis for calling
a kinetic system that admits this type of description a

thermodynamic system.
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