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ABSTRACT 

This thesis investigates a decision process which is designed to 

employ multiple observations in an optimal manner as a means of solving 

a signal detection problem.  The characteristic of.  this decision 

process is that it permits the decision-maker to defer his detection 

decision until new data is obtained from the next observation and 

to weigh the new data with an opinion based on previous data. The 

effect of adapting a decision to the results of previous observations 

is seen to be similar to a learning process which is taking place 

over a length of time.  Since the decision process may involve 

relatively lengthy periods of time an estimator of this time is 

developed. Lastly, the decision model is seen tc provide a model by 

which human detection behavior may be evaluated. 
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I.  AN ADAPTIVE DECISION PROCESS 

An Integral part of a signal detection process is the application 

of decision theory methods to the problem of determining whether or 

not the signal of interest is present.  The techniques of decision 

theory assist the decision-maker in making a detection decision in 

the presence of random noise, with minimum error. 

Classical defection is concerned wich deciding the presence or 

absence of a useful signal in the presence of random noise after a 

single observation of fixed length has been made in a signal environ- 

ment.  The detection process may be complicated by a requirement to 

detect a signal with unknown parameters. This thesis will investigate 

a procedure by which multiple observations of a signal environment 

will assist in detecting such a signal. 

The emphasis of this thesis will be on the discussion of a 

decision process which is designed to make use of multiple observa- 

tions and on the application of this decision process to the problem 

of detecting an electromagnetic signal with known characteristics and 

transmitted on an unknown frequency. The decision process by which 

this is accomplished is shown to have cptimum properties which may 

be applied to other detection problems involving multiple observations. 

The decision process by which the detection of a signal with an 

unknown parameter is accomplished will be referred to as an adaptive 

decision process. The characteristic of this process is that it 

permits the decision-maker to defer his decision until new data is 

obtained and to weigh the new data with an opinion based on 

previous data. 
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II.  STATEMENT OF THE PROBLEM 

The problem which is to be investigated in this thesis is the 

application of an adaptive decision process to detect a useful signal 

in the presence of random noise when a parameter of the signal is 

unknown. The process employs a scanning procedure in which a detec- 

tion device may take repeated "looks" at a set of locations in 

which the useful signal is suspected to be present. The objective 

of the scanning procedure is to arrive at a state in which the 

unknown parameter is known and the useful signal is detected or 

conversely be in a state in which it is known that the useful signal 

is not present. Further, the decision process has the capability 

to make use of information derived from the preceding k-1 scans 

when the k   scan has been completed. 

The nature of the decision process will require that the useful 

signal have certain minimal characteristics: 

1. The useful signal must exist long enough so that a 

minimal number of scans may be made.  (The minimal 

number of scans may be computed; this topic will be 

discussed later.) 

2. An ji priori probability can be assigned to the event that 

the signal of interest is present in the set of locations 

being scanned. 

3. Only one useful signal is present in the set of locations 

being scanned. 

^i 
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III.  BACKGROUND 

Classical detection theory Is concerned with deciding the presence 

or absence of a useful signal In the presence of random noise after a 

single observation of fixed length has been made In a signal environ- 

ment. The goal of this procedure Is to make a detection decision 

with minimum error.  The detection error is due to the noise which 

tends to mask the useful signal in a random manner. As a result, 

"guessing" is required to determine the presence of a useful signal; 

thus one signal may be confused with another or may go entirely 
i 

undetected.  The random nature of the background noise and the 
j 
: 

dependence of the useful signal on random parameters suggests 

decision theory methods should be employed in resolving the detec- 

tion problem. | 
1 
3 
1 

A.  DECISION RULES 

The decision theory approach to the detection problem begins I 

I 
with the formulation of the input to the detection process as the \ 

I 
union of the useful signal in(t) and the noise n(t) , given 

as functions of time, 

f(t) - m(t) + n(t)  . 

Next, it is necessary to compute the a posteriori probability 

that the signal m(t)  is present in the received function 

f(t) - m(t) + n(t). 

The a posteriori probability P(n>lf)  that the useful signal m(t) 

is present, given an input signal f(t), can be expressed as 

-- ■■ ■ - ^Mt'u^Hmjiipffijji.. 
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Further,  f(t)  is a compound event so P(f) may be expressed as 

P(f) - P(ir.)P(f|m) + P(n)P(f |n) , and 

P(m) + P(n) = 1 , where 

P(m) Is the a priori probability that the useful signal is present 

and P(n)  is the a priori probability that the useful signal is 

absent.  After substituting for P(f) we have 

p,m|n P0n)P(£l°O L 
Kml}      P(iD)P(f|m) + P(n)P(f|n)  L + [P(n)/P(m)] 

The quantity L is the likelihood ratio and is defined as 

P(f m) 
P(f n)     ' 

The £ posteriori probability that  the useful signal is absent may 

be expressed as 

p(n|f)  =  P(")/P(m)  
FUl|t;       L +  [P(n)/P(m)] 

Lastly,   the ratio of the £ posteriori probabilities equals 

P(m 11 _ P(5L)   L 

P(n f)       P(n) 

Next, on the basis of the input signal received by the detector 

and its likelihood ratio  (L), a signal detection decision may be made 

according to a decision rule, such as the following rule, 

If L ^ L , the signal is present; 

If L^ < L < L  , no decision is made; 

If L ^ LA , the signal is absent. 

The terms LA and L  are referred to as thresholds; their values 

are determined by the detection error which is allowable in the detec- 

tion process.  This decision rule will be of interest in later 

discussions.  This decision process is called a sequential process 

because of the manner in which input data is handled.  For each 

«- .—■.-■■-.■ti IIIH. ■ HTMrtrr"'" 
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observation, of a signal environment for example, a likelihood ratio 

(L) Is computed in the manner described aSove; this L is compared 

* * 
to LA and  L , If LA < L < L  no detection decision is made 

and another observation is made.  This process continues until L 

exceeds LA or L  .  It is well known that with probability  1 

the sequential process will stop after a. finite number of observations 

at which time the threshold LA or  L  will have been reached. 

In previous discussion of the detection process, it was noted 

that the random effects of the noise portion of the input signal 

could cause errors in the detection decision. Two kinds of errors 

are possible: 

1. The false alarm error which results from Interpreting 

noise to be the sum of signal and noise; the false alar» 

probability is denoted by  F. 

2. The false dismissal error which results from interpreting 

thti sum of signal plus noise to be Just noise; the tales 

dismissal probability Is denoted by 1-D, where D is the 

probability of a correct detection. 

* 
The values of the thresholds  I,.  and  L  will be defined as 

L - YZf   . and 

L, - F/D . 

Lastly, if the concept of costs of errors Is considsred, tht 

optimum decision rule Is the rule with the smallest cost.  Let  ^-i n 

be the cost of a false dismissal and  C_ be the cost of a false 

alarm; the costs of correct detection and correct dlsalsssl may be 

taken to be zero.  If the observer pays the cost corresponding to 



which of  the  two errors occurred his  expected loss or  risk is 

Risk - P(m)(l-D)C1_D + P(n)FCF   . 

B.     ADAPTIVE DECISION PROCESS 

A large number of detection problems exist  in which the detection 

decision process  is complicated by the  requirement  to detect  the 

presence of a useful signal which has unknown parameters.     Fralick 

[1]  prop-jses an adaptive decision (.roc»"*: to handle this  type of 

detection problem. 

The adaptive decision process employs a decision rule which 

allows  the decision maker to defer a detection decision in a manner 

somewhat similar to that discussed in the sequential decision process. 

The primary difference is that  the adaptive decision process accumu- 

lates information turough a ^«cursive process in which the detector 

might  be  considered to  learn  the  nature of   the unknown parameter; 

the sequential decision process merely  takes another  independent 

observation  then computes  and  compares a new likelihood  ratio, 

based  on  that observation,   to   the  thresholds. 

IV.     ADAPTIVE DECISION  PROCESS MODEL 

For  convenience,   the  input   to  the detector  In this model will 

be denoted by  the symbol    f       (t)    as a way of  Indicating  this 

particular  input  is being considered during the  interval 

kT i t i  (k+DT. 

From development of a likelihooJ  ratio in preceding discussion, 

we may  state  that 

P(fk+l|a) 

L(W ■ pä~y    • 
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Now let  the useful signal have an unknown parameter    T    which Is to be 
i 

' measured;  i.e., m(t)  ■ in(t,T)     and    T    varies continuously.     Then 

froa the following likelihood  relations, where    P(T)     is  the a priori 

probability that    T    is present, 

| L(fk+1|T)  - Pm'^i^   .   and    L(fk+1) - jL(fk+1tT)dT     , 

we get,  after substituting where appropriate,   that 

/P(fk+1|T)P(T)dT 

; L(W p(fk+1|n) 

l 

I 

When the  Input signal    f. .,     is being examined by the detector,  the 

signals     f.,   £_,   •••,   f.     have     Iready been examined.     We desire to 

make use of  the results of  those examinations and to do so in an opti- 

nuoi manner.     The Bayes optimum way  to use the prior inputs f .,£.,... ,f.   1 

is  to  compute a likelihood  ratio based on these prior inputs, 

Ufk\l1,t2,---,fk_1)  -   /L(fk|T)P(T|f1,f2,".,fk_1)dT 

where any    ^«i   <   k,  may or may not have had a useful signal component 

m(t,T).     Fralick  [1]  shows  that  a recursive relationship may be derived 

for    Pk(T).     In Appendix A it  is shown that    Pk(T)  is related to 

P.    .(T)     by  the  following  recursive   relationship, 

L(f   |T)+a 1 -  P(T) 
pk(T) " p

k-i
(T) L^TfTT^ •   whe"   a"i-MT)      ' 

P(T)     is  the a priori probability that the parameter    T    is present. 

This  recursive  relation may be  considered to be the result of a 

delay-feedback loop or  learning  loop  in which the value    P,   1 (T) 

servt 9 as a memory of past  observations.    A diagram of  the informa- 

tion flow which creates  this loop  Is  shown in Figure  1. 

ii 
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The operation of the physical realization of the adaptive decision 

process is straightforward. 

1. The input to the process is obtained from a likelihood 

ratio computer capable of providing L(f. jf) for each 

possible value of T in the range rsing scanned. 

2. The values of P. . (T) for each value of T are computed 

in the learning loop.  The learning loop is Initialized 

with a value P (T), the a  priori probability that a 

signal with the  parameter is present when the detection 

process is started. 

3. As the value« of  [L(fk|T) + a] and Pr-iCO become 

available, they are multiplied and the product then 
i 
5 

■? 

integrated. 

4. Once each T seconds P, , (T) is sampled and compared 

against the threshold to determine if the useful signal 

is present or not. 
! 

Fralick [1] discusses the application of an adaptive decision 

process to the design of a radio receiver for use in locating electro- 

magnetic signals with known amplitude and phase characteristics which 

are transmitted (for long periods of time) on an unknown frequency. 

Typical results were that the signal was identified by the receiver 

in ten sweeps across a frequency band in which the signal was known 

to be located with a signal-to-noise ratio of -11 dB and 100 sweeps 

when the signal-to-noise ratio was lowered to -17 dB.  It is noted 

that the unique signal of interest must be on the air for a length of 

time sufficiently long to allow multiple looks throughout the frequency 

band being investigated and further that the receiver model is respon- 

sive to only one useful signal in the frequency band being scanned. 

13 
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V. OPTIMUM CHARACTERISTICS OF THE ADAPTIVE PROCESS 

Walnsteln and Zubakov [2, sec. 57] discuss the problem of detecting 

a signal with an unknown parameter and combining measurement of the 

parameter with detection.  They view the problem as one which is re- 

solved by using multichannel receivers (detectors); i.e., the band of 

frequencies containing the carrier frequency of an electromagnetic 

signal in this case may be quantized and each channel tuned to a 

separate portion of the frequency band. Multichannel receivers may 

be divided into three catgorie? depending on how the detection and 

measurement process is performed: 

1. Type I receiver first carries out detection and then 

measures the parameter. 

2. Type II receiver carries out detection and measurement 

in parallel. 

3. Type III receiver first measures the parameter, 

expressed as a likelihood ratio, and then uses the like- 

lihood ratio to verify the presence of a signal with 

the measured parameter. 

The multichannel Type I receiver is claimed by Walnsteln and 

Zubakov [2] to be the optimum receiver for detection; it is optimum 

In the sense that it has minimum risk associated with the cost of 

decision errors. Fralick [1] shows that an adaptive (or learning) 

process may be employed on the multichannel Type I receiver provided 

the prior probabilities, that the parameter of interest Is on a 

particular channel, are independent. The learning process updates 

these probabilities on each channel in the recursive fashion 

14 
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previously described;   i.e.   Che value of    P.   1 (T)     is modified.    When 

learning is completed,  all the channel probabilities will have gone to 

zero except for the channel that contains the parameter of interest; 

that channel will have a value of    P.   . (T)  > 0.     The effect of the 

recursive updating is to adapt the multichannel Type I receiver to 

what  is effectively a single-channel receiver. 

If the input to the detection system can be scanned serially, 

one single-channel learning receiver may be used as a detection 

receiver Instead of the multichannel receiver which operates in a 

parallel scanning mode.    As has been noted previously,  this restricts 

the application of the learning process to a single event which occurs 

frequently in the Interval we can observe or which is present long 

enough to be scanned. 

VI.     MEASURES.OF EFFECTIVENESS 

The detector  (receiver)  which eir.)loy8 learning on serially 

inputed data has,   initially,  a detection and measurement performance 

capability equivalent  to  the Type I multichannel receiver as 

described previously.    As  the detector adapts to the parameter of 

interest through its recursive learning process,   its performance is 

approaching, and finally reaches,  that of a single-channel narrow- 

band receiver; which has the same effect in Improving signal detection 

capability as would an Increase in the sensitivity of each channel of 

the multichannel receiver.     With an adaptive detector a lower signal- 

to-noise ratio  (M)  is thus required to achieve given values of correct 

detection probability  (D)  and false alarm probability   (F)  than would 

be required with a multichannel receiver with the same sensitivity. 

15 
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Walnsteln and Zubakov [2, p. 299] show that for given values of F 

and D, where F is small, the threshold signal-to-noise ratio for 

a multichannel receiver with M channels is 

'M 

ln= + InM 
r  

^4 
- 1 

For a single-channel narrow band receiver such as the learning 

receiver working on serially inputed data,  the threshold signal-to- 

noise ratio required to achieve the same level of detection 

probability and false alarm probability is. 

4 
- i 

The ratio y M/M L may be used as a measure of the Improvement in 

sensitivity which would be expected when a recursive learning device 

is being considered as a substitute for a multichannel device with- 

out the learning feature. 

The time that is required for the adaptive detector to make the 

transition from a device with a multichannel capability to a device 

with single-channel characteristics is a second measure of effec- 

tiveness.  Fralick, et. al., [1] used simulation techniques to 

determine the transition time for various signal-to-nolse ratios; 

the observation was made that closed-form expressions for the 

transition times were not known. 

Walnsteln and Zubakov [2, p. 361] note that for the situation 

when F and D are specified and the observation time Is left as 

a random variable, the optimum decision rule is the Wald sequential 

probability ratio test (SPRT) with the thresholds L  and L. 

16 
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given by the formulas 

L - lip » and 

F 
L*-D 

Recall from previous discussion that 

uLlnD - ln|    . 

where   u       Is the threshold signal-to-noise ratio for a given   F 

and    D, when    F    is small.     In view of  the relation of the ratio 

F/D    to both the lower  threshold of the SPRT and to   p T   ,  it is 

proposed that the characteristics of the expected number of 

observations made in a  SPRT,  before a decision is reached, be used 

to develop a measure of  the transition time for an adaptive detector 

to attain the level of performance of a  single-channel receiver. 

VII.     DETERMINATION OF TRANSITION TIME 

The proposed use of  the expected number of observations made in 

a SPRT as a means of estimating transition time  is based on the 

similarity between the  SPRT and the adaptive decision process.  First, 

there is the relation of  the ratio    F/D to both the lower threshold 

of the SPRT and to   M    .     Second,  there is the quantitative demon- 
Li 

stratlon in  [1]   that  the adaptive decision process terminates in a 

finite number of observations provided the threshold   u T     is exceeded 

by the useful signal;   it  is well known that  the SPRT, with probabil- 

ity 1, will yield a decision after a finite number of observations. 

Based on this  tenuous  similarity between the thresholds and 

observation characteristics of two decision processes,  the expected 

transition time which will be developed here  is  only a weak estimate 

17 
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of the true expected transition time.  It Is strongly suspected, 

tho'V'h , that it will be a conservative estimate In that It will 

ovtiestimate the transition times. 

Following Sverdrup [3], the derivation of the expected number 

of observations In a SPRT Is developed In Appendix B.  From that 

development we get the expected number of observations E(N)  to be 

F 1-D Dlnj; - (l-D)lni^ 
E(N) -  ^TTTTC  , where 

Z - 1» SSL 
g(f 

ml 
n) 

E(Z) 

and Z y 0 . 

VIII.  COMPUTATION OF E(N) 

' As an example of the procedure for determining the expected 

number of observations, E(N)  In a signal detection problem, we 

will apply the relation derived In Appendix B to the adaptive 

receiver process described In [1] and compute the number of ob- 

servations which would be expected for the receiver parameters 

described in [1]. 

The adaptive receiver described in [1] operated with a false 

-4 
alarm probability F » 10   and a correct detection probability 

D « 0.3.  The adaptive receiver was used to determine the frequency 

of a ilnusoidal signal with known parameters of amplitude and phase. 

Wainstein and Zubakov [2, p. 174] show that the likelihood ratio 

relating to this set of conditions has the form, 

_2' &a Bl 
2(1+u) g(f n) - l+u6^' 

where   y     is  the effective signal-to-nolse ratio and    Q*"    is a 

parameter which describes the envelope of  the signal of interest. 

18 
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After taking  the natural logarithm of  the likelihood ratio we get 

In 

which has an expected value, 

n)  ln 1+w  2(1+M) 

E(z).ln^ + E^_fiL_^ 
Evaluation of E(Q /2(1+M)) could be quite difficult if the 

exact nature of the envelope (Q) were not known; substitution 

eliminates this problem. Walnstein and Zubakov [2, p. 176] discuss 

2 
the use of the parameter Q  in a simple detection decision rule: 

2   2 
If Q i QÄ , decide that f (t) - m(t) + nt; 

If Q2 < Q2 , decide that f(t) - n(t), 

2 
where Q^ is the decision threshold.  This threshold .s shown in [2] 

to be related to the probability of detection (D) in the following 

manner, 

D ■ exp ML-) 
\2vi (1+M)/ 

After taking the natural logarithm of this expression we have the 

2 
following relation between D and QA , 

f 2 
i - y InD 

2(1+ u) 

2 2 
Now,    Q      must be at least equal to    Q^   ,   if not greater than 

2 
Q^  ,  in order to make the decision that    f(t)  ■ m(t) + n(t).    We 

2 2 
may therefore substitute    QÄ    for    Q      in the expression for    E(Z) 

on the assumption that the signal of interest,    m(t),  is present. 

After this substitution, we then have 

E(Z)  - In ri M InD. 
1+ U 

19 
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With this result, the expected number of observations to be made 

by the adaptive receiver In order to detect the signal of Interest 

Is seen to be 

F 1-D Din I -  (l-D)ln f| 
E(N) 5 . LI  . 

In -r- u InD 
l+M 

-4 
If the operating parameters, D - 0.5 and F * 10  , are 

substituted Into the formula for E(N), we find that approximately 

180 observations are expected at a signal-to-noise level of -11 dB 

(y ■ 0.08)  and approximately 600 observations are expected at a 

signal-to noise level of -17 dB ( p - 0.02). As was anticipated, 

these numbers are significantly greater than the actual numbers of 

observations needed to detect the signal of Interest as reported by 

Frallck et. al. [1]. The disparity between the computed number of 

expected observations and the actual results reported In [1] is 

assumed to be Influenced by two characteristics of the adaptive 

decision process: 

1.  A strong a priori opinion that the signal of Interest 

will in fact be scanned (i.e. a value of P (T) ■ 0.75 o 

for example) would be a factor  in reducing the number 

of scans.    Loosely speaking,   the recursive effect of  the 

likelihood ratios would bring the value of    P, (T)     to 

the acceptance threshold with fewer scans with a larger 

starting value of    P   (T)     than with a small value of o 

P (T); provided, of course, the signal Is In fact there. 

If the signal Is not present, a strong a priori opinion 

that it Is present would be expected to require more 

scans to determine that it. In fact, Is not present. 

20 
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In the results described In [1] the signal of Interest 

was always present; the value of P (T) need in the 

receiver was not reported.  The SPRT is not influenced 

by any a priori opinion regarding the state of the eet 

of signals being scanned; the saae nuabcr of scans would 

be expected whether the signal was present or not. 

2.  The adaptive decision process is designed to take 

advantage of the accusiulation of knowledge about the 

presence, or absence, of the signal of interest.  The 

SPRT, on the other hand, is not designed to taite advan- 

tage of trends and one contrary observation is sufficient 

to totally disrupt a trend towards one or the other of 

the decision thresholds. 

IX. APPLICATIONS 

In the preceding discussion of the ('evelopaent and application 

of an adaptive decision process, the emphasis has been on the appli- 

cation of an adaptive procedure employing multiple observatioM to 

the special problem of optimizing electromagnetic signal detection. 

In addition to that useful application, the adaptive decision model, 

which relies heavily on a learning process, ray be used to study 

other, more general, situations in which multiple observations are 

employed in formulating a detection decision. 

Multiple observations are typically encounterered in two types 

of situationa: 

1.  The first is the generalization of the situation discussed 

in this thesis; the situation in which observations arc 

n 
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accumulated and the total weight of the evidence is used 

as the basis for a decision regarding the presence or 

absence of a useful signal. 

2.  The second is the situation in which a decision is made 

based on multiple, independent observations.  The 

detection decision rule usually employed is that a useful 

signal is present if any one of the multiple observations 

indicates the presence of a useful signal. 

As an example of the application of the adaptive decision process 

developed In this thesis we will consider two situations in which 

humans act as signal detectors.  The first situation is a straight- 

forward comparison of multiple, independent observers to a multi- 

channel receiver; the second is an example of the recursive learning 

process acting against detection. 

A.  MULTIPLE OBSERVERS 

K  coonon practice in practical detection problems is to use a 

team of observers who are to act independently and attempt to detect 

some signal of interest.  The rationale for this practice is that 

the group effort is expected to improve the chances of detecting the 

signal of interest.  For example, ii two Independent observers have 

an individual probability of detection D - 0.3, then the probability 

that on« or the other or both will detect the signal is 0.73. 

Gr«cn and Swsts [4, p. 248] discuss psychometric studies conducted 

to test whether or not teams of observers would show this degree of 

improvement in detection capabilities.  The typical finding in the 

studies «ras that if a gain in detection capability was made it was 

22 
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not significant and further that an increase in the proportion of 

false alans was experienced when the size of the team increased. 

Recalling the relation for the threshold signal-to-noise ratio 

for a ■ulclchannel receiver and rearranging terms, we have • rela- 

tion between detection parameters which is seen to apply to the 

team situation; i.e., 

,  1 

uM ■  r - 1 + 
M  .1      ,1   * 

lnD      lnD 

where M is the number of observers on the team. We see that the 

larger the team gets, the larger the value of F which must be ac- 

cepted if the threshold signal-to-noise ratio is fixed and the 

detection probability (D) remains constant. If it were possible 

to hold F at a fixed value while M is increased, the model 

predicts that D would decrease if the signal-to-noise ratio is 

fixed. 

A possible solution to the false alarm problem is to replace 

a team of observers by a single observer with the capability of 

employing the adaptive decision process.  This action would have 

the benefits shown for the adaptive receiver when it replaced the 

multichannel receiver, if the human observer is at least as pre- 

dictably "optimum" as he is predictabley "faulty". Alternatively 

the team could report to a decision maker who would be guided by the 

adaptive decision procedures. 

B.  VIGILANCE 

The adaptive decision process model nay also be applied to the 

I 
detection problem characterized by extended periods of observation 
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during which signals can occur at any time without warning and with 

no predictive spacing between signals. This problem Is referred to 

as the "vigilance" problem.  In this type of signal detection environ- 

ment there Is a known deterioration In detection capability as the 

observation period proceeds. 

The effect In these situations Is as If the recursive learning 

process were being reversed.  That Is, the span (channels) of 

attention widens and the learning process may be considered to be 

strengthening an a priori opinion that no signal will be encountered. 

Green and Swets [4, p. 332] discuss the vigilance problem and It Is 

again interesting to note that human performance seems to be follow- 

ing the characteristics of an adaptive receiver model. 

Limited studies on the vigilance problem Indicate that the 

probability of detection decreases over time; interestingly, the 

false alarm probability has also been observed to decrease. Looking 

again at the relation for u , we see that as the span of attention 

widens, the value of the term InM/lnr tends to Increase.  If a 

fixed value of v..    is assumed, the model predicts that D must 

decrease to maintain the equality of the relationship; further, the 

term In-Zlnr suggests that if some directly proportional relation- 

ship were to exist between F and D then F would also decrease. 

A possible solution to the vigilance problem is suggested by the 

recursive learning feature of the adaptive receiver.  To apply this 

solution it must be assumed that the probability of detection (D) 

by a human observer is maintained at an acceptable level by focusing 

the observer's attention.  Then, since the recursive learning process 

is strongly Influenced by the likelihood that a useful signal is 
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present during the scan across the signal environment. It may be 

possible to focus attention by Introducing duamy useful signal« 

into the detection process. 

X.  CONCLUSION 

I l 

When multiple observations are available, or are required, for 

use in the solution of a detection pvoblem, the optimum utilization 

of these observations is through an adaptive decision process. In 

comparison to a simple detection process based on single independent 

observations, the adaptive decision process enables the observer 

to make a detection decision with the same level of detection error 

at a smaller signal-to-noise ratio (p) or conversely for a fixed u 

and fixed false alarm probability a higher probability of correct 

detection is possible through the adaptive process. 

The adaptive decision process is limited to signals of long 

duration due to the nature of the learning process used in this 

decision process. A procedure for computing the expected length 

of the decision process is developed. Based on this expected 

length of time to complete the decision process, the observer may 

evaluate the suitability of employing a relatively lengthy decision 

process with optimum properties to solve a detection problem. 

Lastly, the learning cycle used in the adaptive decision process 

suggests that the model of an adaptive decision process may be used 

to predict the behavior of human observers performing signal detec- 

tion functions. Two such situations were discussed and it was 

shown that the adaptive decision process model does in fact lend 

itself to analyzing the behavior of human observers. 

I 
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APPENDIX A:  DERIVATION OF RECURSIVE FORM 

When the input signal f, .. (t) is being examined by the detector, 

the signals f 1 , £„, ••', f,  have already been examined. The Bayes 

optimum use of the prior inputs f1 , f_,•••, f, 1  is 

L(fk|f1>f2.--..fk_1) - jL(Fk|T)P(T|f1.f2,-..,fk_1)dT 

where 

f(t) - m(t,a,T,e) + n(t); and 

the useful portion m(t,a,T,e) consists of a counting parameter, 

such as time, tj known parameters .a; unknown parameters T_ which are 

measured upon detection; and unknown parameters 9^ which are not 

measured. The purpose of examining f(t)  is to learn the nature 

of T^ , for example to find the frequency on which a radio signal 

of known characteristics is being transmitted. 

Consider the probability density P(T| f^f _, • • • ,f ). By the 

Bayes formula, it may be expressed as 

pdlf^f^---,^) 
(i) 

P(fk|T>f1,f2....,fk.1)P(T|f1,f2,..-.fk_1)   _ 

^klw-W 
Under the assumption that each f. is independent of all other f., 

we may further state that 

P(fk|T,f1,f2..--.fk_1) -P(fk|T) . 

Expressing P(f, |T) as a compound event gives 

P(fk|T) - p^UjjT^Ct,?)) + (l-p1)P(fk|n(t)) 

where p1 is the a_ priori probability that 
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f (t)   = m(t) + n(t) 

and  1-p,,  is the a priori probability that 

f(t)  -  n(t)     . 

Next,  after  factoring    p..P(f.   n(t))  we have 

P(fjT)  - p 
l-P, 

^(fJnCt))     L(fk|T ) + i      . (2) 

Next, by integrating equation (1) over all possible, values of T 

we get 

PtfJ^.f,,,---,^) = /p(fk|T)P(T|frf2,..-,fk_1)dT , 

which may be factored to give 

[r ^l ' p^CfJnCt))  /L(fk|T)P(T|f1,f2,---,fk_1)dT +-j^  , 

After dividing (2) by (3) and cancelling common terms, we get 

LC^lDPdl^,^,..-,^)^ 
p(Tlfrf2'"-'fk-i> -1^7 ' 

jL(fk|T)P(T|f1.f2,....fk_1)dT+-;-i 

The recursive nature of this relation is more readily seen by de- 

fining two new quantities, 

Pk(T) - P(T|f1,f2,--%fk)  and 

WV " JL(fklT)Pk.1(T)dT  . 

Now the expression for P, (T) may be rewritten as 

L (f |T) +a 

1-Pl 
a =   

Pl 

(3) 
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APPENDIX B:  EXPECTED NUMBER OF OBSERVATIONS 

In the sequential probability ratio test, the expected number of 

observations (N) Is 

oo 

E(N) - I  mP(m|T) , where 
mal 

T    Is the unknown parameter of Interest.     It  Is convenient to 

introduce a variable    Z      which Is defined as 

Zj   " ln f(x]|To)     '  Where 

T- Is the state in which the unknown parameter is present, T 

the state in which it Is absent and to make use of the result, 

proved in [4], that 

N 

I z - E(N)E(Z)  . 

Then provided E(Z) ^0, we can find E(N).  For this purpose we 

may write 

N N 
P(d ) + E o 

N 

Wl j-l 
P(d1) , 

where d  is the decision made in the event T is not present 

and d.  is the decision made in the event T is present.  If the 

decision d  is made, this Implies 

N-l N-l N 
£ Z > In £ . and  £ Z 

j-l * U j-l J 
— i 

Now assuming that no single    Z      is likely to dominate in the sum 

we may say 
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E( [Z |d )~ln| . 

and similarly 

E( I  Z |d )~ln^ . 
j-1 J 

After substituting, we then obtain 

F . >,, v .  1-F 
N 

Eaz.).P(do)lnJ + P(d1) InfEl • 
j 

from which the expected number of observations Is seen to be 

1-F 

E(N) = 
P(do|T) In^PCdjT) lnf^ 

E(Z) 

since the probability is 1 that a decision is reached regarding 

the state of the unknown parameter T . 

As an example of the computation technique for E(N) consider 

a success or failure situation. Let T be the unknown fraction 

of failures In a sample of size N.  Some action is considered 

worthwhile  (d )  if T s T  and not worthwhile  (d,)  If T i T. . 
o o 11 

If T  < T < T,  it is not Important which decision is reached, o        1 

The expression for E(Z)  is gotten from 

fttl^)     T* (1 -T1)
1"X 

Z = lnf(x|T ) = ln 
o TX (1 -T )1"X 

o     o 

where X is the result of an Inspection.  Expanding the expression 

for Z gives 

1      T1(1"T0
) 

Z - in ~-  + Xln - (1_T N , which yields 

i-T, 

l-T 

T (l-T ) 
E(Z) - In -r— +    In  '    0 l-T T (1-Tj ' 

o   1 

I. 
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when X is a defective. We now have 

EW   - pjr T.d-T  ) 
lni^r+ lri T (i-T,) o o        1 

If    1 - T~ 1    and noting that    P(d   IT) - D    and    PCd. |T) - 1 - D, a o' i 

E(N) may abe simplified as follows, 

Din I - (1-D) in ^f 
E(N) -  r-r  

o 

i 
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