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Abstract 

Let    X ■  .bjl^bg...    be a random variable with independent binary 

digits    b      taking values    0    or    1   with probabilities    p      and    q  . 

When does    X   have a density function?    A continuous density function? 

A singular distribution?    This note    proves  that  the distribution of    X 

is singular if and only if  the  tail of the series      2,[log(p  /q )]2 

diverges, and that    X    has  a density that is positive  on some interval 

if and only if    log(p  /a)     is a geometric sequence with  ratio    -z    for 

n    greater than some    k,    and in that case the fractional part of    2 X 

has an exponential density  (increasing or decreasing with the uniform 

density a special case).    It gives a sufficient condition for    X    to have 

a density,    (Zlog[2 max(p   ,q )]  converges), but unless  the tail of the 

sequence    log(p /q_)     is geometric,  ratio —,    the density is a weird one  that 

vanishes at least once in every interval. 



1.       Introduction 

It is well known that one can construct a uniform random variable 

by choosing  the binary digits with successive  flips  of a good  coin, 

(p = y .     Such considerations date back to the beginnings  of probability 

theory—indeed,  to the development of measure and integration  theory. 

For bad coins,    0<p<  l.p^^,  the resulting number has a dis- 

tribution  that is  continuous but singular,  as   its possible values  form a set of 

Lebesgue measure  zero.    This note is   concerned with the case where  the 

binary digits are independent, but not identically distributed.    Are  there 

any interesting random variables  that  arise from this situation?    It  turns 

out that  there are some interesting singular distributions,  and that  there 

are distributions which have densities.     This note will show that  there is 

essentially one conventional  type density  that can arise  this way—the 

exponential  (Increasing or decreasing, with the uniform a special case), 

if by conventional we mean a density that  is positive on some interval. 

We will also find necessary and sufficient conditions that the distribution 

be singular.     The  conclusion is  that independent binary digits   lead  to one 

of four possibilities: 

1)    A singular distribution.    This happens If and only if  the series 
00 

2 log2(p  /q )    diverges  for every    m.    A special, but uninteresting, 
n-m 
case is  the discrete distt-tuuctw» arising when    p ti    ■ 0    for all 

suitably   large   n.    Some interesting continuous but singular 

distributions arise.    See Section  3. 

2)     A piecewise-exponentlal density, with pieces equally spaced and 

of similar shape.    This happens only when the tail of  the sequence 
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log(p  /q )     is geometric with ratio    —.       It is the only 

way to get a distribution which has  a positive derivative on 

some interval.     See Section 2. 

3)    A distribution with a density, but a strange density that vanishes 

at ttfll!A*6nce  on very interval.    This will happen if    2.1og[2 max(pn,qn)] 

converges and    log(p  /a)    is not geometric with ratio   —.       Section A. 

A)    A distribution with a Lebesgue decomposition having both absolutely 

continuous  and singular parts.    We conjecture  that this class is 

empty, but have not been able to rule out the possibility for cases 

where     Slog[2 max(p  ,q )]    diverges but     Zlog2(pn/qn)    converges. 

2.      Distributions with Reasonable Densities 

The most interesting case seems to be the assignment of probabilities 

to the bits so that the resulting random variable has a conventional density 

function.    We will show that  there is essentially only one way to do this. 

The general statement is Theorem 2 below, but by shifting the binary decimal 

point to the right far enough we may assume we are dealing only with the 

fractional part taking values  on the unit interval, and in that case we 

can formulate the basic requirement as follows: 

Theorem 1.       Jf   X   ie a random variable on the unit interval with 

independent binary digits. 

•V2V--- I,bi2 • i-i 

b'e independently    0    or   1,    and if the distribution function of   X,    say 

F(x),    has a positive derivative at   2» "A» s*  "*  that ^ F,^•1)» F'MD, 

F^.OOl), ... all exist and are positivet then   X   has an exponential 

distribution with density 
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f(x) = 8e 
Sx 

,    0    <    X   <     1,       -a'<3< 
ep - 1 

md the probabilities for the bits of   X   are given by the formula 

P[bi = 0] 

P[bi =  1] 

1 + e ß/2 

ß/2J 

1 + e 6/2- 

Proof:     Represent the probabilities  for tne oits of    X    as  follows: 

Plb.  = 0] 

1 + e 

P[bi - 1] 

1 + e 

We will get a relation between  the c's by representing    ?'(.!)   as  the 

limit of two sequences of  difference quotients: 

(1) 
F(.101)  - F(.l) F(.1001)   - F(.l) F(. 10001)   -  F(.l) 

-3 .-^ ,-5 

and 

(2) F(.l)  - F(.01) F(.l)   -  F(.011) F(.l)   -  F(.0ni) 
,-2 -3 -k 

The general term of sequence  (1)   has the form 

c 
„ 1 

n ci 

i-1 

and  the general term of sequence   (2)  has the form 
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C-+C,+...+c 2     3 n 

i«l ' 

Since    F'C.l)    exists and is positive, we conclude that the infinite 

product converges,  that 

CrtTCo'••• 

F'C.l) 
00 1 00 j 

n-(V) TT(^) 

and hence    Cj ■ Cj + c3 + ...   . 

A similar argument on    F'(.Ol) shows that    c    ■ c, + c^ + ...   ; 

on    F'C.OOl)  shows    C3 - ci, + C5 + ...     and thus we conclude that there 

is a     ß      such that    c1 - ß/2, c2 ■ ß/4, c3 - 3/8     This provides 

the formulas  for the bits of    X    as given in the  theorem.    We still must 

show that if the bits of    X   are given by those probabilities,  then    X 

has an exponential density with parameter 3.     (Note that    3    can be 

either positive or negative, with    3-0 giving the uniform density.) 

Writing 

b1     b2     b3 

X- — + — + — + ... 
21      22      23 

we express the characteristic function of X    as an infinite product 

r   Mn 

TT 
k-l 

1+e 

1+e 3/2* 

Using the relation 

'-/2ui-e
z/S - n+ez/2 /"♦wi     z/\ 1 - ez -  (l+ez'   )(l-e"  ) - (1+e"   )(l+e"   )(l-e''  ) -  ... 



-5- 

we have 

n-1 /0k ,        z 
rT(i+ez/2) = -1 -e 

k=l 1 - e z/2l 

and hence 

n-1 
1 

k=l 

He2/2' 
s 

l-e2 

[l-eßJ 
[l-e^2"] 

/ n 
- l-0

Z/2    J ^1* 

The right side converges  to 

[S] B] 
which, with    z = ß + it,     is the  characteristic  function of    X   with 

ßx 
density    ye        on    0 < x < 1. 

To get a more general theorem, we note that if    Y    has  a positive den- 

sity on some interval    a < y < b    then there are integers    r    and   k    such 

that    Y    has a positive density on a subinterval of  the form 

,   r r + 1 ., . 
a - ~k < y  < "IT" " b 

2* 2K 

and hence   the fractional part of    2  i    has a density om the    unit   interval; 

the above   theorem applies,  and we have: 

Theorem 2.        1/   Y    is a random variable with independent binary digitSj 

and if   Y    has a distribution which has a positive derivative on some 

interval,     F'Cy)  > 0,  a < y < b,    then   Y    may be scaled by a power of   2, 

that is,  its binary decimal may be relocated, so that its fractional part 

is exponentially distributed with density 

ße 
ßx 

eß-l 
0 < x < 1 

(For some    ß, 

ß = o;. 

-n < $ < <»t with the uniform density corresponding to 

IjMMW—'"'' '" ' 
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In other words,    Y   may be represented in the form   2 (W-X)    where 

W   is a random integer, independent of the fractional part    X   having 

density    ye    , 0 < x < 1. 

3.      Singular Distributions 

Let    p    « P[b    ■ 0].      If some subsequence of the p's converges to 

a value other than y,  then the distribution of    X = .b1b2b3...    will be 

singular, for its possible values will   form a set of Lebesgue measure 

0.    It is easy  to get many representations of singular varlates in this 

way.    In particular,  one can get two singular distributions whose 

convolution has an exponential or a uniform distribution, by writing 

Xl - .0b20b40b60  ... 

X2 - .b10b30b50b7... 

where the    b's    take values with probabilities given by Theorem 1. 

ßx 
Then    Xj + X2    has an exponential density    Ye        on   0 < x < 1. 

To get two singular distributions whose convolution is the ordinary 

—ax 
exponential density    ae      , 0 < x < 00,    write 

X - ... d3d2d1d0.d_1d_2d_3   ... 

where 

1 + e 

and 

Xj - ...    djOdj 0.d_1 0 d_3 0 d_5 ... 

X2 - .. .d^ 0 d2 0 d0.  0 d_2 0 d^ 0 ... 



-7- 

We now turn to the general question of when  the distribution of 

th X =  .b.b b-...    is singular, where    b      takes  values    0    or    1   wi 

probabilities    p      and    q.       If    p      does not  converge  to    T    then the 

distribution of    X    will be singular, but what happens when    p    -> y   but 

not  according to the formulas of Tueorem 1?    We know that    X    cannot have 

1 
a continuous density but if    p    -»■ -r   very very quickly we might expect 

that    X    will have some kind of  a density,  though  a weird one.    The 

answer is yes,  there is always a density if    p    -»■ •=-   quickly enough. 

Alternatively, we will prove that the distribution of    X    is singular 
00 

(including discrete)  if and only if     2. l0g2(p /%.) " m    ^OT all positive 
n»m 

integers    m. 

To prove this result we need a preliminary lemma which gives a formula 

for    F'fx)    when it exists: 

Lemma 1.        Let   X ■ .bjbjbg...    haiv independent binary digits with 

P[b -0] - p  , P[b -1] - q    . n rn n    J      nn 

Let    F   be the distribution function of   X.      If   F'    exists at 

v ■  .VJVJVJ. ..    then 

(3) F'M  -   [2g1(v1)][2g2(v2)](2g3(v3)]   ... 

where    JL(0) ■ p     and    g (1) » q  . 

Proof: Since F'Cv) exists it can be represented 

P,(v). llm   F& - m 
8,t-»-V 

8<V<t 

and we may write 
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F'C.v^Vj...)  - lim 2n[F(.v1v2...v +2~n)  - FCv^j.-.v )]. 

Then (3)   follows from the fact that the expression in brackets is 

g1(v1)g2(v2) •••Bn^n^' 

Theorem 3.        Let   X ■ .bjbgbg...    have independent binary digits with 

b      taking values   0   or    1   with probabilities    p      and   q .      In order 

that   X   have a singular distribution function (derivative equal zero 

almost everywhere) it is necessary and sufficient that for every positive 

integer   m, 

iuog(pn/qn)l
2 -00. 

n"m 

Proof: Let F be the distribution function. It has a finite derivative 

almost everywhere. Thus from Lemma 1, for almost all x ■ .x^x^x,... 

we have F* expressed as an infinite product: 

(4) F'C.x^x^..) - [2gl(xl)][2g2(x2)]l2g3(x3)] ... , 

where gn(0) - Pn and g^D ■ qn- 

Another interpretation of the fact that   F   has a derivative almost 

everywhere is to say that if    .v.v v  ...    is chosen at random with the 

v's independently   0    or    1   with probability -r,    then with probability    1 

the product in (3) converges to a (possibly zero)  constant.    According 

to a standard theorem on infinite products, (see, e.g., Knopp [2], p. 

223), the tail of the product in (4)  converges to a non-zero constant    e 

if and only if for some    m, 

I log[2gn(xn)] - L 
n-m 

Thus the question of whether    F*    is positive almost everywhere or zero 

almost everywhere hinges on the convergence of the random series 
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2 log[2gn(vn)], 
n=m 

where the    v's     take values    0    or    1    with probability   -r. 

We apply  the three series  theorem (see, e.g.,  Fisz  [1], p.  248)   after 

computing 

E{log[2gn(vn)]} = | log(4pnqn). Variance = |[log(pn/qn)]2. 

If the tail of    2,log2(p  /q )    converges,  so does the  tail of    -ZlogC^P Q )» 

for the terms of  the former dominate the  terms  of the latter.     (Write 

2p    =l+t,  2qn-l-t    then note that    log2[(l+t)/(l-t) ] + log(l-t2)   > 0 

for    -1 < t < 1.) 

Applying the  three series theorem to  the random series     2!,log(2g (v )) 

and interpreting the  result in terms of the infinite product (4) we 

conclude: 
00 

If     2, l0g2(p  /q )     converges  for some    m,    then    F^x)  > 0    for 
n=m 

almost all    x;    if it diverges for all    m,     then    F'tx) ■ 0    for almost 

all    x    and hence    F    is singular. 

4.      Absolute Continuity 

To recapitulate:    We know that    F    is singular if and only if the 

tail of     2.1og2(p  /q )     diverges,  and hence  that    F   has an absolutely 

continuous  component in its Lebesgue decomposition if and only if  the 

tail of    Zlog2(p /q )    converges.      But does  the convergence of the tail 

of    Zlog2(p  /q )     imply that    F    is purely absolutely continuous,  or 

can it have both an a.c.   and a singular part?    The question is open, but 

the following theorem shows that If    p   -* —    fast enough,  then    F   will 

have no singular part. 
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Theorem A.        Let   X « .bjb^...    have independent binary digits with 

b      taking values   0   or   1   with probabilities    p     and   q .    1/ the 

series 
00 00 

I log[2 max(p.,q.)l -    £ log[l+|2p -l|] 
i-1 1    ^^ i-1 

converges then the distribution of   X   is absolutely continuous. 

Proof:    Let 
00 

Y\{1 inax(p.,q.)] - M, 
1-1 i    i - 

where    0 < M < <»   because the series of logarithms converges.    We will 

show that    F    is absolutely continuous by showing that the probability of 

an interval is less than   M    times  the length of the interval: 

(5) F(y) - F(x)  <  (y-x)M,    x < y. 

In fact, it suffices to show that (5) holds if    x    and    y    are in the 

dense set of terminating   binary decimals, and in that case we may write, 

with    g^O) - vt   and    g^l) - q^ 

F(.x1x2...xn+2    ) - FC.XjXg.t.x ) - g1(x1)g2(x2)...gn(xn) 

£ 2 nf>ax(2p.,2q.) 
1-1 

< 2~nM. 

5.      A Conjecture 

There seems to be one question that remains, which we put In the 

form of a conjecture:    1/   X - .b.b.b,...    has independent binary digits, 

then the distribution of   X   is either purely discrete, purely absolutely 

continuous, or purely continuous and singular. 
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singular part? 

It is easy  to shew  that it is purely discrete if and only if    p q    «0 

for all large    n, and it is purely singular,  including discrete,  if and 

only if  the tail of     Zlog2(p /q  )     diverges.     But what about when the n   n 

tail converges, but not  fast enough for   .2.1og[2 max(p  ,q ) ]  to converge? 

The resulting    F    has a positive derivative almost everywhere, but can 

the Lebesgue decomposition of    F    have both an absolutely continuous and a 
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