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PREFACE i

This publication (Interim Report 69-2) forms the second part of ji

< two reports dealing with gac exchange from soil. Included here are pages
125-188 forming the appendix. We have chosen to make two reports because

of the anticipated diversity of interest in them.

E. R. Lemon
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Appendix

BASIC CONCEPTS OF SPECTRAL ANALYSIS BY DIGITAL MEANS

I. INTRODUCTION
A statistical technique that has helped meteorologists study wind
and other fluctuating variebles but whi~h as yet has been rarely used by

agronomists is spectral analysis. Spectral anslysis is used to evaluate.

the contributions of different frequencies of the fluctuation to the
total variance of an entity, such as wind velocity, whigh changes with
time. A graph of the variance per frequency band forms a spectrum not
unlike the more cormonly known spectrum of light intensity versus wave
length. Knowing the frequencies of the dominant modes of oscillation (or
knowing that there are none) can help one to understand and visualize the
physics of the transport processes mentioned in the first paragraph.
Allen (1968), for instance, has used spectral analysis to study the eddy
structure of wind in a Japanese larch canopy and found significant contri-
butions tc the variance of wind velocity by eddies the size of the tree
spacing at mid-canopy heights. There was surprisingly little contribu~
tion from these eddies at the bottom of the canopy.

Spectral analysis can be used to study two or more fluctuating vari-
ables to determine the closeness of their relationship for different
frequencies of change. Desjardins (1967), for instance, has compared the
responses of various atmometers to open pan evaporation. He found that the
variances were similar for periods of time longer than five days, but
different for shorter periods, indicating that different physical factors

must be in operation for the different instruments. Rodriguez-Iturbe and
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Nordin (1969) used cpectral analysis techniques to show the existence of
strong ccrrelations among annual oscillations in precipitation and run-off
ir the Pacific Coast region of the United States. The annual cycle of
precipitation could be considered the same for observation stations up to .
1000 km apart.
Spectral analysis was first developed for practical use by electri-
cal engineers. Because the variance of a voltage across or a current
through a unit resistance is proportional to the average power dissipation,

the term power spectrum has often been used to refer to the spectrum

of varisnce. Commumnication engineers have made much use of spectral
analysis, and the theory and procedures of mgsking spectral analysis are ]
explained in much detail by Blackman and Tukey (1958). A much less sophis- {
ticated, but easily understood explanation of the underlying principles
of spectrum analysis from the point of view of metecrology may be obtained
from Panofsky and Brier (1965). Lumley and Panofsky (196k4) present a
much more sophisticated treatment from the same viewpoint. Jenkens and
Watts (1968) present an excellent explanation of the principles from a
stetistician's point of view.
In 1965 Cooley and Tukey revealed a new algorithm for fast computa-
tion of Fourier transforms which has made spectral analysis much easier.
An easily understood description of the new method is glven by Brigham
and Morrow (1967). More information mey be obtained in the June 1967
issue of IEEE Transactions on Audio and Electroacousties, vol. 15, no. 2, J
which was devoted entirely tc the fast Fourier transform and how it re-

lates to spectral analysis and other subjects.
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Thie author has found all of the above references useful in under-
standing spectral analysis, but found none which developed the principles
with reference tc the new computational methods for persons who previously
had little knowledge about spectrum analysis. This paper attempts to
develop the concepts of spectral anaiysis for a reader who previously
knows little about spectral analysis and whose background includes no more
mathematics thean basic calculus and statisties.

The orientation here will be toward the use of a digital computer to
compute spectra from a series of samples of discrete data; therefore, the
discrete forms of equations are used wherever possible. Spectra can be
measured directly by electronic filterinz of continuous electrical analog

signals, but suitable analog signals cannct be obtained for many varia-

bles.
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I. ONE-DIMENSIONAL SPECTRAL ANALYSIS

This section will discuss the fluctuation of an entity that changes
with time. All of the concepts would apply equally well if the entity
would change with some other variab.e, such as distance, but spectral
analysis has been used more frequently with entities that change with
time than with other variables, so this orientation will be used in this
development. The term, one-dimensional, refers to the fact that the
entity fluctuates only with one variable, time. Later, an entity that
fluctuates with two variables, time and distance, will be examined, and

the analysis will be referred to as two-dimensional spectral analysis.

1. Fourier series representation
Suppose some quantity, p (perhaps air pressure), a function of time,
t, has been observed N times, where N is chosen to be odd for convenience,
and that the observations have been spaced equally At units apart. Let
(N-1)

the individual time of sampling be labelled tJ =) At for j = - —

- ﬁH&él, 4d 2 8 o 2500581 of oo BolMoly E%l so that the time origin is
in the middle of the total sampling period, T. Note that T = (N-1) At.
Figure A.1l.1 illustrates the sampling scheme.

Since we are basically interested in evaluating the amplitude and

frequency of the fluctuations in p, it is useful to describe p by a

Fourier series of complex exponentials as in Equation A.2.1, where i =V -1 .

|

-!.’ -] -

i p(t) = I C, exp(ln2Tt) A.2.1
i = - T

|

FEquation A.2.1 represents the continuous pressure between time -T/2 and

+T/2 as a function of continuous tine. The complex coefficients Cn mey
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Figure A.2.1 Illustration of the sampling of p at the various
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be evaluated by multiplying both sides of Equstion A.2.1 by exp(i_g_%%llli)
forq=.....=2,=-1,0,1,2 ... . . and integrating from -T/2 to

+T/2. Noting that

T/2 . .
J exp(LR2 Tt) exp(ia?2mt)gs
-T/2 T T
=T vhen q = -n
= 0 when q # -n A.2.2
one obtains
T/2 .
c =1/ f p(t) exp(zin2 ™ t) gt A.2.3
n -T/2 T

Equations A.2.1 and A.2.3 are for continuous variables. To put
Equation A.2.1 in a form for handling a finite number of discrete observa-

tions, one writes

=

=1

2 :
p(ty) = 3 ¢, ew(Z2ZTE)

(N-1) A.2.b

2

n

Equation A.2.3 is discretized by numerical integration with the»

rectangle rule to give

N-1
2
C = é_t_ p(t ) exp(-i nanm tj) A.2-5
B T jg(N-l) J T
2

Each pair of terms in Equation A.2.l4 corresponding to n and -n repre-
sents a particular harmonic in the fluctuations of p. Also n denotes the
frequency of the harmonic because it measures the number of complete
cycles the nt'h harmonic executes in time T. The particular limits on n

arise because of an assumption inherent in making the sampled points of p
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substitute for the real, cortinuous p. This assumption is that the sample
interval, At, is smull enough so that there are no undetected high fre-
quency fluctuations in p between the points. As discussed by Blackman and

Tukey (1998, p. 30), the highest frequency or harmonic which can be

. detected when sampling at discrete intervals is given by 1/(24t), which

corresponds to n =i1_‘l;z-]_. . If p has higher frequency fluctuations, the
data will be aliased. This problem is discussed more fully later. The
term corresponding to n = 0 is the mean of p. The terms corresponding to
n = *1 represent the first (or fundamental) harmonic which has a frequency
of 1/T. It is the lowest frequency of fluctuation in p which can be
distinguished, and if lower frequencies are present, such as is the case
when there is a trend in p, corrections must be made, as will be discussed
later.

Note that, in general, the Cn are ccmplex. If one writes Equation

A.2.4 in the form

N-1
2 . ]

p(t) =Co+ 3 [ ep@ 22T ) wc exp(ZR2TY T a2.6
n=1 T T

and uses the Euler equations

eie

cosf + i sing A.2.7

o106

cosf - i sin® . A.2.8

Equation A.2.4 is changed to a Fourier series of sines and cosines.

=

2
p(t,)=cC +3 [(c, +Cp) cos(B 2T b)) +
J ° a=1 - T

=]

i(C, = C_p) sin(R 2 7 t4)] A.2.9




-

Lk & wak

Then, if one defines

8, = 2Co

b =1 (Cn - C_n)

Equation A.2.9 becomes the more familiar

N-1
2
p(t,) = 24+ 3 la cos(®2TH) +1b sin (O 27t
2 n=1l T T

132

A.2.10

A.2.11

A'2'12

AQ2013

which will not be used here because the Fourier transforms discussed later

in the paper are more easily handled by the series of exponentials.

Also, acte that by rearranging Equations A.2.11 and A.2.12,

G=fn-iln
2 2
and
C_n-a'_n+illr_l_
2 2

A.2.1h

A.2.15

so that Cn and C_n are seea to be complex conjugates, a result which is

useful later.

2. BRelation of variance to spectral density function

A common statistical parameter used to measure variability is the
variance, §2. It is defined
N-1
2 1 2 =12
s“=gr 2 {p(ty) - p] A.2.16

— =(N-1)

J =73

where the p(tj) are the observations of p, N is the number of observations
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end § is the mean of p(t,). The limits of sumation are t@%l_), which
will be the limits of summation from the point on, unless noted otherwise.

If Equation A.2.4 is used to substitute for p(tj) in Equation A.2.16, the

i e L

variance becomes explicitly expressed as a function of the harmonics of p.

. Remembering that § = Co and .>_= At | one obtains
i N-1 T
%
1
‘ 2 _ At - 2
£ st = _T T [: [Cn exp(l nzm _t_l)] = CO] A.2.17
J =n T

Equation A.2.17 is the numerical form for the following integral equation.

2 T/2 i 2
, s“=1T1 [ [ [c exp(in2T%]_c I at A.2.18
: -t/ a " T
If the summation is written out in a series, and if the squaring is

performed on the series, the following expression is obtained

U

/2

T
| g 2 -i(N-1) 2 7 ¢y ° -i(N-2) 2m ty
: S fT/g [ )@= )+ 20 (3 1)C (n-3)° .
s K - S 2 ?
i 2
4
! + . . . . 2C—(N—l) CN—l + . . . ] . . . . . . ] . ] . . ] . ]
I% 2 2
-
‘ 2 -inhknt -i(2n + 1) 2 7 ¢
:’ + C—n exp( T L) + 2C_nC_(n+l)exp( )
i T T
[
f b e 20 C A+ Rexp(inliTty
{ * -n 1 n T
§
; + . . . L] . LI ] . . . e L] ]
3 -
i + L] L] L] L] » L L » L] L] L] L] L] L] L] L] L] ] dt
A.2.19
$
Recalling Equation A.2.2, the variance is seen to be equal to a sum ]

of squared moduli of coefficients.




13k
N-1 N-1
2 2
2= 2 5 cc =2 > lc_|? A.2.20
-n n n
n=1 n=

The vertical bars denote the modulus, which is obtained by muiti-

plying Cn by its complex conjugate, C_n

, and taking the square root of
the product. In Equation A.2.20 the varience is expressed as a function

of the amplitudes of the harmonics from 1 to Eél . The variance msy also

be considered as a sum over negative and positive harmonics since the
modulus is an even function. Thus,

LY

2 2 e
s5=-C + 3 lc,| A.2.21

_ _(§-1)
2

The form in Equation A.2.20 is most common, however.

Now, if one defines

n/T A.2.22

s ]
1]

and Af = 1/T A.2.23

and plots 2[Cn|2 against fh we obtain the Fourier iine spectrum shown

in Figure A.2.2., The fn represent the frequencies of the harmonics, and

Af represents the frequency increment between successive harmonics. Thus,

the "curve" is a series of lines of height 2|Cn|2 spaced Af units apart.
If one assumes that heights of 2{C |2 are distributed wiformly over

the frequency bend from f; - Af to fp, a histogram may be obtained

where the height of the bands is determined from

2[¢ | = (heignt) ( af) A.2.24
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or height = L 2|c |2 A.2.25
Af

A plot of 1—f 2|c,|? against £_is shown in Figure A.2.3.
A

Figure A.2.3. is called a periodogram in spite of the fact tiat the
axis is frequency and not time. The total area of the rectangles equals
the total variance. As the period, T, increases, Af decreases Jy an
inverse proportion, and the rectangles in the histogram of Figure A.3
become narrower. In the limit as T + =, Af tends to zero, and the rectangles
become so dense that their discrete upper edges approach a smooth curve.

The limiting smooth curve is the spectral density function, s(f), and

the plot of it against frequency in Figure A.2.l represents a variance

spectrum or power spectrum. In practice, of course, one does not have an

infinite sampling time, as is implied by letting T + @, so one must approx-—
imate the spectral density function, using finite sampling times and
finite Af's.

The practical spectral density function, now defined as

s(g,) = 2 2|cn|2 n=E1,2, 000000081 p0o0g

Af 2

represents the variance in v per frequency increment. The total area
under the curve represents the total variance. The graph can be normalized,
if desired, by dividing s(fn) by the total variance calculated directly
from Equation A.2.1¢. The normalized graph will always have the area

under the curve equal to 1.0.
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Figure A.2.4 Plot of spectral density function against frequency
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3. Relation of spectral density function to Fourier tramsform
Using Equations A.2.22 and A.2.23, Equations A.2.2k and A.2.25 may a
! i be rewritten in the forms:
= C 3¢ Y-
p(tj) i i exp(lawfntj) A.2.27
)
| and ‘
C = AtAf § p(tj)exp(-i2wfhtj) A.2.28
]
Substitutiag Equation A.2.28 in A.2.27, one obtains
o t,) = At - 2.
i E ol j) é [Atar § p(tj)exp( 12ﬂfntj)] exp(i2wfhtj) A.2.29
!
' } If one now defines
, N-1
] l 2
E S f = At t -.' A.2.
i | (£,) 2 gy BEylem(-iantey) 3
B 2
where the S(fn) are cormonly called Fourier coefficients,
| N-1
2 .
k then o(t,) = Af S(f i2nf t A.2.
| s 3, et .

S(fn) and p(tj) form a discrete Fourier transform pair. Using the

. computer technique of fast Fourier “ransformation, as described by Brigham

and Morrow (1967), S(fn) can be rapidly computed from the set of data

e e e T

points (tj). Alternatively, if the S(fn) are known, the p(tj) can be

{ computed from the S(fn).

The significance of the S(fn) may be realized by noting that

C

8(fy) = . A.2.32

o — —— anm o PYLSg Y PP —— s St e 4 sy e
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and remembering that Cn and C_n are complex conjugates. Then if S(fn)

is multiplied by its complex conjugate, S(-f_), one obtains

2
l A.2.33

s(£,)-8(-g,) = [s(g)|* =% . Cn = 1 g
AT AT (Af)2
where the vertical bars denote modulus.
The spectral density function defined by Equation A.2.26 is seen to
be equal to twice the squared moduwlus of the Fourier transform of the date
points times the frequency increment.

s(f)=2agls(£)2 ,n=1,2,...01 A.2.34
n n o

Thus, the spectral density function may be computed by a fast Fourier
transforn of the data forn=1,2 . . . N-1 and then multiplying each
cf the S(fh) by its complex conjugate timei OAf,

An example of the use of Equations A.2.30 and A.2.34 is provided by
the hand calculation of the spectrum for the simple curve illustrated

in Figure A.2.5. Noting that At = 0.1 sec, that N = 17, and that f t, =

J
nj/(N - 1), one writes
+8
s(f,) = {0.1) 2 p(tj) (cos™i - i gin2MJ )
j=-8 16 16
The next step is to compute all the values of cos 2'J and singggi- for
16
j=-8., ..., +8 and n = 1, as has been done in the third and fourth columns

of Table A.2.1. 1In the fifth and sixth columns, the cosine and sine valves
are multiplied by the corresponding p(tj) and summed on j. The calcu-~
lation of S(fl) and s(fy) is illustrated at the bottom of Table A.2.1.

The process is continued for n = 2, as shown in the table, up ton = 8 to
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obtain the spectrum illustrated in Fig. A.2.6. The spectrum shows a
peak . at a frequency of 1.88 cycle/sec as one would predict from the
distinct repetition near this frequency in the original data.

The spectrum in Figure A.2.6 is plotted with a linear scale for both
axis. The area under each portion of the spectral density curve is the
contribution of that corresponding frequency to the variance, and the
total area is equal to the total variance. Very often in practice, how-
ever, a worker will “e studying a variable whose spectrum covers a range

i of several orders of magnitude on both the frequency and spectral density
axis. In such a case, a linear plot of the spectrum can obscure much of
the detail, so a log-log plot is of‘ten used. Although the area under the
curve is no longer equal to the total variance, a log-log plot has the
advantage of covering wide ranges and of presenting as a straight line any
spectrum which obeys a power law, such as isotropic turbulence in a
stream of air. A third method of presenting spectra and a meth.d which
is often used, particularly in meteorology, is to plot f s(f) against
log £. Since

Area = [ s(f) af = ff s(f) a(log £)

the area under the curve is preserved, and one can still observe the

relative contribution of different frequency bands to the total variance.

Wide ranges of spectral density and freguency can also be presented. 1In
Figure A.2.7, the three methods of presenting spectra are illustrated for

a spectrum of air pressure at the ground surface obtained by the author.
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L. Relation of spectral density function to autocovariance function

The autocovariance function, R(7,), is defined by

2
R('ru) = 1 Z

- J [p(t,) - pl [p(ty + 1) - 5]  A.2.35

vhere the bar denotes the mean. As the name implies, the autocovariance
function expresses a covariance of p(tj) with itself. The T, represents

a lag in time, and usually it is an integer multiple of At, i.e., T, = udt
vhere u is an integer. Thus, R('ru) is the covariance of p(tj) with itself
T, Wits of time later. It is computed by multiplying (after subtraction
of the mean) each observation of p(tJ) by another observation of p(tj)
taken a time T later (or earlier for negative T,), then summing all the
lagged products and dividing by the number of products. For T = 0,

R('ru) is identical with the usual variance function defined by Equation
A.2.16, and very often the autocovariance function is normalized by
dividing it by the usual variance. The normalized autocovariance function
is called the autocorrelation function which varies only between *1. A
plot of autocovariance for the curve of Fi.gure A.2.5 is shown in Figure
A.2.8. The autocovariance is seen to be large and positive at u =0

vhen the curve agrees perfectly with itsel?, small at u = 2 when the curve
does not correspond with itself, large and negative at u = 3 when the
positive peaks of the curve are opposite the negative peaks, and large
and positive at u = 6 when all peaks correspond. When N>>u and p = 0 (the
data can be adjusted to give a zero mean, if necessary), Equation A.2.35

becomes N-1

2
R('ru) = 1 z p(tJ) p(tJ + Tu) A.2.36

N-1 " (4-1)
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Figure A.2.8 The auto-covariance function for the curve in Fig. A.2.5
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Equation A.2.36 will be used shortly.

The autocovariance function is useful because it illustrates the
iengths of time for which a variable can be expected to be correlated
with itself. It is useful aiso because it happens to be the Fourier
transform of the spectral density function. A rigorous proof of this
fact, as given by Blackman and Tukey (1958, p. T2), is possible only
for continuous variatles extending over infinite ranges, However, a
demonstration of the basic idea can be given by using the discrete
equations already developed. First, consider the concept of discrete
convolution, which is somewhat analogous to the convolution of contin-
uous functions described by Blackman and Tukey. Let

N-1

2
s(g,) = at 3 p(tJ) exp(—i21rfntj) A.2.37
J = -.(.E‘_).

and p(tJ) =0 § S(tJ) exp(iEnfntJ) A.2.38
_(N-1)
2

n-s=

describe a Fourier transform pair. Now let Sb(fh) = S(-fh) - s(£,), and
let the Fourier transform of Sb(fh) be denoted B(Tu).

By Equaticn A.2.38

B(tu) = e 1 Sb(fn) erp(i2nf v ) = oFf & S(-f,) S(fn) exp(i21rfntu)

n n
A02-39
Then, using Equation A.2.37 to substitute for S(—fh)
B(t,) = Af;:1 [At g p(‘tj) exp(121rfntj)] S(fn) exp(iarf 1) A.2.40

TSR INREIE, .

RO 7 T T >
-y - e B

N

Lt

SR




150

By reversing the order of summation, one obtains

B(Tu) =AM I [Af I s(f) exp(i21rfn(tj +7.))] p(tj) A.2.11
J n 7

Using Equation A.2.38, a substitution may be made for the expression

§ in brackets, so that Equation A.2.41 becomes
N-1
; 2
! B(Tu) = At S p(tJ) p(tJ + 'ru) A.2.42
(N-1)
; J=-73

] Recalling that T = (N-1) At, R(t,) in Equation A.2.36 is seen to be
equal to the expression for B(tu) given in Equation A.2.42 divided by T.
Now recall that B(Tu) was defined in Equation A.2.39 as the Fourier
transform of S(-fﬁ) S(fh). Since S(-f,) is the complex conjugate of
s(f,), B(t,) is the Fourier transform of |S(fh)|2. Using Equation A.2.21
for Co = p = 0, the relation between the spectral density function and

Is(g,) |2 is

(£) = agls(e)]®, n=- 1) _(¥3) .. _1,0,1,...0N1
s(t,) = arls(zy)| 2 > -

A.,2.43

Therefore, using Equation A.2.43 and the fact that R(71,) = Af

B(tu), one obtains

N-1
2
R('ru) = Af z s(fn) exp(i21rfn'ru) A.2. kY
o (B-1)
2

which states that the autocovariance function is the Fourier transform of
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the spectral density function. Due to the reciprocal nature of the Fourier

transform pairs, s(fh) must also be the Fourier transform of R(Tu), i.e.,

N1
2
s(f,) = ot u; (g-1) R(7y) exp(-i2nf ) A.2.b5

2
During the past, the standard procedure for computing the sﬁectral
density function for a set of data points involved calculating the auto-
covariance functions first. Using Equation A.2.35 values of the auto-
covariance function were computed for lags covering about one-tenth of the

total observation period. The spectral density function wes then computed

from Equation A.2.45 for the number of lags available. The development
of the fast Fourier transform technique by Cooley and Tukey (1965) has
made another approach computationally advantageous. First, the S(fn) are

computed directly from the data using Equation A.2.30 for n =1, 2, .

|
z
i

EE}_ . Each S(f,) is then multiplied by twice its complex conjugate and
the spectral density function is obtained from Equation A.2.3h,

Also, as explained by Stockham (1966), the autocovariance function
now may be obtained most easily not from lagged products but by a second
fast Fourier transformation. After the spectral density function is ob-
tained, the transformation given by Equation A.2.4k is used to compute the
autocovariance function from the spectral density function. However, it
is not the usual autocovariance funetion but a cireular autocovariance

whereby overlapping values at the end of the summation interval for the

lagged products are shifted around to the other end. This is why u goes

2
from - (8-1) to (8-1) in Bquations A.2.hk and A.2.L5. g
2 2 !
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Since from Equation A.2.43, s(fh) can be seen to be an even function
of f , and since from Equaticn A.2.36, R(Tu) can be seen to be an even
function of ty, the summation in A.2.hk4 and A.2.L5 need be carried only

over half the ranges. Thus,

=

-1

P

2
Af [s(fo) + 2 z s(:t‘n) exp(i2nfntu)] A.2. k6

n=.

R(ru)

and
N-1

2
st [R(to) + 23 R(1 ) exp(-i2nf 1))] A.2.47

s(f )
n u=1l

5. Variability of the spectral estimates

The experience of many investigators, particularly with meteor-
olegical data, has shown that the spectral density estimates calculated
from Equation A.2.34 may scatter widely and also that the spectra from
two different portions of the same time series may differ. These anomalies
are now regarded to be due mostly to sampling error, and methods are
available to obtain the underlying "smooth" spectrum. The traditional
method described by Blackman and Tukey (1958) has been to calculate the
autocovariance funci 4 for lags extending over approximately one-tenth
of the total sampling period and then obtain the spectrum from a Fourier
transform of the autocovariance function. Since the lags extend only
over one-tenth of the total period, the computation is essentially an
averaging and smoothing process, and a smoother spectrum is obtained.
Additional smoothing is obtained by forming new eztimates from weighted
averages. i.e. s'(1,) = .25 s(fn_l) + 0.50 s(fh) + 0.25 s(f,,9) shows

one set of weights commonly used. These weights are called the "Hanning"
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weights after the man who first used them. The method iz also adapted for
calculating the statistical significance of the spectral estimates.

Now that the fast Fourier transform technique of Cooley and Tukey
(1965) has made it computationally advantageous to compute spectra
directly without an intermediate calculation of an autocovariance function,
another method of smoothing is desirable. Welch (1967) suggests obtain-
ing spectral estimates from several intervals and averaging. He describes
multiplying the data by weights before obtaining the spectral estimates
rather than multiplying the spectral estimates by smoothing weights later.
The method is applicable to the fast Fourier transform techniques, and
like the autocovarience method, it permits calculation of the statistical
significance of the spectral estimates.

If the data contains a stroag repetitive cycle, such as the whale

calls studied by Singleton and Poulter (1967), the spectrum will contain

a sharp peak, and another problem can arise, If the fregquency of the repeti-

tive cycle falls between two of the calculated points for the spectrum,
these two points and all the rest of the calculated points will be
affected. As explained by Bingham et al. (1967), the effects of the peak
have alterna‘ing signs and decay slowly (like TE%;TT.) as fn recedes from
the peak frequency, f. Before computation of the-2pectral density from
Equation A.2.34, they recommend that the Fourier coefficients be hanned

according to

s'(f,) = 0.258(£,_;) + 0.505(f,) + 0.255(fy )

when the time origin is in the center of the data or according to

s'(r ) = -0.258(£,_;) + 0.508(f,) - 0.258(f )

1
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when the time origin is at the first data point. The hanning causes the
effect of a peak to dzcay like l_fi'—|3 so that the resulting calculated
spectrum will have a sharper pesk mgre like the true underlying spectrum.
An alternate procedure is discussed by Blackman and Tukey (1959).
In cases like that discussed in the preceding paragraph, where a strong .
repetitive cycle causes a rapid change of spectrsl density with frequency,
they suggest that the data be adjusted prior to the computation of the
spectrum in a way which will make the spectrum more flat. Such an
adjustment is called prewhitening because the spectrum is made to resemble

more closely the flat spectrm of "white" noise which has equal spectral

density for all frequencies. The prewhitening adjustment may be accom-

plished by
p'(t) = p(t,) - aplt )

Where ‘
o'(t,) = the adjusted value of p

and a = a constant < 1. (Blackman and Tukey use a = 0.6

in one of their examples.) However, prewhitening by this meens introduces
a phase change in the data which may be undesirable if any cross spectral

analysis (soon to be discussed) is performed. L

6. Aliasing

1
(2at)
will wnfortunately "alias" the digital data when it is sampled at discrete

If frequencies higher than were originally present in p, they

points, as illustrated in Figure A.2.9 and explained by Blackman and Tukey

(1958). The solid line in the figure denotes a harmonic whose frequency is

higher than ( 1 ) . When the sampling is performed at the At intervals,
26t

et e e
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Fogure A.2.9 Illustration of how digital sanpling may cause a high

frequency component to alias and appear as a low
frequency component

155

R i ~

x

i

.
e, Sakitcidass s ahiakialade

= W Y
.




i

p ol g

156

tne variability in p due to this higher frequency component appears in-
stead to be the lower frequency harmonic shown by the dashed line. Hence,
the lower frequency harmonics will appear larger than they are in reality
if some of the variability in p is due to harmonics of frequency higher
than TE%ET . In the practical situation, then, one must make At small
enough so tkat all important frequencies can be considered, and must
filter out any higher frequency "noise" before the data is sampled.
Filtering can be accomplished by using special electrical filters ahead
of the recording equipment or by using recording equipment which nas a

long mechanical time constant. ‘

T. Trends

If the data show a general tendency to increase or decrease over
the total sampling period, T, they are said to contain a trend. The
presence of a trend means that a portion of the variance is due to fre-
quencies lower than the lowest distinguishable frequency, 1/T. When the
spectrum is computed, the spectral density at the low frequency end will
be artificially high with the point for frequency 1/T being affected most.
The usual method for correction is to remove the trend from the data
before the calculation of the spectrum. The equation of the trend line
can be computed from the data by the methed of least squares; then the

corresponding trend values can be subtractec from each data point.
/
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III. CROSS-SPECTRAL ANALYSIS
Spectral analysis may also be used to study phase and amplitude
relationships tetween the fluctuations of two entities, 12 ané Po:
Consider the Fourier transforms, as defined by Equsation A.2.30, of
the data from two time series. Presume also that the data have zero mean

or have had the mean subtracted from each of the data points. Thus,

N-1
2
5, (- ) =8t 3 pl(tj) exp(i2nf, t,) A.3.1
- - (N-1)
2
N-1
2
- AY .
5, (£ ) =at 3 p,(ty) exp(-12ﬂfntj) A.3.2
(N-1)
IR=RS=s
n=- 8Ly e, EL
2 2

If one computes Af Sl(-fn) 5, (fh) analogous to Equation A.2.3k4,
a spectral density function is obtained, but it is quite different from
the spectral density function of Equation A.2.3L4. Because Sz(fh) is not
the complex conjugate of Sl(-fn), the new spectral density function has

both real and imaginary parts. It is called the cross spectral density

function and will here be denoted Sc(fh)'

so(f) = of 8,(-fp) 85 (f,) A.3.3

That s,(f,) has both real and imaginary parts may be illustrated

by the following. ILet

§1(-f,) = a, + iby, A.3.4

RN QTN
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and Sz(fn) =c - id, A.3.5

vhere a,, ¢;, and b,, dy, are real and imaginary parts, respectively, of

81(f,) and 5,(f ). Then, using Equations A.3.h and A.3.5 in A.3.3,
se(fy)) =flac +bd)+iflbe -ad) A.3.6

In general, b c, # a,d,, because the Sl(fn) and Sz(fn) are from two diff-
erent time series, and so sc(fn) is complex.
A complex number may also be written in the form of an amplitude

times a phase factor, so that

5,(-£,) = Appexpl(i¢y)) A3.T
and Sa(fn) = Aznexp(-icbzn) A.3.8
where
Ay = /af1 + bnz
¢, = arctan ey
&

2 2
A2n /cn + bn

¢

arctan —
c
n

2n

These forms will soon be useful. Equation A.3.6 may be written
s (£) = c(f) - ialfy) A.3.9

The real part, C(fn), is called the co-spectrum. The imaginary part,

Q(f,), is called the guadrature spectrum. If, in Equation A.3.6, boe, = a,d,

then ¢ln = ¢2n’ and the two times series are in-phase. Also, then
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Q(fn) = 0, so sc(fn) = C(fn), and thus, C(fn) is also called the in-phase
spectrum. Recall from Equation A.2.26 that s(fn) represents the variance
in p per frequency increment. Analogously, C(fn) represents the cross-
covariance between Py and P, per frequency increment for various fre-
quencies when the two series are in-phase. If, in Equation A.3.6 ac, =
-b 4 , then ¢ln = ¢2n
Then C(fn) =0, so s.(fy) = -1 Q(f;), and Q(£,) is also called the out-of-

+ T/2 and the two time series are out-of-phase.

phase spectrum. Q(fn) represents the cross-covariance between pl and
per frequency increment for various frequencies when one of the series
is shifted exactly 1/bU period with respect to the other.

The degree of phase shift between the two time series for various

frequencies is measured by the phase spectrum., defined by

#(£,) = arctan YUfn) A.3.10
c(t,)

To measure the degree of similarity of amplitude between the two time

series for various frequencies, a cross-amplitude spectrum is defined by

A(g)) = Ylc(£))F + [Q(£) J° A.3.11

A(fn) is usually normalized and used in the form

c(r)? + q(r )?
con (£) = 2 1 A.3.12
s,(£,) s, (£,)

Coh(fn) is called the coherence and measures how well the two time series
are correlated for various frequencies. As explained by Panofsky and
Brier (1965), the coherence varies from O to 1 and is analogous to the

square of a correlation coefficient. Probability tables have been

i i, < e IR ORI T R b
.
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established for coherence functions which have been computed from trans-
forms of cross ccvariance function, soon to be defined. The tables can be
used to test the closeness of the relationship between the two series
at the various frequencies.

However, if one writes out Coh(fh) explicitly in terms of raw
Fourier coefficients, one obtains

[af(age, + bydy) 1P + [at(bye, - 8,d) 1
Coh(fn) = =1

(a1) (a - iby)(a, + ib ) (8f)(ey + id,)(ey - id)) |
A.3.13 |

for every frequency fh. Although Equation A.3.13 may seem rather surpris-

ing after the comments in the preceding paragraph, the explanation is

e

rather simple. When computed from raw coefficients, Equation A.3.12 is
the same as a correlation coefficient computed from one observation pair.

Therefore, the coherence must be computed from coefficients which have

OIS TSI OSIE RN Y

been smoothed or averaged in some way. The current practice is to form a

weighted average over several frequencies of each quantity in Equation

A.3.12, but, as discussed by Tick (1967), the best method to do the ]

smoothing and its corresponding table of confidence limits have not yet

been satisfactorily established. '
In Fig. A.3.1 are plotted the coherence and the phase spectrum for

air pressure between a point on the ground surface in a field and another

point downwind from the first. For low frequencies, the pressure is the ‘

same at the two points, so the coherence is close to one and the phase i

angle between them is close to zero. As frequency increases, the correspond-

ing wave lengths of pressure waves moving across the field become smaller.

The pressure at the upwind point changes before that at the downwind point
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Figure A.3.1 Coherence and phase spectrum for air pressure between
a point on the ground surface in a field and another
point downwind from the first
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and is shown in the figure by an increasing phase angle between the points

with increasing frequency.
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As frequency becomes higher (and wave length

smaller), the two points do not always see the same wave, as evidenced
by the decrease in coherence with frequency. When the coherence gets
small, the phase angle changes wildly and is no longer meaningful.

If the convolution procedure is performed on Sl(-fn)Sa(fn) exactly

as it was on S(-fn)S(fn) in Equations A.2.39 through A.2.42, one finds that

-1
. 2
Rc(tu) = vy S pl(tj) p2(tj + ru), A.3.14
_ (N-1)
4=-73
N-1
‘ 2
R, (ru) = Af S sc(fn) exp(i21rfnru) . A.3.15
o = —(N-1)
2
and N-1
2
sc(fn) = At S Rc(ru) exp(-i21rfnru) A.3.16
g = =(N-1)
2

wvhere Rc(Tu) is the cross-covariance function and T is a lag in time by

which one time series is shifted with respect to the other. When To = 0,

Rc(ru) is identically equal to the usual covariance from elementary
statistics, i.e.

I |
RO Ry ? py(t3) pplty) A.3.17

If one describes both Py and p, in Equation A.3.17 by a Fourier series,
one obtains an equation analogous to Equation A.2.17. Proceeding simi-
larly to the steps in Section A.II.2 and Section A.II.3, one finds that

the contributions of the various harmonics to the covariance may be

S




- ——R

i B o

-
RPN

=

GO PRI

'
3
'E.

163

evaluated and vlotted to form & spectrum. The spectrum is identical to
the cospectrum, and the area under the curve is equal to the covariance.
The latter fact can be used to evaluate the covariance, and has been used,
for instance, by McBean (1968) to obtain the covariance between tempera-
ture and vertical wind (in this case, the covariance was particularly
useful because it is equal to the vertical eddy flux of heat.)

If Equation A.3.15 is used for its computation, the cross-covariance
function obtained will be a circular cross-covariance whereby the over-
lapping values at the ends of the time series due to the offset lag Ta
are shifted eround to the front. If Equation A.3.1k is used for its
computation, the summing and averaging are usually performed only over
pairs of values which do not overlap. One notes from Equations A.3.15
and A.3.16 that the cross spectral density function and the cross-covari-

ance function are Fowier transforms of one another.
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IV. TWO-DIMENSIONAL SPECTRAL ANALYSIS

Some entities fluctuate with respect to more variables than just
time. In this section, the concepts introduced for one-dimensional
spectral analysis are expanded to two dimensions. Although the orientation
taken here is for one of the dimensions to be time and for the other to
be distance parallel to the wind, the concepts apply as well to any two
variables. Just as it will be shown how to extend the concepts from one
to two variables, the concepts can also be expanded to include more than
two variables. Lumley and Panofsky (196k4), for example, discuss spectra
of entities that fluctuate with four variables, time and space in three

directions.

1. Fourier series representation

Suppose p represents a variable such as pressure in some turbulent
field moving horizontally over the ground surtace, so that p = p(t, x)
where + it time and x is the horizontal distance. One observes the
pressure N times at each of M positions in the turbulent field. At

each position the observations are taken starting at t = - g for a

total period of time T. The observations are spaced At units apart, and

the time at which each is taken is t; = jit for J = -_(1;1_—1_) ...
R Hél . We note that T = (N-1)At. The observation posi-

tions are spaced along a line parallel to the direction of movement of

the field. The total length covered is L, and the first position is at

X = - % . The positions are spaced x units apart, and an individual
e s _ _ =(n-1)

position is denoted by X, = LAx for & = ——5——— A S I (0] A B

e e Eé;-. We note that L = (M-1)Ax. The notation is illustrated in

Figure A.4t.1 where the vertical directicn out of the paper represents the

magnitude of p.

i ko

el bttt i
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Figure A.4.1 TIllustration of coordinate system and notation for
sampling p

b
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Analogous to the cne-dimensional case, p can be represented by a
Fourier series of complex exponentials. The two-dimensional forms of

Equations A.2.1, £.2.2, and A.2.3 are:

= nt _ mxyy
p(t, x) B 2 cn,m exp[i2n(T_. L_)J ALl
n - =00 m = =00
T/2 L/2
/ exp[i2n(Rt - mx)) exp[i21r(9T-1-“- - %3-(-)] dt = TL when q = -n
-T/2 "-L/2 T L
and r = -m
=0
for all other cases A.L.2
1 T/2 L/2 "
c == f f p(t,x) explian(Z® - £ )] at A.b.3
O o o/ -L/2

And, analogously to the one-dimensional case, Equations A.4.1 and

A.4.3 are discretized to conform to the discrete data. Equation A.h.1

becones
N-1 M1
. : 2 . E;t'_"]_ mxg L. L
p(tj, xy) = > S Gl axp[ian( il )] AL,
0= _(n-1) o= - (M)
2 2
Equation A.k4.3 becomes
N-1 B-1
AtAx 2 2 nty ™
Cn,m = TL 2 > p(tjaxz) exp[-i2n( - —)] A.L5
N-1 N-1
poo ), e

As in the one dimensional case, the terms corresponding to n and -n

represent harmonics or frequencies. However, now we have the additional

il A
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complication of an added dimension; the m, -m pairs represent cycles per

total length L or wave numbers.

2. Relation of variance to spectral density function

The variance for p, which is a function of two variables, may be

written as

=l N-1
2 2
2 1 =
S Ty 2 2 [P(tja x3) -p ] A6
15 _(N-1) Q= _(§-1)
2 2

where the p is the mean of all NM observations.
Note in Equation A.4.4 that the mean C, , assuming MN >> 1, sub-
b

stitution of Equation A.4.4 into A.4.6 yields

0 nt mXQ _ 2
; Iz; cn’m exp[12'n(_Tl-T)] co,ol Ak T

Equation A.4.7 is the numerical integration form for

T/2  L/2 it >
L A A exp[i2n(—i“1- )] - Co ol at ax
TL -T/2 =L/2 n m ’ >

2

< =
A.L.8

Analogous to the one-dimensional case, if the long series above is
written out, squared, and integrated, all terms will equal zero except
those whose coefficients are C C or C C Thus, carry-

r .
-n,-m n,m -n,m n,-m

ing out the above operations with the aid of Equation A.L4.2

N-1 M-1
2 2
2 _ 2
L 2 2 Cn,m C-n,-m = Co o
n=-(N-1) m=-(M-1)
2 2
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L= M1
2 2
= 2 2
= s S |cn’m| MG A9
no=-(N=1) (Ml
2 2

where the vertical bars denote modulus. The squared modulus results
because, analogous to the one-dimensional case, the C and C are
-n,-m n,m
complex conjugates.
The term corresponding to each n,m pair represents the contribution

of the n/T th frequency and m/L th wave number to the total variance.

If we now define

f =n/T A4 10
n
Af = 1/T A.k.11
k =mn/L AL 12
m
and Ak = 1/L and plot A.k.13
ICn m|2 against f and km, we obtain a Fourier line spectrum. In Figure

A.L4.2 each dot represents a certain value of ICn m!2 extending in a line
9

up out of the paper.

2
If tae ICn ml are distributed uniformly over the rectangle
b
fi.i to f, eand kyp, to Xx;, one obtains a three-
dimensional histogram where the height of the rectangular parallelpipeds

can be obtained from

(height) ( Ak) (Af) Ak 1h

A.L.15

1]
=
Q

or height
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Figur: A.4.2 Plot of Fourier line spectrum
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Figure A.4.3 illustrates the 3 dimensional "periodogram." The

. . o b 2
height of the rectan ar parallelpipeds is C
gh gular p pipeds is —— | n’ml

and

extends up out of the paper.

As T > »© and L > » more and more values of 1 are obtained, the
AfAk

"periodogram" becomes a continuous surface. The smooth continuous

surface, called here s(fn,km) is the two-dimensional spectral density

function. It is shown plotted by contour lines of constant spectral
density in Figure A.4.4. Figure A.b.b4 is a two-dimensional power spectrum

or variance spectrum where

1 2
s(f_ . == |c
(£, ) ATAk |n,m|
-(N-1 =
= R TN T BUR L=
2 1
m=-(M;l) el O A M—;l— A.L.16

Thae two~dimensional spectral density function represents the +wrariance
in p per increment of frequency and wave number. The total volume under
the surface represents the total variance. The graph can be normalized, if
desired, by dividing s(fn, km) by the total variance calculated directly
from Equation A.4.6. The normalized graph will always have the volume
under the graph equal to one.

The point where n = m = 0 'is equal to 1—)2 and represents the variance
at zero wave number and zero frequency. From Equation A.4.9, however,
note that it is not included in the summation for the total variance.

Since a wave with a positive fn and positive km and a wave with a

negative f and a negative km are identical waves traveling in Lhe positive
n
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Figure A.4.3 Plot of 3-D "periodogram"
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x direction, the wave with negative fn and km may be ignored if the ampli-

tude of the other wave is multiplied by two. Also, since a wave with a k

positive fn and negative km and a wave with a negative fn and positive km
are identical waves traveling in the negative x direction, the wave with

the positive fh and negative km may be ignored if the amplitude of the i

other wave is multiplied by two. ;

One may take udvantage of the preceding two statements by defining

wave numbers to be positive quantities only and by regarding frequencies

to be both positive and negative. |
The decision to define wave numbers as only positive quantities

causes changes in Equations A.4.9, A.4.14, A.4.15, and A.4.16.

Equation A.4.9 becomes

Nl M-1 N-1
2 2 5 =
2 = 2
s =2 2 z Icn,ml -2 2 ICn’OI A.4.17
n= ——-(N-l) m=0 n=
2
and Equation A.k4.16 becomes
‘ r
2 2
S(fn’km) = AfAk |Cn’ml
r '(N-l)’.....,-1,0,1,....-1\1-7—]; AL.18
. 2
: m=0,l,2,...........,,,.£\£;_]; i

3. Tlelation of two-dimensional spectral density function to Fourier

transform.

In manipulations exactly analogous to the one-dimensional case, we

cun form a discrete two-dimensicnal Fourier transform pair by substituting 3

 Elne i
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the expressions from C o given by Equation A.4.l4 into Equation A.L.k.

3

One then defines

5(fy.k ) = AtAx :z] i p(ty,%) exp[—iZn(tjfn—xgkm)] A.b.19
and then
= q > _ 1
p(tJ,xl) Atk rzl i (£ k) explien(tyf —xjkp )] A.L.20

Equations A.4.19 and A.4.20 form the transform pair. Analogous to

Equation A.2.32 one obtains

s(f k)= C.m A.b.21

n . - "]

AfAk

and also since C—n,—m and Cn,m are complex conjugates,

_ 2
s(f k) = Afhk |S(fn,km)|

n='—(-1,j,'—11,....,-2,-1,0,1,2,....E Ab.22
2
-(M-1) M-1
m= 5 ,....,—2,—1,0,1,2,...-_'2_

Thus, the spectral density surface may be computed by a double Fourier

transform of the dataforn='—(1;—'—ll, S T T T T N_;i
and m = :(_M_;l)-, D e . 43 LG, 1yB, . . .M_;l,andthenmultiply-

ing each of the S(fh’km) by its complex conjugate times AfAk.

The computation of S(fh’km) mey be carried out using the fast Fourier
transform described by Brigham and Morrow (1967). To illustrate, let
Equation A.4.19 be written as:

S(fh’km) = At ? [Ax i p(tj,xz) exp(i2nx2km)] exp(-i2ntjfh) A.L.23
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The quantity in brackets, denote it S(t 3 ,km) is simply the one-

dimensional Fourier transform of the data. It is the same as Equation

A.2.30 except the transformgtion is with respect to wave number instead

of frequency. Thus, using the fast Fourier transform, one calculates

S(tj,km). = Ax i p(tj,xz) exp(ichzkm) A L2k

R T

Then epplying the transform a second time, one calculates, :

S(fn,km) = At g s(tJ ,km) exp(-iZﬂkan) A.L4.25

The sbove process may also be used to calculate p(tj,xz) from :

S(fn,lgn) in Equation A.4.20. ~

L,

Relation of two-dimensional spectral density function to two-

dimensional covariance function.

The two-dimensional autocovariance function is defined

N-l-u M-1-v
(4,6y) = . § [p(t,,%,) 5]
R(1,,6y) = .3 plty,xy)-p
e & Y R
2 2
[P(tj + Tua xg. + GV)-{)] th.26

where the bar denotes the mean. 1t represents

) a lag in time, and it is

usually an integer multiple of At, i.e., o uAt whe e u is an integer.
0, represents a spacing between observation stations, and it usually is

an integer multiple of Ax, i.e. 8§, = vAx, where v is an integer.

When N >> u, M >> v, and p = O (the mean can be subtracted from all

points if necessary), Equation A.4.26 becomes

T Y
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N-1 M-1
a 2
Rt »8,) = 5 2 b plty, %) p(tJ + Tys Xp + 8y) ALLL2T

w1 -(M1)
2 2

A convolution procedure enalogous to the one-dimensional case reveals
the two-dimensional autccovariance function to be the double Fourier

tr~usforn of the two-dimensional spectral density fumction so that

N-1 M1
2 2
R('tu,Gv) = Mk S 2 s(fn,km) expli2n(f 7y - ky6,)] A.L.28
- -(N-1) e -(M-1)
2 2

The spectral density function must also be the double Fourier trans-

form of the autocovariance function or

L] L,
2 2
s(f,,ky) = Mtdx > Rt ,6,) exp[-i2n(f t - k;6.)] A.b.29
g = o1y o z(1)
2 2

The autocovariance function in Equation A.4.28 is not the usual auto-
covariance funection but a circula:r autocovariance function where the over-
lapping values at the ends of the summation intervals in the usual auto-

covariance function, Equation A.4.28,have been shifted to the fronts.

This is why u goes from '(g'l) to N;]' and v from :(M;—l)- to Mé’!-_ in
Equations A.4.28 and A.4.29 even though the assumption was stated that
N >> u and M >> v in going from Equation A.L.26 to Equation A.4.27.

It can be deduced trom Equation A.4.27 that R(7,,8,) = R(-Tu,-Gv) and
that R(-'ru,dv) = R(7,,-8y). Thus, Equation A.4.29 may be modified to

include only positive spacings so thet

YY)
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j,
N-1 M-1
2 2 :
s(fn,km) = 20thx S > R(tu,Gv) exp[--iZn(fn‘ru - kav)] Ab4.30 1
u-= "(N"l) v=0 ; :
. 2 % 4
i
. From Equation A.%.18 it cen also be seen that Equation A.L:.28 may ]
be modified to include only positive wave numbers so that
N-1 M-1 g
2 2
R(ty,8y) = 28tk 5 2 slf k) explion(f z, - Kk 30)]
n=L) o
o 2
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V. USE OF CROSS SPECTRAL DENSITY FUNCTIUNS IN TWO-DIMENSIONAL ANALYSIS

To calculate the two-dimensionel spectral density function from
Equations A.4.19 and A.4.22, N observations are required at each of M
observation stations. Since N and M are both usually very large numbers,
it is desirable to have methods which require less acquisition and process-
ing of data. Under certain assumptions, discussed in this section, it is
possible to calculate the two-dimensional spectral density function from
data taken at drastically fewer than M stations. The orientation is again
toward an entity which fluctuates with time and one direction in space,

but the methods can be applied wherever the assumptions are valid.

1. The assumptions of stationarity and spacial homogeneity

Suppose p is observed with time at several points separated by a
spacing Gv = vAx wnits of distance from some space origin. The sampling
scheme is illustrated in Figure A.5.1. One subtracts the mean from all
observations so that only the fluctuations in p ;re considered.

When p is statistically stationary, the mean, the variance, and other
statistical parameters of p do not change with time even though p itself
is fluctuating constantly. If p is spacially homogeneous, the mean, the
variance, and other statistical parameters do not change with distance.
When one can assume that p is statistically stationary and spacially

homogenous, the two-dimensional autocovariance function

N-1 M-1
2 2
R(ty,8,) = Ml > S p(t % )plty ¥7y, Xy + 8u)  A5.1
3 -(N-1) , _ =(-1)

2 2

is a function only of the time and space increments N ani Gv. It does

not change with a new origin of time or a new origin of space.
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Figure A.5.1 Sampling scheme which can be used where p is statistically
stationary end ctpacially homogeneous
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Equation A.5.1 can be written

B-1
2
_1 (1
R(Tu,év) = E {E 2( p(tj’x-(N-l) ) P(tj + T x—(N-l) + 6‘!) i
= N-l ~ . 1
J 2 2 & ;
+ G a
+
cidlo b o o o o (
N-1 |
1 2
+ T > p(tj,xo)p(tJ + Ty, X, 4 5v)
-{N-1)
J="5
+ . .
I
+ . .
+ . . o o 4
+ ..
N-1
1 2
LD p(tj,xN_l)p(tJ + Ty Xy + 8 A.5.2
-(N-1) < =
2 2
J="3

and one notes that under the above assumption, all of the sums on j are
equal. Sirce there are M of the sums,
N-1

2
1
R(Tu,dv) o > p(tj,xo)p(tJ + T Xo t dv) A.5.3
-(N-1)
=73

Recalling Equation A.3.1k4 one sees that R(Tu,dv) is equal to the cross
covariance, Rc(ru,dv), between the pressure at point x, and point
X, + 6v. Thus,

Vo=
Rt 58,0 = R (1,,6,) A.5.b4

R
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which is en important simplification and can drasticalily reduce the

required number of measurements vhere the assumptions are valid.

2. Relationship between cross spectral density fumction and 2-D
spectral density fuaction.

The Fourier transforms of the data gathered by the scheme in Figure
A.5.1 can be computed for each of the sampling points according to Equation

A.2.30 which is rewritten here.

N-1
2
S(-fn,xo) =it S p(tj,xo) exp(ianhtj) A.5.5
P =(N-1)
2
N-1
: 2
S(fn, Xo + 5v) =Mt 3 ) p(tj, gy, Sk 5v) exp(-iZ'nfntJ) A.5.6
-(N-1

2

The cross spectral density function between the two points, recalling

Equation A.3.3, is
sc(fn,dv) = AT S(-fn,xo)S(fn, x, + av) A.5.7

By Equation A.3.16, it is also equal to the Fourier transform of

the cross-covariance functicn

=l
2
s.(fys8,) = ot 3
=(N-1)
us=s

Rc(ru,dv) exp(ianf t.) A.5.8

Now, suppose one computes a two-dimensional spectrum, called here W(fh’km)’
by a Fourier transform of sc(fh,dv) according to:

M-1

2
W(fh’km) = AX S sc(fh,dv) exp(ienkm§v) A.5.9
-(M-1)
vy =

—————

2

Sk A
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If one substitutes for sc(fn’6v) from Equaticn A.5.8 into A.5.9, one obtains

M-1 N-1
2 2
Wity k) =ax 3 ity R (1,8, )exp(-i2nf 1 ) exp(i2nkm6v)
=(w1) -(§-1) ©
v=T2 us "o
A.5.10
which can be rewritten to yield
N-1 M-1
2 2
Wit k) = atdx 3 S R,(1y,8,) expl-i2n(f 1 & &.)]
o) o(Me1)
u= 2 Vi = )
A.5.11

Recalling Equations A.5.4 and A.4.29 one can see that W(fn,km) equals
s(fn,km). Thus, the two-dimensional spectral density function may be
computed by a double Fourier transform of the two-dimensional covariance

function, i.e.,

N-1 Mea
2 2
s(f, .ky) = otax 3 > R(t,,8y)expl-ien(f 1, -k 6 )] A.5.12
=(-1) (ue1)
us= 2 vV = ——

2

or it also may be computed by a single transform from the cross spectral
density function, i.e.,

M-1

2
s(f k) =0x 3 5o (£, 8 Jexp(iank §_) A.5.13

- =(e1)

v 2

P
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3. Relationship between cross spectral density functions and two-
dimensional suto~-covariance function.
Swm%omcmmmsaWwﬁmmbmlmmﬁm,muwhueﬂxﬁﬁ,

by a Fourier transform of sn(fh,ﬁv) according to:

N-1 .

2 g

Y(r,8) = af sc(fn,dv)exp(iQTIfnru) A.5.1k ’
_ z(N-1)

1T ,

The inverse of Equation A.5.13,
M-l i

2
sc(fn,cSv) = Ak 2( | s(fn,km)exp(-i21rkm6v) a5l 1S
-(M-1

ms=

may be used to substitute in Equation A.5.1L4 to obtain:

N-1 M-1
2 =z
Y(t ,8.) = Af Ak z, i2mk_6 iomf
(Tu v) n =-(N-1) m EE‘(M- ) & n kp)exp(i2n m u) exp(i2m nTu)
2 2

A.5.16
Upon rearrangement, the right-hand side is seen to be identical to the
right-hand side of Equation A.4.28. Therefore, Y(Tu,ﬁv) = R(1,,68,) or,

again writing A.4.28,

N-1 M-l
2 2
R(ru,dv) = Ak > > s(fn,km)exp[+i2ﬂ(fnTu -k 8] AS5.17
g = =(b-1) o _ =(M-1)
2 2

Thus, the two-dimensional auto-covariance may be computed from a double
Fourier transform of the two-dimensional spectral density function, or it

may be computed by a single Fourier transform of the cross-spectral density
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function according to Equetion A.5.14, rewritten as:
N-1

2
R(ru,ﬁv) =5 S sc(fn,ﬁv)exp(i2ﬂfnru)

>

P

184

A.5.18
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VI. SUMMARY

The underlying principles of spectrum analysis are discussed.

Beginning with the definition of a Fourier series, it is shown that

a spectrum is a plot of the squared amplitudes versus frequency of the

harmonics which contribute to the variance a time series. It is also

i described how the squared Fourier amplitudes are proportional to the
spectral density function computed by a Fourier transform of the dats.
The spectral density function is also shown to be the Fourier transform
of the more familiar auto--covariance function.

The discussion next considers two simultaneous time series and shows
how the closeness of the relationship of and the phase angle between
the two series may be assessed by computation of the cross spectral
density function from Fourier transforms of the data from both series.
The cross spectral density function is found to be the Fourier transform
of the . wariance function for the two series.

Two-dimensional, spare--time spectral analysis is considered. Analo-
gous tc the one-dimensional case, it is shown that a two-dimensionzl
spectrum is a contcur surface of squared Fourier amplitudes versus
frequency and wave number of the harmonics contributing to the variance
of some entity in time and space. The squared Fourier amplitudes are

g shown to be proporticnal to a two-dimensional spectral density function
which may be computed by a double Fourier transform of the data. The two-
dimensional spectral density function is shown to be the Fourier trans-

form of a two-dimensional auto-covariance function.
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Lastly, it is shown that, if samples of time series are available
for various points across a field, both the two-dimensional spectral
density function and the two-dimensional auto-covariance function can be
computed from the cross spectral density functional relationships among

the points.
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ment from beneath surface coverings of coarse and fine gravel, verv coarse and
medium sand, Chenanpgo silt loam and strar vere correlatad argainst concurrent
measurements of wind and air pressure fluctuations. At a depth of 2 cm pas moverent
in silt loam was not significantly affected by air turbulence but in coarse gravel
was increased 10-fold by wind velocities of 400 cm/sec. Intermediate effects were
observzd for media of intermediated nore sizes. A7

“athematical equations for calculation of soil air mass flow are derived, M™ey
are based upon the spectrum of air pressure fluctuations at the ground surface. Air
pressure in the field was measured during both day and nizht vith and vithout 2
corn crop. ‘he spectra of alr pressure were calculated and all were roughly straight
1ixées with a slope of about -6/3 on a log-log plot. SpecHal density decreased from
10° to 10=lubare/cycle/sec over a frequency range from 10°% to 102 cvele/see. Soil
air mass flow was calculated from the spectra for several soils. Using previous
vork, an attempt was made to evaluate the increase of soil gac moverent bhevond
diffusion from the soil ajir mass flow.. The predicted increases in soil gas movement
wvere lover than the observed increases; several reasons for the Aiscrceroncy are
discussed. A

Spectral density, Fourier transformation, auto-covariance, cross spectral
density, cross-covariance, and other concepts of spectral analvsia are liscussed
at an elementary level in the appendix.

oM REPLACES DO FORM 1473, | JAN 84, WHICH 1S
D c'uov "1 47 OBSCLETR FOR ARMY USK. *

UN SR
curity Classification

R R A BRI -

TR

-

e

HARERRE

-y

g




T T

- w«u«
r_—-——

14. LINK A LINK B LINK C
KEY WOROS
ROLE wr ROLE wT ROLE wT

Soil - Mass flow

Soil - Diffusion

Soil - Dispersion

Porous Media - Mass flow
Porous !edia - Diffusion
Porous Media - Dispersion
Air Pressure ~ Fluctuations
Air Pressure - Spectrum
Spectral Analysis - Methods
Spectral Analysis -~ Concepts
Spectral Anslysis ~ Air Pressure

ILCLASSTFTED

Security Classification

ramcarme, o m aih

T LT Wt

i e

e




