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PREFACE 

This publication (interim Report 69-2)  forms the second part of 

two reports dealing with gas exchange from soil.    Included here are pages 

125-138 forming the appendix.    We have chosen to make two reports because 

of the anticipated diversity of interest in them. 

E.  R.  Lemon 
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Appendix 

BASIC CONCEPTS OF SPECTRAL ANALYSIS BY DIGITAL MEMS 

I. INTRODUCTION 

A statistical technique that has helped meteorologists study wind 

and other fluctuating variables but whiih as yet has been rarely used by 

agronomists is spectral analysis.    Spectral analysis is used to evaluate 

the contributions of different frequencies of the fluctuation to the 

total variance of an entity, such as wind velocity, which changes with 

time.    A graph of the variance per frequency band forms a spectrum not 

unlike the more cc^mionly known spectrum of light intensity versus wave 

length.    Knowing the frequencies of the dominant modes of oscillation (or 

knowing that there are none) can help one to understand and visualize the 

physics of the transport processes mentioned in the first paragraph. 

Allen (1968), for instance, has used spectral analysis to study the eddy 

structure of wind in a Japanese larch canopy and found significant contri- 

butions tc the variance of wind velocity by eddies the size of the tree 

spacing at mid-canopy heights.    There was surprisingly little contribu- 

tion from these eddies at the bottom of the canopy. 

Spectral analysis can be used to study two or more fluctuating vari- 

ables to determine the closeness of their relationship for different 

frequencies of change.    Desjardins  (1967),  for instance, has compared the 

responses of various atmometers to open pan evaporation.    He found that the 

variances were similar for periods of time longer than five days, but 

different for shorter periods, indicating that different physical factors 

must be in operation for the different instruments.    Rodriguez-Iturbe and 

125 
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Nordin (I969) used spectral analysis techniques to show the existence of 

strong correlations among annual oscillations in precipitation and run-off 

in the Pacific Coast region of the United States.    The annual cycle of 

precipitation could be considered the same for observation stations up to 

1000 km apart. 

Spectral analysis was first developed for practical use by electri- 

cal engineers.    Because the variance of a voltage across or a current 

through a unit resistance is proportional to the average power dissipation, 

the term power spectrum has often been used to refer to the spectrum 

of variance.    Communication engineers have made much use of spectral 

analysis, and the theory and procedures of making spectral analysis are 

explained in much detail by Blackman and Tukey (19!: 8).    A much less sophis- 

ticated, but easily understood explanation of the underlying principles 

of spectrum analysis from the point of view of meteorology may be obtained 

from Panofsky and Brier (1965).    Lumley and Panofsky (196*0 present a 

much more sophisticated treatment from the same viewpoint.    Jenkens and 

Watts  (1968) present an excellent explanation of the principles from a 

statistician's point of view. 

In 1965 Cooley and Tukey revealed a new algorithm for fast computa- 

tion of Fourier transforms which has made spectral analysis much easier. 

An easily understood description of the new method is given by Brigham 

and Morrow (1967).    More information may be obtained in the June 1967 

issue of IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2, 

which was devoted entirely to the fast Fourier transform and how it re- 

lates to spectral analysis and other subjects. 
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: 

Tue author has found all of the above references useful in under- 

standing spectral analysis, but found none which developed the principles 

with reference to the new computational methods for persons who previously 

had little knowledge about spectrum analysis. This paper attempts to 

develop the concept? of spectral analysis for a reader who previously 

knows little about spectral analysis and whose background includes no more 

mathematics than basic calculus and statistics. 

The orientation here will be toward the use of a digital computer to 

compute spectra from a series of samples of discrete data; therefore, the 

discrete forms of equations are used wherever possible. Spectra can be 

measured directly by electronic filtering of continuous electrical analog 

signals, but suitable analog signals cannot be obtained for many varia- 

bles . 



— .1...-,,_—„ 

128 

II.    ONE-DIMENSIONAL SPECTRAL ANALYSIS 

This section will discuss the fluctuation of an entity that changes 

with time.    All of the concepts would apply equally well if the entity 

would change with some other variabxe, such as distance, but spectral 

analysis has been used more frequently with entities that change with 

time than with other variables, so this orientation will be used in this 

development.    The term, one-dimensional, refers to the fact that the 

entity fluctuates only with one variable, time.    Later, an entity that 

fluctuates with two variables, time and distance, will be examined, and 

the analysis will be referred to as two-dimensional spectral analysis. 

1.    Fourier series representation 

Suppose some quantity, p (perhaps air pressure), a function of time, 

t, has been observed N times, where N is chosen to be odd for convenience, 

and that the observations have been spaced equally At units apart.    Let 

the individual time of sampling be labelled t. = j At for j —-, 

- '"''3'j -1, 0, 1, , Sli   so that the time origin is 

in the middle of the total sampling period, T.    Note that T = (N-l) At. 

Figure A.1.1 illustrates the sampling scheme. 

Since we are basically interested in evaluating the amplitude and 

frequency of the fluctuations in p, it is useful to describe p by a 

Fourier series of complex exponentials as in Equation A.2.1, where i ■/ -1 . 

00 

p(t)  =      Z (L Pyp(i n 2 TT t) A.2.1 
n = -» T 

Equation A.2.1 represents the continuous pressure between time -T/2 and 

+T/2 as a function of continuous tin*2. The complex coefficients Cp may 
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Figure A.2.1 Illustration of the sampling of p at the various 
times, t. 
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be evaluated by multiplying both sides of Equation A.2.1 by exp(i_S_£_ü_!L) 
T 

for q = -2, -1, 0, 1, 2 and integrating from -T/2 to 

+T/2.    Noting that 

T/2 
/ exp(i n 2 * t)      exp(i_3JL!LU dt 
-T/2 T T 

= T when q = -n 

= 0 when q^-n A.2.2 

one obtains 

p(t.) =     2 c     exp(LmUD 
j       n = -(N-l) n T ■(N-l) n T A.2.U 

2 

Equation A.2.3 is discretized by numerical integration with the 

rectangle rule to give 

N-l 
2 

Cn =   £i     5 P(t.)    exp(-i n 2 n tj) A.2.5 
n T    ,^(N-1) «J T 

2 

Each pair of terms in Equation A.2.k  corresponding to n and -n repre- 

sents a particular harmonic in the fluctuations of p. Also n denotes the 

frequency of the harmonic because it measures the number of complete 

cycles the n' harmonic executes in time T. The particular limits on n 

arise because of an assumption inherent in making the sampled points of p 

T/2 
C   = 1/T       / p(t) exp(Z±JL2_L±) dt A.2.3 
n -T/2 T 

Equations A.2.1 and A.2.3 are for continuous variables.    To put 

Equation A.2.1 in a form for handling a finite number of discrete observa- 

tions, one writes 
N-l 

2 
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substitute for the real, continuous p. This assumption is that the sample 

interval, At, is small enough so that there are no undetected high fre- 

quency fluctuations in p between the points. As discussed by Blackman and 

Tukey (1958, p. 30), the highest frequency or harmonic which can be 

detected when sampling at discrete intervals is given by l/(2At), which 

corresponds to n = ± N-l . If p has higher frequency fluctuations, the 

data will be aliased. This problem is discussed more fully later. The 

term corresponding to n = 0 is the mean of p. The terms corresponding to 

n = ±1 represent the first (or fundamental) harmonic which has a frequency 

of 1/T. It is the lowest frequency of fluctuation in p which can be 

distinguished, and if lower frequencies are present, such as is the case 

when there is a trend in p, corrections must be made, as will be discussed 

later. 

Note that, in general, the C are complex. If one writes Equation 

A.2.U in the form 

N-l 
2 

p(t.) = C   +    2        [C    exp(ULLiii) + C      expCl n 2 * t3     ]      A.2.6 
J        n=l    n       T        "n        T 

and uses the Euler equations 

e1 = cose + i sine A.2.7 

e"ie = cose - i sine    , A.2.8 

Equation A.2.1+ is changed to a Fourier series of sines and cosines. 

N-l 
2 

p(t.) = C + 2    t(C + C_n) cos(" 
2 ; t.p  + 

J       n=l T 

i(C - C_n) sin(n_2j_ti)] A.2.9 
T 

mBommtm 
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Then, if one defines 

ao ■ 2C0 A.2.10 

«h = Cn + C-n A-2-ll 

b    = i  (C    - C    ) A.2.12 n n       -n 

Equation A.2.9 becomes the more familiar 

H-l 
2 

p(tj - *° + y [a    cos(D jjjl) + bn sin (n f * tJ)1       A.2.13 
J        2~     n^L n T T 

which will not be used here because the Fourier transforms discussed later 

in the paper are more easily handled by the series of exponentials. 

Also, note that by rearranging Equations A.2.11 and A.2.12, 

n   = &n - i bn A.2.10 
*    1      T 

and 
C_n = fta + i ^n A.2.15 

so that C    and C      are seen to be complex conjugates, a result which is 

useful later. 

2.    Relation of variance to spectral density function 

A common statistical parameter used to measure variability is the 

p 
variance, s  .    It is defined 

H-l 
2 

s2 = Jv       2 [p(t.) - p]2 A.2.16 

3  "  2 

where the p(t.) are the observations of p, N is the number of observations 
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and p is the mean of p(t,).    The limits of sinnmation are t(M"l)   which 
J 2 

will be the limits of summation from the point on, unless noted otherwise. 

If Equation A.2.U is used to substitute for p(t.) in Equation A.2,l6,the 

variance becomes explicitly expressed as a function of the harmonics of p. 

Remembering that p = C0 and _L_ =    At     one obtains 
N-l        T 

=   &   I    [ E [q, exp(i°2 *t.1)1 - Co]2 A.2.17 
1       n 

Equation A.2.17 is the numerical form for the following integral equation. 

T/2 
s2 = 1/T    /        [I    [C   exp(i n 2 g t)]    « ]2 dt 

_T/2      n       n T 
A.2.18 

If the summation is written out in a series, and if the squaring is 

performed on the series, the following expression is obtained 

T/2 

2 2 T -T/2      -C1*-1) 
2 

2C-(N-l)  CN-1 + 

2 2 

+ C2      exp(zi-SJtJLl) + 2C    C , ^expdlCgS llLgJLD -n m ~n -^n+j.; 

+ + 2C_nCn + + C2 expC1 SJLUL) 

T 

xp( 

+  

+ ] dt 

A.2.19 

Recalling Equation A.2.2, the variance is seen to be equal to a sum 

of squared moduli of coefficients. 
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N-l N-l 
2 2 

2 
n»l 

C    C 
-n n =    2 

& 
K I2 s2 =    2   y   c  c    =  2   "s    ic_r A.2.20 

The vertical bars denote the modulus, which is obtained by multi- 

plying CQ by its complex conjugate, C , and taking the square root of 

the product. In Equation A.2.20 the variance is expressed as a function 

N-l 
of the amplitudes of the harmonics from 1 to —— . The variance may also 

be considered as a sum over negative and positive harmonics since the 

modulus is an evtn function. Thus, 

N-l 

s = -Co + 5      |CJ A.2.21 

.-Ü1 

The form in Equation A.2.20 is most common, however. 

Now, if one defines 

f = n/T A.2.22 

and Af = 1/T A.2.23 

and plots 2|C |     against f   we obtain the Fourier line spectrum shown 

in Figure A.2.2.    The f    represent the frequencies of the harmonics, and 

Af represents the frequency increment between successive ha?"monics.    Thus, 

1      12 the "curve" is a series of lines of height 2|C |     spaced Af units apart. 

If one assumes that heights of 2 j C |^ are distributed uniformly over 

the frequency band from fn - Af to fn, a histogram may be obtained 

where the height of the bands is determined from 

2|cJ2 = (height)  ( Af) A.2.20 

■ 

2 2 £ ,     ,2 

! 
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Figure A.2.2 Plot of Fourier line spectrum 
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or hetgxt =   i-   2|Cn|
2 A.2.25 

Af 

A plot of — 21C |  against f is shown in Figure A.2.3. 
Af n 

Figure A.2.3. is called a periodogram in spite of the fact that the 

axis is frequency and not time. The total area of the rectangles equals 

the total variance. As the period, T, increases, Af decreases oy an 

inverse proportion, and the rectangles in the histogram of Figure A.3 

become narrower. In the limit as T •*■ °°, Af tends to zero, and the rectangles 

become so dense that their discrete upper edges approach a smooth curve. 

The limiting smooth curve is the spectral density function, s(f), and 

the plot of it against frequency in Figure A.2.U represents a variance 

spectrum or power spectrum. In practice, of course, one does not have an 

infinite sampling time, as is implied by letting T ■+•«°, so one must approx- 

imate the spectral density function, using finite sampling times and 

finite Af's. 

The practical spectral density function, now defined as 

s(f ) = -1   2|C |2   n - 1, 2, 3zl  Aj2#26 

Af 2 

represents the variance in p per frequency increment.    The total area 

under the curve represents the total variance.    The graph can be normalized, 

if desired, by dividing s(f ) by the total variance calculated directly 

from Equation A.2.In.    The normalized graph will always have the area 

under the curve equal to 1.0. 
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3.    Relation of spectral density function to Fourier transform 

Using Equations A.2.22 and A.2.23, Equations A.2.2k and A.2.25 may 

be rewritten in the forms: 

P(tj) =    E    Cn exp(i2irfnt ) A.2.27 

and 

Cn =    AtAf    I p(t  )exp(-i2irfntj) A.2.28 
J 

Substituting Equation A.2.28 in A.2.27, one obtains 

p(tj) ^    Z [AtAf    E p(tj)exp(-i2TTft.)] exp(i2irfntj A.2.29 
n j 

If one now defines 
N-l 

2 
S(fQ) = At        J /N_l}      P(tj)exp(-i27rfntj)   , A.2.30 

2 

where the S(fn) are commonly called Fourier coefficients, 

N-l 
2 

then       p(tj) *    Af       2 (N_1) S(fn)exp(i2Trfntj) A.2.31 

2 

S(fn) and p(t.) form a discrete Fourier transform pair.    Using the 

computer technique of fast Fourier '-■ransformation, as described by Brigham 

and Morrow (1967), s(fn) can be rapidly computed from the set of data 

points  (t.).    Alternatively, if the S(f) are known, the p(t ) can be 

computed from the s(f ). 

The significance of the S(f ) may be realized by noting that n 

Cn 
S(fn) =   - A.2.32 Af 
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and remembering that C    and C_n are complex conjugates.    Then if S(fn) 

is multiplied by its complex conjugate, S(-fn), one obtains 

S(f ).S(-fn) =    |s(fn)|2    = ^L • £zn    =        1        |cj2 A.2.33 
Af      Af ,     .2 

(Af) 

where the vertical bars denote modulus. 

The spectral density function defined by Equation A.2.26 is seen to 

be equal to twice the squared modulus of the Fourier transform of the date 

points times the frequency increment. 

s(f ) = 2 Af|s(f )|2  , n = 1, 2,  .   .   . £i A.2.3fc 
n n /j 

Thus, the spectral density function may be computed by a fast Fourier 

Transform of the data for n = 1, 2  .   .   . Sli   and then multiplying each 
2 

of the S(f ) by its  complex conjugate times 2Af. 

An example of the use of Equations A.2.30 and A.2.3*+ is provided by 

the hand calculation of the spectrum for the simple curve illustrated 

in Figure A.2.5.    Noting that At = 0.1 sec, that N = IT, and that ft    = 
J 

nj/(N - l), one writes 

+8 
s(fj = (0.1)      I     p(t.)  (cosiBl- i sin?™! ) 

n j=-8 J 16 16 

The next step is to compute all the values of cos c~ ■ v    and sin -^    for S2Ü   and sin^lM   for 
16 16 

j = -8 .   .   .   , +8 and n = 1, as has been done in the third and fourth columns 

of Table A.2.1.    In the fifth and sixth columns, the cosine and sine values 

are multiplied by the corresponding p(t ) and summed on j.    The calcu- 
J 

lation of S(f ) and sCfj) is illustrated at the bottom of Table A.2.1. 

The process is continued for n = 2, as shown in the table, up to n = 8 to 
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obtain the spectrum illustrated in Fig. A.2.6.    The spectrum shows a 

peak    at   a frequency of 1.88 cycle/sec as one would predict from the 

distinct repetition near this frequency in the original data. 

The spectrum in Figure A.2.6 is plotted with a linear scale for both 

axis.    The area under each portion of the spectral density curve is the 

contribution of that corresponding frequency to the variance, and the 

total area is equal to the total variance.    Very often in practice, how- 

ever, a worker will >>e studying a variable whose spectrum covers a range 

of several orders of magnitude on both the frequency and spectral density 

axis.    In such a case, a linear plot of the spectrum can obscure much of 

the detail, so a log-log plot is often used.    Although the area under the 

curve is no longer equal zo the total variance, a log-log plot has the 

advantage of covering wide ranges and of presenting as a straight line any 

spectrum which obeys a power law, such as isotropic turbulence in a 

stream of air.    A tnird method of presenting spectra and a method which 

is often used, particularly in meteorology, is to plot f s(f) against 

log f.    Since 

Area =    / s(f)  df =     ft s(f) d(log f) 

the area under the curve is preserved, and one can still observe the 

relative contribution of different frequency bands to the total variance. 

Wide ranges of spectral density and frequency can also be presented.    In 

Figure A.2.7, the three methods of presenting spectra are illustrated for 

a spectrum of air pressure at the ground surface obtained by the author. 
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Figure A.2.6    A spectrum 
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k.    Relation of spectral density function to autocovariance function 

The autocovariance function, R(xu), is defined by 

N-l-u 

R(x ) = u 
N-l-u j 

| _(,.lHl)  [P(tj)-P] [P(tj+tu)-p]   A.2. 35 

where the bar denotes the mean. As the name implies, the autocovariance 

function expresses a covariance of p(t*) with itself. The xu represents 

a lag in time, and usually it is an integer multiple of At, i.e., TU = uAt 

where u is an integer. Thus, R(T ) is the covariance of p(t,) with itself 

TU units of time later. It is computed by multiplying (after subtraction 

of the mean) each observation of p(t.) by another observation of p(t ) 
J 0 

taken a time x   later (or earlier for negative xu), then summing all the 

lagged products and dividing by the number of products.    For x    = 0, 

R(xu) is identical with the usual variance function defined by Equation 

A.2.16, and very often the autocovariance function is normalized by 

dividing it by the usual variance.    The normalized autocovariance function 

is called the autocorrelation function which varies only between ±1.    A 

plot of autocovariance for the curve of Figure A.2.5 is shown in Figure 

A.2.8.    The autocovariance is seen to be large and positive at u = 0 

when the curve agrees perfectly with itself, small at u = 2 when the curve 

does not correspond with itself, large and negative at u = 3 when the 

positive peaks of the curve are opposite the negative peaks, and large 

and positive at u = 6 when all peaks correspond.    When N»u and p = 0 (the 

data can be adjusted to give a zero mean, if necessary), Equation A.2.35 

becomes 

R(TU) = _   1 

N-l 
2 

N-l 
J = ~ 

J P(t    )   P(tj   +   Tu) 

(N-l) 
2 

A.2.36 

»minm ■»■»"' ■ 
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Figure A.2.8    The auto-covariance function for the curve in Fig.  A.2.5 
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Equation A.2.36 will be used shortly. 

'Ihe autocovariance function is useful because it illustrates the 

lengths of time for which a variable can be expected to be correlated 

with itself.    It is useful also because it happens to be the Fourier 

transform of the spectral density function.    A rigorous proof of this 

fact, as given by Blackman and Tukey (1958, p. 72), is possible only 

for continuous variables extending over infinite ranges»    However, a 

demonstration of the basic idea can be given by using the discrete 

equations already developed.    First, consider the concept of discrete 

convolution ,   which is somewhat analogous to the convolution of contin- 

uous functions described by Blackman and Tukey.    Let 

H-l 
2 

S(fQ) = At        2 p(t ) exp(-i2TTfDt  ) A.2.37 

and 

N-l 
2 

p(tj = Af      y S(t.) exp(i2Trf t.) A.2.38 

2 

describe a Fourier transform pair.    Now let S,(f ) = S(-f )   ' S(f_), and 

let the Fourier transform of S,(f ) be denoted B(TU). 

By Equation A.2.38 

B(T  ) = Af   E    ^(fj,) eyp(i27Tfnxu) = Af    Z    S(-fn) S(f ) exp(i2irfnTu) 
n n 

A.2.39 

Then, using Equation A.2.37 to substitute for S(-f_) 

B(T„)  = Af E  [At    E p(t.) exp(i27Tf tj] S(f )  exp(i2irfnT„) A.2.U0 
n j        j n J n 

. »,   . 
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By reversing the order of summation, one obtains 

B(xu) a At    Z    [Af    E    S(fQ) exp(i2Trfn(tj + TJ)] p(tj) A.2.M 

Using Equation A.2.38, a substitution may be made for the expression 

in brackets, so that Equation A.2.U1 becomes 

N-l 
2 

B(TU) = At        ^ p(t ) p(t, + x ) A.2.U2 

*   (N-l)        J 

3 m -      2 

Recalling that T = (N-l) At, R(TU) in Equation A.2.36 is seen to be 

equal to the expression for B(T ) given in Equation A.2.^2 divided by T. 

Now recall that B(T  ) was defined in Equation A.2.39 as the Fourier 

transform of S(-f ) S(f ).    Since S(-f_) is the complex conjugate of 

S(fn), B(T„) is the Fourier transform of |s(f )|   .    Using Equation A.2.21 u u n 

for C0 = p ■ 0, the relation between the spectral density function and 

|3(fn)|
2is 

s(fn) = Af|s(fn)|
2, n = - iSlii,-ijfcäl -1, 0, 1,  ... N-l 

2 2 T^ 

A.2.U3 

Therefore, using Equation A.2.1*3 and the fact that R(TU) = Af 

B(T ), one obtains 

N-l 
2 

RCT ) = Af      2 s(fn) exp(i2irfnTu) k.Z.kk 

2 

which states that the autocovariance function is the Fourier transform of 
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the spectral density function. Due to the reciprocal nature of the Fourier 

transform pairs, s(fQ) must also he the Fourier transform of R(T■ )t  i.e., 

N-l 
2 

s(fn) = At  2  (N_3)  R(TU) eap(-i2irfnTu) A. 2.45 
u = - 

During the past, the standard procedure for computing the spectral 

density function for a set of data points involved calculating the auto- 

covariance functions first.    Using Equation A.2.35 values of the auto- 

covariance function were computed for lags covering about one-tenth of the 

total observation period.    The spectral density function was then computed 

from Equation A.2.1*5 for the number of lags available.    The development 

of the fast Fourier transform technique by Cooley and Tukey (1965) has 

made another approach computationally advantageous.    First, the S(f„) are 

computed directly from the data using Equation A.2.30 for n = 1, 2,  .   .   .   . 

N-l  .    Each S(fn) is then multiplied by twice its complex conjugate and 
~2~ 
the spectral density function is obtained from Equation A.2.3^. 

Also, as explained by Stockham (1966), the autocovariance function 

now may be obtained most easily not from lagged products but by a second 

fast Fourier transformation.    After the spectral density function is ob- 

tained, the transformation given by Equation A.2.kk is used to compute the 

autocovariance function from the spectral density function.    However, it 

is not the usual autocovariance function but a circular autocovariance 

whereby overlapping values at the end of the summation interval for the 

lagged products are shifted around to the other end.    This is why u goes 

from - iSlil   to (N'l)    in Equations A.2.UU and A.2.45. 
2 2 
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Since fron Equation A.2.43» s(fn)  can be seen to be an even function 

of f , and since from Equation A.2.36, R(T„) can be seen to be an even 

function of TU, the summation in k.2.kk and A.2.1*5 need be carried only- 

over half the ranges.    Thus, 

N-l 
2 

R(TU) = Af [s(fo) +2J       s(fn) exp(i2TTfnTu)] A.2.U6 
n=l 

and 
N-l 

2 
s(f ) = At  [R(T0) + 25      R(T  ) exp(-i2TrfT  )] A.2.U7 n ™* u n u 

5.    Variability of the spectral estimates 

The experience of many investigators, particularly with meteor- 

ological data, has shown that the spectral density estimates calculated 

from Equation A.2.3^ may scatter widely and also that the spectra from 

two different portions of the same time series may differ.    These anomalies 

are now regarded to be due mostly to sampling error, and methods are 

available to obtain the underlying "smooth" spectrum.    The traditional 

method described by Blackman and Tukey (1958) has been to calculate the 

autocovariance funct    n for lags extending over approximately one-tenth 

of the total sampling period and then obtain the spectrum from a Fourier 

transform of the autocovariance function.    Since the lags extend only 

over one-tenth of the total period, the computation is essentially an 

averaging and smoothing process, and a smoother spectrum is obtained. 

Additional smoothing is obtained by forming new estimates from weighted 

averages,    i.e.  s?(±'n) =  .25 sCf^) + 0.50 s(fn) + 0.25 s(fn+1) shows 

one set of weights  commonly used.    These weights are called the "Hanning" 

1 \ 

,*. 
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weights after the man who first used them.    The method is also adapted for 

calculating the statistical significance of the spectral estimates. 

Now that the fast Fourier transform technique of Cooley and Tukey 

(1965) has made it computationally advantageous to compute spectra 

directly without an intermediate calculation of an autocovariance function, 

another method of smoothing is desirable.    Welch (1967) suggests obtain- 

ing spectral estimates from several intervals and averaging.    He describes 

multiplying the data by weights before obtaining the spectral estimates 

rather than multiplying the spectral estimates by smoothing weights later. 

The method is applicable to the fast Fourier transform techniques, and 

like the autocovariance method, it permits calculation of the statistical 

significance of the spectral estimates. 

If the data contains a strong repetitive cycle, such as the whale 

calls studied by Singleton and Poulter (196?), the spectrum will contain 

a sharp peak, and another problem can arise»    If the frequency of the repeti- 

tive cycle falls between two of the calculated points for the spectrum, 

these two points and all the rest of the calculated points will be 

affected.    As explained by Bingham et al.  (1967), the effects of the peak 
_ 

have alternating signs and decay slowly (like _i—_ )    as f    recedes from 
|f-*nl 

the peak frequency, f. Before computation of the spectral density from 

Equation A.2.3U, they recommend that the Fourier coefficients be hanned 

according to 

S*(fn) = 0.25S(fn_1) + 0.50S(fn) + 0.25S(fn+1) 

when the time origin is in the center of the data or according to 

S'(f ) = -0.25S(f . ) + 0.50S(f_) - 0.25S(f .. ) 
n n-i. n n+i 
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when the time origin is at the first data point. The hanning causes the 

effect of a peak to decay like  1  so that the resulting calculated 

!f-fnl3 
spectrum will have a sharper peak more like the true underlying spectrum. 

An alternate procedure is discussed by Blackman and Tukey (1959). 

In cases like that discussed in the preceding paragraph, where a strong 

repetitive cycle causes a rapid change of spectral density with frequency, 

they suggest that the data be adjusted prior to the computation of the 

spectrum in a way which will make the spectrum more flat. Such an 

adjustment is called prewhitening because the spectrum is made to resemble 

more closely the flat spectrum of "white" noise which has equal spectral 

density for all frequencies. The prewhitening adjustment may be accom- 

plished by 

p'(tk) = p(tk) - apd^) 

Where 

p'Ctjj) = the  adjusted value of p 

and a = a constant < 1.     (Blackman and Tukey use a = 0.6 

in one of their exaeiples.)    However, prewhitening by this means introduces 

a phase change in the data which may be undesirable if any cross spectral 

analysis  (soon to be discussed) is performed. 

6.    Aliasing 

If frequencies higher than —-—were originally present in p, they 
(2At) 

will unfortunately "alias" the digital data when it is sampled at discrete 

points,  as illustrated in Figure A.2.9 and explained by Blackman and Tukey 

(1958).     The solid line in the  figure denotes  a harmonic whose  frequency is 

higher than —-— .    When the sampling is performed at the At intervals, 
(2At) 
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Figure A.2.9    Illustration of how digital sampling may cause a high 
frequency component to alias  and appear as a low 
frequency component 



156 

tne variability in p due to this higher frequency component appears in- 

stead to be the lower frequency harmonic shown by the dashed line.    Hence, 

the lower frequency harmonics will appear larger than they are in reality 

if some of the variability in p is due to harmonics of frequency higher 

than    r 1 -   •    In the practical situation, then, one must make At small 

enough so that all important frequencies can be considered, and must 

filter out any higher frequency "noise" before the data is sampled. 

Filtering can be accomplished by using special electrical filters ahead 

of the recording equipment or by using recording equipment which has a 

long mechanical time constant. 

7.    Trends 

If the data show a general tendency to increase or decrease over 

the total sampling period, T, they are said to contain a trend.    The 

presence of a trend means that a portion of the variance is due to fre- 

quencies lower than the lowest distinguishable frequency, l/T.    When the 

spectrum is computed, the spectral density at the low frequency end will 

be artificially high with the point for frequency l/T being affected most. 

The usual method for correction is to remove the trend from the data 

before the calculation of the spectrum.    The equation of the trend line 

can be computed from the data by the method of least squares; then the 

corresponding trend values can be subtractec1. from each data point. 
1 
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III.     CROSS-SPECTRAL ANALYSIS 

Spectral analysis may also be used to study phase and amplitude 

relationships between the fluctuations of two entities, p,  and pg. 

Consider the Fourier transforms, as defined by Equation A.2.30, of 

the data from two time series.    Presume also that the data have zero mean 

or have had the mean subtracted from each of the data points.    Thus, 

N-l 
2 

S.   (-f ) »At      T P-,(0 exp(i2Trf t.) A.3.1 in «- 1    j n j 

2 

N-l 
2 

S2 (fn )    = At    2 P2(tj) exp(-i2Trfntj) A.3.2 

(N-l) 

n  ■        ("-I) i     n    i N-l 
2 ? 

If one computes Af S (-fQ) S    (f ) analogous to Equation A.2.3^, 

a spectral density function is obtained, but it is quite different from 

the spectral density function of Equation A.2.31+.    Because Sg^) is not 

the complex conjugate of S  (-f ), the new spectral density function has 

both real and imaginary parts.    It is called the cross spectral density 

function and will here be denoted s  (f ). 

Jc(fn) = Af S1(-fn) S2  (fn) A.3.3 

That sc(fn) has both real and imaginary parts may be illustrated 

by the following.    Let 

M-fn> = *n + ibn A.3.U 
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and S2^fn* = cn " idh A'3'5 

where a^, c^, and bß, CIQ, are real and imaginary parts, respectively, of 

S]L(fn) and S2(fn).    Then, using Equations A.3.1* and A.3.5 in A.3.3, 

s.(f ) = f(a c    + b d ) + i f(b c    - a d ) A.3.6 cn nn       nn nn        nn 

In general, bQcn ?* a^, because the S^fn) and S2(fn) are from two diff- 

erent time series, and so s  (fn) is complex. 

A complex number may also be written in the form of an amplitude 

times a phase factor, so that 

Sl('fn} = AmexpCi*^) A'3'7 

and S2(fn)    = A   exp(-ii  ) A.3.8 

where 

Aln=    K + bn 

<{>,    =      arctan _S. 

■ft 

A~    =    ^c2 + b2 

^n n        n 

*2n =      arCtaJ1 T 

These forms will soon be useful.    Equation A.3.6 may be written 

■c(fn) = C(fn) - iQ(fn) A.3.9 

The real part, C(f ), is called the co-spectrum.    The imaginary part, 

Q(fn), is called the quadrature spectrum.    If, in Equation A.3.6, bncn = a^d^, 

then <J>,    = <|>2  , and the two times  series are in-phase.    Also, then 



159 

Q(f ) = 0, so s (f ) = C(f ), and thus, C(f ) is also called the in-phase 
n c   n n n  *=  

spectrum.    Recall from Equation A.2.26 that s(f ) represents the variance 

in p per frequency increment.    Analogously, C(f ) represents the cross- 
n 

covariance between p    and p_ per frequency increment for various fre- 

quencies when the two series are in-phase.    If, in Equation A.3.6 a^^ ■ 

-bQdn, then 4»     = <J>     + n/2 and the two time series are out-of-phase. 

Then C(f ) = 0, so sc(fn) ■ -i Q(fn), and Q(fQ) is also called the out-of- 

phase spectrum.    Q(f ) represents the cross-covariance between p.  and p„ 

per frequency increment for various frequencies when one of the series 

is shifted exactly 1/1» period with respect to the other. 

The degree of phase shift between the two time series for various 

frequencies is measured by the phase spectrum-, defined by 

♦(f_) * arctan Q(fn) A. 3.10 
C(fn) 

To measure the degree of similarity of amplitude between the two time 

series for various frequencies, a cross-amplitude spectrum is defined by 

A(fn)  = /[C(fn)]2 +   [Q(fn)]
2 A.3.11 

A(fn) is usually normalized and used in the form 

C(f  )2 + Q(f )2 

Coh (f ) = _ A.3.12 
Sl(fn) s2  (fn) 

Coh(fn) is called the coherence and measures how well the two time series 

are correlated for various frequencies.    As explained by Panofsky and 

Brier (1965), the coherence varies from 0 to 1 and is analogous to the 

square of a correlation coefficient.    Probability tables have been 
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established for coherence functions which have been computed from trans- 

forms of cross ccvariance function, soon to be defined.    The tables can be 

used to test the closeness of the relationship between the two series 

at the various frequencies. 

However, if one writes out Coh(f ) explicitly in terms of raw 

Fourier coefficients, one obtains 

[Affa^ + bnQn)]
2 + [Af(bQCn - e^)]2 

Coh(fn) = = 1 
(Af)  (a   - ibn)(aa + iVUfKcn + idJC^ - id^) 

A.3.13 

for every frequency f . Although Equation A.3.13 may seem rather surpris- 

ing after the comments in the preceding paragraph, the explanation is 

rather simple. When computed from raw coefficients, Equation A.3.12 is 

the same as a correlation coefficient computed from one observation pair. 

Therefore, the coherence must be computed from coefficients which have 

been smoothed or averaged in some way. The current practice is to form a 

weighted average over several frequencies of each quantity in Equation 

A.3.12, but, as discussed by Tick (1967), the best method to do the 

smoothing and its corresponding table of confidence limits have not yet 

been satisfactorily established. 

In Fig. A.3.1 are plotted the coherence and the phase spectrum for 

air pressure between a point on the ground surface in a field and another 

point downwind from the first. For low frequencies, the pressure is the 

same at the two points, so the coherence is close to one and the phase 

angle between them is close to zero. As frequency increases, the correspond- 

ing wave lengths of pressure waves moving across the field become smaller. 

The pressure at the upwind point changes before that at the downwind point 
1 
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and is shewn in the figure by an increasing phase angle between the points 

with increasing frequency.    As frequency becomes higher (and wave length 

smaller), the two points do not always see the same wave, as evidenced 

by the decrease in coherence with frequency.    When the coherence gets 

small, the phase angle changes wildly and is no longer meaningful. 

If the convolution procedure is performed on S.. (-f )S„(f„) exactly 
1     n    2    n 

as it was on S(-f )S(f ) in Equations A.2.39 through A.2.1+2, one finds that 

N-l 
2 

J = " 
(N-l) 

N-l 
2 

Rc (V = Af        2 8c(fn) exp(i27rfnTu)   , A.3.15 

-(N-l) n = —i - 
2 

and N^l 
2 

s  (f ) = At y R (T ) exp(-i2TTf T  ) A.3.16 
en "~ c    u n u 

2 

where RC(T
U) is the cross-covariance function and T    is a lag in time by 

which one time series is shifted with respect to the other.    When T    =0, 

R (TU) is identically equal to the usual covariance from elementary 

statistics, i.e. 

Bc(0)  =    N^I      I    Pl(t^ P2(t0) A-3'17 

J 

If one describes both p1 and pg in Equation A.3.17 by a Fourier series, 

one obtains an equation analogous to Equation A.2.17. Proceeding simi- 

larly to the steps in Section A.II.2 and Section A.II.3» one finds that 

the contributions of the various harmonics to the covariance may be 
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evaluated and plotted to form a spectrum.    The spectrum is identical to 

the cospectrum, and the area under the curve is equal to the covariance. 

The latter fact can be used to evaluate the covariance, and has been used, 

for instance, by McBean (1968) to obtain the covariance between tempera- 

ture and vertical wind (in this case, the covariance was particularly 

useful because it is equal to the vertical eddy flux of heat.) 

If Equation A.3.15 is used for its computation, the cross-covariance 

function obtained will be a circular cross-covariance whereby the over- 

lapping values at the ends of the time series due to the offset lag i 

are shifted tjround to the front.    If Equation A.3.1^ is used for its 

computation, the summing and averaging are usually performed only over 

pairs of values which do not overlap.    One notes from Equations A.3.15 

and A.3.16 that the cross spectral density function and the cross-covari- 

ance function are Fourier transforms of one another. 

»■■»i«"""""" 
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IV.     TWO-DIMENSIONAL SPECTRAL ANALYSIS 

Some entities fluctuate with respect to more variables than just 

time.    In this section, the concepts introduced for one-dimensional 

spectral analysis are expanded to two dimensions.    Although the orientation 

taken here is for one of the dimensions to be time and for the other to 

be distance parallel to the wind, the concepts apply as well to any two 

variables.     Just as  it will be shown how to extend the concepts  from one 

to two variables,  the concepts  can also be expanded to include more than 

two variables.    Lumley and Panofsky (196U),  for example, discuss spectra 

of entities that fluctuate with four variables, time and space in three 

directions. 

1.    Fourier series representation 

Suppose p represents a variable such as pressure in some turbulent 

field moving horizontally over the ground surface, so that p = p(t, x) 

where t it time and x is the horizontal distance.     One observes the 

pressure N times at each of M positions in the turbulent field.    At 

each position the observations are taken starting at t = - | for a 

total period of time T.    The observations  are spaced At units  apart,  and 

the time at which each is  taken is t.  = jAt  for j = — ,   .   .   .   . 

1, 0, 1,   ...   . ^i .    We note that T =  (N-l)At.     The observation posi- 

tions are spaced along a line parallel to the direction of movement of 

the  field.    The total length covered is  L,  and the  first position is at 

nits  a] 

-(N-l) 

x = - — .    The positions  are spaced    x units  apart,  and an individual 

position is  denoted by x    = £Ax for I =   ,   .   .   .   .   , -1, 0,  1, 

....  -~— .    We note that L =  (M-l)Ax.    The notation is illustrated in 

Figure A.li.l where the vertical direction out of the paper represents the 

magnitude of    p. 
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Analogous to the one-dimensional case, p can be represented by a 

Fourier series of complex exponentials. The two-dimensional forms of 

Equations A.2.1, A.2.2,  and A.2.3 are: 

p(t, x) =      I I        C       exp[i2Tr(Hl- 559] 
n ,m rp        T 

n = -°°   m = -°> x        " 
A.U.I 

T/2      L/2 
/ / exp[i2Tr(nt . mx)] exp[i27r(SLt - ")]  dt = TL when q = -n 
-T/2    -L/2 T        L ■ T        L 

and r = -m 

= 0 

for all other cases  A.U.2 
T/2  L/2 

C   - i- /    /    p(t,x) exp[i2*(S* - 2* )] dt 
n'm  TL  -T/2 -L/2 

VT        L 
A.U.3 

And, analogously to the one-dimensional case, Equations A.U.I and 

A.U.3 are discretized to conform to the discrete data. Equation A.U.I 

becomes 
N-l 

2 
p(tj, x4) =        2 

(N-l) 
n = -      m = - 

M-l 

^ C        exp[i27r(^--^i )]        A.U.U 2. n,m     ^L T L 

(M-l) 

Equation A.U.3 becomes 

At Ax 

N-l 
2 

2 -n,m   TL     -- *.    * ■ j 

J-~  n        *■ ~ ~    o 

N-l 
2 n^   mx£ 
2    p(t,,x?) exp[-i2Tr(—J-- —)] A.U.5 

T 

As in the one dimensional case, the terms  corresponding to n and -n 

represent harmonics  or frequencies.    However, now we have the additional 
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complication of an added dimension; the m, -m pairs represent cycles per 

total length L or wave numbers. 

2. Relation of variance to spectral density function 

The variance for p, which is a function of two variables, may be 

written as 

H-l 

2   1     I 
s =     ^C 

MN-1   2. 

J     2 2 

N-l 
2 
2      [p(t . XÄ) -p ] 
" (N-l) 

= i2 A.U.6 

where the p is the mean of all NM observations. 

Note in Equation A.k.k that the mean C0 0 assuming MN » 1, sub- 
9 

stitution of Equation A.k.k into A.^.6 yields 

/nti      mxp 
TL     j    I     n    m     n>m T       TT « " o   O' 

» 

Equation A.U.7 is the numerical integration form for 

T/2        L/2 
s2 = i-     / / [E    l    C        e«p[i2w(^-E)]-c00] 

TL       -T/2      -L/2      n    m n,m T 
dt dx 

A.U.8 

Analogous to the one-dimensional case, if the long series above is 

written out, squared, and integrated, all terms will equal zero except 

those whose coefficients are C C        or C C        .    Thus,  carry- 
-n,-m n,m   -n,m n,-m 

ing out the above operations with the aid of Equation A.k.2 

2 
s = 

Sri 
2 

2 

M-l 
2 

2 n,m -n,-m    »° 

n = -(N-l)  m = -(M-l) 
2        2 

'-■'-titmmam' 



n = 

N-l M-l 
2 2 

2 2 
-CN-l) m=„(M-l) 

2 2 

1 n,m' °»° 
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A.It.9 

where the vertical bars denote modulus.    The squared modulus results 

because, analogous to the one-dimensional case, the C and C        are 
-n ,-m n,ra 

complex conjugates. 

The term corresponding to each n,m pair represents the contribution 

of the n/T th frequency and m/L th wave number to the total variance. 

If we now define 

f   = n/T 
n 

Af = 1/T 

A.U.10 

A.It.11 

i 

k    = m/L 
m 

A.U.12 

and Ak = l/L and plot A.It.13 

|c      I    against f„ and k , we obtain  a Fourier line spectrum.    In Figure 
,m' 

A. it.2 each dot represents a certain value of |c    J" extending in a line 
n,m 

up out of the paper. 

If tue   |c    m|    are distributed uniformly over the rectangle 

f_ i    to    fn    and   km_]_    to   km,    one    obtains    a   three- 

dimensional histogram where the height of the rectangular parallelpipeds 

can be obtained from 

or 

|C    J     =  (height)  (  Ak)   (Af) 1  n,m 

height    = 1_ Ic 
AkAf 

n,m' 

A.It.lit 

A.It.15 
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Figure A. 1|. 3 illustrates the 3 dimensional "periodogram."    The 

heiglit of the rectangular parallelpipeds is 

extends  up out of the paper. 

k AkAf      n,m 
and 

As T ■* « and L •*■ °° more and more values of —=— are obtained, the 
AfAk 

"periodogram" becomes a continuous surface.    The smooth continuous 

surface, called here s(f ,k ) is the two-dimensional spectral density- 

function.    It is shown plotted by contour lines of constant spectral 

density in Figure A.h.U.    Figure A.h.U is a two-dimensional power spectrum 

or variance spectrum where 

s(fn.  kj --i—    |C       I n    ^       AfAk        n»m 

-(N-l) .     _    _„- N-l 
n = ,   .   .   .   .-1, 0, +1,   .   .   . --— 

2 " 1 

..zflfcÜ. -1, 0, +1, M-l 
A.k.16 

The two-dimensional spectral density function represents the  variance 

in p per increment of frequency and wave number.    The total volume under 

the surface represents the total variance.    The graph can be normalized, if 

desired, by dividing s(f , k ) by the total variance calculated directly 
n      m 

from Equation A.U.6.    The normalized graph will always have the volume 

under the graph equal to one. 

The point where n = m - 0 is equal to p^ and represents the variance 

at zero wave number and zero frequency.    From Equation A.1+.9, however, 

note that it is not included in the summation for the total variance. 

Since a wave with a positive  f    and positive k    and a wave with a 
n m 

negative f    and a negative k    are identical waves traveling in Lne positive 
n m 
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Figure A. It. 3    Plot of 3-D "periodogram" 
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Figure A.lt.i*    (    ltour surface of spectral density function, s(fn,km), 
plotted against frequency and wave numbe-" )er 
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x direction, the wave with negative f   and k   may be ignored if the ampli- 
n m 

tude of the other wave is multiplied by two.    Also, since a wave with a 

positive f   and negative k    and a wave with a negative f   and positive k 
n m n m 

are identical waves traveling in the negative x direction, the wave with 

the positive f   and negative k    may be ignored if the amplitude of the 
n m 

other wave is multiplied by two. 

One may take advantage of the preceding two statements by defining 

wave numbers to be positive quantities only and by regarding frequencies 

to be both positive and negative. 

The decision to define wave numbers as only positive quantities 

causes changes in Equations A.4.9, A.4.14, A.k.15, and A.k.l6. 

Equation A.k.9  becomes 

s2 = 2 

N-l 
2 

M-l 
2 ■         i2 

N-l 
2 

2 2 K J 1 n,m' 
2 1 |Cn,0 

n = "(N-l) m=0 n=0 

A.1+.17 

and Equation A.4.16 becomes 

s(fn,km) 

r = 

—   |c    I2 
AfAk        n>m 

-(N-l) 

m = 0, 1, 2, 

, -1, 0, 1, N-l 
2 

M-l 
2 

A.4.18 

3.    Relation of two-dimensional spectral density function to Fourier 

transform. 

In manipulations exactly analogous to the one-dimensional case, we 

can form a discrete two-dimensional Fourier transform pair by substituting 

■ 
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the expressions from C   given by Equation A.U.U into Equation A.U.1*. 
n,m 

One then define? 

s(fn»V = At&X      Z    E      PCtj,XA) exp[-i27r(tJfn-xakm)] A.U.19 
j     Ä ' 

and then 

p(t  ,Xj) = AfAk      E      Z      S(f ,k  ) exp[i2ir(t.f -x.kj] A.U.20 
J* _ nm j n    *■ m 

n      m 

Equations A. 1+.19 and A.U.20 form the transform pair.    Analogous to 

Equation A.2.32 one obtains 

S(f ,k  ) = Cn.m AA.21 
n    m       AfAk 

and also since C_n _m and C       are complex conjugates, 

s(f ,k  ) = AfAk  |s(f ,k  )|2 

n    m n    m 

n = "(^"1)   ,...., -2, -1, 0, 1, 2,  .... — A.It.22 
d 2 

_ -(M-l) M-l m=       p » "2,-1,0,1,2  

Thus, the spectral density surface may be computed by a double Fourier 

transform of the data for n = "^       '   ,...-2,-1,0,1,2.... H^i 
2 2 

and m =   zÜfcil -2, -1, 0, 1, 2  ...   . Ifci , and then multiply- 

ing each of the S(f ,k„) by its complex conjugate times 4fAk. 
n    m 

The computation of S(f ,k  ) may be carried out using the fast Fourier 

transform described by Brigham and Morrow (1967).    To illustrate, let 

Equation A.h.19 be written as: 

S(fn,km) = At    E     [Ax E    p(tj,x£) exp(i2TTX£km)] exp(-i2irtjfn) A.H.23 
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The quantity in brackets, denote it S(t.,k ) is simply the one- 
j    m 

dimensional Fourier transform of the data.    It is the same as Equation 

A.2.30 except the transformation is with respect to wave number instead 

of frequency.    Thus, using the fast Fourier transform, one calculates 

S(t,,k ) = Ax   I     p(t,,x.) exp(i27iXok ) 
"J'-n j-£' ■•£ m' A.fc.2k 

Then applying the transform a second time, one calculates, 

SCf^kJ = At    Z     S(tj,k ) exp(-i2ukjfn) A.U.25 

The above process may also be used to calculate p(t,,,x ) from 

S^fn»km^ in E^^ion A.If.20. 

k.    Relation of two-dimensional spectral density function to two- 

dimensional covariance function. 

The two-dimensional autocovariance function is defined 

N-l-u M-l-v 
2 

R(TU,6V) = 
(N-u)  (M-v) - 1 

2 

2 
2 

2 rp(tj.xÄ)-p] 

m -(N-l-u)      £ = -(M-1-U) 

2 2 

[p(tj + TU, x^ + 6v)-p] A.It.26 

* 

where the bar denotes the mean.    TU represents a lag in time, and it is 

usually     an    integer multiple of At, i.e., T    = uAt whe'e u is an integer. 

6y represents a spacing between observation stations, and it usually is 

an integer multiple of Ax, i.e. 6y = vAx, where v is an integer. 

When N » u, M » v, and p = 0 (the mean can be subtracted from all 

points if necessary), Equation A.h.26 becomes 
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The spectral density function must also be the double Fourier trans- 

form of the autocovariance function or 

N-l M-l 
2 2 

3(fn.k,,,) = AtAx      2 2 R(xu,6v) exp[-i2Tr(fnTu   - ^6^] A.lt.29 

2 2 

The autocovariance function in Equation A.1+.28 is not the usual am,o- 

covariance function but a circular autocovariance function where the over- 

lapping values at the ends of the summation intervals in the usual auto- 

covariance function, Equation A.H.28,have been shifted to the fronts. 

This is why u goes from ~^"1^ to ^=- and v from -^^t-ü- to ^ri. in 
2 2 2 2 

Equations A.1+.28 and A. h.29 even though the assumption was stated that 

N » u and M » v in going from Equation A.l*.26 to Equation A.k.27. 

It can be deduced from Equation A.U.27 that R(TU,6U) = R(-TU,-6V) and 

that R(-T  ,6V) = R(TU,-6V).    Thus, Equation A.^t.29 may be modified to 

include only positive spacings so that 

N-l M-l 

1 2 2 

R(V6v} = Ü      2 2 P(tj> x0 P(*j + H* H + *v>     A-U-2^ 
u = -t*-1'    v - -(M-l) 

2 2 

A convolution procedure analogous to the one-dimensional case reveals 

the two-dimensional autocovariance function to be the double Fourier 

tr°usforiu of the two-dimensional spectral density function so that 

N-l M-l 
2 2 

R(TU,6V) = AfAk     2 2 s(fn,km) ex-p[i2Tr(fnTu - km6v)]    A.U.28 

-(N-l) -(M-l) 
n = —      m =   

2 2 
; 
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V 

N-l M-l 
2 2 

s(fn»km) " 2AtA*   2 2    R(^u,«v) exp[42u(fniu - yv)]     A.U.30 

» = -(N-l)      v= 0 
2 

Prom Equation A.t.lS it can also be seen that Equation A.If.28 may- 

be modified to include only positive wave numbers so that 

N-l M-l 
2 2 

R(TU,6V) = 2AfAk      2 2     s(fn'
k

m) eip[i2w(Vu " Vv)] 

2 
n.dfcÜ.   m = o 



■ ■"         '■ , — ■ 

178 

V.    USE OF CROSS SPECTRAL DENSITY FUNCTIONS IN TWO-DIMENSIONAL ANALYSIS 

To calculate the two-dimensional spectral density function from 

Equations A.^.19 and A.U.22, N observations are required at each of M 

observation stations.    Since N and M are both usually very large numbers, 

it is  desirable to have methods which require less acquisition and process- 

ing of data.    Under certain assumptions, discussed in this section, it is 

possible to calculate the two-dimensional spectral density function from 

data taken at drastically fewer than M stations.    The orientation is again 

toward an entity which fluctuates with time and one direction in space, 

but the methods can be applied wherever the assumptions are valid. 

1.    The assumptions of stationarity and spacial homogeneity 

Suppose p is observed with time at several points separated by a 

spacing 5    = vAx units of distance from some space origin.    The sampling 

scheme is illustrated in Figure A.5.1.    One subtracts the mean from all 

observations so that only the fluctuations in p are considered. 

When p is statistically stationary, the mean, the variance, and other 

statistical parameters of p do not change with time even though p itself 

is fluctuating constantly.    If p is spacially homogeneous, the mean, the 

variance, and other statistical parameters  do not change with distance. 

When one can assume that p is statistically stationary and spacially 

homogenous, the two-dimensional autocovariance function 

N-l 
2 

NM 

M-l 
2 

I 
,  _ -(N-l)     ,  _ -(l-?-l ) 
J -— * 2 

p(t  ,x£)p(tj +xu, x£ + 5U)      A.5.1 

is a function only of the time and space increments x and 6 . It does 
^ r u    v 

not change with a new origin of time or a new origin of space. 
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Figure A.5.1    Sampling scheme which can be used where p is statistically 
stationary and cpacially homogeneous 
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Equation A.5.1 can be written 

H-l 

R(vV=^ {l  2      pVdtii) p(tj+ Tu* x^i>+ 6v} 

.      -(N-l) 2 2 
J "      2 

+  

+  

+  

N-l 
2 

+ f        2 Pttj.xJpUj + xu, x0 + 5V) 

J  -      2 

+ ..,... 
+  
+  
+ ,  
+  

N-l 

_ -(N-l) — ~ 
J  -      2 

and one notes that under the above assumption, all of the sums on j are 

equal.    Since there are M of the sums, 

N-l 
i 2 

R( VV = N       2 P(tj,x0)p(tj + tu, x0 + 5v) A.5.3 
-(N-l) 

J -      2 

Recalling Equation A.3.1^ one sees that R(T  ,6   ) is equal to the cross 

covariance, RC(TU»<5   ), between the pressure at point x0 and point 

x0 + 6   .    Thus, 

R(V5v' = VvM A'5'k 

; 

:,      ; 
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which is an important simplification and can drastically reduce the 

required number of measurements where the assumptions are valid. 

2.    Relationship between cross spectral density function and 2-D 

spectral density function. 

The Fourier transforms of the data gathered by the scheme in Figure 

A.5.1 can be computed for each of the sampling points according to Equation 

A.2.30 which is rewritten here. 

N-l 
2 

S(-fn,x0) « At    2 P(t.»Xo) exp(i27rfntj) A.5.5 

J 2 

N-l 
2 

S(fn, x0 + 5v) = At    2 Pf**» xo + 6
V) exp(-i2irfntj)      A.5.6 

_ "(N-l) 
J =      2 

The cross spectral density function between the two points, recalling 

Equation A.3.3, is 

sc(fn,6v) = Af   S(-fn,Xo)s(f , xo + 6   ) A.5.7 

By Equation A.3.16, it is also equal to the Fourier transform of 

the cross-covariance function 

N-l 
~2 

8c(fn,6v) = At      2 VVV exP(i2*W A-5'8 

-(N-l) 
u =      ? 

Now, suppose one computes a two-dimensional spectrum, called here W(f  ,k  ), 

by a Fourier transform of s  (fn,6y) according to: 

M-l 
2 

wCf^kJ = Ax        2 8c(fn»öv) exp(i2irkmÖv) A.5.9 

2 
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If one substitutes for s  (f ,6  ) from Equation A.5.8 into A.5.9, one obtains 

M-l N-l 
2 2 

W(fn .k,,,) = Ax      2 At    5            R (Tu,5v)exp(-i21rf T)    exp(i2irk 6_) 
-(M-l) -(N-l)    C 

v=      2 
u =      2 

A.5.10 

which can be rewritten to yield 

N-l       M-l 
2 2 

W(fn,km) = AtAx 2       2    He(tu,«T) exp[-i2*(fnTu -k^)] 

-(N-l)     -(M-l) 
u=   2   v =  — 

A.5.11 

Recalling Equations A.5.U and A.lt.29 one can see that W(f ,k  ) equals 

s(f ,k ).    Thus, the two-dimensional spectral density function may be n    m 

computed by a double Fourier transform of the two-dimensional covariance 

function, i.e., 

N-l M-l 
2 2 

s(f'   kj = AtAx      2 2 R(xu,6v)exp[-i2TT(fnTu -k 6   )] A.5.12 

lillli -(M-l) 
* 2 

or it also may be computed by a single transform from the cross spectral 

density function, i.e., 

M-l • 
2 

s(fn,km) = Ax    2 sc(fn,6v)exp(i21:km6v) A.5.13 

v - dMl 
2 

! 
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3.    Relationship between cross spectral density functions and two- 

dimensional auto-covariance function. 

Suppose one computes a two-dimensional function, called here Y(T ,6  ), 

by a Fourier transform of s  (f ,6„) according to: c    n    v 

N-l 
2 

Y(TU,6V) = Af      2 sc(fn,6  )exp(i27rfnTu) A.5.1U 

-(N-l) n = ~7~ 

The inverse of Equation A.5.13, 

M-l 
2 

sc(fn,6y) = Ak    5 s(fn,km)expk2Trkm6v) A.5.15 
-(M-l) 

m = 

may be used to substitute in Equation A. 5.1^ to obtain: 

N-l M-l 
T ~2~ 

Y(TU,6V) = Af Ak    5 
n 

' '2 
A.5.16 

--(■- )     \?dMl    S(^'^)e3q,(i27rk»6u) expCiatr^^) 

Upon rearrangement, the right-hand side is seen to be identical to the 

right-hand side of Equation A.H.28.    Therefore, Y(T  ,6   ) = R(TU,6V) or, 

again writing A.1+.28, 

N-l M-l 
2 2 

R(TU,5V) = AfAk      2 2 s(fn'km)eXp[+i27r(fnTu ' Vv)]      A'5-17 

n = -OKI   m = -(M-1) 
2 2 

Thus, the two-dimensional auto-covariance may be computed from a double 

Fourier transform of the two-dimensional spectral density function, or it 

may be computed by a single Fourier transform of the cross-spectral density 

■Mi 
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function according to Equation A.5.1*+, rewritten as: 

I 

N-l 

R(tu,6T) = Af    2 s (f ,6)exp(i2irf T  ) c   n    v n u A.5.18 

!   1 
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VI.    SUMMARY 

The underlying principles of spectrum analysis are discussed. 

Beginning with the definition of a Fourier series, it is shown that 

a spectrum is a plot of the squared amplitudes versus frequency of the 

harmonics which contribute to the variance a time series.    It is also 

described how the squared Fourier amplitudes are proportional to the 

spectral density function computed by a Fourier transform of the data. 

The spectral density function is also shown to be the Fourier transform 

of the more familiar auto-covariance function. 

The discussion next considers two simultaneous time series and shows 

how the closeness of the relationship of and the phase angle between 

the two series may be assessed by computation of the cross spectral 

density function from Fourier transforms of the data from both series. 

The cross spectral density function is found to be the Fourier transform 

of the c «variance function for the two series. 

Two-dimensional, spa^e-time spectral analysis is considered.    Analo- 

gous tc the one-dimensional case, it is shown that a two-dimensional 

spectrum is a contour surface of squared Fourier amplitudes versus 

frequency and wave number of the harmonics contributing to the variance 

of some entity in time and space.    The squared Fourier amplitudes are 

shown to be proportional to a two-dimensional spectral density function 

which may be computed by a double Fourier transform of the data.    The two- 

dimensional spectral density function is shown to be the Fourier trans- 

form of a two-dimensional auto-covariance function. 
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Lastly, it is shown that, if samples of time series are available 

for various points across a field, both the two-dimensional spectral 

density function and the two-dimensional auto-covariance function can be 

computed from the cross spectral density functional relationships among 

the points. 
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