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ABSTRACT 

A technique for using a sequence of two-pulse bursts for obtaining 

estimates of mean wake velocity and wake velocity width has been proposed 

by W.   D.   Rummler of Bell Telephone Laboratories.     The derivation of 

this technique was based on heuristic  reasoning.     The present note derives 

the same estimates from the theory of maximum likelihood estimation. 

Accepted for the Air Force 
Franklin C.  Hudson 
Chief,   Lincoln Laboratory Office 
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In a recent series of memoranda,   W.D.   Rummler of the Bell 

Telephone Laboratories has proposed simple estimates of mean wake velocity 

and wake velocity width.     These estimates were obtained on the basis of 

purely heuristic arguments.     The purpose of the present note is to show 

that these same estimates can be derived from fundamentals using the method 

of maximum likelihood. 

The transmitted signal s(t),   to be used for obtaining these estimates 

is a sequence of two-pulse bursts such as shown in Figure 1.     The pulse 

width A is chosen to yield the desired range  resolution and the interpulse 

spacing is chosen so that the wake returns from the two pulses of the pair 

do not overlap.     The time between bursts is made large enough so that the 

returns from a range cell located a fixed distance behind the re-entry vehicle 

are statistically independent.    This condition of statistical independence can 

also be achieved by suitably jumping the carrier frequency between successive 

two-pulse bursts. 

The signal     r(t),   received when a single burst is transmitted will be 

taken to be 

r(t) = c(t) + n(t) (1) 

where n(t) is white,   Gaussian receiver noise and 

c(t) = JJa(r,f)s(t-r)ej2lTftdTdf (2) 

is the uncorrupted wake return.     The function a(r, f) is the complex amplitude 

density of that portion of the wake return having delay j relative to the re- 

entry vehicle and Doppler shift f.     This function is random with the properties. 

E[a(T,f)] = 0 

E[a(T)f)a(r/,f')] = 0 

E[a(T,f)a*(r\f')] = a(r, f)fi (T-<r')5(f-f') (3) 

All time functions will be understood to be the complex envelopes of their 
corresponding real,   r.f.   signals. 
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Fig.   1.    The two-pulse bursts. 



where a(T,f) is the average scattering cross-section density of that part of 

the wake located at delay T and Doppler shift f. The basic problem at hand 

is to estimate the  "f-centroid" and "f-width" of CT(T, f) for various values of r. 

The conditions (3) correspond to assuming that the returns from 

different wake scatterers are statistically independent and that the phases of 

the returns are uniformly distributed.     It will further be assumed that the 

total number of scatterers is large enough so that some form of the Central 

Limit Theorem holds and c(t) can be modelled as a Gaussian process.     This 

being the case,   c(t) can be characterized completely by the three functions. 

E[c(t)] = 0 

E[c(t)c(t')] = 0 

E[c(t)c*(t')] = |fa(T, f)s(t-r)s*(t,-r)e:i2TTf(t"t/)dTdf (4) 

In order to facilitate the forthcoming analysis,   it will be assumed 

that the radar receiver operates in a range-sampled mode.     This means 

that the received signal is passed through an i. f.   filter whose bandwidth is 

roughly equal to the signal bandwidth and then sampled once per range re- 

solution cell over the range interval of interest; in the present case this is 

the range interval over which the wake return is to be studied.     The result 

of this process is that each transmitted pulse pair produces a pair of complex 

samples for each range gate,   r,(i) = r(r   +iA),   r?(i) s r(T   +T+iA) where r 

denotes the range delay at which the first wake return of interest occurs and 

i denotes the number of the particular range gate under study.     These complex 

samples are zero-mean Gaussian random variables whose covariances are 

given by 

Efr^Dr^i)] = E[r2(i)r2(i)] = Efr^ijr,, (i)] = 0 

E[ri(i)r2*(i)] = A2
A Ja(ro+iA) f)e"J2lTfTdf (5) 

Efr^ijr^i)] = E[r2(i)r2*(i)] 

= A2A[cr(To+iA,f)df + ct2 



where a    denotes the variance of the range-sampled receiver front-end noise. 

Equations  (5) follow directly from equations  (4) when it is assumed that the 

function a (T, f) can be regarded as constant over a delay interval of length A 

so that the T-integration can be performed explicitly and it is assumed that 

a(T, f) is only non-zero in a delay interval of length less than T.     This last 

assumption is equivalent to the earlier assumption that the interpulse spacing 

of the two-pulse burst is large enough to straddle the wake. 

The pair of random variables r..(i),   r? (i) is Gaussianly distributed 

with a density function given by 

In pfr^i),  r2(i)] m In p[r(i)] = - r^iJAf  r (i) -  In [T^IAJ] 

where 

r(i) = 
r,(i) 

(6) 

(7) 

and 

n    2  •      2 n    2 

B4 +a 6i pj 

o  2     , n  2        2 
B.   p.* Bj    +a 

B,2 = A2A fa(T   +iA,    f)df 
1 u o 

(8) 

B2p. = A2
A [a(T   +iA,    f)e-j2TrfTdf 

11 <J o 
(9) 

The assumption that the returns from successive two-pulse bursts 

are statistically independent now can be used to write down the joint prob- 

ability density function for the returns from N successive bursts as follows, 

N 
-1 lnpfr^i), ...rN(i)] =     -E   [^(i^   £k(i) + ln[u   |A.|] (10) 

k=l 

The maximum likelihood strategy for forming estimates of the mean 

wake velocity and wake velocity width in each of the range cells of interest 

is to maximize the function given by Equation (10) with respect to these 



parameters and with respect to any other unknown parameters.     To accom- 

plish this end,   it is first necessary to give precise definitions of these 

quantities.     There will be done by assuming that the function a (r +iA,    f) has 

a precisely known shape but that its  scale,   center and width are unknown. 

Stated in symbols,   it is assumed that 

a. f-T. 
CT(T  +iA,    f) = — a   (i,     -) (11) o w.    o w. v 

1 1 

•where the function a   (i, x) is known for each i but a.,   f. and w. are unknown 
o 111 

parameters.    It is convenient,   but not necessary for most of the following 

analysis to further assume that a   (i, f) has been normalized so that 

JVo(i,f)df = 1 

[ao(i,f)fdf = 0 

fcr  (i,f)f*df = 1 (12) 
•J      O 

The normalizations defined by Equation (12) are equivalent to defining a., 

w.,   and f . in the manner usually used in radar estimation problems; namely, 

cr. =  f cr (T   +iA,    f )df 
I     «J o 

al = Ja(ro+iA,    f)fdf 

a.w2 =  ra(Tn+iA,    f)(f-T)2df (13) i   1        « o 1 

The wake parameter estimation problem now has been reduced to a 

purely mathematical problem,   that of maximizing the function defined by 
— 2 2 

Equation (10) with respect to the parameters a.,   f .,   w..     Since g .     = A  ACT., 

maximizing this function with respect to a.    is the same as maximizing it 
2 1 

with respect to (3.   .     This will be done in the following analysis 



Denoting   -r-T times the left-hand side of Equation (1) by L and referring 

to Equation (8) allows Equation (10) to be written in the form, 

2     2 2 
(0.   4a   ) - Rep.  p.x * - 

1      (0.24a2) -Pj   IPJ 

where 

N 

*i"   2^    kllt,rlk^l2+,r2k^|2] (15) 

1     N 

Vi S   Nk^i *ik(i)'2k*(i) <l6> 

The parameters f.   and w. enter Equation (14) only through the com- 

plex quantity p..    It is easy to show,   using Equations (9) and (11),   that  any 

value of p.   inside the unit circle in the complex plane can be achieved by 

a suitable choice of  f. and w. and conversely,   that any choice of f . and w. 

results in a value of p.   inside the unit circle.     Thus,   maximizing L with 

respect to f . and w. is equivalent to maximizing it with respect to p.   with 

the constraint that p. lie inside the unit circle. 
Ki 

The maximum of L with respect to argp.   obviously occurs when 

argo.  = argp. where 

argP\ = argx. (17) 

and is given by 

2     2 2 
T (8 •      4<X      )    -      I  8 •      P  .X. | 0 OOTxl O 

maxL o l i     l   i •>       2r,„  2,   2\2   o4l   l2i        ,^a^ 
argp.     = "2V ,    2     2 2 4,      71  In »   [(0±  -Ht   )  -Bi |q|   ]       (18) 

6 i (Bi 4a )   - Bj  IpJ 

2 
The maximization of Equation (18) with respect to 8-    and |p.|   is facilitated 

by the change of variables, 

f. = 8.2(1 + jp.|) +a
2 (19) 

g. = B.2(l-  | p. |) 4 a2 



in terms of which Equation (18) assumes the form 

1 -   |x.| 1 + Ix.l maxL, l1       , '   l1       n       r /0rv. = - y. In irg. - y.  —7 In nf. (20) argpi 'i gt 
6i      'i       I. l 

Differentiating Equation (20) with respect to f. and g. and setting the results 

equal to zero yields the following equations for f . and g. the maximizing 

values of f. and g. 
l &i 

1-   lx.| 
yi   : 2 

Si 
- gi = o 

i+m A. 

- f. - 0 
1 

yi      -2 
i 

(21) 

therefore, 

g.   =y.(l-   |x.|) 

(22) 
f.=y.(l+ |x.|) 

and the corresponding estimates of 3. and |p.|  are given by 

h2 2 
= y.-a 

UJ 
y.U.| 

2 
y.-a 

(23) 

The estimates given by Equation (23) are correct (i.e.   the values of 
2 2 

0.    and | p. |  that maximize L subject to constraints 3.    > 0,   |p.|< 1),   if,   and 

only if,   § . 2 > 0 and |p.|  < 1.     If either of these conditions is violated,   then 

the required maximum of L occurs for degenerate values of the parameters 

such as 0.     =0 and/or  I p. |   = L     It can be shown that as long as the integrated 
1 21    2 

wake-to-noise ratio NB.   /a    is sufficiently greater than unity,   this situation 



will only occur with very small probability.     In the sequel it will be assumed 

that the wake-to-noise ratio is large enough so that the occurrence of the 

above mentioned degeneracies can be ignored. 

The results of the above analysis now can be  summarized by com- 

bining Equations (17) and (23) with Equations  (9) and (11) yielding the results 
2 

that the estimates of (3 •    and T. and w. are given by the equations, 

yt-a 

arg 
f-f 

—x- 
W 

cr   (l,—* ) e  J df 
<J    o       w . w . 

l 

= argx 

I -a—   [o   (i, I  w .   J    o 

f-T. 

w . 
1 

)e-J2TrfTdf|   = *iW 

(24) 

(25) 

(26) 

Equation (24) is an explicit expression for 0.   ,  whereas,   Equations (25) 

and (26) only define f . and w . implicitly.     These last two equations can be 

further simplified by making the change of variables 

f-7. 
w 

resulting in the equations 

-j2TTf"4T 
arg JV   (i,x)e 

- J2TTW. TX 

dx arg x (25;) 

-j2uw.Tx y.|x.l 
|J,CTo(i,x)e dx|   = -±—X-T 

a 
(26') 

These equations still define the exact maximum likelihood estimates f . and 

w . in an implicit manner; however,   they suggest an approximation that will 

yield explicit expressions for these estimates.     If the estimate w . is 

sufficiently small compared to   -=, (w . T <<1),   then the exponential appearing 

on the left-hand side of Equations (25') and (26) can be approximated by the 

first three terms of its  Taylor series. 



-J2TTW TX , -   2 

e *       - 1 - j2TTW.Tx-|(2Trw.T)  x (27) 

Substituting Equation (27) into Equations (251) and (26') and making use of the 

normalizations defined by Equation (12) yields the result 

f.    ^ 
21TT   arg Xi 

(25-) 

(*;)' 
2(TTT) 

Yilx.1 

a 
(26") 

Note that these approximate expressions for the maximum likelihood estimates 
A 

f . and w . do not require explicit knowledge of the shape of the wake dis- 

tribution a   (i, f) as do the exact Equations (25') and (26').    Equations  (25") 

and (26") define exactly the same estimates that Rummler has proposed on 

an intuitive basis.     They are now seen to be approximations to the maximum 

likelihood estimates of f. and w. valid as long as the estimated wake velocity 
1 1 1 width w . is sufficiently small compared to   -=,,   the unambiguous   frequency 

interval defined by the two-pulse burst. 

This concludes the derivation of Rummler's wake velocity estimates 

from basic statistical principles.    For a discussion of the bias and accuracy 

of these estimates,   the reader is referred to the references cited below. 
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