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ABSTRACT 

A study is made on applying the turbulent kinetic energy approach 
to inhomogeneous two-stream turbulent mixing calculations and to calcu- 
lations of a two-dimensional symmetric wake.    Mixing calculations are 
made and compared with experimental data for coaxial hydrogen-air and 
air-air mixing flows.   The turbulent kinetic energy equation is trans- 
formed into a transport equation for the turbulent shear stress by assum- 
ing that the turbulent shear stress is directly proportional to the turbulent 
kinetic energy.    A flux model is assumed for the lateral diffusion of tur- 
bulent kinetic energy.   The energy dissipation is modeled to a form simi- 
lar to that derived for isotropic turbulence.   Mass and energy transport 
are incorporated in the analysis by assuming the Prandtl and Lewis num- 
bers to be unity.    The resulting set of partial differential equations is 
hyperbolic and the method of characteristics was chosen for their solu- 
tion.   The theoretical method inherently incorporates history of the tur- 
bulent structure in the calculations which is physically more acceptable 
than turbulent structure models based on local flow properties.    The 
results show that the turbulent kinetic energy approach is quite applic- 
able to two-stream mixing problems, although the method requires fur- 
ther development before it is useful for routine engineering calculations. 
Calculations for a wake behind a flat plate are made and found to compare 
well with experimental data.   The flux model for the diffusion of turbulent 
kinetic energy and the energy dissipation model were found to produce 
results which agree well with experimental data for both the mixing jet 
and the wake. 
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NOMENCLATURE 

A        Random variable; or square matrix coefficient of 

vector equation 

a.       Turbulent kinetic energy-shear stress parameter, 

T/q'2 

la.I     Maximum absolute value of a. 1 1 'm 1 

B Random variable; or square matrix coefficient of ■ 

vector equation 

b Width of the mixing zone, r - r. 

C Species mass fraction; or vector 

C Molar specific heat 

D Density fluctuation parameter in the turbulent 

kinetic energy equation; or vector 

F1 Molar specific heat parameter 

F2 Static enthalpy parameter 

f. First-regime diffusion function 

f_ Second-regime diffusion function 

G Parameter defined by Equation 63 

H Total enthalpy 

h Static enthalpy 

K Dissipation length proportionality constant 

k For plane two-dimensional flow equals zero, for 

axisymmetric flow equals one 

L Dissipation length 

M Mach number; or molecular weight 

n Moles of gas specie cc 
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P       Static pressure 

Q       Mass entrainment flux 

q'2      Turbulent kinetic energy, Ü'2 + V'2 + W'2 

P.       Universal gas constant 
o J 

R       Continuity conservation parameter 

R       Momentum conservation parameter m 

r Radial coordinate in axisymmetric flow 

r. Central jet radius 

T Parameter defined by Equation 83; or static 

temperature 

t Time 

U Component of velocity in the X-direction 

U. Component of velocity in the X.-direction 

U       Centerline velocity c 

U .      Characteristic velocity, U. - U 

V        Component of velocity in the R-direction or 

Y-direction 

V,       Turbulent kinetic energy diffusion velocity 

VD       Entrainment velocity 

W       Arbitrary vector 

x.       Cartesian coordinates, x. = x in the longitudinal 

coordinate; x. = y in the lateral coordinate; or 

x, = r in axisymmetric coordinates 

*a Mole fraction of specie 

z (r - ri)/(rQ - r^ 

z 
0 

Z at |ai|m 

^™ Time averaged conditions 
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Instantaneous conditions 

Greek 

Y       Ratio of specific heat 

5 Boundary layer thickness 

n       Similarity parameter defined as ar/x 

9       Momentum thickness o 

X Characteristic direction 

p Density 

a Similarity constant 

a. . Viscous stress tensor 

T Turbulent shear stress 

6 Dimensionless velocity, (U - U )/(U. - U ) 

<j>       Dimensionless center line velocity, (U - U )/ uc c    o 

<Uj - °o> 
fi        Stability parameter defined by Equation 93 

Subscripts 

a       1,2 for two different gas species 

hv       High velocity boundary 

i        Coordinate indices; or inner boundary conditions 

j        Coordinate indices; or central jet conditions 

L        Left characteristic 

Lv       Low velocity boundary 

o        Outer boundary.conditions 

R        Right characteristic 

s '       Starting line 

Superscripts 

b Boundary 
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CHAPTER I 

INTRODUCTION 

Turbulent mixing in jets and wakes has been studied 

for several decades.  Interest in inhomogeneous two-stream 

turbulent mixing has increased significantly in the last 

several years as the result of increased interest in super- 

sonic combustion, gas ejectors, and exhaust jets.  At best 

only a qualitative understanding of the physical processes 

occurring in the most simple turbulent shear flows is exis- 

tent.  Both analytical and experimental progress are still 

not satisfactory. 

Until recently the analytical approaches on turbulent 

jet mixing could be classified [1]  as follows: 

»    1.  Point source diffusion of momentum, material, or 

temperature using equations and solutions well known from 

the study of heat flow. 

2.  Boundary-layer form of the Navier-Stokes equation, 

into which are inserted various transport theories such as 

a. Momentum transport, using the mixing length 

concept 

b. Vorticity transport, using the mixing length 

concept 

c. Constant exchange coefficient 

Numbers in brackets refer to similarly numbered 
references in the bibliography. 
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d. Karman similarity theory 

e. Statistical theory 

3.  Integral equations of motion. 

Also, Forstall and Shapiro [1] have compiled a very extensive 

list of references covering experimental and analytical work 

on jet mixing prior to 1950. Some of the more recent work 

is reported in References 2 through 21. Most analytical 

approaches have dealt with method 2 choosing various trans- 

port theories. Perhaps the most widely used and successful 

transport theories are those proposed by Prandtl, i.e., his 

mixing length theory and constant exchange coefficient 

hypothesis discussed in Reference 22.  Both the mixing 

length theory and constant exchange coefficient hypothesis 

relate the structure of turbulence through the shear stress 

to local mean flow properties which in effect relate the 

turbulence structure to local flow properties. These 

approaches, however, are used successfully in many jet mix- 

ing problems.  Since they do not include the physics of past 

history of the turbulent structure, they do not account for 

the characteristics of the experimental apparatus which 

induces turbulent history into the flow.  Ferri [23] dis- 

cusses this problem in detail particularly as related to the 

two-stream mixing problem.  The characteristics of the 

experimental apparatus upstream of the mixing region 

(initial boundary layers) have important effects on the 

mixing phenomena near the origin of mixing.  Oftentimes 

this point is neglected in presenting and comparing 
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experimental results. Thus, because the character of the 

initial conditions does significantly contribute to the 

mixing phenomena and turbulence structure in the vicinity of 

the origin of mixing, it seems reasonable that the analytical 

solution of the jet mixing problem should be an initial 

valued problem for both the turbulent and mean flow fields. 

Such an analytical approach will be discussed in detail in 

this dissertation. 

The basic idea was derived from Bradshaw, Ferriss, and 

Atwell's analytical treatment of the equilibrium turbulent 

boundary-layer problem (24 and 25], They used Townsend's 

suggestion [26] that the turbulent shear stress was propor- 

tional to the turbulent kinetic energy and then rewrote the 

turbulent kinetic energy equation as a transport equation 

for the turbulent shear stress. They also assumed that the 

diffusion of turbulence was purely convective and dominated 

by the large-scale flow eddies as opposed to small-scale 

high-intensity turbulent motion.  Customarily [27] it is 

assumed that the small-scale high-intensity turbulence dif- 

fuses according to a gradient model; i.e., 

3c?2 
Diffusion ~ TT-*— 3y 

and large-scale eddies diffuse according to 

Diffusion ~ V-c?2 ,, a 

where V. is the effective rate at which the turbulence 
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diffuses or is convected in the lateral direction.  Bradshaw 

et al. [28] further emphasizes that large eddies entirely 

dominate the free mixing layer.  If this is correct, a con- 

vective model for the lateral diffusion appears more suited 

to the free-jet mixing problem than a gradient model. 

However, Patankar and Spaulding [29] have formulated 

the problem by assuming a gradient model for the diffusion 

of turbulent kinetic energy. Along with this assumption 

they have also assumed a gradient model for the turbulent 

shear stress.  These two assumptions result in the momentum 

and turbulent kinetic energy equations both being parabolic. 

Lee and Harsha [30] have studied the two-dimensional wake 

and the two-stream mixing problems utilizing Bradshaw's 

assumption [24] that the turbulent shear stress is linearly 

proportional to the turbulent kinetic energy and a gradient 

model for the diffusion of turbulent kinetic energy. They 

used the Patankar and Spaulding method for solving the 

resulting general set of parabolic equations.  The method is 

reasonably successful.  In the Bradshaw et al. approach [24] 

the shear stress is not modeled in the momentum equation, 

but left as a dependent variable.  With the convective 

lateral diffusion formulation, the continuity, momentum, and 

turbulent kinetic energy equations form a first-order quasi- 

linear hyperbolic set of partial differential equations.  In 

fact, the equations are still hyperbolic if diffusion is 

neglected.  Using either the Lee and Harsha approach [30] or 

Bradshaw1s approach [24] with the turbulent kinetic energy 

4 
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equation achieves the objective of formulating the jet 

mixing problem as an initial valued problem with respect to 

the turbulent structure. /The approach in this dissertation 

is to use the Bradshaw method for the two-stream mixing 

problem and incorporate the density variation by use of the 

G-roc.c.o_law_j_„__<Eomparisons with air-air and hydrogen-air 

coaxial mixing experimental data will be made.  A brief 

study is also presented on the use of the Bradshaw method to 

calculate wake flow behind a thin flat plate. 



AEDC-TR-70-134 

CHAPTER II 

DERIVATION OF THE COMPRESSIBLE TURBULENT 

KINETIC ENERGY EQUATION 

I.  TIME AVERAGE RULES 

A derivation of the compressible turbulent kinetic 

energy equation will be made along with legitimate approxi- 

mations to simplify the equation to useful form.  The equa- 

tion can be developed entirely from the instantaneous form 

of the continuity and the momentum equations along with an 

averaging procedure.  The usual Eulerian time-averaged 

definition is used [27]. The time-averaged value of any 

dependent variable is defined by 

- lim 5! j A dt 

Thus designation of the overscored quantity as a time- 

averaged quantity, the instantaneous quantity can be written 

as 

A - Ä + A' 

where A1 is the instantaneous fluctuation away from the 

mean.  The usual rules of time averaging are employed for 

the products of fluctuating quantities.  These are 

Ä = Ä + A' - A + Ä' ■ Ä + Ä"1 
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thus 

£' = 0 

With 

B = B + B' 

AB' = A B' - A B' =0   since B* = 0 

and 

A B = (A + A'HB + B') 

= Ä B + A~B' + B A' + AT' 

= Ä B + Ä^B' 

At this point the compressible form of the instan- 

taneous equations of motion will be stated followed by their 

conversion to their time-averaged form.  By manipulation of 

the instantaneous and time-averaged equations, the compress- 

ible form of the turbulent kinetic energy equation will be 

derived.  This treatment of the equation will be accomplished 

in Cartesian coordinates for simplicity. The generalized 

two-dimensional form of the final equations is used in 

succeeding chapters for both the plane two-dimensional wake 

and the axisymmetric two-stream jet mixing problems. 

II.  CONTINUITY 

The instantaneous continuity equation is 
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§£ + ^_ (p0l, . o (i) 

Using the time-averaged definition 

p =  p + p1 

U.   - U.   + U! 
ill 

where (') is used to designate the fluctuating quantity. 

Substituting into Equation 1 and time averaging gives 

j^ (P Ü. + p'U|) = 0 (2) 

which is the steady-state time-averaged form of the con- 

tinuity equation. 

Ill.  MOMENTUM 

The instantaneous momentum equation is 

3U,      3U.     5T>   3a.. 

where a.. is the viscous stress tensor.  Substituting in the 

instantaneous fluctuating properties we have 

3(Ü. + U!)   _    ' 3(Ü. + U!) 
(p + p') 1

3t 
X + ,<p + p') (Uj + U\) 1

3x 
1 

3£_ _ api - üii - izii (4) 3x±  3xi ,  3x.    3x. 
K   ' 
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Taking the time average gives 

     3U.       __ 3U! ~ 3Ü! 
(p üj  + p,uj}HT + P Uj   3*7 +  P' (Uj + Uj>3lT 

3P 3gij 
3xi       3x. (5) 

By multiplying the instantaneous continuity equation by the 

instantaneous velocity, U., time averaging and using 

Equation 2 gives 

Ui 3x~ (p Uj + p'Uj + p,üj} = ° 

By adding this term to Equation 5 and combining terms 

(6) 

    3U.   3p U'.U!   3p'U'U!   Sp^UT U. 

9P  ÜÜ 
3x.    3x. (7) 

which is the complete steady-state time-averaged form of the 

momentum equation. 

IV.  TURBULENT KINETIC ENERGY 

First the instantaneous momentum equation is multi- 

plied by U. and instantaneous continuity equation by 1/2 U?. 
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Continuity 

U? „   U?  „ 

T St ♦ "* S5J <"V" ° 

Momentum 

3U?  pu. 3U? 
P  i 
2  3t 2  3x. ui 3x±   I 3x. 

Adding these two equations together gives 

3 
St 

pUf    , 3pU.U? X   +    —    J  s 
2  ax. ) i 3x.    l  3x. 

Time averaging the steady-state form of this equation leaves 

,   SpU.Uf 
1 J   1  = 
2 3x. 

3P 
3a. . 

Ui   3x7 " Ui     3x. (8) 

Expanding the terms of this equation 

1     3     P-,=r2rr ^ _£_ [p(u?U.  + Ü.ÜT2 + 2 U.ÜTuT + uVu.')l 2   3x.    LFXi] ]i ii] ID 

+1 3XT 
[2 üiüj p^i+ uj ^r+ ui p^j 

+ 2 U. p'UIU'. + p'U!zU!] 

3a. TaTT 
ui 3x±  

ui 3xi  
ui  3x.   ui  3x. (8a) 

Multiply Equation 7 by U. and subtract from Equation 8a 

10 
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ü? 9p u.  uf aPTJT       3u. 
2    3x.   2   3x.    P  l j 3x. 

'   3U.        3U.   , 3p U.U!' 
+ ^Fj 3xT + ^i Uj SIT + I ~1¥" 

ij    2 3Xj H  l  3   2 2    3x^   ' 2 3x_. p "i wj "2 3x_. ■" "i ~j p'\3\2\J' 

- - U! 4^ 0! ~J- i 3x.   i 3x. (9) 

The first two terms are identically zero as given by the 

time-averaged continuity equation.  Changing the suffix on 

the pressure term from i to j, and after some rearranging, 

the compressible form of the turbulent kinetic energy 

equation is 

J   3 i J 

3U, 
+ pTj! U i  j 3x. 

II 

§pü™ + JpTip 

III 

3U 

3x 
J. _ 3U1 

F'^ 

IV 

3U, 
+ (P tipr + pw, ^_i 

3^TT 
3x fpTuJ + |püpu■ + |p'U|4U'l + Uj -gii = 0  (10) 

VI VII 

11 
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The bars over the mean flow quantities have been dropped for 

convenience. The seven labeled terms-of the turbulent 

kinetic energy are: 

I.  Convection by mean flow 

II.  Turbulent mass flux times mean flow acceleration 

III.  Normal stress times mean dilatation 

IV. Fluctuating pressure dilatation 

V.  Turbulence production 

VI.  Turbulent energy diffusion 

VII.  Viscous dissipation of turbulent energy 

Equation 10 is an exact expression for the turbulent kinetic 

energy equation including compressibility. An order of 

magnitude analysis will be performed and simplifying 

approximations made to reduce this equation, and the con- 

tinuity and jxiomen turn equations, to a more us able—form.. .__ 

First, an approximation to the fluctuating density, p*, is 

developed. ) The instantaneous total enthalpy__and equation 

of state for aCthermally and calorically perfect gas__are^ 

given by 

J r u? *-. 
H = h + ji-   ^ (11) 

( P = 3LZ.1 Ph    / (12) 

The instantaneous properties are defined 

H = H + H' 

h - h + h' 

12 
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U = U + U' 

P = P + P.' 

P ■ P + P' 

With these definitions, Equation 11 is written as 

H + H' = h + h' + i (U? + 2U.U! + U!2) 2 *wi l l 

Time averaging and taking the difference gives 

U!2 - U!2 

H' = h' + U.U! + 
l l 

The last term is assumed to be an order of magnitude less 

than U.UI. Also U1, V, and W are assumed to be of equal 
■ 

order and 

V 2 w 
Ü" Ü" 

- «1 

Using Morkovin's [31] suggestion that H' <h', these assump- 

tions leave 

h' + U U' * 0 

^ 

(13) 

From the equation of state 

P + p' = 1  " 1[P H" + p'h" + ph' + p'h'] (14) 

The time average of Equation 14 is 

P = * k [p h + p'h
1] (15) 

Subtracting Equation 15 from Equation 14 leaves 

13 
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P1 = y  ~ 1(p'h + ph' + p'h' - p^h7") 

Bradshaw [25] suggests that the first and second 

terms on the right-hand side are the dominant terms 

when the Mach number fluctuation is much less than unity. 

This gives 

P     h 

Eliminating h''between Equations 13 and 16, 

£i a I u' 
P    h 

(16) 

or 

\ 

^ (Y - 1) M2 ^- \ (17) 
p U \       / 

where_M_is_the local time-averaged Mach number.  This 

/ approximation will be used to simplify the continup-ty, 
J 

V momentum, and turbulent kinetic energy equations./ It is 

also assumed that (y - 1)M2 is no greater than order unity. 

The reader is referred to Appendix A for the order of magni- 

tude analysis of the continuity, momentum, and turbulent 

kinetic energy equations.  The resulting equations are: 

Continuity 

|jr + |y (PV + e^ - ° (18) 

14 
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Momentum 

pü ^ +   (pV + p^T)   ^ 3U 
3x 

|| - -|L (pu-v + p'u'V) (19) 

Turbulent Kinetic Energy 

pU  |äi +   (py tVVn   ||1 +   (  ^ + ^r^   |D 
2   3x 2 <>y 3y 

+ |j (P7^- + i pq^V' + | p'q'2V) + UJ ^Ü 

+ Ftr .(o £ + v £> .4 0331. 3x 3y' 3y (20) 

In a manner similar to Bradshaw [24] the following 

definitions are made: 

1  P?2 

v
d E 

(P'V + \  pg^W + \  p'q'ZV) 

pq'2/2 

(21) 

(22) 

f \ 

L = 
a, p 

3/2 

3ÖJ7 
i  dx 

(23) 

Using these definitions, neglecting the viscous stresses, 

letting the variable V + p'V'/p be defined as V, and defin- 

ing the turbulent shear stress as 

15 
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T = - (pU'V + p'U'V ) 

the continuity, momentum, and turbulent kinetic energy 

equations become 

apu , 3pv - Q 
3x    3y  " U (24) 

.. 3U ,  .. 3U __ 
pU ä^ + PV 37 " 3x   3y (25) 

P£  
2   3x 
KpJ ^ pv iaipi 

3y - T 
3U 

3y 

Vd  T 
T~ IT 

■i 

f—1 3/2 
+ pD = 0 (26) 

The last term, pD, in Equation 26 is the same as the last 

two terms in Equation 20. Using the approximations given by 

Equation 17, the function D can be estimated as follows: 

P^IF = pü ■2 jj- 

p*V r _ TU 

It has been noted by  References  21 and  26  that U'2  « q|2/2, 

Then 

p'U'   - T    U 
2a.   h 

With these relations and by use of the momentum equation, pD 

16 
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is approximated as 

pD =  r_ uf  9P . 3T]   3_ 
2a,p h[~   8x   3yJ   8y 

3 
"   8y 

r          \ 
TÜ T 

[2alPJ (27) 

This expression is rearranged to a more usable form: 

pD T  U 3P 
2a1p h 8x 

- T 
U 3_[_T  
h 3y[2alPJ 2a, p 3y [hj (28) 

This completes the development of the basic equations 

of motion in two-dimensional flow.  The subsequent analysis 

in Chapter III uses the generalized two-dimensional 

equations (i.e., including axisymmetric flow). 

17 
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CHAPTER III 

CHARACTERISTIC AND COMPATIBILITY EQUATIONS 

I.  BASIC ASSUMPTIONS AND DEVELOPMENT 

If real-characteristics exist for Equations 24, 25, 

and 26, then this system of equations is hyperbolic [32]. 

However, prior to investigating the characteristics, addi- 

tional assumptions will be made to facilitate the develop- 

ment of the equations: 

a. The flow is plane two-dimensional or axisymmetric. 

b. The mixing process is a parallel two-stream 

turbulent mixing process. 

c. The turbulent Prandtl and Schmidt numbers are 

unity, implying that the velocity, energy, and mass species 

profiles are similar.  Very near the initial plane of mixing 

where the mixing zone is undeveloped and dominated by the 

initial boundary layers, profile similarity does not exist. 

Thus, this assumption more properly applies to the fully 

developed mixing zone. 

Equations 24, 25, and 26 are restated and used in 

generalized two-dimensional coordinates as follows: 

Mass Continuity 

V      Mffi£ + *&-. .  o (29) 
ox     dr 

18 
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„ 3U .  „ 3U 
pU äx +  pv aT 

dP  JL 3r T 
dx  rk  3r 

(30) 

Turbulent Kinetic Energy 

£fu !_ + v 1—1-1— + -i 2 [U 3x . V 3rJ pa;L  rk 
3_ 
3r 

V^ 

2a. 

T 3r  L 
T 

pa. 

3/2 
+ pD = 0 (31) 

where k is zero and one for plane two-dimensional flow and 

axisymmetric flow, respectively. The term D is still given 

by Equation 28. 

If U, V, and T are chosen as the dependent variables 

in Equations 29, 30, and 31, an expression for the density 

must be developed in terms of one or more of these three 

dependent variables.  The density can be expressed in terms 

of U by use of the Crocco law since we have assumed the 

Prandtl and Schmidt numbers to be unity.  From the equation 

of state 

P = 
PM 
R T 
O 

(32) 

where M is the average molecular weight and R is the 

universal gas constant. The local gas mixture is assumed to 

be calorically perfect, then 

PC: 

P = R0h 
(33) 
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where C is the average molar specific heat and h is the 

static enthalpy. Thus, in a two-stream compressible mixing 

process the density is a function of pressure, the molar 

specific heat, and enthalpy. The molar specific heat and 

enthalpy can be expressed in terms of velocity as will be 

seen.  The axial pressure variation must be given.  The log 

differential of Equation 33 is 

1 3p_ _ 1_ ^R      1 3h_  1 9P_ n4, 
p 9x. ~"C  3x.   h 3x.   P 9x, {     ' 

l   p  i'      l      l 

where x. represents x and x« represents r. The average 

molar specific heat is 

C  = E Y„ C (35) P     a pa 

where Y is the mole fraction of specie a given by 

n 
Y = T^_ (36) 
a  Zna 

and n is the moles of specie a.  For two-stream mixing 
ex 

where only two species need be considered 

n, n2 
C =  ±  C  +  i  C (37) p  n1 + n2 Pl  nx + n2 p2 

Lettinc C be the mass fraction a 

Cl  nlMl 

^ = V*I • (38) 
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1 2 p1 2 1 p2 
Cp * C2M1 + C1M2 

(39) 

Since C. + C2 = 1 

c - 
p 

C. (M0C . - M-.C  ) + M.C 1  2 px    1 p2     1 

C, (ML - M, ) + Mn 'r 2 "l1 
(40) 

Differentiating Equation 40 

3C 

3x, 
_P_ = 

(M.C   - M.C  ) - C (M, - M. ) 
Pl      P2     P  2    1 

C1(M2 " Ml} + Ml 

8C1 
SxT 

i 

and dividing by C 

,  3C 

C  3x. 
P  i 

3C 
MnM,(C   - C  ) *-i 1 2  P-.    p.>  oX.. __ '2  —i 

t C. (M-C   - M.C  ) + M-C  K C, (M. '1 V"2N p1    1 p2     1 p2   12 M^ + Mx} 

(41) 

Note that mixing of perfect monatomic or diatomic gases 

gives 

!5E 
3x. - 0 

since 

C  = C 

21 
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By the assumption of unity turbulent Schmidt number the 

Crocco law gives 

Cl - Clo 
Clj " Clo 

U-Uo (42) 

where the subscripts o and j refer to outer and inner (jet) 

boundary conditions, respectively. Differentiating Equation 

42 

3C, 

3x~ 

Cli " Clo 
u. - u 

3Ü 
3x± 

(43) 

For convenience define 

MnM,(C       - C     ) 1   2    Pl p2 

lj lo 
u. - u 

F, = [C, W~C        -  M,C      )   + MnC      ] [C. (M- 1     2  px 2  p2 1 p2        12 "MjT~+~M]jT 
(44) 

Then from Equations 41, 43, and 44 

C
P 

3xi 
F  32. 
1 3x: 

(45) 

From the assumption of unity turbulent Prandtl 

number, the Crocco law gives 

H - H u - u 

H. - H    U. - Ü 
3 o D   o 

(46) 

where H is the total enthalpy defined by 
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H = h + U
2 + V2 

Assuming 

V << 1 

H = h + U2/2 (47) 

Differentiating Equations 46 and 47 

3H = 
Hj " Ho 3U 

3x.   U. - U  3x. 1301 
(48) 

and 

3H _ 3h_    3U_ 
3x± ~ 3xi  

u axj^ (49) 

By eliminating 3H/3x. between Equations 48 and 49 

3h 
3x 

H. - H 
_J 2. u. -u„ - u 

3U 
3x. (50) 

Again for convenience define 

F  =i *2  h 

H. - H 
2. ° u. - u 

I 3  ° 
- u (51) 

Then 

1 3h_     3U_ 
h 3x.   *2 3xi 

(52) 

Combining Equations 34, 45, and 52 gives 
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1 9p_ _ 
P 9xi 

|rl    2}   3x.   F 3xi 
(53) 

This is the expression which will be used to express density 

gradients in terms of velocity gradients. Again, recall 

that F. equal to zero corresponds to mixing of thermally and 

calorically perfect monatomic or diatomic gases.  Incom- 

pressible homogeneous mixing corresponds to F_ equal to 

zero. 

With Equation 53 and the equation of state the 

density gradient can be removed from explicity appearing in 

the continuity, momentum, and turbulent kinetic energy 

equations. 

First the continuity equation is 

[1   +U(PJL   -  F2)]f£ + V(Fl F )™ *2;3r 

♦ ^ fe^) ♦ J £ - • (54) 

The momentum equation is 

"£ + V - I(Fl - F2) 
3U 
3r 

=   (Y - 1) h dP  1  9rk(T/p) 
Y   P dx   k   3r (55) 

and the turbulent kinetic energy equation becomes 

2[u 3x   v 3rJ pa. 
1  3_ 
k 3r r 

24 
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+  2a1[J. 
(F    - F )  32. - ul       f2;   8r p   9r 

+ h 
T 

pa. 

3/2 
+ D -  0 (56) 

with 

D - 
23^ 

[y - l]U dP _ 1 T U 
(  Y  JP dx ~ 2 p h 

1 T U   iPai 
9r 

1 T 
2 P alP 

1 - F2U 3U 
8r (57) 

Note that the parameters T and p always appear 

together in Equations 54, 55, and 56 as t/p.  For convenience 

x/p will be written in the future as T. 

-.At this point we assume the functions a. ,  V,, and L 

are functions only of the independent variables x and y.  It 

should be remarked that a,, V-, and L also could be functions 

of U, V, and T and that the resulting equations would be 

hyperbolic if the characteristics were real. However, they 

cannot in general be functions of the derivatives of the 

dependent variables, reference Courant and Friedrichs [32]. 

The method used for the development of the character- 

istic directions and compatibility equations is described in 

Appendix B.  The method was shown to the author by Mr. Fran 

Loper of ARO, Inc.  Other more involved methods exist and 

are described in References 32 and 33.  The three 

25 



AEDC-TR-70-134 

characteristic directions are 

dr 
dx (58) 

and 

dr 
dx L,R 

V 

V +  -1 -  I(F     -  p   )   -  IE V +   2 2U1       *2*        2h 
U 

_d  + 1   (F     -  p   )   - IE 
2 2   wl 2;        2h 

+   T 2al " Vd(Fl  " F2>   + E   (1 - F2U) 
1/2 

T      U (59) 

One characteristic direction is normal to the X-axis, the 

left characteristic direction is at an angle above the 

streamline, and the right characteristic direction is at an 

angle below the streamline.  It is noted that the inclined 

characteristic directions are real provided 

r + i <Fi - F2> - Sj 

+ T(2ax  - Vd   (Fx  - F2)   + 1   (1  - F20>] >   0 (60) 

For incompressible homogeneous mixing this expression 

reduces to 

Vd 
-^ + 2a1T > 0 

26 



AEDC-TR-70-134 

Both terms are always positive, thus the system of equations 

is hyperbolic. 

The compatibility equation along the vertical 

characteristic is 

[l + OWi-Fj)] ^^- 

- tV-TCfj-tj,) .»tWjL-F^'lg+tlg. 

U' - Y - 1 h[l + U(F, - F-)] ]* 
dP 
dx = 0 (61) 

This equation can also be derived directly from the con- 

tinuity and momentum equations simply by eliminating 3U/-3* 

from the two equations. The compatibility equations along 

the inclined characteristics are 

3IJ<Fl " F2> - 1 TV Y - i i ar t, au 
r     Y  P dx    dx 

G +  Ji-fSll to       2a1[dxJ 
, « 

2       2**1 2;       2h 

_d +  T (       _       j   _  TU 
2 2*rl       r2'        2h 

12 

d(Fl   "  F2>   + 1(1  -  F2U)] 

1/2 

=  0 

\ 
\ 

\ 

(62) 
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G " 257 Tf l?(va r~> + ,  ft or  u        u^a.j M«i. 
l]V2 

+ ^I 
Y - 1]U dP  JJT 3al 

" * * vd - Ig 

2a 

T   3ai 1   X (63) 
2a. 2 3r 

This completes the development of the characteristics and 

their compatibility equations. 

II.  BOUNDARY CONDITIONS 

Symmetric Flow 

For the symmetric two-dimensional flow, first- and 

second-regime mixing exist as illustrated in Figure 1.  The 

first-regime boundary conditions are: 

Outer Boundary 

T = 0 

U   = = u o 
V = = Vo 
vd = V*o 

(64) 

Inner Boundary 

T = 0 

u = u. 
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Figure 1.  Regimes of two-stream mixing. 
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V   -   0 

(65) 

At both the inner and outer boundaries the slopes of the 

right and left characteristics reduce to 

dr b 

L,R 

V, Vd 
2 

dx U 
(66) 

as can be seen from Equation 59.  The superscript b is used 

to denote the boundary. More specifically, at the outer 

boundary with V. positive. 

dr 
3x" 

bo 

L 

J ft 
u (67) 

and 

\ 

dr 
dx 

bo 

R U (68) 

The left characteristic coincides with the outer boundary of 

the mixing layer.  The right characteristic coincides with 

the.streamline. At the inner boundary, with V, negative, 

dr 
dx 

bi V. 
= r±=  0 (69) 

and 
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bi va. . 
- v± 

The left characteristic coincides with the streamline at the 

inner boundary and the right characteristic coincides with 

the edge of the boundary.  If the inner potential core flow 

is one dimensional, the left characteristic on the inner 

boundary has zero slope. 

At both the inner and outer boundaries each term of 

the compatibility equations vanishes (Equation 62).  There- 

fore, these equations provide no information at the math- 

ematical boundaries. Normally, this would present some 

difficulty in solving the equations.  This difficulty is 

avoided, however, because the outer boundary is arbitrarily 

defined to occur at the position where the U component of 

velocity is 1 per cent of the maximum velocity difference of 

the two streams. This criterion is for U-/U greater than 

unity. Likewise, the position of the inner boundary is 

defined to occur at 99 per cent of the velocity difference. 

At both of these defined boundaries a finite value of shear 

stress occurs. Consequently, the compatibility equations 

are not singular at these defined boundaries. 

In the second regime the outer boundary conditions 

are the same as in the first regime, and the outer boundary 

is similarly defined. The inner boundary conditions, or line 

of symmetry boundary conditions, are 

V - 0 
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T - 0 

Ü = U 

S- 0 3r 

Vd = 0 (71) 

The shear stress, vertical component of velocity, and diffu- 

sion velocity are zero by symmetry. These conditions give^- 

the slopes of both the right and left characteristics to be 

zero on the line of symmetry.  The compatibility equations 

are singular and vanish on the line of symmetry. 

The only unknown on the line of symmetry or center- 

line is U . Thus, one equation is needed to calculate U c c 

and is obtained from either the continuity or momentum 

equation.  Using the momentum equation (Equation 55) and 

taking the limit as r approaches zero gives 

8U 

"o^-'-H^IS* <1 + k> £ <72) 

By prescribing the pressure gradient and calculating the 

shear stress gradient from the value of T and r calculated 

from the first characteristic off the line of symmetry, U 

can be calculated. 

Unsymmetric Flow 

If the flow is not symmetric, as is the case of mix- 

ing two semi-infinite streams, the vertical component of 

velocity at either of the two boundaries is not known a 
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priori.  In this case, the vertical components of velocity 

at the two boundaries are related to one another.  For 

incompressible flow, Mills [34] gives 

piUiVi + PoUoVo - ° {73) 

The U component of velocity is either known or calculated 

from the potential flow. 
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CHAPTER IV 

PARAMETER MODELING FOR FREE JET-MIXING 

The purpose of this chapter is to establish physical- 

ly perceptive models for the parameters a., V,, and L for 

axisymmetric-free jet mixing.  Already these parameters have 

been assumed to be at most functions of the independent 

variables in the development of the characteristic and com- 

patibility equations.  Experimental data contained in the 

literature will be used as a guide where possible.  In 

Chapter VI the models established here are used in the cal- 

culation of several cases of axisymmetric jet mixing and the 

calculations are compared with experimental data. 

I.  TURBULENT KINETIC ENERGY-SHEAR 

STRESS PARAMETER 

For the equilibrium boundary layer Bradshaw et al. 

[24] observed that a. could be assumed a constant equal to 

0.15.  This value was used to obtain reasonable results in 

the calculation of skin friction coefficient and velocity 

and shear stress profiles for incompressible and compressible 

adiabatic flows with and without pressure gradient. The 

choice of a. equal to 0.15 was based on the turbulent 

property measurements of Klebanoff [35]. For a two- 

dimensional plane wake and an axisymmetric jet Lee and 

Harsha [30] observed an average value of a1 equal to 0.1 
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from several sources [36, 37, 38, and 39],  Recently they 

have revised their estimate to a. equal to 0.15 [40].  From 

the turbulent property data of Sami et al. [21] for a homo- 

geneous axisymmetric jet exhausting into still air, Figure 2 

was prepared to show the variation of a., with the non- 

dimensionalized independent variable (r - r.)/b.  It is 

shown that la,I can be approximated reasonably well as a 

function of (r - r.)/b based on these data. The data shown 

are taken in both the first and second regimes (3 < x/D <10). 

Wygnanski and Fiedler [41] have recently reported other 

turbulent intensity measurements in an incompressible and 

axisymmetric jet.  Their measurements give 

mately equal to 0.12 for 50<x/D<90.  Sami's data give |allm 

approximately equal to 0.17 for 3 <x/D <10. On the center- 

line in the second regime a, equals zero since the shear 

stress is zero, but the turbulent kinetic energy is a finite 

value.  The algebraic sign of a. is always the same sign as 

the shear stress since the turbulent kinetic energy is 

always positive.  The experimental data used in this research 

for comparison with the theory are limited to x/D <18; thus, 

a value of a, based on Sami's data is used in the calcula- 

tions.  An analytic function of the form 

all     z     z 4/3 
11  = 4 t-- 3 §-   , Z <Z 

al m approxi- 

a, I      Z     Z     '    o l|m     o     o 

all 
r^1 - 1,  Z > Zn (74) 
allm ° 
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A 
O 
D 

x/D 

3 

6 

10 

Equation (74) 

1.0 

Figure 2.  Variation of a. calculated from Sami's data. 
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where 

.-Uii 

is used in the calculations.  With a.I  equal to 0.17 and 

Z  equal to 0.4 this function is plotted in Figure 2 and is 

seen to fit Sami's data very well near the line of symmetry. 

In Chapter VI results of the calculations with other values 

of la.I  and Z are discussed.  For Z > Z , a. equal to a j l|m     o o  1 ^ 

constant was found to be satisfactory in all calculations. 

II.  DIFFUSION VELOCITY PARAMETER 

The parameter V, is in effect the rate of diffusion 

of turbulent kinetic energy in the lateral direction.  By 

assuming V, to be a function of the independent variables, 

x and r, the continuity, momentum, and turbulent kinetic 

energy equations were observed in Chapter III to form a 

hyperbolic set of equations for the three dependent variables 

U, V, and T. The gradient diffusion models create a para- 

bolic set of partial differential equations. The justifica- 

tion for the nongradient or diffusion velocity concept is 

based on the idea that the turbulent diffusion is primarily 

dominated by the effect of large eddies in free shear 

flow [2t]. 

The functional form of the parameter V, was empirical- 

ly derived by Bradshaw et al. [24] for the equilibrium 

boundary-layer case and adjustments were made by trial and 
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error until plausible solutions were obtained.  In this 

study a similar approach is taken for the two-stream mixing 
i 

problem. The value of V, can be empirically observed at the 

edge of the mixing layer by considering the entrainment of 

fluid into the mixing layer. Very near the edge of the 

turbulent mixing layer the production and dissipation of 

turbulent kinetic energy is small compared to convection and 

diffusion. Therefore, the turbulent kinetic energy equation 

reduces to 

°2fe1 + »älr + prlr,rkvd«">-0 (75> 

By assuming local similarity such that 

,-.| 

where a is a constant, Equation 75 can be expressed as 

H" »]{*«'*-JIT k «""'d«"» (76) 

Near the outer edge of the mixing zone the change of 

(Un/a - V), which is the entrainment, with respect to n can 

be assumed to be small compared to the change of q12 with 

respect to r\   [24].  Thus, Equation 76 is rewritten as 

f^U^U - V)q'2l =^<nk Vaq'*> (76a) 

Integrating this equation gives 
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V. = 2- U - V (77) a  o 

The mass entrainment rate into one edge of the mixing 

layer is 

b 

S-E/ <^)kpuar (78) 
o 

Also,   the mass entrainment rate into  the mixing layer  is 

S =   <2*b>k   P  VD (79) 

where VD is the lateral velocity of the mass being entrained 

into the mixing zone.  Combining Equations 78 and 79 and 

with the aid of Leibnitz rule 

b    k 
V = u ^ - • 1   f 8PUr dr VD  ub dx     bk J   8x 

ar 

p, b Kb   o 

and with the aid of the continuity equation this reduces to 

VD - Db i - \ <80> 

where U, and V. are the boundary values of the velocity com- 

ponents.  Since similarity has been assumed 

db m  n 
dx  a 

Then Equations 7 7 and 80 give 
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d     D 

Thus, the rate of turbulent diffusion at the boundary of the 

mixing zone is equal to the rate of mass entrainment.  This 

observation permits use of mass entrainment measurements to 

establish the turbulent diffusion velocity at the boundary. 

In the first regime of symmetric jet mixing, mass is 

entrained through the inner and outer boundaries.  In the 

second regime of a symmetric jet mass is entrained only 

through the outer boundary and the net flux of turbulent 

kinetic energy being diffused across the line of symmetry is 

zero. 

In the symmetric jet the turbulent diffusion velocity 

is finite on the inner boundary in the first regime, but as 

previously noted it is zero on the centerline in the second 

regime.  Hence, the turbulent diffusion velocity at the end 

of the first regime experiences a finite discontinuity, or a 

transition zone exists over which the diffusion is altered. 

In either case it is obvious that the same function for the 

diffusion velocity could not apply to first-regime mixing as 

well as to second-regime mixing. 

Following Bradshaw et al. [24] the turbulent diffu- 

sion velocity is normalized based on the local maximum 

absolute shear stress and a characteristic velocity, U ,, 

such that 

Vd lTlmax - 
u2    

fl,2 
ch 

r                    \ r - r. 
l 

Uch ' b   J 
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The subscripts, 1 and 2,  denote the first and second regimes, 

respectively.  For the equilibrium boundary-layer problem 

Bradshaw found the diffusion parameter, f, to be a universal 

function.  Choice of the characteristic velocity is subject 

to some conjecture for the symmetric jet, but it is chosen 

as (U. - U ), the local maximum velocity difference across l   o      -:  2 

the j et. 

In establishing the function, f((r - r.)/b), the 

boundary values are established from empirical entrainment 

data.  For the high velocity mixing boundary, data from the 

coaxial jet experiments by Chriss [18] and Paulk [19] are 

plotted in Figure 3 and compared with Bradshaw's [24] 

empirical result for the equilibrium boundary layer. 

The agreement is reasonable and this suggests that a 

similar function exists for the high velocity mixing 

boundary, i.e., 

V. 

U ch 
- 10 

t| max 

hV U ch 

On the inner boundary in the first regime f, (0) is -10.  The 

sign is~negative since V, is negative on the inner boundary. 

A similar correlation is also suggested in Figure 3 

for the low velocity boundary, i.e., 

U ch 
= 2.5 

T| max 

LV U ch 

For U. > U , f.(l) is 2.5.  With the boundary conditions 
l    o   1 
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Figure 3.  Entrainment velocity correlation. 
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established for f,, the complete function was established by 

trial and error'- by comparing calculated and experimental 

velocity and shear stress profiles.  The resulting diffusion 

function is given in Figure 4. Ultimately, the diffusion 

function should be established experimentally.  Negligible 

axial pressure gradients existed in the experiments and no 

pressure gradient was assumed in the trial and error cal- 

culations . 

In the second regime f2(0) is zero by symmetry. At 

the outer boundary'f 2 (1) was chosen as 2.5 to be continuous 

with its value in the first regime.  Additional information 

can be derived from the turbulent kinetic energy equation 

for f2 (0).  Consider the turbulent kinetic energy equation 

written in the following form: 

3u 
Ir" 

T 
T 

(82) 

where 

l~i 2 *~t 2 
1 " 2  3x   2  3r   rk 3r 

Vd-I2 

Ifq" <Fl-F2>^
+^,2>3/2 + D (83) 

On the centerline 3U/3r and T are zero.  Therefore, T is not 

only zero on the centerline, but 

3T 
3r - 0 (84) 
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4r- 

Figure 4.  Diffusion function for axisymmetric jet mixing. 
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which is obtained using L'Hospital's rule.  Realizing that 

q'2 and U are symmetric functions, Equation 84 reduces 

further to 

32 V, q"'2 

5r! 8r: 
= 0 

E 

Using Equation 81 this gives 

32f 

3r 
=0 (85) 

Using the boundary values established for f_, the 

functional form was established by trial and error. The 

resulting function is given in Figure 4. 

The negative values of the function for the first 

regime represent inward diffusion of turbulent kinetic 

energy," and the positive values represent outward diffusion 

of turbulent kinetic energy.  In the first regime the diffu- 

sion function is zero at approximately the peak shear stress 

point. 

III.  DISSIPATION LENGTH PARAMETER 

The dissipation length parameter, L, in the dissipa- 

tion term of the turbulent kinetic energy equation is 

similar to the dissipation length used by Bradshaw et al. 

[24] and discussed by Townsend [26].  The parameter L is 

also analogous to the Prandtl mixing length as can be seen 

by neglecting the convection, diffusion, and compressibility 
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terms in the turbulent kinetic energy equation; hence, from 

Equation 31 

_ 3U _ 1 
T3y ~ L 

T 
ai 

3/2 

which is rearranged to 

Tl-1'I.XI3 (i) 

This shows that the Prandtl mixing length theory actually 

equates the rate of local production and local dissipation 

of turbulent kinetic energy and consequently does not incor- 

porate any history of the turbulent process.  Including the 

convection and diffusion terms in the turbulent kinetic 

energy equation does add history to the turbulent structure 

behavior. 

Following the approach of Lee and Harsha [30], L is 

taken to be proportional to the width, b, of the mixing 

layer such that 

L m  | (86) 

where K is a constant. From Sami's data [20 and 21] for an 

incompressible jet the value of K is plotted in Figure 5 

versus the nondimensional jet width.  Although there appears 

to be a slight variation in K with r, a constant and some- 

what higher value equal to 0.85 was found to be more accept- 

able for the calculations presented in Chapter VI.  In 
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Figure 5. Non-dimensional dissipation parameter calculated 
from Sami's data. 
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Chapter VI it is shown that physically unrealistic velocity 

profiles are produced with K equal to 0.6 such that the peak 

velocity profile did not occur on the centerline.  The 

sensitivity of the mixing calculation to K will be discussed 

in Chapter VI. 

It is also of interest to note how L compares with 

the dissipation length reported by Bradshaw et al. [24] for 

the boundary layer.  This is shown in Figure 6.  Bradshawfs 

dissipation length parameter, denoted as L", is equivalent 

to L |a.| ' . As Figure 6 shows, the two functions are 

remarkably similar except at the outer boundaries.  Bradshaw 

included the effects of intermittency which is not included 

in the treatment of the mixing problem. 
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0.10 i- 

Figure 6. Dissipation length parameter in the boundary 
layer and second-regime of the axisymmetric jet. 
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CHAPTER V 

NUMERICAL PROCEDURES 

I.  GENERAL APPROACH 

The method of characteristics was used in solving the 

basic flow equations.  The characteristic slopes and corre- 

sponding compatibility equations were numerically solved in 

finite difference form on an IBM 360-50 computer.  The 

numerical equations were programmed in Fortran IV.  The 

numerical method used for the method of characteristics is 

basically Method II of Ralston and Wilf [39] with an implicit 

numerical integration scheme.  This method marches all the 

characteristics a constant Ax before the next Ax increment 

is taken.  This makes the method especially convenient for 

comparison of experimental data with the calculations since 

profiles of experimental data are generally taken and pre- 

sented at a given x station. 

II.  SUBROUTINES 

Starting Line Subroutine 

The vertical velocity component, V, does not appear 

in the differential equation along the inclined character- 

istics (Equation 66), but only in the differential equation 

along the vertical characteristic (Equation 65). Therefore, 

V is calculated by direct integration along the vertical 
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characteristic with U and T given on the initial profile. 

Field Point Subroutine 

The field point subroutine is schematically illus- 

trated in Figure 7.  The objective is to calculate U, V, and 

T on the new profile given their values on the old profile. 

In symmetric flow the most logical scheme is to proceed with 

the calculations from the inner boundary or line of symmetry 

to the outer boundary.  In plane two-dimensional unsymmetric 

free shear flow the inner and outer boundary conditions are 

related to one another as given by Equation 73.  In this 

case the calculations can be started from either boundary. 

The numerical procedure is to guess either V. or V and 

iterate" until Equation 73 is satisfied.. 

The numerical form of the characteristic and com- 

patibility equations is expressed in Equations 87 through 

91.  The left characteristic equation is 

r3 " r2 " U 
Ax 

23 

V 

V23 + ~2 
d23 _. T23,_,  _   . 

^ (F1  F2)23 

T23U23 
"2K 23 

l23 23 U 

<F1 - F2>23 
23 

l23 

+ T23[2(al)23 - Vd23
(Fl" F2>23 

+ ^.(1 - F0U)„] 
^•3 

2-u;23 

1/2 

(87) 
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Old Profile New Profile 

B 

Figure 7.  Schematic representation of the mesh point 
numerical method. 
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The right characteristic equation is 

r4 - r3 " 
Ax 
U 43 

V. 

V43 +-2 
43 T43 —— (F 2 i*1 - F,) 

T43U43 
2'43    2h 

V 
d43   T43 U43 _Ji£ +    (F  - F )   - 
2     2 vrl  *2;43   h43 

+ T 43 2(al>43 " Vd43
(Fl -P2>43 

43 

+hTT(1-F2U,43 43 

1/2 

(88) 

The compatibility equations along the characteristics in 

numerical form are as follows: 

The left compatibility equation is 

T3 - T2 + 
2 ^l* 23*23 

'23 

l23 
2(a1)23

(Fl " F2)23 " X (U, - u2) 

2(ai)23Ax 

U 
23 

23 

'23 

V- 
l23 

2(a1)23
<Fl " F2)23  1 

23 

23 
k - M 23 

p 
23 *23 

dP 
dx ̂23 

- G 23 (89) 

where 

'23 

d     T 23 + -P-(Fn - F0) 
T23U23 

2 v 1    2'23    2h 23 
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'd 23 
2   K£l F2>23 

T23U23 
2h 23 

+   T 23 
2(alJ23-Vd23

(Fl-F2>23 + Ef<1 F
2U)23 

1/2 

and 

23 
'23  ~  2 (a,) 1'23 

l23 k  + 
23 

K.1 
[är J 

« 

23. L23 

>                             « 
T23 

[(alU3j 
3/2 

+       T23     fy -   l|       U23[dP] 
2(al,23l     Y     J23  P23^XJ23 

t»      ^ 

23 -U. 2(a1)23
U23 

da 
dx 23 

23 
TTaTIJ 

VA T IT 
v       +       23       T23u23 

23 2       "       h23 

da, 
9r v / 23 

The right compatibility equation is 

T3  "  T4  + 

2(a1)43x43 

'43 

l43 
2(ai)43

(Fl _  F2>43  "  1 (u3 - u4) 

2(a1)43 

u Ax 
43 

43 

'43 

l43 •<F,   -  FJ„,  -  1 

_43 
:43 

k  - 

2(a1)43
s*l       x2'43 

Y - 1]       h43[dP 
Y   J43 p43ia3T, -  G 

43 43 (90) 

where 
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and 

ß43   = ~2— + ~2~(F1  "  F2}43       ^2h 

T43U43 

43 

V 
d43   ,   T43 (F,   -  F») 

243       h4?'i 

+   T 43 2<al>43  " Vd43
(Fl F2>43 

1 

+ ^{1~  F2U)43 

1/2 

43 
43       2<aT>43 

V^ 
l43 k + 
43 dr \               J 43. 

+ 4 T43 
(al>43 

^                               J 

3/2 

43 

^1^43 

Y  -   1 
I   y   ) 

U43[dP 
f _ % 

43 
■U 

43P43M43        2(al}43   43 

aan 

8x \ ^ 43 

43 rape „       .   Vd43       T43U43 
V43  + -2 R77- 

'%&i 

3F 43 

The vertical characteristic equation is 

(V3 " V1>U31 - - ^  k (r3 - rl> " [1 + U31(F1 - p2>31] 

<T3 " Tl> + r^ k <r3 " rl> 
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+   [V31  -   x31(F1  -  F2)31  -  U31T31(F1  -  T2)yUJ3  - Ux) 

U31-   (]LtA]31
h31C1 + U31(Fl-F2)3lJ 

_1 
P 31 

dP 
dx (r,  - r..) (91) 

31     J x 

The double subscript notation indicates average values. For 

example, U,- is (U, + U3)/2.  The single subscript notation 

is the value of the parameters at the designated mesh point. 

The calculation method proceeds as follows: 

1. The position, r_, is first approximated by pro- 

jecting a left characteristic through point two to point 

three.  The slope of this characteristic is calculated based 

on the average of values at point two and guessed values at 

point three.  The first estimate of all the parameters at 

point three is taken as the average at the previously cal- 

culated point above point two and at point two. 

2. A right characteristic is projected back through 

point three tö make the first approximation of the position 

of point four. For the approximation of r, the same average 

values of the parameters are used as were used for the 

initial"-guess on the characteristic from point two to three. 

.3.  By linear interpolation, U,, V-, and T, are 

determined. 

4. Using the right and left compatibility equations 

(Equations 89 and 90), the first calculated values of U3 and 

r3 are obtained. 
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5. Using the vertical compatibility equation 

(Equation 91), V^ is calculated.  Then the subroutine 

iterates through steps two to five until the calculations 

converge.  The convergence criteria was arbitrarily set at 

-2 10  per cent on U.,, V-, x-, and r_. 

6. The process is repeated at other mesh points to 

obtain U, V, and x over the whole range of r. 

7. The new profile is then used as input for the 

next profile. 

Inner Boundary Subroutine 

For the first-regime case the inner boundary mesh 

points are shown schematically in Figure 8a.  The right 

characteristic on the boundary is line BD and is arbitrarily 

set at 99 per cent of the velocity difference between the 

inner and outer' streams for U. > U .  The location of the 

boundary would be at 1 per cent of the velocity difference 

if U. <U .  With this criteron only r. and x, need to be 
jo ■*  1     1 

calculated on the new profile since U, and U2 are equal and 

V, is taken as zero in the symmetric flow problem. As was 

mentioned in Chapter III, V. is related to V in plane two- 

dimensional unsymmetric flow and an iteration is required to 

satisfy this relation.  The right characteristic equation, 

Equation 88, and its compatibility equation, Equation 90, 

are to be simultaneously solved for the two unknowns r. and 

x,. At point three the flow properties are solved by the 

field point subroutine. 

57 



AEDC-TR-70-134 

Old Profile     New Profile 

A C 

B 

Ax 

a.  First-Regime 

Old Profile      New Profile 

't C2 Cl 
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Figure 8.  Schematic of the inner boundary mesh points. 
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The second-regime inner boundary in symmetric flow 

requires an altogether different routine.  The mesh points 

are schematically shown in Figure 8b. As was discussed in 

Chapter III, the problem is to calculate only the centerline 

velocity since the shear stress and vertical component of 

velocity are zero on the centerline.  Equation 72 is used to 

calculate the centerline velocity, U  , from conditions 

known on the old profile.  This equation in finite differ- 

ence form is 

h 

u    (u   - u  ) = -\y z1|      12 
C12  Cl    C2  •  I  Y >c12  P12 

dP 
dx 12 

+ (1 + k) =21 Ax (92) 
r23 

Again at point three the flow properties are calculated by 

the field point routine.  Calculation of the centerline 

velocity, U  , is an implicit calculation to be consistent 
■  Cl 

with the regular field point routine.  This requires average 

values of T and r in Equation 92, i.e., T_, and r_3, 

respectively.  Therefore, the centerline velocity calcula- 

tion was made in an iterative loop with the calculation of 

the properties at point three until it converged. 

Outer Boundary Subroutine 

The outer boundary subroutine is the same in both the 

first and second regimes for symmetric flow and also can be 
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used for the plane two-dimensional unsymmetric flow case. 

The mesh points of the outer boundary are schematically 

shown in Figure 9.  In this case the outer boundary is 

arbitrarily set at 1 per cent of the maximum velocity differ- 

ence for U. > U .  The objective of this subroutine is to 
3 o 

calculate U, V, T, and r at point three. The left character- 

istic equation (Equation 87), its compatibility equation 

{Equation 89), the vertical compatibility equation (Equation 

91) and the defined boundary condition for U are used to 

solve for the four unknowns. Again an implicit calculation 

procedure is used.  The first guessed values at point three 

are taken as those of point two. 

The procedure for stopping the field point subroutine 

calculations and calling the outer boundary subroutine is as 

follows:  If point one on the new profile is located by the 

field point subroutine such that the right characteristic 

passing through this point intersects the old profile at 

r.   >  r~, point one is discarded and point one prime is used 

in the outer boundary calculations. 

III.  LOGIC 

The computer program logic is illustrated in Figure 

10 for the symmetric two-dimensional jet mixing program. 

IV.  STABILITY 

The Courant-Friedrichs-Levy criterion 
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Figure 9.  Schematic of the outer boundary mesh points. 
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Figure  10.     Flow diagram. 
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drl 
3x < 1 (93) 

max 

for a linear hyperbolic system of equations has so far 

proved sufficient for numerical stability. The term Ar is 

the step size in the r-difrection, Ax is the step size in the 

x-direction and (dr/dx)   is the maximum slope of either max * 

the right or left characteristic. The step size in the com- 

puter program was chosen such that this criterion was 

satisfied. However, test calculations were made for Ü  equal 

to 1.5 and no stability problems were encountered.  Bradshaw, 

et al. [24] reports occasional instability near the wall for 

the boundary-layer problem unless fi< 0.9. This occurred 

when they used a least-squares linear extrapolation of the 

shear stress to the wall. 

Early in the checkout phase of this computer program, 

a fourth-order Lagrangian curve fit was used for interpo- 

lation on the old profiles.  This created an instability in 

the profiles near the centerline.  The instability could be 

recognized by the growth of bumps in the profiles, particu- 

larly the velocity profile.  The problem was eliminated by 

using a second-order Lagrangian (linear) curve fit. 

V.  CONVERGENCE 

A convergence criterion of 0.01 per cent was used on 

U, V, T, and r in the iteration which proved sufficient to 

the fourth significant figure.  With this convergence cri- 

terion an average of four iterations for each mesh point on 
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the new profile was generally required. 

VI.  COMPUTATIONAL TIME 

The computational time depended on the number of mesh 

points chosen to start the calculation, the convergence 

criteria, and Ax.  The number of mesh points chosen to start 

the calculations on the initial profile varied from 20 to 

40.  In first-regime calculations an additional point is 

picked up at each new profile along the inner boundary.  In 

the second regime the number of mesh points remain constant. 

Generally, it was found better to use about twice as many 

mesh points in the inner half of the mixing zone as in the 

outer half to obtain an adequate plot of the shear stress 

profile.  The program calculates along left characteristics 

which monotonically marches the mesh points away from the 

centerline.  The program may require adding more mesh points 

near the centerline should the distance between the center- 

line and first mesh point become too great.  The calculations 

reported in Chapter VI did not exceed 18 jet diameters from 

the initial plane of mixing, and did not require added mesh 

points. 

The Ax used in the mixing calculations was 0.12 jet 

diameters which satisfied the Courant-Friedrichs-Levy 

stability criterion in all cases calculated.  This constant 

value of Ax was chosen for the convenience of comparing the 

analytical calculation with the experimental data at 

particular x-stations.  Should a variable Ax be chosen by 
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letting fi always equal unity the program would march faster. 

As an example of the computing time, about 1.5 

minutes are required for the program to march one jet 

diameter with 40 mesh points.  No attempts were made to 

decrease the computing time since no more than 15 minutes 

were generally required to calculate the flow fields of 

interest. 

VII.  ACCURACY 

The numerical accuracy of the computer program was 

checked on each calculated profile by inserting the results 

into the integral form of the mass continuity and momentum 

equation.  The details are given in Appendix C.  Mass con- 

tinuity was always satisfied within 2 per cent or better and 

momentum was alv/ays satisfied within 4 per cent or better. 
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CHAPTER VI 

THEORETICAL CALCULATIONS FOR THE 

AXISYMMETRIC JET 

I.  SELECTION OF INITIAL PROFILE DATA 

Analytical calculations are made and compared with 

experimental data for hydrogen-air and air-air coaxial con- 

stant pressure flow systems using the method of character- 

istics discussed in Chapters III and V.  The hydrogen-air 

experimental data is taken from Chriss' experiments [18] 

and the air-air experimental data is taken from Paulk's 

experiments [19].  Both sets of data were based on measure- 

ments made in the same experimental apparatus. Mixing cal- 

culations are presented using initial velocity and turbulent 

shear stress profiles in both the first and second regimes. 

However, no calculations are made and presented for marching 

the calculations from the first regime into the second 

regime because the transition problem discussed in Chapter 

IV remains to be solved. The initial shear stress data 

profiles were provided by Chriss and Paulk from their mean 

flow measurements [18 and 19] using the momentum integral 

method described by Peters et al. [42]. 

For first-regime calculations the initial starting 

plane was chosen approximately 2.5 nozzle diameters from the 

initial mixing plane, a location where reasonably accurate 
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velocity and turbulent shear stress profiles were obtained. 

The analytical calculations to be presented for 

second-regime mixing generally used the second profile of 

experimental data in the second regime. The experimental 

turbulent shear stress profile was feared to be inaccurate 

on the first profile of experimental data. The turbulent 

shear stress data is based on evaluating X-derivatives of the 

momentum flux integral.  In or near the transition regime 

these X-derivatives are probably not very accurate because 

of the rapid change in character of the flow from the first 

regime to the second regime. 

The analytical calculations are presented first for 

hydrogen-air coaxial mixing and then for air-air coaxial 

mixing. 

II.  HYDROGEN-AIR COAXIAL MIXING 

Theoretical calculations are made and compared with 

experimental data for the case of a central jet of hydrogen 

coaxially exhausting with air into a plenum at constant 

pressure.  The calculations are made for hydrogen-to-air 

velocity ratios ranging from 2.4 to 6.3.  The maximum jet 

Mach number is about 0.6.  Table I lists the bulk flow 

properties for the cases calculated and compared with experi- 

ment. Variations in the parameters a,, K, and f are made to 

observe their sensitivity on the mixing calculations since 

basic measurements of these parameters are not available 

from the experiments.  These calculations are made for a 
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TABLE I 

HYDROGEN-AIR AXISYMMETRIC 
MIXING FLOW CONDITIONS 

U. H. 
3 

VUo ft/sec H./H 
Y   O 

BTU/lb P -/p 

2.4 1900 11.8 1.82 X 103 0.08 

4.4 3200 11.6 1.78 0.09 

6.3 • 3300 11.9 1.84 0.09 

4.6 2880 7.7 1.98 0.14 
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second-regime case since their effect can be more readily 

observed over greater axial length. First, however, an 

example of a first-regime hydrogen-air mixing calculation is 

presented. 

First Regime 

This example is presented for a central jet-to-outer 

stream velocity ratio of 4.6.  The calculations start at an 

x/D of 2.7.  Theoretical and experimental velocity and 

'turbulent shear stress profiles are shown in Figures 11 and 

12 at 3;57 and 4.53 nozzle diameters from the jet efflux. 

The diffusion function, f,, used in these calculations 

is that shown in Figure 4, page 44.  The parameter K is 

chosen equal to 0.85.  Two analytical functions for the 

parameter a, are used in these calculations for comparison. 

In one case it is assumed equal to -0.17 and in the other 

case it is a variable given by 

- 0.9 
ll'm 

- 3 Z 

4/3 
+ 0.1, z < z 

- 1.0 
ll'm 

z > z. (94) 

where la.I  and Z are equal to 0.17 and 0.4, respectively. 'I'm     o 

This function for a. is a modified form of Equation 

74. Equation 74 could not be used for first-regime mixing 

since the inner boundary is defined where the shear stress 

is finite; consequently, the turbulent kinetic energy is 
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Figure 11.  First-regime velocity profiles for hydrogen-air 
mixing. 
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b.     x/D  =4.53 

Figure  11.      (continued) 
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Figure 12.  First-regime turbulent shear stress profiles for 
hydrogen-air mixing. 
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Figure  12.      (continued) 
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finite. Therefore, Equation 94 is used as an estimated 

approximation for the parameter a,. The two functions used 

for a. do not produce enough difference in the velocity 

profiles to be seen on a plot of this scale. The shear 

stress profile near the inner boundary of the mixing zone is 

more sensitive to a., particularly near the end of the first 

regime.  The proper shape of the shear stress profile is not 

produced by the analytical calculations near the inner 

boundary for either function of a, although the function 

given by Equation 94 seems to give the better result.  The 

problem is not unexpected since the transition region is 

being approached. Also, a better function for a. is probably 

needed since Equation 94 is only an estimated approximation. 

Some improvement in the diffusion function may also be 

needed.  Producing the proper shear profile at the.end of 

the first regime is necessary before the marching integra- 

tion can proceed from the first into the second regime.  An 

improper shear stress profile at the end of the first regime 

will result in an improper decay of the centerline velocity 

in the second regime.  With the exception of the problem 

just discussed, the velocity and shear stress profiles cal- 

culated agree reasonably well with the experimental data. 

Second Regime 

Second-regime calculations are presented for the flow 

conditions given in Table I, page 68. First, the sensitivity 

of the calculations of velocity and shear stress profiles 
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and the centerline velocity and the peak shear, stress decay 

to the parameters a,, K, and f» is presented in Figures 13 

through 29.  The experimental data for the hydrogen-air 

velocity ratio of 4.4 is used for comparison and the initial 

profiles were selected at 6.5 jet diameters from the initial 

plane of mixing.  For the best values of a1, K, and f_ found 

in these calculations, calculations for the other velocity 

ratio cases will be presented. 

The empirical expression for a, used in the calcula- 

tions is the analytical function given by Equation 74 in 

Chapter IV. The peak level of a, is established by |a.| 

and lateral position of this peak is established by Z .  The 

sensitivity of a, on the calculations will be observed by 

choosing different constant values of la,I  and Z while K 1 L ' m     o 

and f2 are held constant.  In Figures 13 and 14 the center- 

line velocity and peak shear stress decay is observed to be 

relatively insensitive to la,I .  The choice of la.I  equal 1 I'm J. m 

to 0.17 based on Sami's data (discussed in Chapter IV) for 

an incompressible air jet is quite satisfactory in this 

case.  This implies that the relation between the turbulent 

shear stress and turbulent kinetic energy is essentially 

independent of density effects, because there is an order- 

of-magnitude variation in density across the two coaxial 

flows.  From this result perhaps one also could expect 

little or no compressibility effects on the function a.. 

Bradshaw and Ferriss [25] found this to be the case for the 

adiabatic compressible boundary layer. 
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The effect of |a-| on the velocity and shear stress 

profiles at an x/D of 14.5 is shown in Figures 15 and 16, 

respectively. The velocity profile is more sensitive to 

la,I  near the centerline, whereas the shear stress is more •I'm 

sensitive away from the centerline. At this axial position 

the peak shear stress is overpredicted about 30 per cent. 

No conclusive reason can be given for this although there 

are several factors which could be the cause. For instance, 

the theory incorporates the assumption of unity Prandtl and 

Schmidt number which Chriss [18] has observed to be less 

than unity for hydrogen-air mixing.] A slight axial variation 

of I a,|  , Z  ,  and K may be closer to physical reality. 

The sensitivity of the centerline velocity and peak 

shear stress calculations to Z is shown in Figures 17 and 

18. A relatively weak effect is observed here but as seen 

in Figure 19 the velocity profile shape is strongly affected 

near the centerline.  In fact, a value of 0.3 for Z  is 

physically incorrect for this case since the peak velocity 

should occur on the centerline. Obviously, an improper 

balance and rate of change of convection, diffusion, pro- 

duction, and dissipation of turbulent kinetic energy near 

the centerline is created in the calculations. A reasonable 

velocity profile shape is produced with Z equal to 0.4 or 

0.5.  The better choice is 0.4.  This gives reasonable 

agreement with experimental data and also fits Sami's data 

very well in the use of Equation 74.  This value of Z  is 

not always the best choice for other mixing flows as will be 
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shown later in this chapter.  In Figure 19, page 82, varia- 

tion in Z  is observed to produce a slight change in the 

peak shear stress. 

Analytical calculations are made for K equal to 0.6, 

0.85, and 1.0. The effect of this variation in K on the 

centerline velocity and peak shear stress decay is shown in 

Figures 21 and 22, pages 84 and 85. The effect on the 

lateral velocity and shear stress profiles is shown in 

Figures 23 and 24, pages 86 and 87. Too much velocity decay 

is produced near the centerline for K equal to 0.6 as 

observed in Figure 23. As with a., the velocity profile is 

most sensitive to K near the centerline. Of the three cases 

calculated K equal to 0.85 gives the best agreement with 

experimental data.  This is a somewhat higher value of K 

than that calculated from Sami's experimental data and pre- 

sented "in Figure 5, page 47. 

The diffusion velocity function, f,, was formulated 

following the approach of Bradshaw et al. [24} as discussed 

in Chapter IV.  The sensitivity of the velocity and turbu- 

lent shear stress calculations is obtained by scaling f~ by 

three different constants such that f-(l) equals 1.5, 

2.5, or 3.5.  The effect on the centerline velocity and peak 

shear stress decay is shown in Figures 25 and 26, pages 88 

and 89.  The velocity profile is mainly affected near the 

centerline as observed in Figure 27, page 90. This center- 

line effect is caused by the influence that the diffusion 

velocity has on the mixing-layer thickness which in turn 
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affects a, and the energy dissipation term.  Both of the 

latter parameters are functions of the mixing-layer thick- 

ness.  In Figure 28, page 91, the shear stress profile is 

observed to be only slightly sensitive to a variation of £~- 

A good measure of the proper choice of the diffusion func- 

tion near the mixing boundary is its prediction of the 

mixing-layer growth rate. The results of these calculations 

are shown in Figure 29, page 92. Two conclusions are drawn. 

First, the form of the diffusion function chosen (Equation 

81} predicts the mixing-layer growth rate very well. 

Secondly, the function, f,, proposed in Figure 4, page 44, 

produces reasonable velocity and shear stress profiles.  For 

f2(D equal to 3.5 the mixing boundary spreads too fast and 

for f2 (1) equal to 1.5 it spreads too slowly. 

To summarize the sensitivity calculations analytical 

and experimental velocity profiles are presented in Figure 

30 at 8.6, 12.5, and 14.5 jet diameters from the initial 

plane of mixing.  The choices of |a,|  , Z , K, and f2(D 

are 0.17, 0.4, 0.85, and 2.5, respectively. Although the 

calculated velocity profiles agree well with the experi- 

mental data with this combination of values of the param- 

eters, other better combinations of these parameters 

may exist.  A detailed experimental study of the turbulent 

structure is needed to better assess these parameters. 

Calculations on the remaining velocity ratio cases 

listed in Table I, page 68, are presented in Figures 31 

through 33.  The "best" values of |a,| , K, and f2 found 
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in the sensitivity calculations are used and are found to 

work very well.  However, the best value for Z  is observed 

to vary from one case to the other.  This suggests that a, 

is not a universal function of Z.  An estimate for Z  equal 

to Z at T ... was found to work occasionally but not always. max ■* ■* 
Still, a better analytical function for a. is desired near 

the line of symmetry.  A choice of a. equal to -0.17 over 

the outer mixing zone works well. 

III.  AIR-AIR COAXIAL MIXING 

The air-air mixing calculations are made for a central 

jet-to-outer stream velocity ratio of 8.0. The nominal 

inviscid jet and outer stream velocities are 400 and 50 

ft/sec, respectively. The maximum Mach number in the mixing 

flow field is approximately 0.35, low enough to be con- 

sidered incompressible flow.  Both first-regime and second- 

regime calculations are presented and compared with experi- 

mental data.  The functions for the parameters |a. | , K, f1, 

and f2 used for the hydrogen-air mixing calculations are 

used here. 

First Regime 

The initial profiles of experimental data were taken 

at 2.6 jet nozzle diameters from the nozzle exit.  Velocity 

and shear stress profiles are calculated and compared with 

experimental data at 4.4 jet nozzle diameters from the 

initial plane of .mixing, a position less than one-half 

nozzle diameter from the end of the first regime.  These 
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results are shown in Figures 34 and 35. As with the 

hydrogen-air first-regime calculations the same two func- 

tions for a, are used in these analytical calculations. 

Similar to the hydrogen-air results no detectable differ- 

ences are observed in the velocity profiles for the two 

functions of a., used.  The shear stress profile also exhibits 

an improper shape near the inner boundary. Otherwise, the 

theoretical profile calculations agree well with the experi- 

mental velocity and shear stress profiles.  These observa- 

tions generally agree with the results of the hydrogen-air 

mixing calculations. 

Second Pegime 

One second-regime theoretical calculation is made for 

coaxial air streams.  The experimental data for a jet-to- 

outer stream velocity ratio of 8.0 is taken from Reference 

19.  Plots of the centerline velocity and peak shear stress 

decay are shown in Figures 36 and 37. The theoretical cal- 

culations were made for la,I  and K equal to 0.17 and 0.85, 1 j. m 

respectively, the same numerical values as were used for the 

hydrogen-air calculations.  The diffusion function, f2, is 

also the same as that used for the hydrogen-air calculations. 

The centerline velocity agrees well with the experimental 

data.  The peak shear stress experimental data are scattered; 

consequently, good agreement of the theory with experimental 

data is not expected. The results do indicate that the peak 

shear stress decay is properly predicted. 
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Figure 34. First-regime velocity profile for air-air mixing. 
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IV.  OTHER THEORETICAL CALCULATIONS 

Compressibility 

In the development of the turbulent kinetic energy 

equation term D (Equation 28) appears as the result of 

including density fluctuation terms.  If this term and the 

other density fluctuation terms are neglected the form of 

the turbulent kinetic energy equation left is the incom- 

pressible form.  Calculations were made for hydrogen-air and 

air-air mixing to determine the effect of D on the results. 

The effect is very small.  Differences only in the fourth 

significant figure in the calculations of U, V, and T were 

observed.  Therefore, the term can be neglected at least for 

subsonic incompressible hydrogen-air and air-air mixing. 

For supersonic mixing it may be necessary to include D in 

the calculations. 

Vertical Component of Velocity 

A typical result of the calculated vertical component 

of velocity is shown in Figure 38 for hydrogen-air and air- 

air coaxial mixing.  In the air-air mixing case the stream- 

lines have positive slope near the centerline and negative 

slope in the outer mixing zone. Therefore, the mass flux is 

decreasing near the line of symmetry although the net mass 

flux is increasing in the mixing zone.  In the hydrogen-air 

mixing case a very different behavior is observed.  The 

streamlines have negative slope over most of the mixing 

zone.  The mass flux near the centerline is increasing even 
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though the velocity decays.  This is primarily caused by the 

displacement of the light hydrogen with the heavier air 

through the action of turbulent mixing. 
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CHAPTER VII 

THEORETICAL CALCULATIONS FOR THE 

TWO-DIMENSIONAL SYMMETRIC WAKE 

The results of a brief study on extending the theo- 

retical method, presented in Chapters II and III, to a two- 

dimensional symmetric wake is presented in this chapter. 

Theoretical calculations are made and compared with the 

experimental data of Reference 44 for an incompressible 

turbulent wake behind a thin flat plate.  Before presenting 

the results, a brief discussion is given on the choice of 

functions for the turbulent kinetic energy-shear stress 

parameter, the diffusion velocity, and the energy dissipa- 

tion. 

I.  PARAMETER MODELING 

Basically, the same functional forms as were developed 

for the coaxial jet mixing problem are used for the wake 

problem.        I 

Turbulent Kinetic Energy-Shear Stress Parameter 

The turbulent kinetic energy-shear stress parameter, 

a,, is in part arbitrarily chosen to be given by Equation 74 

with |a.|  and Z  equal to 0.15 and 0.25, respectively.  The 

value of Z  selected is strictly arbitrary.  The value of 

laiI  selected is based on that recommended by Reference 40 
I'm ■* 

for plane two-dimensional wakes. 
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Diffusion Velocity Parameter 

The diffusion velocity parameter used is given by 

Equation 81 where the characteristic velocity, U . , is 

chosen as U - U .  The diffusion function, f, used in the o   c 

calculations is arbitrarily selected to be the same as given 

in Figure 4, page 44, for f~ but scaled up by a factor of 

four to provide the proper high-velocity mixing boundary 

condition, i.e., to give f~(l) a value of 10.0. 

Dissipation Length Parameter 

The dissipation length parameter, L, is again given 

by Equation 86.  From trial-and-error calculations a 

constant value of 0.53 for K was found to be satisfactory 

for the wake. 

II.  RESULTS AND DISCUSSION 

The initial starting profile for the wake calcula- 

tions is taken at the end of the flat plate.  The general 

numerical procedures are the same as are described in 

Chapter V for second-regime mixing calculations with one 

exception.  Once the position, y, of the left characteristic 

nearest the line of symmetry exceeds its initial value by a 

factor of two, a new mesh point was added by linear inter- 

polation halfway between the line of symmetry and the first 

mesh point. The results of these calculations are presented 

in Figures 39 through 42.  The centerline velocity is 

plotted versus the distance from the end of the flat plate. 

This distance is nondimensionalized by the turbulent boundary 
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Figure 42. Turbulent shear stress profile in the wake of a 
thin flat plate. 
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layer momentum thickness, 6 , at the end of the flat plate 

calculated by Reference [44] to be 0.53 cm.  The theory pre- 

dicts the centerline velocity increase very well.  The 

maximum turbulent shear stress decay is not predicted very 

well near the end of the flat plate but improves farther 

downstream.  The velocity profile at 414 momentum thick- 

nesses downstream of the flat plate is in reasonable agree- 

ment with the experimental data. The calculated shear stress 

profile is also in reasonable agreement with experimental 

data with the maximum deviation occurring in the outer 

mixing zone. 

These results show that the theoretical method is 

applicable to wake calculations.  However, the best func- 

tions for a., Kf and f remain to be determined.  Refinement 

of-these parameters based on experiments is necessary before 

completely satisfactory results can be expected. 

The computer program was also modified to calculate 

the mixing flow field for an unsymmetric two-dimensional 

plane jet or plane wake. This program includes an iteration 

on- the vertical component of velocity to satisfy the condi- 

tion required by Equation 73.  So far, numerical diffi- 

culties have been encountered in trying to calculate flows 

where the turbulent shear changes sign, such as occurs in an 

unsymmetric wake behind an airfoil. 
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CHAPTER VIII 

CONCLUDING REMARKS AND RECOMMENDATIONS 

I.  CONCLUDING REMARKS 

The results of the calculations presented in Chapters 

VI and VII show that the turbulent kinetic energy equation 

transformed into a transport equation for turbulent shear 

stress is potentially useful for calculating inhomogeneous 

turbulent two-stream mixing flows and wake flows.  By using 

the turbulent kinetic energy equation the history of the 

turbulent structure is included in the calculations.  The 

eddy viscosity and Prandtl mixing length theories are in- 

adequate in this respect because history is excluded.  The 

key to successfully using the turbulent kinetic energy equa- 

tion lies in properly modeling the diffusion and dissipation 

terms and obtaining a realistic relation between the turbu- 

lent shear stress and turbulent kinetic energy. The con- 

vective or flux model used in these studies for the diffusion 

of turbulent kinetic energy works well.  A different diffu- 

sion function is required in the first and second regimes of 

axisymmetric mixing because of the basic difference in the 

character of the two flow fields.  The same diffusion func- 

tions work equally well for hydrogen-air and air-air mixing, 

thereby suggesting that the functions are universal in their 

respective regimes of application. 
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The model for the dissipation function used in this 

study is analogous to the dissipation expression derived for 

isotropic turbulence.  By setting the dissipation length, L, 

proportional to the mixing layer width, the model chosen 

for the dissipation function works very well. The parameter, 

K, equal to 0.85 served to calculate hydrogen-air and air- 

air coaxial mixing flows equally well. These results imply 

that the parameter L used in this study exhibits a universal 

behavior. A value of K equal to 0.53 worked better for the 

two-dimensional symmetric wake. 

The turbulent shear stress was assumed to be linearly 

proportional to the turbulent kinetic energy. The parameter 

a, is a variable function for axisymmetric jet mixing.  On 

the line of symmetry its value is zero. A constant value of 

0.17 for |a.|  over the outer region of the mixing zone 

works well for jet mixing.  In the inner mixing region |a.| 

ranges from zero to 0.17. A better formulation of a, in 

this region is desired opposed to that used in this study. 

In formulating the theory the assumptions of unity 

Prandtl and Schmidt numbers were made.  The velocity and 

shear stress profiles and centerline velocity and peak shear 

stress decay agree well with experimental data for jet mixing 

even though experimental results show that the Prandtl and 

Schmidt'numbers are not unity. 

The turbulent kinetic energy approach presented in 

this study is not yet a useful engineering tool for calcu- 

lating mixing flow fields.  Since the method is designed to 
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include flow history in the calculations initial profile 

data are needed to begin the calculations.  Experimental 

data have been used in this study, but analytically derived 

starting profiles are needed for engineering computations. . 

A study on the feasibility of using analytically derived 

starting profiles is desired. 

Potentially the turbulent kinetic energy approach is 

a method for studying the effects of initial disturbances in 

turbulent flow on mixing phenomena.  One can envision use of. 

the method to study the effect of initial boundary layers on 

turbulent wakes and to study methods for retarding or 

enhancing the mixing in turbulent flows. 

II.  RECOMMENDATIONS FOR FUTURE STUDY 

Additional experimental confirmation of the turbulent 

kinetic energy approach used in this study is desired. 

Studies are recommended for both jets and wakes to compare 

the convection, diffusion, production, and dissipation of 

turbulent kinetic energy measured experimentally with that 

calculated by the analytical models used in this study. 

Such a study would be useful in further substantiating these 

analytical models and perhaps would suggest improved analyt- 

ical models.  In particular, a more satisfactory analytical 

model for the parameter a, is needed for jet mixing. 

Studies should continue toward solving the transition 

regime between the first and second regimes in symmetric 

two-stream mixing.  The proper analytical models for a., and 
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the diffusion are needed before success can be expected. 

Including nonunity Prandtl and Schmidt numbers in the 

theoretical method is desired to permit proper calculation 

of the energy and species concentration profiles.  This can 

be accomplished by simultaneously solving the parabolic form 

of the energy and species continuity equations along with 

the global continuity, momentum, and turbulent kinetic energy 

equations. A finite difference grid procedure would be 

required opposed to the method of characteristics because 

this system of equations is not hyperbolic.  Another rather 

involved approach would be to use the transport equations, 

analogous to the turbulent kinetic energy equation, for the 

fluctuating energy and the species.  These equations, how- 

ever, contain six additional parameters [43] which need to 

be experimentally determined and appropriately modeled. 

Application of the theory to supersonic mixing should 

be studied. Compressibility is already included in the 

basic flow equations.  The main question is whether or not 

the parameter modeling can be equally applicable to incom- 

pressible and compressible flow. 

Finally it is recommended that mixing flows with 

pressure gradient be studied using the turbulent kinetic 

energy approach. 
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APPENDIX A 

ORDER ANALYSIS OF THE CONTINUITY, MOMENTUM, AND 

TURBULENT KINETIC ENERGY EQUATIONS 

To facilitate simplification of the equations of 

motion and the turbulent kinetic energy equation relative 

estimates of the derivatives and of the perturbation com- 

ponents are needed.  If L is chosen as a length scale con- 

forming to the variation of parameters in the X-direction 

and similarly Z  for the Y-direction and it is assumed that 

l/L < 1 (Order of 0.1), then 

3x 

3y 
-& i] (A1) 

Also U is chosen as a characteristic velocity such that it s 

represents the velocity difference across the mixing zone, 

and U/U is assumed to be of order unity.  It is further 

assumed that 

3y cr pug (A2) 

and 

V   = c^(U') 

Then 

T   -& 
>s*l 
,     L  J 

(A3) 

(A4) 
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and 

s (A5) 

I.  CONTINUITY 

From Equations 17 and A5 

£l=^(/I7L) (A6) 

The order of V is found from the continuity equation.  First 

note that 

pu  ^ W (A7) 

then retaining the highest order terms, the continuity equa- 

tion is expressed as 

|f + |_(pv + p^F) - o CA8) 

From Equations A5  and A6 

fyfP^J     ~& *.l 

which is of the same order as dpU/dx.  This gives 

V =#" fu i {   s Lj (A9) 

Note that p'V and pV are of the same order which requires 

that both terms must be retained in the continuity equation. 
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II.  MOMENTUM 

Assuming that the viscous stresses in the momentum 

equation (Equation 7, Chapter II) are small compared to the 

turbulent stresses, the X- and Y-components of momentum are 

written with the order of each term written below.  The bars 

over the mean flow parameters have been dropped for con- 

venience. 

X-component 

(PU  +  P^Ü1")!^ +   (pV +  P^jf^ 

AlUs     f 
'V   pUs L IT 

TT     £       ..     JÜ°s 
pUS   L'   pUS  L   L" 

+   P ̂ (H 3V 
9yJ + Ü 9p'U' 

3x 

pUs L 

fu « 1 s s 
U   ' L 

PU|£ 

L2 

+ V 3p'U' 
3y   ■ 

3P 9p'U'2 
3x lit 

pu; 
2   1 

L 

PU*r0<|3/2 

iL; 

fe   (P^2) 
'U'lll .  |_   (püTvT) .  iZV^ 

8y 3y 

pUsA 

L2 

pu; pu; 
L   ILJ 

3/2 
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Y-component 

(PU + ~prÜr)Q +   (pV + P7^)^ 3x 

PUS, Pus fe] 
V 

L2 PUs L'   P"s *) 

• s-"ig * ffl •" ^S1 

PUs L 

f 

L~' L 

pü|A 
L2 

r?7T 
+ V 3y 3y 3x 

pU*A püj£ 

"IT" 

Spy1 

3y 
3p'u'v'      alT^2 

3x       "     3y 

p"; 
L 

3/2     PUs 3/2 

If all terms of an order less than pU2/L are neglected the s 

X- and Y-components of the momentum equation reduce to 

X-component 

r3U 3U 
PUf£ +   (pV +   P^)fj =  "   g ap     apirv rrrr 

3y (A10) 
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Y-component 

(All) 3P _ 3pV 2 

3y   3y 

The latter equation can be integrated directly to give 

p = p - pV1"2 o 

where 

P = P (x) o   o 

then 

3x  3x    3x 

and 

3pV 2 _ rty 
3x "°^ 

PUs* 
L 2 ^ 

This term is neglected since it is an order less than the 

order of the terms in the X-component of momentum. 

III.  TURBULENT KINETIC ENERGY 

Before an order analysis is performed on the turbulent 

kinetic energy equation (Equation 10, Chapter II) the con- 

vection term (I) and normal stress term (III) are combined 

and rearranged with the aid of the continuity equation as 

follows: 
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u. j   9x, } *T ♦ i ^I2) ♦ [k psp ♦ \ ^I2)^ 

; <«*j + ^>ifj(i si2) - 3^(5 «T • p^j 

With this rearrangement the turbulent kinetic energy equa- 

tion is restated as 

} T • ^l) 
(a) (b) 

    3D.         3U. 
+ p'üiüj 3^+ «pspj + p^FI'ä^ J  D     J     J  D 

(c) (d) 

3x, P'Ul + J püpuy+ i p'UJ*Uj] 

(e) 

TUT irr: 
p '  i + rj' 

3x. + Ui 3x. = 0 

(f) (g) 

Each of the first five terms are expanded in two-dimensional 

Cartesian coordinates with the order of the respective terms 

listed. 
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Term   (a) 

(PU + P7^)    d*ll/2 + (PV + pWr)    ^y/2 

I'V   PUs Lj 
-vy 
L2 »us E< püs r 

u: 

Term   (b) 

d^T q'z/2        3p'V   q,z/2 
3x 3y 

pu; [Al2 füsfil [LJ L [LJ 

Term   (c) 

^"1" S + v Sjf] + ^ 3x 3y, 

pu; pu:r^2 
L 

Term   (d) 

(pü1"2 + ^TÜT2)|£ +   (pu1^ + p'u'v')!^- 
3x 3y 

pU _s  A 
L     L 

pu; — ±1 
3/2        pO' 

fil   SLfAl ILJ'   L ILJ 
3/2 

+ (pinv + p'v'u')|^ + (pv^2 + -pw2)^- 

PUSM2 2 PU _s   A 
L     L 

5/2        pU: 
1      PU. 3/2 
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Term (e) 

3_ 
3x P'U' + j pq'

2U' +| p'q^U'j 

3/2 
, pu; s(Lj 

3 FT1" + j pq'2V + | p'q'zV'J 

p"; ir- pu; 
fAl3/2 

E   ' pUs A 

Term (f) 

r. 3U' + pTlv 
*3x   *3y 

VL  '  L  L 

Term (g) 

In reviewing the order of each of the preceding 

terms, the highest order term occurs only in term d. 

Therefore, the viscous dissipation must be of the 

same order and should be retained. 

Retaining all terms of the order of pU'Ä/L2 or higher 
5 

reduces the turbulent kinetic energy equation to 

pU 351"2   (pV + p'V) aq7"2   i'öTTr  qT2/2 
2  3x        2      3y       3y 

+ "pHF u 15+ v If]+ p^2 ü+ i*w+ p,wr>!y
: 
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+ DVT2 |V + 9 
3y  3y pTv

1" + | pq"V + | p'q"V 

 äv1"    9oi-i 
+ P' |^- + U! ^-ü = 0 3y    l 3x. 

(Al 2) 

If only terms of the order of (puVL) (/£,/L) or higher are s 

retained the turbulent kinetic equation reduces to 

3U (pirv1- + PTU1Vr)f£ + J- fl            1 3a.'. 
+  U!   -ril i     3x. I pq,zv = 0 (A13) 

These three terms remaining are the production, diffusion, 

and dissipation of turbulent kinetic energy. The convection 

term is at least half of an order of magnitude smaller than 

the diffusion which itself is half an order of magnitude 

smaller than production and dissipation. The p'U'V term is 

included in the production term because it is of the same 

order as the diffusion. This causes no problem with the 

solution to the equations because (pU'V + p'U'V) can be 

treated as one variable. 

Since the ensuing objective of this study will be to 

include as much physics as practical into the solution of 

the turbulent jet, the form of the turbulent kinetic energy 

equation given in Equation A12 will be used as the starting 

point. The normal stresses in term (d) and term (f) will be 

neglected.  Terms (b) and (c) will be defined as 

pD   = ~prÜT °£*v$j 
| 3^\T q^ 

5y 
(A14) 
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The form of the turbulent kinetic energy equation remaining 

is 

3y P^W +  i pq'zV + i p'q'^v] 

 5F7T 
+ ui TiJ + pD ■ ° (A15) 

This form of the turbulent kinetic energy equation is used 

in this study of the inhomogeneous two-stream jet mixing 

problem. 

A- %A*o 
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APPENDIX B 

DEVELOPMENT OF THE CHARACTERISTIC AND 

COMPATIBILITY EQUATIONS 

Using vector notation and subscript notation for the 

differentials, consider the quasilinear hyperbolic differ- 

ential equation 

AW + BW + C = 0 x    r 
\(B1)/' 

where A and B are square matrix coefficients and W and C are 

vectors.  By definition of the differential 

dW = W dx + W dr x     r ((B2)/ 

Define X  to be a characteristic direction of the system of 

equations, (Equation Bl), such that 

(B3) 

is the equation of the characteristic directions/ The com- 

patibility equations are found by combining Equations Bl and 

B2 to give 

B dW dr' + C = (BX - A) V? (B4) 

f 
i 

Let D be a vector (yet to be defined), and form the inner 
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product of both sides of Equation B4 with D, 

(B ^ + C) • D = (BX - A) V7  • D dr '  x 

■ W  • (BX - A)  D x (B5) 

where (BX - A)  is the transpose of (BX - A).  If D can be 

chosen such that the right-hand side of Equation B5 is 

identically zero with respect to w , then Equation B5 will 

contain derivatives only in the characteristic direction, X, 

and therefore, will be the compatibility equation in that 

direction.  Such a D does indeed exist, and is obtained as a 

non-trivial solution of the linear algebraic system, 

(BX - A)x D = 0 (B6) 

Non-trivial solutions of Equation B6 are guaranteed as a 

result of Equation B3.  The technique outlined is used to 

derive the characteristic directions and compatibility 

equations from the continuity, momentum, and turbulent 

kinetic energy equations. Denote the unknown vector, W, as 

W = (B7) 

From the partial differential equations (Equations 54, 55, 

and 56), the matrices A and B and vector C are 

A = 

rl + U(F1 - 

U 

0 

F2) 0 

0 

0 
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B  = 

V(F1  -  F2) 

V  -  T(F1  -  F2) 

^<Pl " V   "  1 

1 

0 

-   T 2a- 

1   -   F2U 

-1 

V + v. 

2a, 
TU 

2a xh 

C  = V .        U dP 
rKtPdx 

r           I    Y 
l]h dP 

JP dx 

Substituting A,   B,   and C  into Equation E^gives 

Za^l  - F2> 
=   0      (B8) 

One solution of Equation B8 is 

\  = 0 (B9) 

or 

dr 
dx 

(B9a) 

Corresponding to this solution the unknown vector D is 
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1  + U(FX  - -*v Ü 0 

o. 0 0 

0 0 u 
2a 

- 0 

or 

D^l + UfF-j^ - F2)] + D2U = 0 

2^°3 = ° 

A non-trivial solution is 

D±  = -U/[l + U^ - F2)] 

D2 = 1 

D3 = 0 (BIO) 

Substituting this solution into 

:] • D = 0 »£♦ = (Bll) 

gives the vertical compatibility equation. To illustrate 

dr 

V(FL - F2) 

V - T(F1 - F,2) 

2af<Fl " F2> " 1 

1 

0 

0 

-1 

- T 2a, 

1 - F2U 

V + V, TU 
2a. 2a.h 

• 
fdu1 

dr 
dV 
dr 

dx 
dr 

J . 
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Thus 

Bf+C = dr 

V(PX - F2)g + 
dV , V . , U dP] 
dr  r K  P dxj 

( 
tv-T,Fl-P2)]g-|I-iK 

+ [Y - l) h dP' 

%<F1 " F2> - 1 
f   T ^ 1 - F2U dU 

dr 

- T [2a,) 

1  - F2U dr 
dr + G 

E^+ C dr D 

U 
[1 + U(FX - F2)] V

(F  - F )$£■ +  ^ + vul  r2;dr  dr 
V k + U dP) 
r    P dxj 

+ lv.T(Fi-F.n™.«.ik + Y - 1 
Y 

h dP 
P dx 

= 0 (B12) 

which reduces to Equation 61. 

The compatibility relations, Equations 62, correspond- 

ing to nonzero X are obtained in a similar manner. 
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APPENDIX C 

CONSERVATION OF MASS AND MOMENTUM 

Conservation of mass and momentum are checked to 

determine the accuracy of the method of characteristics used 

in the calculation of the mixing flow field.  The check 

method uses the integral form of the continuity and momentum 

equations.  First, consider the mass continuity check. 

I.  MASS CONTINUITY 

The mass continuity equation is integrated between 

the inner and outer boundaries 

i 

The second term is integrated directly to give 

ro    k 

*-W- dr + Wo - P±V± - ° <c2) I r. 
l 

Using Leibnitz's rule the first term is rearranged as 

f     3pUrk .   d ■ f       TT k, i      "fe— dr = dST 1       pUr dr 
i i 

I, dr , dr. 
p U rk -o - p.U.rk ,-A Ko o o dx Hi l l dx 
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Combining Equations C2 and C3 

d_ 
dx 

r 

/ 
pUrkdr 

, dr       .dr. k  o       k  l p U r 2— - p.U.r. 3— Ko o o dx   Ki l l dx 

- (p V rk - p.V.rk) Ko o C   'ill (C4) 

Equation C4 is integrated with respect to x, giving 

r 

I 
ri 

pUr dr 

r 

pur dr 

x  r: 

X 

-/ 

i dr k  o kari p U r j p.U.r. , Ko o o dx   Ki l l dx dx 

"I (p V rk Ko o o PiV.r. ) dx 

x. 
3 

(C5) 

where x is the position of the initial profile.  Letting P. 

be defined as 

s. 

■I' Rq =    |   pUr dr 

r 

pUr dr 
/[    v dr        v dr.' 

p U rK 3-°- - p. U. r. 3-i dx (Ko o o dx   "I l l dx J 

o   s 
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X 

-/ «>oVo p.V.r.) dx Ki l i 

s 

(C6) 

R is evaluated at each axial station by substituting into 

the integrals the values of the parameters calculated by the 

method of characteristics.  By letting x always be the 

position of the initial profile, the variation of R from 

unity will indicate the error accumulated by the method of 

characteristics. 

II.  MOMENTUM 

The differential forms of the mass continuity and 

momentum equations (Equations 33 and 34) are combined to 

give 

3pU2r   3pVUr _ 3r x _ 
dx 3r 

dP 
3r   dx (C7) 

By integrating across the mixing zone 

/ 
ri 

dx ^S^ dr + p V U,rk o o o o p.V.U.r* Kl 1 1 1 

k     k     ,      » dP 
= r T  - r.T. - (r - r.) -j— 

o o   ii    o   i dx 
(C8) 

The, first term is integrated by Leibnitz's rule, 

r 
2 k 3ppjr 

dx dr 

r 

dx J 
,2-k pU"r dr - 

T, dr 
TT k  o 

p U r j—— Mo o o dx 
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. dr. 
(C9) 

By combining Equations C8 and C9, 

r 

dx J 
,2-k 

plTr dr = 
i dr , dr, 

p 0«r* o _ , k i 
Ho o o dx   Hi l l dx 

+ ro*o - riTi - H'ro - ri> 

- p V U rk + p.V.U.rk Ko o o o  Ki i i i (CIO) 

and integrating with respect to x gives 

r 
,2 k 

pü'r dr 
-/ 

,2 k pü'r dr 

x  r 

„2 k  o p U r - p.Ufr 
. dr. 

2_k  l 
o o o dx    Hi i i dx dx 

T kXJ r . T.)dx 
l l 

x 

-/ 
(r - r.) |*dx l dx 

x 

i p U V r dx + 
^o o o o 

/p.U.V.rkdx Mi. l l l 
(Cll) 

By definition let 
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m 
,2,k pUzr dr 

r, 
l 

r 
r2,-k. pUzr dr 

s   s 

f [P U2rk J  [Ko o o air 
. dr. 

p.U?r* j,-1 K
i l l ax 

dx 

X 

/ 
s 

o o r.T.)dx 
l l -/ 

p U V r dx Ko o o 

X X 

J   p.U.V.Ax - / (ro - r.) g dx (C12) 

Again, the integrals at each of the appropriate x stations 

are evaluated.  The accumulated error in momentum calculated 

by the method of characteristics is determined by comparing 

R to unity. 
m       ■* 

In the computer program R and R are calculated at 

each x station so that the loss or gain in mass or momentum 

can be observed. 
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