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, FOREWORD

1 This paper was prepared for presentation at the Air Force Special

! Weapons Center Symposium, "Instrumentation for Nuclear Weapons Effects

!I Simulation,'" 12-13 March 1970.

~The filter set described in this paper was developed during normal

operation of the Pbysical Sciences Branch-, Nuclear Weapons Effects Divi-

sion, U. S. Army Engineer Waterways Experiment Station (WES), under the

general supervision of Mr. G. L. Arbuthnot, Jr., Chief, Nuclear Weapons

Effects Division, and Mr. L. F. Ingram, Chief, Physical Sciences Branch.

Mr. '1. D. Carleton was responsible for project development and documenta-

tion. The filters of the set were incorporated into computer program

number 803"G9RO-118 during the period from June to December 1969 by

Mr. J. T. Brogan, assisted by Wrs. C.,J. Pittman.

This work was performed to impr-ove the quality of ground shock data

• obtained on field tests sponsored largely by the Defense Atomic Support

ii Agency (DASA)-. Additional funding support was provided from DASA Project

:il 61102H-LUlCAXSX502, "Ground Stress and Motion Measurements." Computer pro-

- grams developed as a result of this work are also being used for the proc-

essing of laboratory test data obtained from various nuclear weapons

effects research (NWER) studies in the WES blast load generator facility.

w1ES Director during the filter set's development was COL Levi A.

Brown. Technical Director was Mr. F. R. Brown.

Lii



CONTENTS

FOREWORD . . . . ...... . .. .. .4,

NOTATION .. . .. . . . . . . . . . . . . . ... . . . vii

SUMMARYo o. . . . .. . . . . .i o .o .o o . . . . . . . . . . ix

PART I: DIGITAL DATA SAMPLING o. .. .. . .. . .. ... 1
Introduction, o.. . .. .. . . . .. .o o . .. .. o1
Notes on Discrete Sampling o... . . . . .. .. o1
Sampling Frequency Selection . ,...ooo..o.o6

PART ii: THE RANDOM-SPIKE REJECTION FILTER. . .... .... 7

PART III: SELECTIVE FREQUENCY REJECTION o.o8

Complex Plane Frequency Representations. o...... .... 8
Filter Synthesis oo.o.. o.........- ... ... i 0
The Zero-Frequency Rejection Filter .. .. .. . ... i0
The SingS c-Frequency Rejection Filter. . .. . ...... o . . 12

PART IV: LOW-PASS FILTERS ....... .. . . . o... 17

Filter Synthesis o.. .. .... .. .. ... . . . . 17
The Low-Pass Options o..... . o... ... .... 20

PART V: USE OF THE FILTER SET . .. . . ... .. . .... 25

G en er a l . . . . . . . . . . . . . . . . . . . . 2 5
Random-Spike Rej ection . . . . . . . . . . . . ..o o o o . . . . 25
Low-Pass Operations . o.. . . . . . .o . . . . . . . .o. 25
Selective Frequency Rejection, . . .. . . .. .. ... 26
Exercise of Judgment . .o. .... o. . ... .. 26

LITERATURE CITED .... oo..o.oo..ooo..ooo28

PLATES C-E0

ra"

S

NO AT ON * * * * * * * * * * * * * . . . . . .Vi

PART: DGITADATSA14PLIG..............



4i NOTATION

*th
a the uth  coefficient in a filter numerator polynomialu th
b the v coefficient in a filter denominator polynomial

v
.. e natural logarithm base

f any desired frequency (hertz)

f any aliased frequency (hertz)
A
fN folding or Nyquist frequency (hertz)

f sampling frequency (hertz)
j the imaginary operator V-

K maximum power of z in the numerator of a filter function

L maximum power of z in the denominator of a filter function

n sample number (an integer)

s the generalized frequency variable of Laplace

t elapsed time (seconds or sampling units.)

I sampling period (seconds)

X n wave displacement value for any considered input time = input
sample number n

the input sample immediately following (in time) input sample. , Xn+1
number n

xn 1  the input sample immediately preceding input sample number n
' xn. the input sample immediately preceding input sample number n-1

y0 Yn the output sample corresponding to input sample number n

Xn2 the input sample immediately preceding input sample nmber n

7 the output sample immediately preceding output sample niuber n
the otusapeimdaeypreceding ouptsml number nYn-2

z the z transform variable
Izi the modulus of z

4 Anf any difference in frequency (hertz)
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the real component of z

v the imfaginary component of z

a the real component of s

w the frequency variable (radians per unit time), and imaginary
component of s

v
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SUMNMARY

Digital tapes produced from analog field data often carry over severe
noise problems. A batch data processing capability should therefore be com-
plemented by digital filters which can remove noise routinely. This paper
describes a set of filters developed for use with Nuclear Weapons Effects
Division standard data processing codes. Emphasis in assembly of the set
was placed on accuracy of signal retention and on adaptability to general
purpose computers.

Part I discusses data which is sampled at equally spaced times, the
use of sample numbers to designate time positions, and the requirement for
use of a sampling frequency at least eight times greater than the highest
expected signal frequency.

Parts II, III, and IV document the filters of the three subroutines
presently being used for noise removal. The first subroutine e1.minates
randomly spaced single-sample "spikes" through the application of inequality

conditions to data. The second subroutine provides frequency filters for
the removal of zero drift and single noise frequencies. Low-pass frequency
filters are available in the third subroutine.

Part V discusses the ten example plates used to demonstrate the filter
set's effectiveness and speed of operation.

i
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DIGITAL FILTERS FOR ROUTINE DATA REDUCTION

PART I: DIGITAL DATA SAMPLING

Introduction

1. With the purchase of an off-line analog to digital (A/D) converter

in 1968, the Nuclear Weapons Effects Division (NWED) of the U. S. Army

Engineer Waterways Experiment Station (WES)' obtained a batch data process-

ing capability. Since analog data is often quite noisy, and because the

A/D converter changes both signal and noise to digital form, digital tech-

niques for noise removal became an immediate consideration. Studies of

several approaches to the noise problem led to the conclusion that a digi-

tal filter set should be assembled for routine use. Filters accepted for

the set were to cause no phase distortion among passed frequencies and to

operate with reasonable econon on the general purpose computer equipment

available at WES.
2. This report has been written to document the filter set developed,

and to aid project officers in their use of its component filters. These

filters are included as subroutines to NWED standard data processing codes.

A basic familiarity with complex numbers is assumed for the discussions

contained in Parts III and IV.

Notes on Discrete Sampling

3. If the displacement of a continuous wave form is sampled periodi-

cally, the resulting time sequence of equally spaced observations is said

to be a "discrete time series." The time represented by any given saiple

in this series would be t = nT , where n is the sample number (counting

by units from sample number 0 at t = 0) and T is the sampling period (a

constant,- commonly in seconds, which is the reciprocal of the sampling

frequency fs , commonly in hertz). If T is defined as one unit of time,

t =nT becomes t= n.

1
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4. Fig. i shows examples of periodically sampled continuous waves.

At a given sampling frequency, say for example 6000 Hz, no oscillation

can be represented if all sampled displacement values are exactly the same

V (as in fig. la). This is because actual displacement between samples

cannot be determined by examination of the discretely sampled data. Only

estimation or interpolation is possible. If all displacement sample values

are exactly the same, and not equal to zero, "zero frequency" is repre-

sented by the constant offset from the zero displacement base line (dis-

placement equilibrium position).* If only two displacement values exist

among all the samples taken, and these two values are found alternating

at every change in sample through time (as in fig., ib), then the frequency

represented by this alternation is half the sampling frequency, or for our

example, 3000 Hz. This frequency, known as the folding or Nyquist fre-

quency f is the highest frequency which may be represented by discretely

sampled data at a given sampling frequency. Frequencies higher than fold-

ing, if they are present on the original continuous data, will be repre-

sented by distortion of frequencies below folding. Any frequency f = fN +

Af , where 0 < Af < fN $ will be "seen" by the sampling process as the

"folded" or "aliased frequency, fA= fN - Af . For the example sample rate

of 6000 Hz, for instance, 4200-Hz noise, if present, would be "frequency

aliased" as 1800 Hz and added to any existing 1800-Hz signal., since folding

frequency would be 3000 Hz. (Additional discussion of aliasing may be found

in Blackman and Tukey,1 pp 216-219 and 521-524.)

5. It has been stated in the preceding paragraph that folding fre-

quency is the highest frequency which may be represented by discretely

sampled data at a given sampling frequency. A reasonably accurate approxi-

mation of folding frequency sine waves can be made only where the times of

sampling correspond to the times of maximum displacement for a wave (as in

fig. lb). If the times of maximum wave displacement are out of phase with

the sampling times, both displacement and phase angle are unacceptably al-

tered for the wave represented (see fig. 2a)'. In fact, a 90-deg phase dif-

ference between sample times and maximum displacement times for the folding

* Constants and linear trends are zero frequency. See Blackman and

Tukey,1 section 19.

2
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DISPLACEMEK1 SAMPLES

a

ZERO FREQUENCY - CONSTANT OFFSET
NO OSCILLATION REPRESENTED

1\

/l\4 i \ /i

FOLDING FREQUENCY
SINE WAVE REPRESENTED

:11

ZERO & &ROLDING FREQUENCY
OFFSET SINE WAVE REPRESENTED

1.00
-men

FOLDING FREQUENCY
DAMPED SINE WAVE REPRESENTED

Fig. 1. Periodically sampled continuous waves
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Sine wave to be represented

..................... ........ Approximate reconstruction
by high-speed plotter

F: frequency
T -sampling period

+I -
/ ." ./. I' ,".* -""

,,. I . -" .. ! ." .. I ."* '.. ..

2 samples per cycle,.fT = 0.50

Amplitude and phase altered

b ............ .. ...... .. . ...... .. .. ............ ....

2 samples per cycle, fT = 0.50
Frequency lost

or

4 samples per cycle, fT = 0.25
29% amplitude loss

' I.......

il |I6 samples per cycle) fT o .167ii I ! 131o amplitude loss

j Fig. 2. Distortion of sine waves due to sampling and plotting

. .. ..
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determined by finding the cosine of the angle (180 fT) 0 , ,where fT is the

reciprocal of the number of samples per cycle for the frequency f being

considered: (see, figs 2b, c, and d). Fig. 3 is a plot of amplitude responses
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for sampled frequencies at the most unfavorable sampling phase relations.

Sampling Frequency Selection

6. The selection of a given sampling frequency band limits signal

!I frequency representations by establishing folding frequency at half the

- frequency of sampling. The plotting process, through its inability to

superimpose a sine wave upon all displacement samples which may have been

taken from higher frequency sine wayes, further limits the frequencies

which may be accurately represented" upon output plots (as shown in figs. 2

and 3). Sampling frequency should be at least eight times greater than

the highest expected signal frequency, to assure reasonable plot accuracy.

Data sampled at this minimum rate will be relatively economical to proc-

ess. Higher sampling frequencies may be necessary where the highest

signal band frequencies must be reproduced with extreme accuracy, or

where noise frequencies will be aliased into the signal band by lower

sampling frequencies.

6



PART II: THE RANDOM-SPIKE REJECTION FILTER

7. Digital tapes occasionally have upon them tingle samples (at ap-

parently random locations in the discrete time series) which show very high

displace~ent values, and which bear no true relation to the seismic data

thereon. These spurious "spikes" frequently cause large errors during fre-

quency filtering, integration, and frequency analysis operations. The

problem may be eliminated by application of mathematical inequalities to

the raw digital data.

8. The main condition which defines a spike is:

Xn Xn.l
1a> 0.75
1n Xn+l

where xn represents the value of the input (displacement) presently

under consideration, Xn. 1  represents the immediately preceding input

value, and Xn+l1  represents the next input value in the future. The above

inequality simply states that the ratio of the two "sides" of a spike must

be nearly unity.

9. The condition which defines the sizes of spikes to be removed is,:

S(Xn 1 +Xn+l) >220Xn "2>20

In this case spikes larger than 220 units are defined as spurious.

10. Instructions to the computer tell it to consider each sample in a

discrete time series against the above inequalities. If any sample (rela-

tive to the samples on either side of it) meets both of the above condi-

tions, it is a spurious spike, and the computer is instructed to replace it
alu of(X n-1 + x n+l )

with a sample displacement value of 2 ), which is simply the

average of the adjacent values. The only samples which will be affected in

any way by this program are those single sample spikes larger in size than

the specified minimum. This minimum, of course, may be carefully altered

where it appears from outputs that the program is not operating at best

efficiency.

7
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PART III: SELECTIVE FREQUENCY REJECTION

Complex Plane Frequency Representations

11. The discussion in this section relates graphical frequency rep-

resentations to Fourier series theory and Laplace's generalization of this

theory. (See a text such as LePage2 for background. Additional informa-
1

tion may be found in Blackma.n and Tukey, pp 252-258.)

12. The Fourier frequency variable w (expressed in radians per

unit time) is related to Laplace's s , a generalization of w , as fol-

lows: e is a generalization of ejwT (where T is the sampling

period, a constant)y, and s = a + jw , where:

Ss is called the "generalized frequency variable"

Ia is the real component of s

h j is the imaginary operator -

w is the frequency variable, and the imaginary
component of s

Therefore, s is a complex number, the value of whlich is represented by the

ordered pair of real numbers (o,w) (see fig. 4). While itself real, w is

used in this terminology as the multiplier of j in the s plane. When

a 0 ,s = jw ,and esT = e j wT = z . In this specific case, values cf

Sa- + jW

++

...... ... . . .

Fig.

Fig. 4. s plane representation of frequency

8
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z vary as changes, since T is a constant.
!i 13. The s plane is used to define values of s ,the generalized

frequency variable. If the function -e of the independent complex

variable s is plotted on a second complex plane (the z plane) as s

follows a path along the s plane imaginary axis from (O,-n) to (On),

the unit circle %modulus, jzj = 1) will result (see fig. 5). This map-

ping is done through the use of Euler's identity, e = cos WT + j sin TI ,

where WT is the phase angle on the z plane. This angle represents

-+j

+ g

Hm

Fig. 5. z plane representation of frequency

that portion of a full cycle or period at any frequency f which would

be completed during one sampling period T . Half the unit circle (rr

radians), then, represents folding frequency fN since folding is

half of the sampling frequency, and only half of a cycle would be

completed during one sampling period. In terms of folding frequency:

I T = 2TrfT = 2rf 1fNf (1)
I2f f

1N N

Zero frequency is represented by z = (1,0) , and folding frequency by

z - (-i,0) . Values of frequency between zero and folding are represented

by wT intercepts between 0 and r on both the upper and lower halves of

9
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the unit circle, reflecting the band limited nature of frequency spectra

for discrete time series. Complex conjugate values of z (conjugate val-

ues from above and below the real axis) are used to produce real coeffi-

cients in the synthesis of filter polynomials. If T is taken as unity,

W becomes equivalent to the phase angle on the z plane. (Additional

discussion of frequency representations may be found in Robinson and

Treitel.3)

Filter Synthesis

14. An important usefulness of frequency representation in the z

plane lies in its adaptability to filter synthesis Digital filters may be

expressed as a ratio of two polynomials in z , where the roots of the

numerator are zeros, and those of tht denominator, poles (Shanks, pp 35-

41). For simple single frequency rejection filters, zeros and poles may

be determined by examination of the unit circle in the z plane. Because

frequency rejection is desired, values of w (represented by z plane

points on the unit circle) must cause the filter function (the ratio of two

polynomials) to go to zero at the appropriate frequency. This is done by

the choice of a zero or zeros on the unit circle. All other values of w

however, must produce a filter function response as near as possible to

unity, since distortion of nonrejected frequencies is not desirable. The

selection of a pole or poles just outside of the mit circle at the same

phase angle(s) as the zero(s) will produce this result, at the same time

keeping the function stable. (Because z plane representations of w

(where a = 0) are confined to the unit circle, the filter function will

not become infinite at any considered point.)

The Zero-Frequency Rejection Filter

15. An offset oscillating time function can be made to seek the zero

displacement base line as its equilibrium position by application of a

zero-frequency digital filter designed by the method outlined in the pre-

ceding paragraph. As shown previously, zero frequency is represented by

10
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the point z = (1,0) on the unit circle. The linear polynomial having

1 + jO as its root is 1 - z , which will be the numerator of the zero-

frequency rejection filter function. Choosing a pole value on the w = 0

radial but just outside of the unit circle, we have z = (1.01,0). The

linear polynomial having 1.01 +jO as its root is 1.01 - z , the denomi-6

nator of the zero-frequency reject filter function. The filter function,

then, is:

F(z) z (2)1.01 - z

1.6. A recursive algorithm (Shanks,4 pp 34-35) may be used to apply

this filter function to an input time series. The general recursion equa-

tion for rational filters is:
K L

Wherea axausrersn by (3)

Yn: u n-u" r n-
u=O v-i i

Where a values represent the coefficients in the nmerator polynomial,
b values represent the coefficients in the denominator polynomial,

x values represent input displacement samples, and y values represent

output displacement samples. The values of u and v are taken from the

powers of z associated with the coefficients of the filter function poly-

nomials, and n is the sample number of the- output displacement sample

being computed. K is the maximum power of z represented in the numera-

tor, and L the maximum power of z found in the denominator. The coef-

ficient of the first term in the denominator b should be unity. Where

this is not the case for a particular filter function, both numerator and

denominator are divided by the initial value of b0  (excepting the case

where b0 = 0) to bring b0  to unity.

17. In the case of the zero-frequency rejection filter function,

numerator and denominator must be divided by 1.01, which gives:

F(z) = 0.990099 - 0.990099z (4)

1 - 0.990099z

By application of the recursion summation (equation 3):

11



Yn= O 990099xn - 0.990 099xn_1 + 0.990099yn.1

Yn = 0'990099(xn - 1 + yn-l) (5)

Equation 5 may be used directly in an appropriate computer program to re-

move the zero-frequency component from a discrete time series. The recur-

sion method of application for this filter has the advantages of speed and

accuracy as compared to other methods of filter application, because the

consideration of a previously computed output (yn_l) and one previous in-
put value (xn.1) for each output computation (yn) eliminates the need for

consideration of a very long (theoretically infinite) series of previous

inputs for each computed output value. A single operation (called a

"pass") with this filter brings an offset wave to the base line exponen-

tially. Thus, early displacement values in the time series are only

slightly shifted, and the once-filtered wave may appear to have a "warp"

similar to that of a very low frequency harmonic. A second operation, this

time on the time reversed output of the first pass, will correct this

situation (Shanks, pp 41-42). The phase response of this "two-pass" fil-

ter will be zero for all frequencies. The amplitude response is shown in
fig. 6.

The Single-Frequency Rejection Filter

18. Where a single frequency has been identified as spurious, it may

be removed from a discrete time series by an operation only slightly more

involved than that used for the zero-frequency rejection filter. From

equation 1 (with the sampling period T taken as unity), it is seen that

the angle w which represents any temporal frequency f is dependent on

the ratio of that frequency to the folding frequency. Recalling that fold-

ing frequency is equal to half of the sampling frequency:

21Tf5 (6)

12
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Say that the frequency to be rejected is g6o Hz,* and that sampling fre-

qiiency is 12,000 Hz.

V * 2'(9 60) = 0.5026548 radians = 28.8 deg
12,000

The points of intercept of w (plus and -minus) -with the unit circle areI I zeros. The projections of these points on the two axes of the complex

z plane (fig. 5) are:

1 = +1 cos w = +cos 28.8 deg = +0.8763067

V =+l sin W +sin 28.8 deg +0.48i7537

For ples Iz =1.01 on the same, radials -as the zeros:-

i1 1 = +1.01 cos w +1.01 cos 28.8 deg = +0.8850697

v +1.01 sin w = +1.01 sin 28.8 deg = +0.4865712

Therefore, the zeros and poles of a digital filter which removes 960 Hz

from data sampled at 12,000 Hz are:

two zeros z = 0.8763067 + j 0.4817537
z = 0.8763067 -j o.4817537

z = 0.8850697 + j 0.4865712
z = 0.8850697 - j 0.4865712

To determine the filter function polynomials, form equations of the lowest

possible degree (with real coefficients) which have the above values of z

for roots. The numerator polynomial is formed from the two zeros; the

denominator polynomial from the two poles. For this filter then:

• A coon noise frequency--the result of a 60-Hz source and a 16:1
digitizing tape speed ratio, as in plate 9.

i
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2
F(Z) 1 1 .7526134z + z2

1.0201-- 1.7701395z + z

Dividing both numerator and denominator by 1.0201 to bring b = 1 :

2F(z) 0 .980296o,- l.71080z + o.98296oz 2

1 - 1.7352608z + 0.9802960z 2

Putting F(z) in recursive form by the use of equation 3:

y = 0.980296ox - .7188ox _. + 0.9802960x
nn n- n-2

+ 1.7352608yn1 - 0.9 8 029 6 0Yn2

Because the above filter function polynoials are quadratic, the recursive

form of this filter must consider input and output samples up to two sample

periods previous to the present input. It nevertheless retains great speed

of computation by comparison with other methods of filter application.

Applied by the two-pass method, it is a zero phase filter. Amplitude re-

sponse is shown in fig. 7.

19. It is not necessary to go through all of. the foregoing steps in

the synthesis of a single-frequency reject filter. The recursive equation

for any reject frequency/sampling frequency combination for w will always

take the form:

= 0980296X Ax + 0"9802960Xn-2

y.98029-1 n-2 +By n-2

where

2 cos ('f
SA = 1.0201

1 2Trf2.02 Cos
( ( )

B = 1.0201

As an evidence of the exponential nature of this algorithm, recall from

Euler's identity that it can be shown that:

el + e'JW

15V_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



For rejection at --960 hz m8
12,000 hz -oo

j A ~~1.0__ _ __ _ _ _

o.6.-_ _ __ _ _ _

V TI

0.2 -

0 0,~1 0.2 0.3 o40.5

f ~ = frequency as a fraction of sampling frequency

Fig. 7. Amplitude response of single-frequency rejection filter
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PART IV:, Lw-PASS FILTERS

'Filter synthesis

20. Low-pass filters are a virtual necessity where many high noise

frequencies accompany shock data. Obviously, a filter function must have

numerous zeros if the represented filter's response is to be kept very near

zero over a broad band of frequencies. This requirement can lead to filter

functions with many terms and coefficients. Whittlesey5 suggests an alter-

native to the use of multicoefficient filter functions. Simple filter func-

tions may be used in series to form cbmposite low-pass filters. This ap-

proach limits the choice of low-pass bands to certain specific fractions~

jof the sampling frequency, but filter operation becomes relatively economi-

cal, and the routine can be two-passed to eliminate phase distortion.

21. Four composite low-pass filters may be constructed by a proper

combination of the following components:

Operator Operation to be Performed to Filter Function
Designation Yield Each Displacement Output (z 'Plane)

S1 Yn = niF(z) = 1 + z

S2 Yn = x n + x-2 F(z) = 1 + z2

S3 Yn = xn + xn-3 F(z) = 1 +z3

s14 y = x + x F(z) = 1 + z4

s6 Y = X + X 6  F(z) = 1 + z6I 8
S8 + F(z)=1+z88Yn =Xn + n82

SX Yn = Xn + Xn-i + xn-2 F(z) = 1 +,z + z

R3 y =O0.-43 (x ~ ) ~F(z) = 1.43I R3 Yn =  .3( n - Yn.3) + xn  F3)
1 + 0.43z3

R6 Yn 10.36 (x.6 F(z) =

n-n+X1 + 0.36z6

R9 y = 0.32(xnYn.9)+xn F(z)= 1.32

1 + 0.32Z9

R12 Yn = 0.324 (xn - _n12) + xn  F(z) = 1.324

1 + 0.324z12

An operator with an "S" designation is a summing operator; one with an

B 17
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"R" designation is a recursion' operator; Amplitude response plots for

these operators are shown in figs. 8 and 9. (Background information on

responses may be found in Blackman and Tukey, sections 17 and B17, and in

Whittlesey,5 pp 555-556.)
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22. The zeros of a composite filter are the zeros of the summing

operators which are included in the makeup of the composite filter. A

recursion operator is used in each composite filter to "square up" the low-

pass band of that filter's response curve. One gain (amplitude) correc-

tion is made to each composite filter's output following the series of

summing and recursion operations.

The Low-Pass Options

23. The option 1 low-pass filter uses four operators in the following

sequence: Sl, SX, S2, R3. The operator Sl is applied at each displacement

sample x in the wave to be filtered, to produce an output sample. Then

series of Sl output displacement samples is then treated as input to the

SX operator. Each succeeding output is treated as input to a following

operator until the series is complete. An output from the R3 operator for

the option 1 low-pass filter has been amplified twelve times by the series

of operations. 'For this reason, each final displacement sample is multi-

plied by the gain factor, 1/12. A second operation of the entire filter

I series, this time on the time reversed output of the first pass, brings

1phase response for all frequencies to zero. The amplitude response for the

two-passed option 1 filter is shown in fig. 10.

24. Each of the remaining options uses operators and a gain factor

as shown in proper sequence below:IOption 2: Sl, SX, S2, S2, s4, R6, 1/48

Option 3:. S1, SX, S3, S2, s6, R9, 1/48

Option 4: S1, SX, S2, s4, S2, s8, R12, 1/96

I Each filter is two-passed to eliminate phase distortion. Amplitude re-

sponses for options 2, 3, and 4 are shown in figs. 11, 12, and 13,

respectively.
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PART V: USE OF THE FILTER SET

General

25. The filters described in this paper depend for operation upon

data inputs which are sampled at equally spaced times. An examination of

the various response curves shows that the filters' frequency characteris-

tics are dependent upon sampling frequency. If sampling frequency is rela-

tively low, response curve roll-offs and rejection notches affect fewer

frequencies than would be affected if sampling were faster. Where signal

and noise frequencies are in close proximity, careful comparisons of proc-

essing requirements and response curves should be made before sampling fre-

quency is selected.

26. Plates 1-10 show examples of digital data improvement using the

filters described in this- paper. Each plate has been labeled to show gage

type, sampling frequency, filters applied, and computer time used in the

filters. Where integrations are included with gage data, they are produced

from raw or filtered gage outputs. No filter has been applied directly to

any integration output.

Random-Spike Rejection

27 Large single sample spikes affect data plots as shown in

plate 1. The computer-set scales for the accelerometer plot create a low-

amplitude data presentation because of the spurious spikes' high amplitude.

A second problem is seen in the integration to velocity; the spikes have

distorted this curve. Plate 2 shows the same data after operation of the

random spike rejection filter. Where used, this subroutine precedes

frequency filtering operations.

Low-Pass Operations

28. Plates 2, 5, and 7 show data affected by high noise frequencies,

while plates 3, 6, and 8 show the same data after application of
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appropriate low-pass filters. The strain gage data in plates 7 and 8 were

sampled very rapidly because it was included on a tape with accelerometer

data. Use of the option 4 low-pass filter was necessary in this case.

All four low-pass options are included in one NWED subroutine.

>1 Selective Frequency Rejection

*111 29. The integration to velocity in plate 3 clearly indicates accumu-

lation of area between the accelerometer plot and its zero ordinate--i.e.,

an offset. This offset, though very small, distorts the integration plots

which are intended to represent particle velocity and displacement. Plate 4

shows the same data after application of the zero-frequency rejection filter

to the accelerometer output. This filter should be used with care, since

surface waves, if present, are likely to fall in the rejection notch. Also,

success with zero-frequency rejection depends on signal oscillation which

centers approximately on its trace's equilibrium position. Large offsets

are handled by making an estimated base-line shift before filtering.

'30. The 960-Hz periodic wave on the stress signal in plate 9 has been

removed in plate 10 by application of the single-frequency rejection filter.

Note retention of the sharp peak at 1.2 msec. This characteristic would

have been eliminated by low-pass filtering for the 960-Hz noise.

31. The subroutine containing zero- and single-frequency rejection

filters is applicable to noise frequencies which are periodic over the

time history to be plotted. Its usefulness for particular jobs should

be determined from examination of frequency spectra and response curves.
Rejection notches may not be overlapped where any frequency between the

intended frequencies must be retained at full amplitude.

Exercise of Judgment

32. Digital filters are quite powerful. Nevertheless, they are like

other tools in that they may be misused. Though the filters here discussed
are applicable to digitized time histories in general, their blind applica-
tion to all data will only waste time and money. Professional judgment

must guide filter use.
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