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ABSTRACT

The radistion from slot antennas on a cone in the presence of an inh wmo-
geneous sheath is treated. The sheath is considered a&s being made up of one
or two conical layers, each of which is homoyeneous. The boundary conditions
lead to a system of integral equations, which number 4M#4 for a sheath compozed
of M (= 1 or 2) conical layers. These are reduced to singular integral
equations of Cauchy type, which are solved in iterative fashion. For suffi-
ciently fine stratification of the sheath, the first iteration should suffice.

In general, fields of both magnetic and electric types are generated in
the presence of a sheath, even though only a field of magnetic type may be
generated in free space. For a ring slot, however, in which the excitation is
azimuthally symmetrical, only a field of magnetic type is generated even in
the presence of a sheath. It is shown that the solution for this case forss
the basis of the solution for the general case.

In general, evaluation of the integrals mus: be accomplished by contour
integration, which leads to series expansions that are not convenient for
numerical evaluation. Por thin layers, however, Taylor's series expansions
allow all but one of the coefficients to be evaluated in closed form.

The far field i{s found by a sulti-dimensional saddle point evaluation.
This is illustrated in detsil for the free-space case, and then the far field
patterns in the presence of a sheath are determined. This can be carried out
successfully for all compenants, and to arbitrary orders of fteration.

The calculation of input admittance and mutual coupling between trans-

mitting and receiving slots on the cone {s formulated and methods of
calculation are discussed.
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SECTION 1
INTRODUCTIOCN

The fonized sheath which is formed around a high-speed vehicle or
aissile in the upper at=mosphere has a profound effect cn the transaission
of electromagnetic waves through it. This is canifested, for exzaple, by
the blackout of transmissions from a space vehicle wkich occurs upon re-entry
into the atmosphere. This Plackout ia accompanied by a large change in
izmpedance of the on-board transaitting antenna due to the reaction of the
asbient =ediun, as shown by fn-flight VSWR measure=ents. The antennas on
such vehicles are typically waveguide arrays of resonant longitudinal slots
The vehicle is typically conical in shape, 2nd transmitting and receiving
antennas are positfoned alternately arcun! the cone. At high altitude the
sheath is confcal fn shape, due to the conical form of the shock wave.

The effects of a plasma sheath on antenna radiation and propagation
have been studied intensively for slotted cylinder anternas [kef. 1] and to
2 certain extent also for spheres [Ref. 2]. In those problems, the formula-
tion is not difficult because the discontinuity in the external mediu=
occurs in the radial coordinate, and this does not affect the separability
of the wave equation or orthogonality of the functions involved. For the
conical geometry, however, orthogonality does not exist, so that the
problen becomes more complicated. In fact, 2 solution of the electromagnetic
boundary value problem of a conducting cone covered by a dielactric or
partially conducting ccnical sheath has not appe2red heretofore. This has
led to the approximate representation of the sheath as an {nfinitely thin
conical impedance discostimiity. Pridmore-Brown [Ref.3] treated the case
of 2 magnetic dipole antsnna (loop), znd Batos, et al [Ref. 4] treated the
case of an axial electric dipole in the presence of such a sheath. Their
analyses, however, were possible only because of the infinitely thin
fdealization of the sheath, and for special variations of sheath impedance
vith the radial coordinate R.

A promising new approach to the solution of the sheath problem was
developed in a previocus report [Ref. 5]. A omethod of using the Kontorovich-
Lebedev (X-1) transform [Ref. 6] was proposed to solve the integral equatious
vhich represent the formulation of the boundary value problea. This method
is developed successfully here, leading to a technique for solving the basic
problea.

In Sec. II, the basic formulation of the problem fs developed. Although
the work statenent of the present contract eéncompasses the investigation of
single- and double-layered sheaths (two~ aud three-mediun environaents), the
formulation of the basic equations is carried out for a sheath composed of M
layers. Consequently, the geometry considered is that of an infinite perfectly
conducting cone provided with an infinitesizmal radial slot, the cone being
overiaid by a sheath consisting of a succession of conical layers, each of
vhich has an arbitrary complex dielectric constant which is constant throughout
a given layer. The angular thickness of a given layer is arbitrary, as is the
nuzber of layers. The fields in each layer are expressed in temms of magnetic
and electric Hertz vectors, and an integral representation is eaployed for the
Hertz vector of each type. Apnlication of the boundary conditions at the cone
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and at each layer boundary, together with the requirezent that the field in
the anbient oediun be finite along the cone axis, then results in a2 systex of
4(4+1) coupled integral equations, where M {s the nuzber of layers in the
sheath. 17his cystea of equations constitutes the formulation of the problea.

In Sec. III, the 3implest problen of a single-layered sheath {s considered.
A ring source, with an excitation which {s unifora in azimuth, is considered
first, since ft turns out thaz the solutfion for this case {s the basis of tha
general solution. 7> this type of source, only a field of =agnetic type iz
generated. Each integral equation is coaverted, by means of the K-L transfor=,
to a singular integral equation of Cauchy type. The systen of these squations
then can be reduced te a single equatfon of Fredholz type, which can be solved
in the usual canner by iteration. It {s shown that the nth fnteracion is 0(&7M),
wvhere

& = 1-p%, e *valvy,

vhere vy, and y, are the complex propaga:ion constants in the sheath and in the
surrounding mediuz, respectively. In genera}, the evajiuation of the integrais
ir the solution has re be 2ccomplished by contour integration. This leads to a
series type of solution in terms of tha residues at singuizricies of the
integrand. These include the zeros of the Legendre functions as a functioa of
degree. Accordingly, a2 coaputer program was ceveloped for the computation of
these zeros. The analysis simplifies considerably when the sheath is chin.

For this case, the angular functions are expanded in Taylor's series in the
angular thickness, ¢, of the sheath. It turms out that the first approxization
is G(# ), and that the integral equatiocn caz be solved in closed form to this
order.

The case of & slot source is taken up nexz. This involves fields of both
electric and magnetic typei. The systex of Cauchy type integral equations is
reduced to two integral equations, which may be called the excitation and
coupling equaticas, respectively. The coupling equation gives the coupling of
the electric-type £ield tc that of magnetic type at the sheath boundary, while
the other expresses the excitation of the magnetic-type field by the source,
including the effect thereon of the electric-type field. I the case of a
unifora sedfua (i.e., no sheath) tte electric-type field is zero, so that only
& magnetic-type field is generated. The excitation equation again may be
reduced to an equation of Fredholn type, the zero-order terz being just the
zero-order tera for the ring source. Froa this zero order term, the electric-
type coefficient can be deternined to first order, which i{s 0(§). This first-
order electric coefficient then allows the reaction on the excitation of the
magnetic coefficient to be found, which is O(F). For the case of a thin
sheath, the magnetic coefificient is determinable in closed form, but the electric
coefficfent involves an integral which cannot be evaluated in closed form,
although an asymptotic evaluation {s obtained later in Sec. V, in connection
with the datermination of the far field.

In Sec. J¥, the extensicn of the analysis to the case of a two-layer
sheath {s wurked cut. As in Sec. III, this is carried out first for a ring
source. Agairz, an exact evaluation of the resulting integrals requires contour
{ntegration, which leads to a mltiple series type of solution. For (angularly)
thin layers, hovever, the integrals again can be evaluated fn closed fora for
the smagnetic-type coefficients, but not for the slectric-type coefficients.
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In Sec. V, the far fields and patterns are calculated. The sethod
eaployed {s the sulti-dizensfonal saddle point =ethod developed by Van der Pol
and Brec=er. This {3 worked cuf in detail for the frece-space c2se. The case
of a single-layered sheath {s then taken up. In this case & comanlicaticn
arises because the integrand possesses poles, a situation which does not appear
to have been treated adequately before. A method for dealing with this situation
is developed, and applied to deter=ine the fields of both a ring source acd a
slot scurce in the presence of a thin sheath. The uecessary extension for
sources of finite extent is also worked out. Although not carried out in detail,
it {s pointed out that the techaique fs applicable to sheaths of arbitrary
thickaess, as well as to the case of a =multi-layered sheath.

In Sec. VI, various possible extensions of the nethod of analysis developed
in this report are pointed cut. The calculation of input ad=ittance and
coupling between adjacent siots, both of waich were formulated in a previous
report [Ref. 5] favclves the near fields, se that asymptotic expansions caanot
be used. The evaluation of the integrals oy contosr integration can be carried

out along the lines eaployed in Sec. III. Alternatively, numerical evaluation
of the integrals would be required.

R

Sec. VII sumzarizes the work accompliished. Various zathexatical develop-
zents and the computer prograa for the Legeadre function zercs 2re presented
in Appendices A-D.
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SECTION II1

FURHULATION OT INTEGRAL EQUATIONS
2.1 GENERAL CONSIDERATIONS

For a conical geometry, a spherical coordinate systea (R,5,9) is
appropriate. The reduced wave equation then can be separated only if
the electrical properties of the medfun do not depend on the angular
variables 8.9. Hence, for an inpifed time factor e*®

K* 2 ~dmp (e we)

car depend at most on the radial variable R. An infinite cone covered

with a conical sheath, in which %k depends at =ost on R, is thus a separable
proble= in sgherfcai coordinates. Thus, in order to achieve a separable
formslatican for the practfical case where the sheath properties vary wit 8,
it is necescary to represent the sheath as a succession of conical layers,

in each of which k does not depend on §. In principle, it is possible to
spproach a continuous variatfion of % with § to any desfired degree of
approx{z=ation by ezploying a sufficient nuaber cf layers.

As the first step in solving the sheath problen, the case of a sheat.
whose electrical properties are invariant in the radial direction will be
ccusidered. The case of an infinite cone will be considered in this report.
The formulation of the equations for a sheath consisting of M uniform
conical layers, as in Fig. 1, will be carried out in this Section. The
solutioa of these equations will be carried out in Section 1I1 for the case
of 2 single layer (M=1), and fn Section IV for a double sheath (M=2).

A general type of field may be expresszd zs a superposition of electric
{T¥) and magnetic (TE) =modes, derfvable froa respective Hertz vectors RII' R.x
If k is independent of R, the eleztric and magnetic fields are 31ven by

E® = K'¢url curl (REY -iwpH® = kcurl ]
£ L kY (gx @.1)
E® = corl (#%7) -impH” = curl curl (RTT™)
RI€, RO™ each satisfy the differential equaticn
2
Mt -a—(‘;“ i.h 0._;_ f‘ﬂ.gumcs (2-2)
FY S SXWY BT 2isiats it = -~

vhere the inhomcgeneous source fterz= $ is different, in general, for the
electric and magnetic modes. Solutiocns of (2.2) then « s1 be expressed in
ter=s of solutions of the ~orresponding homogeneous equition. Separation
of variables by setting

RT = R T(§ UR)V(e)
ther leads to the differentfal 2quations

._d.(g‘.Q) . (xR3-s0U=0 (2.3a2)

m a5+ [2- )= 0 (2.3b)




1 Ceometry for a theath of M conical layers

Fig.

PR RRTUPCUE NIFT TN




'

%% +nV =Q (2.3c)

where s° is the separation parameter which couples (2.3a) and (2.3b), and
n® is the separatjon parameter which couples (2.3b) and (2.3c). For a
geometry unbounded in the g-coordinate, as in the cases considered here.
n is an integer.

In general, a solution of (2.2) has to be built up from a superposition
of solutions of (2.3a-c) corresponding to a continuous range of the separation
parameter s°, leading to an integral representation. A method for evaluating
the coefficients in such integral representations was proposed in reference 5.
The basic machinery for accomplishing this stems from the K-L transform. This
method will be extended in this report to attain a solution of the boundary
value problem.

2.2 FORMULATION

The antennas of interest in the present problem typically are longitudinal
slots or waveguide arrays of resonant longitudinal slots. The radiation
problem of such an array can be found quite simply once the pattern due
to a §-function slot is known. If the field of the iatter at a typical point
is doanoted by Eg, then the field due to the array is

Q R
E = fdq.f €4 #(Ro9)dRs (2.4)
L ) R,

where f(R,,® ) is the distribution of applied field over the array, and R , R;
and @, ,, are the bounding ccordirates of the array. Consequently, the
problem is essentially solved once Eg has been found, since only the integra-
tion of known functions remains. Therefore the analysis to follow will be
concerned with finding the field due to an elementary longitudinal slot at

(Ry %), for which the applied field is given by

Eql8,) = Eo 5(R-8) 5(@-@) (2.5)
For reasons which will become apparent below, we now choose
$? = (v-ID(Vt'%) = V2 -V (2.6)
Por convenience in the applicatic—~ of the K-L transform (see Appendix A),

the two independent solutions of th. spherical Bessel equation (2.3a) that
will be employed here then are

L,ER 8K I, (vR) (2.72)
&, ()= R4 K, (70 (2.7b)

vhere
=ik (2.7¢)

I, 1is the Bessel function of the first kind of imaginary argument

AR A i > 0
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L(sR) = e "2 T, ,4R)

and ¥, is the Macdonald function

1.,(7R)-1,(¥R)
K@) 2 § e (2.8)

The product

iv({wﬁv"f R)
in which

R¢ = R, R> = R, for R < Ry
Rc =-Ry, R> = R for R > R,

then is the appropriate solution of (2.3a) to represent a 6-function source
at R =R,.

For the two independent solutions of the associated Legendre equation
{2.3b), the associated Legendre functions

£ =P, lcos®

(2.9)
g 2 Py (cos®

will be employed because they are even functions of v and the first is
finite at 8 = 0. Again, this choice is made for ready application of the
K-L transform. These functions are represented here by o, ¢ for
compactness.

The trigonometric functions sin np, cos np will be employed as the
independent solutions of (2.3c).

Consequently, the basic form chosen for the Hertz vectors is

- . )
,R;",:“,g?;éla‘f"9)‘."'!19«)1;(1&)6.:;“( vdv (2.10)
where @ and 3 are runctions of the integration parameter v, and

I, mr30
€-'<2' a>0

The contour C and the choice of sin np or cos mp are dictated by the boundary
conditions. As will become apparent when the boundary conditions for E_ and

H‘P at the cone and sheath boundaries are expressed, cos np will be required
for RN®, and sin np for RI®. Consequently we adopt the formulation

RUF = 3 1(0; prBia), isgRAE (4RI Eucosn@v Y (2.11)
RIS = io { (6;1 + 8:9), 44 (1R) 4, (x:R) €n sinn@vay (2.12)
[4

where the subscript {1 refers to the ith layer of a multilayered sheath, and
( ), denotes that sll quantities within the parentheses are functions of v.

!
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2.3 BOUNDARY CONDITIONS

At the sheath boundaries 8 = 6, , the tangential components of the fields
must be continuous At the cone, the applied azimuthal electric field, E,‘p,
is given by (2.5), while the radial electric field, Eg, vanishes. To
complete th& notation, to the angular functions ¢, ¢ we affix subscripts

denoting the B6-boundary. Thus, for example, at § = §, we write, in accordance
with (2.9),

, = Py, (€03 8,)
* nicos } (2.9a)

Qe = P*."‘h (-cos9,)

Corresponding to the boundary condition (2.5) at the cone, 8 = 8,, we
obtain from (2.1) and (2.11)

- ‘t.,{(a, 0+ 8 40, iy (WRIR,(R,) ¢, cosne v 3v e E, SR-R) i@ (2.13)
vhere primes denote derivates with respect to 6; i.e., for example,
ro [ oon ]
0. z [” P'..‘(COSD) .,..
Corresponding tu the vanishing of Ep at 85, wve obtain from (2.1) and (2.12)
L 6+ 2100, R &, (1R )€ sinng 949 = O (2.16)
(The ¢ f{s superfluous here, since the n = 0 term vanishes; it was used in

(2.10) for symmetry.) Multiplying (2.13) by cos mp, (2.14) by sin mp, and
integrating over ¢ betweern -t and n leads to

-3 5(0,#5. @) A, (6RO A, (hR) vy = 2% E, ${R-R) (2.15)

J Gt Bi8), Ls0R) 24 R) vdy =0 (2.16)
for each valuye of n. (2.16) is of the same form as (2.15), but with E, = 0.

From (A3a) of Appendix A we have

: | .
S(R-RYT —gieg J AV R vde = S LMy (21D

)
If (2.17) is inserted on the right side of (2.15), the following deductions
may be made:

(a) The contour C may be identified with the imaginary axis, or a

contour reconcilable thereto (f{.e., wichout crossing singularities. of the
integrand).

(b) The integrand of the left-hand integral beliaves properly at
infinity of the imaginary axis to insure boundedness. in parti-ular,

(c) Yy, may be considered as real.

(d) Froam the K-L transform property of the §-function, the integrand
is an even function of v; this means zhat @, , and 8, are even functions of v,

since g and g were chosen to have that property. Thus, it is not necessary
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to distinguish between Rc and R> in the radial functions; either

sk, R Ry R

or

AdTR) Ly (%R)

may be used interchangeably in (2.11), (2.12) and succeeding integrals. To
show this, consider

R = § E() iyt B, (x)vdy
L

vhere E(v) is an even function of v. By replacing X,(y R) in (2.7b) by its
definition (2.8), this becomes

. . . . v éy
d= ;S‘ EM 0 [ 4,0, 4,00] e

Changing the sign of v {n the first terz, we obtain

,T . . . . véy - . ‘
d 2§ 3 e[, 0 dy(0) =20 18] Juve = :S.s@u,wbws 3
A .

(e) By equating integrands on both sides of (2.15) (or, equivs-
lently, by taking the K-L transform), we obtain

(ag+84) = ¢, (2.18)

te-te RUE, (2.19)
Similarly, from (2.15),
{¢,ptde)=0 (2.20)
where 4, and &, are even functions of wv.

At the sheath boundaries, the boundary conditions require that Ep, Hg,
Eq,. Ho be continuous., Writing

Tk 14
} (2.21)
Y 2 %R,

these lead to the respectfive equations

2 % [;l"“;"' + &;¢), i,(x‘\k,(y‘)v%(‘w""‘g), L )R (g )]vév=0 (2.22)
aot
-0l 1Gip ¢ Bigd, a2 bty = (G 54 Bivs 4, 50150 B (1)) 19 = O (2.2

Il Al 0 bty - 3 (Gt r 88, 0ty )

(2.24)
L0 m ), 4,00 By y) = (Qz 7 48 g0), 4,008, 7., 0] vy =0
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vhere
N; = in/sin§; (2.26)
iytrre e (4,100] (2.27)

For the ambient medium in an M-lavered sheath, which includes the cone axis

§ = 0, finiteness of the field requires that the coefficients of ¢, vanish.

Hence
B, =0 (2.28)

8,0 (2.29)

The set of equations (2.18), (2.20), (2.22}-(2.25), (2.28), (2.29)
represent rthe formulatfion of the boundary value problem. The method of
solving the integral equations to determine the spectral densities 4, B,
¢ , & will be carried out in Section III for the case of a single layer,
and {n Section IV for a two-layered sheath.

10
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SECTION 1I1
SINGLE-LAYERED SHEATH
3.1 BOUNDARY EQUATIONS
For a single-layered sheath, the boundary equations of Sectfon II

reduce to the following six equations, where (2.28) and (2.29) already
have been applied:

(a9, + B.42), =& (3.1
(€.f +Bg) =0 (3.2)
g“‘-‘lo’[,l‘(t'gva,g.), ‘,(x.\i,(,.)-.,i'(c,,ﬂ’i,u,)&(,l)] vy = O (3.3)
;("&)[(Q.f."\9),.4'.(1.)&(,,)-(d;f‘),g(xdi,(w}-l!) =0 (3.4)
¢ .¢ H .
[l prBe) KL - 3 (69, L0k, lye) G.5)
- [(a,p/v ), 1000 2,1y) - (0,00, i ks ) vdw = O
{{[r,(c,fh 8,4), str2kiy) ~ 9,16, 2,0 Ry lyy] (3.6

+N {0, 0B, Dt Rty = “Ua), iy ) Rty 1 }ady = O

Since the righZz side zf £1.1) i{s a constant givenm by (2.19), it is
apparent that %4, sust contain z factor 1/ and B, a factor l/¢.
Simflariy, fror (3.2) it follows chat 6, and & must contain the factors

l/f. s1/g,. cpspectively. For later convenience, therefore, the notation
is revised #’ightly at this point by defining

A, = (Gg), biy)

A, = Qe Ay

8, = (6,q.). katy)

¢ = (Biplduly,)

G = (€, Rty

D, = (8,4, Ry,

t, = LRty J

In addition, we introduce the paraseter

A 2

3.7)

4 '73/'- b X;/‘. "z&. (3.8)

and demole ¢; by x, and y; by y. It will be sssumed provisiona]lly in the
solution «f the integral equations that p is reazl. The justification of

this wiii csme {n the eventual integration over R, which is to be performed.

The boundary =quations (3.1)-(3.6) then become

11
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(A,+8) =& (3.1a)

i<, +D) =0 (3.2s)
$0r%) EAT VN a%,".xw)-%(Cgf.)vL,(Px)]idi =0 (3.3a)
(3.4a)

2(’"‘) {,(Auf‘/f: + 8.&:/{.:) Ag(e) - (’&1-)1 i'(f£)]\"f =0
H . | -
HNGZ (Covper DAY 103 (i), i 1p0) (3.5a)
- [(A‘f:/f:’ &ng i,b() ‘(A“P'I)u “'(?x‘l } +4=0
S{nlCos/80s gD a8 = £1CoD, Belp0
+ NLA o/ +B.q/8), 100 - (A, ), ) (0]} v47 = O
Prom (3.1a) and (3.2a), it is evident that the source generates only a
=2gnetic-type field 2t the slot. Ccupling between magnetic- and clectric-

type fields occurs only at the sheath boundary through the E, - and RQ-
components, as expressed in equatioms (3.52) and (3.6a), respectively.

(3.6a)

A special case of interest is that of a ring source, in which the applied
field is circularly syszetrical around the cone. This special case will be
considered first, as it permits the solution of the integral equations to be
developed in its simplest form. It also forms the basis for the general case.

3.2 RING SOURCE

For a circularly symmetrical ring source, (2.5) for the appiied field
becomes

Eql8) = E, ${R-R¢) (3.9)
The field is then independent of the g-coordinate, so that only the n = 0 term
in the representation (2.10) is required. The terms containing the factor
N, in (3.5) and (3.6) thus drop out, so that no coupling between electric-
type and zagnetic-type fields takes places at the sheath boundary.

Consequently only a magnetic-type field is transmitted through the sheath,
as in the free-space case.

Thus, for the ring source, boundary equation (3.5a) reduces to
S U /gl e 8, 00/50), 1,00 - (A, 4, (p0)} v dv = O (3.10)
vhile (3.2a), (3.3a), and (3.6a) do not apply.
3.2°1 Solutfon of the Integral Equations
The technique for solving the integral equations (3.4a) and (3.19)

is based on the K-U transform, as shown in Jdetail in Appendix B. Taking the
K-L transform of {3.10) with respect to x, we odbtain

12




~ v s

(A, f,’/g,’ ¢ B, ,"/9'),‘ = ;‘: E‘, (Az"')' )q’(p,i;?) dv {3.11)

vhere u is a typical point on the imaginary axis, the contour C, is parallel
to and to the right of the imaginary axis, as shown {n Fig. 81 of Appendix B,

and H(u,v;p) is defined by

Wiy v;p = £ 1recwp (e

The coefficients cp(v,p) are given by (33) of Appendix B. ¥(u,v;p) has
singularities ar v = {,-2n. 1t is an even function of 1, but not of wv.

! ) (3.12)

1?2--«. * e zmen

Similarly, the transform of (3.4a) yields

(p*-R) (A, 1/l + 8, 0./50, =-'-SH*-74> (Aapd, ip ;00 dy (3.13)

(A}, and A\,m) now be eliminated bctveen (3.12), (3.11) and (3.13}. The
resulting equation may be written in the form

(), = %c{ My, ) §0) Mep 2570 dv (3.16)
vhere

a) = (A,97), (3.15)
Miph= Cof@/R), - ol 2] (pyp2).] (3.16)
a5 = We/W, (3.17)
< =W /W, (3.18)

o= (06 - 4ty (3.19)

= (p-40), (3.20)
W= lpal-4q), =3 Halee (3.21)
= (V-1 (ut-th) (3.22)

My ,v), vhich is an even function of both u and v, has been written in a
forz such that

Mip u) = | (3.16a)
Then, by defining
Mg ) = Mip 0y - M, ) = M(g,v) -] (3.23)
(3.14) may be rearranged into the fora

@2 § LEN M poipdy + 57 j M, () 46 Mlp, 5 p)dv (3.26)

In virtue of (3.16:) and (3.23), the incegrand of the second integral ia

13
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(3.24) is not 3ingular at v = u. Hence v® may shift C; to the left o C,, the
imaginary axis, in the second integral.

If we denote the second integral in (3.24) by 1(u),

) = =5 5 Myp ) sty 5 4 45 (3.25)

f‘{
(3.24) nay be wcitten as

8- iw » "-{?M Hp 20 4y (3.26)

This 2quation hac the fora of (B6) of Appendix B. Hence the inversios of
(3.28) is give=n ty (B10) of Appendix 5:
!
Ap = 37 SUE), -1I]0p iy
The first term of the integral in (3.27) may Se evaluated as foilows:

By using the defirition of § given in the last equaticn of (3.7) and the
forz of U{u,v;1/2> given {n (Bl2)}, we have

(3.27)

£ .
Polpn -!‘—ijz,x('l.‘;',‘ﬁlv‘: ;‘;{L(y)vdizl SR gV e[ a2
Interchinging the order of integrations, this may be written as
B fk cpok {
L X ”-!ﬁ,(pd; éﬁmi.iy)u-
But froa (A3a) of A»spendix A, the v-integral is a §-function. Herce we obtain
& = § k.00 (5.28)
so that (3.27) reduces to
Hrdlz qulp) - %{ 160 Kiwyr;i) dv (3.29)
(3.29) may be solved by an iteration process sinflar to that employed
§u1 the solution of intogral equations of Fredhola type. For I(v) we have
frea (3.25)
168 = & Sqa. 23§ Xv A A,
vhere for c()y ) we use (3.29). Then we obtair

3 ‘ Ly I A ]
LR A R g‘ Xisr; ’ﬁ“:{ wefatd-§ { 103 X054 5 Q] XA A2,

(3.30)
K XOLRARY AR A
vhere
Fulps = :7, { )l(;.f;}',)dv,cfﬂ.(u,n 4,00 ¥{v3;p) da (3.31a)
8
X LI DB O (3.31)

- - . . PO . . . o o . . o .
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It =ay be shown that g, () is O(¢%), where

3z)-p (3.32)

This follows froo the fact that I() is not singular at v = ; thus the

2 > 0 ters of H(u,v;p) in (3.12) gives no contribution as we deforz= the contour
to cross v = u. However, froa (33b) of Appendix B, the coefficients cn(v.p)
all are 0(8) for o > 0, vhile ¢, (v,p) = co(v,1/p) = 1.

3.2.2 First Iteration

For the first iteration, g (n), ve need to evalvate (3.31a). On
using (3.28) for o, (2), this is

) = T-z{:ﬁ i x(,,v;y,)a:‘l‘w,uxb,xm Xiva;s)da (3.33)
From (3.23) and (3.16)

4,338 ‘:(9'“’“1 -1: \',:(,‘/gﬁ) -1 (3.33a)

ov;’ 2nd :r:, from their definitions (3.17), (3.18), appear to have poles a:

W, = 0. However, from (3.21) the zeros of W, occur at v-k = n. Bu: then
froma (3.13)

Wy = Blcos BIRE-aasd) - B(-essd) Rleoss,) = O

since P (~cosy) = (-)nPn(cosa). Simflarly, R; =0 at v-% * n. Hence o) and
a3y have no singulacities, so that ¥ (v,).) has no singularities in the v-plane.

The inner integral in (3.3) will be considered £irst. With B(v,X:p)
fn the form (3.12), the integrand converges along the izaginary axis. In
order to be able to deforn the contour to infinity however. it is necessary
to expand A,(py) in accordance with (2.8), and then deform the term with
4y (py) to the right, the term with i_,(py) to the left. Alternatively the
sign of X can be changed in the second term, wvhereupon the integral beccmes

4ef Lo (Mt « Xoxa] 2
The contour =ay now be closed by an infinite senicircle to the right. Poles
of the integrand cccur at the zeros of (W} in X% (v,)) (see (3.33a)), at

A o= 2v¥2z in B(v,-Xk:p), and 2t ). = n. ZResidues at ). = n, however, can be
shown to cancel ocut between ¥(v,k;p) and ¥(v,-h;p). Thus we obtain

- .
4,00 = «’1; Moy 5 [ X s, «h’:.z-i,;p)] /‘xnk,%

=
ex & (M 2aih,  ipn ko2 g - Mbs,-vo2md o, p gyt Ml o2o sl fom Ve

where

- M
lfclz,"

Ao+ [omie /)
4 Az Ay

LICA ) B A AN
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(3.33) then becozes

Syl = % E{_J"n Hip. v lip)dv

A contour integration in the v-plane ancounters the poles of B(s,v;1/p) and
of )i(v.).a;c). The result {s

wa=-2L % {‘-l—[P’t(rh.-—h-t-)*.,.:.-z-(r’ﬁ"»‘v'?"'?‘-ﬂ Mu- %)

st ow |VirpT
-

Myt -a-Te2m} A ol {7Y) Rtop-Le-2m )P n-20, }J

22, .07 4 t ; .
il B IS . . i '
Ryl AT 2 hidy g w2 B (_),.z,,:-,_,. -;,.z,..ﬁ..}

X

-

¢ I
=l gk 302t ( : )
f-e-2x. JRES B e sl',‘) = ey eet [ 3 W
1 | "
3prlaclay T ApelmeBen;

i )

r e AR et b \(
Al LS Y R At \3emelt-pn * Ao 2eelicon s

*Rp-a,ie) ha, g hin-20.9)

pd
3

+

- . i f
' M.(-),-Zn},)-(),.i!h(-l,—b,‘l,}(_,,,b,m - _1'_2”&.;)

* Pl 2o p )by AnDg2m 5 ;,_2_‘4‘_" + 3’4‘" -~ )]} (3.34)

where i(a.i) and h(v,p) have been def ned above.

Siace o () is O(&), an iteration stopping at () need retzin only
0(5) teras in o (). Only the k = O terz is of this order. Then, caking
use of (B3b) and the expansion

& =;-:'{s + OLEYD)

we obtain

-
- i
=7 8 z {‘.— [(pb&lﬁ A (oMl go2n) ¢ (p-2002 ,J[ﬂ".fp,u-lﬂ)}

% 30h N % s | l x .
- -u. e - e o
?"" sm Gy [ EA \ipelmoy 3yolmep 4!‘1'-2;.,. ';,-z,,.,,\_ ( s)

- Nk ; - ] ! "
* R (5y-2m e (1'.2._? + A,’lro.’) r H‘ut'h.)')(-—'w’ ¢ m}]} - 05}
3.2.3 Second Iterxation

The second iteratiom, o (u), is givea by (3.31b), in which o ()) is
given by {3.35). The evaluation of o,(s) by contour integration can be carried
out ip a sanner similar to that used in the evaluation of o (u). o (1) already
coatains s triple sumation over the indiccs k,z,p, so that 2 (1) iovolves
three additional sumsactioans, =aking six {n all. It is evident th'at the
successive frerations pose a severe cozputational problea which is not
attractive. Thus it appears that it may be more ecoacmical froa the cocputa-
tional standpoint to divide the sheath into a successican of layers of szall §
to the point where the first iteration is a sufficieat degree of approxizatioa.

3.2.4 Thin Sheath

For the case of a thin sheath, by which is zeant one for which the

16
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is s=mall, che angular functicns can be expanded in Taylor's series sround 5§ = 35

It turns out that the first approxizacion fs O(F ), and that the integral
equation can be evaluated in closed form to this order.

Troa the Taylor expansions to O(X)

-

P Y S L ME N S ER LA R AT

.

.3 ; . I o2 P .
p = (3 epTatiygting, v 11 Gcceé, 33 [cotis, - csc'é,-{;‘./ul},.

we obtain
T -,

"(!:{ =17 '?“,‘u‘ﬁlc

M AL R S AR

W S, = sn b, fyad, =t~ S el -5 8
where

- 2 Seiu-tu-

oy -(.:3.2"391- - T e &,

Then we find

b {P,\”: ’;'. \S’,z("‘x—“z)* O{*&,’) (3-36)
Thea (3.31a) for the first iteration o () becozes

. % . - wr
R e ar 'i’(m;',?)h; 15595 R, oy ¥ v o6 (3.37)
-3

{?5]32‘
Denoting the fnner integral by 4, (v). as before, ve write
B e (33-%) - E-4)
and split d,binto two parts, to be demoted by < 5] and §./¥) , respectively.
For ddv) ve obtain directly by using (511) of Appendix B for K(v,k;c) and
(A3:) of Appendix A
d '-')=-‘—H‘-'}ﬂ{k( »2; ?L ;6 ;4
0Ny Y a ,,‘ﬁ ¢/ sle k2 (1,—‘-;
ve L€ ‘.
= b4 3 ;Uz.m% é‘,(m.i,q,mn = (vi-%)k, 'y (3.38)
For d,l+} , by using the differential equation for t)(p)’)
;X
:’(; -8 Ry tm = BRI Ryle (3.39)

we have, siailarly,

17
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&y () =;;{(z‘-'/4)k,(9y) ada Ei,(mlz,m %

2

kS
= ¥i3s -ty
a!
(.a-y_l -1+ l-f’)ﬁ(,(y)

b
[2) + 6y2) A,y (3.40)

on using the differential equation for &,(y), which is simply (3.39) with

p = 1. Hence, from (3.38) and (3.40), we have
i

—1|(‘)) = d‘“()) '&,x': )\I = 6’7‘,&’(;1) (3-41)

Inserting this for the inner integral in (3.37), and using (B12) of Appendix B
for H(p,v;1/p), we obtain

| ¢2 { e. dr
Gilp) = "i‘$| 6%,y 71 ! &, tyhvdy l"v(‘!*u"pﬂ =
= - 5% by 2u(py) (3.42)

The successive iterations now could be written down by inspection. But the
next iteration, @,(s), in virtue of (3.31b) and (3.36), is O(%), while, from '
(3.36), o (4) contains an additional term which is O(%), and thus is of

higher order than o, (12). Thus, only the first iteration can be retained if

Taylor expansions of the angular functions are carried only as far as O(xﬁ).

3.2.5 Zeros of the Legendre Functions

The poles, Ap, which arise in the contour integration are the zeros
of the Legendre function

'4
’ -
(pohy = P,_,h(cos 8,)
More generally, in the case of an unsymmetrical excitation, poles occur at

zeros of the associated functions P;:_,‘(coseo) and P;.;(cosqo). Accordingly,
computar programs were written for the calculation of these zeros. These

programs are described in detail in Appendix D. The quantities NU and MU which ’ l
appear in the printout are defined by Y,
-m - Es
[P, (co!»o’))]‘_mu =0
.t
1P (COSG)]thu = 0 '
Consequently the poles ,\P which are required are given, respectively, by
Ap= NU+ 2
Ap = MU+

3.3 SLOT SOURCE

We now return to consideration of an elementary longitudinal slot source,
for which the applied field is given by (2.5). The formulation of the integral

18
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equations has been given in Section 3.1, where it was pointed out that coupling
between magnetic- and electric-type fields takes place at the sheath boundary

in this case.

The boundary equations now are (3.la)-(3.6a).

Of these, only (3.5a) and

(3.6a) differ from the ring source equations considered in Section 3.2. Since
these equations contain derivatives of the radial functions, the K-L transform
of the derivative is required in order to solve these equations by the K-L

transform technique. This is worked out in Appendix C.

The applicability of

those results depends on the condition that the spectral densities have no

singularities in the strip

-{(l+6) < Rav< |6

Tae spectral densities turn out to have factors 1l/g
derivative occurs only for angular functions of order n > 0.

, and the
Since the only

zero of these functions in this strip occurs for g4 with n = 0, the condition

is met in the present problem.

(3.1a) and (3.2a) can be used to eliminate B, and D; from (3.32)-(3.6a).

The latter set of equations then becomes
{ . \ .
Iterimvds = g‘;‘ £,V (pryvdy

CS‘ N vdy = éf. £ D iulpx)V d¥

&(. [,:: £ Ni 00+ FiIvd = éf [-"7‘ (PR ¢ £y )4, (p0]VdY

c{, [ f Ny () + 6,0 iy 0] v = é. L £,0015(pR) ¢ £,,0)4 (px)] Vdv

where
£ = (v2-14) (C, Uio/pagd),
fu) = (v*-1) (ACW),
fyod = (92-Va [ (A rSI W fazg]
£ = (2-%) (£.Ar),
£0) = N, (CUo /ey
£0) = N ($,C2),
b0 == [(A, S wa /g T,
f0) = ~(pAq),
£, = (CUGL/p),
£, = (g€,

£20) = “NLA+S) W /36l 1,
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(3.433)
(3.43b)
(3.43c)

(3.434)

(3.44a)
(3.44b)
(3.44¢)
(3.44d)
(3.44e)
(3.44£)
(3.44g)
(3.44h)
(3.441)
(3.443)
(3.44k)
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fal) = Ni(piha), (3.441)
Vo= #i4e-%id (3.44m)
Us = #/8 -8/ (3.44n)
Si= E 480/ W (3.440)
5.z & 8000/w), (3.44p)
Note that
£,0)/ £3) = §0I/8.0) = £0V/£,0) = $,0)/6,) = Ny /(92-1a) (3.45)
The transforms of (3.43a,b) are
7 b= 7 L5 60K, sp)dv (3.462)
(R = *_'iz(. £, Wep; p)dw (3.46b)

respectively.
Prom (C6) of Appendix C, (3.43c) and (3.43d) are equivalent to
e‘;ﬂ (F, N ¢ )L vy =c‘£ e L e woi,, (pa)] ¢ £y0Vifpo}vdv  (3.672)

oS LE0) ¢ F 00 4004y = c'f LBV + 0 i+ A (Tprd (3.47D)
L} +

respectively, where

Feut) = i‘;[(w W, '.bm) + (V%) fy -0 (3.48a)
« = (vER)/2y (3.48b)

The transforms of (3.47a,b) are

Folp) « (e = g § {6602 4 640 Kt wiphdy (3.492)

flid + Py = gp S piFatI Ny ¢ £V 5" Yy (3.490)
where

AMtve -'z- [ ’7”_!} My, v-1;p) + :',.—:{'- Hlp,ver;p)] ¢ (3.50)

In virtue of (3.48:1),&..“(“20 are required in (3.49a,b). These quantities
can be obtained in the following way: Multiply (3.43a,b) by N, &,,,(x)/x®
and iategrate over x from 0 to «. There results, in virtue of (3.45),

[(,m)*-ﬁ]-,%f,(pm : —;‘7 CS‘“ ;.;f,m Xl 95p) dv (3.51a)
Depen=tk] fylprn) = Do g BN pt1,950)dv (3.51b)
Since
20
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a

(wa1)3-"% = (p2¥a)(rt'h)

ve obtain
_& i reh
(u™ = ! 60 'E”‘“"“ vip)dy
(r‘"‘“)ti!}% folpe)) = N' I &M e .‘K(gtlv,p)dv
Hence ;
{
(pr-) Fs(p) = -—: f 3(\a) A" dv (3.52a)
(u*-Ya) Fulp) = ﬁ{{.f*“’) MHirv 4y (3.520)
where
w 5 [(,uh;;«,;.‘ 9i9) + s Mipar,vip) (3.53)

The set of equsations (3.46a,b), {3.49a,b), and (3.52a,b) can be used to
eliminate (A) and [C), This yields the integral equations

5 S SN - 1§ MGl =), (3.54a)
vhere 5 g‘ M) €'0) X(pui) d7 = 25 é“n‘g,;,u) COVH Yy (3.54b)
W= (g/As), (3.55a)
v = (5,0, (3.55b)
MG = (252) (E), -z (2 Ll (3.55¢)
Mt [ (), ‘r?). ?ﬁ.-(,.\.] /(|~s”-¢: f;: ) (3.55d) 4
My, = N, (!n)' &L (3.55¢)
M = -Pu($), (2) /0 =4 (3.556)

Wiete = o2~ T uth? = 3 (K usip) + S W eut)
v &Y ) Y,
..E'n [EF-N(M,J,f)f %ﬂ(}«—l,qﬂl }

The structure of (3.54a,b) is worthy of ncte. (3.54b) gives o_e(v) in terms
of g®(v). 1In the case y; =y, =y of a homogeneous mediun (no sheath), p =1
and the H(u+l,vtl;1), in accordance with (B12) of Appendix B and (A4a) of
Appendix A, become 6-functions:

(3.55g)

Hlpztv;i) = vgi,m&'mwa/n = §{nti-v)
Al vapz) s Hu-v3t)

s0 that
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yiu) = #[(“-v,) Sp-vet) ¢ (neh) sm-o-n)]
¢ N v-s
xﬁn va ?‘. [ﬁ- 8(”-\)0[) + YN ‘(u—\’-l)]
and a typical integral

Su.:l - i _"_'_,.v‘ - 9—“1‘_ -“—-ll»
C‘{l Fim o dv "C,J;F(V) [Z(q-l FURTARET

rg( il Lete pon) Blu-v-0]dv = O

vl pil-vg M

§ (u-v+l)

Thus the right-hand side of (7..54b) vanishes when vy, = y,. But the left-hand
side, since

Hip,v;1) = $p-)
becomes

M p) gfl) = P

Thus for v; = v, @%(u) = 0. For v, Py,, the right-hand side of (3.54b) does not

vanish, so that then ¢®(@) does not vanish. Thus (3.54b) expresses the excitation

of the electric~type field by the magnetic-type field at the sheath boundary.

In (3.542), the second integral similacly vanishes for y; *© y,, so that
the equation then expresses the excitation of the magnetic-type field. For
Ylfyb, the second integral represerts the alteration in the excitation of the

magnetic-type field due to the creation of the electric-type field at the sheatn
boundary.

3.3.1 Solution of the Integral Equations

The solution of the integral equations (3.54a,b) can be effected
in a manner similar to that employed in Sec. 3.2.1 for the case of a ring source.

As can be seen from (3.55¢), MO(s,v) in (3.5%4a) is the same as the function
K(p,v) which was obtained in the ring source case, and given by (3.16), so that
M(u,u) = 1. Since ¢®(p) is zero for § = 0 (p = 1), it follows that o2(v) is
at most 0(5); i.e., ¥¥ ™ must lead to terms that are 0(8) at most. In fact,
it is shown in Appendix B that ¥52Y jeads to terms which are 0(8). Then it
follows that the second integral in (3.54a) tust be 0(&). Thus, to 0(8), the
generation of the electric-type field at the sheath boundary does not affect
the excitation of the magnetic-type field.

In view of this property, we can define

’1,-(;1,\!) = M“(p,o) - M‘(p,,ﬁ) M:(F.F) =0 (3.56)
and write (3.54a) in the form
+ éﬁ"(f))‘(?-ﬁ?“’ =)= T7 () ¢ 3%w) (3.571)
where
22
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" = «Lzﬁ M (u,d 8™ K (03 p) dv (3.58a)
(]
T E I Ml et aFHdy (3.58b)

I"(u)azns in the ring source case, is 0(§). As pointed out above, Je(u)
is 0(&°).

As {n Sec. 3.2.1, the invexrsion of (3.57) is

= o é LIEY, - T) +T° 6] Mty v; ) d (3.59)

(3.59) can be evaluated fteratively, just as in Sec. 3.2.1.
the results differ from those obtained there
namely the contribution to () from J&(v).

In this procedure,
in only one essential respect,

In (3.54b), M®(u,v) has been defined in such a way that Me(u,n) = 1.
Hence we can define

M) = MO (p,9) - MG, M p,0)=0 (3.60)
ard write (3.54b) in the form
i
5 CJ 00 K lpospdy = - 1%0 + T (3.61)
vhere
1% = 5 { M) 46N Npvipdv (3.622)
T ’?r“ag.."‘:(u.df(vw”"“’da (3.62b)

(3.61) differs in form from (3.57) only in the absence of a source term on the
right-hand side. The inversion of (3.61) thus {s

=g é [-1°00 + 3™ R w3 ) dv (3.63)

The "source" of c®(u) is the second term, J2(v), on the right, vhich steas
from g®(v) in virtue of (3.62b). Due to the property of »2V | this integral

is 0(8). Then the integral of the first term, I%(v), is O(#) in virtue of
(3.62a).

1f we express ¢™(u) and o®(s) as a sua of iterations of successively higher
orders of §, {.e.,

&

LAY IE AT (3.6%2)
i

4y = ,f}. (W (3.64b)
5

where
2}7 4 = OL&)

then (3.58a,b) and (3.62a,b) become
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(= & 1) - 2‘ & SR (g Xepviprav (3.65a)
Fied ix

s = B3ty « £ S MiGulern g N (3.65b)
i e

' = }‘_ 1560 » 2‘.#{“"#"’9}4““ Klp,v;pldv (3.65c)

J"(m- . 370 = 2‘_' I MG e, 0 Ky (3.654d)

respectively. As pointed out earlier, the IZ(;) and I%(u) integrals are 0(3)
relative to the o-function ip the integrand because Mu.p) =0 = MP(u,p).

Thus I‘;'(u) and I"(p) are 0(59). Similarly, because of the property of v
Je(p) and Jn(p) are 0(83). Thus it is evident from (3.59) that zp”(u) 0,
arises from I‘?, i.e., o©,;, and J&. But froa (3.65b) Je steas fron ce_l
Hence c’-"(p) comes froao &_1 and c‘_x .

Siuilu'ly. from (3.63) it follows that c,e(u) arises from Ie and J , 1.e.,
froa of, and g%,.

Since ¢®(s) hzs no source term,

¥pl = 0

Then it follows that ¢f(i) and ci’(s) are given by exactly the same expressions
as for the ring source case considered in Sec. 3.2. The only difference in
these terms between the ring source and the slot source cases is that for the
ring source the azizuthal paraneter n of (2.10) is 0, while for the slot
source 211 valves of n are involved. Thus from (3.28) we obtain

a(p) = S &9 (3.66)

vhile ¢?(p) is given by (3.3%), (3.35), or (3.42), or in integral fora, by
(3.32).

Correspondingly, of(u) is given in integral form by
G = ;"v é‘I"(v) Rl ;) dv
t - ]
o j Hp,v3 /) dv c‘s lM:(v.zM,qy) y St ¥ (3.67)

The evaluation of (3.67) by contour integration can be carried out as in the
evaluation of (3.32). In (3.67), ¥*V % takes the place of ®(v,\;p) in (3.32),
and M%(v,\) appears fnstead of ¥ (v,\). The poles of M(v,k;p) which gave rise
to residues at A = ivi2a3 now are supplanted by the poles of ¥¥ B gt

A = ivi2at]l. While there was no pole in (3.32) at = = 0 because X (v,v) =0,
there is such a pole in (3.67) because Hg(v V) is not zero for ¢ 1. The
poles, A P’ of ¥ (v,2) ogcurred at the zeros of 4} , while the poles of M§(v,})
occur at the zeros of gy, as can be seen from (3.55d). Except for these
differences, the evaluation of of(s), and higher iterations if desired, can be
carried as in Sec. 3.2.

3.3.2 Thin Sheath

In Sec. 3.2.4, the thin sheath approximation was introduced by
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defining

‘91 = 8,-8,

and developing the Legendre functions in Taylor's series around 6,. The first
iteration, which is 0(8), then turned out to be O(vg) and could be evaluated
in closed form. The second iteration then would be 0(f), so that, if the
Taylor's series development is carried nc higher than %, one is necessarily
restricted to the first iteration. A similar procedure will be followed here.
In particular, teras will be limited to the lowest crder in ¢ .

Proa (3.36)
M) =5 9 ) £ O(S)
Similarly, wve find
M= Leg 8t + ‘{{({é),.-(ﬁ),]g r[(%-)_-%l', (91_,@]&_‘} +05 +0(4)
It has already been nointed out that o®(v) is 0(8). Consequently, if a solution

is limited to 0(§) tnrms, it is evident from (3.54b) that M®(s,v) must be
limited to 0(1l) term:. Hence we take

MO A= [+ (2

so that, in accordance with (3.60)

Mud = 5 8 %) = M (p) (3.682)
Also
ME () = Ny ¢ OS) (3.68b)
g
MEtuw = -N, & (E) +0ud (3.68¢c)

Of the fterative terms in (3.59) for ¢®(n), ve then find

I%(v) = 0(X6) from £3.58a) and (3.68a)
Je(v) = 0(&) from (3.58b) and (3.68b)

vhile in (3.63) for c®(u),

1e(v) = 0(K &) from (3.52.) and (3.68a)
JB(v) = 0(d, 8) froa (3.62b) and (3.68c)

As {n Sectisa 3.2.4, we then find
) =-3 6 & yrh gy (3-69)

of(s) steas from J2(v) in (3.62b). This integral, Liowever, canno: be evaluated
in closed form, so that we have

25

e

= o - v Ay
-




s e

T ¥0

- - N& 3 tp.2?
T = =S &S (B) ke ¥t dv

N,d,
oz Gath cf' Kl %) d'qf' ' ({-’A&,w)){ 34,

(3.70)
(3.71)

Although (3.71) cannot be evaluated in closed form, nevertheless it is
possible to obtain saddle point developments of the far field of electric type

(i.e., stemming from @f). This will be carried out in Sec. 5.4.
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SECTION IV

DOUBLE-LAYERED SHEATH

4.1 INTRODUCTION

The formulation of the boundary equations for a2 sheath coaposed of M
uniforn conical layers was given in Section II, and in Section III the case

of a single-layered sheath was treated. In this Section, a2 double-layered
sheath will be treated.

For an M-layered shearh, the two source equations (2.18} and (2.20) at
the cone surface, the four equations (2.22)-(2.25) expressing the continuity
of the tangentfal compcnents of field at each sheath boundary, plus the two
equations (2.28), (2.29 expressing the finiteness of the field 2long the
cone axis in the a=bien: mediun, make up 2 totality of 4(M+1l) boundary
equations. After fantrcducing the notationm

A =0k (y

B, =B, £y}
(4.1)
cx = ‘i &v‘y"‘
Dg = Lki‘")
these equations become
(Aglr 8¢, = £ {4.22)
{¢, 2,0, = O (4.2b)
S [—,‘;‘ (Copiv 02q0); A5 - ;::(C;..f." Dimail itz ) vds = O (4.2¢)
Sora LA g eBrg), its) = (Kinefi r B8, 4,60 ]vdv = © (4.24)
(L U PR (2 € A
SISty o 0g) - 2= (G ® Orutid, £00] .2¢)
- [(Aif;,’ B; 6)4 i'u») = (A;olf;’ + Bl.n‘.:)ci’uiu)l }’d" =0
RLICT LT AR FIA RS M 0 A A ) .26

el [Aip + B0, 5 - (s + BLugc) (0]} 748 = 0

The solutioa of the probles of a single-layered sheath wias developed in
Section III, first for a circularly symetrical ring source, and then for an
elenentary slot source. It turned out that the soluitfon for the riag source
form=s the basis for the =ore general case; that is, che ring source solutica
is the "zerc crder” soiution for the general case. For the culciple-layered
sheath, the case of a general source distribution also is an extension of the
ring source solution. Consequently the case of a ring source will be coasidered
first, in particular for a double sheath (¥4=2).
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4.2 RING SOURCE

For a circularly symmetrical source, there is no coupling at cthe sheath
boundaries between magnetic-type and electric~type fields. Hence for a ring
slot excited by an azimuthally-directed electric field, only a magunetic-type
field is created. Thus, the terns in (4.2¢,f) which contain derivatives of
the radial function drop out, and the boundary equations (4.2b,c,f) become
superfluous. (4.2e) thea reduces to

[T TR RATART O ;((A;“g'e Bruai) i, (£, Irdv (4.3)
< z

Following the procedure used in Sec. 3.2.1, i,(x,,,) on the right side of
(4.2d) and (4.3) is expanded into a series in i,,,,(x,) and the K-L transform
of the equation taken with respect to x,. Froa the transforn property discussed
in Appendix A, each x, is considered as real. This gives

-4 Uips e Bigaly = 7 SR (A o Bl W] & (4.4a)
Wigl v 8:0), = § e Bl H dy (4.4b)
where
# 2 Bl (4.5) |
=T /x; (4-6)

Again, each p, is considered as real, since ultizately an integration over the
source coordinate (f.e., the y,) can be taken 2long the contour for which g,
is real.

By means "of (4.2a), B, may be elinminated froc the i = 1 equatioa of
(4.%4a,b), and then A, may be eliminated from the resulting two equaticns. This
leads to

(£),= i é IM st (At Kl (B2, T3, "4y %.7)
vhere [£), is defined by (3.7), and

Ml = (2] (E) -+ () (5, M) = | (4.82)

Con- (5w e

The rezaining equations$ of (4.4a2,b) (that is, for £ = 2) are solved
similtaneously to elizinate (8)).. The result can be expressed in the form

€0 2Ap0), 2 57 g_ (M St} s MEGe 3 a2 I KD 2w (4.9)
where

8. v [RE) [ _ Rl ()

TR AL 3] ) (E!%,(E)' (4.102)

Mips) = 12 (‘;‘—")' (2.1) - (%(%)' (4.105)
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A

ontvi = (A, &0, (4.10¢)
g =1B83¢l), (4.104)

(4.9) vas obtained by elizinating B), {rom (4.4a,b). Alternacively, ve
can elininate (A) instead and obtain

Fel) = (8:82), " ,{ {[ K3l 3500 + K3 p ) 2300} WM dw (4.11)
vheze

oo (R -SE1E Gz G

veoone (RAl) ]S <2y f3sY oo 4.12

Coos (BE(E - @ E Qs G

For £ = 1, (4.7) is obtained once core.

Adding (4.9) and (4.11), and defining

a0 =R = Gk ¢y) (4.132)

Glp) = £700 + ik A223 (4.13b)

MW ) = M (o ¢ K ) T My, = 1 (4.13c)
we obtain

wtu) = 5 Dl el o it e (5.16)

Now by introducing

TP ) =T e - NG P e =0 (4.15)

(5.14) zay be written {un the forz

L W = 40 - T - 1Tip) (5.16)
&
where

i P §T ) €700 Ve (5.17)

Since M *ip,p) - 0, If’b(;;) is not singular at v =g. ‘ihug, froz the
property of ¥y '", these iategrals are 0(§,) relative to 2P (v), where
1

5;‘ l-'f;z (4.18)

Hence (4.16) =ay be inverted by iteratiocn in a zanner quite analogous to the
vay in whick the single-layered sheath was handlad. Thus we odbtain

€. 0nd = ﬁ{[(;-ﬂ N X C RS ) b Aad ¥ (%.19)

vhere
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y;(u.)‘) =N('A,'J','/p) (4.20)

Since If'b(u.) are 0(6,), if we write

@t = %qi‘.‘;‘w\ (4.21a)

L = ,1‘.?_! I‘-‘::(y.) (4.21b)
where

st = olsl), 1 = o(s) (4.21¢)

then I?;g(u) = 0. so that from (4.19)

1 = M
Tipo W = 37 émmﬁ; dv (4.22a)
In particular, in virtue of (4.13b),
ol =77 §qw R av = %‘S_ Ry Klpotd dv = BB o) (4.22b)

Th's result may be inserted in (4.22a) with { = 2 to yield

0l = %g‘ Bo Sy = B k(g

Hence

Qa'ol.c(

For i = 2, it follows from (2.28) that B,(v) = 0, so that <(v) = 0.
Hence from (4.16) with i = 2 2ud (4.13a)

w7 E R Py iz 42 (6.23)

-

%é B W H v 2 @ = ;‘.‘é‘ Ao W) Vav = B R, (09 = 2,00 (4.262)

from (4.22b). Obviously, then, ¢f o(u) = O. Then from (4.16) with i = 1 we
obtain

= {Q:o R0 = @, 0= %é’k,(;d)}(,"’“ = %Ry = 6L G0 (6. 24b)
so that cf,o(u) = 0. Hence
Golu) = 0 i 1,2,3 (4.25a)
Thus c?(u) is 0(& ). (4.22a) then becomes
o= W S, (R dv itz (4.25b)
(4.25a,b) are a result of the fact that If'b(u) = 0(5,) relative to cfgf(v).

The gerneration of (9?0*) takes place via (4.13b), which can be written as

Q) = @P 0+ @2 T T (@5 00q 5 0] T Ekuty)
“

But from (4.24b), §,4.(¥) is just the value of mf'oiu). Hence it follows with
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(4.25a) that

Qh‘l(“) =0 ‘;",2, T

so that

a;p) =~k tw jen2,
Thus, from (4.19) for i =1

Gl = & S[@..M I - 1Ry

(4.26a)

(4.26b)

(4.27a)

where If'b(v) are given by (6.17). Subtracting out the j = 0 terms from this

equation by means of (4.25a,b) and using (4.17), we obtain

,2‘: Fa,j (@) = - ;3' 5[ PN ORE &5 b’
i

= - T"F R4 i [m lv,i) 0 + REDPEIH e (4.27b)
The j =1 term is obtained by usxn% (l) in the integral But, since
cb(k) by (4.25a), is 0(&), the IP(R) in:egral is 0(62), so it does not

contribute to the j = 1 term. Then (4.27b) for j 1 becomes

e

where HX’} is the portion of uf" which is 0(6,); similarly for
{(B7) and (B3a,b) of Appendix B, for a general value of i,

%00 = jx, R v = - —"-Sx"d,ji\f(m A I, da
[

¥ 1
'K;’., : ”.--{&v (\!'2-;-1}* uﬂ-urp)
CiGCRE
in virtue of the relations
PN R E)

1= '/9; = -5, + 0(53)
Next, from (4.19) for i = 2, we get in a similar way
\ .y P,V
3w = 51 2 (g, tv) = I3, DXL dv = /3,00

since Q?G}) = 0 from the boundary condition (2.28).

(4.27¢)
Y. From

(4.28a)

(4.28b)
(46.29)

Thus all the o, 1 @) have been determined. However, except for i =1
and i = 3, the compcnents “k y and ®(,; are yet to be found; i.e., we need to
find cb P For these, it is necessary tec solve (4.9) and (4.11) separately.
This can be carried out in exactly the same way that was used in the solution

of (4.14). Thus we define

s

Al gl = M) = Mitead = ME(pa=t, Mt =0

R = Kle) = Klpgd = Klpotol,  KPpw) =0
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Note that we already have from (4.i0b) and (4.12a)

M) = K fup) =

For notational convenience, we can write subsequently

M7 () = M50 (4.31a)

K ) = K (aw (4.31b)
so that

A% m a K p,pr= 0 (4.32)

Then (4.9) and (4.11) may be written as

-;:;- §eh WX = 68ip) - BUp) - I (4.332)

= ; SLONN @y = el - JG - GI60 (4.33b)
respectively, where

3= o § A et x " dv (4.3%a)

¢ = ,—'Z( K20 gl % dv (4.34b)

In virtue of (4.32), the J, and ¢, integrals are non-singular, so that they
are 0(6,). Hence (4.33a,b) may be inverted to yield

Gh.p = é{ (ot - 361 - PN E ™ dv (6.35a)
aniw = (ot - fi -gheIR"dv (4.35b)
! 3

The zero-order approximatioms, j = 0, of c;a’,? have already been found in
(4.25a,b). Hence the j = 1 approximations can be evaluated directly by
subtracting out the j = 0 terms of (4.35a,b) to yield

qfw (= ;!I é {450 - J:‘(v) - J‘:(V)]i,:‘di (4.36a)
Tt = = $ Lo - L1 - LI X (4.36b)
a,b a,b s a,b
where J; ; and ¢, are given by (4.34a,b) with ., - In particular,
for 1 = 2
= { Contnr = I8, 00 = TANIK] d (4.37a)
R §Tebho - go - 95, IR dv (4.37b)

Since q‘,’ = 0 from the boundary condition, Qg(v) = 0 froa (4.34b), so from
(4.37b) and (4.34b) it follows that

£ - v
@) = 83, 40 = 5 JRYpIRAAH T (4.32)
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Hence .
%l = Py lp) = @2, () (4.39)

But o, , (1) already has been evaluated in (6.29a) for i+l = 2. Hence q:.xﬁs)
is determined by (4.39).

Next, the sage type of pgocedure can be followed to evaluate the j=2
terms. In this I 2 () and J1,z(u) will first appear, since ci'l(u) is now
aon-zero. 1In this way, all terms of the representation of ¢ft,b(u) in (4.21a)
can be found. In principle, all the integrals can be evaluated by contour
integration as in Section 3.2.2. However, due to the multiple series involved
in this procedure, this form of solution is not attractive. Consequently, the
thin sheath approximation, which allows most of the integrals to be evaluated
in closed form, will now be developed.

4.2.1 Thin Sheath

In the thin sheath approximation, the angular functions are Ceveloped
in Taylor's series in the angular increment

3,=6,- 6 (4.40)

Furthermore, this approxircation is limited to the first iteration, or 0(61)
termos. Since cP(v) is 0(6,), the IP(u), JP(u). and QFGL) terns defined by

(4.17) and (4.34a,b), respectively, are 0(&), so that these terms can be
neglected.

For the kernel functions H$'b(p,v) defined by (4.15) and (4.13c), we
find from (4.10a,b), (4.12a,b), and (4.30a,b)

st = (5 (8), - = !‘3-)'(%) -1 (4.41b)

where Wig w{o, and W, are obvious generalizations of (3.19)-(3.21). Then,
analogous to (3.39), we find

M p9) =T (9 = M A =R (pes) =55 (L p3) + O(37) (6.642)
(4.42) does not involve the angular functions, so that all the integrals can

be evaluated in closed forn exactly as in Section 3.2.4. From (4.17) and
(4.25b) and from (4.343) for exazple,

L3
L= 3= cf. K v LR E R ) ez (6.43)

which is the counterpart of (3.45).

Tng oaly integrals yet to be deteimined are the sz(u). Froo (4.34b),
(4.23), and (4.31b), they are given by

s:; (P)‘ —;- S

DK ) Rt My (4.45)

vhere Kf(p,v) is defined by (4.122). Due to the fora of Kfﬁ;,v), this integral
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cannot be evaluated in closed form. However, it is possible to obtain a saddle
point development of the far field involving this integral, im the manner
developed in Sec. 5.
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SECTION V
FAR-FIELD PATTERN

5.1 INTRODUCTION

In this Section, the far-field partern of a sheath-covered slot antenna
will be determined. The method eaplcyed is the saddle point method, due to
Debye, which is frequently used for the asymptotic evaluation of integrals.

Van der Pol and Bremser [Ref. 8] extended this method to the evaluation of

a oulti-dinensional (i.e., multiple) integral encountered in the diffraction

of radio waves arcund a sphere. The technique requires that all functions
which occur in the field representation be expressed as exponential integrals.

A Taylor series expdansion of the exponent to second order is made about its
stationary point, or saddle point,* whercupon the integral becomes a multiple
Fresnel integral. In the present problem, a complication is encountered because
the integrand possesses poles, the poles being those which occur in the function
H@,v;p), deffned in (B7) of Appendix B. This situation does not appear to
have been treated in the literature heretofore. A method for dealing with this
situation is developed here.

As an illustration of the method, the derivation of the far field of a ring
source on a cone in free space by the culti-dimensional saddle point method,
which does not seem to have been determined by this method previously, will be
developed in detail first. 7This method will then be extended to the case of
a sheath-covered slot. This will be carried ocut first for a ring source, in
vwhich only a field of magnetic type is set up. PFollowing this, the case of a
slot source, where fields of both magnetic and electric type are generated,
will be worked out. The far-field patteruns, for an infinitesimal slot, as well

as a half-wave slot, will then be deter=ined. The extension to an array of
slots will also be given.

5.2 RING SOURCE IN FREE SPACE

For a viag slot source in free space, excited by a circularly symmetr’ 1l
aziz=stha] electric field E,, the oanly electric field component is EQ. Th- .
from (2.11), (2.21), and (3.1) with n = 0,

1 2ARX") 3 P
Ep=-% 38— =R §(Qe) 5,00 kyyyvdv

=- %’;E‘:(%)'Wi,(ﬁvh (5.1)
Introducing the defining relations (2.7a,b) for i, 4, this may be written as
-REq = (RR)? £,4 (5.2a)
where
a=J &) LW Ky rav (5.2b)

* The terms "saddlie point” and "stacionary point™ will be used interchangably
hereafter.
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For the application of the saddle point method, integral representations
are required for the functions in the integrand. For the I, and K, we have
the Sommerfeld integral representations

2w, .

L= g | eres eimn (5.3a)
{w

K'(,)-_- 2‘: S e ISIW s 4 (5.3‘))
e

For the angular functions, it is desirable at this point to replace the
Legendre function = P\,-g(cosa) by the traveling wave angular functicns used

by Pelsen [Ref. 9 ], which are defined by
f“'w 2 ,_,h(cosi) * % Q,-velcos®)

where P,.%, Q,-% are the usual legendre functions of zero order. Hence

p= %(f"t %) (5.4)
™ have the Laplace integral representations
PP = 7 -:;I(coss', ising cosqf“'mdg (5.52a)
Then )
#n,tu':; é}:(u'lﬂ a(@) exP{-tr+¥) infees 6 Tisrbeonqlldg (5.5b)
vhere
cosdcorg 5iwné (5.5¢)

g}z (73 7. -9 s..em;

The traveling wave nature of the functions g% can be seen from their
asyaptotic forms

$7D g @2VE-YD (5.6a)

where

2 &k Tiseh) 2 1
<= Qontl Toom1 ™ Lwﬁ.fml]

(5.6a) results from a saddle point evaluation of (5.5a). The ratio

(5.6b)

v/

e T i), . l2un (5.7a)
'.ID
thus converges along the upper branch of the imaginmary axis, Sav > 0, while
the ratio

e >1 8 . (5.7b)

] .
957,-4:1!

converges aloug the lower branch of the imaginary ax:s, & v < 0. The product

f.u’f,“". hovever, is asymptotically not of exponential character, since

, 2v
o "m' ~VE T IR (5.7¢)
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For the ratio f’,ff in (5.2), we can then obtain the series representation
£, Pk andl . f"""fm'i (-2t
A

Thus different expansions are rejuired in the upper and lower half-planes.
Multiplying nuserator and denominator by g% , we obtain

wy e’ g3/ *’) -

It will be shown later that a stationary point of the {ntegral 4 in
(5.2) cccurs only for k = 0. Thus, retaining only the k = 0 tern of (5.8),
and introducing the integral representatious (5.3a,b) and (5.5b) imto (5.2b),
we obtain for the integral §

dwv20

d = :TA(#“:}“;:*.;.
- -

4
e

-,j}mulam (€S e e 100G (5.9)

where %.: represent the integrals with the exponentials S;, respectively, and

av({Je'na)® -
A g g

Atv) =
Sia T8 v R, mxccsw, - Jeoswg +iviw e wg-n)
3. = - (i Inlees 6,3 L sin6, cos9) S (5.10)
§, 2 Aier) v lccsd -isin8 cot@y)

§:* (VeI In(Cosh o i sinf cos ;)

s

The saddle point of each integral §,, is determined by sim:ltaneously
equating to zero the partial derivatives of the exponent S;, with respect to
each of the integratfion variables,

ZS;,:_B 3,‘558_35\3,3‘!.1
i R (5-11)
to deterzine the stationary value of each varfable. As shown by Van der Pol
and Bresomer [Ref. 8], the stacionary value of the integral is given by
tivel
§u1 = Alvg) -‘—b‘:’—- S
t
where n 1is the dizensionality of the imtegral, S:, is the value of the
expozeat and A(vwy,) the az=plitude coefficient at the stationary point R
and £, is the Hessian determinant [Ref. 10] of order n, evaluated at tle
correspeading statfonary point

35,
2z; 33;

(5.12)

s | I (5.13)
k 3
Froa (5.11) we obtzin for the stationary point of Sy, with Sa v > 0,

©=0 &) = iiv, el

€220 é":"(\!.o'.'ﬂ‘. (5.1%)
* "“l - -"'l

P IL I A > N N” = '—,—

37




Rk 1

and, introducing the stationary values o, = g, = 0,
(5.15a)

Wt Wy, b G408 z @
vhere w; and w; are represented as w, , wy, , respectively, to denote
association with the stationary point of S;. Froa (5.153), w;;, Wy, and
(9°+8) forn a triangle. This leads to the geometrical relation shown in
Fig. 2(a). Similarly, for the stationary point of S,, with $a v > 0, we oorain
the saze relations as for §;, except that the sign of 8 is changed, so that,
denoting the corresponding values of w; and wy, by w5, and wy,, respectively,
we have
(5.15b)

wigevwyt f,-Cee
W% 5, ¥y, and (8- 8) now form a triangle, as showm in Fig. 2(b).

We still have t¢ cuasider the portion of the v-integration for which
dn v < C. For this sjituation, we need merely change the sign of 8,, correspond-
ing to the interchange of 4 and £/ in (5.8). Then (5.15a) becoces

2 ’
w, rwg~-{8,-8) =x

or
(5.15¢)

(x~w]) v{z-wg)e (8.~-6)= =

Simflarly, (5.15b) becones

(2-w2) * (=-wj) ¢ (§,40)=x (5.154)
Froa (5.15¢) and (5.15b) it is evident that w, is the supplement of w,, and
v, is the sujplemsnt of wy,. Similarly, from (5.15d) and (5.15a), it is
evident that w, and w,', are the supplements of w;; and w,; , respectively.

Thus the geometrical interpretation is the saxe as for Ja v > 0, the stationary
points merely being interchanged. Consequently the result {s just twice the
contributicn due to the stationary points in the range Sm v > O.

The relation (5.152) for the stationary point of S; can be fulfilled only
if 8;#8 £ n. For §5+6 > =, & does not have a stationary point.

The values of S; and S, and v at the statfonary points are then

S}z D razlh,e8) ¢
(5.16)
S 2Dy i5(0,-0)
VT APy SnWy =iy sin[x- {6.08)~w.]
. (5.17)
V= 1Y sinwy 2 ipy 3 e - (0,-0) ~wg] j

vhere
D, = —xcotw, ~yceiw,.

0,2 —xcctwp-yemswpe
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Substituting the values of x and y given by (2.21) and using (2.7¢c), we
obtain

D,z -sk{Rcesw,. ¢ Rocetw,,) = -akr,
(5.18)

D2 sk (Reeswy 4 B, coswy,) T ~2kr,

For the far field we allow x — =, so thit, as can be seen froa Fig. 2(b),
., — ReRycoslx-6,-8) = R - R, ces5(d,+8)

r, — RoRocos(mr-6:16) = R-Reccs(3,-6)

\’(b—' k St (5,? &) w,.-.!-‘.&.-e)
so that
v, — -kR sin (8, 6) ]
} (5.17a)
v, =+ ~kRysin (8,-8)

Then (5.18) becones

o,

(5.19)

~sk{R-Rycos{E ¢ 6] }
D, = -ak[R-Raccs($,~6)]

The only non-zero second derivatives of $ required to evaluate &, are
the foliowing:

= £S5 _ 7S _

P € R COIW, 3—-:.’.= 2 C33 Wy ;z;' Ty ey e = YcOSwy,
FSa . BSa o Fa . T

Y i '—t-“‘ z.)(igg)s.n}.“{ e = 5i(%eRrxSes

Then, denoting the determinant A by |a,,|, vhere the order of the elexents
fand Jisw,,w, o, o, v, ve obtain

8= =238 (0312.405 + Qul1:847)

8,5 ~(9,2%) sing, si=§ LR
(5.20)

Bpx (e 1 sicd, sinf €158

Inserting (5.16), (5.173')’) (5-20), arnd (5.18a) fnto (5.12), using the
asy=ptotic value (5.7¢c) for ¢ g,“" in A(vg), including the factor 2 to account
for the ccatribution of Sz v < 0, as discussed earlier, and introducing the
appropriate value of &, for a ring source (2~ times the value given {n (2.19)),
we obtain for E5 in (5.1)

—alhR-Te) R\
o R e Ry

~isin{gepre 2t ii(a g g} g, (5.21)
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vhere H(x) i{s the Heaviside step function

t 0
H) = < .
0 «<0

The (unnormalized) far-field pactern (i.e., the dependence of £, on §),
thus is given by

2(8) = tnd ™ [ruais,- Qe T 08 g gy @ R3O 301, o ] (5.22)

(5.21) and (5.22) do not hold in the vicinity of § = 0, since then
L2 = 0, corresponding to the vanishing of the second derivatives S, /3.
In this region 2 higher order expansion of §;; is required. It suffices to
evaluate the pattern function directly for 3 = 0. Then

plszal = P, 00 =«
¢3=61=0
Thus there is a null along the cone axis for the ring saurce in free space.

The far-field pattern given in (5.22) fs for a slet of infinitesizmal
radial extent. For a slot of finite radial extent, it is necessary to inte-
grate the field across the slot in accordance with the applied field diseri-
butfon. This {s an elezentary integration. For 2 half-wave slot with a
sinusofidal distributicn, the result {s

Fls) = (simer™ {cct (6,-6) cos [ Fecs(te-m] et ocortlrt .

. (5.23)
-2 ot 16,465 co3] T cosll e Gile 2R 3l 3 (x-5-a)

te

In such 2 case, the indeterminate coefficient of the exponential is zero. In
the neighborhood of x = 0 (=), where x denotes 55 5 (64 §—T), the critical
coefficient is approxizately equal to s /4.

The first term becomes indeterminate when 3,5 = 0, the second when 846 = =

It has yet to be shown that the ter=s in the expansioa (5.8) for k > 0

do not yield stationary points of the integrals £;,. Obvicusly it is sufficieat
to show this for a v > 0. By vri:in,,

- (- 2525 ,

using (5.5b) for each of the ﬁ"tem i{n the ou—erator, and (5.7¢) for the
denozinator, we obtain for the exponentials S,, in (5.10)

Sa=8 tdxt L
'.I
vhere
é‘ = ~{ve Kl In{ces 8, -4 &'ﬂﬁ.mf“)

Then 8S,,/33, = 0 leads to 4, = 0, so that
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(@), = itven,
Then 3S.,/3v = 0 results in

weew 4 (2641)8, 18 =% (5.24)
Obviously, since 6, > %, (5.24) cannot be satisfied for k > 0.

The evaluation of the determinant A, given by (5.13), can be simplified
when one (or more) of the variables is uncoupled to the others, so that, for
that variable, only one entry appears jn its row and cclumn. 1In the free-
space example considered above, this happens for the variables v, and o,.

The result then is equivalent to inserting the asymptotic expansions for the
angular functions p’,4 at the outset.

5.3 RING SOURCE IN SHEATH

We consider next a ring slot on 2 cone covered by a sheath. For simplicity, :
we consider first a single homogeneous layer, and the thin sheath approximation.
Ny
For the far field, we are concerned with the field in the ambient medium.
Tten we obtair from (2.11), (3.7), and (3.15)

“REq = JOaga,lpn) Rutpy) vdv ¢ c{A,f'l,('!Ndv
<
AW
« §‘Q(9) yg)'h(ps)vdv (5.25)

@(v} is given in general form by the representation (3.30). The first term of
(3.30), o,(v}, is simply the free-space term (5.1) (with arguments ox and py
replacing x and y, respectively), for which the far field was evaluated in
Sec. 5.2, The first iteration, = (v), is given by (3.45). On imserting this
inte {5.2%), we have

-RES = (RRo)" E,4, (5.26a)
waece
"o ’
d‘ = _‘Z \s‘f ’3 8 n-i{’ (%). L(F‘)Kilf’” vy (5 .26b)

The integrat in {5.25%) fs the same as (5.2b), except for the replacement of
x and y by oX and py, respectively. Consequently, by comparison of (5.26ha)
with (5.22), we van izmediately write for the field Eé due to the first
ite-atien . . .

Eo=-td ytEs (5.27)

where ES. is the frec-spacs field. Since Ry, is the thickness, t, of the sheath
at the source radius,

=R, (5.28)

{,.27) may be writrenm a3
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€4 =-% (%t)sEq (5.29)
Thus we obtain
"Eq® Egt EqrOUN = [{-F (%) $]Eg + O(8) (5.30)

where E& is given by (5.21). Thus, in first approximation, the sheath
decreases the far field, by an amount which is proportional to & and to the
square of the electrical thickness of the sheath at the source position on
the cone.

5.4 SIOT SOURCE IN SHEATH I

A slot source covered by a thin sheath was treated in Sec. 3.3.2, where
(5.72) and (3.74) for oP(u) and of (), respectively, were obtained. Whereas
for the ring source, ti:e tormulation (2.11) for RI™® involves only the term
n = 0 because of the syrmetrical excitation, for the slot source all values
of n are involved. Then, as pointed out following (2.15) and (2.16), the
coefficients ¢ and ¢f are the same for each value of n. The relative
excitations of the various orders, n, will then be determined by the applied ;
excitation as a function of the azimuthal coordinate ¢. §

Since (3.72) for of(u) is identical with (3.45) for the ring source, .
the azimuthal electric far field of magnetic type, EZ, for n = 0 is the same ¢
as for the ring source case, which is given by (5.30?. For n > 0, it can be ;
seen from the nth order asymptotic expansion of (g7f;),

P;ﬂ,:(ccso) sink)\’? sintvb-mi4 - an/g) £
p'-_f_;: (cosé,) ~ s!n‘) sintv8, %/a-n1/1)
~ (si‘r.&"‘ [emo.-o) o (i e iVEV] T (15008~ R2-0r) (5.31a) '
sind {se A
that it is only necessary to multiply the coefficient of the second term in i
brackets in (5.21) by (-)® and the entire expression by cosfnx.
For the slot source, tiiere is also a meridiornal component of magnetic
type, Eg, as well a2s componeats of electric type, Bg and ES. Far-field
expressions for these components will now be obtained.
For EG, we have :
__ 1 2RW"_ & nsinng ey '
BV Rove a8 LR 0 e (5.32) .

Th2 integral differs from that in (5.25) only by the replacement of p’ by p .
The asymptotic expansion of (/%) is

Pulvi(cos8) (s;ne, 2 cos(v6-7/4 -ne/2)
P (costy "~ NN E] vl (B - rje) 1%
- sinB i aw{6,=9) _ /_yn: adibye &V L0, iz -}
~ (225 Alem ’ie 1Ze (5.31b)
which differs from (5.31a) principally by the factor v'}. Consequently the ’

saddle-point evaluation of (5.32) yields for the nth term (with k, = k)
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e-u(‘l-" 4) 2

m_ . R A N s kR, €052, 5!
EO T nanng k2 516 (ﬁ?. sind/ L L e

s eitcost® g o g]e, (5.33)

The field components of electric type involve o (v). og(v) is zero, so
that ch(v) which is 0(¢), is the term of lowest order. For this we have the
integral expression (3.74). Since the thin sheath approximation is limited
to terms which are 0(§), we need be concerned with the evaluation of (3.74)
only to terms which are 0(8). Then, as shown in Appendix B, (3.74) reduces to

. - Nov,‘. R 1y,
) = e é‘( S N2 DS )
For E§ we then have from (2.16), (3.7), and (3.58b)
e. t RO 2 24N $E, 2380 2 [om e
Be” Wun? 3Rg "k T irnenf (g* o) (5.3%a)
where
a' = T {5.36b)
1.2 :i‘:l)l (,t)vdis ( K,( '-‘)(’;"nd} (5.3%¢)
in which
sy - L Y
x;".-l = "é' Z.: m—‘ nyzh 20
¢ % s (5.34d)
“12%23 = =3 'y
e eiiae o
a,z=2Zm-{ -y
=2m¢l-v

Q= ~2m+i-v

= -2m={-y

243 3%
A Jiveh)

=¥z A~
2 v{¥~-v1)

(5.34c) has been couched in such a form that the poles of )!‘ v, =\ occur {n the
upper half-plane, & A > 0. Furthermore, since it turns out that the ssddle

points of (5.26) in the k-plane occur ac the poles, the lower half of contour
C, can be neglected.

The poles of BV, £ g (5.34c) pose a complication. This can be overcome
in the following way:
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Denoting the A-integral by I(IBO), we have
_ e g s e &\ Ry (2
NeJ= £ 1280 = & {() Kalps) gog 44
vhere the ap represent the poles at A = 2mil-v. Multiplying by elakbo and
then differentiating with respect to 8,, we obtain the differential equation
-1 .9. H FON aI.l:.) . N = .
e Lageaae.[e ab, 1 ie,,]z -a—e—-fa‘) + LQ,.I:’(O‘)=L§(§)’ K,(py)h_mdk
The solution of this differential equation {s
) .
1.Me) = €-<0xls f eeduT 1,(3)d1 = f ekl MRS 124 (5.35)
v L

where the lower limit L is chosen so that the constant of integration is zero.
Since dm 3 = ~v < 0, iay has a positive real part. Hence x must be negative,
and L = -» {nsures that the integral in (5.30) vanishes at the lower limit.

Thus (5.34c) may be written as

R R
- -

1]
where

iR

. . . ]
T *a és“‘[—:(—fe‘"c L O e P (e JOP LY Kyhrmd 5. 36)
-8 -

In this form, the poles have been eliminated at the expense of an addirional
exponential integral, which increases by one the dimensionality of the multi-
dimensional integral té be evaluated.

There are four varieties of multi-dimensional integrals in (5.36)},
corresponding to the four combinations of the exponents %iv8 and %il8,. Thus
we have to evaluate the four integrals

3:‘.2‘. - f.;"51 dx r‘li(f‘ 6-x} L(fx)vdvé’i"(e':"")i(;lf!; i'-k(ﬂdl (5.37a)
- e
where
M, = eV m 3= 2ms) fig T —2n2] (5.37%)
Replacing Iy (§x) and K, (py) by their integral representations (5.3a,b) 2s in
Sec. 5.2, ve obtain a five-dimensional exponeutial integral. By eguzting to
zero the first partial derivitives of the expoment S with respest to the

integration variables, we obtain the following equatijons deternining the
stationary point:

i v, = v/ip (5.38a)
sinw. = Afipy (5.38%)
W, B tEoyz R (5.28¢)
wNye6,88,ex =0 {5.38d)
v=aem, {5.38e)




For the far field, x - @, so that we obtain
sinw, =0 w, <0 m 20

From (5.38¢c) it can be seen that, in order that ¥ be negative, we pust
choose w; = 0, so that

X = 7 -(8,Td) (5.39a)

For the upper sign, the right-hand side is positive if 35+ 9 < m. For &35 > m,
a stationary point does not exist.

From (5.3%a) and (5.384),

wp= a-($.28,98,28) (5.59h)
Thus
sinwy= $in{28,25.26) (5.39¢)
so that, from (5.38b)
whence, from (5.38e), APy sinligtae) ¢-759
#4245y 5in(26,43 26} ¢ m, (5.3%)

The valuve ¢f the exponent 5 atr the stationary point then is
ST —px - pydswy ein AT - px v §7 03282020 bim (5,28 - ) (5.40a)
and the value of the deternminant 4 is
A, T PXTPICoOsSW; > gx  as x> @ (5.40b)

The gecmetrical interpretation of (5.39b) is sheown in Pigs. 3(a) and 3(b).
Fig. 3{a} corresponds to -£ and -§;,. The angle

28,-8,- 0= 9,-6,+9,-8
and the distaace
A-y<o09(28,-8,- @)
vhick cccurs in S; show that the field of electric type appears to originate at
the image of the sheath in the cone. TIhe situatien depicted in Fig. 3(b)
correzponds to 45 and -§ .
Since

+8 00> 28,50

»N
o
)

the combination 3,8 in {5.39%) cannot lead te = reallzable statisnary peint.
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(a)

Caalisig gt

(%)

Fig. 3 Stat{onary paths for electric-type field
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On inserting (5.40a) and (5.40b) into (5.12) to evaluate the integrals

3388 , we obtain for Eg in (5.34a)

Q-“ .’R- *i4) I 6. € { . s e ;.""X =

- o
- T 2 T plsiang Z -
% W Rsd  2v3gich \4‘!-.;9, welld & 3 'L:a e

n
~
"
"

‘hl. [_‘. e (hideens Mbehiew A0 o L(el R G b e 2,00 Hin-3:3 s (5.41)

VAt T T L Y .. ME o
hl;'("ﬂo'l )*_1;5’(’:3\ h"rl°o‘ ”'—O' "‘Eh' .'

In a similar way, we obtain for E§

e G- vg ids £ < Ry sm;'\l‘fx z

> %
3 - (22 1 2 2. °
“R 2n35e6, \ 2= siak) 3,:. -t o

e_ -
Ey = E,

o §- Do, 0,-5)- S0 ef atecas RO BB el (5.42)
T

,‘-b." (26,-8,-8) - ‘_ﬂ';-_] e.'.!g?‘IGS‘ZG.'e.AM c=ulb," % 'H(T-é.'-:'\}
Kg?q

The far-field expressions (5.33), (5.41), and (5.42), as well as the
expression correspondirg to (5.21) for the slot source, hold for a slot of
infinitesimal width, corresponding tc the &(c) factor on the right-hand side
of (2.13). For a slot of finite angular width 28 < L/2, the excitation can
be assuzed to be uniform in @ across the slot. Then 6(3) in (2.13) is first
replaced by 6(c-c,), where @, represents the azicuthal location of the
infinitesimal slot, followed by an integration with respec: to o, over the
azimuthal extent, 25, of the slot. Thus £, in (2.19) can be replaced by

sinng
“n

&l cosan (Hig 4 - Higo9)]da = 25,
The factor

23nn$ (5.43)

"

thus should be affixed to all of the far-field expressions to acccunt for the
o-distribution of a slot of finite width.

5.5 EXTENSIONS OF THE METHOD

The exaaples worked out in Sec. 5.3 and Sec. 5.4 were for a single-layered
sheath, and in Sec. 5.4 use was made of the thin sheath approxization to 0(8).
There is no inherenz difficulty, however, in extending the treatment. This can
be done to any order in 6§ without invoking the thin sheath approximation, since
asynptctic expansions can be used for the angular functions in the kernel
functfons ¥, (v,k) and ¥, (v,)) ot the single-layered sheath analysis, or w9
and K™ of the double-layered steath analysis. Thus the far fields and
patterns can be deterzined for the general case to any desired degree of
precision 0(6“).
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SECTION VI
INPUT ADMITTANCE AND MUTUAL COUPLING; EXTENSIONS OF THE ANALYSIS
6.1 INPUT ADMITTANCE

The reaction of the sheath on the input admittance of the antenna is of
great importance, since experimentally it is found that the change in adamit-
tance can be severe, and can profoundly affect the excitation of the antenna.
The cethod of calculation of input admittance was presented in Reference 5,
where, for a radial slot energized by a voltage V across its center, the
input ad=ittance, Y, was given as

’- -
Y= -V~ ) def €400, H,(6,) Rosin8,dRs (6.1)
Since Ha(S,) is zero for the electric-type field, this reduces to
¥ v 3 da S €5 6] (RIR, sind,dR, (6.2)
Since
Hy (6) = —'—(i -1=)Rﬁ“(ﬁ.)- o i BRI (6.3)
&)= Taple T * STop - WRTTG) .
(6.2) beccxes
" 214 r g - 2 - 5 6.5
Y= Gapva) fo Ea) (3w )RT-(6) e inte ok, (6.4)

RA™ is given in general form by (2.11), and for the input ad=ittance i = 1.

In the case of a single-layered sheath, for exazmple, the notation of
Section 1II is applicable. Then, just as was done for the coefficient A,, the
boundary equations may be solved for A . The result for the ring source, for
exazple, can be expressed in the form

IO ER AR S ARV R (6.5)
where

Y= & &y (6.6a)

g = ‘z'm ‘g‘ X M4, im"“‘ I, G EN 4, (6.6b)

¥:0) = (; RE 2" ¥ ""d:ch‘L(z.‘z,)q,(a‘Yx"-r‘*dx, (6.6¢)

- 9,4, '{_." - f: s 4 .
v = &3 (5,00 G, (&), 6-64)
£{32=0 (6.6e)
In virtue of (6.6e), ¥, (v) is 0(8) and & (v) is 0(&™).

Froa (3.1a), (6.5) and (6.6a), we have
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8,(W)* = {y(vls wvie- -]

so that
Mo = Ciapr? £ e, cosng Ssaip (B, Lvaim o ¥ade--] (5 Yiarvaw 6.7)

Then (6.2) becoces
Y= (iopVe)* éé.cosns f«?é;(u&she.dg'

feot . Lo

i AT EAT (f.,

LY eYar o (6.8)

) t (4 e yat9)e-e-] (;':"a)}i,(x)vh

vhere

Yo7 lewopV) g, § c.cosneagSez iR, st dg-

.é(ql,y‘)(ﬁi,(x) 2,(y)vdv (6.9a)
Y2 Gopv) & & eccosnade 31008 cint, R, -
2t _ﬁ_ W .
CS‘ v l.)( ‘lsy_(c)(f—:a'L,u)&,(,)vdv (6.9b)

Y, is the free-space ad=ittance, so that the rex2ining terns represent the
effect of the sheath. In (6.9a,b) (9./p.), denotes

(%) - P'.'_“!Il(w’el\
e Pt tcos Be)

iy
and sinilarly for the other angular functions in L0y ,)2) in %, (v), so that
the ; also involves the Legendre functions.

There is no difficulty in extending the analysis to the case of a slot
source, 3nd to the general case of an M-layered sheath, so that expressions can
be obtained for the faput ad=irtance for these cases as well.

E(85) is the applied field at the siot source. For a single half-rave

slot of width 2v, for exazple, ve have with 3§ = w/R., vhere Re £s the location
of the center of the slot

Eq (e.‘:=-;’~_, ces k(R-R] H(Ro-R) - H (Re-R, U H (§-4) -Hls-¢,] (6.10)

where
R.‘g L4 Rct ),/‘

Ql.x = 2""7“’/&
and in (2.19), & = -V/2w, so that

£, ~V/l4nrk,Ryw) (6.11)
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Since ¥,(v) is known, all of the integrals contain only known functions.
They can be evaluated exactly by contour {ntegration as in Section III. This
procedure is not very appesling, in view of the langthy series representaticmns.
Since the adzittance is strongly affected by the near field, asymptotic ex-
pansions of the angular functions are not suitable. The only alternative
appears to be direct numerical evaluatfon of the integrals. In this comnection,
it appears that even the impedanc: of a cone slot antenna in free space has not
been evaluated analytically.

1f the thin sheath approxication is introduced into (6.6d) for L(},,);),
then it turns out that there are tercs which are 0(3,°), and these cannot be
evaluated in closed form either.

6.2 MUTUAL COUPLING

The coupling between a transmitting and a receiving slot on the cone can
be expressed in terms of the —utual adaittance between the two antennas. This
was discussed in Reference 5. The =utual adaittance, Y,,, is the cozplex
zutual power per unit voltages across the two slots

Yi2= o= S ED* O Hs) oA (6.12)
Where B, is the cagnetic field strenmgth at slot 1 produced by the excitation

of slot 2. For exazple, for two infinitesimal slots at the saze distance R,
from the cone tip, but spaced an angle ¥ around the come :

1w
You= (Vva)" S By, (8, e, 18R, 3in6, 48, (6.13)
wvhere
Eeq(8) = E, (@) + E;8(g-3) (6.14)

Taus in (2.13), Ecé(o) is to te replaced bty i

E 8{g) +E28(¢- 8
By putting E, = 0, it can be seen that the field E, produces a field at slot 1
vhose g-variation is shiited by % relative to that produced by 2 field applied
to slot 1. Then for HR,(GO)' wve use the value (6.6} with ¢ replaced by c ~ 3.
Sinflarly, for two infinitesimal slots on the saze radial, but at

distances R, ,R, , respectively, froa the cone tip, E,(0)8(R-R,) in (2.13) is
to be replaced by

£ 8{"-%,) « E.6(R-R)

Consequently, with E; = 0, it car be seen that for (8,) ve use the value
(6.7), in vhich the %. (v) have &.(y} = kAxR,) replaced by (8]/r3) & (1.R).

Thus the evaluation of the cutual adaittance between antennas can be
handled in 2 manner very analogous to the calculation of the self adzittance.
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6.3 EXTENSIONS OF THE ANALYSIS

In an actual plasma sheach which forns about & Fe-encry vehicle, the plasna
parzzeters vary in all three ccordinate directions, in gereral. Ia this report,
the plasz=a has been idealized by assuning that it {s uniforn in azi=uth and in
the radial direction. The continuous meridfonazl varfation has been replaced

by a two-step variation. It is interesting to see in what directions this
fdealizacion can be liberalized.

The two-step layaring procedure can be extended to an arbitrary number of
steps, thus taking into account the ceridional variation. The separability of
the wave equation in spherical coordinates allows an arbitrary variacien in the
radial direction. The radial differential equation then is affected by the
variation of % with R. Thus if & is other than constant, the Bessel differen-
tial equation has to be replaced by one which depends on the radial variation of
k . Then the K-L transforz also ¢an no longer be employed, since it stexs froo
the differential equation of the cylinder functions. Instead, 2 transfors
applicable to the new radia} differential equatfon is required. The technique
for developing such a transform exitcs. Although the radial electric and
=agnetic Hertz vectors, Bie.= satisf{y somewhat different differential equations,

this difference can be teglected if « does not vary appreciably in a (local)
wavelength.

* AV TP SN
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SECTION VII
CONXCLUSIONS

The problea of radiation from slot anteanas on a cone in the presence of
an inho=ogeneocus sheath has been solved. In this repc-t, the sheath {s
considered as teing =ade up of one or two conical layers, each of which is
hozogenecus. In the z=ethod of anzlysis used, the field is expressed as an
integral representation. The boundary conditions then lead to a systex= of
integral equations, which nuzber 4M+s for a sheath cozposed of ¥(= 1 =r 2) -
confcal layers. By an extension of the K-L transfora technique, these
equations are reduced tc singular integral equations of Cauchy type. An

inversion technique is developed which reduces this svsten to Fredholus

equations, which can be solved in iterative fashion. 3By fntroducing the
parazeter

62=1-af

o

where

:
E
!
i
El
3
E
:
i
%
E
4
3
3
£
2
E
E
*
3
S
el
I
E |

-
0{ = Y...x /1: !

is the ratio of propagation constants of adjacent layers of the sheath, it is
shown that the successive iterations proceed in powers of &, . For a suffi-

F ciently fine stratification >f the sheath, the first iteratfoa shouvld suffice.

In general, fields of both zmagnetic 2nd electric types are geznerated io

the presence of a sheath, even though, in the case of a radial slot, only a

3 field of magnetic type is generated in free space.

[ then is created at the sheath boundary. For a ring slot, however in which

the excitation is azimuthally symmetrical, only a field of zagnetic type is
,enerated even in the presernce of a2 sheath. It is shown that the solution for

] this case forms the basis of the solution for the general case.

The field of electric type

In general, the evaluatfon of the integrals zust be accomplished by centour
integration, which leads to leagthy series expansions. These are not coavenient
for ouzerical evaluation. For the cass of thin lzvers, however, Taylor's seri:.

expaasions of the angular functions allow 1l but one of the coefficients to
te evaluated in closed form.

The far field is deterzined by a =:iti~dizmensional saddle potnt evaluaticn ’
of the integral represenzations. This fs illustrated in detail for the free-
shace case, and is then applied to dezeraine the far f:eld patterns ia the

: . presence of a sheath.

’
This can be carried out successfully for all coxponeats,
and to arbitrary orders of iteratfio=m.

The calculation of input adx=fttance and mutual coupling batween tranz-

zitting and receiving slots on the cone is formuslated and methods of calcularion B
are discussed.

Extensions of the technique to =ore genersal situstions are discussed.
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APPENDIX A
THE K-L TRANSFORM

The K-L transform can be written as

ie -
500 = = § vI00de SHOIK. B di/e (AL)
A .‘. -]
This is equivalent tec the transform pair
fr =% S FOILo)vdy (A2a)
-
Fiv) = § 300 Ky()desx (A2b)

Since K, (x) is an even function of v, it follows from (A2b) that F(v)
likewise i3 an even function. F(v) must be an analytic functicn of v in
a strip of finite width -§ < Rev < 5, 6§ > 0.

By setting f(x) = 5(x-x;) in (A2b) and then inserting the value of F(v)
in (A2a), we obtain

i
X §(x-x) = ,i‘,._f.xaw K. lx)wdv (A3)
A second 6-function relation obtainsble from (A2a,b) {is
- i
118 lvpl = % glc(x) Ku(r) defx = -’KII"N Ky(0ds/fe (A6)

By replacing x by yR, the transforms pair (A2) is frequently written in
the form

fR = '..'—‘..L Flv) 15(sR) vdv
(as)

Fisde 3 SRIKy(7R)dRAR
In terms of the spherical functions

iy(¥R) =R L, (¥R)

2,(¥R) *R™ K,(7R)
(A5) becomes '
3(R) -%z Fv) Ay(vRy vdv
Fiv) = !F(luk.(m dR/R?
and (A3) and (A4) become

(a5)

is o

RS S(R-R) = o § (xR, (R vy = o 1A bRy vy (A32)
sl

VIE0p) = $iL WA R AR/ = i (R Rt dR/RD (Mo

respectively.
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(AS) is equivalent to the form originally given by Kantorovich snd Lebedev

[Ref. 6]. A fact which is not generally realized (agzain stemming from the

treatment in Ref. 6) is that in (AS) vy 1is to be considered as real. Actually,

the proper way to write the second equation of (AS5) is

d{7R rnp(-a'u"

Fo) = JHRIGORI SR = 'R KRR (ASa)

That y 1is to be considered as real in (AS5) is forcibly brought cut by
analyzing in detail the manner in which the 6-function properties

(o] R £Re
S(R-R) = <Q R= Ry
R (A7)
S(R-RIdR 21 RcPesn,
R

are dieplayed by the integral representation

R S(R-2) = ;';§ 1L (#R) K, (¥R} v dv (A8)
-ls

In (A8), replace K, (y®,) by

1., @R} - LR
Ky(vR) > § v

Then the integrand has the asymptotic behavior

v
vI,amK 2o~ 3 () - iy wrfe et g ez-2iav]}  lerguizo (A9)
The first term of (A9) is bounded as |v| ~ = along the imaginary axis. 1f ve

vrite y = pei®, then the magnitude of the second term of (A8) along the
inaginary axis is

}':u'(-i ve)

The exponent .thus is positive real along either the upper or lower half of the
imaginary axis, depending on the sign of ¢. Thus, the second term of (A9) is
not bounded along the imaginary axis unless @ = 0; f{.e., unless y iz real.
If ¢ = 0, the magnitude of the second term — §. Then the integrand of (AB) is
bounded slong the imaginary axis. The seccnd term vanishes on an infinite
semicircle .in the right half-plane; the first term vanishes aloang an i{nfinite
semicircle in the right half-plane if R < R,, in the left half-plane if R > R,.
Since the integrand has no poles, the integral vaniches in either case.

But £f R = R,, the first term of the integrand does not vanish on an
infinite semicircle in either half-plane. Consequently, the integral is
unbounded for R = R,. But if an integration over R which straddles R, is first
performed, a factor (v+1)”! is acquired in the first term of (A9) which
introduces a convergence factor zs well as s pol: at v = -1. Then the
integrand vanishes on an infinite semicircle; for Ry (OR,) the integral in
the left half-plane encloses the pole, and it is easily shown that the
residue is R,..1he same resulc is obtained if an integration is performed
over R, over a range which straddles R. Thus the 5-function propertcies (A7)
are all prcperly exhibited if vy {s real.

The integration over R over & rsnge straddling R, as sketched above,
also provides the means whereby the assumption that y s r:al is justified.
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It is merely necessary to integrate R along 2 contour rotated by the

angle -0, as in (ASa), which makes yR real. This i{s merely another aspect of
the 6-function property of (A3); f.e., it does not make "sense" mathematically
until an integration cver R (or R,) is performed. 1In the case of the K-L
transform of a general f(R), the justification for considering y as real is
performed by the inverse transform (A5a).
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1. 20 »
SCGLUTION OF THE BASIC INTEGRAY EQUATION
The basic integral equation is of the form
cS.Aw: igvdv = gmv)i,(px)vdv (BL)

wherz A(v) and B(v) are even functions of Vv, and contour C, is the imaginary
axis of the v-plane. It will be assumed that p 1is real, in order to avoid
convergence difficulties in later inversions of the integral equation derived
from (Bl). This can be justified in the sasme way as in Appendix A, by noting
that eventually integration over the source coordinate will be required.
Hence in the ultimate integration over the ¢ource, the purh need cerely be
rotated so that px is real.

i;{px) in the right-hané integral of (Bl) is now expanded iRef. 73 as the
series in i,,,_ (x):

. L deIm & ve .
4ylex) = 2% 1, (p0) = x"‘p‘E‘ 2 3 < (v,0) L.,-w-p'z;“ f’ Sty i,g (s (32)

-

whers the coefficients c,{v,p} ave polynomials in ¢°

-
rivems = Ftvojew) 173 Y
Caoyp) = (™ ALieed Cojem) 1) 2,

T S ) R T T (®3)
The following properties of thuse coefficients are izportant for later
deve’opments:
By writing
§=1-pt (24)
(B3) may be expressed in the form
Culv,p) > i s’ (B3a)
L ag
vhere
. = m-13 yTlemer)
N = et ! Vivelem)
GO = Q=
(B3b)

Gwlz0 }
o
(:_(ﬂ - n>

Thus the first tere i{n the expansioz (32) is 0(1), vhile the remaining terms
are 3(8).

With (B2), (Bl) becomes

a0 vdy = {7 Bw) 2:,.(9,,) Gezm i, (x) dx {35)
A G ~se

Taking the K-L transfora of (B5), by multiplying by %, (x)dx/® and integrating
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over 0 to o, we get

Atz 1 80V Ky (6)

ware w18 4 .y, a2l 2013t on i- s fmaglaary axis, € ¢ 5 contour parallel
te M aarin.ry axis te “he ri2 . or u, as shown " Fiz. BI,

v 4 ls
1

opief m pei.

: ! Cpol
c-t (.C‘C, 1

Fig. Bl
and ¥(v,p3p) is given by

- P o Usdelcgtep | ] t t
Klps;0 ',E." tFelm)it- 02 _t‘..f.l"c‘“") (vn»-;& * \htnop) (87)

Alternatively, instead of expanding &, (px) in (Bl) in terms of iy,2s(x), we
can expand i,(x) in terms of = series in i,,,,(px). This can be dore by replacing

x in (Bl) by y/p and using (B2):

Letx1= i, ty/p) = 17 L catv/p) S (28)
Then (Bl) becomes
‘I. Btw) i, (y}v dv = é r"AM.f_..c.w,m (Vo2m) £,05,ty) dv (29)

The transform of (B9) then is

8ip) = 5 § At Xt v (B10)

Thus (B10Q) is the ioversion of (B6), and vice verss. M(u,v;1/p) is given
by (B7) with the replacement of o by 1/p.

It should be noted that d(p,v;p) is equivalent to the integral

Xluwin) = v 5L, 0m dpted dufet (211)
Similarly,
Klpyw; ) = ¥ § 4, tx) Ry (ps) du/as (312)
In Sec. 3.3, tie related func:lon ¥ %V {5 encouctered. This is defined
by aP2F o8 (Ve pa: 3

i 3§ ipr-i0) ¢ Vel Hip,vaise)

- AL‘
- % [!_.,‘ F Hipel,vip) + L;& x(’H‘V;P‘]}
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Using (B7?) for the H-functions, it is obvious from (B3a) and (B3b) that only
the m = 0 terms are 0(1), the remaining terms being 0(8). Separating off the
m = 0 terms, we have, since c¢,(v,p) = 1

. | B
. =1 s 'l“ ! .__l__.‘ il! bl(._.__ § —m—
B e e (w-l-# *Tiert ver UONSESE T e

- wr (B13)
A o))

In a typical integral

§ Fe gy

C‘ol
wvhere F(v) is an cven function, we can change the sign of v in the second
tern of each pair of terss in large parentheses in (813) for which the contour
becones C, -1 (see Fig. Bl). A shift of conmtour from C/-1 to C,+1 allows these
terms to be combined with the first term of each pair in (B13), and also
collects residues at the poles v = 1i:1. The residues cancel, leaving

R A2 ,,d‘=_1’1 - !'_‘:(74- - ! t‘_.(? '-‘v"
C‘o - F-iT

7L (B14)

- CLUIre S L) ) . % .
o g B - —"’ (-r ] }Fendy

Since
f'-?"’ = (pg;“-(t-i)’“:-v'& +0(8*)

each of the terms of the integrand of {Bl4) is 0(8). Hence integrals containing
A ,3v are G{S).

In subsequent developments, we encounter double integrals of the type

dp) = o e (AL J' Miy,33 ¥ 5P da (815)

where M(v,L) is an evea function of both v and . Since it has just been

shown that the inner integration yfields a result wvhich is 0(§), this result may
be represented as

SELD

wkere E(v, is 2n even function of v. Hence, if we wish to evaluate &%) to
0(8), ve need be concerped only with the first tera of the series representing
AGs,v;l/p), sioce the coefficrents of all higher teims of the series are all
0(5) (see {B3b)). Thus we have

dtp) = —I e e (7hreses) 40 4 O(E)
. “r'EM av-$E524) ~ousn
Since
= |~ §5 + 089
we fiod
FYmE u.(J J) £ 4y + 0L = SE() + 087
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Consequently, to 0(§) (B1S) may be written as

dtp) = SM(p, NH™M By 4 0153)
s
Sinilarly, for integrals of the type

dlp = % gﬁ(}l,"i’?)d\’cfl‘u"z'\)y("l;ﬂdl

where M, (v,v) = 0, so that the inner integral i{s 0(§), we cbrain

dlpy= c{ Mg NH (p2:pé1 + O(sD)

(817)

(B18)
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: APPENDIX C
; K-L TRANSFORM OF DERIVATIVE
' 3
Given !
- g
3 HGE -;-xg Fvil, (grivey (c1) j
ve seek the transforz representation of £/(r) = ad—r-f(r). That s, if £'(r) - %
3 f¢ represeated as 4
.. »,
f1e= = § w1, reivdy
ds
what {s the fora of F, (v)?
Differen.facing (Cl), we obtain
Ho= g SRaE Luewdr =5 2 FONLautr) ¢ T v vy
>3 - g
In the first term, repia s v+l by v, in the second, v-1 by v. Then
aess LYY -3 -
ftre 55 [ § Fv-nnreidy + | Flond Lan mmdv]
RE L pie tim
Now shift the contour in the first fnregral to the right, in the seccnd integral
4 to the left, to the imaginary axfs. 7hwn, provfding F(v) has.po singularities .
in the strip .
—{ire) < v <ite 20
wve obtain
LT
) e} = ;;-:.‘ z—;[(i-q Flv-t1 + (iu)F{\un]vlv .
: Bernce
50 = L [0 Fl-1) « ot} Floen] (c2) ]
Sizilarly, for the transfora pair
3 ‘ ‘-' -
i stei = o= § alie1vdy
i P (c3)
i G § §tAkirnide/rt ’
‘
- ‘ in virtuve of the relation .
£ i 3, =1 L - (Y-2)A
‘. s = Lt Za[(wy,u“(ir). (-1 Auu 20 ] (cs) -
E ; we odZuin
: 4 .
s iy = o Sey i treivdy (cs) .
Bt
where
. 6,1 = S1v-%2) 6lo-) ¢ eV2)G(ve 1] (c6) .
- 4
i
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APFENDIX D
ZEROS OF DME LECEXDRE FUNCTION

The purpose of this prograa {s to compute the zeres, v,, of the associated
Legendre function of the first kied. Py=(z0s%), 1s a function of degree

and tie derivative P =(cos8) ai v,. A zethod of computing these zeros

was described by Wilcox* of the University of Michigan. However, a differeat
method is exployed here, which {s —ore accurate and faster whea 3 {s close

Vo

-

to 180 degrees, which is the region of interest here. Double precision
arithoetic is used in order to acnieve the desired accuracy.

The following equation was used tc evzluate the asso.iated Lagendre
furction:

- SEIT -k {:; Tle-nTinsionl (a-naifi 202
lcosd)> - —— = [£-3 San-3
p‘ ( e) x ter 2 ,L“ Flrmeyl Timeiss) rt

3 T{eraenil, ereies, redtmeas@ Y 2 {(p1)
'(.f'ﬁ Tom-viTimels 5, aimenlt “ Z[i g 3 E]}
2
Thea i—?;a(cosa) {s given by:
. . B Dl Tigeles) et
:,% Tos 8) = petvr B kesdl-Lunvetes %gz.“f‘r:—::)r(«:a;)) 2. '_5' m’.g‘
. - ; R D2)
8 fiesm T (roweiov) oead € [1y . :!.5 e ¢
"'r:‘);'.rt»--)rcaunsgsw,ﬂw T il Loyt 3, k']}
In these equatioms,
o 2 pieitedl ~¥ln-v} e ¥ir-v) - Vimoeiev) (p3)
®, = Glzemelry) = Ylero—v) pyle=-v)- ¥ixelsy} (s)
%e = Tlneil * Vinenell - ¥{eem—s] ~Ylromeiey) 05}
Wz flrem-d-fneeriey) (955

The firs: terz in the derfvative vanishes at vu,, of ccurse. Eowever, the

complete evpressicz is needed in the fteratioz process to refine scccessive
trial values of the zerc.

Ia order to take advantage of the expressions vhich are comxem 2o
Py=(ccss) and 2 P;>(cost, thw arrays ZRA, IRB, ZXL are set up. These are
defired as follows:

Tle-vi Tieetod [m-e-13! .
IR TlevITinetey  nf co3 % (07)
Tlepm-vi Clnzmeiesd 2eess &
ZRS, = F(ms§ Tinelod 6l {moes! i (8)
ZLe = 5= fogees® & ®9)

In terss of these guanticies,

* PETER H. WILCOX, "The Zeros of 7 (cos8) and {2/25)E (cos?).”
Mathezatics of Coaputation, Vol. 22, Xo. 101, Jan 1968.
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-l

- 2
P, "(cosB) = -4 smvn taa™ S| F ZRA, + (1" Z, ZRB,ZKL, ] (D10)

ned
and
-l -
2 p;"(cos8) = - 5 sin vr tan” %[Z ZRA. g+ (9" LIRS, (ZKLoha ¢ k,)]

(D1l)
+ xcotvn B leost)

The ratios of the gamma functions in ZRA and ZRB are computed using the
recurrence relationship, so that

Pln-viTinelsv) -

Tim-v) Tireelsy) ~ ‘/;lI (m-2-vi{m=2 +1e) (D12)
and

T(rera-N Tinsmetey) 2 013

TImI I Clmetsd) H_,("“"”’ (me2-1-v)

Subroutine XP computes Py™(cos§). and in the process computes the arrays
ZRA, ZRB, and ZKL by calling other subroutines. XP calls three other subroutines,
RA to compute the ZRA array, RB to compute the ZRB array, and EK to compute ki,
which is needed for the ZKL array.

Subroutine XPPR computes 3 Py®(cosB) using the arrays ZRA, ZRB, and ZKL.
It calls three other subroutin®¥, EKP to compute ké, G to compute Z,, and
H to compute hy.

The EK, G, and H subroutines, which compute kn, gn, and hp, respectively.
all call the PSA subroutine, which computes the ¢ function. The EKP function,
which computes kp, calls the PSB subroutine to obtain the ¥’ function.

The § function is computed by using the recursion formula to step tue
argument upward until it is greater than 1G, and then using the asymptotic
formula. Thus the formula used is

- S NN SIS RSN PPt
¥(3) =foglzen) - 7= 25 Zen-t  2(zam) ,?;,5-(“"’ 014)
240 >10, Bh = Byn/2m
vhere the B,, are the Bernoulli numbers.
Similarly, the ¢’ function is computed using the formula
3 oy = L i ver ! ! ” -2m-l
Y@= 25t e T @ T izeant *,..i..a"‘ (zem ™" (p15)
g 24n>10, Bn=2mBo=B,,
é; ’ To compute the derivatives with respect to 6, the recurrence relations
- are used.
3 3 -m -
% P (cosd) = ;#a[vm‘ g (cos’)-(d-m)P‘:'(coeﬂl (D16)
and
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al

. S J o= -
Won P, lcost) = ;%5 [p cosh %P,, leos )=t} 3P, Leash! + cos§ R '2!6)—&:&9!‘] (D17)

In the actual computations, the first values computed are
- . 2 .

E 52 B (cos8)/(-AB/sin6) Soa5 Py leosd)/t-AB/sind)
where

-AB = - (tan™ -g_- sir Ve) /n

Then in (V16) the following is used ;

{
sinve

EYCIRPE I FLL

d f-m) P [cosé® !

-t -
veml ., (o3 8] = e ver

Pt

and similarly for the corresponding term in (D17).

The program consists of a main program and ten subroutines. All routines
are written in Fortran IV.

The main program first reads a single control card which contains the
parameters for the first set of zeros. There will be one additional control
card for each additional set of zeros. The program terminates by reading an
end of file while attempring to read another control cari. A description of 1
this control card is given on page 67. 3

The zeros of P;™(cosB) are denoted in the program by Nu, and the zeros of }
i?{“(cosﬁ) by Mu. The program uses an initial (estimated) value of Nu from § .
]

<}
tge control card to compute the first values of P,™(cos@) and %P;m(cose).
The derivative is then used in the following way to obtain a second value of

Nu which gives a Pyj™(cos§) with a smaller absolute value: ¢
. ) s .
L_ gg-- ”h-l- P“:/(;P, )i‘ Vot (Dla)

] of smallness is sclectable by means of a toierance, which has been set at 10719,
An additional tolerance of 107® for the second term in (D18) is also included.

i This insures that 8-decimal accuracy is obtained for the roots. These tolerances

; are arbitrary and could be changed if a different accuracy is desired. Usually

f only a few iterations are required to obtain ten significant figures of accuracy.

1

!
This process is continued until P;®(cos8) is sufficiently small. The criterion il"

{

¥

) In a similar way, using an initial value of Mu supplied by the control
: card, a value of Mu is found for which ggﬁ[“-(coss) is sufficiently small.

¢ ,‘ The four values for the fi:st zero, v, -a—-Pv'g', By and _Bl.q;g‘ are ’"
; stored, and the next zero is then processed. The initial values of Ku and Ma '

for the next zero are obtained from the final values of Nu and Mu for the zero
' which has just been processed. m/8 is used as an approximation for the
i difference between consecutive zeros for both Mu and Mu.

When all the zeros have been processed that were called for in the control ..

card, a page of output is created containing a tabular listing of the four
| values corresponding to each order of zero. The program then attempts to read

65
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: 2 new control card. This is the usual procedure. Additional printouts at

various stages of the computation are selectable by means of appropriate
entries in the control card.

A flow chart of the orogram is on page 68, and the complete program
listing on pages 69 - 73.
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ONTROL, C FORMA'

The control card is read by the following Fortran statement:

55

READ (5,55) KW ,KZ ,M,AA BB ,CC

FORMAT (511,215,3F10.5)

KW is a dimensioned varisble (DIMENSION KW(5))

The parameters in the control card are described belcw.

Col. 1

Col. 2

Col. 3

Col &

Col. 5

Col. 6-10

Col. 11-15

Col. 16-25

Col. 26-35

Col. 36-45

Non-zerc meats print values of v, P;"(cose)/(-AB), and
9

™ P;“(cose) /(-AB) for each trial value of v for each zero.
Non-zero means print final values of v, B, "(cos8)/(-AB), and

a—a- P ™(cos8) for each zero.
v

Non-zero meanc print values of u, -a-g- &1(coc8)/(-ulcin9), and
55%255 B;™(cos8) /(-AB/sin8) for each trial value of p for each zero.
Non-zero means print final values of 4, S% B "(cosB)/(-AB/sin8), and

X _pm
330 R; (cosf) for each zero.

Non-zero means print a page contafning final values of v,

-] Py ™(cos8), u, —i- Bi™(cos8) for each zero in the set. This is
ov F. Y%L

the normal production output.

Number of zeros in the set to be computed.

Order of Legendrz function (m in Py%(cos8)).

Argument in degrees (0 in P,™(cos8)). This should be greater than

160 and less than 180.
First trial value for v in firet zero of the set.

First trial value for u in first zero of the set.
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SET

P} R
vy -pR/. ;’

;3
:i
E:
READ
CONTROL 1
CARD .
YES HALT
EQJ

¥ Ca

50 ; |
COMMTE VALUES PROPORTIONAL 3

T0 P,™(cos@) and 33\7 Py®(cosf)
CALL XP AM» XPFR 1

COMPYTE VALUES PROPORTIOMAL
T0 aa—é- R, ™(cos@) AND gﬁ R ™(cos8)
CALL XP AND XPPR

SET

| v=/0

patn/o

-t

STORE FINAL
VALUES FOR THIS ZERO
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$Jo8 178101-4,25,1000, JO?NS
SEXECUTE = I1sg08 = _ — —
s18208

$IBFIC TEST
DOUBLE PRECISION Pl ANG TR, ENUJEMIgA,8,5,ST "
DOyBRLE 'l!Cl;‘Oﬂ Qe QPR ZRA KB 2KL ¢ XPNY s XPNU
DOUSBLE PRECISITN CoCToEM TSQaTOL Py PA,PFR,PPRA, AN
OJMENSION ZRA(10),IRB(1Q0D,2ZKLEOOY = =
"OIMENSION KM (5]
DINENSIOA XNU(200),XMU1200)XPNU(200) +XPRU(200)
777 CONTINUE
READ (5¢53) KM NI ,M,AA,88,CC
55 FORMAT (511,219,3F10.3)
__EMsH . e
" AMGeAA
ENU=33 o )
EMUsIC
TOL=1.0E-10 L
TTOL=1 .0E-8
... PI=2,2415926913389793 e .
T THeAMGOPI /160,
CTagCOS(TH)
STa0SIN(TH)
Cs0COS(TH/2.)
S=DSIN(TH/2.)
__CSQsCs(C__ ) . o
00 300 J=l N2
N»l ) o
1 CONTINUE
A=DSIN(ENUSPT) ) o
CALL XP(MoENU,CSQePoIRAIRB(IXL o NN)
____CALL XPPRUIM ENUSCSQoPPRyIRAJIRB INLNN}
T PPR=PIOPeOCOSTENUSP LI ZAGPPR
‘F (KlnlhEQ.Ol 80 10 ‘1 A _
WRITE (62060 NENUGP,PPR
11 CONTINUE i
IE (ABS(PR.LT.TOL) GO TO €88
IF _(ABS(P/PPR)LT.TTOL) GO YO 888 =
N=Nel
IF (N,CT.10) GO TO 888
ENUsENU-P/PPR
G0 101 _
808 CONTINUE
_B=((S/CleomM} /Py __ .
"PPRa-BOPIR
PPR=PPREA . -
XNU{J) =ENU
XPNU{J )=PPR ) ) i .
IF (KW(2).EC.0) GO YO 12
WRITE (6936) NENUGPPPR o e
T 66 FORNAT (310,3C30.16)
12 CONTINUE
Nel
2 CONTINMUE
A=DSIN(ENU®P])

e CALL XPIMeENUJCSQoPoZRAIRBoIKL NN}

CALL XPPR(M, EXU,CSQy PPRy ZRAL IR, IKL NN}
CALL XPUM ENMU=14.4CSQePAoIRA,IRD, IKL,NN)
CALL XPPR(MERU~1+pCSQyPPRA)ZRA(ZRB,ZKLNN)
QeERUSCTOPH(ENU~ENR}SPA
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™

QPRSERYSCTOPPRILENU-ENISPPRACCTOPPA -
QPR=QUP140COS (ENUSPT)/ZASQPR
IE (zM<(37.EQ.0) GO T9 1§
I WRITE /5 ..“ R EMJ,Q,QPR o
13 CONT e
1F (AS3(Q).LT.TIL) GO TO 999
IF (AB.}(Q/7QPR} LT .TTOL) GO TO 999
NaNel
IF (N.GT.10) GC TO 999
_ EMUSERY-Q/QPR
60 10 2
__999 CONTINUE
QPR=-89QPR/5T
QPR=QPASA
XHUCJ)=ENU
L _XPRU(JS)=QFR ) N 7 _
IF (KM(4).,EQ,0) GO TO 14
o WRITE (6066) NENU,Q.CPR ) o _
14 CONTINUE
ENUENUSPI/TH e
ERUERUSPT/TH
300 CONTINUE L .
IF (KW{S).€Q.0) GO TO I5
WRITE (6o161) AA.N R
161 FORRAT (1M1,20%,20HANCLE TN DEGREES 1S ,F9.5,20X,YHOR0OER 1§ ,T3)
MITE {65]62)
162 FORNAT (/5X,IN2N0,20X,2HNU 20X, 6HP NU,20X,2HM)o 20X ,4NP *RU/ /)
WRITE (69163) (IoXNUCT)oXPNULT)oXMUCT)oXPMULT)I=3,NL) _ .
163 FORNAT (SXoT3¢19XeFil.T70iIXe014.T¢10X,F11.T911Xe014,7)
WRITE (6,1604)
164 FORNAT (1¥1)
___MRITE(12,1783 NI,NeAA
178 FORNAT (215,F10.5)
MRETECI20177) (LoXNU(TEoXPNUCTIoXNUCT) o XPMUCT) oTm1oN2)
177 FORRAT (13,4017.10)
13 CORVINUE
6o 10 117

[+, )

SINFTC XP.
SUBROUTINE XP(N,ENU,CSQePoIRAIRBIKL NN/
OOUSLE FRECISTON PoCSCoCNURASIRA I8 A, 2XB,EXIXL A, 8,808
OOUSLE PRECISION TOL _ e
DINENSION IRA(10),ZR8(100)22KL(100)
TOL=1.0€~-10
Avg,
IF (M.LT.1) 60 TO 101 o
DO 100 NNs]i, N
Nt -1 _
IRA(NNDoRATN, M .ENU,CSA)
AsAeIRALMN)

100 CORTINGE

__ 101 CONTINUE _—
9=0

L

el e
300 CONTINUE

L . Jod §

IR8 (RI=RE TN o H (EWU,CSQ)

ZKL (RN )=ER (N ¥ ,ENU)-0LOS(CSQ) o - o

Z0=ZRS (WRTOZXL (W)

S=gels

— - ——

v e e e e cmmn - W Ee f Seas W rmaws - —

o e e ——————— . —— - — o —— et & mmim . e v —
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AR T SRTERTTE T % PR

IF (NN.GT.99) GO TO 20% .
IF (ABS(28).LTY.TOL) GO TQO 201 _ L .
NN=hhe} - : -
______ 60 10 300 ) )
201 CONTINUE
~ NRITE (6466) NN |
"66 FORMAY (20K NUMAER OF TERNS IS ,13) 2
___BBs{-l)®ew L .
PeAsBBeB .
RETURN
END
SIBFTIC_XPPR,
SUBROUTINE XPPERIN.ENULCSQePPR,IRAL2ZRB,2KL LL)

DQUSLE PIECIS!CN CSQ-EW.FPR.le.llB.ZKL.lN.I.EKI.EKP.G.H.B.CA,CD_
T OIMENSTON ZRA{1U),ZR8(10C),2KL{150)
8-0.
= IF (M.LT.1) CC TO 10}

00 100 NN=1,K

NsNK~-] -
L BeBeIRA(NNISG(NoM,ENU) e . L

100 CONTINUE - -

: 101 COXTINUE i
! "CA={-1)esN )
¢ ¢ C.l_oe__ o ] . o .
. D0 200 WNs1,LL .
3 NeNN-1 _ e .
ZEXPEKP (NN, ENU) E
IHoH(N M ENUY o ) A
COCRsZRB (M) S (ZKLINNISTIHIZEKP) - ’ il
200 COMTINUE

s PPR=BeCASCE

.
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SIBFIC RA. F

T DOUSLE PRECISICN FUNCTION RAIN,M,ENU,CSG) — — -~ 777

___DOUBLE PRECISION RALEMI,CSQePRODIEJFETLENLEL . . - -
" OOUSLE PRECISION FACT(1l} .

HEC WIS AT AR/

.Y,

s 1 12.01.72.01.so¢.ox.oosz.01.30203.01.30200.621‘"'"" o

F EMsR

: T KefieN T T T T 7T ) T T T T e

' . moG=r. e . {

3 IF (X.LT.1) ¢06 T0 101 - ,

4 00 100 L=i,X 4 _ .
ELsl - .
PROO=PROD/ ((EN-EL-ENUIS(EN-ELS1o0ENU)) . O -

| 100 CONTINUE

-, __101 CONTINUE . e e e e e

i PROD=PRODSFACT (K) /FACTINGT} .

) PRCO=PADD® ((~C30)8oN) .,

] RA=PROD .

SISFIC ASB. e e R .
OCGUBLE PRECISTICN FUNCTION RE(N,N,ENU,CSQT
PRECISION RBENUSCSQoAJEX,EJgELEN — )
OCUBLE PRECISION FACT(]1l}
OATA ("Cr‘l’nl"oltll‘oooclo“g_g_o_o_q'.oOOOz‘om' - .
1 12.01,72.01,504.01,4032.01,36766.01,36208.02/ .
IF (Ne6T.0) GC TG 12 .
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TRESCSQeEN/EACT (M0 1) ;

- e e ersmm — e em—— — - — - e memm mrem. = . e w e wm——-

A=EN=E3
RE=RBCSqe(EJoEnUIO {EL-ENUI/A
988 RETURN _
~ END

__SIBFIC PSAe
OCGUBLE PRECISICM FUNCTION PSALI)
OOUBLE PRECISION Z.X¢8,SUN,PSA
" DIMENSION B(%)

DATA (8(1)41=1,3)/ )

1 0.8333333333333333 0-01,

2 =0.8333333333333333 0-02,

3 0.3968253968253968 C-02,

& ~0.4166665666666667 0-02,

S 0.75157T57157575157¢ 0-02/ :
X=l e e ;
SUN=0, -

1 IF (X.6T.10.) GO YO 10 !
SUN-SUG-Tclx
s e "K“. . . .
: - Te 101
3 10 SUMsSUNSDLOG(X)~lo/(Xex? L L
3 D0 100 i=1,5 '
- . Aalsiet L 4 |
' SURsSUR-8 (1) /{xo¢(T)
100 CoOmTimevE
T PSA=JN
RETURN
- (3]
___S1SFTIC P3R.
T OOUSLE PRECISTON FUnNCTION PS8l
__ __ _.DOUSLE PRECISION Z,Xe8,3UN,PSS
"DINENSION 8(S)
OATA (S(F)el=1,5)/
1 1.6066600066606087 0-01,
4 _ 2 ~0.3333333333333333 000 _
‘ 3 0.23009352300952381 0-01,
4 -0,3333333333333333 002,
S 0.1575757S718 7137576 0-01/
't XeZ
'-l SUN=0,
# 1 1F _(X.6G7T010.) GO TO 10

SUN=SUN T, /{8 X)

x.‘Qlo

|
—_ B e e e e e emee— am - S i
|
i

- —— o — e

FaSE Ml

o e—————

i SN s
- TR APS L UL A
.

- S

P P SR VLA

LA

-

- REN
10 SURsSUNel. /X957 (XeX)
i 00 100 I=1,3 -
_llslele]l e m . -
SUn=sSURS (1) 7ixeelt)
100 CONTINGE
PS8=SUN
RETURN

- — — e i - e - - —— —— —

(7))
SINFTC £K, _ L o
DOUSLE PKECISTON FUNCTION EX(N,M,ENU)
_DOUSLE PRECISION PSA
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DOUBLE PRECISICN ENUSEK,EN(EN,ZA,28,IC 10

ERef T T TTTT -t -
. . ZA'EN_OI.
o TG=ENIEN+], ) T T
IC=ENS ER-EM)
T L0SENVEMSY .+ END

o ER=PSAIZA)#P3ALZB)-PSALIC)~PSAIZD)
RETURN™

- END
$18FYC EXP,

___ DOUBLE PRECISION FUNCTION EKP(NyM,ENU) _
~ DOUSLE PRECISION PSS

. DOUBLE FRECISICM EXPLEN,EM,ENUs2As28,2Ce20
ENeN

ER=) )

C=Ensti-E ot T
I0SENYENSL L+ ENU o
EK'-PS!(IC)-PSI(ID)

__RETYUR® =~ - _
T END

S$ISFTC 6.

“DOUBLE PRECISTON FUNCTION GNoM,ENJT ~~ =~~~ "~~~
. DOUSLE PRECISION PSA

DOURLE PRECISTON ENU,C,EN,EM;ZA,28,2C,26  ~ = ~ ~ '~
—_ EN=N

EMsR T -
ZA=EN-ENU L
ZBENT L VENU
CsEM-ENU c— e . .
10sENe] P EN
G _=-PSA(ZA)SPSA(ZE)+PSA(ZC)~PSALZOD)
RETURK
END ..
SIBFTC M.

_ OousLE PRECISION FUNCTION HiM N ENU]D N .
OOURLE PRECISICN PSA
- DOUBLE PRECISION MoENyEN,TZAoZB,2C,20,ENU
ENaN
_ EM=p
ZAENCEN-ENU
IB=EN+ENSGL 0 ERU
ZC'EH°ENU
. . lO‘EMl. e e
‘w=PSA( ilﬁffl (Z8)+rSAT2CY-P3A(Z0)
l;YUIﬂ
END
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