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AbSTRACT

The radiation from slot antennas on a cone in the presence of an inh so-
geneous sheath is treated. The sheath is considered es beinr made up of one
or two conical layers, each of which is homogeneous. The boundary conditions
lead to a system of integral equations, which number 4H44 for a sheath compotes,
of H (- I or 2) conical layers. These are reduced to singular integral
equations of Cauchy type, which are solved in iterative fashion. For suffi-
ciently fine stratification of the sheath, the first iteration should suffice.

In general, fields of both magnetic and electric types are generated in
the presence of a sheath, even though only a field of magnetic type may be
generated in free space. FoL a ring slot, however, in which the excitation is
auimuthally symetrical, only a field of magnetic type is generated even in
the presence of a sheath. It is shown that the solution for this case forms
the basis of the solution for the general case.

In general, evaluation of the integrals must be accomplished by contour

numerical evaluation. For thin layers, hovever, Taylor's series expansions
alloy all but one of the coefficients to be evaluated in closed form.

The far field is found by a multi-dimensional saddle point evaluation.
This is illustrated in detail for the free-space case, and then the far field
patterns in the presence of a sheath are determined. This can be carried out
successfully for all components, and to arbitrary orders of iteration.

The calculation of input admittance and mutual coupling between trans-
mitting and receiving slots on the cone is formulated and methods of
calculation are discussed.
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SECTION I

IhTRODUCTION

The ionized sheath which is formed around a high-speed vehicle or
missile in the upper at=osphere has a profound effect n the :ransmission
of electromagnetic waves through it. This is manifested, for exzmple. by
the blackout of trans=i.ssions fron a space vehicle wlich occurs upon re-entry
into the atmosphere. This blackout ia accompanied by a large change in
impedance of the on-board transmitting antenna due to the reaction of the
ambient medium, as shown by in-flight VSJR measur ents. The antennas on
such vehicles are typLally waveguide arrays of resonant longitudinal slots
The vehicle is typically conical in shape, and transmitting and receiving
antennas are positioned alternately arounJ the cone. At high altitude the
sheath is conical in shape, due to the conical fcrm of the shock wave.

The effects of a plasma sheath on antenna radiation and propagation
have been studied intensively for slotted cylinder anternas [Ref. 11 and to
a certain extent also for spheres [Ref. 2]. In those problems, the formla-
tion is not difficult because the discontinuity in the external Medium
occurs in the radial coordinate, and this does not affect the separability
of the wave equation or orthogonality of the functions involved. For the
conical geometry, however, orthogonality does not exist, so that the
problem becomes more complicated. In fact, a solution of the electromagnetic
boundary value problem of a conducting cone covered by a dielectric or
partially conducting ccnical sheath has not appevred heretofore. This has
led to the approximate representation of the sheath as an infinitely thin
conical Impedance discontimity. Pridmore-Brown .Ref.3) treated the case
of a magnetic dipole antenna (loop), end Ba~os, et al [Ref. 4) treated the
case of an axial electric dipole in the presence of such a sheath. Their
analyses, however, were possible only because of the infinitely thin
idealization of the sheath, and for special variations of sheath impedance
with the radial coordinate R.

A promising new approach to the solution of the sheath problem was
developed in a previous report [Ref. 5). A method of using the Kontorovich-
Lebedev (K-L) transform [Ref. 6) was proposed to solve the integral equations
which represent the formlation of the boundary value problem. This method
is developed successfully here, leading to a technique for solving the basic
problem.

In Sec. II, the basic formulation of the problem is developed. Although
the work statement of the present contract encompasses the investigation of
single- and double-layered sheaths (two- and three-medium environments), the
for lation of the basic equations is carried out for a sheath composed of M
layers. Consequently, the geometry considered is that of an infinite perfectly
conducting cone provided with an infinitesimal radial slot, the cone being
overlaid by a sheath consisting of a succession of conical layers, each of
which has at. arbitrary complex dielectric constant which is constant throughout
a given layer. The angular thickness of a given layer is arbitrary, as is the
number of layers. The fields in each layer are expressed in terms of magnetic
and electric Hertz vectors, and an integral representation is employed for the
Hertz vector of each type. Application of the boundary conditions at the cone
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and at each layer boundary, together with the require=ent that the field in
the ambient medium be finite along the cone axis, then results in a syste- of
4(+1) coupled integral equations, where M is the nu-ber of layers in the
sheath. This eystem of equations consticutes the for-.lation of the problem.

In Sec. III, the ;f'mplest problem of a single-lyered sheath is considered.
A ring source, vith an excitation which is uniform in azi.imth. is considered
first, since it tjrns out :hat the solution for this case is the b-tls of the
general solution. F:?: this type of source, only a field of =agnet.c type iz
generated. Each integral equation is converted, by means of t:he -L transform,
to a singular integral equation of Cauchy type. The syste= of these equations
then can be red-,ed to a single equation of Fredholm type, which can be solved
in the usual manner by iteration. It is shown that the nth interation is 0(6n),
where

6_ 10, 0 - Y1IY1

vhere yi and y2 are the complex propaga:ion constants in rbe sheath and in the

surrounding medium, respectively. In general, the evaluation of the integrals
in the solution has to be accomplished -hy contour integrat-on. This leads to a
series type of solution in terms of the residues at slngulzrities of the
integrand. These include the zeros of the Legendre functicns as a function of
degree. Accordingly, z computer program vas developed for the computation of
these zeros. The analysis simplifies considerably vhen the sheath is thin.
For this case, the angular functions are expanded in Taylor'3 series in the
angular thickness, 0, of the sheath. It turns out that the first approxi-ation
is 0(tf), and that the integral equatio- can be solved in closed form to this
order.

The case of a slot source is taken up next. This involves fields of both
electric and ,agnetic types. The system of Cauchy type integral equations is
reduced to co integral equations, which may be called the excitation and
coupling equations, respectively. The coupling equation gives the coupling of
the electric-type field to that of magnetic type at the sheath boundary, while
the other expresses the excitation of the vagnetic-type field by the source,
including the effect thereon of the electric-type field. I: the case of a
uniform medium (i.e., no sheath) the electric-type field is zero, so that only
s magnetic-type field is generated. The excitation equation again may be
reduced to an equation of Fredholn type, the zero-order tern being just the
zero-order ter= for the ring source. From this zero order tern, the electric-
type coefficient can be determined to first order, which is 0(6). This first-
order electric coefficient then allows the reaction on the excitation of the
magnetic coefficient to be found, vhich is 0(e ). For the case of a thin
sheath, the =&gnetic coefficient is determinable in closed form, but the electric
coefficient involves an integral which cannot be evaluated in closed form,
although an asymptotic evaluation is obtained later in Sec. V, in connection
with the dntermination of the far field.

In Sec. IY, the extensIon of the analysis to the case of a two-layer
sheath is worked out. As in Sec. III, this is carried out first for a ring
source. Again, an exact evaluation of the resulting integrals requires contour
integration, vhich leads to a =ltiple series type of solution. For (angularly)
thin layers, hovever, the integrals again can be evaluated in closed form for
the magnetic-type coefficients, but not for the -lectric-type coefficients.
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In Sec. V, the far fietds and patterns are calculated. The method
employed is the =ulti-dinensional saddle point method developed by Van der Pol
and Bre=er. This is worked out in detail for the free-space case. The case
of a single-layered sheath is then taken up. In this case a complicatlcn
arises because the integrand possesses poles, a situation which does not appear
to have been treated adequately before. A method for dealing with this situation
is developed, and applied to deterine the fields of both a ring source and a
slot source in the presence of a thin sheath. The uecessary extension for
sources of finite extent is also worked out. Although not carried out in detail.
it is pointed out that the technique is applicable to sheaths of arbitrary
thickness, as well as to the case of a multi-layered sheath.

In Sec. VI. various possible extensions of the method of analysis developed
in this report are pointed ott. The calculation of input a--ittance and
coupling between adjacent sltots, both of which were formulated in a previous
report [Ref. 5] involves the near fields, sc that asymptotic expansions cannot
be used. The evaluation of the integrals gy contour integration can be carried F
out along the lines employed in Sec. 1II. Alternatively, numerical evaluation.
of the integrals would be required.

Sec. VII su~r-arizes the work accomplished. Various mathematical develop-
-ents and the co-atpter progra= for the Legendre function zeroa are presented
in Appendices A-D.

I

II
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SECTION II

OF!TLA1- EOUATIN

2.1 GENERAL CONSIDERATIONS

For a conical geometry, a spherical coordinate system (R,G,Q) is
appropriate. The reduced wave equation then can be separated only if
the electrical properties of the medium do not depend on the angular
variables 8.p. Hence, for an implied time factor ei t ,

k
2  

,

cat; depend at most on the radial variable R. An infinite cone covered
with i conical sheath, in which k depends at rcost on R, is thus a separable
problez in sphericai coordinates. Thus, in order to achieve a separable
formulation for the practical case where the sheath properties vary wit a,
it is neces.-ary to represent the sheath as a succession of conical layers,
in each of which k does not depend on S. In principle, it is possible to
approach a continuous variation of k with B to any desired degree of
approximation by employing a sufficient number cf layers.

As the first step in solving the sheath problem, the case of a sheat.
whose electrical properties are inv ariant in the radial direction will be
ccusidered. The case of an infinite cone will be considered in this report.
The formulation of the equations for a sheath consisting of M uniform
conical layers, as in Fig. 1, will be carried out in this Section. The
solution of these equations will be carried out in Section III for the case
of a single layer (M-1), and in Section IV for a double sheath (M-2).

A general type of field may be expressed as a superposition of electric
(TM) and magnetic (T1) zodes, derivable frm respective Hertz vectors W.le, R 1is.
If k is independent of R, the elc-tric and magnetic fields are given by

E 4 %. $4 r= I.'.., , -(E rd -,.,w = k cat (awe ( .1-pj kuL(T)(2.1)

E' c n4 (!er') -;,,, a cart carl (tr 4 ')
e , R21 each satisfy the differential equation

~ .L I, (2.2)

where the inhowcgeneous source ter- S is different, in general, for the
electric and magnetic rodes. Solutions of (2.2) then %. c- be expressed in
ter=s of solutions of the !orresponding homogeneous equation. Separation
of variables by setting

then leads to the differential zquations

d(i,'Rs!)U: 0 (2.3s)

SD sO (2.3b)
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dtV,
dV+ nV 0 (2.3c)

where s is the separation parameter which couples (2.3a) and (2.3b), and
n is the separation parameter which couples (2.3b) and (2.3c). For a
geometry unbounded in the cp-coordinate, as in the cases considered here.
n is an integer.

In general, a solution of (2.2) has to be built up from a superposition
of solutions of (2.3a-c) corresponding to a continuous range of the separation
parameter s2 , leading to an integral representation. A method for evaluating

the coefficients in such integral representations was proposed in reference 5.

The basic machinery for accomplishing this stems from the K-L transform. This
method will be extended in this report to attain a solution of the boundary
value problem.

2.2 FORMULATION

The antennas of interest in the present problem typically are longitudinal
slots or waveguide arrays of resonant longitudinal slots. The radiation
problem of such an array can be found quite simply once the pattern due
to a 6-function slot is known. If the field of the latter ar a typical point
is denoted by E6, then the field due to the array is

E = Sd.f E4(R;,q.)dR. (2.4)

where f(Ro,c;) is the distribution of applied field over the array, and R1 , R2
and cp ,c!, are the bounding coordirdtes of the array. Consequently, the

problem is essentially solved once E6 has been found, since only the integra-
tion of known functions remains. Therefore the analysis to follow will be
concerned with finding the field due to an elementary longitudinal slot at

(Ro,c%), for which the applied field is given by

Eq(O.) =. F. $R-%) V,*-% (2.5)

For reasons which will become apparent below, we now choose

s' = (v-'I (z6)t*) = -0 -' (2.6)

For convenience in the applicatic- of the K-L transform (see Appendix A),
the two independent solutions of th. spherical Bessel equation (2.3a) that
will be employed here then are

i ~~, ( /I s z S v(r (2.7a)

J ( .) . us I'. 1' (2.7b)

where

S. Ak (2.7c)

Iv is the Bessel function of the first kind of imaginary argument

6
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tL(iR) = " (.R

and 1(v is the Macdonald function

N R) ,, (2.8)

The product

in which

R< = R, R> = R. for R < Io
R< -Ro, R> IN R for R > k,

then is the appropriate solution of (2.3a) to represent a 6-function source
at R = RO .

For the two independent solutions of the associated Legendre equation
(2.3b), the associated Legendre functions

L_ p" (Cos 6)1
" z (2.9)

will be employed because they are even functions of v and the first is
finite at e = 0. Again, this choice is made for ready application of the
K-L transform. These functions are represented here by e, i for
compactness.

The trigonometric functions sin nc, cos nrpwill be employed as the

independent solutions of (2.3c).

Consequently, the basic form chosen for the Hertz vectors is

SIN (2.10)

where a and 5 are iunctions of the integration parameter v, and

The contour C and the choice of sin nz or cos W are dictated by the boundary
conditions. As will become apparent when the boundary conditions for E, and
H, at the cone and sheath boundaries are expressed, cos nQ will be required

for R1m, and sin W for Rile. Consequently we adopt the forulation

RT" = A S(a;f +I ,). e,) E.,,, n,,d, (2.11) -

Rfl: = tI ( v.I R,)eslflnVd (2.12)
where the subscript i refers to the ith layer of a uzltilayered sheath, and

), denotes that all quantities within the parentheses are functions of v.
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2.3 BOUNDARY CONDITIONS

At the sheath boundaries 8 - 0,, the tangential components of the fields
must be continuous At the cone, the applied azimuthal electric field, E.,
is given by (2.5), while the radial electric field, ER, vanishes. To
complete thf notation, to the angular functions r, j we affix subscripts
denoting the 0-boundary. Thus, for example, at 8 - 80 we write, in accordance
with (2.9),

Z.4= pj (cos.) } (2.9a)
. .. (-Cos a')

Correspondirig to the boundary condition (2.5) at the cone, e 80, we
obtain from (2.1) and (2.11)

- t . ,.'), E.4.,CR))E cosYd e. I(R-eA 6'f) (2.13)

where primes denote derivates with respect to 8; i.e., for example,

Corresponding to the vanishing of ER at 80, we obtain from (2.1) and (2.12)

A Sf. + A, q), ,(1 )RJAj(.R,)ee. ;,, d4 = 0 (2.14)

(The Cn is superfluous here, since the n - 0 term vanishes; it was used in
(2.10) for symmetry.) Multiplying (2.13) by cos mc, (2.14) by sin P, and
integrating over c between -n and Tr leads to

-t(a:4+, I% 1&)k.,(,.R,)vav g Z-)" E. - (2.15)

S (4, (A t Q), ,A ,(, ) ,d v 0 (2.16)

for eAch value a R. (2.16) is of the same form as (2.15), but with Eo - 0.

From (A3a) of Appendix A we have

A49
N VAC4 ;A 0 A, (2.17)

If (2.17) is inserted on the right side of (2.15), the folloing deductions
ay be made:

(a) The contour C may be identified with the imaginary axis, or a
contour reconcilable thereto (i.e., wichout crossing singularities, of the
integrand).

(b) The integrand of the left-hand integral beiaves properly at
infinity of the imaginary axis to insure boundedness. in partiular,

(c) y, may be considered as real.

(d) From the K-L tranAform property of the 6-function, the integrand
is an even function of v; this means that Ck , and 8, are even functions of v,
since and 4 were chosen to have that property. Thus, it is not necessary

8



to distinguish between R< and R> in the radial functions; either

or

may be used tnterchangeably in (2.11), (2.12) and succeeding integrals. To
show this, consider

where E(v) is an even function of v. By replacing K,(y R) in (2.7b) by its
definition (2.8), this becomes

• " , dv

Changing the sign of v in the first term, ye obtain

(e) By equating integrands on both sides of (2.15) (or, equiva-
lently, by taking the K-L transform), ye obtain

(2.18

where

, - .0 " , (2.19)

Similarly, from (2.15),

, o(2.20)

where 6, and J, are even functions of v.

At the sheath boundaries, the boundary conditions require that ER, Hi,
E , H be continuous. Writing

} (2.21)

these lead to the respective equations

C '43 + 46M, ;VSilk(y) _ - &.--A SA d ,o (2.22)

C IL (2.24)

9 .U!
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C (2.25)

vhere

N;,zifS;. n9 (2.26)

For the 2mbient medium in an H-layered sheath, which includes the cone axis
9 0 0, finiteness of the field requires that the coefficients of j,., vanish.
Hence

6, 0 (2.28)

46M*4 0 (2.29)

The set of equations (2.18), (2.20), (2.22)-(2.25), (2.28), (2.29)
represent t.he formslation of the boundary value problem. The method of
solving the integral equations to determine the spectral densities a ,
., .8 will be carried out in Section III for the case of a single layer,
and in Section IV for a tvo-layered sheath.

10
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SECTION II

SINGLE-LAYERED SHEATH

3.1 BOUNDARY EQUATIONS

For a single-layered sheath, the boundary equations of Section 11
reduce to the following six equations, where (2.28) and (2.29) already
have been applied:

(a, s.*.; ,,(3.1)

(C.I . =0 (3.2)

=0 (3.3)

0 (3.4
C 1.,d. -3 (3.5)

t?( (3.6)j.)&(~a-~

Since the rig side uf t3.1) is a constant given by (2.19), it is
apparent that a, ust contain z, factor 1/ and 13 a factor I/$:.
Sistilar.y, fr. (3.2) it follows chat 6, and , mast contain the factors
I/p ,1/9. ospectively. For later convenience, therefore, the notation
is revised ,ightly at this point by defining

B.

C,

D. ~(IiA,

In addition, we introduce the parameter

12'A. Y %Z /iiY. (3.8)

and 4quoat 'el by x, and yj by y. Lt vjwj b& assumed provisionally in the
solution uf tht integral equations that p is real. The justification of
this viix cm-e iii the eventual integration over R, which is to be performed.
The boundary equations (3.1)-(3.6) then become

~11



(A, ) 50 (3. la)

(Ct P,) =o (3.2r)

a 0v (3.6a)

C

From (3.Sa) and (3.2*), it is evident that the source generates only a

--sgnetic-type field at* the slot. Co-upllng betveen--agnetic- 3.-d electric-
type fields occurs only at the sheath boundary through the E0 - and
components, as expressed in equations (3.5a) and (3.6a), respectively.

A special case of interest is that of a ring source, in hich the applied

field is circularly sy~hetrical around the cone. T-his special case vill be
considered first, as it permits the solution of the integral equations to be
developed in its sinplest for. It ahbo fonas the basis for the general case.

3.2 RING SOURCE

For a circularly saa o etrical r.ng source, (2.5) for the applied field

becomes

The field is then independent of the in-coordiate, so that only the n = 0 term
in the representation (2.10) is required. The terms containing the factor

in (3.5) and (3.6) thus drop out, so that no coupling between electric-
type and magnetic-type fields takes places at the sheath boundary.
Consequently only a magnetic-type field is transzitted through the sheath,
as in the free-space case.

Fus, for the ring source, boundary equation (3.5a) reduces to

t. '/ ./€, ,0 - ,€, ,, ] o- o(3.10)

while (3.2*), (3.3a), and (3.6a) do not apply.

3.2.1 Solution of the Integral Equations

Sfed The technique for solving the integral equations (3.4a) and (3.10)
is based on the K-L transform, as sho n in detai in Appendix B. Taking the
K-L transfor of (3.10) wit h respect to x, we obtain

12
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(^, ~C f. ,,V ) : (,,. 1-~,;)d, 3.11)

where p is A typical point on the imaginary axis, the contour" C, is parallel
to and to the right of the imaginary axis, as shown in Fig. A1 of Appendix B,
and )iX(,v;p) is defined by

o . .., ,, .) (3.12)

The coefficients c,(v,0) are given by (33) of Appendix B. 'A(jG,v;O) has
singularities at v = *-2m. It is an even function of t, but not of v.

Similarly, the transform of (3.4a) yields

(,,'-,YO(A, f/.+1,1./W , -( €, € a 3.13)
0C

.vand kmay now be eliminated between (3.1a), (3.11) and (3.13). The
resulting equation may be written in the form

-L S , (lx,,,) XA,, Af,.;p) dv (3.14)

where

• , ,f;').(3.15)

-,,,~4 £ (I). -,, (,Wti).] (3.16)

w./w, (3.17)

4, - wJ~~/l, (3.18)

W.= f -b ) (3.19)

bw": (4; -', (3.20)

T" ; (3.21)

M(p,v), which is an even function of both and v, has been written in a
form such that

jM{LII) - I(3.16a) ;

Then, by defining (

(3.14) may be rearranged into the form

( . - ft). ((K-4;Od- + M, (P, ) W vo; ldi (3.24)

In virtue of (3.16a) and (3.23), the integrand of the second integral in

13
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(3.24) is not singular at v - . Hence ,-e may shift C, to the left to C., the
imaginary axis, in the second integral.

If we denote the second integral in (3.24) by 1(1),

,

(3.24) may be vritten as

(j* .- l(,,) -'-.J j ..;f , (3.26)
C.

This equation ha. the for= of (B6) of Appendix B. Hence the inversion of
(3.26) is give- h7 (BIO) of Appendix 5:

I -,. (3.27)

The first tat- of the integral in (3.27) may be evaluated as foilows:
By using the defihetion of t. given in the last equation of (3.7) and the
form of )U(i,v;l/ given in (B12), we have

Interchanging the order of integrations, this may be written as

But from (A3a) of Atrpendix A, the v-integral is a 6-function. Hence ve obtain

V i 44( (0-28)

so that (3.27) reduces to

P - q.€, - i. X(O" ;, 41 (3.29)

(3.29) zay be solved by an iteration process sizilar to that employed
Jbj the solution of inte-gral equations of FredhoL type. For 1(v) we have
from (3.25)

where for co, 2) we use (3.29). Then we obtain

X- '- "W,,,; m. (,co-. I
' (3.30)

2 vial i P)* t

where

q.fr XCPL i- &S) 1" 4,1. (V 34".1; F) d (331la)

C. C,
4 9Zd -j X~~v;.~adi~S~vAfd~((v,~t~.7~(3.31b)

14



It may be shown chat cn(p) is 0 (6n), vhere

h I -e (3.32)

This follows from the fact that I(p) is not singular at v - ,; thus the
0 term of )i(Lv;p) in (3.12) gives no contribution as we deform the contour

to cross v - p. However, fro= k33b) of Appendix B, the coefficients c,(v,P)
all are 0(6) for m > 0, vhile c.,(v,D) - co(V,I/P) - 1. I

3.2.2 First Iteration

For the first iteration, w(ji), ye need to evaluate (3.31a). On
using (3.28) for t.,(.), this is

, , *}X ] F€ ;. } a l , l 0 d ( 3 .3 3 )

From (3.23) and (3.16)

-: ,( ' (3.33a)

Vo'j and v., from their definitions (3.17), (3.18), appear to have poles at
Wx w 0. However, from (3.21) the zeros of 1, occur at v-k - n. 3ut then
from (3.19)

P!i4: Up.1-casI,) - P(s9~~ct)~

since Pn(os) = (-)nPn(Cos6). Similarly, W, - 0 at v- - n. Hence cra' and
have no singularities, so that ?L(v,X) has no singularities in the v-plan.

* The inner integral in (3.3) viii be considered first. with Y.(v,)L;P)
in the form (3.12), the integrand converges along the imaginary axis. In

- order to be able to deform the contour to infinity horever. it is necessary
to expand A,(py) in accordance with (2.8), and then deform the term with
ii(py) to the right, the term vith !-,(py) to the left. Alternatively the
sign of ). can be changed in the second term, vhereupon the integral beccces

1 C.

The contour =ay now be closed by an infinite semicircle to the right. Poles
of the integrand occur at the zeros of (13; in K(',).) (see (3.33a)), at
X - -&v+2n in )i(v,-)X;p), and at ). - n. Residues at X - n, however, can be
shown to cancel out between U(vA;p) and )i(v,-X;0). Thus we obtain

where

I AA

I 1
fI~,

f[ ..... .. .. ...



(3.33) then becomes

A contour integration in the v-plane encounters the poles of (,v;l/0) and

of N(v,).;o). The result is

-~!~ st,-r-,-,. . L.,.:, y) C.,,fl.{ .2 .. ,,~-;.",J

• I i )

( I | '

where . (c, ) and h(v.o) have been def ned above.

Since c(p) is 0(6), an iteration stopping at , need retain only
0(6) terns in * (p). Only the k = 0 ter- is of this order. Then. naking

use of (3b) and the expansion

we obtain

4 %:4 + Oa

3.2.3 Second Iteration

The second iteration, z(u), is given by (3.31b), in sfhich CO(X) is

given b7 (3.34). The evaluation of 4 ) by contour integration can be carried
out ir a Anner sinilar to that used in the evaluation of c (). ch (p) already
contains a triple sumation over the indiccs k,,,p, so that C2(11) involves
three additional stmations, =aking six in all. It is evident that the
successive iterations pose a severe conputatiomal problem which is not
attractive. Thus it appears that it nay be ,ore economical iron the conputa-
tional standpoint to divide the sheath into a succession of layers of =all 6

to the point where the first iteration is a sufficient degree oi approxina:ion.

3.2.4 Thin Sheath

For the case of a thin sheath, by which is meant one for which the

16



quantity

, 6 .- O)

is sall, the angular functicns can be expanded in Taylor's series :.round -

It turns out that the first approxination is O(t), and that the integral

equation can be evaluated in closed for= to this order.

Fro= the Taylor expansions to O(L)

t .--f. r'i . = [ -jJ'i*' 8  '

we obtain

W A, AC C.2

where

Then we find

,,V,) P ,c-2) + 06%2,) (3.36)

Then (3.3a) for the first iteration -( ) becones

Denoting the inner integral by J,(v), as before, ye wri:e

and split J., into two parts, to be denoted by c. S) and .';1 , respectively.
ForJ,&)ve obtain directly by using (B11) of Appendix 3 for I(,a,).;c) and
(Aa) of Appendix A

:I,,

(3.38)

For 4,6) , by usi=g the differential equation for ,(Py)

(3.39)

we have, sinilarly,

17

I
I



,,"' -- (W441 () A dl q pxl,, )_.

-=- ---- -- i< C- r -. -

+. (3.40)

on using the differential equation for k.(y), which is simply (3.39) with
p 1. Hence, from (3.38) and (3.40), we have

,( ,i). .,[2 Syz(y)(3.41)

Inserting this for the inner integral in (3.37), and using (B12) of Appendix B
for 3(p,v;l/p), we obtain

y2 *,(Y)vd-S )
0

= - - s Fy) (3.42)

The successive iterations now could be written down by inspection. But the
next iteration, r(p), in virtue of (3.31b) and (3.36), is 0(01), while, from
(3.36), c (1) contains an additional term which is 0(tV), and thus is of
higher order than q (V). Thus, only the first iteration can be retained if
Taylor expansions of the angular functions are carried only as far as O(q).

3.2.5 Zeros of the Legendre Functions

The poles, Xp, which arise in the contour integration are the zeros
of the Legendre function

More generally, in the case of an unsymmetrical excitation, poles occur at
zeros of the associated functions P04(cosgo) and P;(cosqo). Accordingly,
computer programs were written for the calculation of these zeros. These
programs are described in detail in Appendix D. The quantities N and MU Uhich
appear in the printout are defined by

LP--(COS81VM 0

Consequently the poles X. which are required are given, respectively, by

MU~V

3.3 SLOT SOURCE

We now return to consideration of an elementary longitudinal slot source,
for which the applied field is given by (2.5). The formulation of the integral

18
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equations has been given in Section 3.1, where it was pointed out that coupling
between magnetic- and electric-type fields takes place at the sheath boundary
in this case.

The boundary equations now are (3.1a)-(3.6a). Of these, only (3.5a) and
(3.6a) differ from the ring source equations considered in Section 3.2. Since
these equations contain derivatives of the radial functions, the K-L transform
of the derivative is required in order to solve these equations by the K-L
transform technique. This is worked out in Appendix C. The applicability of
those results depends on the condition that the spectral densities have no
singularities in the strip

-(l+41< Lv< 1t6

The spectral densities turn out to have factors 1/. and 1/ , and the
derivative occurs only for angular functions of order n > 0. Since the only
zero of these functions in this strip occurs for 41 with n - 0, the condition
is met in the present problem.

The (3.1a) and (3.2a) can be used to eliminate B and Di from (3.3a)-(3.6a).

The latter set of equations then becomes

J If ('0) (;JtX1/d (3.43a)

i f 3(v) 4 ut.h'di') = If 4l( )L(pix). v (3.43b)
Ce Ce

C-"l fi)s'(x) + f,(vi)i)J(xld) d j [f6C,)i,:(p') + fS ()i (FO]vid (3.43c)

j £v ~~)~(t f 1 i6]~JI S Ei1f.,v)i,(piO t fj&C)4(p*Ij -is (3 .43d)
V. C,

where

fA = 61) - 1/4 [(C, U -014'. (3 .44&)

f~v) (V.z.a%) (A,(3.44b)f 1 (N-' ) (. t,)/W. (3.44c)

f ) (- A , (3.44d)

file) N (C. U ./! ) (3.44e)

fi(o) = W, (t, CA), (3.44f)

ft() = -(A,), (3.44h)

f,() = (Cu/'./fs.), (3.44i)

f(4) = 'Z), (3.44j)

f,,() =N,UAt I, (3.44k)

19
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(0,) = N.(, (3.441)
via .00 - ,(3.44m)

U. - (3.44n)

5. -- f ,[/W, (3.44o)

51= ksfW./WW. ( 3 .4 4 p)

Note that

f(.(i)/f 3I() = fs /l, () = , f ,, )/f 4(.,) N,. '-4) (3.45)

The transforms of (3.43a,b) are

4- f oIL = ~(3.46a)
f 3(P __I f4 (-A) Pol) d (3.46b)

C,

respectively.

From (C6) of Appendix C, (3.43c) and (3.43d) are equivalent to

SIf , F,,(.t)] .t'idP I ". ( , , + , ] '  (3.47b)

respectively, vhere

..€,, = [€,. ,.],..,,.l ¢,-,.tl ,.,,,-'i(3.48a)

K (VI V//V (3.48b)

The transforms of (3.47a,b) are

F (p) t f+() I f{(,);V;¢ + fa() (3.49a)

fq(,p) t Fl,() Sf{f.(,) i4,gDoli + f,,L~q)3,'4}4h. (3.49b)

where

~t jf [ (4a,-I t- . _] (3.50)

In virtue of (3.48a), f,(±i,) are required in (3.49a,b). These quantities
can be obtained in the fol ing way: Multiply (3.43a,b) by NIAgt.(x)/x3

and integrate over x from 0 to =. There results, in virtue of (3.45),

I N,,

Since

20
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we obtain

Hence

. • T •X!"'4 d-v (3.52a)
4 -71 T

(FL-'/4) F,,(1&) = - S f 4(V) ' " (3.52b)
C.'

where

- "" . £ fi [ z) X( i ', ;) + 6,;r (3.53)

The set of equations (3.46a,b), (3.49a,b), and (3.52a,b) can be used to
eliminate Vt1)Fand zA This yields the integral equations

ASM vs- 9v)X,, 4(3.54a)
C,..
S t=,)s v),6.)W-1  (3.54b)

f XTpv- do,# 1)

where CO 401avqv ~ i

(3.55b)

.I-p (3.55c)

The structure of (3.54a,b) is worthy of ncte. (3.54b) gives te(v) in terms

of cp(v). In the case Y- Y= = Y of a homogeneous medium (no sheath), p " I
and t.he ) (jil,v~l; 1), in accordance vith (B12) of Appendix B and (A~a) of
Appendix A, becoe 6-function:

so that

21
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and a typical integral

I FC.) 3-- S0F -- Ys

Thus the right-hand side of (..54b) vanishes when 'y y2 . But the left-hand
side, since

becomes

Thus for yj - y2, oe(p) = 0. For y 1 $y2 , the right-hand side of (3.54b) does not
vanish, so that then oe(;) does not vanish. Thus (3.54b) expresses the excitation
of the electric-type field by the magnetic-type field at the sheath boundary.

In (3.54a), the second integral simila:ly vanishes for y1 C Y2, so that
the equation then expresses the excitation of the magnetic-type field. For
Yi#Yz, the second integral represents the alteration in the excitation of the
magnetic-type field due to the creation of the electric-type field at the sheath
boundary.

3.3.1 Solution of the Integral Equations

The solution of the integral equations (3.54a,b) can be effected
in a manner similar to that employed in Sec. 3.2.1 for the case of a ring source.

As can be seen from (3.55c), MP(p,v) in (3.54a) is the same as the function
M(;&,v) which was obtained in the ring source case, and given by (3.16), so that
P(ptp) - 1. Since q.(p) is zero for 6 0 0 (p - 1), it follows that oe(v) is
at most 0(6); i.e., i ,--V must lead to terms that are 0(6) at most. In fact,
it is shown in Appendix B that ' , leads to terms which are 0(6). Then it
follows that the second integral in (3.54a) must be 0(62). Thus, to 0(6), the
generation of the electric-type field at the sheath boundary does not affect
the excitation of the magnetic-type field.

In view of this property, we can define

, .- M'(,) = 0 (3.56)

and vrite (3.54a) in the form

*1 where

22
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i4

3(jA)~(3.58b)

IM(P),;s in the ring source case, is 0(6). As pointed out above, 3 e41 )is 0(@)

As in Sec. 3.2.1, the inversion of (3.57) is

±J~ S E. - r'{) +j'0)] Wi,.,-j;*f)d (3.59)
C,

(3.59) can be evaluated iteratively, just as in Sec. 3.2.1. In this procedure,
the results differ from those obtained there in only one essential respect,
namely the contribution to e(p) from Je(v).

In (3.54b), He(p,v) has been defined in such a way that e(j,p) = 1.
Hence we can define

,(I,}:M1(j.,, }- Ml(,to M,*(rPL) 0 (3.60)

and write (3.54b) in the for=

Se6X t.,p vz- V( 4- -4 (3.61)
where

j (3.62a)

4

(3.61) differs in form from (3.57) only in the absence of a source term on the
right-hand side. The inversion of (3.61) thus is

q oc e " Z "I { M) a " v)] ~ pt v ; ) d ( 3 .6 3 )I CS
The "source" of 0e() is the second term, J=(v), on the right, which stems
from cp(v) in virtue of (3.62b). Due to the property of JL,-', this integral
is 0(6). Then the integral of the first term, le(v), is 0(6?) in virtue of
(3.62a).

If we express P(pi) and ce(p) as a sun of iterations of successively higher
orders of 6, i.e.,

;4L) ;'~(3.64b)
where

then (3.58a,b) and (3.62a,b) become
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.~~ .. (3.65a)

in% C..

respectively. As pointed out earlier, the im() and 1 e() integrals are 0()

relative to the o -function in the inregrand because (j, ) = 0 (,.
Thus I (j) and I~e(j) are 0( 6 i). Similarly, because of the property of '

J()and J N1 ) are 0(6.'). Thus it is evident from (3.59) that cp ( ), J>O,
arises from II, i.e., , , and J

. But from (3.65b) ( ste)s from

Hence c()cmsfrm and""
Similarly, from (3.63) it follows that 5d()) arises from 1 e and J, i.e.,

from an .

Since (the) hes no source term,

Then it follows that 0() and Smil) are given by exactly the sa e expressions

as for the ring source case considered in Sec. 3.2. The only difference in
these terms between the ring source and the slot source cases is that for the
ring source the azirasthal parameter n of (2.10) is 0, while for the slot
source all values of n are involved. Thus from (3.28) we obtain

while (ji) is given by (3.34), (3.35), or (3.42), or in integral form, by

(3.32).

Correspondlngly, (.6) is given in integral form by

~~ 3 ?(P) =C 0.uY~d

.,

Then i follos tha cg; ) nd (:?()dr gie b(~y) xat (3.67)exresin

The evaluation of (3.67) by contour integration can be carried out as in the
evaluation of (3.32). In (3.67), )r", takes the place of ca (v,;) in (3.32),
and s(v,c) appears instead of (v,). The poles of 0((v,),;p) which gave rise
to residues at of - _+2 now are supplanted by the poles of b," at

X = * +2.+l. While there was no pole in (3.32) at n 0 because K (v,v) =0,
there is such a pole in (3.67) because l (v,v) is not zero for € . The

poles, ,, of ? (v,).) occurred at the zeros of #3 , while the poles of ? (v,))
occur at the zeros of , as can be seen from (3.55d). Except for these

differences, the evaluation of ef(ji), and higher iterations if desired, can be
carried as in Sec. 3.2.

3.3.2 Thin Sheath

In Sec. 3.2.4, the thin sheath approxiation was introduced by

24ii

Z IN)X ';f -



defining

', = 9,-O*

and developing the Loegendre functions in Taylor's series around go . The first
iteration, which is 0(6), then turned out to be 0(4) and could be evaluated
in closed form. The second iteration then would be 0(i), so that, if the
Taylor's series development is carried no higher than 0 , one is necessarily
restricted to the first iteration. A similar procedure will be followed here.
In particular, terms will be limited to the lowest order in .

From (3.36)

Similarly, we find

It has already been oointed out that 0e(v) is 0(6). Consequently, if a solution
is limited to 0(6) tarms, it is evident from (3.54b) that He(,v) must be
limited to 0(1) termc. Hence ye take

so that, in accordance with (3.60)

M,%,o -, fz A,%-Ftn = <",,A (3.68a)

Also

M(M , 0 0) (3.68b)

Wt I,-j N, 4; 1 + 0('%1)  (3.68c)

Of the iterative terms in (3.59) for c(,), we then find

IS(v) - 0(0?6) from (3.58a) and (3.68a)
je(v) 0(8) from (3.58b) and (3.68b)

while in (3.63) for qe(p),

Ie(V) - 0(0?e) from (3.62a) and (3.68a)

J(v) = 0(016) from (3.62b) and (3.68c)

As in Secti.-n 3.2.4, we then find

q 4,] -',4(r) (3.69)

qf(&i) stems from J*(v) in (3.62b). This integral, Ioever, canno- be evaluated
in closed form, so that we have

25



- . ( i(,,))('e'.' do (3.70)

H146&.I P) V SM) Aqy)92o"dA(3.71)

Although (3.71) cannot be evaluated in closed form, nevertheless it is
possible to obtain saddle point developments of the far field of electric type
(i.e., steming from ct). This vill be carried out in Sec. 5.4.
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SECTION IV

DOUBLE-LAYERED SHEATH

4.1 IMTRODUCTION

The formulation of the boundary equations for a sheath composed of H
uniform conical layers was given in Section II, and in Section III the case

of a single-layered sheath eas treated. In this Section, a double-layered
sheath vill be treated.

For an M-layered shearh, the two source equations (2.18) and (2.20) at
the cone surface, the four equations (2.22)-(2.25) expressing the continuity
of the tangential coopLuents of field at each sheath boundary, plus the two
equations (2.28), (2.29 expressing the finiteness of the field along the
cone axis in the anbien; mediua, make up a totality of 4(M+l) boundary
equations. After intrcducing the notation

(4.1)

these equations become

+ 8. % = .(4.2a)

0. 0 (4.2b)

0 (4.2c)

|0 (4.2d)
C

• ;1- (4.2e) _

C .. , (4.20

+ K- 0

"he solution of the problem of a single-layered sheath vs developed in
Section III, first for a circularly synetrical ring source, and then for an
elementary slot source. It turned out that the solution for the ring source
forns the basis for the =ore general case; that is, the ring source solution
is the "zero order" solution for the general case. For the =zltiple-!ayered

sheath, the case of a general source distribution also is an extension of the
ring source solution. Consequently the case of a ring source will be considered
first, in particular for a double sheath (H-2).
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4.2 RING SOURCE

For a circularly sy=retrical source, there is no coupling at rhe sheath
boundaries between magnetic-type and electric-type fields. Hence for a ring
slot excited by an azimuthally-directed electric field, only a agnetic-t)pe
field is created. Thus, the terms in (4.2e,f) which contain derivatives of
the radial function drop out, and the boundary equations (4.2b,c,f) becom
superfluous. (4.2e) then reduces to

S( = .B- ./{; , r -S A .f . , ), ,x. -, (4.3)

Following the procedure used in Sec. 3.2.1, i,(x..,) on the right side of
(4.2d) and (4.3) is expanded into a series in i.V.2, (xi) and the K-L transform
of the equation taken with respect to x,. From the transform property discussed
in Appendix A, each x, is considered as real. This gives

($L-y4) (A; F; + 8,z 1,1 -- -,(A,, 1 . # 5,-.A L 4 , (4.4a)

B ~' '~i~,(4.4b)

where

4.,; (4.5)

. i (4.6)

Again, each p. is considered as real, since ulti=ateiy an integration over the
source coordinate (i.e., the y,) can be taken along the contour for which o,
is real.

By means-of (4.2a), B1 may be eliminated from the i = I equation of
(4.4a,b), and then A, may be eliminated from the resulting two equations. This
leads to

where (J is defined by (3.7), and

~ 4(~~Tc; ~ :C~,)I(4.8b)

The renaining equationt of (4.4a,b) (that is, for i 2) are solved
simultaneously to eli.inate . The result can be expressed in the for=

,L(? S (A, n e(,, , d,3x (4.9)

where
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,)p,= ( Z (4. 10c)

q&€ ( ¢ .(4. 10d)

(4.9) vas obtained by eli=inatingB.from (4.4a.b). Alternatively, ve
can eliinate(A instead and obtain

E - [ (K .aqc") t Kj~&v li (0"o(4.11)
vheI'e

C5.

or (4.7) is obtained once nore.

Adding (4.9) and (4.11), and defining ,

(4.12a)

, 1, 2 ( -i,3 (4.12b)

Fre obtain

Adn(49)and (41) an defining(.j

Nov by introducing

0(4.13)
(4.14) n-- be r(tten in the for,C.

where

Since j 0, a ,b
0. It (,L) is not singular at v - . hus, from the

property of it', these integrals are 0(1,) relative to (:,b(,). where

Hence (4.16) nay be inverted by iteration in a =.anmer quite analogous to the
way in which the single-layered sheath was handled. Thr-as we obtain

where
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(4.20)

Since I,,b(p) are 0(6,), if we write

ab Lb(4.21a)

where

then a bj) 0. so that from (4. 19)

(4.22a)

In particular, in virtue of (4.13b),

-L S ,(4 ='~d -L'~))(~:#, ' (4. 22b)

Th's result may be inserted in (4.22a) with i 2 to yield

Il

Hence

* 1.2 (4.23)

For i = 2, it follows from (2.28) that B3(v) = 0, so that b~~) 0
Hence from (4.16) with i1 2 aid (4.13a)

from (4o.22b). Obviously, then, cp5,0&L) = 0. Then from (4.16) 'with i =I we
obtain

1qd, x P, ,(JA (;,) XP r. IW) I P.Y) q, PLI(4. 24b)

so that 4,061) = 0. Hence

1640 0i1,2,3 (4.25a)

Thsb

Thu c, p)is 0(6,) (4.22a) then becomes

C.

(4.25a,b) are a result of the fact that Ia1b(u) = O(6) relative to abv.

The geeratin (of takes place via (4.13b), which can be written as

But from (4.24b), JA,.(y) is just the value of .,p.Hence it follows with
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(4.25a) that

S1,2, (4.26a)

so that

. 1,*, (4.26b)

Thus, from (4.19) for i = 1

qI44 N)) - zcu~'"v(4.27a)

where Ia,b(v) are given by (4.17). Subtracting out the j 0 terms from this
equation by means of (4.25a,b) and using (4.17), we obtain

C.

C ' C.a,b

The j = 1 term is obtained by usint c',o(X) in the integral. But, since
z(X), by (4.25a), is 0(62), the I,(),) integral is 0(4 ), so it does not
contribute to the j = I term. Then (4.27b) for j = I becomes

, - SX ,.. d -1,s)( l # do (4.27c)

where is the portion of 41) which is 0(6,); similarly for I'kv . From
(B7) and (B3a,b) of Appendix B, for a general value of i,

( I ___ (4.28a)

S= - S..- (4.28b)

in virtue of the relations

- £ O (S ?)

Next, from (4.19) for i 2, we get in a similar way
qt.(10 = --L [*,., -,)- Itldv =.(p) (4.29)

since cb(p) = 0 from the boundary condition (2.28).

Thus all the cx (j) have been determined. However, except for i = 1
and i = 3, the components Q ,i and b,, are yet to be found; i.e., we need to
find C'b1 . For these, it is necessary to solve (4.9) and (4.11) separately.
This can be carried out in exactly the same way that was used in the solution
of (4.14). Thus we define

RKb = j(Kp () IC K(,j% -I K.*,..) 0 (4.30b)
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Note that we already have from (4. lOb) and (4.12a)

b

For notational convenience, we can write subsequently

(4.31a)

(4.31b)

so that

0; .tA P 0 (4.32)

Then (4.9) and (4.11) may be written as

~ q~-3Y) -(4.33a)
77

. . ... 0 - (4.33b)

respectively, where

' % = j t ., € , ' " a ( 4 .3 4 a )
C.

SS - a *. ) M. # (4.34b)
C.

In virtue of (4.32), the J, and 91 integrals are non-singular, so that they
are 0(6,). Hence (4.33a,b) may be inverted to yield

Isq.)- riL(v1-, b])P~d (4.35a)

C.ab

The zero-order approximations, j = 0, of a,b have already been found in
k4.25a,b). Hence the j = I approximations can be evaluated directly by
subtracting out the j 0 terms of (4.35a,b) to yield

I;',, ~ ~ 3(A - (AJX'3T~'d,(.3a

a,b a,b a,b
where J,, and 4.,1 are given by (4.34a,b) with c-.,o" In particular,
for i = 2

' iS qsv, -Jo - , (4.37a)
I. IG C.

Since b = 0 from the boundary condition, b() = 0 from (4.34b), so from
(4.37b) and (4.34b) it follows that

= .) j -Sd (4.38)
C,
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Hence
ec c(JI P- (04) (4.39)

But q,1( ) already has been evaluated in (4 .29a) for 1+1 2. Hence q, 16)is determined by (4.39).

Next, the sage type of %ocedure can be followed to evaluate the j = 2terms. In this a(I) and J1, () will first appear, since T b. ,i6 is nownon-zero. In this way, all terms of the representation of (ab() in (4 .21a)can be found. In principle, all the integrals can be evaluated by contourintegration as in Section 3.2.2. However, due to the multiple series involved
in this procedure, this form of solution is not attractive. Consequently, thethin sheath approximation, which allows most of the integrals to be evaluatedin closed form, will now be developed.

4.2.1 Thin Sheath

In the thin sheath approximation, the angular functions are developed
in Taylor's series in the angular increment

= ,(4.40)

Furthermore, thil approximation is limited to the first iteration, or 0(6.)terms. Since -b(v) is 0(6,), the and ter define b(4.17) and (4.34a,b), respectively, are 0(a ), so that these terms can be
neglected.

For the kernel functions Tb(p,v) defined by (4.15) and (4 .13c), wefind from (4 .10a,b), (4 .12a,b), and (4.30a,b)

,.- - (4.41b)
where W.o, Wto , and W, are obvious generalizations of (3.19)-(3.21). Then,
analogous to (3.39), we find

~ ~ ~ R!(PA ~AL100,.) (4.42)
(4.42) does not involve the angular functions, so that all the integrals canbe evaluated in closed form exactly as in Section 3.2.4. From (4.17) and(4.25b) and from (4 .3 4 a) f'or exa-ple,

1:'P= % w=i , (4.43)•C.

which is the counterpart of (3.45).

Thn€ only integrals yet to be detetmined are the ga (I). From (4.34b),(4.23), and (4.31b), they are given by

A - 9" (v), d-) (4.44)
where 4(p,,v) is defined by (4 .12a). Due co tbe form of KFa(p,v), this integral
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cannot be evaluated in closed form. However, it is possible to obtain a saddle
point deveropcient of the far field involving this integral, in the manner
developed in Sec. 5.
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SECTION V

FAR-?IED PATTERN

5.1 IRODUTION

In this Section, the far-field pattern of a sheath-covered slot antenna
will be determined. The method emplcyed is the saddle point method, due to
Debye, which is frequently used for the asymptotic evaluation of integrals.
Van der Pol and Bremmer [Ref. 8] extended this method to the evaluation of
a multi-dimensional (i.e., multiple) integral encountered in the diffraction
of radio waves around a sphere. The technique requires that all functions

which occur in the field representation be expressed as exponential integrals.
A Taylor series expansion of the exponent to second order is made about its
stationary point, or saddle point,* whereupon the integral becomes a multiple
Fresnel integral. In the present problem, a complication is encountered because
the integrand possesses poles, the poles being those which occur in the function
It6u,v;p), defined in (B7) of Appendix B. This situation does not appear to
have been treated in the literature heretofore. A method for dealing with this

situation is developed here.

As an illustration of the method, the derivation of the far field of a ring
source on a cone in free space by the multi-diensional saddle point method,
which does not seem to have been determined by this method previously, will be
developed in detail first. This method will then be extended to the case of
a sheath-covered slot. This will be carried out first for a ring source, in
which only a field of magnetic type is set up. Following this, the case of a
slot source, where fields of both magnetic and electric type are generated,
will be worked out. The far-field patterns, for an infinitesimal slot, as well
as a half-wave slot, will then be determined. The extension to &n array of
slots will also be given.

5.2 RING SOUR.CE IN FREE SPACE

For a ring slot source in free space, excited by a circularly symetr" 11
az--thal electric field E., the only electric field component is EQ. lI--
from (2.11), (2.21), and (3.1) with n - 0,

f 1ik-)d (5.1)

Introducing the defining relations (2.7a,b) for i. A,. this may be written as

-RE, -RRp) &. (5.2a)

where

-S.4 I.()K, dv (5.2b)

* The ter-s "saddle point" and "stationary point" will be used interchaagably

hereafter.
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For the application of the saddle point method, integral representations
are required for the functions in the integrand. For the Iv and KV we have
the Sommerfeld integral representations

2-11= .L ew' (5.3a)

For the angular functions, it is desirable at this point to replace the
Legendre function p- Pv..k(cosG) by the traveling wave angular functio'ns used
by Felsen (Ref. 9 1, which are defined by

where Ph Q- are the usual Legendre functions of zero order. Hence

have the Laplace integral representations

11 ; T(cOsS"6 COS4f" d~p (5.5a)

Then

2.. '12 A (q *AP (-("+%111 L(U. 5 (6 15b)§ O

where

-W= os :atf;N6O$ (5.5c)

The traveling wave nature of the functions frc can be seen from their
asymaptotic forms

where

(5.6a) results from a saddle point evaluation of (5.5a). The ratio

thus converges along the upper branch of the imaaginary axis, J= v > 0, while
the ratio

~ - (5.7b)

converges alon-g the lower branch of the imaginary axis, Jo v < 0. The product
~"?'however, is asymptotically not of exponential character, since

Cal (5.7lc)
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For the ratio - in (5.2), we can then obtain the series representation

Thus different expansions are required in the upper and lover half-planes.
Hultiplying numerator and denominator by " , we obtain

0t AV"mr VD '')" v0o (5.8)

It will be shown later that a stationary point of the integral J in
(5.2) occurs only for k - 0. Thus, retaining only the k = 0 term of (.5.8),
and introducing the integral representatiot:s (5.3a,b) and (5.5b) into (5.2b),
we obtain for the integral .

-;- . : 44.-;
where represent the integrals with the exponentials Sa respectively, and

ANa)

,}. - (,, t,,dc.J'.; ; . o.) 5.10)
I--4 *4Zcs.-IcS 1 aV( .-

4a*I. +L Cos*#s + c:s064.J

The saddle point of each integral # is determined by si=ultaneously
equating to zero the partial derivatives of the exponent S2 with respect to
each of the integration variables,

F- aw. aft Jf bfj

to determine the stationary value of each variable. As shown by Van der Pol
and Breor [Ref. 8] , the stationary value of the integral is given by

= A&vz) (5.12)

where n is the dimensionality of the intitral, 1S is the value of the
exponent and A(v2,,2 ) the =mplitude coefficient at the stationary point v,
and 6 is the Hessian deterninant [Ref. 10] of order n, evaluated at tLe
corresponding stationary point

K' .aij (5.13)

From (5.11) we obtain for the stationary point of S . with Jm v > 0,

4::i~,e~. 1(5.14)
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and, introducing the stationary values c - - 0,

W. * te . : 0 a (5.15a)

where w, and w2 are represented as wan, vax2 respectively, to denote
association with the stationary point of S1. From (5.15a), v, 1 , vw2 , and
(80+8) form a triangle. This leads to the geometrical relation shown in
Fig. 2(a). Similarly, for the stationary point of S2, with Jz v > 0, we oorain
the same relations as for S1, except that the sign of 8 is changed, so that,
denoting the corresponding values of w, and w2 by w, and W2 2 , respectively,
we have

*,: W14 9.-* E U9(5.15b)

W12, V22, and (E-8) now for= a triangle, as shown in Fig. 2(b).

We still have tG consider the portion of the v-integration for which
- v < C. For this situation, we need merely change the sign of eo, correspond-

ing to the interchange of g and .','* in (5.8). Then (5.15a) becomes

W . vv' a - ,)=

or

(T- W.') (--W.),(,J (5. 1.5c)

Similarly, (5.15b) becomes

ts-w + W -.. ); ) e (5.15d)

From (5.15c) and (5.15b) it is evident that w1 is the supplement of W1 2 , and
w2, is the su,?lement of W22- Similarly, from (5.15d) and (5.15a), it is
evident that v1 2 and w are the supplements of w11 and w, respectively.
Thus the geometrical interpretation is the sae as for J= v > 0, the stationary
points merely being interchanged. Consequently the result is just twice the
contributiGn due to the stationary points in the range J= v > 0.

The relation (5.15a) for the stationary point of S can be fulfilled only
if e6+6 < r. For %+3 9> Tr, S does not have a stationary point.

The values of S- and S2 and v at the stationary points are then

D ,, ; .- O) (5.16)

(5.17)

where
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Substituting the values of x and y given by (2.21) and using (2.7c). we
obtain

0.kR COS W.- R~c-.j CZ Akf,
(5.18)

a z-A (R C S w., + Kcoi )t -ik r.

For the far field we allow x - , so that, as can be seen from Fig. 2(b),

r. - R.co%(i O-6) =-~c(,~

so that

-. (5.17a)

Then (5.18) becomes

&R-Rc~os~t ej }(5.19)
The only non-zero second derivatives of S required to evaluate 6U2 are

thoe following:

C_ a.s CO_ -S CSV
___a- -=1-c%

Then, denoting the deternant 6 by Ia, . where the order of the elennts
iand j isq.v, t , v, we obtain

A= C),d 4 46 (aCLIX.66 dQAZa2)

Inserting (5.16)1 (5 17a) (5.20), and (5.18~a) into (5.12), using the
asy-ptotic value (5.7c) for p. In A(vs). including the factor 2 to account
for the contribution of J= v < 0, as discussed earlier, and introducing the
appropriate value of 4. for a ring source (2r7 times the value given in (2.19)),
we obtain for E.- in (5.1)
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where H(x) is the Heaviside step function

<0 .<

The (unnormalized) far-field pattern (i.e., the dependence of .on ),
thus is given by

-(6). _; [ t,. e - .r (6$,,) E' ',', X(--0] (5.22)

(5.21) and (5.22) do not hold in the vicinity of 6 - 0, since then
L., = 0, corresponding to the vanishing of the second derivatives ?$ /a.
In this region a higher order expansion of S2 is required. It suffices to
evaluate the pattern function directly for B - 0. Then

01

Thus there is a null along the come axis for the ring source in free space.

The far-field pattern given in (5.22) is for a slot of infinitesim'al
radial extent. For a slot of finite radial extent, it is necessary to inte-
grate the field across the slot in accordance uith the applied field distri-
bution. This is an ele entary integration. For a half-.rave slot with a
sinusoidal distribution, the result is

(5.23)

jote,'6OcoSEMCso.'4 .?GCf.&-Rjic- -l

The first ter= becomes indeter=inate when 9o- 5 - 0, the second when 5 6 =
In such a case, the indeterminate coefficient of the exponential is zero. In
the neighborhood of x = 0 (-), where x denotes %- 9 (SA- 6-0. the critical
coefficient is apprcxi=acely equal to -. /4.

It has yet to be shown that the terns in the expansion (5.8) for k > 0
do not yield stationary points of the integrals j.;. Obviously it is sufficient
to show this for J= v > 0. 3y vriting

using (5.5b) for each of the ifter=s in the mu=erator, and (5.7c) for the
denominator, '-e obtain for the exponentials S= in (5.10)

= i t.,$= £.

where

-Of Y±C-i e cos-)

Then a_4 , = 0 leads to d, = 0, so that
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Then aS. 2 /6v 
= 0 results in

W,+W,+ (zk)0e ta= -- (5.2.)

Obviously, since 0 > 1, (5.24) cannot be satisfied for k > 0.
2'

The evaluation of the determinant A, given by (5.13), can be simplified

when one (or more) of the variables is uncoupled to the others, so that, for

that variable, only one entry appears in its row and column. In the free-

space example considered above, this happens for the variables ( and cj.

The result then is equivalent to inserting the asymptotic expansions for the

angular functions p;. at the outset.

5.3 RING SOURCE IN SHEATH

We consider next a ring slot on a cone covered by a sheath. For simplicity,

we consider first a single homogeneous layer, and the thin sheath approximation.
.1

For the far field, we are concerned with the field in the ambient medium.

TzhMen we obtain from (2.11), (3.7), and (3.15)

C. ..

S (5.25)

t(v) is given in general form by the representation (3.30). The first term of

(3,30), co(v), is simply the free-space term (5.1) (with arguments ox and py

replacing x and y, respectively), for which the far field was evaluated in

Sec. 5.2. lt)e first iteration, (v), is given by (3.45). On inserting this

into (5.25), we have

-RE ' (RR) 4' E.4, (5.26a)

w%,f ce

J, L , • ,[x)KVpy) vV (5.26b)

The intetrat in (5-2-6;) Is the same as (5.2b), except for the replacement of

x and y by ox and 0y, respectively. Consequently, by compirison of (5.26a)

with (5.2a). we ;an i. ediately write for the fie'J El due to the first

ite.'atio.
E! (5.27)

where e is the free-space field. Since ROO, is the thickness, t, of the sheath

at the source radius,

t = R,(5.28)

(j.21) may be written aa
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(-Y t 2 E (5.29)

Thus we obtain

E' 0,(V) (I,- t) SF-4 + 0(S) (5.30)

where E is given by (5.21). Thus, in first approximation, the sheath
decreases the far field, by an amount which is proportional to 6 and to the
square of the electrical thickness of the sheath at the source position on

the cone.

5.4 SLOT SOURCE IN SHEATH L

A slot source covered by a thin sheath was treated in Sec. 3.3.2, where
(3.72) and (3.74) for c (p) and ce(ii), respecr.ively, were obtained. Whereas
for the ring source, c::e formulation (2.11) for RIm involves only the term
n = 0 because of the syr etrical excitation, for the slot source all values
of n are involved. Then, as pointed out following (2.15) and (2.16), the
coefficients 5P and 5fe are the same for each value of n. The relative

excitations of the various orders, n, will then be determined by the applied
excitation as a function of the azimuthal coordinate cp.

Since (3.72) for cn(t) is identical with (3.45) for the ring source,
the azimuthal electric far field of magnetic type, Em, for n - 0 is the same
as for the ring source case, which is given by (5.3;T. For n > 0, it can be
seen from the nth order asymptotic expansion of (f'/f;i),

p.-(cose4 ) "tnL Tj'# ,(A.--r-,fIZ

Isr& (A;f'[eK6). f$St5j ZiC.fz1)(5.31a)t

that it is only necessary to multiply the coefficient of the second term in
brackets in (5.21) by (_)n) and the entire expression by cosknit.

For the slot source, there is also a meridional component of magnetic
type, E?, as well as components of electric type, E and Eg. Far-field
expressions for these components will now be obtained.

For Eq, we have

RsE7 = 8 i- S e(') ( hdi (5.32) .

The integral differs from that in (5.25) only by the replacement of ." by f •

The asymptotic expansion of is

P-"((ios) "s;, os(,,-n, -z)

I n-- a - -/ e ZL(2 sL 2-- (5 .3 1b )

which differs from (5.31a) principally by the factor %i'-. Consequently the
saddle-point evaluation of (5.32) yields for the nth term (with k2  k)

43

i



e CO S5.3

The field components of electric type involve Q (v). e~v szrs
that (v), which is 0(6), is the term of lowest order. For this we have the

integral expression (3.74). Since the thin sheath approximation is limited
to terms which are 0(6), we need be concerned with the evaluation of (3.74)
only to terms which are 0(6). Then, as shown in Appendix B, (3.74) reduces to

Jy yL2
For ES we then have from (2.16), (3.7), and (3.58b)

where

= ~ r..(5. 34b)

in which

- b~~Od. ~ I(5.34d)

a,= Zm1 1-v

a,hf. -1 --

upper ~ ~ ~ h hafpae h4 = 0. M=0eursnc ttrsot httesdl

points of (5.26) in the X-plane occur at the poles, the lower half of contour
C. can be neglected.

The poles of 9-v in (5.34c) pose a complicat*,on. This can be overcome
in the following way:
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Denoting the X-integral by 1(9o), we have

h '4 1*

where the ak represent the poles at X - i2m hl-v. Multiplying by eiako and
then differentiating with respect to 6o, we obtain the differential equation

69,
The solution of this differential equation is

ie'e;ao.~ t44.X l,(j}d I,.oX (5.35)

where the lower limit L is chosen so that the constant of integration is zero.
Since Jm ak = -v < 0, iak has a positive real part. Hence X must be negative,
and L = -= insures that the integral in (5.30) vanishes at the lower limit.

Thus (5.34c) may be written as

where

WA e . 
t 

" p (5.36)

In this form, the poles have been eliminated at the expense of an additional
exponential integral, which increases by one the dimensionality of the multi-
dimensional integral t6 be evaluated.

There are four varieties of oulti-dimensional integrals in (5.36),
corresponding to the four combinations of the exponents *iv9 and :U41. Thus
we have to evaluate the four integrals

where

Replacing Iv(px) and K (py) by their integral representatioas (5.3a,b) as in
Sec. 5.2, ye obtain a five-dimensional exponential integral. By equating to
zero the first partial derivatives of the exponent S with resect to the
integration variables, we obtain the following equations determining the
stationary point:

I,.. T., v/LtW (5.38a)

;. : = / (5.38b)

W. +. i- t (5. 3c)

.,t.t,= 0 %5.38d)

+ (.38e)

45



For the far field, x - =, so that we obtain

%in w. = 0 w. : 0. I, 2t

From (5.38c) it can be seen that, in order that x be negative, we ,ust
choose v - 0, so that

i~~~-( Z = - 1" - (5.39a)

For the upper sign, the right-hand side is positive if go+ 9 < T. For -+ 9 > rr,
a stationary point does not exist.

From (5.39a) anJ (5.38d),

Thus

' .%=siflza.- ta,:.q) (5.39c)

so that, from (5.38b)

I =t~y i (Z.t : }(5.39d)

vhence, froo 
(5.38e),

4 jy sin (2 6.t s t1 + (5.39e)

The value of the exponent S at the stationary point then is

S1 I -?X- tyCS* kf - fE'PyrO (~Ze.et te- (5.40a)

and the value of the determinant As is

As = px tpY Co-*SW2 , FV C" --S (5.40b)

The geometrical interpretation of (5.39b) is she-%w- in Figs. 3(a) and 3(b).
Fig. 3(a) corresponds to -9 and -6,. The angle

2~e8-e81-e -Go-, o-e

and the distance

..k - I' C.os (Z, .- - }

vhich occurs in S. show that the field of electric type appears to originate at
the image of the sheath in the cone. the situation depicted in Fig. 3(b)
corrtponds to --9 and -E, .

Since

the combination %9 *9 in (5.39b) cannot lead to a realizable statiotnsry point.
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60.

(a)

(b)

Fig. 3 Stationary paths for electric-type field
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On inserting (5.40a) and (5.40b) into (5.12) to evaluate the integrals
J*A ,we obtain for Ee in (5.34a)

Er Al slow___ A;

• [i 
"[l: ; 

* . -.- -, - t .
"  
.f. ,sz!-;.¢,. ... l r~-" (5 4l

e* (5.41)
0 Is'V; 0 *r a a :P

In a similar way, we obtain for E

E6 r-.4 i1, 'r n,

- °#

_-l ., el (5e..---4 (5.42)

The far-field expressions (5.33), (5.41), and (5.42), as well as the
expression corresponding to (5.21) for the slot source, hold for a slot of
infinitesimal width, corresponding to the 6(=) fector on the right-hand side
of (2.13). For a slot of finite angular width 2.0 < X/2, the excitation can
be assu=ed to be uniforn in o across the slot. Then 6(o) in (2.13) is first
replaced by 6( -. ), where c.b represents the azimuthal location of the
infinitesimal slot, followed by an integration with respe:t to c,, over the
azimuthal extent, 20, of the slot. Thus E. in (2.19) can be replaced by

The factor

(5.43)

thus should be affixed to all of the far-field expressions to account for the
*-distribution of a slot of finite width.

5.5 EX1E2IOS OF THE ETHOD

The exaples worked out in Sec. 5.3 and Sec. 5.4 were for a single-layered
sheath, and in Sec. 5.4 use was made of the thin sheath approximation to 0(6).
There is no inherent difficulty, however, in extending the treatment. This can
be done to any order in 6 without invoking the thin sheath approximation, since
asymptotic expansions can be used for the angular functions in the kernel
functi.ons K (v,X) and )2(v,X) ot Lhe single-layered sheath analysis, ori(,'(-X
and 7 s , of the double-layered sheath analysis. Thus the far fields and
patterns can be determined for the general case to any desired degree of
precision o(6k).
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SECTION VI

INPUT AW(ITTANCE AND MUTUAL COUPLING; EXTENSIONS OF THE ANALYSIS

6.1 INPUT ADMITTANCE

The reaction of the sheath on the input admittance of the antenna is of
great importance, since experimentally it is found that the change in admit-
tance can be severe, and can profoundly affect the excitation of the antenna.
The m-ethod of calculation of input admittance was presented in Reference 5,
where, for a radial slot energized by a voltage V across its center, the
input admittance, Y, was given as

Y= -V. dS.(.N(-)~i~F (6.1)

Since HR(%o) is zero for the electric-type field, this reduces to

Y .- ,r OG;(. -1 . H"(Q.)R.5 ,8d R. (6.2)

Since

I' (~jz~t~X.) II'eJ)(6.3)

(6.2) becones

R11= is given in general form by (2.11), and for the input admittance i =1.

In the case of a single-layered sheath, for example, the notation of
Section III is applicable. Then, just as was done for the coefficient A2 , the
boundary equations may be solved for A, . The result for the ring source, for
example, can be expressed in the form

&) 4. (-) + (4 + -- - 6.-

where

(6.6a)

14) '~~(,.~ (6.6b)

(A -J- 2 (6.6,c)

Q10 (6.6e)

In virtue of (6.6e) , t, (v) is 0(6) and t. (v) is 0 ( 6 n).

From (3.1a), (6.5) and (6.6a), we have
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so that

C 
,

Then (6.2) becomes

+ Y " Y+ " (6.8)

where

(6.9a)

C9 (Z'.1'g t . ",( 1 (6.9b)

Yo is the free-space admittance, so that the re=aning terns represent the
effect of the sheath. In (6.9a,b) (p./t, denotes

(~ ~ (Cose*
and similarly for the other angular functions in L(] ,)2) in *. (v), so that
the E also involves the Lefendre functions.

There is no difficulty in extending the analysis to the case of a slotsource, and to the general case of an H-layered sheath, so that expressions can
be obtained for the input ad-ittance for these cases as well.

EZ(80) is the applied field at the slot source. For a single half--ave
slot of width 2w, for exa-ple, we have with 0 w ?c, where Rc is the location
of the center of the slot

E (e.W- v cc k.-R.1[ )(- -R3 -}c iJ j {-q-,] (6. 10)

where

and in (2.19), E6 -V/2w, so that

S-V/,,k.kv) (6.11)
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Since *0 (v) is known, all of the integrals contain only known functions.
They can be evaluated exactly by contour integration as in Section III. This
procedure is not very appealing, in view of the l',ngthy series representations.
Since the admittance is strongly affected by the near field, asyMptotic ex-
pansions of the angular functions are not suitable. The only alternative
appears to be direct nt'erical evaluation of the integrals. In this connection,
it appears that even the inpedancc of a cone slot antenna in free space has not

been evaluated analytically.

If the thin sheath approxi=ation is introduced into (6.6d) for Lo 1 , 2 ),
then it turns out that there are tern which are O(Oi° ), and these cannot be
evaluated in closed form either.

6.2 M IMlJAL COUPLING

The coupling between a transmitting and a receiving slot on the cone can
be expressed in terms of the mutual adzittance between the two antennas. This
was discussed in Reference 5. The mutual admittance, Y12 , is the complex
mutual power per unit voltages across the tmo slots

Y,= y,. , (14. ) d A (6.12)

Where F is the =agnetic field strength at slot 1 produced by the excitation
of slot 2. For exanple, for two infinitesi.al slots at the sane distance R.

from the cone tip, but spaced an angle f around the cone

Y, (6.13)

where

Eq(9j = E, (q) + CLS (?-) (6.14)

Thus in (2.13), E.,6(o) is to be replaced by

By putting E = 0, it can be seen that the field E2 produces a field at slot 1
whose C,-variation is shifted by f relative to that produced by a field applied
to slot I. Then for % (G.), we use the value (6.6) with o replaced by c - f.

Similarly, for two infinitesimal slots on the same radial, but at
distances R. , , respectively, fron the cone tip, Ea(u)6(R-R,) in (2.13) is
to be replaced by

-E16(R- R,)

Consequently, with E1  0, it can be seen that for H1R(8 0 ) we use the value

(6.7), in which the t. (v) have kj) = k,(-,R.) replaced by .

Thus the evaluation of the mutual admittance between antennas can be
handled in a manner very analogous to the calculation of the self admittance.
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6.3 EXTENSIONS OF THE ANALYSIS

In an actual plasna sheath which forms about a re-encry vehicle, the plasndparameters vary in all three ccordinate directions, in general. In this report.the plasma has been idealized by assuming that it is uniform in azinuth and inthe radial direction. The continuous meridional variation has been replacedby a two-step variation. It is interesting to see in what directions thisidealization can be liberalized.

The two-step layaring procedure can be extended to an arbitrary nu=ber ofsteps, thus taking into account the .eridional variation. The separability ofthe wave equation in spherical coordinates allows an arbitrary variation in theradial direction. The radial differential equation then is affected by thevariation of k with R. Thus if k is other than constant, the Bessel differen-tial equation has to be replaced by one wrhich depends on the radial variation ofk . Then the K-L transform also can no longer be employed, since it stems fromthe differential equation of the cylinder functions. Instead, a transformapplicable to the new radial differential equation is required. The techniquefor developing such a transform exits. Although the radial electric andmagnetic Hertz vectors, R. e,n satisfy some-hat different differential equations,this difference can be neglected if K does not vary appreciably in a (local)wave length.
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SECTION VII

CON CLUS IONS

The problem of radiation from slot antennas on a cone in the preser.ce of
an inhoc-ogeneous sheath has been solved. In this repc-t, the sheath is
considered as being made up of one or two conical layers, each of which is
homogeneous. In the method of analysis used, the field is expressed as an
integral representation. The boundary conditions then lead to a system of
integral equations, which number 0.4 for a sheath composed of X(w I rr 2)
conical layers. By an extension of the K-L transform technique, these
equations are reduced to singular integral equations of Cauchy type. An
inversion technique is developed which reduces this system to Fredhol
equations, which can be solved in iterative fashion. By introducing the
parameter

where

ot = Yt-X/re I

is the ratio of propagation constants of adjacent layers of the sheath, it is
shown that the successive iterations proceed in powers of 6.. For a suffi-
ciently fine stratification if the sheath, the first iteration should suffice.

In general, fields of both -agnetic and electric types are generated in
the presence of a sheath, even though, in the case of a radial slot, only a
field of -agnetic type is generated in free space. The field of electric type
then is created at the sheath boundary. For a ring slot, however in which
the excitation is azim-uthally sy--etrical, only a field of magnetic type is

enerated even in the presence of a sheath. It is shown that the solution for
this case forms the basis of the solution for the genetal case.

in general, the evaluation of the integrals murst be accoplished by ccnour
integration, which leads to lengthy series expansions. These are not convenient
for ntmerical evaluation. For the case of thin layers, hove-er. Taylor's seri--
expansions of the angular funrions allow all best one of the coefficients to
be evaluated in closed for=.

The far field is determined by a =ulti-d-nsional saddle point evaluation
of the integral representations. 1his is illustrated in detail for the free-
space case, and is then applied to determine the fa- f:eld patterns in the
presence of a sheath. This can be carried out successfully for all components,
and to arbitrary orders of iteration.

The calculation of input admittance and mutual coupling between trans- -

nitting and receiving slots on the cor.e is for-laced and methods of calculation
are discussed.

Extensions of the technique to =ore general situacions are dIscussed.
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APPENDIX A

THE K-L TRANSFORM

The K-L transform can be written as

g . ,J f(C)K,( dj/. (Al)

This is equivalent to the transform pair

f (t) (A2a)

F(v) I 5(,I Kix 4,/ (A2b)
Ra

Since Yv ( x) is an even function of v, it follows from (A2b) that F(v)
likewise is an even function. F(v) must be an analytic function of v in
a strip of finite width -6 < Rev < 6, 6 > 0.

By setting f(x) = 6(x-xo) in (A2b) and then inserting the value of F(v)
in (AU), we obtain

A second 6-function relation obtainable from (A2a,b) is

• - c,.. L-" x i K,,W J/fif C x K, ,,l (,A,4)

By replacing x by yR, the transform pair (A2) is frequently written in
the form

-'a (A5)
FC,, z P) K.,€-V)dke*A

In terms of tle spherical functions

40R) a - R"' LCi(R)

&,CVR) 2 R% K, LYR)

(A5) becomes

(A6)
FFr A" (a fm4g IRRI

and (A3) and (A) become

R -R.) ' .. 4. cr~i.hXl~dv W i'r S 1.),(YR),vd (A3a)

respectively.
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(A5) is equivalent to the form originally given by Kantorovich and Lebedev
[Ref. 6]. A fact which is not generally realized (again stemming from the
treatment in Ref. 6) is that in (A5) y is to be c'onsidered as real. Actually,
the proper way to write the second equation of (A) is

That y is to be considered as real in (A5) is forcibly brought out by
analyzing in detail the manner in which the 6-function properties

S(R-Rd RR.RZ U, (A7)
$ -R. } = ,< ,

are dinplayed by the integral representation

R6&(R -1 CS R~) K.,NR.)~ (AS)

In (AS), replace Yv(yRo) by

Sin is

Then the integrand has the asymptotic behavior

11 ,(i)KiP 4 r. N (R J - U Pr 1 'afW./4) ZM Al/J torqII '-0 (A9)

The first term of (A9) is bounded as v - along the imaginary axis. If ie
vrite y - pei(, then the magnitude of the second term of (AS) along the
imaginary axi is of

The exponent .thus is positive real along either the upper or lower half of the
imaginary axis, depending on the sign of 4. Thus, Sk teond LM gL Ul Lu.
not bounded along the !MAinary axis unless - i.e., unless y is real.
If (PW0, t-he magnitude of the ,ecnd ter-" - T n the integrand ? 7W is
bounded along the imaginary axis. The second term vanishes on an infinite
semicircle .in the right half-plane; the first term vanishes along an infinite
semicircle in the right half-plane if I < RO , in the left half-plane if I > 3 o .
Since the integrand has no poles, the integral vanishes in either case.

' I But if R - Ro , the first tern of the integrand does not vanish on an
infinite semicircle in either half-plane. Consequently, the integral is
unbounded for I - 1o. But if an integration over I which straddles 1o is first
performed, a factor (v+l)- ' is acquired in the first tern of (a) which
introduces a convergence factor as well as a pole at v - -1. Then the
integrand vanishes or an infinite semicircle; for 36(>o) the integral in
the left half-plane encloses the pole, and it is easily shown that the
residue is Ro . The same resulc is obtained if an integration is performed
over Ro over a range which straddles R. Thus the 6-function properties (A7)
are all prcperly exhibited if y is real.

The integration over R over A range straddling R., as sketched above,
also provides the means whereby the assumption that y is r -Al is justified.
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It is merely necessary to integrate R along 0 contour rotated by the
angle -o, as in (ASa), which makes yR real. This is merely another aspect of
the 6-function property of (A3); i.e., it does not make "sense" mathematically
until an integration ever R (or R) is performed. In the case of the K-L
transform of a general f(R), the justification for considering y as real is
performed by the inverse transform (ASa).

56
i- -

I

I5



I

SOTI= ON OF THE BASIC INTEGRAL EQUATION

The basic integral equation is of the form

co C

wher* A(v) and B(v) are even functions of v, and contour Co is the imaginaryaxis of the v-plane. It will be assumed that p is real, in order to avoidconvergence difficulties in later inversions of the integral equation derivedfrom (BI). This can be justified in the ca=e way as in Appendix A, by notingthat eventually integration over the source coordinate will be required.
Hence in the ultimate integration over the source, the path need merely be
rotated so that px is real.

i (px) in the right-hand integral of (Bl) is now expanded rRef. 71 as the
series in i,2 (xl:

where the coefficients ct(v,p# a'e polynomials in p2

,n! r@qtt; rl~ij .-.. r ,,. (i-2.j I! (-3

The following properties of th',se coefficients are important for later
developments:

By writing

(33) may be expressed in the form

c.t(-P) e on(,s" (r3 )
vhere

c-f(.-I)" vF(i,mqr)

~~(53b) I

Thus the first term in the expansion (B2) is 0(1), while the remaining terms

With (B2), (3l) becomes

Takingvi the K- -Jf8{) Z,.4vf) (ttzw) ,,,.,tx) Ax ad)

Taking the K-L transform of (B5), by muIltiplying by ;(x)dx1 and integr&ting
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over 0 to s, it1 get

~L is =. (B6)
wj.,r* i C._y I-!aon z - - ima,.;try ax iiC , contour parallel

to *1,4 a-:..ry axis t% -be ri2 . 01 , aS showr • Fi:;. BI,

C-4 C. C, €,.1

Fig. Bl

anU 1(,;p) is given by

= t___ -f ". ,P ( (B7)

Alternatively, instead of expanding 4, (px) in (B) in terms of i,', 2 (x), Ve
can expand iv(x) in terms of c series in iV,2,(px). This can be done by replacing
x in (31) by y/p and using (32):

Then (3l) becomes

i.1, .- flhAc)f. p Cn(jvtl 4*) il*UltyI ki (39)

The transform of (B9) then it

Thus IJMI. L ht invrsogI . L 12E. XJU ers* (p~. &,v; Il/p) is givan
by (37) with the replacemnt of p by I/p.

It should be noted that X(p,v;p) is equivalent to the integral

Simiarly,

,r =  ,; U).,,(fAi /, (312)

In Sec. 3.3, t6ie related func,.-!o )0, ' is encourtered. This is defined

-, -l X(F 4I u--)-' " pC --
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Using (B7) for the 14-functions, it is obvious from (B3a) and (3b) that only
the m - 0 terms are 0(1), the remaining terms being 0(6). Separating off the
m - 0 terms-, we have, since c 1,(v,p) - i,

jt."1- 4 • t I -I I o I -,-I

.'i * i J

In a typical integral
S F'v) 2':" a.

where F(v) is an even function, we can change the sign of v in the second
term of each pair of terms in large parentheses in (B13), for which the contour
becomes C;-l (see Fig. 31). A shift of contour from C '-1 to C,+1 allows these
terms to be combined with the first term of each pair in CB13), and also
collects residues at the poles v - 14. The residues cancel, leaving

, " " (B14)

Since

each of the terms of the intetrand of (B14) is 0(6). Hence integrals containing

X*A,--v are U{$).

In subsequent developments, we encounter double integrals of the type

a --. , (5)

where M(v,]) is an even function of both v and 1. Since it has just been
shown that the inner integration yields a result which is 0(6), this result may

be represented as

where E(%., is an even function of v. Hence, if we wish to evaluate .z) to
0(6), ye need be concerned only with the first term of the series representing
(& ,v;lip), since the coefficiet-s of all higher ters of the series are all

0(6) (see (B3b)). Thus we have
( -L f '-* VA a + 0 (P)d( a.)~ : rZEc, #;':)" .'-O W 0$) ,-.

Since

we find "" t/
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Consequently, to 0(6) (BIS) may be written as

J (p) S M(p,.A) 3I', )4t -t 0(62 (B16)

Similarly, for integrals of the type

where M,(v,v) 0 O, so that the inner integral is 0(6), we obtain

( = ~lo~l,~rdt -OlS 21  (B18)

!e
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APPENDIX C

K-L TRASFORM OF DERIVATIVE

Given

v geek the transform representation of f (r) drL-(r). That is, if f'(r)
is repr.esented as

49

vhat ts the form of F, (v)?

Differen'-acing (Cl), we obtain

In the first tern, repL&'at v+l by v, in the second, v-I by v. Then

Now shift the contour in the first integral to the right, in the second inregral
to the left, to the i=aglnary axis. Th. hn, providing Fv) has.no singularities
in the strip

we obtain

!r(r) c L.Y-1F'-1 -01 .. 1 i

iii

Hence

GfC-t) F(-) + ii) F00--1 (C2)

Sfrdlarly, for the transform pair

(03)

in virtue of the relation

(C4)

we atu-=

where
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providing G1 (v) has no singularities in the strip.

-(It ) < -a • I eI

.1

iI
!I

I i
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APPDMEIX D

ZER:n OFl LHE. .E FNMCTIO.

The purpose of this progra= is to comuce the zeros. , of the associated
Legendre function of the first kind. P?'(cosSJ. as a function of degree v,

and t ie derivative v '(cosO) at %,.. A method of cmnputing ttese zeros
vas described by Wifox* of the University of Michigan. Ho-ever, a different
,ethod is employed here, which is -ore accurate and faster when S is close

to 180 degrees, which is the region of interest here. Double precision

arith=etic is used in order to achieve the desired accuracy.

The following equation vas used tc evaluate the asso.Iated Lagendre

function:

I& F ______ -- *

• -(cos) , given by:

I
in tluese equo e ,-

(D3)

The firs: ter= in the derivative vanishes at v, of course. SC,'iever, the
complete expressio= is needed in the iteration_ proccess to refine sc-ceisive
trial values of the =err,.

In order to take advantage of the ezpressions which are cc= to

P,5 =(cos0) and -(cose', d* arrays ZRA, R3, Z3L are set up. These are

defined as follers:

ZCA. osa-,I (D7) -

Z7L< .- (D09)

In terms o! these q-antities,

• E H. rIJ.G, Th e Zeros of ij(cos8) and (/0) (cos )."
Xthe.atics of Coputation. Vol. 22. No. 101. Jan 1968.

.6-1



P(C oS-- on tan" 2.. ZRA. t0"1ZRD. ZKL.] (D lo)

and

ao *L= "'"(D11)

The ratios of the gamma functions in ZRA and ZRB are computed using the
recurrence relationship, so that

ri(-nv) r(,I +v) = i/T (m'(-1-(._2w1. ) (D12)

and

Tn TI (mt) (m+1 -I--) (D13)
{m-v) r(m~l , -I

Subroutine XP computes Pm(cosG): and in the process computes the arrays
ZRA, ZRB, and ZKL by calling other subroutines. XP calls three other subroutines,
RA to compute the ZRA array, RB to compute the ZRB array, and EK to compute kn,
which is needed for the ZKL array.

Subroutine XPPR computes ( P-(cosG) using the arrays ZRA, ZRB, and ZKL.
It calls three other subroutinN, EKP to compute k", G to compute 9n, and
H to compute hn.

The EK, G, and H subroutines, which compute kn, gn, and hn, ruspectively.
all call the PSA subroutine, which computes the * function. The EKP funr:tion,
which computes kn, calls the PSB subroutine to obtain the *' function.

The t function is computed by using the recursion formula to step tne
argument upuard until it is greater than 10, and then using the asymptotic
formula. Thus the formula used is

-*(z) =l og (=..? z=+ zn, () - E .(zn)"
M .L.(D14)

%ztg >I0, B. Bz./2n

where the B are the Bernoulli numbers.

Similarly, the 4' function is computed using the formula
'z = I I I .. I I ..
z,--- Z rz" 47 (z-)z+1-)+ i (~ } 2 '

()(015)

zn > ,I 2t8f"= .,

To compute the derivatives with respect to 8, the recurrence relations
are used.

.P.-(oss)= s [1 " P:1CoA)--m)P7(co'f)1 (D16)

and
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[1A Cosa(D17)

In the actual computations, the first values computed are

32 P1 (csi%/(-AB1S~sf8)

where

-B = - (tan" su'r jc)/r:

Then in (DM6) the following is used

sii 1)O

and similarly for the corresponding term in (D17).

The program consists of a main program and ten subroutines. All routines
are written in Fortran IV.

The main program first reads a single control card which contains the
parameters for the first set of zeros. There will be one additional control
card for each additional set of zeros. The program terminates by reading an
end of file while attempting to read another control carl. A description of
this control card is given on page 67.

The zeros of Pvm(cosG) are denoted in the program by Hu, and the zeros of
-"m (cosG) by Mu. The program uses an initial (estimated) value of Nu from

e control card to compute the first values of Pvm(cosB) and V (coso).

The derivative is then used in the following way to obtain a second value of
Nu which gives a Pv-m(cos8) with a smaller absolute value: r

- " -(DI8)

This process is continued until P,-m(cosB) is sufficiently small. The criterion
of smallness is selectable by means of a tolerance, which has been set at 10" 1° .
An additional tolerance of 10-a for the second term in (D18) is also included.
This insures that 8-decimal accuracy is obtained for the roots. These tolerances
are arbitrary and could be changed if a different accuracy is desired. Usually
only a few iterations are required to obtain ten significant figures of accuracy.

In a similar way, using an initial value of Mu supplied by the control
card, a value of Mu is found for whic, aI (cosB) is sufficiently small.

The four values for the fiLst zero, vo, are

stored, and the next zero is then processed. The initial values of Nu and Mu

for the next zero are obtained from the final values of Nu and Mu for the zero
which has just been processed. Tl/O is used as an approximation for the
difference between consecutive zeros for both Nu and Mu.

When all the zeros have been processed that were called for in the control
card, a page of output is created containing a tabular listing of the four
values corresponding to each order of zero. The program then attempts to read
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a new control card. This is the usual procedure. Additional printouts atvarious stages of the computation are selectable by means of appropriate
entries in the control card.

A flow chart of the orogram is on page 68, and the complete program
listing on pages 69 - 73.
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CONTROL CARD FORMAT

The control card is read by the following Fortran statement:

READ (5,55) KW,NZ,M,AA,BB,CC

55 FORMAT (511,215,3Fl0.5)

KW is a dimensioned variable (DIMENSION KW(5)) -.

The parameters in the control card are described belev.

Col. I Non-zero meazs print values of V, Pv'11(cose)/(-AB), and

*-Fm(cos8)/(-AB) for each trial value of v for each zero.Bv

Col. 2 Non-zero means print final values of v, Pv"(cose)/(-AB), and

- P,"(cose) for each zero.

Col. 3 Non-zero meanz print values of P, -1 6(cose)/(-AB/sin9), and

,-- '(cos8)/(-AB/sin8) for each trial value of p for each zero.

Col 4 Non-zero means print final values of p, -1 6m(cos9)/(-A3/sin8), and

l j'e(cos8) for each zero.

Col. 5 Non-zero means print a page containing final values of v,

P.'n(cosB), p, _Y_ . '(co98) for each zero in the set. This is

the normal production output.

Col. 6-10 Number of zeros in the set to be computed.

Col. 11-15 Order of Legendre function (a in Pv'"(co8)).

Col. 16-25 Argument in degrees (9 in Pv(cosg)). This should be greater than

160 and less than 180.

Col. 26-35 First trial value for v in firet zero of the set.

Col. 36-45 First trial value for p in first zero of the set.
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READ
CONTROL1

aa.

To PP*Ios T ani PI~oe

CAL XP AND X

-is

N68

PI 4I(o e<ITOI I.)
>YE

SET OK~lTF. ALUS PRPORTOV.



$EXECUTE Isios ___

SllFTC TEST
bOUILE PAIC!S10 I*h.IEUEU,,.
DOUBLE PRECISION QtQPRoZRAtZtL#XPNJXPNJ
DOUBLE PAECUSINMCC~~,SO,,APAPfA1

___ DIMENSION ZRA(1O1,1R5(1O0)tZKL.(100.)__
dIMtENSION KW(SI
DIMENSIOM XNU(200),XUI2OO3,XPNU(2OO),XPMIJI2000

777 CONTINUE
READ (50551 gWNZ.NtAA*UBCC

55 FORMAT (5I1,2tS.3F10*3)
EMam

TOLuI*OE-1O
TTOLSIA.E-l

CT-CCOS( TH)

CuOCOS(TH/Z. I
SuOSIN(TH/Zo)

-- - CSQAC.C___

I CONTINUE
AuOSIM(EEU*PIJ
CALL XP(NENUCSQP.ZRA.ZRSiti'LNWI
CALL XPPft(ftENUCSgvPPR9zRALf~~~t3,ki,)-

IF £KKUMAQOI 60 TO 11
WRITE (69661 ft.EIPPPP-I p

it COOTOINU6
1F (AVS(PI.T.TOL) GO TO 686
IF (ASP/PPR)LTTTOL) GOTO 366

ENUsENU-P/PPR
Go TO I

136 CON71NUE

XNUIJlmENU

IF (KV(21*EC.O) GO TO t2 --

WRtITE A4iN.PR
4i 06AT 111O,930;161

12 CONTINUE

42 CONTIffUE
AwOSIM(EMU*PI

-~_CALL X(,MS,,ZAL~lL!N

CALL XP(M.EMOU-1.,CSQ.PAZRAtZR9,ZKLNN)I
CALL XPPRIMENU-1.~mCSGPPRAtZftAZR6,ZKLNNI
QwEI'IJCT*P*( (PU-EM I.PA
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QPR=Q'*PI*0CO5 C ENUOPI IA*QPR
IF t13,i(3).EQ.OI6 IO f"W~
WRITE 4~,266 kENIQQPR-

IF (At%- 40)*LTs?0L) GO TO 99
WF (A-BT.Uib0pm .LT etYL I d7O fd ii

IF (N*GT9101 GO TO 99
__ ENUMEN-/apo

GO T0 2
-"I CONTINUE-

QPRn-QPRS __

XMU(JlmENU
XPNU U I-QFR
IF CKN(41.0.OI GO idoT4

-- WRITE-W66 0NEWNUQPR
14 CONTINUE

ENUoENU#P 11Tm -.- - --

300 CONTINUE ___

IF IRM910)EQ001 Go TO 1I
WRITE 16#1611 MNM

161 FORMAT (I.HIZOX9ZONANGLI IN 3ERE S*9g2X~i~bf ~ -i--
WRITE 1691621

162 FORMAT £ISX,3HZNO.ZOXHNUZX4PNUZX21,z ~- H-X4PRp-flF-
WRITE (~lkt3) £I.XNUIIXPNUII),EMU(I),XPMUCIIIm1,NLI

163 FORMAT 1SX91I9S.1XFll 1.,I1X9014?,oXFl71.04?--
WRITE 161,14-------

144 FORMAT (IND)
WRITEE12gtlS ftZNAA

1?S FORNAt £ZISF1O.51

11? FORMAI 113060111

SUSROUTINE XP(XENU.CSQ@P.ZRAZRS.#ZKLtNNi____________
DOUSLE R iIPSN.,RSTiSE l%,.Sf
0OUSLE PRECISION TOL __

01MINSION! ZRAlIiOPZRSll0OIZKL~iOOP- __ - --

IF 1NLTell 60 TO 101 ___-__

00 100 "NaleN
N-Nw-i ___ ______

100 CONTINUE
101 C 1U____

S... -K!LP JIOOGCQ

300 ONTIUE "-- - - --------70



IF (NN.GT.", GO TO 201
IF (ASS(ZS).LI.TOLl GO TO Z01- -

GO TO 300
_21-CONTINUE

WRITE (6#661 MR
66 FORMAT (201 kUPSER OF TERMS ts #14)

RETURN b

SI~CEND
SIFCXPPRO

-DOUBLE PRECISUN CSQ.ENIJFPR.ZRAZRB.ZKL.ZNZEKPEKPGtH.SCACS
DIN kE id bi Z1 iAf ) z i T 6i 0,kLE i fi d)
Sao.
IF (uI.LT~i) OC TO 101
DO 100 NkultP

101 CONIUE

1OO CONTINUE

RETURN

ZODOTUBE ECSNFC(l
DAT3A 'C IF )lll)1Oq1Dv 0602*0

IEUR 1201?- - ------~l36$.09328.i----- - --- F

ENl-P

*~0 1__ 00i. lv

ELmL
___PROetRO0/((EP-fL-EWU)*tENI-EL*1.*4UJ)

101 CON71WUE
PRO-PRDO J ((C@'/AM)T_+

-tPROC

$ISFTC Roe
OG_0UILE PRE-~ftCISIC lFIJNct O RIN f"~
-MUILE PRECISION ft3.EMUvCSQA9EK#EJtEL9EN
DOUBLE PRICISION FACT(LIl
DATA_ (FACT(liII-,lll/i.OO. :oD@,vo.0~O~O.24.O* ----I- _ _



GO TO 999-
I EN-ft

EJ-p+N
- -- ELaPN-1

A-EH-EJ

919 RETURN_
END

__SIOFTC PSA.
COUULiC ORECtStICN FtUNCfION PgAtll
OUBLE PRECISION 4".XUSUMPSA

DATA_(B(t),I-1,5)f
1 0.8333333333333333 0-01,

-- Z -0.833333333333333 0-02,

4 -0.4186"6666444.eT 0-02#
5 O.515575115'57e0-02/
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