
Best
Available

Copy

,

PROJECT MAC

£*•
Qiy.-. ■^Vfliiirriffrinrnf-'" npn

PROGRESS REPORT VI

JULY 1968 to JULY 1969

^D D C

MAY 18 1970

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ilSEUTTE
c

PROJECT MAC

41

I

Cambridge

Reproduced by the
C L E A R I N G H O I' ^ E

for Federal Scientific & .hmca
Information Springfield va. 22151

Massachusetts 02139

This document has been approved
for public releasQ and sale; its
distribution is unlimited. ^ ^

-

V
&

■«

PROGRESS REPORT VI

JULY 1968 to JULY 1969

Work reported herein was supported by Project MAC, an
M.I.T. research program sponsored by the Advanced Research
Projects Agency, Department of Defense, under Office of
Naval Research Contract Number Nonr-4102(01), (02). The
primary support for some of this work came from the M.I.T.
departments and laboratories participating in Project MAC,
whose research programs are, in turn, sponsored by various
government and private agencies. This support is acknowl-
edged by specific mention of agency and contract number in
the appropriate sections.

Reproduction of this report, in whole or in
part, is permitted for any purpose of the
United States Government. Distribution of
this document is unlimited.

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

545 Technology Square Cambridge, Massachusetts 02139

■' BKH«»! tsecwi'

IROJECT MAC

JULY 1968 to JULY 1969

s. M. Adams
G. K. Adler
J W. Al sop
E. I. Ancona
R. M. Baecker
A. Bagchi
B. Ba ilin
M. E. Baker
M. D, Beeler
V. Berardinelli
w. T. Beyer
w. D. Bilof sky-
T. 0. Bin ford
Prof. M. Blum
M. C. Bogue, III
H. E. Brammer
A. L. Brown
M. C. Burnham
D. E. Burmaster
R. L. Bushkoff
M. L. Cabral
T. F. Callahan
R. H. Campbell
I. R. Campbe11-Grant
R. A. Carpenter
L. Cavallaro
J. H. Cecil
E. ch arniak
G. F- Clancy
D. D. Clark
Prof. F. J. Corbato
C. A. Dancy, III
R. C. Daley
P. E. deCoriolis
H. M. Deitel
Prof. J. B. Dennis
F. L. DeRemer
Prof. J. J. Donovan
C. P. Doyle
H. R. Drab, Jr.
D. A. Duggento
S. D. Dunten

R. S. Eanes
D, E. Eastlake
J, W. Ed^leman
M. Edelberg
Prof. A. Evans, Jr.
Prof. R. M. Fano
M. N. Fateman
R. J. Feiertag
H. Fell
Prof. R. R. Fenichel
L. T. Flynn
J. S. Freiberg
R. L. Gardner
C. Garman
S. L. Geffner
J. L. Gertz
J. P. Golden
K. C. Goldstein
P.. W. Gosper
Prof. R. M. Graham
I. G. Greif
R. ::. Greenblatt
C. D. Graceffa
P. S. Green
J. M. Greene
A. K. Griffith
J. M. Grochow
J. A. Gunn
Frof. A. Guzman
J. P. Haggerty
M. M. Hammer
P. G. Heb a Ik a r
D. A. Henderson, Jr.
W. H. Henneman
Prof- F. C. Hennie
A. He: rskovits
E. Hewitt
K. H. Hill
M. G. Hinchey
P. Hirson
J. T. Holloway
P. Holloway

fflttEDINfi PA8£ BIANK
ill

B. K. P. Horn
W. F. Hui
K. M, Jacobs
M. Jacobson
J. L. Jaroslav
P. Jarvis
J. W. Johnson
D. L. Jones
F. Jones
Prof. M. M. Jones
T. L. Jones
S. I. Kampits
E. Klang
D. J. Kfoury
T. F. Knight
Prof. Z. Kohavi
D. Kontrimus
L. J. Krakauer
J. C. R. Licklider
L. K. Lipman
Prof. C. L. Liu
Prof. F. L. Luconi
R. F. Mabee
L. L. Maddaus
3. E. Madnick
P. S. Maiek
R. Mandl
R. G. Mansfield
M. J. Marcus
K. J. Martin
Prof. W. A. Martin
E, W. Meyer
J. Milner
Prof. M. L. Minsky
G. H. H. Mitchell
S. Mon-.gomery
E. G. Moore
R. C. Moore
S. C. Morr
J. H. Morris, Jr.
N. I. Morris
Prof. J. Moses
R. E. Neubaufer
R. Noftsker
S. Ohayon
Prof. E. I. Organick

M. A. Padlipsky
L. G. Pantalone
Prof. S. A. Papert
S. S. Patil
D. N. Perkins, Jr.
J. E. Pinella
L. K. Platzman
C. Ramchandi
D. H. Randall
R. L. Rappaport
H. A. Rideout
E. Roderick
J. S. Roe
S. L. Rosenbaum
N. L. Ross
L. J. Rotenberg
Prof. J. H. Salczer
P. R. Samson
D. C. Scanlon
R. R. Schell
M. D. Schroeder
R. C. Schroeppel
A. Sekino
L. Seligman
L. L. Selwyn
T. Seymour
J. M. Shah
T. P. Skinner
S. W. Smoliar
W. Southworth
J. W. Spall
M. Speciner
M. J. Spier
W. A. Spies
M. A. Stallings
N. F. Stone
G. J. Sussman
J. E. Sussman
R. H. Thomas
M. R. Thompson
R. C. Thurber
H-M D. Toong
D. H. Vanderbilt
T. H. VanVleck
K. D. Venezia
C. A. Vogt

IV

V. L. Voydock
C. T. Waldrop
D. L. Waltz
M. E. Wantman
M. B. Weaver
M. W. Webber
S. H. Webber
Prof. J. Weizenbaum
D. M. Wells
C. M. White
J. L. White
T. Winograd
P. H. Winston
E. M. WoIman
Prof. J. M. Wozencraft
F. Wright
C. Ying
K. Young
M. L. Young
S. N. Zilles

Guests

N. Adelman
Prof. C. K. Chow
T. G. Evans
Prof. E. Fredkin
H. Hegna
Prof. H. N, Mahabala
Prof. M. S. Paterson
A. Sasaki
G. Voyat ,

a,

PROGRESS REPORT VI

Contents

PROJECT MAC PERSONNEL

INTRODUCTION

PART I

i.
2.
3.
4.
5.
6,
7.
a.
9.

PART II

Computation Structures
Computer System Research
Interactive Management Systems
Programming Linguistics
Theory of Automata
Electronic Systems Laboratory
Technical Information Program (TIP)
Mathematical Assistance Program {MAP2)
Admins

1. Artificial Intelligence and Intelligent Automata

Analysis of Visual Scenes: the Concept
of Vertical Problem-Solving

Optical Anatomy of a Simple Scene
| The Vision System
- Mechanical Structure Analysis of Visual

Scenes
Theorem-Proving
Natural Language Systems
Loosely Stated Mathematical Problems
MATHLAB
Chess
Eye-Tracking
The AI Time-Sharing System
LISP (MACLISP)
Mechanical Hands and Arms
Computer Eyes

APPENDIX A MAC-SPONSORED M.I.T. THESES

APPENDIX B PROJECT MAC TECHNICAL REPORTS

APPENDIX C PROJECT MAC EXTERNAL PUBLICATIONS

in

11
21
33
39
47
51
63
71
73

II-l

II-3
II-9

11-19

11-26
11-32
11-36
11-37
11-41
11-50
11-52
11-53
iT-57
11-58
11-64

A-l

B-l

C-l

I .

PRECEDING PAGE BLANK
Vll

PA^.E i

PROJECT MAC ADMINISTRATION

Prof. J. C. R. Licklider Director

Prof. M. M. Jones Assistant Director

David E. Burmaster Assistant Director for
Student Activities

Dorothea C. Scanlon Assistant to the Director

H. E. Brammer Assistant to the Director
(to June 1969)

M. L. Cabral Business Manager
(to March 1969)

L. Cavallaro
D. A. Duggento
R. C. Goldstein
C. D. Graceffa
J. M. Greene
J. A. Gunn
D. Kontrimus
R. G. Mansfield
L. L. Maddaus
E. G. Moore
L. G. Pantalone
E. Roderick
R. T. Stetson
C. M. White
E. M. Wolman
M. L. Young

PRECEDING PAGE BLANK

■..

_i_j

PAGE 3

PART I

PROJECT MAC PROGRESS REPC 'T VI

INTRODJCTION

Project MAC is an M.I.T. Interdepartmental research laboratory
for computer science and engineering. The research program of
Project MAC is focused upon the new field of "Interactive"
computing, i.e., computing in which men and computers work
together in close partnership in solving problems or making
decisions. Gome of the research is aimed at making It possible
for men and computers to work together more effectively. Some of
it takes advantage of Interactive computing to facilitate the
solution of basic problems in computer science or to develop new
applications. Bur; qjmost flU of its deals with men and computers
-- hence the acronym "MAC . (There are other expansions of
"MAC"; those we use most often are "multiple-access computers"
and "machine-aided cognition".

During the last year. Project MAC has accomplished several
research objectives, and it has gone through part of a major
transition. Inasmuch as a brief account of the transition will
set the stage for a discussion of the research results, let us
begin with that account.

The Course of Project MAC

In order to bring about a partnership between men and computers,
one must make it possible -- and economically practicable -- for
men and computers to work together directly and effectively. The
first major undertaking of Project MAC, beginning In 1963, and
building on early work of the M.I.T. Computation Center, was to
create a computer system with which many people could work
simultaneously and conveniently. The result was the first
general-purpose multi-access computer system, CTSS, the
Compatible Time-Sharing System. (Actually, two CTSS's were
built; one was operated by Project MAC, the other by the
Computation Center.)

3y 1955, CTSS was the focus of a significant part of the
intellectual effort of about 200 research people at M.I.T, and
quite a few at other universities. !t was obvious that
Interactive computing opened new horizons. The present computer
"time-sharing" industry, with Its 150 to 200 service companies,
is one of them. CTSS made It evident that a multi-access
computer could provide the communication as well as the
Information storage and processing facilities required for the
emergence of a new kind of Intellectual community. Partly by
having them and partly by lacking them, CTSS made It possible to
see what characteristics and features a "community" multi-access
system should possess.

PRECEDING PAGE BLANK

PAGE 1*

The effect of CTSS upon Project MAC was threefold: Its quick
success, together with the floodlng-ln upon the designers of
Ideas about how to build a far better system, led to the
determination to create a truly comprehensive community computer
system, and, with the General Electric Company and the Bell
Telephone Laboratories, Project MAC Initiated a major effort
toward that goal. Not all the computer scientists and engineers
who contributed to the development of CTSS wanted to participate
in the development of the more advanced system: many turned^ to
research in other aspects of computer science and engineering.
At the same time, CTSS tended to bring its community of
substantive users -- people interested in using interactive
computing to facilitate research in their various fields -- into
Project MAC. Thus Project MAC came to have three main parts:
(1) the Computer System Research Group, developing the new
multi-access computer system, (2) several smaller research
programs in computer science and engineering, and (5) a large
number of users of CTSS.

During 1967 and 1968, as the use of CTSS turned from a research
experience Into an operational routine, and as the development of
the new multi-access system required an increasing fraction of
the available funds, the third part dwindled. This past year,
the CTSS operated by Project MAC was transferred to the
Information Processing Center (formerly Computation Center), and
Project MAC became a two-part laboratory. That was the first
part of the transition.

The second part of the transition began on the first of January
1969. The new multi-access system, called the Multiplexed
Information and Computing Service (Multics), had proven to he
much more complex and difficult than anticipated, and its
development had proceeded at just half the scheduled speed --
until the beginning of the new year. Then everything began to go
well, the schedule quit slipping and now (July 1969) the heart of
Multics beats, the Multics Operating System operates.

The Multics that now "runs" is a bare-bones system, but an
advanced one. The Computer System Research Group is confident
that it will be opened for general use on 1 October 1969. That
will begin the third part of the transition. The main system
research effort will turn from the operating system to the
comprehensive 1 ibrary procedures and data required to convert
such a "system" into a "service", to make it effectively and
conveniently useful to others than computer buffs. This
service-building effort will lead, we believe, to a realization
of our now long-d.eamed dream of an "on-line intellectual
community. But It will not bring the whole community Into
Project MAC -- only the service builders. Operational
responsibility for Multics will be transferred to the Information
Processing Center.

.. ^ ..

.,.

PAGE 5

Characteristics and Features of Multics

Inasmuch as the demonstration of the Multics Operatin» System was
one of the main accomplishments of the past year. It Is an
appropriate time to explain the basis for the claim that Multics
provides a new and unique facility for a true on-line community
of users, a foundation for unprecedented teamwork In many kinds
of undertaking that are based upon Information. There are two
main areas in which Multics represents a major advance. In the
first of these areas, a few other systems, developed since the
design of Multics was published, are comparable to Multics. !n
the second, to the best of our knowledge, Multics Is unique.

First, Multics Introduces a great simplification Into the
Individual user's concept of the ccmputar system. Heretofore/ he
had not only to remember the names of his programs and sets of
data but also to keep In mind their sizes and. If large, squeeze
them (all together or In subsets) Into the computer's memory,
which was pictured as a single series of little bins, each
capable of holding one "word" of procedure or data. Using
Multics, he thinks only In terms of the names; the operating
system brings into memory those procedures and data required at
each moment and does not waste expensive memory space (which can
be put to good purpose by other users) on a user's Inactive
Information. Programming within the context of Multics, the user
has available to him the equivalent of millions of pieces of
writing paper, each Just as long as he needs It to be — but he
need not remember how long, or where he put the places; he just
names them and remembers the names. (If he forgets the names,
Multics will of course provMe a listing.) Nor does the user
have to think about the configuration of the of the "hardware"
computer. It may change basically, e.g.. In number of processing
units or In number of memory blocks, through failure of subsets
or through augmentation, but the only way that affects the user
Is to slow down or speed up the service. His working Image of
the configuration of the computer system remains the same: a
"space" occupied by the names of procedures and data.

Second, Multics greatly facilitates cooperation among Its users.
It makes it easy for them to work In pairs or groups, using
shared as well as Individual programs and data sets and
communicating with one another through their consoles as well as
face-to-tace or by telephone. To use another person's procedure
or data, one has only to get his permission. One does not have
to borrow a copy either overtly or within the system; two or
more people can use the same "copy" of a procedure or of a set of
data at the same time. Multics keeps one of them (and his
programs) from changing It while the other (another) Is In the
process of "reading" It. Without permission of the owner, access
to files Is barred. The owner can extend permission to any
Individual or established group to use one of his files In any
one of several ways: "read and change", "read only", "execute
only", and "use only through a privileged program". The Multics
file system provides the basis for free, voluntary cooperation.

PAGE 6

and also the basis for entrepreneurial cooperation for a fee:
Multics will keep records of the use of certain programs and data
and send bills on behalf of the owner.

Professor F, J. r^i-bato, leader of the Computer System Research
Group, has a list of 30 characteristics and features, of which
the foregoing are a few, that define Multics. It will not be
long, now, until we see whether they will make the expected
difference, whether they will greatly facilitate the Individual's
use of his own information and, at the same time, turn the
computer Into a communication network.

Knowledge and Heuristics In the Computer

Computers are so fast and accurate In their execution of
procedures that they proved themselves very useful long before
any computer was programmed to do anything that seemed at all
intelligent. Indeed, to combine the computer's speed and
accuracy in applying defined orocedures to specified data with
man's ability to formulate and evaluate is the essential aim of
man-computer Interaction. But communication between men and
ordinary computer systems is so poor as to frustrate any attempt
at teamwork. There can be little man-computer partnership If the
computer knows practically nothing and has to be told at every
stage precisely what to do and In detail how to do It.

A large and Important part of the work of Project MAC Is devoted,
therefore, to learning how to "educate" the computer to be a
better partner. It does no good simply to fill the computer's
memories and stores with facts; the uneducated computer can
remember but not use them. It does little good to fill the
memories and stores with procedures; the uneducated computer has
to be told exactly when and to what data to apply each one. The
problem Is, essentially, to understand the process of being
Intelligent and to program at least some of that process Into the
computer. It Is clear that the orocess Involves knowledge, which
can be defined roughly as facts structured Into a model that can
be "run" or be Interpreted by the processor, and heuristics,
which can be defined roughtly as guidelines to solution or
dlscovery.

In Project MAC, during the past year, several accomplishments
were made In the education of computers. In most Instances, the
computer system was the Incompatible Time-Sharing System (ITS), a
system somewhat smaller than CTSS and Multics and specialized In
quite different ways. You have to be a computer buff to use ITS
— but. If you are, you like It so much that you do nothing to
make It easy for non-buffs to understand. As a result of the
educational accomplishments, ITS can -- among other things
now:

1) Solve calculus "word problems" of the type, "A
ladder 20,0 feet long leans against a house. Find the
rate at which the top of the ladder Is moving If Its

PAGE 7

foot Is 12.0 feet from the house and moving away from
the house at the rate of 2.0 feet per second." (E.
Charnlak) (But see Part II of this Report for the
section on Artificial Intelligence and Intelligent
Automata for a discussion of the difficulty of this
problem.)

2) Look (through Its television-camera "Eye") at a
haphazard pile of toy blocks on the floor., analyze the
scene Into Individual blocks (Prof. A. Guzman; B. K. P.
Morn), pick them up one-by-one (with Its mechanical arm
and handj, and stack them up to make a tower.

3) Play Class C chess Instead of Class D chess, as
last year. (R. Greenblatt)

k) Solve symbolic (non-numeric) Integration problems,
now even Including problems Involving logarithms and
exponentials, such as the Gaussian ("error") function.
(Prof. J. Moses)

The systems of programs that do the foregoing things, as well as
others now operating, have some knowledge and some heuristic
capability, but not much. They are successful only In quite
special and restricted contexts. A large group, led by
Professors M. M. Minsky and S. A. Papert, Is working Intensively
to advance the understanding of such problems.

Man-Computer Interaction

Next to the stupidity of ordinary computer systems, the main
barn or to effective and convenient communication between men and
computers has been the computer "console". In practical fact,
the console used In 98 per cent of all on-line man-comouter
communication these last few years has been merely an electric
typewriter with additional electromechanical parts to send codes
to and receive codes from a computer. Such typewriters are
narrow bottlenecks. Obviously they had to give way to, or at
least be supplemented by, graphic displays and non-keyboard
computer-Input devices such as pencils and microphones.

The past year saw a marked advance In the commercial supply of
ul tra-typewrlter equipment for man-computer Interaction. The
Advanced Remote Display Station (ARDS), developed by the
Electronic Systems Laboratory in conjunction with Project MAC,
led an important part of the advance. Its storage cathode-ray
screen provides a non-flickering Image of fairly good resolution
and the capacity to display a standard page of typescript
(unfortunately at somewhat reduced size). Most importantly, it
can display graphs, diagrams and maps, and it presents
Information very much faster than a typewriter.

Perceiving the importance of Improved man-computer interaction
techniques to the future of interactive information processing.

PAGE 8

Project MAC recently augmented Its research programs In computer
graphics and dynamic modeling. As Multlcs moves from Its
developmental to Its operational phase. Increasing effort will be
devoted to understanding and development of those areas.

Computer Language

The Intrinsic "language" In terms of which a computer carries out
Its Internal processes Is hardly a language In the everyday
sense; It Is just a repertoire of primitive operations upon
Information In Its memory and upon Its own configuration. oreat
difficulties arose when men tried to communicate with the
computer In Its own "machine language". One of the main
practical advances of the early years of computing was the
development of "higher level" languages for use In preparing
programs: FORTRAN, ALGOL, and so on. Then, when such languages
were In widespread use, people began to subject them to
linguistic analysis and to try to understand them theoretically.
That effort led to a clearer understanding of natural languages
as well as computer programming languages. It Is a continuing
study, but a part of It recently reached a culmination.

Much of the effort of the Computer Linguistics Group of Project
MAC, led by Prof. J. M. Wozencraft, had focused on working out a
systematic analysis and exposition of the basic concepts of
computer programming languages on the basis of a method called
the lambda calculus. That effort was completed at the end of
1968. The exposition Is presented in the class notes of Computer
Linguistics (6.231) and In several publications. The end of 1968
was thus the end of an era. Professor Wozencraft took leave of
absence to serve as Associate Head of a division of the Lincoln
Laboratory. The group, now under the leadership of Prof. R. M.
Graham, Is attacking new computer language problems: languages
for programming operating systems (Prof. Graham), languages that
can be readily extended by the Individual programmer or
programming team to meet special requirements (Prof. A. Evans,
Jr.), and a new way of formalizing computer languages and
formulating and providing theorems about them (Prof. J. J»
Donovan).

At the same time. It Is becoming Increasingly clear that there Is
more to computer language than Just language for programming. As
the library of programs grows, the ratio of program preparation
to program use decreases, and the languages through which people
Interact with programs ("Interaction languages") become more
Important. In a part of this new area, the area of data
description languages. Project MAC and the Special Interest
Committee on File Description and Translation of the Association
for Computing Machinery together recently Initiated a weekly
seminar.

PAGE 9

Other Research Areas

Project MAC is active in other research areas, also, and made
significant advances in many of them during the past year.
Professors J. Weizenbaum and R. R. Fenichel completed the first
version of their computer program, TEACH, that teaches computer
programming, and "proved" it on an introductory class. This work
was joint with the Education Research Center. Professors Donovan
and M. M. Jones and their students developed an interactive
simulation programming language, SIMPLE. W. T. Beyer found a way
to reduce very greatly the amount of computation required in
certain kinds of geometrical information processing; he found,
for example, that through use of a parallel computer paradigm the
number of computational steps required to determine whether or
not two figures, represented in a grid, are connected can be made
proportional to the number of intervals In one dimension of the
grid rather than to that number squared. Harriet J. Fell worked
out a wayof deal Ing mathematically with topologlcal problems
that arise in discrete (i.e., gridlike) approximations to
continuous spaces; in mathematical terms, she showed that the
lausdorff topology is the intersection of all possible grid
topologies. And so on. it is not possible to do justice to them
in a brief review. (See reports from the various groups.)

Let us conclude the discussion of Project MAC's research,
therefore, with a brief word about computer networks. This Is'
in our view, a new field of very great potential. Project MAC
has initiated a new research group to work on computer-network
problems and techniques. We are looking forward to participation
in the experimental ARPA network, which will link multi-access
computers in several universities. A. K. Bhushan has already
published two papers in the new field and is planning thesis
research in it.

Administration of Project MAC

Project MAC has a simple structure: about twelve research
groups, two computer installations, a document room, a
pullicatlons office, and a headquarters. It has a director,
(now) two assistant directors, and an ass Istant-to-the-dtrector
who Is the cement that holds the project together. Since Prof.
* IACO nn r!tlred from the ^Irectorshin at the end of the Summer

of 1J68, Prof. J. Cc R. Licklider has been Director of Project
MAC. Professor Jones and Mr. D. E. Burmaster (vldP Infra) are
the Assistant Directors. Miss Dorothea C. Scanlonis the
Assistant to the Director. In addition to conducting and
publishing research. Project MAC holds seminars and participates
in educational undertakings. This past year, there were, in
addition to the standard, general Project MAC colloqula, seminars
n theory of computation and theory of automata, and the one
(mentioned earlier and only recently started) on data description
anguages. Project MAC Initiated two "project laboratories"
^laboratories conducted on a research-project basis that yield
regular academic credits), one in software engineering and one

PAGE 10

(joint with the Education Research Center and the Lincoln
Laboratory) in computer graphics.

At the beginning of the Summer)f 1969, Burmaster was appointed
Assistant Director of Project MAC for Student Activities -- and
also Business Manager. As an M.I.T. student, Burmaster was an
effective activist for student involvement In research and
student access to computers. With a few colleagues, he conducted
the campaign that led to the formation and funding of the M.I.T.
Student Information Processing Board and, inter aJifl/ to the

5 Under

For the five years of Its existence preceding this last year,
although its terms of reference encouraged diversified support.
Project MAC was funded exclusively by the Information Processing
Techniques Branch of the Advanced Research Projects Agency
(AP.PA). This last year, while the Information Processing
Techniques Branch of ARPA continued Its major support at the
established level, small or medium-sized additional research
programs were undertaken under the support of the National
Aeronautics and Space Administration (Extensible Languages, Prof.
Evans; and a Laboratory for Research in Perception, Prof.
Minsky), the National Library of Medicine (Features and Costs of
Multi-Access Computer Services, Professors Lickllder and
Corbato), the Office of Naval Research (Interactive Problem
Solving and Decision Making, Prof. Jones), and the Behavioral
Sciences Branch of ARPA (Dynamic Modeling, Prof. Lickllder).
Where funding from these new sources (or. In the case of joii»t
research efforts with other M.I.T. groups, other sources) is
Involved, note will be made to that effect in the reports that
follow.

A final item: Project MAC contributed significantly to the
planning and establishment of a new research project, the
Cambridge Project, for computer analysis and modeling in the
behavioral sciences. The Cambridge Project has been funded by
the Behavioral Sciences Branch of ARPA through the Defense Supply
Service of the Army. The Cambridge Project will Improve and
specialize Interactive computer methods for use In
behavioral-sclence research.

«r.

PAGE 11

COMPUTATION STRUCTURES

Prof. J. B. Dennis

R. A. Carpenter prof. F. L> Luconi

H. M. Deitel M. j. Marcus

J. L. Gertz s. s. patii

I. G. Greif Lm Rotenberg

P. G. Hebalkar L. seligman

E- Klang D. H> vanderbilt

.

I kr:

,. . ■ ,

1.

';.-'

I

BLANK PAGE

i

■

«* —<-. --ö^

. x i.

PAGE 13

1. COMPUTATION STRUCTURES

Objectives -- Jack 3. Dennis

The Computation Structures Group seeks to develop and to study
advanced concepts in the design and organization of
general-purpose computer systems. We wish to understand the
influence that technology, economics, programming languages, and
the nature of computer use should have on the architecture of
computer systems. Projects within the group often involve the
invention and study of a mathematical model from which one can
deduce conclusions having direct impl i cai: ions for the structure
of programs and digital systems.

Current
four ma

research
n areasr

by the Computation Structures Group falls into

1) Representation of parallelism in programs and
study of corresponding semantic theories of
computat ion;

2) Structured information -- development of a
formal model; basic primitive operatirns and their
Droperties; the imnl ications of security, privacy,
and controlled sharing of proceduros and data;

3) Architecturp of computer processing and memory
ha rdwarc;

'♦) Design and specification of
particularly in the form
asynchronous modules.

d igi tal systems,
of interconnected

rheeventual goal of building a general-purpose computer of
radical, highly parallel architecture inspires and guides much of
the group s research. The dcsi-n of this machine would emphasize
the independence of programs from the context of their
application so that they might arbitrarily be combined without
concern for their internal design. We have argued (Dennis, App.
C) that this ability can be realized effectively only Ir. machine^
that exploit the potential parallelism in algorithms.

ilost of the individual research topics outlined below are
starting formulations of problems for doctoral research.
Although the topics have grown from the background of alms and
ideas within the group, each study reflects the interest and
judgment of its author.

Cont rol1ed
Vanderbi1t

Information Sharing in a Computer i'tility -- Dean H

The development of multi-access computer systems through the
principle of time-sharing has greatly enhanced the services that
computer systems can offer their users. Large numbers of users
are now able to have simultaneous on-line, interactive use of
the system facilities, thus achieving orders-of-magnitude shorter
response times than is possible with batch systems. These
systems also provide facilities that enable the user to store his

PRECEDING PAGE BLANK

PATE Ik

programs and data within the system, rather than requiring him to
submit them to the system for each use.

This ability to store information within the system has created
the possibility for each user to make his work easily available
to others. This Is accomplished by allowing users to share
Information stored within the system. A user could specify with
whom and In what manner Information is to be shared, and other
users could then make use of that information, within the
specifiod restrictions, as easily as they could use their own.

These developments have led to a broadened concept of a computer
utility: a multi-access system with facilities for general use
by large numbers of peoole. In addition to making Increased
amounts of "computing power" available, the computer utility
would be a vehicle through which users could make their work
available to others In the user community. Therefore, provision
of convenient means by which users may share. In a controlled
way. Information stored within the system Is c. primary objective
In the development of the computer utility.

The present research Is an attempt to understand more thoroughly
the requirements that information-sharing places on the design of
a computer utility. The approach Is to specify a model of those
parts of a computer utility that retain and access programs and
data structures on behalf of users, and that control access to
and sharing of these objects. Emphasis In the model Is placed on
the necessary logical organization of the stored Information and
the means provided to users for accessing and allowing other
users to access the information. The following discussion
Illustrates the methods being employed to Jeveloo the model.

We accept the following principle as basic: Access to
Information Is granted to a recipient user only as necessary to
enable the accomplishing of sharing that has been explicitly
allowed by a donor user. One obvious consequence of this
minimum-access prlnciole Is that Information that has not been
specifically shared will be accessible only to the user who
created It. There are other consequences which we will discuss.

Let us examine the types of Information that It shouid be
possible to share. First, It should be possible to share the use
of programs. This Is Implicit In the concept of building on the
work of others. There an- two consequences of this Idea.
First, because of our minimum-access principle. It must be
possible to permit the execution of a program without forfeiting
knowledge of Its structure. it seems clear that, unless this Is
possible, the Idea of leasing software Is not feasible. If It
Is necessary for the program user to be Informed of the program's
structure, this will be In effect purchasing the program rather
than paying for Its use.

The second consequence of sharing the use of a program Is that It
must be possible for the borrower to execute the program.
Generally, the execution of a program will require the use of
various data and the execution of other programs (subprograms).
Some of this Information will be supplied to the program by the
caller. 3ut the remainder will have been specified by the

■'

PA^.E 15

creator of the program, and the system must ensure that It Is
made available during the program's execution. A common example
of this second type of Information Is the subroutine library. In
this case, the program creator specifies the subroutine by
utilizing a special name for it. The system then recognizes this
name, and makes the specified subroutine available whenever the
program is executed. Usually, this Information can be supplied
by the system, or specially constructed by the program creator
or borrowed by him from some other user.

In each case, this additional Information must be made available
to the borrower of a program when the program is executed.
However, In accordance with our guiding principle, this
information should be associated with the main program so that
the use of this ability Is directly associated with execution of
the main program.

The need to form these associations leads us to the concept of a
procedure. For our purpose, a procedure Is an entity of
structured information consisting of first, a program, and
second, a set of abilities to access other programs and data.
These programs and data constitute the information, in addition
to information supplied by the caller of the program, that may be
required for the execution of the program.

Hierarchical Associative Memories -- .Jeffrey L, nertz

Recent work by Prof. Jack 3. Dennis (Dennis, App. C) has
indicated that two current trends in computing -- first, the
increasing importance of parallelism in computer operations to
improve ^ hardware utilization, and second, the concept of
programming generality which allows programs to be written that
are Independent of the hardware environment -- require a radical
change in thinking about computer system architecture. In
particular, the requirement that programs be allowed to transmit
arbitrarily complex information structures as parameters to
procedures with unknown storage requirements Implies that one
must use 1ocatIon-independent addressing. One possible manner of
accomplishing this objective is to employ an associative memory.

in this research project, we are concerned with the study,
analysis and design of a multi-level associative memory for a
highly parallel computer system. With such a memory, when a
processor needs a memory word (data or Instruction), It presents
a Jiay to the memory system (rather than an address, as Is
presently the case) which uniquely specifies the word. The
memory system then locates the word and brings It to the spher?
of the processor.

3efore one car. propose detailed operation of the memory system
he must know two fundamental facts. First Is the nature and
representation of the information to be stored In the memory;
second, the physical structure and organization of the units that
comprise the memory system.

program will consist of two parts: one or more pure
i, and, for each of these, an associated data area.
these Items will be organized and stored as an

^fJE 16

information structure. In particular, each pure procedure will
be represented as a rtrererlnnce graph in the manner of Martin and
Estrin (see Ref. 1 at the end of this section).

Each information structure will he represented in the memory by a
collection of oointers. Traditionally, in addressable memories,
downward pointers are used for the type of operations we shall
consider. However, in this research, we shall present an
implementation using upward pointers (from sen to father). We
shall show that, for an associative memory, this method is
superior to those considered before. The physical memory will
consist of several levels. Because of cost and size limitations,
probably only the highest level will be truly associative -- the
others will be traditional types. Therefore, we must consider
the problem of making core and drum memories look associative.
Possible methods are hash-coding (core memory) and associative
queues (drum memory). We shall also examine the usefulness and
effectiveness of using modular memories in this work.

Because the memory system will consist of several physical
levels, the question of transfer of Information between them
arises. Others, especially Dr. Peter J. Denning (Denning, TR-50,
App. B), studied this problem. We consider the possibility of
usi;ig dynamic "pages" Instead of the usual fixed pages, since
this concept appears to fit in well with the use of information
structures to represent programs. In this type of
Implementation, each page to be brought Into a higher-level
memory will be formed when it Is demanded and it will not have a
fixed size.

Finally, after the memory system is specified, we shall study it
analytically. We shall examine the queueing characteristics of
modular memory systems and inter-level memory queues. We shall
simulate several parts of the proposed system to assess their
performance. We shall compare the system with more conventional
ones according to several performance criteria.

Modular Associative Memories -- Jeffrey L. Gertz

We have begun a study to analyze the behavior of a modular
associative memory in a parallel processing system.
Characteristics of the assumed system are: N statistically
identical processes active at -11 times; sufficient processing
capacity that no process need wait for Instruction execution; and
a common associative memory consisting of M (1 M) identical
modules.

Each process is assigned one of the modules as its primary store.
In the following circumstances:

1) When the process needs a word from memory. It
looks first In Its primary module;

2) When a word belonging to the process Is brought
into memory. It Is placed In Its primary module
(at any time, every word in memory is assumed to
be uniquely owned).

PAGE 17

Statement 1, of course, Js the reason for statement 1.
With these conditions, we assume th?:, when a process
makes a memory request, it finds the word in its
primary store with probability p, in another module
with probability q (due to Inter-process sharing or use
of common information), or in a lower-level memory with
probability 1 - p - q. The values of p and q will, of
course, be a function of the number of modules (larger
M means smaller p), but remain fixed If the over-all
size of the memory is also fixed. Finally, we assume
there Is a number q that gives the fraction of memory
requests by a process that represents sharing (and
hence q <. q0).

We assume sequence of actions by any process Is:

1) Generate a memory request.

2) Search its primary store for the word.

3) If unsuccessful, continue searching
module-by-module for the word.

i») If still unsuccessful, locate the word in a
lower-level memory.

5) Enter a processing period, the length of which
is a geonutrlcal 1 y distributed random variable
wlth mean«! .

6) Return to step 1.

Steps 2, 3, and 4 may involve waiting In queues.

We have developed an analytical solution of the above system —
giving the number of requests handled per memory cycle (R),
average number of processes being processed at any time, and
other parameters -- under the assumption that circulating
requests are handled before new requests at any module. We have
studied both methods of priority assignment with a simulation
model .

We have found two preliminary results. First, several test runs
with the simulation model appear to indicate that both priority
assignments give the same rate of request-handling capacity. The
circulating first algorithm results In fewer queues because there
are no Inter-module queues; It appears to be the superior method
of operation. Second, an optimal number of memory modules, whose
value Is a function of various system parameters, is generally
well below N. As one might expect, both this optimal value and
the system through-put increase as inter-process sharing
decreases. The figure gives a sample of this behavior for the
values Indicated. We hope to derive formulas that will allow
determination of the optimum number of memory modules to use for
determining the corresponding system through-put In terms of a
few Important system parameters.

', '.

 ^^ ^_ ; , , : : il*>l~ä

PAGE 18

P^F 10

Ji^ital Computer Organization -- Lawrence Sellgman

We are studying organization of very-high-performance digital
computers in the form of time-independent interconnections of
asynchronous modules. Two goals are paramount: to demonstrate
the suitability of asynchronous structure, and to develop
corresponding analytic tools capable of characterizing system
"cirformance.

The existing very-high-speed processors are essentially
synchronous designs. While some f these systems appear to
employ asynchronous communication among the major components --
memory modules, processors and I/O channels -- each of these
components Is implemented as a synchronous system. The
suitability of asynchronous logic -- for example. Prof. Fred L.
Luconi's computational structures (Luconi, TR-U9, App. B) --
seemed an open question at the beginning of this study. We have
developed an asynchronous model for a very-high-speed processor
which includes provision for representing multiple Independent
functional units and dynamic allocation of processor hardware for
the storage of interneilate results. We are extending the model
to include micro-programming facilities and hierarchical memory
organ i zatIons.

The study of such models is fruitful because they are amenable to
analytic techniques. Or. Oennlng's recent work (Denning, TR-50,
App. 3) on resource allocation has been adapted to study the
performance of a hierarchical main memory system, eliminating the
neeJ for evaluation by extensive simulation.

Modular Oeslgn of Asynchronous Arbiters -- Suhas S. Patll and
Jack 3. Dennis

In computer systems, it is advantageous to arrange similar
resources into pools from which units may be allocated as needed
to serve on current request. For example, the processors of a
multi-processing system are often pooled for use by many
processes. An arbiter Is a device that resolves potential
conflicts in the allocation of resource units to meet nearly
simultaneous requests. Synchronous arbiters are used In large
processors such as the CDC 6600 (Control Data Corporation), but
they are complex. Intertwined with other mechanisms of the
machine, and are therefore very difficult to design and debug.
Asynchronous arbiters are frequently used to control access to
multi-port memory modules. Those are single-server arbiters, are
not usually tIme-independent, and are not modular in their
Internal construction.

We are investigating the design of general arbiters that are
time-independent in their operation and are of modular
construction. We have completed a design for an n-server, m-user
arbiter as the interconnection of a few types of basic
asynchronous modules. Two of these module types are specific to
the functional requirements of arbiters and may be viewed as
additional basic modules for the design of generalized arbiters
for situations in which an individual request may be for a
combination of resource units, possibly of different species,
rather than just a single unit of one type. The performance of

-

■

^

PW. 2 0

the arbiter will also bo. investigated.

The work of A. W, Holt and his colleagues (Ref. 2 below) has been
very influential on this research: the use of "Petri nets" to
represent asynchronous systems has been particularly convenient
for the study of arbiters.

References

1. D. F. Martin and G. Estrin, "Experiments on Models of
Computations and Systems", IEEE Transact ions QR ElectronIc
Computers, EC-16, 1, February 1967.

2. A. W. Holt, R. M. Shapiro, H. Saint and S. Warshall, "Final
Report for the Information System Theory Project", Applied Data
Research, Inc., February 1363.

COMPUTER SYSTEM RESEARCH

Prof. F. J. Corbato

PAGE 21

s. M. Adams
M. C. Burnham
R. H. Campbell
I. R. Campbell-Grant
J. H. Cecil
G. F. Clancy
D. D. Clark
R. C. Daley
C. P. Doyle
S. D. Dunten
M. N. Fateman
R. J. Feiertag
R. L. Gardner
C. Ga rman
Prof. R. M. Graham
J. M. Grochow
K. H. Hill
D. L. Jones
K. J. Martin
E. W. Meyer
S. Montgomery
s. Morr
N. I. Morris
S. Ohayon
Prof. E. I. Organick
M. A. Padlipshy
D. H. Randall

R. L. Rappaport
S. L. Rosenbaum
Prof. J. H. Saltzer
R. R. Schell
M. D. Schroeder
A. Sekino
T. Seymour
T. P. Skinner
W. Southworth
J. W. Spall
M. J. Spier
M. A. Stallings
R. H. Thomas
M. R. Thompson
T. H. VanVleck
C. A. Vogt
V. L. Voydock
M. E. Wantman
M. B. Weaver
M. W. Webber
S. H. Webber

Guests

N. Adelman
A. Sasaki

■

^■jmv*''

BLANK PAGE

<

li «« tim-im" ^

PAGE 2 3

2. COMPUTER SYSTEM RESEARCH

CTSS and Multics System Development -- Fernando J, Corbato

IntroductIon

The research and early development plans of the Multics project
were carried out jointly by members of the Bell Telephone
Laboratories/ the General Electric Company, and Project MAC. As
Multics work has shifted into the final stages of Implementation/
i3TL participation has diminished and/ during the last six months
of this period/ the project has been joint between members of GE
and Project MAC.

July 1968 through June; 1969 was the key year for the Multics
(Mul t iol exed Information and jGo^PUting .Service) System. In June
1958/ Multics supported fewer than eight users on a test-session
basis. 3y July 1963/ the system was supporting at least 18
users/ doing heavy system programming work/ on an
around-the-clock basis. The group has established 1 October 1969
as the date for opening the system to use by the general M.I.T.
user community. Again this year/ the primary efforts of the
group were aimed at Increased functional capabilities for the
system and for improved performance/ In terms of both the number
of users the system can accommodate and the responsive service
each user gets.

The next main section constitutes a brief technical review of the
steps involved this last year In bringing Multics to operational
status.

Functional Capabilities

JIM Benchmark. The group achieved what has been called the
Jiemonstrable Initial Multics benchmark in October 1968. The DIM
system was defined by its ability to support at least eight users
for several hours at a time. Under DIM/ group members could use
the system for productive work (I.e./ instead of merely allowing
system testing/ DIM allowed creation of new modules and debugging
on the system itself). However/ users still did compilation and
assembly under the GECOS (batch) system. Additions made to the
system in reaching the DIM benchmark included:

1) Error recovery from the "hardcore supervisor"/
so that one need not Invariably "crash" the system
when hardcore routines encounter difficulty;

2) An interim version of "multilevel storage"/
which allowed files to be on disc as well as In
drum memory;

i

3) The system-shutdown facility/ which allowed the
running Multics system to be stopped and
re-started in an orderly way;

i*) An interim back-up facility/ which dumps disc
and drum (and permits subsequent in. toto

restoration). PRECEDING PAGE BLANK

1 IM [ienchmark. by January 1968, the group had achieved 'he
Limited Initial Multics benchmark. Lifl went beyond the DIM
system in two basic ways: in performance, LIM supported 12
users; in functiona' capabilities, LIM permitted Multlcs
development work to be (in principle) Independent of CTSS
(Compatible lime-sharing System). Source files were created and
editerl under Multlcs, compiled under HECOS, and returned to
Multlcs for testing and debugging. Although CTSS continued to be
used for such work on a production basis, new Multlcs System
Tapes (containing seif-ini11 al IzIng new versions of the system)
were generated from within Multlcs. Features In the LIM system
Include:

1) A basic User Control module, which performs
login and logout functions and allows one to
"quit" executing a process;

2) Performance Improvements in the Command System,
including a faster Shell (the command language
interpreter) and Listener (which manages
communication between a user's console and the
rest of the Command System);

5) Performance Improvements in the Traffic
Controller, Including a more efficient
Interprocess Communication facility.

At the LIM benchmark, system testing and maintenance had been
organized so that weekly new systems incorporated new development
work and the fixes for recently analyzed bugs.

New File Svstem. With the accomplishment of LIM, the system
reached a point where formal definition of further benchmarks was
inappropriate; ''packages" of changes comprising discrete
benchmark systems were no longer needed; independent functional
areas came under Intense scrutiny. As It has always been In
Multics, the most Important functional area was the File System.
The group began In January to work for a complete re-evaluatIon
and re-working of the extremely tightened coding and program flow
modules which comprise the "New File System". Major goals were
to speed up missing segment fault-handling, linkage
fault-handling, new process creation, and general directory
manipulation. The New File System effort adhered closely to
schedule. The design was stabilized in January, firm schedules
were set by early February, and by March a test system based on
the New File System had reached command level (I.e., successfully
completed system Initialization). By May, the New File System
had been Integrated with the standard system. Its
pre-lnstallatIon check-out work was sufficiently thorough to
eliminate the need to "back up" to a previous standard system
because of post-Installation difficulties.

Minl-GIM. Ring 0 Typewriter. The next major functional area is
Input/output. In early February, Introduction of the Mlnl-GIM, a
streamlined Interface module, into the General I/O Controller
(GIOC), considerably speeded up the typical I/O processing path.
The mini-GIM, less elaborate than the full GIM (Q.I0C Interface
Module), permits high-effIclency performance of basic I/O

PA^ 25

operations. More el aborate operattons can still be performed
through the full GIM. With the minl-TIM, the "typewriter DIM"
{i2ev Ice Interface Module) -- the nodule that Is the major link
between the users' consoles and the system -- was moved Into
ring 0 (the supervisor's protection ring). TMb further

speeded up 1/0 because rlng-0 modules tend to be paged out less
frequently and because "wal1-crossIngs" (I.e., changes of
protection rins) are minimized. An even greater advantage is
that the change requires only one input buffer for all
typewriters, instead of one Input buffer per typewriter.

GTSS IndfPPndfflGP. Self-sufficiency Is an Important design
capabil ty of Multlcs. To achieve it, and thereby to become
independent of CT3S, two requirements had to be met: First,
Multics System Tapes (MST's) had to be generable within Multlcs
itself. This Implies working Multlcs facilities for magnetic
tape I/O, for segment-binding, and for editing of MST's. Second,
the source files for the entire system had to be conveyed from
CToi> to Multlcs, an Involved administrative and operational task.
3y the end of June, both were accomplished, and the only Multlcs
work stilt on CTSS was In language development. It was left on
0T6S simply to avoid overloading the Multics machine.

Backup and Salv^ftr. The group developed and installed several
important tools In the area of system reliability during the
year. The crude back-up procedure of dumping the entire contents
of drum and disc memory for 1Q toto reloading was supplanted by
an incremental dumping" procedure. Within a few minutes after
new files are created, they are written out on magnetic tape. If
it is necessary to retrieve particular files, they are reloaded
selectively. Incremental dumping greatly reduces v/ork losses
from system crashes.

The second major aid to reliability Is a program cal1ed the
salvager . After a system crash, most of the contents of the

storage hierarchy are usually still Intact and usable. Following
an emergency shutdown" program, the Salvager can Inspect the
hierarchy, effect repairs to files which were being read or
written, and make it unnecessary to perform a complete reload.
For those cases when It Is necessary to perform a complete
reload, a variant of the incremental dumper is available to do
periodic complete dumping of the storage hierarchy. Thus
reloading takes place on a per-segment basis Instead of the
per-storage-location basis implied by the entire-contents-dump
approach. Reloading Is therefore not dependent on the
availability of the same hardware configuration that was used
during dumping.

User ContrQ], TkW L££. User Control, with the associated
nterprocess Communication (IPC) facility, is another major area

In wh ch there was considerable revision and functional
expansion. User Control includes: 1) the Answering Service,
which automatically responds to system dial-ups; 2) the login and
ogout modules; and 3) an automatic logout capability. Automatic
ogout Is a particularly valuable feature; It allows the s-stem

load to be adjusted selectively and console sessions to be ended
gracefully. IPC Is Important to numerous other areas of the
system in addition to User Control, for It Is the prescribed

PAGE 26

means of allowing processes to communicate with one another (see
also "Oaemons"/ below). I PC was thoroughly re-designed and
re-coded. The new package is much more efficient than the
previous version.

Other Segments.
cons i der
reduced
regardin
together
they con
prev ious
resultIn
into a
toward t
system
although
segments
are revi

ably red
(see P

g the
). Fll
tained f
ly inde
g from t
s ingle

he end o
for it

no ma
are p

sed and

Overhead in a Multics process can be
uced if the number of segments it contains can be
reject MAC Progress Report yJ, 1967-19G8/ p. 39/
desirability of binding object-code segments
e directories would occupy less storage space if
ewer segments. Therefore, a plan to combine the
pendent object-code, linkage and symbol segments
he translation of a given source-code segment
"object segment" was put into limited practice

f June. The necessary changes were made to tne
to produce and manipulate object segments and,

ssive change-over has been scheduled, object
ropagating through the system as various modules
recomplled.

"Paenions". A "daemon
the operation of wh
developed during th
instal1ed were the
The former arcepts re
faci1i ty) to perfor
then stacked on to qu
smoothed out over
on-line execution of
assembler, an impor
system implementation
replace EPL; see "
because of the drain
interim languages
cornpi1 at ion/assembl y
other users are ab
degradation of systam

process is a system (not
ch is automatic. Several

e year. Particularly
"Output Driver Daemon" and
quests (via commands which
m card and printer I/O.
eues so that the demand for
time. The latter makes

a user) process,
daemons have been
helpful daemons
the "EPL Daemon".
employ the I PC

Such requests are
peripherals is

possible queued
the EPL (Early PL/1) compiler and the EPLBSA
tant advance because these are the current
languages. (A full version of PL/1 will

Other Efforts", below.) Execution Is queued
on system resources which the current,

represent. Thus, with only one
in progress on the system at a given time,
le to perform other useful work without
response.

Performance and Reliability

Multics supported fewer than e
September and more than 18 in

ght users for a few hours in
2'*-hour-per-day operation by June.

The "more than 18" users involves two considerations:

1) Because all the users are systems programmers
who use the machine very heavily, the somewhat
arbitrary limitation of 18 users was established
to keep system response from becoming too
sluggish. (The system programming tools -- In
particular the EPL compiler -- are not so
efficient as the programs that typical users would
use.)

2) The hardware "data switch", which allows
consoles to dial In to the system. Imposes a
temporary physical limitation on the number of
users. Thus, although precise figures of system
load under typical usage conditions are not yet

PAGE 2 7

available, the over-all state of system
^ performance is quite encouraging.

Performance improvements were effected in two ways. First was
tne application of programming techniques of re-design and
enl.trhtened re-coding (for discussion, see Project MAC Progress
Report ^ p. kO) All the major functional areas discussed
above (as well as the numerous minor areas) were given the
benefit of these programming techniques. The most basic area was
the File System. The pay-off was quite high In this area, with
the time required to process all functions improved by factors
ranging from two to four over the final version of the "old" File
system. PreparatIon for the New File System effort included
definition of a subset of EPL for system programming. This
subset specified those constructs In the language that should be
employed to obtain the most efficient object. This "Restricted
UL subset was adopted for all system programming except for
those user interfaces where adjustable-length character-string
manipulation was unavoidable. Recourse to hand-coding to further
improve performance remains necessary only in a very few modules.

"Tuning" was the second major system improvement. Tuning Is
primarily alteration of various system parameters to achieve
better usage of resources. Among the system parameters tuned
were the value of the "quantum" or time-slice allotted to each
process, the strategy of paging, the rules of eligibility to
compete for the available processor(s), and the scheduling
algorithm.

Members of the group developed and employed three tools to
monitor performance as a basis for planning the tuning. Work on
a Master s thesis research project involved initial development
of a system on the PnP-8 display computer which allows on-line
performance monitoring. A "Certlfler", developed as a Multlcs
command, creates a set number of processes, each of which
executes commands from a file or "script" of typical commands,
ibe Certifier allows comparison of the performance of successive
systems, in both Individual and over-all time consumption.
Mnally, a page-fault tracing tool allows deep analysis of pacing
behavior on a per-process or on a per-system basis.

■8fiJ labil ItV. Multlcs went Into operation three hours per day in
oeptember 1958. The user community was small because of poor
system reliability and generally limited access. For the next
three months, very little real work was accomplished solely on
Mult fcs.

üy February, "mean time between failures" (hardware and software)
had risen to two hours and the system was In operation about six
hours per day. Users were beginning to exercise the system In a
way no automatic testing could. Software bugs occurred less
often and were more difficult to find and correct.

"Multlcs In Operation" rapidly Increased to 2k hours per day
during the week and over 12 hours per day on weekends. During
the f^st week in April, Multlcs was In continuous operation
without failure for over 30 hours before It was successfully

r> A.^ VIE 2 8

shut down Mean time between failure varied widely, with an
average of about four hours.

S nee the beg.nmna; of May, Multlcs has been operating all the
tune the system could be kept "up", 2k hours per day, seJen days
per week. Installation of the New File System Increased

IZ .Tr06 t0
J^

e POlnt Where 12 System Programmers could use
were o^fi in ^ reaSOnable res^^e - and as many as 19 users
were logged In at one time In June. (The limit was set bv the
nu^b,i,ty 0f nataphone equipment.) During June/?he averare
nMnf'hf ÜSYl lVaS be^een 10 and 12 for the hours 8:00 A!M! to
Jtdnight and between five and six for the hours midnight to 8:00

avlraJZtV*™ ^"^ f*]]"r9* *"" varied conslderab y but
summaH.ld In ?hl e!;? OVer f "ht hours- System usa«e ?er w^k Is summarized in the adjacent figure.

Other Efforts

r^ftff ^ve!pPment was the primary area of work not directly
rVmtriA ? / e Tain strGam 0'c development. Members of the
worked 'onm/T'1^ cyStemS ^^^tory of General ElectrVc
worked on PL/1 and Fortran compilers. The PL/1 effort is
particularly interesting because, when It becomes available. It
win be able to recompile system programs written in EPL.
£r rln^5-3™ ^ PL^ reco^Mation can lead to as much as 50
n rf^ improvement In object-code length and to further
Performance Improvement because of more efficient mechanisms fo?
such things as character-string manipulation and
structure-accessing. The compiler was also showing up wel1 \n
terms of compilation time. Whether PL/1 will be available when

lunr^tte^g0e5^b]lC lS uncerta^ ^ worst It should be ready
shortly thereafter. Fortran is expected initially to be the
verton ^V,1^^^ ^ will be available In the Initial public
Mm! .«-i ? ^ system. Fortran has shown up well in compilation
time and in object-code efficiency.

Another available language, BCPL, Is a result of work at Bell
Te ephone Laboratories. BCPL, implemented on CTSS by its
orlgmator, Martin Richards, during his stay at Project MAC* Is a
language well-suited for the implementation of compilers: One
compiler vvhich has already been Implemented In BCPL on Multlcs is

MnsulsUcs. ^ M•,,T• under-raduate ""«-se in programming

äßfiJ^Iaos. During the Initial stages of .egular Multlcs
?hrJ,llT: *l WaS. necessary to have a programmer available
throughout the session. The frequency of crashes or of other

ca?ch n^ 'he ,ack °Virm ^"dures, and the necessl?y of
catching every possible bug made it almost Impossible to dele-ate
the operation of Multlcs to the Computer Operations Staff.

For several reasons, training operators In both the operational
and recovery procedures for Multlcs was not simple. First, as Is
tL nÜ* e^pect"d I* a research project, the "Operator Interface"
TSi° gT^n «reat.attention during the early stages of Multlcs
design. This area is now receiving orogramming support. Second
operational procedures changed frequently as a consequence of
system improvements. As new modules replaced old, and as more

PAGE 29

LU
LU

»

:

or
x

^ ^ ^ - - - ^ ^ (D f- ,o ^ ^ O O O

*•

PAGE 30

modules were added, operational procedures were changed to keep
pace, and problems of conrnun icat Ion resulted. Third, operational
procedures remain numerous. However, this situation !s eased
because particular emphasis is being placed on increased feedback
and communication anons operators, programmers and users.

Successful operation of Multics requires that operators be aware
of the condition of many variables and be current in their
understanding of procedures. Several classes and many parses of
written material have been provided to aid the Operations'staff.
.Nevertheless, this area will continue to receive attention since
it critically affects the performance of the system as seen from
the users points of view.

Hardware

Introduction of production (as opposed to prototype) equioment
was the major hardware development during the year. The
necessary software changes went smoothly; no major problems were
encountered during the change-over. There were, however, a few
processor bugs; the drum required more frequent cleaning than had
been anticipated; and unexplained hardware transients caused
trouble for approximately a two-week period before they
disappeared. Generally, however, the production hardware has
performed satisfactorily.

Plans for the Future

To open Multics for use to the general M.I.T. user community by
October 1969 is the main goal. Plans have evolved to streamline
those aspects of the system of most concern to the general user,
with the aim of making simple features of the system very
inexpensive in execution time while retaining the generality and
flexibility for which the system has been designed. A "Limited
Service System" (a subset of the present service system) has been
defined to accomplish this. The command language and the I/O
System are the areas in which this system will differ most from
the current system as used by the system programmers. The group
has designed a "mini-Shell" that will process simple command
lines very rapidly; the features of the full command language
(I.e., the current Shell) will still be available to users who
wish them: the mini-Shell will recognize a particular character
In the first position of a command line as an indication to
Invoke the full Shell. In I/O, the streamlining Is a redesign of
the I/O switching complex to treat the currently designated
default Input and output streams as the oniy available streams
unless the user takes action to define others, thus bypassing the
switching machinery In the "limited" case. The final major
enterprise regarding the Limited Service System is the definition
and Intensive streamlining and "polishing" of that subset of
commands that constitutes the most frequently used group.

With the Complete and Limited versions, Multics will meet the
needs of both large and small users.

The concern of the Computer System Research Group with Multics
will not end with the completion of" the Limited Service System.
Efforts will still be required to refine the hardcore system and

11
el , : ._. ;

PAGE 31

to provMe aHltfonal systen features. Important areas of
porformance improvement Inclule further tuning of the Traffic
Controller, reduction of the numher of segments (per process)
required hy the supervisor, an i selective pre-pa^inp; when (»ivin^
control of a processor to a process. \s the system p;oes into use
hy the community, new comnanls and subsystems will he develooel
hy users and made available for general emnloyment.

PAOL o

INTERACTIVE MANAGEMENT SYSTEMS

Prof. M. M. Jones

J. W. Alsop

Prof. J. J. Donovan

R. C. Goldstein

Prof. G. A. Gorry, Jr,

R. S. Green

Prof. D. N. Ness

L. K. Platzman

N. L. Ross

Prof. M. S. Scott-Morton

R. C. Thurber

H. M. Toong

D. M. Wells

Guest

H. Hegna

PRmm PAGE BLANK

..

p^.r: 35

3. INTERACTIVE MA'lAGEMEfJT SYSTEMS

MACAiriS -- An Interactive Mana^enont System

The MACAIUS project, initiated In June 13G8, has two major t^oals:
investigation of the value of a multiple-access computer,
employing sophisticated Interaction procedures, as an aid to
management; an 1 the specific application of such procedures to
the management of Project MAC. The work is supported in part by
ARPA funds through O'JR and In part by Q'U\ funds.

Justness applications occupy the «-reat majority of computers
tnstalle-l in the Unltel States. However, there has th.;s far been
surprisingly little use of Interactive computing In management.
The Inability of most existing Interactive comoutlns facilities
to handle economically the volume of data required for business
purposes has been one reason for this. Another ^as been the
?e5uirenent of most current systems that the user «xpend a
significant amount of time and effort to learn to use the

system.

In the near future, some tlme-sharln- systems will .^f .^tly
enhanced data-stora-.a capabilities. Thus It will be technically
feasible to use these systems In Interactive management. The
question is whether systems can be devised that will permit the
professional manager to Interact with the computer ^efully and
conveniently. This Is a question the MACAIMS project Is asking.

We spent the Summer months of 1968 studying the existing Project
MAC management procedures. Robert C. Goldstein surveyed
available system-bul1 ding tools. These studies suggested four
jpplications areas for Initial Implementation: budgeting,
purchasing, personnel, facilities. The last ,ncludes furn ture
and equipment as well as buildings and roons. We decided to
carry out the Initial development work on the CTSS system because
of its innedlate availability. However, we anticipate that other
computers will be used In later phases of the project. Al
programming for the MACAIMS system Is being done in the AED
language (see Electronic Systems Laboratory section) wh ch offers
Loth extremely sophisticated capabilities and a fairly high
degree of machine Indepen lence.

After we studied the existing CTSS fac11 11les for manlpulatIng
large data bases, we decided to create a system In which all riata
would at least appear to be resident In core at all times. This
approach offers the maximum degree of flexibility for organizing
the data, and It greatly facilitates updating the data. Because
the various application areas have data requirements that vary
considerably In size and structural complexity, we employ a
variety of organizing strategies, from simple sequential files to
partially Inverted list structures.

The MACAIMS project Intends to develop systems that can be used
by people engaged In management activities who have no special
computer training. This Implies that the system shou d possess a
rudimentary capability for natural language conversation and, in
particular, that It should recognize a wide range of
business-related terminology. Therefore, before we could begin

PRECEDING PAGE BLANK

■

PAT: 35

Programm Ins of appl icatIons, we had to develop a number of
additional tools, prinarily In the areas of highly Interactive
Input-output, character-string manipulation and Interpretation,
and Information retrieval. By late June 1969, Goldstein, Loren
K. iMatzman, TJell L. Ross, and Douglas M. Wells had essentially
completed the development of these tools and had made a start on
substantive MACAIMS orograns.

We antlcinate that initial working versions of some of the
applications programs will be demonstrable In the Fall of 196lJ.
Our further work will emphasize four objectives: completion of
the initial system; extension to other management areas;
improvement In the method of Interaction with the user; and
improvement in the efficiency of the orograrns.

Interactive iJudgetlng System

The Interactive budgeting System (US) was the focus of our
recent research (Javld N, Mess, App. A). Ue added a display
capability that substantially improved the original system. In
Jemonst rat ions, we used the ARDS (Advanced Jienote display
i;at Ion) terminal at the Sloan School. Participants In the
Senior Executive Program at that School used the system in an
experimental "game", developed with Professors Wallace 13. S.
Crowston and Michael S. Scott-Morton.

1133 involves a business model. We have continued to expand the
model to cover wider areas of managerial interst. Currently, we
are adding a costing facility which Incorporates Scott-Morton's
work (Scott-Morton and Andrew J. McCosh, App. C).

During the year, we also made a preliminary study of the
organization of binary trees grown with a sorting algorithm
(William A. Martin and Mess, App. C).

Economies of Scale in Computer Use: Initial Tests and
Implications for the Comouter Utility -- Lee L. Selwyn

This study concerned economies of scale In the production of
data-processing and other computing services, and the possible
regulatory and public-policy Implications of these economies.

The rapid development of the technology of computation since
World War 11 has raised many questions about the supervision by
public authorities of the use and progress of this technology.
The Federal Communications Commission Initiated a study In 1966
to consider the Commission's role In the production and
distribution of computing services that Involve communications
facilities, supplied by regulated carriers. The present
investigation concerns the production of computing services per
Üi. The direction that public policy takes will be greatly
dependent on the nature of the production of computing services,
and perhaps secondarily on the Interdependence between computer
systems and the communications suppliers.

The relative economies of the use of large computing systems have
been known for some time. In terms of the relationship between
some measure of the quantity of output of a machine and Its cost.

:.

PA^.r: 3 7

InJeed, this study rlomonstrated that v/hen one considers, in
addition to the cost of the computer hardware itself,, the various
categories of operating expenses associated with a computer
Installation, the relative advantages of lar^e facilities become
even more significant.

^et the evidence would seem to indicate that/ despite these
apparent efficiencies of larse systems/ most Installed computers
are fairly small. In an attempt to determine whether, in actual
experience, there are no true economies of lar^e size, we made an
analysis of data on nearly 10,000 computers Installed at firms in
manufacturing Industries. Using the survival technique, which

considers market experience as a basis for studying levels of
optimum plant size, the analysis suggested that users did operate
computers as if there were significant economies of scale In
the i r use.

Jone of the evMence suggested that even the largest-size system
available today is the most efficient possible size of "plant",
hence the key Implication for the formulation of regulatory
policy toward the comouter is that such policy should encourage,
to the greatest possible extent, the shared use of large systems
by those who require computing services. Those barriers that
mitigate such shared jse should be reduced or eliminated.
Public-utility status would be Indicated only If the costs
associated with shared-computer use distribution -- software
development, system overhead and administration -- are less than
the potential direct savings resulting from use of large systems.
This is at least as much a technological problem as It Is
regulatory one. The future of the computer-utility concept will
thus be dependent upon the degree to which technology can reduce
costs In these categories.

SIMULA

From September 19Ü8 until June 1969, davari degna, A Norwegian
visitor, was associated with the group. Ilegna had been Involved
with the implementation of the SIMULA simulation system
developed at the Norwegian Computing Center In Oslo. As an
experiment, he implemented a version of SIMULA on CTSS, using the
AED Macro system.

..

p.vir. 3 0

PROGRAMMING LINGUISTICS

Prof. R. M. Graham

A. Bagchi
W. D. Bilofsky
M. C- Bogue
R. L. Bushkoff
C. A. Dancy
F. L. DeRemer
Prof. J. J. Donovan
H. R. Drab, Jr.
R. S. Eanes
Prof. A. Evans
J. P. Haggerty
D. A. Henderson, Jr.
M. G. Hinchey
P. Hirsohn
J, W. Johnson
L. K. Lipman

R. F. Mabee
S. E. Madnick
P. S. Malek
R. WandI
R. C. Moore
J. H. Morris, jr.
J. E. Pinella
C. Ramchandani
H. A. Rideout
J. E. Sussman
R. C. Thurber
H. M. Toong
C. A. Vogt
Prof. J. M. Wozencraft
3. N. Zilles

PRECEDING PAGE BLANK

1A

PATE kl

i». PRonRAmiun LINGUISTICS

Ihtroduction -- Robert M. Graham

Programming linguistics Is concerned with formal definition of
programming languages and with translation between programming
languages. Our definition of programming languages Is a broad
one. It includes languages ranging from machine language to pure
declarative or descriptive languages (i.e., languages used to
describe a set of functions and constraints/ such as a set of
differential equations and associated boundary conditions, rather
Chan an algorithm for the solution of a problem).

The hasic problem In defining a programming language Is the
precise, complete specification of the language's syntax and
semantics. Several formal systems exist for defining
prograimning lansua^es. Comparison of these definitional systems
exposes basic questions regard in.-: their equivalence and
hierarchical ordering In the classes of languages that they are
capable of describing. Another basic question concerns the
.quivalence of programs that are written in the same language.

discovery of a translation algorithm that uses directly the
formal definition of either or both of the two languages
involved is a basic orohlem In the construction of programming
language translations. A "table driven" comoller Is such a
translator. Present translators of this type allow the
implementer to specify his translation algorithm, using a
spec ial-purpose language .'or languages). At present, only syntax
analysis can be done automatically. Parsing algorithms can be
generated automatically, given a formal description of the syntax
of a language. A general translation algorithm would accept the
definitions of two languages and synthesize o translator between
the two languages.

Professor John J. Donovan and has students Investigated problems
in the formal definition of programming languages, using canonic
systems, models of file systems, and comprehensive operating
systems. Professor Arthur Evans, Jr. and his students studied
(with Prof. John M. Wozencraft), problems of defining programming
languages, using lambda-calculus, extensible languages, compiler
theory and construction, and the PAL language. Professor Robert
;1. Graham and his students Investigated the problems of a
compiler specification system and of a software system design
1 angua,ie.

Educational Activities -- Robert M. Graham

Members of tne Profrramming Linguistics Group continue to take an
active role In course develonment at M.I.T, Although we shall
not do so In connection with every group report, we may digress
briefly to say a word about that v/ork.

Evans and Wozencraft are In charge of G.231 (Electrical
Engineering, Programming Linguistics) which Is the first of a
three-course core sequence In Computer Science. \pproximc:Le1y 70
students took 6.231 last year,

PRECEDING PAGE BLANK

P/^F. kl

Graham and Donovan are In charge of 6.251 (Electrical
Engineering, Digital Computer Programming Systems), the basic
course in computer software (covering assemblers, loaders,
compilers, and time-sharing systems). This course, although it
is not required In the Computer Science curriculum, has an
enrollment of over 300 students each year. The course is
continually being undated to reflect the latest software
devel opinents, such as the Multlcs system.

In the Spring term, Donovan Initiated a new course, 6.686
(Electrical Engineering, Software Projects Laboratory). The
intent of this course Is to give students an opportunity to
participate in the design, implementation and management of
software projects that are significantly more complex than any
project that can be assigned In the standard courses. The course
was a great success, enthusiastically received by the students.
The central theme of the course was the design and Implementation
of a comprehensive operating system for the 1130 computer.
Approximately 35 students participated in this effort.

Graham completed the Initial planning for a new course, 6.531
(Electrical Engineering, Principles of Programming Language
Processors), which will be offered for the first time in the Fall
of 1969. This course will cover advanced topics in the formal
specification of programming languages, construction of
programming language processors (principally compilers), and the
application of programming linguistic theory to the construction
of compilers. Students will be given the opportunity to build
language processors, using a compiler specification system
currently under development.

Software System Design Language — Robert M. Graham

The inherent complexity of many current software systems Is
greatly magnified by the unavailabiMty of any high-level
language matched to the problem of the specification and
description of software systems. The language should be such
that the description of a system contains enough Information that
analysis and simulation of the system performance are
straightforward and effective. We he^an in the Spring to study
this problem. Our Initial attack Is the attempt to discover what
primitives are really basic and common to all types of software
systems (e.g., compiler-building systems as well as time-sharing
systems). For example, table management seems to appear in every
system and even in single software components such as compilers,
assemblers and loaders. Should one then include, in a system
specification language, facilities for describing tables and
their management (i.e., specification of the contents of an
entry, definition of the keys and search rules, and definition of
the operations such as modification and deletion, desired for
each key)? Perhaps such facilities are too high-level and
specific and the solution Instead Is more powerful abstract
structure manipulations.

Javld D. Clark, In his Doctoral thesis. Is currently examining
those aspects of a system that can be expressed as
transformations between different address spaces. A large part
of the Multlcs file system Is concerned with mapping symbolic

i

PACE I» 3

segirent (file) nanes into so<*nient addresses usable by the
hardware. This address mapping was the subject in a sequence of
lectures Graham gave In Summer courses at the University of
Michigan and at the Hebrew University.

Graham also discussed use of high-level language for system
programming and specification at the NATO Working Conference on
Software Engineering and at the Honeywell Second Annual Software
Sympos1 um.

Students also studie-l problems related to this project. Carla \.
Vogt investigated the description and on-line maintenance of a
computer system memory. Robert L. 3ushl<off/ In his Bachelor's
thesis work, used a comoller specification system, currently
beint^ implemented, which specified the parsing. Intermediate
language, and symbol tables for a CIMPL compiler. CIMPL is a
descendant of PL/1 designed hy Graham and Prof. Jerome H.
Saltzor; it is used in 6.233 (Electrical Engineering,
Programming Linguistics) for system nroirramming. Jeffrey R.
Spirn's bachelor's thesis was "A Simulation Model of a Large
Multi-Processing Operating System". Michael J. Greata, for his
Master's thesis, designed and implemented, on the Pf)P-8, a
debugTing aid which dynamically displays the sequence of
subroutine calls made during the execution of a program. In
addition, the system permits the user to stop the action and
display the values of selected variables in the program.

A Compiler Specification System -- Robert M. Graham

In June, we began a project to Implement a new compiler
specification system. The system is being Implemented In
Multics with the aid of 3CPL (J3,aslc .Combined Programming
language). Use of BCPL makes the systc;' csily transferable to
other computers. (UCPL compilers exist for at leant seven other
computers, including the 360.) However, we feel that a
satisfactory solution to the problem of specification of code
generation tables -- especially code optimization -- rorsuires an
on-line Interactive environment.

The Initial system design consists of processors for three
specification languages: regular expressions for the
specification of lexical analysis; reductions for the
specification of the parsing and Interpretation of the parse; and
a macro language for the specification of code generation. The
reductions language is based on earlier work by David 1). Clark
(APP. A), A unique feature of the reductions language processor
is that it compiles the reductions rather than Interpreting them.
The reductions are compiled Into regular BCPL programs which are
then compiled by the standard compiler. This permits a system
user to write action routines (for Interpreting the parse) In
3CPL and to merge them easily with the reductions.

Canonic Systems -- John J Donovan

A canonic system Is a simultaneous recursive definition of sets
of strings on a finite alpnabet. Canonic systems can be used as
a formalism for specifying both the syntax of a programming
language and its translation. Canonic systems are significantly

PA^P kk

more powerful than the traditional Backus-Naur Form (RNF)
formalism,, because the latter Is unable to soeclfy
context-sensitive features. 3y restricting the canons of the
systems, a hierarchy of less powerful canonic systems can be
defined which include correspondents for some of Chomsky's types
of formal grammars.

In a Master's thesis research, Robert Mandl has developed an
alternate method for presentini; the theory of canonic systems.
In addition, he has developed a new hierarchy of canonic systems
which relates general canonic systems to all four types of
formal grammars defined by Chomsky. He has also shown that all
attempts to define a mathematical system that exactly corresponds
to the recursive sets must fail.

Given a canonic system, C, It Is possible to generate another
canonic system, C^ , which is a proof measure function that is an
Indication of the complexity of the language defined by C. One
can also generate a companion system which characterIzes the
recognition of strings generated by C. Joseph P. Haggerty, in a
Master's thesis (App. A), was able to show that algebraic
bounds on C^can be derived from the structure of the system (.
de also established a relationship between the complexity of the
recognition procedure and the complexity of the language
descrIpt ion.

Hoo-Min D. Toong has develooed a means for formalization of
discrete-event simulation lan^uases using the lambda-calculus and
graph theory (App. A). Through application of lambda-operators
to the sraph theoretic representation of data structures, one can
derive basic properties of systems modeled by these data
structures.

File Systems -- dobn J. Donovan

During his thesis research, Stuart E. Madnlck developed a model
for file systems which Isolates the basic function of file
systems (App. A). This modal Is useful for comparing various
Implementations of file systems and In judging various design
proposals.

1130 System -- John J. Donovan

In order to give students the opportunity to deal with the
problems one encounters in the design and Implementation of a
comprehensive operating system, we began a project to design and
implement a comprehensive operating system for the 1130. The
system also provides a test bed for new Ideas In compiler
implementation. The basis of this project Is student
participation; the design and Implementation are done entirely
by students. Several Master's theses have grown out of this
project.

Clifford R. Hollander's Master's thesis (App. A) was on the
design of a multi-tasking feature which not only provides for a
mixture of batch-processing and Interactive tasks but also
accommodates devices such as graphic displays and communications
facilities. Charles A. Dancy is working on a COBOL compiler for

-- T. .

1

-, >

liis Master's thesis, and Leon E. Travis on a CÜ30L Interpreter
for his Master's thesis.

Programming Linguistics -- Arthur Evans, Jr.

Completion of the notes for 6.231 (Electrical Engineering,
Programming Linguistics) gave closure to a consMerable amount of
past conceptual research. Our understanding of the imperative
constructs in PAL had finally reached the point where wo could
write the chapters on assignment statements and on transfer
control. We expect to give a two-week M.I.T. special Summer
Session In July which will cover all the programming linguistics
material. This will be the first major presentation of this
material to a non-M.l.T. audience.

r
In connection with the Summer course, we have Implemented the
language PAL (which plays an Important role in the teaching of
this material) on Multlcs. The students will use PAL to do
exercisns on the computer.

Extensible Languages -- Arthur Evans, Jr,

Support for our research in extensible languages comes In part
from NASA's Electronic Research Center and in part from ARPA
through OMR. Robort M. Thomas Is working on a Ph.D. thesis In
the area of syntactic extensions to programming languages. J.
Oix Fulton did an Imbedding of SLIP (Symmetric LISP Processing)
In 8CPL for his Master's thesis. This Imbedding is unique; it
was done entirely In the higher language, with no assembly code
required at all. To Illustrate this point, the same
Implementation was demonstrated as workable on both CTSS and the
360, with changes only to the data-descrlbIng declarations.
3ecause the machines have different word lengths, this Is a
significant accomplishment.

Compiler Theory and Construction — Arthur Evans, Jr.

Franklin L. DeRemer, In the abstract to his Doctoral
dissertation "Practical Translators for LR(k) Languages" (App.
A), states:

A context-free syntactical translator (CFST) Is a
machine which defines a translation from one
context-free language to another. \ transduction
grammar is a formal system based on a context-frep
grammar and It specifies a contert-free
syntactical translation. \ simple suffix
transduction grammar based on a context-free
grammar which Is LR(k) soeclfies a translation
which can be defined by a deterministic push-down
automation (DPDA).

I present a method for automatically constructing
CFoTs (OPDAs) from those simple suffix
tranductlon grammars which are based on the LRCk)
grammars. The method Is developed by first
considering grammatical analysis from the
string-manipulation viewpoint, then converting

■ ■ x - ■-■■- -^M«»«»

PAO!: '»6

the resulting string-manipulating algorithms to
DPDAs, anil finally consHerln^ translation fron
the automata-theoretic viewpoint.

The results are relevant to the automatic
construction of compilers from formal
specifications of programming lan(»ua(»es. If the
specifications are, at least In part, based on
LR(k) grammars, then corresponding compilers can
be constructed which are. In part, based on
CFSTs.

Joseph ',i. Slater completed a Master's thesis on GENRAP, a system
for generating automatically a parsing algorithm from a 3NF
description of a language. The method used was copied from a
scheme of Cheatham's.

The BCPL Language -- Arthur Evans, Jr.

We brought the implementation of 3CPL on the 1311 360 at the
information Processing Center to a consistent state so that the
language could be exported to other Installations. .Je expect to
send out tapes during the Summer.

Ue are assuming responsibility for maintenance of the BCPL
language on Multics. We plan to Improve the Interface between
3CPL and the rest of the Multics environment to make It easier to
write and run 3CPL programs on Multics. We also hope to make
significant Improvements In the efficiency of the code compiled
by the compiler. Because the compiler Is written In BCPL, this
will also improve the efficiency of the compiler.

The PAL Language — Arthur Evans, Jr.

PAL has been imnlemented on Multics. Because PAL Is written in
3CPL and the Multics version of BCPL Is compatible with that on
CTSS, the entire effort took only about three man-months of
work.

Marcus C. Bogue, In his Master's thesis research, completed and
fully documented a student operating system on the 360. The
system runs as a subsystem under 03/360, batching many student
PAL jobs and making a significant saving of computer time.
Although we have neither made nor contemplated any major changes
In the PAL language, the Master's thesis of Stephen H, Zllles is
a significant effort toward extension of PAL's data-descrIptIon
abilities. Results of this work may ultimately Influence PAL.

«R. «► P\r<F. k7

THEORY OF AUTOMATA

Prof. F. C. Hennie

M. E. Baker Prof. Z. Kohavi

V. Berardinelli Prof. C. L. Liu

M. Edelberg K. D. Venezia

M. M. Hammer C. Ying

D. J. Kfoury

i
PRECEDING PAGE BLANK

■

:^,-^: ;

p/\nr. i»9

5. THEORY ÜF AUTOMATA

Professor Chung L. Liu and his students studied several problems
In the general area of abstract machine theory during the oast
year.

One of these was the algebraic structural theory of finite state
machines. A finite state machine, viewed as an Information
transducer, can be characterized by lattice functions describing
the relationship between the supply and demand of Information at
its Input and output terminals. Uslns the lattice function
characterization, they were able (generalizing the definition in
the literature) to define the notion of nair algebras.

The second problem was the structural properties of a class of
probabilistic finite state machines, known as definite machines.
Liu's sroup established necessary and/or sufficient conditions
for testing the deflniteness of probabilistic finite state
mach Ines.

Finally, Liu's rjroup was able to establish a synthesis procedure
for a minimal nonlinear shift register which generates a given
output sequence. (This problem Is a generalization of the
problem of synthesizing a minimal linear shift register.)

Professor Zvi S. Kohavi and his students Investigated the problem
of detecting and diagnosing failures In combinatorial logic
circuits. They developed a procedure to determine "nearly
minimal" sets of tests which detect single failures and locate
them to within an equivalence class v/i thout resorting to a fault
table.

PRECEDING mi

ELECTRONIC SYSTEMS lABORATORV

P^E 51

E C. Anderson
R. Ascott
H. G. Baker
A. K. Bhushan
R. J. Bigelow
M. F. Brescia
L. M. Chui
F. Ciaramaglia
R. W, Cornew
Prof. M. L. Dertouzos
R. S. Eanes
C. G. Feldmann
J. Fiasconaro
H. L. Graham
K. Hatch
R. Hill
W. Hutchinson
D. Huy
D. Isaman
G. P. Jessel
P. Johansen
M. Kalisk
H. D. Levin
M. Lam
C. Lynn

R. P. Parkins
R. B. Polansky
R. A. Rausch
C. L. Reeve
D. J. Ross
J. R. Ross
T. Smith
R. Stinger
C. W. Therrien
D. E. Thornhill
K. VanBree
D. Vedder
A. Vezza
J. F. Walsh
J. E. Ward
T. G. Weston
R. B. Zara

Guests

D. T. Cameron
J. T. Doherty
R. B. Gluckstern
R. J. McDowell

pmmm PASE BM

■ ■ ■■■

^ •

'

i !

BLANK PAGE

i

t,4

,.,,,, *\ l...':"i. myf. ^_.^-—-

_LJJ

!

PAGE 5 3

6. ELECTRONIC SYSTEMS LA30RAT0RY

ntroductlon

The participation of the Electronic Systems Lahoratory In Project
MAC, be^un In 1963, continual this year. Graphics Research
(reporter! at the end of this section) and two other ESL projects
had close working ties with, and received partial support from.
Project MAC. One of these, the Comouter-AIded Design Project
(CADP) for the U.S. Air Force Materials Laboratory,
Wright-Patterson Mr Force Base, has developed the AEO lan^uase
and systems. The other. Prof. Michael L. Oertouzos's protect
for National Aeronautics and Space Administration (Electronics
Research Center), worked with on-line simulation of networks and
systems. 3oth projects used the Project MAC computer facilities
and received direct Project MAC support of facilities and/or of
graduate students.

The AED Language

The M.I.T. Computer-Aided Design Project has been engaged since
1150 In research on the application of the concepts and
techniques of modern data processing to the design of mechanical
parts, as an extension of automatic programming APT (Automatic
Programming loci) systems for numerically control led machine
tools. Whereas part-programming Is a relatively bounded domain
which permits a single, standard APT orogram and language, the
problem of designing large systems such as an aircraft Is so
complex that no one design program or language can be constructed
that will serve all the varied needs, A very large number of
design languages and programs Is required, each tailored to a
specific aspect of the over-all design process. Since, If
traditional methods were used, the time and effort needed to
construct each specific language and program and to make It
available on computers of various types could equal that of the
entire APT development, the project's major effort for the pas*-
several years has been the develooment of techniques for
automating as much as possible of the orocess of constructing
specialized languages and programs, and development of the
process of moving programs from one computer to another. The
result is the AED (Automated Engineering Design) family of
programming systems Including: first, the AED-1 system, whose
domain is general programming, compiling and operating of
programs on essentially any large-scale computer; second, the
RWORO System, which builds a lexical processor; third, the AEDJR
System, which builds a parsing processor; and fourth, the CADET
(.Computer-Aided Resign Experimental Iranslator) System, aimed at
a generalized approach to computer-aided design applications.

Major emphasis last year (Project MAC Progress Report V, p. l»9)
was on the subject of machine Independence and the process
required to convert the AED system programs to new and basically
different computers through "bootstrapping". The bootstrapping
procedure (described In detail In Project MAC Progress Report V)
resulted In preliminary releases of AED for the IBM 350 and
Univac 1108 computers In the Spring of 1968.

PRECEDING PACE BLANK

• ■

PAdE 51t

These systems were lncomD>3te and differed not only from each
other, hut also from the M,I.T, 709U system from which they were
derived. The group's major rffort durins: the past year has been
a complete reworking of the AEO system packages and bootstrapping
procedures to produce a new, fully releasable Version 3 AED-1
system for the IBM 360 In both OS (Operating ^ysterr -- batch) and
CP/CMS (£ontrol Program/£ambridge Monitor System — time-sharing)
versions. The Version 3 release Is described In the next
section. At the same time, the system was re-bootstrapped back
to the M.I.T. CTSS on the I3M 7091*, on which It was developed, so
that all compiler versions on both machines would be Identical.
(The 7Ö9U re-bootstrap Is completed, but It has not yet been made
operational. It, like other Version 3 releases, produces
assembly language output, which requires a further assembly pass.
Since the older binary output (Version 2) AED on the 709'» is more
efficient, it Is still being used. Version 3 bootstraps
compatible to two other machines -- the Unlvac 1108 and the HE
6i*5 (Multlcs) -- were oartlally completed, and are described In
the second section below. The major effort made to improve AED
documentation is described In the third section below.

With the release of the AED 360 system, both the Air Force
funding for the Computer-AIded Design Project In ESL and the ARPA
funding (through ONR) of AED work In Project MAC terminate.
Douglas T. Ross and his key staff members leave M.I.T. in July to
form a private company.

The \ED/360 Release

This section is a summary, mainly in AED terms, of what
constitutes the AED/360 system as released. Version 3 of AED-1
for ISM 360 computers consists of the AED-1 Compiler for the
AED-0 Language, the AEDJR System for language definition, and the
AED Library of system-building packages. (The RWORD System for
setting up lexical processors, which was available In earlier
7091* and Unlvac 1108 releases, was not Included In the July 1969
Version 3 release.) The release Is on four reels of magnetic
computer tape. The four tapes are divided Into the following
logical categories, with one tape for OS/360 users, two tapes for
CP/CMS users, and one tape for both OS and CP/CMS users:

Taoe No. Contents Operating SVStem

1 Source Programs OS/360 and CP/CMS

2 Partitioned Data Sets OS/360
for Running AED

3 Modules and Libraries CP/CMS
for Running AED

k Text Files CP/CMS

Taoe 1 contains the 5i»0 source programs for the AED-1 Compiler,
the \ED.JR System, and the AED Subroutine Libraries. The tape
also includes two simple test cases, one for the compiler and one
for AEDJR, tc check that no malfunctions (e.g., bad tapes) have
occurred In the cooy process. The total tape contains

PA^.E 55

approximately &h,Q00 card equivalents of EBCDIC (Extended
iinary-£.oded Deciiiial Interchange £.ode) source data written
priinarily in the AEÜ-0 LatiffuaRe, with a few 3ü0 Assembly
Language/ AEDJR, and RWORD System Input-language programs.

Tape 2 contains the OS modules and libraries required to run AED
on the 350 under OS. All modules are designed to work under PCP
(Primary Control Program), MFT (Multiprogramming -- £ixed number
of lasks), and I1VT (Multiprogramming -- Variable number of
lasks), but not under DOS (!)lsk Operating System). The eight
files Include: AED-1 Compiler/ Basic ACD Text Library/ Fast
Free" Text Library/ AEDJR System/ AEOJR Text Library, ^E^)-l Macro
Pass, TRACE Debugging Text Library and AEn-1 Text Library.

Tape 3 contains the MODULE/ TXTLIB/ an! MACLIB files of the
CP/CM3 version of AED. The tape is divided into four files: the
AED-1 Compiler and its run-time support libraries; the AEDJR
System; the AED-1 Macro Preprocessor; and the OSTOCMS (OS-to-CilS)
utility/ which permits the 05 Source Tape contents to be read
selectively into the user's file directory.

Tape i+ contains all text (object) files for the AED system; \t \s
desi^nod for CP/CMS only. Files include the AEDJR System and its
libraries; the Macro Pass; all AED-1 (oinpller programs; the
"Fast Free" Package; and the TRACE Debugging Package. The tape
also includes the SUOWIT AEDJR Example/ described In the fourth
sect ion beiow.

Documentation of AED

Ross and other staff members are preparing, for publication In
the Fall of 1359/ an int-roductlon to Software
FniTinPPring with the AFD-Q Language, a Hook based on a lecture
series they gave In the M.I.T. Glectrlcal Engineering
Department's course 6.687/ Software Engineering.

At the same time/ Clarence G. Feldmann has completely »evlsed and
reworked the AFP Pro^rammpr' «> Guide. This has been a loose-leaf
collection of memoranda and system "flashes'/ but with this
reworking it now conforms to the standards of the new Version 3
AED release.

By the end of June/ both books were about 80 per cent completed/
and both were scheduled to be finished by early September.

The SUOWIT System: An Example of the Use of the AED

Approach

From the beginning/ the CADP group has viewed "design" as only a
special term for a type of problem-solving. However/ the field
of man-machine problem-solving Is too broad to permit a single
system to be used for all applications. Many systems are needed/
and each must:

n Use the specialized jargon of Its particular
field of applIcation;

PAGE 55

2) Require little or no knowledge of computer
programming to bo use>i effectively;

3) Re "evolutionary" to aiapt to the changing
needs of its users; and

k) Be created and maintained by the users
themselves or by skilled staff in intimate contact
with the users.

For these reasons, the project's efforts have been directed
toward a system for making systems rather than a single
computer-aided design system. What has evolved is a "system of
systems for making systems" and an orderly method for applying
it. The CAOP group refers to this collection of concepts and
working tools as the "AED approach".

The SUOWIT System, which originated as an unscheduled
demonstration of AEO capabilities at the Second AED Technical
Meeting in January 1967, is a tutorial example of the application
of the AED approach, with particular emphasis on the facilities
of the AEI3JR parsing for Implementing new languages. The SHOWIT
language is a subset of the Iverson language, chosen during the
January 1967 AED Meeting.

;jy using AEDJR as the framework for the new system, the
programmer can implement quickly all the procedures and grammar
rules. In particular, the Initial plateau of SHOWIT acts as a
subsystem of AEDJR. By means of three successive commands to
AEDJR, one can cause the following:

1) Reading in and making active the grammar rules
for the entire SHOWIT language;

2) Invoking a special set-up procedure, written by
the programmer; and

3) Executing any specific program, written In the
SHOWIT language.

The lexical processor for the SHOWIT system Is a specially
constructed RWORD machine. Its item-building rules conform to
the designer's specifications for the SHOWIT language. In
particular, the lexical phase identifies and discards comments
written by a user in his input message. The RWORD machine Is
invoked -- that is, a request Is made for a new system to be
extracted from the Input stream -- bv a special procedure the
programmer writes to replace the standard one provided in AEDJR.
The programmer's procedure is called by the First-Pass Algorithm
each time a new input item is needed to continue the parse. A
second RWORD machine Is used In the SHOWIT system to read In data
values which a user types on-line. This machine accepts numeric
items written in Integer, decimal, or E-type format.

The SHOWIT system has been documented by John R. Ross and Douglas
T. Ross, In "The SHOWIT System: An Example of the Use of the AED
Approach", ESL-TM-391*, June 1969„

PAHE 5 7

Syntax Definition Facility

Robert S. Eanes, in his Master's thesis research (App. A),
studied .the language-definition prohlem. His work resulted In a
system called the Syntax Definition Facility (SDF). This Is an
lnteractive system that allows the designer of a computer
programming language to define the syntax of his language In a
relatively simple natural meta-1anguage. A set of tables for
deriving a general parsing algorithm Is produced from this syntax
definition. If the system detects possible ambiguities or
inconsistencies in the definition supplied by the language
designer, it will report them and try to Indicate the source of
the problem. The system Includes test and debugging facilities
to aid the language designer.

The SDF meta-1anguage allows the language designer to specify the
syntax of his language by writing a series of sample statements
which are marked to Indicate how they should be parsed. Each
sample statement specifies the "kind of value" or semantic tvpp
of a construction In the language. By the underlying principle
0' Phase subst i tut-lnn. which allows any construction to be
substituted for any other construction of the same semantic type,
the snail number of sample statements Induces a complete language
definition, allowing statements of arbitrary size and complexity.
A syntax definition in the SDF meta-1anguage Is somewhat similar
to a 3ackus-:Jaur Form of context-free grammar definition, but It
is more readable and easier to produce. The algorithm used by
the system to produce a parser from the meta-1anguage description
is a synthesis of the precedence techniques and the AED Language
definition systems. The thesis will be Issued as an ESL report.

On-Line Simulation of Networks and Systems

The effective use of on-line computer utilities l , the design of
electrical networks and systems Is the main objective of this
research. This Includes studies in the mathematical foundations
of computer-oriented network and system analysis aM In the
interactive features essential for the design of networks and
systems.

Work In these areas has proceeded along several directions.
Charles W. Therrlen and Huber L. Graham completed their doctoral
dissertations: the former on network tearing, the latter on a
new recursive approach for computer analysis of non-linear
networks (App. A). The group's work on CIRCAL-M, a
general-purpose network-analysis program, continued with the
development of: a "pseudo user" (a user-defined program for the
automatic optimization of networks); a method for dynamically
loading and unloading program sections; implementation of
non-linear transient, symbolic-frequency, linear-time and
recursive-analysis techniques for CIRCAL-II; and development of a
general-function and functional capability for CIRCAL-II. In
computer-aided system design, the group completed the Initial
version of LOTUS, a block-diagram analyzer. It also Initiated
rmplicit computation and continuous-discrete systems, with the
objective of developing effective computing techniques for the
solution of linear and non-linear systems of equations.

■

PAGE 58

Tearing of Networks

Therrien has continued work on the use of "tearing" for reducing
computation and for expediting the computer solution of
Electrical networks. Ms thesis discusses the question. When
and how should a network be torn in order to minimize the
rnmoutation necessary for solution of that network? He has
p?ovide5 several answers to this question. They involve use of a
Si for tearing, several deterministic tearing ^or hms, and
one statistical algorithm which ac^eves statistically
predictable computational savings over a class of networks.

A Recursive Approach to Network Analysis

Graham describes in his thesis a new technique f°^e direct
analysis of non-linear networks through recursive decompos tion
of their network graphs. This approach differs J^/0"^1'0^
aooroaches that use iteration techniques. Using the new
?echn?que! one constructs a non-linear function relating the
given excitation to the required response variables. The
construction of this function Is recursive, and it is In
one-to-one correspondence with the steps leading to recursive
decomposition of the network graph.

CIRCAL-II System Developments

The CIRCAL-II program Is a general-purpose, 0S"^i^;
circuit-design program. (For detailed d scusslon, see Project
MAC Progress Report V, p. 60.) The main program, whIch became
ooerational last year, performs all the necessary 'overhead
?asks in computer-aided network analysis; it has convenient
"plugs" into which various analysis techniques can be connected
to enlarge Its capabi1 11les. There have Seen four developments
in the main system of CIRCAL-II during the year:

1) A preliminary investigation and Implementation of
the pseudo-user or DefIned-Command Feature. .^s
feature substitutes for the real user a user-speci ^«d
program which "observes" analysis results and makes
appropriate modifications to the network so as to
optimize performance. This system feature has been
used, for example, to design an oscillator circuit by
automatically adjusting circuit parameters so that the
oscillation will be at a pre-speclfled frequency.

2) A method for controlling the dynamic loading and
unloading of program sections in order to maximize

available storage.

3) Extension of the definitional capabilities of
CIRCAL-II, including the results of (1) above. This
includes a generalized capability for defining
functions and functlonals. Functions are used In
CIRCAL-II for non-1Inear element characteristics, tor
source waveforms, and for "post-processing" of computed
network variables. Functlonals are used In handling
hysteresis, thermal effects, and other phenomena that

exhibit memory.

■ ■ ■ ■

PAQE 5 9

k) Prooarrjt Ion of
manuals.

CIRCAL-II users' an-I pro^rnmfnors

'Jew CIRCAL-M Analysis Technlquos

DurinT thn past year, thp ^roun Sp^nn lovploonont of sovoral now
ana ysfs tochniquos. Thp correspondfn^ tasks involve
innlonontat.on of: first, the recursive-analysis technique, the
theory of which has honn Heveloped, as ^Iscussn-l ahove; sorond, a
synholir frequency-analysis technique *or larte, linear, soarso
networks; th.rH, llnear-tlae techniques; fourth, non-linear
transient-analysis techniques. Tho symholIc-frequency analysis
is of the so-calle-f co-ipller type, which requires little
execution tine an'1 is especially suited to
networks. larfre, sparse

Conputer-AMeH System Hesi-rn

The latter involves research on synthesis tools similar to those
use 1 in the synthos.s of discrete finite-state machines. It
entails a new approach to tho organization an^ structure of
computing hardware capahle of solving implicit al^ehraic and
differential equations.

Graphics Research

The ESL nispl^y Troun cont
software techniques for traohi
environment. In past ye
corce-sponsored Comouter-M -led
the Trouo develooel the IS
soecial hardware canahi1 11ies
an< the \R1Z (Advanced £emo
Traohirs terminal for remote
connection. The -^rouD's v/o
operation op the r.3l nisnlay
support additional AROS units,
graphics-support software.

Inued its research on hardware and
c Interaction in a time-sharing
ars, with suonort f ro:n the Mr

nesi-rn Project and Project MAC,
L njsr)iay# ,-, fTrap^jp-g -f|sniay x^\t^
for picture rotation and scaling
te nisolay Station), a storarre-1uhe

operation via a teleohone-1 ine
rk this year ^ealt with remote
Console, comnuter interfaces to
a hari-cony facility for APns, ani

Ü3L Console

Ourin^ the year, the Project MAC 709«» computer was* moved to the
M.I.I, information Processing (enter, an-l the former ! PC 7094

ESL, were moved to Project MAC to rnintain
graphics capahility there. In late May, the 50-kilohi teleohone
connection hetween the Pnp-7 and PHP-Q ..-S In^iioH ^

check-out of the link and assoc lated communication^ ' ^oftv/arJ
-»e-an. i3y the end of lune, communications hetv/een tho !>np-T anH

PAGE 60

or>n-7 wpre ost.iHIl sho'1, nrM thf r^n.'? irrlo r of the orotran mo^ulps
^or rcnioto-i i spl ay ooentlon worr holnfr cHecknH out. StuHy
continues on neans for autonatic start-uo fron the remote
location. This remote start-uo requires that hoth the PnP-9 an*
"'Of1-? he running and that they contain at least the bootstrap
connun i cat ions rnolulos for nroTfam loa'lin^ fron the 700'».

Ourin-r the Spring, a Sylvanla Data Tablet was inconmratcd into
one of the two consoles of the 131 Display at Project MAC. An
interface was constructel to oenlt rea^ln": the tablet output
llrectly into the PDP-9 via input-output transfer instructions.
\ character-recognition oro^ra'-i, which will be the first use of
the tablet, is bein'T written.

EiTht \R[)3 units are now use-l, primarily with the CTSS 7(m
computer. That number pose 1 a nroblem, a shortage of computer
ports. The 7750 communications Interface of the 709'* will
support a total of four "hITh-spee 1" (1200 bos) lines; only two
such lines were operational for \RDS use at the start of the
year. \n a-Mitional nort, imnlementel during the year, ^roufrht
the total to three; an-I there was nro^ress in ronvertin^ the
^resent leHicatef use of the remaining nort to M^S
comoat1^11 Ity.

Loolun» Spynn^ this four-nort cana^llity is a study of rin
information concentrator for the 70Ti which wouM orovide uo to
15 ARHS norts, olus 50-kilobit connections to the two ^GL
Displays an 1 perHaos t .T the Interfncr Message Processor of the
\RP\ computer network. The concentrator would be a small
computer interfacel to the 70T» Direct Data Device (DDD),
orovMinT 3G-blt "/or 1 transfers at uo to 170,000 v/or'ls nor
seconH. The Pa^-7 buffer comouter for the r:5l. Display, which
presently occupies the DDD Interface, would then bo connected to
a 50-kllobit serial port of the concentrator. Several small
computers have been evaluate! for use as concentrators. The
general system configuration and buffer memory requirements have
been determined.

The System/360 data adapters for USASCII (US\ Standard Code for
Information Interchange) Interfaces ooerate only at Teletype
spee 1 (110 bps). Thus, at M.I.T. those \R^Ss used with the
350/67 computer must operate at this low speed. The Troup has
assisted the IPC to plnn for alleviation of this nroblem by
acquiring a special lata-adnpter unit to connect to a 3G0
multiplexer and to provide a number of 1200-bns (or higher) AP.ns
ports.

The successful operation of an \RDS for two weeks, 22 Au-rust to 3
September 1968, at the M. I ,T./Technical University of n.erlln
Conference, was a hi-rhllTht of the year. International
cooperation established a 1200-hos circuit via a dial-up
connection from Berlin to Frankfurt with an ITT 'latatel
connection to 'lew York, and a iedlcated M9tT line ^rom 'lew York
to the Project MAC 709'>. There were several operators to deal
with, not all of whom spoke English. Exceot for oroMems in
re-establishing the circuit each time It was to He used, however,
ooeratlon was trouble-fr^e over many hours of use.

it

\>\C,E 61

ARTS HaH-Cooy Oevico

Thr> experimental har'l-copy station ■liscusse'l in Project MAC
Progress Report V was assemblel an^ tested. This station was
-tesi-rned by Mbert Vezza. It consists of: a Tektronix 611
storage monitor driven by an ARHS display; a modified 3M
Iry-silver paper print unit; a lens to ima^e the display screen
at 1:1 on the record! i» paper; and a shutter inechanlsm.
Modifications made to the orint unit Increased the temoerature of
the heated development cylinder to process photographically a new
Kodak dry-silver-process paper that has a photographic speed
ei^ht to twelve times faster than the paper for which the print
unit was designed. With that paper, heat In?» constitutes the
entire development process. The new Ko lak paper is first
stabilized by heat In» to a temperature of 21*0 decrees; it is
then exposed to ultraviolet li^ht to brin"; out a visible ima^e.
Total development tine is 10 seconds.

With the increasei speed available In the Kodak oaper, it Is
possible to make ^ood-densIty prints with five-second exposures
from the storage-tube screen, compared to the 30-50 seconds
required for the old paner. The wl de-an"Tl e-to-wi de-an^l e lens
used to obtain 1:1 Ima^In" of the 5-1/2" x 8-1/2" disolay screen
consists of two aerial camera lenses back-to-back. It has an
equivalent f-ratln--; of 2.25. Lens cost In quantities of 10 or
more woul1 be about $300.

In June, several problem', remained concerning operational use of
the hard-cooy terminal. One problem is the heat .generated hy the
development cylinder If the unit Is left on continuously, ready
to print at any time. \nother is devising a satisfactory method
for integrating the hard-copy terminal Into the t Ime-shar I ns;
system. One method for this woul1 be to slave the hard-copy
terminal to an ARr)S when prints were to be made, but this would
require either providing a local operator or having the hard-copy
terminal continuously dialed-ln through one of the already-scarce
ports. Another method would be to provHe a capability In the
time-sharing system for saving output pictures on disc for
batch-printing at scheduled times. The group is studying these
problems and hopes to have at least limited operational use of
the hard-copy terminal In the next few months. The hard-copy
terminal should provide a remote hard-copy capability at a
capital cost of about 50 per cent greater than a basic ARL)3.
Paper cost compares with that of office copiers.

Graphics Software

The GRAPHSYS software support system provides a convenient,
high-level and nearly display-Independent interface between user
programs and the F.3L display Console or the AROS. During the
year, fi^nlel E. Thornhlll and Christopher Reeve made a number of
changes to Improve compatibility between the ESL console
procedures and the AROS procedures. Reeve's Master's thesis
(Apo. A) described procedures for Interactive graphics on the
ARDS. In December, F.51. and Project MAC Issued a technical report
(MAC TR-56, Apo. 3) describing GRAPHSYS. Several student
projects contributed to the augmentation of GRAPHSYS
capabilities. Some are discussed below. To make graohics more

PAGH 6 2

easily available to the general community of t pie-shar inn; users,
the ,^roup formulated plans for a coherent collection of graphics
programs which would be available to all users. it be^an
collecting existing programs and set up an on-line dociimentat ion
system, using the TIP information retrieval subsystem of CTSS.
Members started on the following procedures for inclusion in the
common file:

1) \ data-plotting package for plotting data on
rectilinear, semi-lo^, IOT-IOT;, and oolar
coordinates, and a facility to plot bar ^raphs;

2) \ contour-plotting package;

3) \ generalized 1 i ^ht-biitton package;

k) \ graphical display and simulation oackage for
digital 1ogi c;

5) Procedures for dumpin» data structures on tn a
disc file and for rptriovin» them from a disc
file.

Other Hardware Developments

Robert J. Ascott. in his thesis project (App.
low-cost resistance-paper (Tel edel tos) data tablet
31ount had developed earlier) so that It ofTefates
than d-c excitation on the tablet. Although the o
(see Progress Report IV, p. ;J2) worked well,
siinple electronics, it sufferei from the re
electrical contact between the stylus and the tabl
that prevented tracing an already-drawn fi^ur
excitation, the stylus coupling is caoacitive, a
be accomplished through a sheet of paper.

A), mo
(which

w 11 h a -
rlginal
v/ith e

qu i reme
et surf
e. Wi
nd trac

d i f i ed a
F. r.

c rather
tablet

xt remely
nt for
ace, and
t h a - c
king can

In another thesis project, James ri. Fiasconaro is adapting \RDS
circuit tecliniques to a^d character and vecter-^enerat i on
capabilities to an existing no int-pl ott i nc; display for the PDP-9
computer of the Speech Synthesis Hroup at the Research Laboratory
of Electronics. This will provMe a refreshed graphic lisolay of
moderate performance at a cost considerably lower than comparable
commercially available units.

In connection with the hi^li-speed digital link between the PDP-7
and PDP-9, Thomas L. Smith, carried out a thesis study (App. A)
of: trade-offs between transmission speed and CPU time required
for on-the-fly error checkinT;; error recovery procedures; and
optimal lengths for message blocks. The results of this study
indicated that the present 50-kllobit speed is adequate, that
the 230.U-kilobit speed initially specified for the PnP-7/Pf)P-9
link is unnecessarily hi^h.

^

PAGE G3

TECHNICAL INFORMATION PROGRAM (TIP)

T. F. Dempsey w. D. Mathews

D. M. Jordan L. H. Morton

M. M. Kessler w. I. Nissen, Jr.

>

■""""-'" w

v-sSt:'^''

k/t-.

■-■

'■■

,

■

;

■

-

BLANK PAGE

,■

r I itl

z
gmgg£g£C

.^f

PAIR

7. TECHNICAL INFORMATION PROGRAM

l4^'Nn0thehMTrh?iCa
1

1pl:f0'natl0,1.P:0JaCt (T,P) has heen "rrlod

soems appropriate to u«; At fhJc ♦•: ^ 1 rnratei to '.Too, it

roPresent%Ctr!o":a„5'!^,lc^t
r
|o^:k '" S«C<"" -a,uation, ^ta

Program Devolopfient

loose sot of on ?-ranS We evGl0^'1 at TIP, in nid-1^
sot of on-lme retrieval pro^rans, each tailor

Po.nt-to-ooint infornatlon-dIssen nation
spec I fie
created

/ was a
pd to a

nee Ir 'J'

triad this e^l^rf^a^o !, „Tn 5;; t I'"^??.?.^^™^ ha',
the scope of the seirrh ^n < i-^ -.1«. J !u ability to enlarge
new retrieval posHhrnttes to ?l'ht. ^^ Crftfirl- hr^ht

C0UIJT3 an-l INnfIXß -- Jilliin 1 M-.t-h„, ,-.

a mismatch between technlralvi^c KIX \ro,J'ht to ^r attention

ieveloie.Va'ünK!!^ ^,Matt,eWS: "' ,n the Aut^n ^ 1^5, we
lVth?s "one packte i'r31 Pro'r^lu

f?r ^e physics lltcra ure Package, it was possible logically to combine

PRECEDING PAGE BLANK

PAHf: 56

requests for papers pertaining to specific titles, authors an'1
citations. lie made this retrieval capability nuhlic to all CT55
users. Any CTS3 user coulrl interrorxato a ho-iy of literature of
approximately 30,000 recent articles In physics.

TIP/1 I -- William D. Hathews:-- It soon hocame apoarent that
•.JO neeleH a more rtenerallzeH information-retrieval capability to
serve the scientist adequately. Unlike the physics literature,
much scientific information is not neatly packager! and published.
One cannot expect to tet information from a library-maintained
data base. Invariably, the answer must bo or-anized and
structureH into different forms for a final Intelligent
presentation. Early in 1966, we be.ian work on the TIP/1 I system.
This involved considering retrieval as a general text-management
process in which the user, with items of information containing
ASCII text streams, approaches the computer and requests the
partition of these I terns into groups satisfying very complex
selection criteria. Further, a substantial part of the
interactive vocabulary, especially the naming of fields of
Information in the user's data, should bo under his control.
From our experience, it was also evident that control over the
detailed format of presentation of selected I terns should
similarly be under user control. Thus design for the TIP/II
rotrieval system evolved. This system has since been used on
fiscal, personnel and Inventory Information, as well as on
bibliographic data.

TIP/li Components -- William f). ilathews:-- We had to develop
a ran.^e of component oacka^es to suaport the TIP information
system on CTSS. We produced a powerful string nacka^e to allow
quick manipulation and operations on \SC I I character strings, and
we Introduced a list package for maintainlm; lists anH
dictionaries of attributes. We also developed an efficient disl<
I/O packa.-re to handle ASCII files. Other important component
packages supplied functions for recursion, free-storage
manipulation, and data conversion. These components formed the
building blocks for nearly 30 file-manipulating subsystems that
became known collectively as the TIP System.

SORT and HERTE — William D. Mathews:-- The TIP/II retrieval
subsystem allowed the user to divert Information into a file for
later processing. We developed a battery of subsystems in .June
1967 to permit organization, deletion, extraction and updating of
these files on an extensive basis. We introduced other
subsystems to tally or count the number of similar fields in a
data collection and to produce a new file reflecting this
summarized information.

EDIT/I and QEDIT -- Lewis M, Morton: --Insuring reliability
and accuracy was one of the most pressing problems facing us as
the size of our data base increased. In mld-1967, we developed
EDIT/I as a programmable editor with a large set of text-handling
requests. It can be used for validation of data or
transformation of information from one format to another where
some syntactical analysis Is required. In 1968, we introduced
-tEOIT. This Is a quick ASCII editor that takes Its requests from
a file and writes a reoort of all editing changes Into another
file. The saving In machine time over the conventional CTSS file

P\r,f 6 7

editors ranges from a factor of two to a factor of five. The
JesiTn of an E!)IT/I! suhsysteii is now well unler way. EDIT/I I
will compile coHe if the user wishes to run an editing procedure
repetitively. Other features include the ability to blave one

i pointer to another in such a way that operations performed on one
pointer affect the contents of another.

FI3C!1K -- Timothy F. Dempsey, Jr.: -- In the Autumn of 1968,
we Jeveloped a subsystem which, with certain protocols in
construction of RUNCOM's, allows for the convenient running of
foreground-initlate 1 background (FIB) jobs. Some of the problems
that ha i to bo approached v/ere:

1) The chaining of several FIB jobs into one controlled
job;
2) Prävention of Fill job-loopi'v<T in jobs which
establish other joHs;
3) Prevention of destructive interactions between
chains of FI i? jobs working in the same directories.

ZOT -- Lewis U. florton: — Me devoloned a ^ennral-puroose
environmental subsystem for use within command chains. Used in
fTdUCOM's, the ZU subsystem can test to see, for oxample, if
there is enough space left to write a file of specified length,
or enough time left on a shift to complete a certain operation.
Special action may be taken if the specified condition is not
fulfilled. ZOT may also be used on-line as a desk calculator.

TAP and ASE.MSL -- Walter i. Missen, Jr.: -- We have made two
alvances toward a flexible and powerful text-oriented assembler
for a modular prcrrammin^ system. The first is the development
of the TIP Assembly Prosram (TAP), which is a derivative language
of the IBM 7(m FAP macro lan^uajje. TAP includes a number of
standard functions, implemented as macro rief in i t ions, to provide,
among other features, automatic subroutine linkage, table and
list manipulation functions, symbolic indexing, and automatic
recursion. Other pertinent features of the language are
additional machine operations for pointer manipulation and
logical operations, and the ability to treat standard subroutines
and their calling sequences as machine operations. Initial
experience with this assembly pro-rran has produced on exclusively
favorable reaction. One can write significant programs with a
very small Investment of programmer time. This capability is
largely a result of the naturalness of expression in the new
lan^ua^e.

A parallel development has eliminated some of the major
difficulties In the assembly of text functions. \SFflBf. is a
text-processing language which functionally can be considernd as
the front end for a standard assembler, either f\P or TAP.
ASEMBL accepts as input any TIP text and produces as output,
according to an accomnanying field table, an FAP source file
containing ASCII coded text strings with whatever hierarchical
text-pointer structure one desires. There is provision for the
utilization of all standard T\P machine operations and
pseudo-operations, and, generally, for complete program
structure. It Is possible to provide a single source file for
numerous distinct programs or for various versions of the same

i

PA1E 58

pro-raiii, and to allow the assnmhly of any suhsot of the total
source by use of the appropriate field tahle.

SHARE — Timothy F. Denpsey, Jr.:— In the Hrst half of
1909, we extended the concept of citation sharing which had heen
used as a retrieval criterion, to cover sharing of other
attributes. Further generalization permits the ^c . f . cat .on of
a coupling strength and the number of .terns n a file «'th which
selected items must share. The linkage mfonnat.on Is
incorporated into an output file for further iterat.on of the
process. Now, for example, one may select items In a personnel
file usinT similarity of attributes to some sample .tern.

The RUM System -- Walter I. Wissen, Jr.: ".The RUM system
has passed through several evolutionary stages in the past year.
The program modules have been completely receded to increase
their efficiency and to broaden their power considerably. The
number of pro/rams available through RUN has > Increased
enormously. As a result of its expanded usefulness, it has been
installed as a CTSS command.

3y reducin- the coding in RUN SAVED down to a dispatcher and an
internal table, we have made RU?J SAVED small and eff.c.ent. At
the same time, we aided the capability to dispatch to Pjo^ams m
independent SAVED files, not just in the spec al RU r n Ar In
if RUN cannot locate a desired program .n a RUN SAVED file or in
the TIP pro-rram library, it will search the public file, the
user's directory and, finally, the CTSS command directory to find
the desired pro-ram. Therefore the RUN system enables the
Inexperienced user to have access to virtually all commands or
pro-rams that he mi-ht wish to use; the familiar user can avo. 1
the'necesslty of noting each trivial chan-e In the or-an.zation
of SV/^D files that mi-ht previously have affecte 1 his method or
access." We have increased the effic.ency of core-storage
management bv RUN by developing an algorithm to .dent.fy^those
subroutines that are loaded for a oartlcular *roup of main
programs and to return to free storage any such subroutines when
any other "main" pro-ram In the same SAVED file s referenced.
One "main" program may call another, but any "main program not
cal'led will also be returned to free storage just ^J'^e
execution be-ins. ^n unexpected offshoot of the ^velopment of
the RUM system has been the capab.l.ty to or^a" z01

t7 . ^'^
library of pro-rams so that all pro-rams are easily loaded and
updated at any time.

PAPER TAPE INPUT AMD OUTPUT -- David 11. Jordan: — We have
extended TIP subsystems to include both readin- and punch.n- of
paper tape on the PDP-7. With the TIP subsystems for reading and
writing magnetic-tape directories and the CVFILE subsystem for
code conversion, we have provided a flexible information-storage
facility It is possible to load massive amounts of paper tape
on to the disk, convert the information to ASCII, and^ store it
for archival purposes on magnetic tape. When one deslre* 't, he
can retr|eVe -his information and format it for typesetting
machines, and can reconvert and punch it in the special code
configuration needed to run such varied off-line devices as the
Photon or the UM Selectric Composer.

£

FORMAT -- Walter I. Missen, Jr.: — We have HevelopeH a new
subsystem, FORMAT, that Dermits hi^h-soeed hulk output under the
control of a format cahle lüce that available fron the TIP
subsystem. This new subsystem permits easy testing of format
tables during the formative stages of an applications system.
Also available arc features for truncation or trimming of fields
of text before output, and tabular formats for columnar data.

Picture Retrieval -- Walter 1. '■Ilssen Jr.: -- Je have made
alterations to the TIP retrieval Subsystem to allow for the
storage and retrieval of pictures for display on the ARUS scope.
Special format printers control erasure of the screen and delimit
the text to be plotted. It is also possible to stop the output
stream under format control. This is important on a scope
display s|nce the user should bo able to indicate when the text
has been real and, therefore, when this display may be erased and
rewrItten.

CMC/\ -- David M. Jordan: -- llandUn«^ of numerical text
within the TIP system in ways other than retrieval and formatting
had Ion", been an objective. At the be^lnnin,T of the Summer of
1969, the fALC subsystem was nearin» completion. Standard
mathematical functions available in this subsystem wl11 allow
users to add, subtract, multiply or divide the contents of any
fiel! of ASCII text by the contents of any other fields or by
constants. Execution of statements in a CALC specification may
be conditional, permitting a computation to take place only if
certain fields are present or permitting results to be reported
only at some lo-rical braak In the data or at the «nd of a file.
This subsystem will be useful in billinr- and inventory systems.

Minor Subsystems -- William 1). Mathews: -- To round out the
capabilities of the TIP system, we introduced a number of minor
file-handlIn» subsystems. ADDON allows the user to add constant
fields on to every item In a file; REMUMB allows for the
renumbering of fields in each item; and 3EQUEM sequentially
numbers the Items In a file. One may accomplish some unusual
results with such simple subsystems. SEQUEN, for example, may be
used to add rank-order Information to items in a particular field
that have been sorted. . .

Freshman Seminars

In alternate years, we have held freshman seminars on methods of
handling scientific information. Students are »Jven on-line
experience and are encouraged to do independent study in
organization and manipulation of information files.

Summer Sessions

For the past two years, the Project TIP staff has *lyen a
two-week M.l.T. Summer Course in Information Technology.
Professionals from industry, government and other universities

«•>/

PAGE 70

have discussed topics rnnr»in.fr from data collection and filp
organization to analysis of the user nooulat ion.

TIP/MI Planning Conferences

In June 1969, we held a series of conferences on an over-view of
the planned TIP/I II system on Multics. Project MAC participants
and other Interested personnel from the M.I.T, community
discussed and criticized of the proposed system and suj^ested
directions for this future work.

A

P/VOK 71

8. MATHEMATICAL STA'JCE PKOGMM (MAP2)

Work on MAP2 has been carried out In the School of Engineering
inainly with support from the 'Jutional Science Foundation. One of
the most difficult aspects of implenentinn an on-line
user-oriented system is to ensure that the Interface is sensitive
to the likelihood that users will make errors. In particular, we
have found that the pronrammlns necessary to ensure »-hat all, or
nearly all, possible erroneous usages of an operator are detected
and the user informed (preferably before damage is done) is often
more extensive than that required for the operation Itself. The
complications of such precautions can inhibit the ordin£uau«*4iaS»k
from himself maklnc significant and useful additions to the
system. Perhaps for this reason, almost none of the existing
systems makes provisions for user-added ooerators. This problem,
ah Ich we have been considering In some detail. Is the subject of
Terence 11. Coll Iran's Bachelor's thesis UPP. A). Colll^an has
designed and partially implemented a generalized and automatic
procedure for checking for errors in the specification of
operands for ooerators during the process of breaking down the
input statements Into an executable structure. The procedure
utilizes simple bit-checking of "allowed" masks against coded
specification of data-operands. The masks allow checking of the
operands Individually, as wel1 as of more complicated effects
involving logically permissible combinations of operands. It is
inten led' that they can be specified to the system with simple
declarations by "non-programming" users. In effect,
error-checking routines constitute th? heart of
"adi-an-operator" operator.

the
an

Prof. R. Kaplow

J. W. Brackett T. CoLligun

PAGE 7 3

ADMINS (BUREAU OF SOCIAL SCIENCE INFORMATION)

I. deS. Pool S. Mclntosh

D. Griffel

c
mmm m mm

P/^GE 75

9. ADMINS

Dr. Stuart 0. Mclntosh and Dr. David M. Griffel/ who designed.
Implemented and used Hark III Admins to the I'rnlts of Its
capability/ have been developing another system called Mark V
Admins for primary and secondary data-handiing. This work has
been carried out in the [Jureau of Social Science Informat Ion/Of
thr M. I. T. Center for International Studies, under funding
mainly from tho National Science Foundation.

Admins Mark III has been described by competitors as a CTSS
data-reduction and cross-tabulation system. Admins then (four
years ago) relied/ and now (Mark V ievr»! onment) relies quite
heavily on CTSS facilities for computer oron:ramming.

There were several data-handling problems which we attacked four
years ago:

1) Comout-:: r-usabl e data loser I nt ions for each element
of computer-usable codnd data;

2) Computer-usable ooerations for linking several files
together according to cross-reference relations within
data sets and between data sets;

3) Interactive data analysis such that an analyst could
path his way down a tree, look at the cell of a table,
and make a decision :o recombine his data;

i») Higher-level analysis facilitated by having
computer-usable output that- can be input to further
processing as well as being used to generate reports.

Tho potential users of the system were primarily interested in
questions of quantity (not identity) and in numbers of items with
certain characteristics (not with numbers of I lent I find Items oer
ifi.). This meant that it was out-of-place to put design emphasis
on "find the identity of the item/ then tell no all Its
characteristics"/ or "toll me the identitios of all tho items
with a certain character Istic", or "count all the items with a
certain identity".

Mark I Admins was short-lived. Most of the levelonmont work was
done on Mark II. We drooped certain featuros (e.T., an automatic
tree analyzer) and settled on a simplified .'ersion called Mark
III. This has been in use for throo years. The on-line
documentation and the harl-copy documentation have hoen rehashed
many times to keep pace with users' cultural change. The system
has not changed in essence/ but we have added some conventional
statistics and some output features in order to relate it to
other systems.

The aspect of data-handling for which Mark III Admins is most
suited is the handling/ for purposes of analysis/ of many
environmental variables with many contingencies among them. Mark
III Admins is net particularly suited for progress control over a
lesser number of operating variables or over the even lesser
number of budgetary variables. This Is mainly because of the

PRECEDIKS PAGE BLANK

PATH 76

lack of emphasis on up-date and on ?tern-ident Ity quantification.

The paging and seirmentat ion in the procedural and non-procedural
Hark Ml suhsystem arp ^d hoc. This
constraint, hut mainly it is
conputer-usahle dnta dpscriot ion.

is to some
because

extent CT5S
of prohlems of

The -lata world can be divided into several parts, amonr; which
are: data concerned with physical locations, data concerned
with storage locations, i.e., data structures; program data,
i.e., code and storage tables. We have not been concerned with
these, nor with graphics iata and textual data. Dictionary data
(data description) and data data -- i.e., coded data -- have been
the foci of our attention.

Mark IV was an &£ hoc attempt to provide identity and quantity
facilities and cross-reference features not available In Mark
III. The Mark V design is in essence concerned with facilitating
»all aspects of primary and secondary data-handling rogardlng all
questions of identity and quantity of item and characteristic.
In computer jargon, this means development of a programming
language and operating system as an environment for an
organization (simulation) language that can get to tho data base
via a data-descr Intion dictionary as the language of
representation. Tho user language rests on a
representation-language redescrIptIon facility and a
report-generation facility.

We have settled on page and sefrnentat ion techniques
especially on page tables that Index Identity, and on data
structures suitable for the Irregular matrices that are our data
descriptions. This Is not Intended to prejudice further
developments In categorization of data structures, but primary
and secondary data-handling Is our current oroblem.

** •

PAGE II-l

PART II

ARTIFICIAL INTELLIGENCE AND
INTELLIGENT AUTOMATA

Prof. M. L. Minsky

G. K. Adler
M. D. Beeler
W. T. Beyer
T. O. Binford
Prof. M. Blum
H. E. Brammer
T. F. Callahan
E. Charniak
P. E. deCoriolis
D. E. Eastlake
H. Fell
J. S. Freiberg
S. L. Geffner
J. P. Golden
R. W. Gosper
R. D. Greenblatt
A. K. Griffith
Prof. A. Guzman
W. H. Henneman
A. Herskovits
C. E. Hewitt
J. T. Holloway
P.. Holloway
B. K. P, Horn
K. M. Jacobs
J. L. Jaroslav
T. L. Jone s
E. I. Kampits
T. F. Knight
L. J. Krakauer

Prof. W. A. Martin
G. H. H. Mitchell
Prof. J. Moses
R. Noftsker
Prof. S. A. Papert
D. N. Perkins, Jr.
J. S. Roe
P. R. Samson
R. C. Schroeppel
Jr M. Shah
S. W. Smoliar
M. Speciner
W. A. Spies
N. F. Stone
G. J. Sussman
C. T. Waldrop
D. L. Waltz
J. C. Wentzell
J. L. White
P. H. Winston
T. Winograd

Guests

Prof. C. K. Chow
T. G. Evans
Prof. E. Fredkin
Prof. H. N. Mahabala
Prof. M. S. Paterson
G. Voyat

1 I

\ iii^i T" "

IFT-

■
~MU*A>

/

BLANK PAGE

^»-i»»■««

-

*** i*"^»—._ ■IHM II ■- - * ■■" ^ ^1

II-2

This report should be read in conjunction with last year's.

This is particularly important to obtain a rounded view of our work

on vision. In fact, much of what we say this year is logically prior

to much that we said last year. Thus last year we discussed the abstract

and theoretical problems related to the interpretation of pictures

presented in a clean form (as line drawings or as subsets of an abstract

retina) while this year we say more about how to obtain such pictures

from the real world. The reason of course lies in the fact that

the "higher level" work did not depend as heavily on prior solutions

of hard-ware and systems problems.

We have not reported new work that lies directly in the line

of development of ideas discussed last year. In particular, we have

deepened and generalized some of the theorems on computational geometry.

But the new state of knowledge is indistinguishable from the old on

the level of discussion of this kind of report. Similarly we have not

reported ver^ new work which is still at a too primitive level of

of developedment to be presented intelligibly. This includes work

on natural language processing, concept information, teaching and

a number of mathematical topics. The time constant for project of

this sort is longer than a yea»-. These matters will be dealt with

in a further report due in the fall of 1970.

PAECEDING PAGE BLANK
*

II-4

(The machine sees from a little below the viewpoint of the left

picture.) Berthold K.P. Horn has developed a program that can

find the lens setting for best focus at each point in the visual

field. The procedure, applied to a series of points along a

horizontal scan through the middle of the cube, yields the profile

shown in Fig. 2. (The location of the background is less definite

than that of the cube because of the background's oblinquity to

the camera.) Horn's program uses local Fourier transforms and

compares the relative energy in the high and low spatial fre-

quencies. It servo-controls the lens to maximize the highs,

and it focuses at least as well as one can do manually.

Fig.2

Horn will discuss the focusing procedure in detail in his thesis

("A Method for Finding the Shape of an Object from One View and

Application to Face Recognition", in manuscript.) Two techniques

are available: one uses a fast circular scan to obtain a

periodic function characteristic of a large neighborhood; the

other makes a faster scan of a smaller square. An operation

manual (Horn, "Focusing", AI Memo 160) gives instructions for

using the system with the PDP-6 computer and its

optical-mechanical accessories, as well as some of the theory of

the focusing procedure.

II-5

Nov we have described three methods for optical range-finding.

There are many other ways to attack just this one aspect of

visual technology -- such as flying-spot scanning from a site

off-center from the camera, holographic methods, and even

optica1 radar. We must not, however, allow the myriad of

technological possibilities to divert us from the deeper -- and

incompletely understood -- problem of developing a visual system

flexible enough to deal with real-world problems. The goal we

have set ourselves is to find how to make a system that can

approach the versatility of human vision. One outstanding

feature of that system is its "passiveness" -- the great extent

to which it can see without much special preparation or

interaction with the objects in the scene. The secret lies in

the intelligent viewer's ability to combine what he sees with

what he knows about his world.

To pursue this, we have concentrated on the problem of

reconstructing a three-dimensional structure using only a single

monocular picture. People are quite good at understanding what

is shown in a photograph; we should like to know how to make a

machine do this. Now, with a very few exceptions, the many past

attempts at computer analysis of scenes have been rather

fruitless, and we should try to understand what went wrong.

Almost all of those past attempts followed the same general plan:

the picture is subjected to a sequence of transformations; each

transformation is intended, in turn, to produce a successively

more abstract representation until, finally, one obtains the

.^ '

II-6

4>
desired description of the scene. Typically, such a sequence

might be:

1) Remove noise (by clipping, smoothing, etc.);

2) Enhance features (by boosting gradients, etc.);

3) Extract features (finding edges, vertices, etc.);

4) Group features into objects (by regions, parallelisms,

etc.);

5) Identify objects (by partial matches, etc.).

Although there is a great deal of plausibility to this idea of

progressing relentlessly from local to global, the concept of

serial stages of pre-processing does not actually work well in

practice. It is simply not suited to the real problem. Errors

and assumptions made at each level are passed on to the next,

and, even if each stage is quite clever at how it handles its

data, the accumulation of mistakes over many stages leads to

chaotic over-all results. The basic grammar of the problem is

too context-dependent. The appearance of an object's features

(and even their occurrence or non-occurrence) usually depends on

global aspects of the arrangement and illumination of the scene.

One must cope, for example, with

1) Direct line-of-sight occlusion of parts of objects,

2) Shadow occlusions that depend on the directions of

lighting,

3) Highlights,

•MKm

11-7

4) Reflections,

5) Textures,

6) Decorations,

7) Many other interactions between visual features and

spatial forms.

Accordingly, the inevitable ambiguity problems met at each level

-- "Is this an edge or not?" or "Are these two features part of

the same object?" -- are often not solvable at that level. One

can select a plausible interpretation only by using a wider

variety of knowledge about the real world -- knowledge that

ranges from principles of optics and geometry to knowledge about

the particular environment and the objects likely to be in it.

In the traditional processing sequence outlined above -- we shall

call it the horizontal vision system -- different kinds of

knowledge are implicit at each level. The principles of optics

are involved because each visual point repi sents a distribution

function of space points in a way that depends on focus,

scattering, reflection and noise. In the extraction of features,

the processor must know whether the objects are likely to have

straight edges, or texture boundaries, or polished surfaces. In

analyzing a room, to give an extreme but real example, imagine

the resulting chaos if the system did not know the significance

of a picture frame!

At the level of grouping features and identifying spatial bodies.

II-8

j *

we have already seen (Project MAC Progress Report V) how problems

of projections and occlusion of three-dimensional objects lead us

away from the simple template-matching schemes that work fairly

well for two-dimensional problems. We found, however, that many

of these difficulties could be handled by symbolic-description

systems, and we shall assume that the reader is familiar with Prof.

Adolfo Guzman's work, either through the survey in Progress Report

V, or through his Doctoral dissertation. We now conclude that the

lower-level aspects of vision, too, are best treated as problems in

artificial intelligence to be handled by a mixture of general methods

and special knowledge. Because the different kinds of knowledge

interact at different levels, we must provide channels for such

interactions so that hypotheses about high-level things like ob-

jects — perhaps proposed by heuristics that use local evidence

— can be confirmed, rejected or revised by returning to other levels

for other kinds of evidence. We use the term vertical system for

this type of organization.

We have not yet enough experience with verticality to discuss it

abstractly. But we now know a substantial amount about its applica-

tion to visual problems; the body of this section reports what we

have found so far.

II-9

Optical Anatorny of a Simple Scene

Fig.3

In Fig. 3, we see three cubes with dull white painted surfaces

against a dark background, illuminated by concentrated light from

a lamp above and to the right of the camera. The data and

methods used here are from work by Arnold K. Griffith. Fig. 4

shows three plots of the light intensity, measured along three

horizontal scans, each of 1000 points across the picture.

L..

/I

/

550

vT'

fUX Fig.4

v*to*w,irrt J
600 650

It is difficult to discern very much in these plots. The next

illustration. Fig. 5, shows the result of applying, to a sequence

of such cross sections, a kind of second-derivative operation

averaged over enough adjacent sample points to give flat plots

over regions that have reasonably uniform gradients. (The photo-

graph and the measurements were taken from slightly different

positions.)

11-10

U We have marked a number of typical features:

;;

Fig.5

a is an outer edge. Against the dark background, it is
a simple, suddon change in intensity, giving a typical
bipolar" pulse in the smoothed second derivative.

b is a more symmetrical feature; it is due to the
"highlight" reflection on the front edge of the lower
right cube.

b^ is a superposition of the effects of a b and a small a,

c is the reflection of the bright surface of the upper
cube in the top of the lower right cube. Although the
paint there is dull, this surface is seen at a low
angle, and this enhances reflections.

d is the crack between the lower cubes. The brightness
measurements are all logarithmic, and truncated so that
the piots won't overlap.

e is the spot of dirt on the upper front corner of the
lower right cube. The edges and corners of objects
often have highlights and often are dirty.

f is a shadow boundary visible on the dark background.

T is another shadow boundary, somewhat less sharp
because of penumbra and depth of focus.

II-ll

The internal edges, such as at b, of uniformly colored objects

often give small signals. Their width, in our plots, is an

illusion due to the smoothing operation; on sharp corners, the

highlight line is very narrow and 'asily missed by a coarse scan,

The history of attempts to write edge-finding and edge-following

programs is long and inconclusive. Because the results were so

obscure, Annette Herskovits (AI Memo 183) and Griffith made

separate studies of the edges of geometrical objects; both

concluded that the most common phenomena were superpositions of

three effects (see Fig. 6):

Fig.6

A.

(1) a simple step

(2) a slope change

(3) a highlight or
a crack

Y
They both investigated various detection filter methods for these.

Griffith's thesis will include a theory of optical detection of

edges under various assumptions about their intrinsic character and

about the kinds of noise one might expect in a vision system. The

most sensitive methods for detecting edges use two-dimensional

operations, but these are very expensive with conventional hardware,

because of the large amount of high-resolution information.

11-12

When a compromise must be made, it is not especially good simply

to use a coarser homogeneous scan; for instead of the arrangement

of Fig. 7, one can use that of Fig. 8, which has the same mean

density but is better at catching thin edges.

Fig. 7 Fig.8

::

!

Now we apply this idea to some more realistic, cluttered scenes,

We mark with short dashes the local maxima of the output of the

edge-filter, along a mesh of fine horizontal and vertical scans.

The problem remains to convert this set of local features into

lines, and then into objects. Figs. 9 and 10 show the results

of a process that uses a projection operation sensitive only to

straight-line segments. Although it is not good for close-

packed features, it is conservative and does not propose many

false lines. Griffith's thesis will give details.

11-13

U'■'.■, i.-----

iii —

I l.r.',<-;...-S ;. ■

\ Fig.10

Another kind of process works in a complementary manner; it

labels points whose neighborhoods are relatively homogeneous.

Then the system finds the boundaries of the connected regions of

such points. Thorras 0. Binford (AI Memo 182) describes

experiments on such a system. There are many problems in

deciding how to reduce the region boundaries to useful

line-descriptions. We see in Fig. 12 the result of such a system
*

applied to the relatively simple scene shown in Fig. 11.

Fig.11

Figs.12

4 *y^:::
%l-" '"I--

:i

'..

11-14

Still another approach to line-finding uses a two-dimensional

local-gradient detector, followed by a scheme for assigning the

locally maximal features to edges, as in the early work of

L.G. Roberts. Richard D. Greenblatt is developing a

system of this sort.

Problems exist at every stage of such processes. At each level,

the selection of relevant features requires some a priori

knowledge about the local world. Our verticality thesis holds

that one cannot expect any one decision policy to work over a

very wide range of situations, but that even a little feedback in

this selection will help considerably. For example, each of the

systems mentioned above will miss some edges of some objects,

because of the problems of resolution, illumination, focus,

contrast, texture or noise. If the system misses an interior

edge, the SEE program (or rather, one version of it) may have to

propose one object in place of two, as in Fig. 13, or two objects

in place of one.

Fig.13

11-15

Assuming we are in a world of geometrical bodies, there is a

variety of ways in which to use knowledge of the fact to propose

corrections. (These will have to be verified, but proposing them

is most of the battle.)

Fig.14

Missed edges, for example, are often related tn concavity (see

Fig. 14), and, in a rather Bayesian way, this suggests a search

for missed lines radiating from the concave vertices into the

figure's interior.

Fig.15

In Fig. 15, we indicate proposed lines of several kinds: V^

directly to other vertices; Z interior extensions of the

vertex's edges; and L^ an (absolute) vertical edge (very common

in real interior scenes). One might further propose parallels

and lines that make confocal triplets.

•^

11-16

It is remarkable how much can be done with such a line proposer.

In the case of structures made entirely of rectangular solids.

Prof. Manuel Blum showed (Fig. 16) that a remarkable number of

interior edges can be reconstructed just from the outer profile

of the scene.

Fig.16

The numbers of lines proposed by such a scheme can be held

to the order of tens, rather than of thousands. And the

cost of verifying the existence of an edge with a specified

location is enormously smaller than that of finding all such

features independently, because — for the same statistical

confidence — rejecting a particular null-hypothesis is always

much easier than screening all of a large family of possibilities,

The use of proposer-verifier system can thus reduce the total

picture-processing effort by relaxing the tolerances on the

J

11-17

early, brute-force, feature-finding stages. In his forthcoming

thesis, Griffith will give details of a complete system, already

working, that does this. A first stage finds some of the edges

in the scene. Then raw lines are proposed on bases of parallelisms,

region completion, etc., and verified by tne detectors mentioned

earlier.

By using a priori information, one can often get much more out

of a picture than might seem to be in it. Assuming (correctly)

that the sphere in Fig. 17(a) is uniformly colored and that the

light comes from a compact source.

Fig.17a Fig.17b Fig.17c

one of Horn's programs is able to reconstruct the surface by solv-

ing the appropriate differential equations. Then this program

produces the stereoscopic pair of Fig. 17(b), (c). (Some readers

will be able to fuse these by looking at a virtual point beyond

the page.) The sharp shadow detail confirms, with the picture, the

hypothesis of sharp illumination. Horn will present details of this

program in his thesis. The method is quite complementary to stere-

oscopy and focusing need inhomogenous surface detail or discontinuities.

A

11-19

The Vision System

We have discussed Guzi.an's SEE program (Progress Report V);

this program assumes a scene description in terms of edges,

vertices and regions, and produces a proposed assignment

of these features to a set of three-dimensional bodies.

Guzman's thesis describes in detail a more advanced version

of :,nat project. It includes additional heuristics for

linking parts of objects, analysis of the system's be-

havior, discussion of and heuristics for correction of

mistakes because of preo-processor errors, and some

analysis of the system errors due to inherent ambiguities

in ordinary scenes and in a variety of standard "optical

illusion" scenes. Guzman's thesis also includes some

observations about the problem of matching features be-

tween stereo pairs. In particular, the following simple

technique, when it is embedded in a vertical system, will

solve the majority of such problems. Consider two views

of a geometrical scene (Fig. 19). In any stereo pair,

one can dissect the two pictures into sets of matching

line-pairs, defined by the planes through the two eye-

points. Any physical object visible to both eyes will

be sandwiched between the same highest and lowest such

lines, as suggested by Fig. 20. For two different objects,

it is unlikely this will be true by coincidence, especially

'

4>
11-20

Fig.19

if the objects have more than one visible face, since the

sandwich proposition is true also for each face! Thus,

ones enougn point features are identified in the monocular

pictures, one will have little difficulty in matching

them between the pictures, and expensive cross-correlations

should be unnecessary. This matching works well even when

the two viewpoints are far apart,

Fig.20

J

11-22

Fig.22a Fig.22b

Fig.22c

Fig.22d

J

11-23

We now have a complete horizontal system of programs con-

necting BinfOrel's topological p/e-processor with Guzman's

SEC program and on through to Patrick Winston's new system

(described later in the report) that recognizes some

particular types of objects -- e.g., wedges, pyramids,

and rectangular blocks -- and learns to identify some

multi-object structure such as rows, towers and bridges.

Professor Hosakere N. V. Mahabala developed the TOP-

OLOGIST-to-SEE interface. This program, SETUP ("Pre-

processor for Programs Which Recognize Scenes", A.I.

Memo 177) gobbles a list of line segments and produces

a complete topological description of the graph formed

by the lines. Because such features as lines and ver-

tices found by pre-processors have some uncertainty in

location, there are usually serious problems in decid-

ing when two edges are really the same, or in connecting

edges and localizing vertices. SETUP crntains heuristics

for plausible guesses about such matters. All lines are

treated as enclosed within strips of a certain width,

and all problems about closure, intersection, containment,

colinearity, etc., are resolved by procedures that are

based on a single predicate about the orientation of a

point with respect to one of these half-line strips. Al-

though this may not be any better in performance than other

11-24

Z

segment-joining and line-grouping criteria, it is probably

no worse, and Mahabala's system is distinctive in having

greater logical clarity than any other system we have

seen before. It is therefore much more likely to be im-

proved by advances in theory!

Finding the edges themselves is still a problem. When

one knows, a priori, that they are straight, the criteria

Griffith and Herskovits developed are probably adequate

for practical purposes, aid these are further subject to

substantial heuristic speed-up innovations. For the more

general problem of describing an ordered set of points

(such as one obtains as the boundary of a "homogeneous

region") as a curve, we need a systematic way to apply

various kinds of a priori knowledge. At present, we

have a variety of such attempts, such as POLYSEG (Griffith,

A.I. Memo 131), the Greenblatt-Holloway line-finder (A.I.

Memo 101), and three others, by Binford, Greenblatt, and

Jayant M. Shah. Unfortunately, none of these is well

enough understood to be considered theoretically firm.

A variety of other general-purpose curve-segmentation

procedures has been described in the literature. But

no one has really come to grips with the basic problem

of incorporating the relevant a priori information, and

we conclude that this is one of the aspects to be faced

11-25

in designing the vertical vision system,

R. Orban has developed a new program, ERASER, which detects

and removes shadow boundaries from gemoetrical scenes.

ERASER resembles SEE In that it uses the same classifica-

tion of vertex features, but it also uses information about

the relative brightness of regions. Its heuristics are

based largely on the abundance of L, T and X types of

vertices on the boundaries of shadow regions. ERASER is

designed to criticize the output of SETUP, to remove shadow

boundaries, and then to re-submit the result to SETUP

before passing the problem on to SEE. It will not

remove all shadows, but it is conservative about not re-

moving real edges. Examples of ERASER performing well

are given in Fig. 23.

Fig.23

i ,.

11-26

The ERASER system also contains some heuristics that Binford

developed for guessing the direction of illumination; this is

I used to bias the operation of ERASER and is available to the

rest of the system. In geometrical scenes, the system can

measure the angles between real vertical edges and those

shadow boundaries that appear to lie on horizontal surfaces

in order to get a quantitative measure of illumination

angle. As an application of verticality, the operation of

both ERASER and SEE could be enhanced by verifying, at a

higher level, that some of the shadow boundaries lie across

otherwise uniform surfaces (say, by using Perkins's stereo

system) or by verifying, at a lower level, that the proposed

inner shadow boundaries are less than sharp, i.e.. have

penumbras.

Mechanical Structure Analysis of Visual Scenes

Blum and Griffith have written a program that can analyze the

stability of the three-dimensional structure of rectangular

blocks. The program uses this analysis in a planning scheme

to propose the order in which the structure is to be built.

Even in manipulating toy blocks, there are problems; one can

ask which of these structures can be constructed with one

hand.

ü

11-27

Referring to Fig. 24, the one on the left cannot be built,

the program asserts, because there is no stable three-block

sub-part of the structure.

a
□J

=J3
cu

Fig.24

But, with another interpretation of the rules, one could

first assemble the upper three blocks on the floor, then

lift them into position. We expect our more advanced

construction-planning programs to be able to use more ad-

vanced strategies in which sub-assemblies are so identified.

Winston is completing a program that learns to recogni.re types

of structures from sequences of examples. We consider it

to be a major advance in the areas generally known as concept-

formation, or machine-learning. Given a scene (represented

by a collection of regions, as produced at the output of the

SEE program), Winston's program attempts to describe the scene

in terms of elementary objects and already-known sub-structures

and relations, using a descriptive language reminiscent of that

Dr, Thomas G. Evans used (Ref. 2), but Winston's language

is further developed.

•i,

1
11-28

For example, the scene of Fig. 25 leads to a description like

that shown to its right. We tell the program this is a

picture of an ARCH.

Fig.25

Next, we inform it that the picture of Fig. 26 is not-an-

ARCH. The program then proceeds to compile a new description

(of ARCH), as shown to the figure's right.

*:

Fig.26

This new description of ARCH is obtained by comparing the

descriptions of the two scenes, thus providing a second-level

description. The must-not-abut relation is the outstanding

difference it discovers, and it modifies the description of

ARCH to require that the abutting relation not hold between

the two supporting blocks. (Winston's program is equipped

ab intio with heuristics for proposing support and non-sup-

porting coptact.)

11-29

Now, when we give the program the next figure (Fig. 27) as

another example of not-an-ARCH, it again modifies the ARCH

description, this time requiring (rather than just mention-

ing) the supported-by relations.

Fig.27

Again, this change occurs because the change in support

is the most prominent difference the comparison program

found. Finally, we show it one more example of an ARCH,

and it re-compiles a description in which the requirement

that the top-object be a rectangular brick has been re-

moved (Fig. 28).

Fig.28

*t.

11-30

<»

J

There ?re many arbitrary elements in how this program decides

what to do at each step — which differences to give highest

priorities, how to match up different description networks,

what explanations or excuses should be assigned to the dif-

ferences it notices. These commitments are kept on back-up

trees, so that it is possible for the prognm to recover from

at least some disasters. The goal is to obtain behavior that

would be plausible in, if not typical of, a child. The par-

ticular concept that the program develops from a certain

sequence of examples will depend very much on those examples

and on the order in which they are presented ~ as well as

on the connection of concepts the program has already ac-

quired at that time. The experimenter will not always get

the results he wants or expects! We cannot expect the first

real concept-learning programs to be foolproof, any more than

a teacher can expect his favorite instructional technique

always to work; but here at last we have a chance to under-

stand precisely how a training sequence interacts with

built-in and previously acquired ingredients of the system.

Winston's methods are related to earlier ideas like those in

Newell and emphasize the use of explicit descriptions. While

there is some similarity, in strategy, to the Feigenbaum-

Simon EPAM scheme, the result is pointed toward a true struc-

tural network description of the concept. It should there-

fore lend itself better to direct analyses of examples.

11-31

instead of having to work through synthesis by generating

and testing proposed examples.

More generally, having a description (rather than just a test)

for a concept seems absolutely crucial. The advantages include:

1) The possibility of making deductions about the

concept, including its consistency with a proposed

detection scheme

2) Combining several descriptions in non-trivial ways

3) Comparing and contrasting descriptions, as in

Evans's program

4) Using the description to generate, rather than

merely to select, what next to do in a search program.

Similarly, in search processes, one could combine several

descriptions to obtain summaries of the information acquired

in exploring different alternatives. In most earlier heuristic

search schemes, the procedures usually have to abandon almost

all information acquired in the course of unsuccessful explora-

tory attempts because of inadequate descriptive facilities.

The A.I. Group is now committed to a braod attack on the problems

of symbolic learning, through the application of heterological

kinds of knowledge to the analysis of descriptions. An essay

(A.I. Memo 185) gives a preliminary statement of our plans for

this project. i

rf.

11-32

«»
*>

Theorem-Proving

Gerald J. Sussman has implemented a theorem-proving program that

uses the Resolution prirciple with an assortment of retrieval

methods and other heuristics to make deductions in predicate

calculus. Although there has been a number of interesting

results, we nevertheless believe that the use of this technique,

as an approach to artificial intelligence, is receiving much

undue attention today, and we do not plan to give it a large

place in our future activity unless some new and impressive

demonstration of its power comes to light. Sussman has been

experimenting with a variety of means for combining the deductive

strength of predicate-calculus resolution with heuristic flexi-

bility of less formally constrained problem-solving schema,

but his conclusions are not encouraging. An example that puts

one of the problems into a nutshell is this: suppose one is

given

A =^ B and

C —^D, and

(A r=^B) & (C Z^D) Z=>E,

and one wants to deduce the simple conclusion

E.

To be sure, the program manages eventually to obtain E, but only

after many steps of converting the given statements into expanded

"normal" forms that are in themselves rather meaningless.

,.

11-33

This would not be so bad in itself, but it would become an acute

problem if one were to try to give the theorem-prover additional

advice about what to do in other situations, since the kinds of

situations for which we can describe such advice are hard to

represent in terms of the fractured internal expressions the

Resolution system creates for its own use. In another experiment

Sussman modified the representation of this problem so that the

—rsymbols were not recognized by the prover as meaning implies,

and he added a separate set of axioms for using a more natural

deduction method. Now the Resolution system produced a better

proof in less time, even though it had to work indirectly

through the new axioms! No doubt this particular problem

could be ameliorated by some variant of the many combinatorial

schemes that are being widely studied today, but we feel that,

once such systems attempt to solve "real" problems, all such

devices will fail as mere stop-gaps; they do not help one to

come to grips with the construction of the kinds of cognitive

models we think are needed to solve hard problems by using

accumulated knowledge and experience. Sussman's system takes

some steps in this direction by maintaining its statements in

a structure partially ordered by the substitution-instance

relation. Nor is his system restricted to first-order pred-

icate calculus. But our gloomy expectations remain. In-

cidentally, we do not feel that completeness, or even con-

sistency, is of very large importance. Logical completeness

I

11-34

I is more or less inevitable in any system that knows a great

deal, and consistency is not a notable feature in the intelligent

I machines that already exist. (The backers of the Resolution

method achieve the wrong kind of completeness; the kind of

completeness we need is for the problem-solver to be able to

use any "natural" technique.)

At perhaps another extreme. Carl E. Hewitt Is developing a

language for constructing deductive systems with the utmost

heuristic flexibility. His language. PLANNER, is designed to

allow use of knowledge and types of representations of great

variability. PLANNER must be one of the least procedural

languages: to a large extent, one can specify what one wants

done rather than how to do it. Consider, for example, a

statement of the form "A implies B". As it stands, it is a

simple declarative statement. But in PLANNER it can instead

be interpreted as the imperative: "set up a procedure that will

see if A is ever asserted, and if this happens assert B also."

Or. it can be interpreted: "set up a procedure that will see

if B is ever desired as a goal, and if so assert A as a new

sub-goal to be deduced." This is only the skeleton of the

idea: PLANNER contains machinery for easy manipulation of

many different roles of declaratives, imperatives, goals and

deductions. In attempting a particular deduction, for example,

programs can specify suggestions for other theorems that should

be used (and even in what order) to make the deduction. All

11-35

Statements are expressed in a powerful new pattern-matching

language, MATCHLESS, in which control of procedures is

specified in terms of the forms of assertions, rather than

in terms of particular assertions.

Because problem-solving often requires building up elaborate

temporary structures, PLANNER has machinery for handling

statements that were once true in a model which may no longer

be true after actions have been performed, and for drawing

conclusions that may have to be deduced from such a change.

Control of such matters is specified In terms of local states,

to which are bound information about changes in the data

base — erasures, assertions, new definitions, etc. — since

the data were last updated.

Hewitt describes his system qualitatively in a conference paper

and in detail in A.I. Memo 168. He has now implemented the

language and is programming a compiler to obtain sufficient

speed to permit full-scale experiments. At present, he is using

it to study deductions about the manipulations of objects by

a robot, as in "pick up all pairs of cubes that are the same

color, with one cube on top of a third cube that is in front of

the other." Terry A. Winograd is completing a system that will

translate such natural English statements into PLANNER assertions

and theorems.

11-36

Natural Language Systems

Winograd is completing a system for handling problems of

computer understanding of natural language. The system is

designed to accept information in normal English sentences,

to answer questions, and to execute commands, using semantic

information context to understand pronoun references and to

disambiguate gramatlcally complicated texts. To do this,

Winograd uses a new linguistic scheme, based partly on

the systemic grammar described in Halliday (1967) and in

Winograd (1968) and partly on a special representation

for both the grammar and the semantics. In previous attacks

on such problems, some workers have used heuristic tricks

-- key words or matching of phrase fragments -- or they have

used non-heuristic formal grammars to do a detailed analysis

of the sentence to which the semantics are to be applied.

Winograd's system is based on a heuristic grammar that uses

contextual information in analyzing the sentence, carrying

out the semantic analysis concurrently; this is made possible

by representing the grammar as a program instead of as a

set of static rules.

■« r

11-37

Definitions of wordc, as well as the system's knowledge about

things, are also stored as programs and are available to a

deductive part of the system. This allows much more flexibility

than one gets naturally from networks or rule-lists. The program

can make long, complex deductions in answering questions or in

absorbing new information.

Tne grammatical part of the system is operating, with a quite

comprehensive English grammar (for a description, see Winograd,

"PROGRAMMAR, A Language for Writing Grammars", A.I. Memo 181).

The semantic programs are still in preparation, to be combined

with the deductive system, which will use Hewitt's PLANNER

language. The entire system could be used for a general question-

answering facility for any corpus of knowledge programmed into

the deductive system. The first applications will probably be

concerned with instructing a robot and with analysis of children's

stories at the first-grade levels.

Loosely Stated Mathematical Problems

Several years ago, Daniel G. Bobrow completed a program that was

able to solve some algebra problems stated in ordinary English.

The mathematical material was rather sharply restricted to

converting the sentences into simultaneous linear equations.

Recently, Eugene Charm"ak has completed a new program that can

solve some problems like this, stated in imprecise English:

-i,

11-38

4k
A train, starting at 11:00 a.m.. travels east at 45
miles per hour while another, starting at noon from the
same point, travels south at 60 miles per hour How
fast are they separating at 3:00 p.m.?

Solution of this problem requires a number of intellectual

skills. Among these are, of course, the ability to manipulate

the English text to derive a well-formulated symbolic problem.

and knowledge of elementary calculus necessary to solve the

symbolic problem. Perhaps less obvious, but equally important.

is access to miscellaneous knowledge about the real world: for

example, the knowledge that east and south are orthogonal

directions, and eno-igh knowledge about time to deduce that 3:00

p.m. is four hours later than 11:00 a.m.

Fig.29

VALUE, u muKB vmm-cvrmTMK DiMrri^, MQT VAU^TTTN. q

VALUgi 15 Hnires

VALUE: 1^ HOims WHEK-COKDI

VALUE! 15 HOURS

f" T0 MBECT10N; snimi VALUET il, Q H/\

.~. ... -■' " "°UI"; SAME .loiNT

charniak s system. CARPS (CAlculus RAte Problem Solver) (TR-51,

App. B). translates this problem into an internal representation

of which a general impression can be gleaned from Fig. 29. This

structure indicates two objects. TRAIN and ANOTHER. Associated

with each is a velocity given as direction and magnitude, a TIME

that has a starting value for each train and a WHEN-C0NDITI0N.

The latter refers to the fact that most calculus "rate problems"

ask questions roughly of the form. "What is A when B?"; in our

case, we obtain, "What is the speed at which the trains are

separating when the time is 3:00 p.m.?"

11-39

CARPS uses this information structure to formulate an algebraic

manipulation problem. HOW FAST and SEPARATING indicate that what

is desired is the rate of change of the distance between the two

objects. The distance is the hypotenuse of a right triangle with

legs toward -AST and SOUTH. The lengths of the legs are obtained

by multiplying the rate of travel by the time. The expression

for the derivative is therefore

d
dt V {45[t-ll])2 + (60 [t-12])2

The desired value is at 3:00 p.m. (our WHEN-CONDITION). The

derivative is found by algebraic manipulation, and the program

then types

THE ANSWER IS 72.246 MILES/HOUR.

For its algebraic operations, CARPS uses parts of the MATHLAB

programs described elsewhere in this report. CARPS has been used

to solve other problems taken verbatim from calculus textbooks.

These problems deal with cones, spheres and shadows as well as

distances. In each case, the program was given sufficient

knowledge to parse the sentences, set up an internal structure,

and generate the equations.

We do not wish to imply that the program is very strong at

solving calculus problems. Frequently, a problem cannot be

solved because the program is unable to handle the syntax used,

no method of solution is known to the program, or the problem

requires facts about the real world which the program does not

know or could not handle.

...

-. r

2

11-40

An example of the last dif:iculty arisen in:

A ladder 20 feet lone leans against a house. Find the
rate at which the too of the ladder is moving downward
if its foot is 12 ff.et from the house and moving away
aL the rate of 2 feet per second.

Most adults havt little difficulty in visualizing the situation

aescribed in this problem. CARPS is stuck because it does not

know in which direction the foot of the ladder is moving. The

phrase MOVING AWAY is interpreted by oeople to rwan "moving away

along the horizontal ground on which the foot of the ladder is

presumed to rest." CARPS, however, does not realize that.

Clearly, CARPS's lack of such real-world knowledge cannot be

circumvented or ignored. A crucial rdrt of research towards

problem-solving ability of thib snrt is concerned with the

representation and use of such knowledge.

We have discussed (AI Memo 185) preliminary studies attempting to

analyze the sorts of knowledge used by a first-grade child in

understanding children's stories. Much of th? calculus student's

"general knowledge" is already structured at the

elementary-school level, and we feel that progress in this area

is essential to the future development of anything like "general

intelligence". We have decided to make th s area a very large

part of our work in the next few years.

I
:

i

11-41

MATHLAB

MATHLAB is an interactive computer-program system that is

being developed to facilitate creative work that involvas ex-

tensive manipulation of symbolic algebraic expressions. MATH-

LAB is intended to be of help to research mathematicians and

to appliers of mathematics engaged in "heavy manipulative work."

In the MATHLAB project, therefore, serious attention has been

paid to human engineering and to efficiency and speed of opera-

tion as well as to basic mathematical problems and to the problem

of programming the computer to exercise initiative and some

judgment in selecting and carrying out transformations of al-

gebraic expressions.

MATHLAB is our best illustration of the idea of building

"knowledge" into computer programs. The MATHLAB programs are

actually quite capable in solving certain nontrivial mathe-

matical problems. The essential idea, however, is to include

provisions for interaction with that knowledge so that the user

can build and administer complex but well-understood procedures.

At best, the user and the programs supplement and reinforce

one another and march rapidly through symbolic-manipulation

problems that would take the unaided mathematician countless

hours.

This last year, a new and much advanced MATHLAB was planned

and partly implemented. Progress was made on faster parsing

algorithms and on a representation of polynomials that speeds

up addition and multiplication. At the same time, a significant

advance in programmed symbolic integration was achieved by

m

11-42

implementing a decision procedure, due to Risch, for expressions

involving rational functions, logarithms, and exponentials.

Also this last year, an extension of MATHLAB to handle special

functions defined as integrals has enabled Moses to verify or

correct some published tables of integrals. In 1958,

W.D. Maurer of the Argonne National Laboratory compiled a table

of 150 integrals involving the error function, erf(s). Maurer

was unable to verify, by hand, the following integral, which he

included in the compilation with a note to that effect. In

fact, it was slightly incorrect as printed:

\x2erf(ax + b)ep,xdx = 1 erf{ax + b)epx(2 - 2px + p2x2)
J P3

+ pax - pb + p2/2a - 2a e-(ax+b)2+px
a2p2/7T

. Ei/a - 4p3b + 4abV - Zap? * ^ t ^ ^^ . b) + b

Aa^p 2a/

Moses' program was able to find the error.

Here is an example of factorization of a polynomial:

W x**6 " ! = 0 (typed in)

(2) x6- 1 = 0 (MATHLAB's response)

In line 1 the user typed an equation. (The syntax is awkward

because the typewriter is a one-dimensional device.) Line 2

shows the computer's response displayed in the conventional

«# two-dimensional syntax of mathematics.

•*■■*

11-43

(3) 'PF('WS) (input)

(4) (x-l)(x+l)(x2+x+l)(x2-x+l) (response)

In line 3 the user asked the system to factor the equation in

line 2 by requesting the operation PF (Polynomial Factorization)

to be applied to the WS (Work Space). The Work Space is always

the last expression known to the system. In the response given

in line 4, the quadratics are not fully factored because the

program is restricted to finding the smallest factors which have

integer coefficients.

Next we shall ask the system to integrate an expression,

differentiate the result, and then check to see whether or not

the result is identical with the original expression.

(5) l/(x**3 + A*x**2 + x) (input)

(6) -^ 5 (response)
x^ + Ax^ + x

(7) 'integrateCWS, x) (input)

(8) IS THE EXPRESSION

A2 - 4

to be considered positive, negative or zero (response)

(9) NEGATIVE (input)

The computer wants to avoid terms in the integral which have

complex values, if possible. This is the reason for the

question posed in line 8. Line 9 is the user's response,

and line 10 is the integral. Obtaining the result involves

use of a subsystem for handling partial fraction decompositions

and one for integration of rational functions:

*

11-44

^ *•

(10) - 1/2 log(xZ + Ax + 1)

"M arctan 2x + ? + log(x)
sqrt(-A£+4) sqrt(-AN-4)

We shall now differentiate the integral.

(11) 'DERIVCWS, x) (inpUt)

(12)
' - 2A , -1/212X+A1 , 1

(%^-+l)(-A2
+4) ^+xA+1 X

-A^+4

, ;

Well, the result is certainly not identical to our original

expression (line 6). This is because the differentiation

program differentiates a sum term-by-term without combining

the results. (Note that the log x term in line 10 gave rise

to the term in line 12.) To our rescue comes a simplification

program RATSIMP (RATional SIMPlification) which will expand

denominators and combine the entire result into a single

fraction. This fraction is simplified by removing the greatest

common divisor of the numerator and denominator.

(13) 'RATSIMPCWS.x)

(14) 1
3 ? xJ + Ax^ + x

(input)

(response)

Here is another integration probl em:

(15) x**3/(l - x**2)**(3/2)

x3 (16) x3
(input)

(response)

11-45

(17) 'integrate('WS, x) (input)

(18) sqrt(-x2 + 1) + 1—— (response)
sqrtt-x^ + 1)

Note the system's preference for -x2 + i over the more conven-

tional 1 - x . Mathematicians tend to obey the rule: If a

sum of two terms contains a positive term and a negative term,

write the positive term first. Graphic heuristics of this sort

are now included in Martin's more sophisticated display routines

(19) (2*x**6+5*x**4+x**3+4*x**2+l)/(x**2+l)**2*e**x**2

(input)

(20) 2x6 + 5x4 + x3 + 4x2 M x2 , .
 5 5 e (response)

(x^ + IT

(21) 'integrate('WS, x) (input)

(22) 2x + 2x3 + 1 „x2 , v _ e (response)
2x2 + 2

These results depend on a powerful pattern-matching program

for algebraic expressions.

This example points clearly the need for a better way to enter

mathematical expressions into the system. Methods which allow

users to hand-write algebraic expressions, using a pen-like

device, are now close to the step of useful application.

The following example shows the system solving a linear differ-

ential equation with constant coefficients, a problem-type of

great interest to electrical engineers.

(23) DERIV(y,x,3) + A*DERIV(y,x) = sin(2*x)
(input)

11-46

(24) ^Ag^ =sin(2x)
Dxv Dx

(25) 'LDESOLVECWS, y, x)

(26) NEED INITIAL CONDITIONS

(response)

(input)

(response)

The program allows one either to enter specific initial values

for Y(0), Y'fa), and Y"(0) or to leave them as indeterminates

(as is done below).

(input) (27) ALLFORMAL

(28) IS THE EXPRESSION

A

TO BE CONSIDERED POSITIVE, NEGATIVE OR ZERO

(response)

As before, the answer to this question will be used to generate

an answer which contains no complex terms.

(29) POSITIVE

(30) 2Y(0) + 2^(0) + 1
2A

(input)

x,-Y"(Q)A + 4Y"(0) + 2 , t,ft. . + 2 cos(sqrt(A)x)
4A

+ v>(n) sin(sqrt(A)x) -1 ,„ . + Y (0) sqrt(A) + WT-Q cos(2x)
(response)

The solution is obtained with the help of a subsystem that takes

Laplace transforms of both sides and obtains the inverse

Laplace transform of their ratio, using the package for integrating

11-47

rational functions.

Hierarchical organizations such as MATHLAB's will become increas-

ingly popular as programs and systems get more complex and

sophisticated. While this system is ostensibly working at the

higher levels of the hierarchy, it is actually spending most of

its time at the lower supporting levels. Probably, over half

the routines of its more than 60,000 words of memory are being

utilized in solving a differential equation. This should serve

as a warning to designers of time-sharing systems who would prefer

that programs limit their use of memory.

The field of computer-aided instruction (CAI) has not progressed

to the extent that many have wished. Teaching programs are

unable to answer questions other than those which the designer

had foreseen -- not only because these programs do not know

enough English to understand the question, but basically because

they do not at all understand the field about which they are

supposed to teach. The designer of the usual kind of CAI course

writes a script which is controlled by a context-independent

interpreter. The script designer must provide for many possi-

bilities at each step because he cannot rely on the interpreter

of the script to know anything about the field with which the

script deals. If a student is allowed, as he rarely is, a rea-

sonable flexibility in replying to the program, then either the

script designer is physically exhausted from considering all the

5*l«s ,„;

,

■

11-48

Plausible replies, or he misses considering many such replies.

We contend that a primary step in writing a sophisticated teach-

ing program should be the education of the program in the area

about which it must teach.

- ■ .

^

11-49

Consider, for example, the problem of writing a program for

the teaching of freshman calculus techniques for differentia-

tion and integration. Using the knowledge of these techniques

that is imbedded in the MATHLAB system, it would be possible

to write teaching programs that check the steps of a student's

calculation, advising him of errors as he progressed. A pre-

liminary program with these facilities has been prepared.

Such a program could also be capable of performing differ-

entiation or integration problems suggested by the students,

explaining its steps as it proceeded. To achieve such

capabilities through the writing of mindless scripts is

unthinkable. To be sure, the experiments with the Calculus

Rate Problem Solver (CARPS) have shown that a great deal more

must be known before such programs can deal effectively with

human beings in a wide area of knowledge.

The task of finding out what human users know is clearly

related to the tasks of workers in the field of linguistics,

psychology, and philosophy. A major failing, however, in

the education given in those traditional disciplines is the

lack of understanding of the concept of an algorithm or

process. We beli .'ve that advances in our understanding of

human knowledge as algorithmic processes are likely to be of

supreme importance.

/

11-50

During the latter part of the proposal period, MATHLAB will

interact strongly with the planned work in computer graphics.

Although the most essential part of MATHLAB is conceptual and

the next most essential is the programming of symbolic trans-

formations, the interface with the user is very important,

and we look forward to giving MATHLAB every advantage of

effective man-computer-interaction techniques.

Chess

MACHAC-VI, a chess program developed by Richard D. Greenblatt

for the PDP-6 computer, was begun in November 1966. It en-

tered its first tournament the following January. Since then,

it has participated in four more official U.S. Chess Federa-

tion tournaments and has achieved an official rating of 1528.

In its last tournament, it had a performance rating of 1720

and drew an 1880 player. These statistics put it a little

more than one standard deviation below the mean strength of

all U.S. tournament player- (which is about 1880). The

machine has played perhaps 2000 games against chess players

of every strength. It wins about 86 per cent of its games

against tournament players. Greenblatt estimates that it

represents a programming effort of about six man-months.

Once the basic program was completed, the first step in

refining its play was to give it a model of the flow of

power on the chess board. Next, it was given explicit

11-51

techniques for pins and discoveries; then it was given positional

and pawn structure considerations. These and other features

are largely completed now.

The next major step, only partially implemented now, will be

to incorporate symbolic reasoning ability into the program.

The opponent's threats are specifically identified, and each

reply is evaluated for its ability to answer some or all of

the threats. This does not mean that the opponent's threats

were ignored before; but now the program proceeds with a more

explicit sense of what it is doing, whereas in the classical

minimax strategy the threats are implicit and therefore cannot

be subject to symbolic statements of what to do. The explicit

system should be much more efficient.

Another new feature, already implemented, adapts the

plausible-move system to recognized states of the game:

if one side appears to be ahead in the look-ahead analysis,

it will prefer holding, trading and simplifying moves; the

other side will require positive, attacking moves that might

yield tangible gain. These and other features are operational,

but the other programs have not been modified to take as much

advantage of them as they probably could.

Another class of improvements is planned which will includo

real symbolic learning rather than mere tuning-up. We expect

that these, with improvements in end-game strategy, will result *••

in a substantial increase in strength of play.

A' .

11-52

t
Eye-Tracking

The much-used term "man-machine interaction" usually refers to

situations in which the communication relationship is exceedingly

lopsided. Man can see, hear and touch the computer in many ways

and places, but the machine is restricted to receiving informa-

tion through a narrow bottleneck -- usually a Teletype. We have

been interested for a long time in redressing this imbalance.

This year we were able to achieve an old goal of enabling the

machine to look at a person. More precisely: the machine looks

at the man's eyes to determine his point of fixation.

Recording eye movements- is a well-established technique in the

study of perception, tracking skills, and even problem-solving

behavior. But traditional methods give the pattern of eye

movement only after analysis. We believe our system, which

incorporates an eye-tracking device developed by J. Merchant

of Honeywell under NASA contract, is the first that enables

a computer to use the information in real time. As an example

of its uses, Samuel L. Geffner has two programs that display

text for a subject (such as a small child) to read and take

action related to the word currently fixated. One of the pro-

grams causes the word to be pronounced by the computer; the

other causes the word to be replace, in the display, by its

translation into anothe." language. These programs are mere

demonstrations -- but they illustrate rich applications to

teaching and other interactive situations. We are pursuing

such applications, partly with support from NASA.

-.

11-53

The A.I. Time-Sharing System

The experimental work of the Artificial Intelligence Group re-

quies a high level of computer service for a limited number of

users. Our system is based on time-sharing'a two-processor

machine (PDP-6 and PDP-10) with a core memory of 218 words of

36 bits. Normally, the programs of the active users remain in

fast memory; this limits the number of users now, but a paging

device to be completed early in 1970 should allow some expansion

required by the maturation of certain projects, notably MATHLAB.

The special requirements of the project led to a time-sharing

system with enough novel features to merit discussion. Donald

E. Eastlake describes the system in detail ("ITS 1.5 Reference

Manual", A.I. Memo 161a). Besides the usual kinds of input-

output and system calls, there are a number of special calls to

reduce overhead and to facilitate real-time control. These

include programs for operating the mechanical hands and com-

puter eyes and other special remote-control devices. All

ordinary time-shared programs run in one of the processors,

and critical real-time processes are assigned, by user calls,

to the other. The real-time processor is normally assigned

to a single user at a time.

Because all user programs ordinarily reside in core, it is

possible to switch between programs with great rapidity. Quanta

of user time are short enough to allow program response to single

11-54

typed characters without noticeable delays. When swapping is

introduced, we expect it to affect only semi-dormant users

A user may have many jobs running "simultaneously". Each user

commands a tree of procedures; each can create and control sub-

ordinate procedures; all have equal access to external devices

and files. The top procedure, loaded automatically when the user

declares his existence, contains a version of the well-known

DDT debugging system. A special character allows transfer to

the top procedure from any level, so that the user is automatically

in position to use DDT's interrogation, breakpoint, and other

debugging features.

Input-output devices are referenced symbolically and data can be

transferred on character, word or block bases; an entire video

image can be acquired by a system call while the calling pro-

cedure continues without waiting. User programs need no

buffers in their own core images. Line-printer requests, for

example, are buffered until the device is free. User programs

communicate by "software interrupts" that are treated the same

as hardware interrupts; superior procedures can store and re-

trieve words in inferior procedures as though they were 1/0

devices; buffered communication is provided so that pairs of

procedures can treat each other as input devices. The file

system resembles the CTSS file system.

11-55

The schedule algorithm tries first to equalize time between

users, and second to equalize times between the procedures of

a single user tree. A special procedure always runs which per-

forms various jobs and can check constant portions of the

system against a copy in an attempt to detect some forms of

hardware or system failure.

The secondary storage uses IBM 2311 discs and DEC microtape

drives which are file-structured in the same way. Users can

establish symbolic links between file directories so that files

can be shared by many programs and many users; these links can

be chained.

The system has several operating stations. These include four

text-display devices, several Teletypes and external telephone

lines, a main console with DEC 340 display and several slave

monitors around the laboratory, and a special console with

controls for operating the eye-hand system. The system in-

terfaces with a radio transmitter for inexpensive long-distance

remote experiments.

A multiplexed digital-analog system operates either in word

or block mode, on call or automatically, as requested. Any

number of users may simultaneously have analog access on

different channels in different modes. These are some of the

real-time facilities:

#1

11-56

1) Iris, focus, stereo mirror, for high-resolution image

dissector

2) Pan, tilt, zoom, focus, iris, for small, low-resolution

image dissector

3) Extend, tilt, rotate, grasp, finger curl, for hand MA-3

4) Extend, tilt, rotate, grasp, for hand MA-2

5) Roll, yaw, horizontal, vertical, swing, for arm MA-2

6) Position for tactile-sensor device

7) X, Y, Z, rotate for arm MA-3.

For moving the arms, special system calls provide acceleration-

and velocity-limiting, software limit stops and other performance

limits. To prevent disaster, certain motion commands are un-

interruptable for limited times, and an arm-moving call is

illegal if the device is under control of another user. Motion

calls are not automatically buffered like those to the line

printer! Although one can read any input channel at any time,

most mechanical devices can be operated at leisurely speeds,

with the input multiplexer channels read automatically. The

system normally does this at a minimum of 50 times per second.

On the input side are sensors for all mechanical degrees of

freedom, including hands and arms and optical parameters.

There is a test stand for calibrating the positional control

of the arms, and there is a variety of portable remote-control

boxes with switches and continuous-adjustment knobs. A special

system call gives the user great flexibility in real-time control

11-57

of program parameters. It connects potentiometers (through" the

input multiplexer) to arbitrary program variables -- i.e., memory

registers — and these can be specified to be fixed or floating,

or arbitrary bytes. There are options for assigning absolute

or incremental meanings to knob positions; in the incremental mode,

there is a programmed velocity-dependent gain and a side-to-side

hysteresis so that it is easy to make fine and coarse adjustments

with the same control, and it tends to remain centered in its

motion range.

The system contains good facilities for graphic display, which

are presently limited to one user. Growing needs dictate

acquisition of multiple-display hardware.

LISP (MACLISP)

LISP is the high-level language the Artificial Intelligence Group

uses. Our LISP version is different in many ways from other

LISPs, and some of these differences represent progress. The

details are of interest only to specialists, who may consult

the memo by Jon L. White ("Time-Sharing LISP for the PDP-6",

A.I. Memo 157). The system does not use an A-list for ordinary

variable bindings; it uses a value property; a special stack

is used to unbind after lambda conversions. There are many small

improvements in human engineering such as default values of

non-specified function arguments. The garbage collector manages

»»■■■••-»■«' -

■••

11-58

■ *

space for arrays. The READ program allows new character-handling

facilities and macro definitions of certain kinds. There is a

variety of powerful editing facilities and display packages, and

some strong debugging systems. The machine-language feature.

LAP. has been strengthened. Whitfield Diffie has restructured

the compiler to make the most of its decisions by dispatching on

tables so the users can introduce special forms by giving the

compiler instructions through the table entries. It would

be more efficient if the compiler were able to make a deeper and

more systematic analysis of the uses of expressions being com-

piled, separating executions for value from those for effect

on flow of control, for side effprt? ot^ n^ * , «ui äiue errects. etc.. and for recognition

of unnecessary recursion and similar simplifications. This

itself is a problem in artificial intelligence.

j Motivated by MATHLAB and other projects, we are now making an

: effort to introduce facilities for very fast arithmetic into

LISP. We expect that the resultinn system will be almost as

j efficient at number-crunching computation as is any conventional

algorithmic language.

Mechanical Hands and Arms

The project has developed several mechanical effector devices

for computer-controlled manipulation. This field is still

-. substantially unexplored, and our work can be considered only

J to clarify some of the problems, not to solve many. There are

■ ..■.-..;:,-. - . ■

11-59

problems in several different areas.

There is a need for much deeper analysis of what is needed in

designing a hand-arm system for various kinds of jobs. In his

thesis, David L. Waltz studies motions the human hand uses

to perform several basic tool-handling and similar tasks, to

see which of the degrees of freedom of the hand were most

essential, and how they were sequenced. There is some in-

formation about this in the orthopedic literature, but it

is not sufficiently structured to serve as a base for programs.

One needs to describe actions in terms of interactions of

position, force, velocity and sensory responses -- in short,

one needs something like a programming language for it. We

also examined some choreographic languages but, although they

c.ftain some good ideas about path-of-motion description, they

do not have sensory-interaction predicates. Waltz developed

some notation that seems helpful and Ernst's discussion is

still relevant. Waltz's thesis shows how a few degrees of

freedom can accomplish much, but one wishes there were much

more known about this subject.

In most of our experimental work, we have employed a modified

AMF Versatran industrial manipulator arm (which operates in

cylindrical-polar coordinates). Although the hands we attached

to this device have some extra motions, the large-scale motion

of that type of arm has no such redundancy; thus there is

basically only one way to reach each point in space. Calculat-

ing this is straightforward, solving a not-too-complicated

...

11-60

equation that has only one solution.

Because this is a v^ry clumsy device — such an arm is unable

to reach around obstacles or even to support an unobstructed

object from an arbitrary direction — we developed a much more

mobile arm with many extra degrees of freedom. The new arm be-

haves more like a tentacle than like a coordinate system. Hy-

draulically operated, it is relatively slim and has five articu-

lations, each with two degrees of freedom, a shoulder, three

elbows and a wrist. An articulated prototype shows clearly that

this geometry is adequate for everything a human arm can do and

more. In the actual hardware mechanism, each of the eight in-

terior hinge joints has approximately 110 degrees of flexion.

We conclude that this is inadequate; it must be more nearly 180.

The lesson we learned is that in a minimal system a small angular

restriction means only that the work space is somewhat reduced.

But, in a linkage whose purpose is a great, variety of ways to

reach points in the work space, all restrictions interact in

messy ways to break up the higher-dimensional mobility space

into hard-to-understand fragments, so that two slightly dif-

ferent three-dimensional positions may have to be reached (if

at all) by grossly different global arm configurations. For

such a mechanism with 10 degrees of freedom for reaching points

In only three dimensions, there is a mathematical problem of

inverting the position equations. One can sometimes get by

11-61

with simple hill-climbing by successive approximations, but

this is really unsatisfactory because it is hard to adjoin global

information, and it does not give an analytic picture of the al-

ternative solutions to the problem. Jacques-Yves Gresser, in

his thesis discusses a method that gives a solution specific to

our arm-mechanism, using a rather general method of dividing the

position problem into a series of almost-independent factor

sub-problems. What Gresser does is to divide the arm in half,

and describe the mobility space of e^ch half, using simplifying

approximations for each side. When the half-solutions are put

together, there ■ needs to be an accuracy-increasing iteration

anyway, so there is hardly any real loss through approximating.

Now, in our arm-mechanism, it happens that the mobility zones of

the half-arms can be described in terms understandable to humans

-- for this particular arm, each zone resembles a portion of a

torus. To find the ways to get the whole arm to a certain space

position, one describes the intersection of the two tori, one

centered at the shoulder position and the other the goal

position. Each intersection point yields an approximate

solution to the problem (that is, a possible location of the

center of the arm), and a higher-level program could be asked

which solution is most desirable.

There is a larger problem here: how should one represent a

11-62

* 0

machine's body image? For the problem of a single, nut-too-

complicated arm, one can doubtless get by with cleverely coded,

sparse, three-dimensional arrays, but one would like something

more symbolic. And one wonders what happens in the nervous

system; we have not seen anything that might be considered to be

a serious theory. Consider that a normal human can place an

object on a table, turn about and make a gross change in his

position and posture, and then reach out and grasp within one

or two inches of the object, all with his eyes closed! It

seems unlikely that his cerebellum could perform the appropriate

vector calculations to do this; it is not a mere matrix inver-

sion (and, even if it were, one would still need a theory).

We would presume that this complex motor activity is made up,

somehow, of a large library of stereotypical programs, with

some heuristic interpolation scheme that fits the required

action to some collection of reasonably similar stored actions.

But we have found nowhere any serious proposal about neurological

mechanisms for this, and one can only hope that some plausible

ideas will come out of robotics research itrelf. Unfortunately,

at present this area is somewhat dormant.

Another conclusion from our experiments is that delicate manipu-

lations must be controlled by application of controlled forces

(rather than by direct position control), with attention to

matching velocities with inertias. For measuring the forces

Uz on a mechanical hand, we have taken two approaches. First, it is

11-63

quite feasible to engineer a grasping surface with good pressure

sensitivity at a great many points by wrapping a coaxial cable

connected to a Time-Domain Reflectometer. (A TDR is a sort of

radar system designed to measure reflected radio waves that are

produced in a soft-sheathed tube, by any deformations of the wall.

The instrument permits hundreds of thousands of points, using a

single electrical connection to the hand. (Waltz describes chis

system in his thesis.) Second, we have developed a strain-guage

telemetered wrist that provides force information in the necessary

six degrees of freedom. This little instrument is able to tell

where and in what direction the hand is being pushed, assuming

that the force is being applied at a single point - a condition

JthajLusuaU^ holds in a first contact with an object.

Solution of the appropriate moment equations for the set of six

forces at the wrist (Fig. 30) yields a certain line in three-

dimensional space, along which a force of a certain magnitude is

applied. If the machine knows the geometry of its hand, it can

presume that the force is applied where this line intersects the

hand.

Fig. 30

' ^

A

11-64

t

' v

0

We have built this hand and are testing it. We shall describe it

in a memo by Callahan, Shah and Minsky.

Computer Eyes

A computer must have eyes if it is to see. When the project

started, no device was avaiable for interfacing a computer with

a real-time camera, although there were film-reading devices on

the market. We first used a Vidicon television camera, but we

had difficulties with the limited signal-to-noise quality of

the Vidicon. Besides. Vidicons are not suitably adaptable to

random-access scanning, they have motion persistence and other

problems. We decided that this added up to too many obstacles.

The image-dissector camera offered much cleaner images (at the

expense of sensitivity, which, for laboratory purposes, was

unimportant) so. in collaboration with Information International.

Inc.. we designed and constructed our present camera system.

An image dissector is essentially an inverted cathode-ray tube:

an image projected on a photo-cathode produces electrons which

are focused through a deflection system so that the current from

a selected image point falls through a small hole and is then

measured.

In such a system, the signal-to-noise ratio depends essentially

on the number of electrons, and one can obtain more precision at

the price of longer time-exposures. We decided to put this

signal-to-noise ratio under direct program control and to make

■

11-65

it independent of the brightness of the point being measured.

This is built into the camera's video processor. Horn gives the

4e£ai]sJ"The Image Dissector 'Eyes'", A.I. Memo 178).. If the

constant signal-to-noise constraint were enforced even on very

dim points, the exposure times would become excessive, so the

system has also a dark cut-off parameter that terminates the

measurement very early if an initial estimate of the brightness

falls below a specified value. This is also built in the video

hardware. The resulting system can measure intensity over a

4096:1 dynamic range, with a brightness-discrimination sensitivity

of one part in 64 throughout this range. The output appears

as a floating point number or as a logarithm of intensity. The

eye has also a reference-brightness input that can be used to

make the measurements almost independent of over-all illumination

fluctuations, and there are various protective devices to prevent

damage to the image tube by excessively bright light sources.

Horn's report discusses many advantages and pitfalls in using

this system; anyone contemplating using image dissectors for

computer vision should correspond with us about the results of

some modifications now under construction.

It is frequently suggested that one ought to build various forms

of parallel-processing artificial retinas, perhaps along the

lines of biological systems. But the operations of the vertebrate

retina and the subsequent image processing is not nearly so well

■

■ . _.. ._ _ ..

11-66

understood as is generally believed, and we do not think

the time is quite ripe for taking such a step in hardware.

In our present operations, the computation time consumed in

the higher levels of scene-analysis is comparable to that spent

in the lower-level pre-processing, so at present there would

be no large time factor to be gained from fast parallel hard-

ware - even if we were able to decide how it should work.

References

Lawrence G. Roberts, Machine Perception of Three-
Dimensional Solids, Department of Electrical
Engineering, M.I.T., Ph.D. Thesis, May 1963.

Thomas G. Evans, "A Program for the Solution of
Geometric-Analogy Intelligence Test Questions",
Semantic Information Processing, M.I.T. Press
(Cambridge) 1968, pp. 271-353.

A. Newell, "Learning, Generality and Problem Solving",
Tnformation Processing 1962, IFIP Congress
1962, North Holland Publishing Co. (Amsterdam)
1963, pp. 407-412.

Edward A. Feigenbaum, "The Simulation of Verbal
Learning Behavior", Computers and Thought,
McGraw-Hill Book Co,, (New York) 1963,
pp. 297-309.

Carl E. Hewitt, "PLANNER: A Language for Proving
Theorems and Manipulating Models in a Robot",
Proc. Int'l. Joint Conf. on Artificial In-
telligence, ACM, May 1969.

M. A. K. Halliday, "Some Notes on 'Deep' Grammar",
J. Linguistics. 3, 1967.

Terry A. Winograd, "Linguistics and the Computer
Analysis of Tonal Harmony", J. Music Theory.
I £ * I Jrüö •

'J

11-67

Joel Moses, C. Engelman, and William A. Martin,
"The Hierarchical Organization of an
Algebraic Manipulation System", Proc.
Conf. on Language and Society, Olivetti,
Milan, 1968.

R. Anderson, "Syntax-Directed Recognition of
Hand-Printed Two-Dimensional Mathematics",
Ph.D. Thesis, Division of Engineering and
Applied Physics, Applied Math, Harvard
University, Cambridge, Mass., Jan. 1968.

Eugene Charniak, Proc. International Joint Conference
on Artificial Intelligence, ACM, pp.303-316, May 1969,

Marvin Minsky, "Limitations of Language", Proc.
Conf. on Language and Society, Olivetti,
Milan, 1968.

H.A. Ernst, MH-1, A Computer-Operated Mechanical
Hand, Department of Electrical Engineering,
M.I.T., Ph.D. Thesis, December 1961.

Some Relevant

Internal Memos

of the

Artificial Intelligence Group

101 SIDES 21. Richard Greenblatt, Jack Holloway; described by
Donald Sordillo, August 1966, MAC-M-320.

123 Computer Tracking of Eye Motions. Marvin Minsky, Seymour
Papert, March 1967 ;.ision).

131 POLYSEG, Arnold Griffith, April 1967 (Vision).

140 Perceptrons and Pattern Recognition. Marvin Minsky, Seymour
Papert, Sept. 1967. Superseded by the book: Perceptrons,
Minsky & Papert, M.I.T. Press, 1968.

145 A Fast-Parsing Scheme for Hand-Printed Mathematical Expressions,
William Martin, Oct. 1967 MAC-M-360.

160 Focusing, Berthold Horn. May 1968.

161A ITS 1.5 Reference Manual. Donald Eastlake III, MAC-M-377.
Revised July 1969 (ITS 1.4 Ref. Manual June 1968).

i

i

*>

11-68

163 Holes. Patrick Winston, Aug. 1968. Revised April 1970.

164 Producing Memos using T]6. TECO and the Typp .17 TpWyn»
Larry Krakauer. Sept. 1968. ' ^P6'

165 ^cnption and Control of Manipulation hy rnmp,lfor._rnn_
trolled_Arni. Jean-Yves üresser. Sept. 1968.

166 Recognition of Topological Invariants by Modular Arrays
Terry Beyer, Sept. 1968. ""^ arrays,

167 FireK ^r'^H anjh
Leflrninn» Marvin Minsky and Seymour

Snth ?f: ™68- Ihls ls a rePr™t of page proofs of
Chapter 12 of Percegtrons. Minsky and Papert. M.I.T. Press,
1968. It replaces Memo 156.

168 PLANNER. Carl Hewitt. MAC-M-386. Oct. 1968; revised June 1969.

169 PEEK and LOCK. Donald Eastlake III, MAC-M-387, Nov. 1968
Replaced by revised Memo 161A, July 1969.

171 Decomposition of a Visual Scene into Ihree-Dirnensional Bodies
Adolfo Guzman. Jan. 1961 MAC-M-391. Poaies,

172 Robot Utility Functions. Stewart Nelson. Michael Levitt. Feb
1969 replaced by Revised Memo 161A. July 1969.

173 mlfPiFf^Eon^31 ^"^"^ '-^MJieei, March

174 [^.^enblatt Chess Program. Richard Greenblatt. Donald
Eastlake ill, Stephen Crocker. April 1969.

175 jjgffil^ ReCOqnit1on Error and Re-ieot Tradeoff. c.K. Chow.

176 Discoveripg Good Regions for Teitelman's Chzrarfor Recognition
Scheme. Patrick Winston. May 1969. ■ ^cogmnon

177 ^TJIr-' f0r Pr0qraniS Which B^^lLzeJcenes.. H. N. Mahabala.

178 J^e Image Dissector 'eves'. B.K.P. Horn, Aug. 1969.

180 The Integration of a Class of Special Functions with the
KisdLAiiprithm. Joel Muses. MAt-M-421.

181 DAMMAR: A Language for Writing Grarnrnars Terry Hinngni.

184 Parsing Kev Word Grartroars,. William Martin, MAC-M-395.

■.

11-69

188 A Stability Test for Configurations of Blocks, Manuel Blum,
Arnold Griffith, Bernard Neuman, Feb. 1970.

Books Published:

Percejjrons, Marvin Minsky, Seymour Papert, M.I.T. Press, 1968.

Semantic Information Processing. Marvin Minsky (Ed.), M.I.T. Press,
1968.

MAC Technical Reports:

MAC-TR-1 Bobrow, Daniel G., Natura1 Language Input for a
Computer Problem Solving Language, June 1964.
AD-604-73C. (in Semantic Info. Proc).

MAC-TR-36 (Thesis) Martin, William A. Symbolic Mathematical
Laboratory, Jan. 1967, AD-657-283.

MAC-TR-37 (Thesis) Guzman-Arenas, Adolfo, Some Aspects of
Pattern Recognition by Computer, Feb. 1967,
AD-656-041.

MAC-TR-47 (Thesis) Moses, Joel, Symbolic Inteqration, Dec. 1967,
AD-662-66G.

MAC-TR-51 (Thesis) Charniak, Eugene, CARPS, A Program Which
Solves Calculus Word Problems, July 1968, AD-673-670.

MAC-TR-59 (Thesis) Guzman-Arenas, AdoTfo, Computer Recognition
of Three-Dimensional Objects in a Visual Scene,
Dec. 1968, AD-692-200.

MAC-TR-66 (Thesis) Beyer, Wendell Terry, Recognition of
Topological Invariants by Iterative Arrays, Oct.
1969, AD-699-502.

11-70

Theses in progress:

E. Cnarniak

A. Griffith

W. Henneiiian

A. HerskoviU

C. Hewitt

N. Horn

L.J. Krakauer

R. Orban

D. Perkins

D. Waltz

T. Winograd

P. Winston

Research on Natural Language

Research on Edge-Finding

Research on Complexity Theory

Research on Edge-Finding

Research on Theorem Proving

Research on Curved Surfaces

Research on Curved Surfaces

Research on Shadows

Research on Stereo Vision

Research on Natural Language

Research on Natural Language

Research on Concept-Formation

IM- ■• ''•■ .»,r..^

.''

•

'!'

i

BLANK PAGE

< H

.

■»■->■* *1- -!•»'' *
2 -:i-'-t

^ ij

PAGE A-l

APPENDIX A

MAC-SUPPORTED M.I.T. THESES

Ascott, R. J., A Low Coj.t Caonc I tat I vel v Couoleri Tablet for
Graphical Inout, Department of Electrical Engineering
M.S., June l'J69.

lerdell, J. R., Heuristic \pnroach to RojtlnfT anrl Setiuencin« of
Multiple foinoonent Johs, Sloan Scnool of Management/ i-I.S.,
June 1369.

Jetaque, N. E., Utility Theory Applied to Medical Diagnosis and
reatmont/ Departnrer t of Electrical Engineering, M.S., June

1JÜ9.
f

Seyer, W. f., Recor^n i t ion, of Topol o^ical Invariants by Iterative
Arrays, Department ^f Mathematics, Ph.D., June 19G9.

Clark, ü. D., A Reductiows Analysis System for Parsing PL/1,
Department of Electrical Engineering, M.S., E.E., September
1963,

Colli-an, T., Automatic Error Checking for On-Line Interpretive
Systems, Department of Electrical Engineering, B.S., June
1969.

Eanes, R. S., Interaction Syntax Definition Facility, Department
of Electrical Engineering, M.S., January 19G9.

Graham, '.\. L., Recursive Graph Decomnos i t ion; An Approach to
Computer Analysis of Networks, Department of Electrical
Engineering, Ph.D., June 1959.

Greenbaum, H. J., A Simulation of Multiple Interactive Users to
Drive a Time-Shared Comnuter System, Department of
Electriral Engineering, M.S., September 1968.

Grosser, J. -Y., Description and Control of Manipulation by
Computer-Controlled Arm, Department of Electrical
Engineering, M.S., September 1968.

Guzman, A., Computer Recognition of Three-Dimensional Objects in
a Visual Scene, Department of Electrical Engineering,
Ph.D., December 1963.

llaggerty, J. P., Complexity Measures for Language Recognition by
Canonic Systems, Department of Electrical Engineering,
M.S., E.E., January 1969.

Hollander, C.R., Design of Multitasking Monitor for the IBM 1130,
Department of Electrical Engineering, B.S., June 1969.

Ledgard, H. F., A Formal System for Defining the Syntax and
Semantics of Comouter Languages, Department of Electrical
Engineering, Ph.D., February 1969.

PAP,E A-2

Madnick/ 3. E., Ffle System Design Strategy, Department of
Electrical Engineering, M.S., Sloan School of Management/
M.S., January 1959.

McMorran, P. D., On the Simulation of Nonlinear Dynamic Systems,
Department of Mechanical Engineering, M.S., Septemher
1J6S.

Morris, J. 11,, Jr., Lambda-Calculus Models of Programming
Languages, Sloan School of Management, M.S., Uecemher
19G8.

Reeve, C. L., A Text and Interactive Granh Software Interface for
a Storage-Tube Display, Department of Electrical
Engineering, M.Sr, September 1968.

Schroeder, M. D., Classroom Model of an Information and Computing
System, Department of Electrical Engineering, M.S., E. f.,

February 1969.

Selwyn, L. L., Economies of Scale in Computer Use: Initial
Tests and Implications for the Computer Utility, Sloan
School of Management, Ph.D., June 19G9.

Slater, J. W., Implementation of an Interactive Syntax Processor,
Department of Electrical Eng Ineer Inn;, M.S., B.S., June
1969.

Splrn, J. R., A Simulation Model of a Large Mul t i-Process Inp;
operating System, Department of Electrical Engineering,
3.S., June 1969.

Therrlen, C. W., Tear'ng of Networks, Department of Electrical
Engineering, Ph-D., June 1369.

Toong, H-M,, The Ability of Lambda Calculus to Specify ^ Class of
Simulation Language Algorithms, Department of Electrical
Engineering, M.S., E.£., June 1969.

Waltz, D. L., A Versatile Electromechanical 'land. Department of
Electrical Engineering, M.S., E.E., January 1968.

Wleselmann, P. A., Computer Implementation of the Polynomial
Mapping Method of Plane Elasticity with Application to the
Study of Crack Tip Stress Intensity Factors, Department of
Mechanical Engineering, Ph.D., January 1969.

Zwick, M., 'Jew Computer Methods for Protein Crystallography,
Department of Biology, Ph.D., Seotember 1968.

rf,

PAGE B-l

* -
APPt'JOIX 3

PiiUJECT LiAC TECHNICAL KEPURTS

TU-1 ßUJRuW, üanlel G.
Jatjral Language Input for a Computer Problein Solvinej System
September 19b4 .\D-G0't-73ü

Ti{-2 RAPHAEL,, Bertram
SIR: A Conputer Program for Semantic Information Retrieval
June 1361* AD-6Ü8-i*99

TR-3 CÜRÜATU, Fernan-io J.
System Requirements for Multiple Access/

Time-Shared Computers
i'lay 19G4 \D-608-501

TR-I» ROSS, Douglas T. and Clarence 1. Feldmann
Verbal and Graphical Lan»ua^e for the '\ED System:

A Pro^ross Rooort
May 5, 19ö'+ AD-604-678

TR-6 [JIGGS, John M. and Robert D. Löscher
STRESS: A Problem-Oriented Lanfjuase for Structural

En^Ineer\ni
May ü, 19614 AD-6ÜU-679

TR-7 w'EIZE^ßAüM, Joseph
OPL-1: An Open Ended Pro»ramm In» System Within CTSS
April 3Ü, 1951+ Aü-bUU-ü8ü

TR-8 ÜREEiJiitROER, Martin
The OPS-l Manual
May 19üi+ AO-GöU-üSl

VR-ll OEM IS, Jack 3.
Program Structure in a Mult I-Access Conputer
May 1961+ AD-ÜÜ8-50Ü

TR-12 FANÜ, Robert M.
The MAC System: A Progress Reoort
October 9, IOC» AD-C09-29G

TR-13 GREEN3ERGER, Martin
A 'Jew Methodology for Comouter Simulation
October 19, 196'+ AD-609-288

TR-11+ RUOS, Oaniel
Use of CTSS in a Teaching Environment
November 19GU AO-6G1-8Ü7

TR-1G SALTZER, Jerome H.
CTSS Technical Notes
March 1965 Aü-612-702

TK-l? SAMUEL, Arthur L.
rime-Sharin? on a Multiconsole Computer
i'larch 19o5 AU-l+62-158

PAGE B-2

TK-18 SCHERR, Allan Lee (Thesis)
An Analysis of Tine-Shared Comouter Systems
June 1965 Al)-U70-715

TR-13 RUiSÜ, Francis John (Thesis)
A Heuristic ApDroach to Alternate Routing in a

Job Shop
June 1965 M)-h7k-0l8

TR-20 WANTMAN/ Mayer El ihu (Thesis) ...
CALCULAID: An Dn-Llne System foV "Ä"l ^Wa ic

Computation and Analysis
September 15, 1965 AD-i*7U-019

TR-2i JENNING, Peter James (Thesis)
Queue in» Models for File Memory Operation
October 1965 AD-62t*-943

TK-22 (KEENtJERUER, Martin
The Priority Problem
.Movember 1965 AD-625-728

TK-23 DENNIS, Jack B. and Earl C» Van Horn
Pros ramm ing Semantics for ilul t ipro^ rammed

Computat ions
Uecember 1965 AD-627-557

TR-2«* KAPLOW, Roy, Stephen Stron? and John Brackett
MAP: A System for ü.i-Llne Mathematical Analysis
January 1906 AD-it76-Ut»3

TR-25 STRATTON, William David (Thesis)
Investigation of an Analo? Technique to Decrease

Pen-Tracking Time in Computer Displays
March 7, 1966 AD-531-386

TR-26 CHEEK, Thomas Burrell (Thesis)
Design of a Low-Cost Character Generator for

Remote Computer Diiiplays
iiarch 3, 1966 AD-Ö31-2G9

rR-27 EDWARDS, Daniel James
OCAS - iin-Line £ryptanal yt lc A'd System
May 1966 AÜ-633-678

TR-28 SMITH, Arthur Anshel (Thesis)
input/Output in Time-Shared, Segmented,

Multiprocessor Systems
June 1966 AO-637-215

TR-29 IVIE4 Evan Leon (Thesis)
Search Procedures Based on Measures of Relatedness

Between Documents
June 1966 \D--636-275

TR-30 SALTZER, Jerome Howard (Thesis)
Traffic Control in a Multiplexed Computer System
July 1966 AD-635-966

ft

PAHF. rj-3

TK-31 SMITH, Donald L. (Thesis)
i'lodels and Data Structures for LM^Ital Lof;ic

S linul at Ion
August 1966

Tr(-i2 TElTELMArJ, Warren (Thesis)
PILUT: A Step Toward Man-Computer Symbiosis
September 1966

TR-33 llUkTUN, Lewis M, (Thesis)
ADEPT - A Heuristic Program for Proving Theorems

of Group Theory
October 1366

TK-3U VAN HORN, Earl C. (Thesis)
Computer Design for Asynchronously Reproducible

i'lul t iprocess im
November 1966

TR-35 FENICHEL, Robert R, (Thesis)
\n On-Line System for Algebraic Manipulation
December 1966

TR-36 MARTIN, William A. (Thesis)
Symbolic Mathematical Laboratory
January 1967

TR-37 GUZMAN-ARENAS, Adolfo (Thesis)
Some Aspects of Pattern Recognition by Computer
February 1367

TR-38 ROSENBERG, Ronald C, üaniel W. Kennedy and
Roger A. Humphrey

A Low-Cost Output Terminal for Time-Shared
Computers

March 1367

TR-33 FORTE, Allen
Syntax-Basel Analytic Reading of Musical Scores
April 1967

TR-i*0 MILLER, James R.
On-Line Analysis for Social Scientists
May 1967

TR-itl COONS, Steven \.
Surfaces for Computer-Aided Design of Space Forms
June 1967

AO-637-132

AL)-638"^6

AÜ-545-560

AD-650-U07

AD-657-282

AI)-657-283

Aa-656-0»tl

AÜ-662-Ü27

A!)-661-806

AD-668-009

AD-663-50t»

rR-U2 LIU, Chung L., Gabriel D. Chang and Richard E. Marks
Design and Implementation of a Table-Driven

Compiler System
Ju,y 1967 AD-668-960

TR-'»3 WILDE, Daniel U. (Thesis)
Program Analysis by Digital Computer
August 1367 AD-662-22I»

PAGE li-t»

TR-UU GURRY, G. Anthony (Thesfs)
A system for Computer-Aided Diagnosis
September 1967

TR-45 LEAL-CAiJTU, fJestor (Thesis)
ün the Simulation of Dynamic Systems with Lumped

Parameters and Time D!,r>r>1ays
October 1967

TR-U5 ALSOP, Joseph W. (Thesis)
A Canonic Translator
November 1967

JR-kl MUSES, Joel (Thesis)
Symbol ic lnte?rat ion
December 1967

TR-i*8 JUNES, Malcolm M. (Thesis)
Incremental Simulation on a Time-Shared Computer
January 1968

TR-U9 LUCUNI, Fred L. (Thesis)
Asynchronous Computational Structures
February 1968

AIJ-662-565

AD-663-502

AD-663-505

AD-662-666

AD-6b2-225

AD-677-6Ü2

TR-üÜ DENNING, Peter J. (Thesis)
Resource Allocation in Multiprocess Computer Systems
May 1968 AD-675-55U

TR-51 CHARNIAK, Eugene (Thesis)
CARPS, a Program which Solves Calculus Word Problems
July ^ßS AD-673-670

TR-52 DEITEL, Harvey M. (Thesis)
Absentee Computations in a Multiple-Access Computer

System
Au-ust 1968 /\D-68U-738

TR-55 SLUTZ, Donald R. (Thesis)
The Flow Graph Schemata Model of Parallel Computation
September 1968 AD-683-333

TR-5k GRUCHUW, Jerrold M. (Thesis)
The Graphic Display as an Aid In the Monitoring of

A Time-Shared Computer System
Uctober 1968 ' U)-68S-J*68

TR-55 RAPPAPURT, Robert L. (Thesis)
Implementing Multi-Process Primitives In a

Multiplexed Computer System
November 1958 AÜ-689-U69

TR-56 THORNIIILL, D.E., R.H. Stotz, D.T. Ross and
J.E. Ward (ESL-R-356)

An Integrated Hardware-Software System for Computer
Graphics in Time-Sharln«

December 1968 AD-685-202

PAGE 3-5

TR-57 MORRIS, James H. (Thesis)
Lambda-Calculus Models of Programming Languages
December 1968 AL)-683-39U

TR-58 (3REENBAUM, Howard J. (Thesis)
A Simulator of Multiple Interactive Users to

Drive a Time-Shared Computer System
January 19G9 AD-686-988

TK-59 GUZMAiJ, Adol fo (Thesis)
Computer Recognltio.i of Three-Dlmensional

Objects In a Visual Scene
December 19ü8 AO-692-20Ü

TR-60 LEDGARD, Henry F. C'-hesIs)
A Formal System for Defining the Syntax and

Semantics of Computer Languages
April 1969 AÜ-689-305

TR-61 3AECKER, Ronald M. (Thesis)
Interactive Computer-Mediated Animation
June 1969 AD-690-887

TR-62 TILLMAN, Coyt C. (ESL-R-395)
EPS: An Interactive System for Solving Elliptic

Boundary-Value Problems with Facilities for
Data Manipulation and General-Purpose Computation

June 1969 AD-692-462

Project MAC Progress Report I
to July 19GI* AD-«*65-088

Project MAC Progress Report II
July 196i»-July 1965 AD-629-i»9l*

Project MAC Progress Report ill
July 13G5-July 1966 AD-6U8-3U6

Project MAC Progress Report IV
July 1966-July 1967 Al)-681-3it2

Project MAC Progress Report V
July 1967-July 1968 AD-687-770

O

PAGE C-l

APPENDIX C

PROJECT MAC EXTERNAL PUBLICATIONS

iaecker, Ronald II., "Picture-Driven Ani nation", \FIP5 Conference
Proceedings iA/ l^b9.

ihushan, Abliay K. and Robort H, litotz, "Procedures and Standards
for Inter-Coiiiputer Communications", ProceerJ inss of the Spring
Joint Computer Conference jj,., iüöb.

Corbato, Fernando J., "A Paging kperiment v/ith the llultics
System", Philip M. Morse Pestschrift, l'Jöa.

Corbato, Fernando J., "PL/1 as a Tool for System Programming",
Proceedings of the PL/1 Seminar, U. S. Air Force Electronic
Systems Command, 1Ü68.

Corbato, Fernando J., "Sensitive Issues in Multi-Use Systems",
Honeywell EDP Software Symposium Proceedings, 1968.

Corbato, Fernando J. and Jerome H. Saltzer, "Some Considerations
of Supervisor Program Design for Multiplexed Computer Systems"
(Invited Paper) IF!P Congress Proceedings, 1068.

Corbato, Fernando J., "PL/1 as a Tool for Systems Programming",
iJatanatlon 11, 5, May 196ü.

Dennis, Jack B., "Program Generality, Parallelism and Computer
\rchitecture", IFIP Congress Proceedings, 1968.

Dertouzos, Michael L., "Man-Machine Interaction in Circuit
Design", Proceedings of ^he Hawaiian International Conference on
Systems Sciences, January 1968.

Dertouzos, Michael L., "Computer-Ai led Analysis for Integrated
Circuits", International Conference on (ircuit Theory, Miami,
Jecember 1963.

Dertouzos, Michael L., "ün-Line Simulation of Ulock Diagram
Systems", IEEE Transactions on Computers C-18, it, April 1969.

Donovan, John J., Malcolm M. Jones, and Joseph W. Al sop, "A
jraphical Facility for an International Simulation System", IFIP
Congress Proceedings, 1968.

Donovan, John J., "Data Structures", Proceedings of the Hawaiian
International Conference on Systems Sciences, January 1969.

Donovan, John J., "A Program for the Underprivileged and
Overprivileged of the Boston Community", Proceedings of the
Spring Joint Computer Conference, May 1969.

Evans, Arthur Jr., "PAL -- A Language Designed for Teaching
Programming Linguistics", Proceedings of the ACM National
Conference, 1968.

PAfiE C-2

Fano, Robert M,, "'T lme--Shar in»' uno Squaedo al Futuro", Estratto
dal auadorno M. llü,, Attl del Confe-jno sul tema: "L'automaz lone
Electronica e le sue fnpllcatlonl sclent I r Iche, tecriche e
sociali". Rone 1968.

Feldmann^ Clare G^ "Subsets and Modular Feature of Standard
APT"/ Proceedings of the Fc'il 1 Joint Computer Conference, December
IJüd.

Gorry, G. Anthony/anJ G. Octo Barnett, 'Sequential Diagnosis by
Computer", Journal of the Vnerlcan Medical 'association 205. 12,
September 1968.

Gorry, G. Anthony, "Stnteglos for Computer-Aided Diagnosis",
Mathematical 3iosciences 2, 1968.

Gorry, G. Anthony, "Model Ini; the Diagnostic Process", Sloan
School of Management Working Paper No. 370-6J, February 1969.

Guzman, Adolfo A., "Analysis of Scenes by Computer: Recognition
and Identification of Objects", Proceedings of the Conference of
Automatic Interpretation and Classification of Images, Italy,
August-September 1968 (in press. Academic Press).

Guzman, Adolfo A., "JecomposItIon of a Visual Scene into
Three-Dimensional Uodies", Proceedings of the Fall Joint Computer
Conference ü,. Part One, üecember 1968.

Guzman, Adolfo A., "Object Recognition: Discovering the
Paral leloplpeds in a Visual Scene", Proceedings of the Hawaiian
International Conference on Systems Sciences, January 1969.

Hegna, llovarth, "On the 0>e of a High-Level Language in the
Programming of Multics", (In Norwegian), ACC Travel Report, The
Norwegian Computing Center, Forskrin»sveion IB, Oslo 3, Norway,
üecember 1963.

Jones, Malcolm M., "Some Current Problems of Development of Lar^e
Scale Highly Modular Software", Proceedings of the National
Symposium on Modular Programming, July 1968.

Jones, Malcolm M., "Multiple-Access Computer Systems",
Engineering Management Conference, October 1968.

Jones, Malcolm II., Philip M. Walker, and Stuart L. Mathison.
"Data Transmission and the Foreign Attachment Rule", Datamation,
February 1969.

Jones, Malcolm M., "Multiple Access Computer Systems", Law and
Computer Technology, February 1969.

•snuth, Donald E,, Ihs. ALL OL CQllPUter Programming 2/Semi numer ical
Alaori thms. AdJIson-^esley, Reading, Mass., 1969.

\ohavi, Zvl, and Igal Kohavi, "Variable-Length Distinguishing
Sequences and Their Application to the Design of Fault-Detection
Experiments", IEEE Transactions on Electronic Computers C-17> 8,
August 1968.

PAHE C-3

r
Kohavi, Zvi, ia
i^ew York (in pross)

äJjd Fini tG Autgr.ljta TheorY/ McGraw Hill,

Koppl In, J. ü., "St Imulat In-? Chance in Kn^lneerln^ Education",
IEEE Spectrum^, 1, January 1963.

Licklider, J. C. H., "A Sociotechnleal Crux in the Application
of Computers to Educaticn", i8th Uonforonce on Science,
Philosophy and Keli^ion in Their Relation to the democratic Way
of Life, Education, Institutions and the Future, August iJü8.

Llckl ider, J. C. R., "A Picture is Worth 3 Thousand Words -- and
It Costs...", AFIPS Conference Proceedings ijt, lJb9.

Liu, Chung L., "A ^ote on Definite Stochastic Sequential
i-lachlnes"/. Information and Control ü/ I1*/ *Prll IJb'J.

Luconl, Fred L., "uutput Functional (o .iputat ional Structures",
Proceedings of the Jth Annual Symposium on Switch inn; and Automata
Theory, published by IEEE, Mew York.

Madnlck, Stuart E., "Design Strategies of File Systems, \ Working
Model", Proceedings of the International Sytrposium on File
Organization, Copenhagen, November 1968.

Madnlck, Stuart E., "flul 11-Processor Software Lockout",
Proceedings of the ACM national Conference, August 19G8.

Madnlck, Stuart E., "Script, An On-Line Manuscript Processing
System", IEEE Transactions EWS (special Issue), August 1958.

Madnlck, Stuart E., "T ime-Shar In;? Systems: Virtual Machine
Concept vs. Conventional Approach", Meiern Data Systems 2, 2,
March 1369.

Madnlck, Stuart E., and Joseph W. Al sop, "A Modular Approach to
File System Design", Proceedings of the Spring Joint Computer
Conference, May 1969.

Mandl, Kobert, "Canonic S/stems and Recursive Sets", Proceedings
of the Third Annual Conference on Information Sciences, April
i9b9.

Manove, Michael, M. Bloom, and Carl Engleman,. "Rational Functions
In MATHLAii", Proceedings of the IF IP Working Conference on Symbol
Manipulation Languages, dorth Holland Publishing Company, 19u8.

Martin, William A. and David N. tJess, "Optimizing ü I nary Trees
Grown with a Sorting Algorithm", Sloan School of Management
forking Paper U21-69, 1969.

McNaughton, Robert and Seymour A, Papert "Syntactic Monoids",
Algebraic Theory of Automata (ed. M. Arbib), 1968.

Mlnsky, Marvin M. and Seymour A. Papert, Perceotrons; M
Introduction to Computational Geometry, M.l.T. Press, Cambridge,
Mass., 1969.

PA1E C-l»

iess, Javid i. and Janes C. Eniery/ "A Man-Machine liudgetlng
System"/ iJhjrton School/ University of Pennsylvania/ forking
Paper i^o. JO, August 1DÜ8.

iJesS/ üavid H., "Interactive Budgeting Models: An Example"/
Jloan School of Mand^ement vJorkini; Paper No. ii+ü-üS/ 1903.

Ross, Joujjlas T. and John E. Ward/ "Investigations in
Computer-Aided Design for Mumerically Controlled Production"/
M.I.T. Electronic Systems Laboratory (ESL-FR-351)/ April 1969.

Scott-Morton/ Michael S. and James Stephens, "The Impact of
Interactive Visual Display Systems on the Management Planning
Process/" IFIP Congress Proceedings/ 19G£..

Selwyn, Leo L. and Daniel S. Diamond/ "Considerations for
Computer Utility Pricin» Policies"/ Proceedings of the \CM
National Conference/ August 1903.

Sisson/ Roger L./ "Conputer Simulation of a School System"/
Computer and Automation]Ji, 3, March 19G9.

Ward/ John E./ "Conputer Graphics"/ Mciraw-Hi 11/ Encyclopedia of
Science and Technology/ 1969.

Weizenbaum/ Joseph/ "A iiackward Look Uver CTSS"/ Computer Systems
Sy;!iposium/ Erlangen/ Germany, 1968.

'i

I

,

UNCLASSIF1.SD
Security Classification

DOCUMENT CONTROL DATA - R&D
(Stcurlly ctmfillcmilon ol ml; body ol mbntmct mnd Indexlnj tnnoinlon mu«l t,t infred when thm ovurmll report tt clmfllled)

I. ORIGINATING ACTIVITY (Corpor««» «u/horj

Massachusetts Institute of Technology

Project MAC

2«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b JROUP

None
3. REPORT TITLE

Project MAC
Progress Report VJ^July 1968 to July 1969

4. DESCRIPTIVE NOT tu (Typ* of xport and fncluaf v« dar**)

Annual progress
9. AUTHOR(SI CLa>(nam«, //r<(n«n*, Initial)

Collection of reports from Project MAC participants
Prof. J. C. R, Licklider, Director

«. REPORT DATE

1 July 1969
•a. CONTRACT OR GRANT NO.

Nonr-4102(01),(02)
6. PROJECT NO.

, NR 048-189

»a. TOTAL NO. OF PAGES

168
76 NO. OF REFS

«a. ORIGINATOR'S REPORT NUMBrRISI

MAC Progress Report V -^

9b. OTHER REPORT NOISI (Any olhvr nimnbert Ihmt mny ht
m9Mitn»d thtm report)

10. VVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale;
its distribution is unlimited.

II. SUPPLEMENTARY NOTES

None

IS. ABSTRACT

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agenc
3D-200 Pentagon
Washington, P.C. 20301

The broad goal of Project MAC is experimental investigation of new
ways in which on-line use of computers can aid people in their
individual work, whether research, engineering design, management,
or education.

This is the sixth annual Progress Report summarizing the research
carried out under the sponsorship of Project MAC. Details of this
research may be found in the publications listed in the Appendices
at the end of this report.

14. KEY WORD!

Computers Machine-aided cognition Computation structures Graphics
Time-sharing Multiple-access computers Interactive management
Information systems On-line computers Programming linguistics
Artificial intelligence Real-time computers Theory of automata
Intelligent automata

DD FORM
I MOV *t 1473 (M.I.T.) UNCLASSIFIED

Security Classification

•-.

