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1.1

o Introduction

IfA= (a“) isenmxnmetrix, snd B = (bak) 13 sn n x p mtrix,
then the matrix product C = A.B is the m x p metrix (c“) defined by

S " g .!.J'bjk (1.01)

forl<i<m 1<k<p.

Matrix multiplication and its special csses ocour very frequently
in numericel snelysis. For example: the inner-product of two vectors
(the cese m = p = 1), matrix times vector miltiplicetion (the case p = 1),
beck substitution when solving linesr systems, iterstive refinement (per-
haps with seversl right hend sides st once), the power method for eigen-
values, in least squeres prcblems, snd meny more. Hence, it is interesting
to investigate algoritims for matrix multiplication, snd in perticular to
see in vhat circumstances it is possidle to do better then the streight-
forward implementation of the definition (1.Cl1).

It is clear that sdventage may often be taken of special properties
of Ay Bor C, e.g. sparseness or sywretry, if such properties are knowmn
e priori. Ve shall only consider the genersl csse wherc no such helpful
properties are known. PFor prectical applications, ve need only consider
metrices over the retiomel, resl snd complex ficlds, slihough the definition
above makes sense for matrices over any ring. The algorithms described will
all be applicadble to the prodblem of multiplicstion of matrices over an
arbitrery commutative ring, and it vill lster be important that, for some
of the slgoritims, the ring need not even be commutative.
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1.2

I the slgoritims are to be implemented on a digitsl computer,
then simply oounun/ sritimetic opevetions cen be rether »isleeding,
for loads, stores and sddress computations sre slso important. The
best test 1s to imflement the algorithms and see hov fast they sctuslly
Tun, end cven then the conclusion mey depend on the progremmer, compiler
end mchine used. Also, from & prectisl point of vievw, storege re-
quirements and roundoff errors msy be vitally important. Hence, sfter
descridbing seversl different slgoritims in Sec. 2, I shall discuss
their numerical properties in Sec. 3, and descrie some experimentsl
results in Sec. k. In Sections 5 and 6 an attempt to find some nev
slgorithms is described, and in Se¢c. 7 the recultes sre summrized and
some conclusions drewn. The notation of the definition (1.01) will de
used in Secs. 2 to k.

rn
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2.1

2. _Xnow Results
2:1_The Norws) Method

To evaluste the inner-product in the definition (1.01) takes n
mltiplications and n - 1 additions. Hence, thec =.7 clements gy OO0
be found in mnp m:ltiplicetions and a{n - 1)p sdditions, and sbout the
ssme number of loeds, stores and sddress computations.

If ve count only multiplicetions then thic streightforverd method
is known to be optimsl in some importent special ceses. Ifmepael
then we have the cese of a vector inner-product, snd e simple dimensionslity
srgument shows that, in generel), n multiplicetions sre nccessery. If psl
then ve have the case of matrix times vector multiplicstion, and mn mul-
tiplications are necesssry in generel (Winogred, see (1]). In the generel
case, however, less than mnp multiplicetions are necessary: Strassen's
method shows this even vhen n = n = p = 2, Dimensionality arguments give
the lower bound max (mn, np, pa), but ususlly this {s too lcw, snd the
best possidle result is not knomn. For more details, see Secs. S end 6.

2.2 4's Method

Winogred (7] tas given s method based on the following identity:
e.én/a b/
e

Looatn o L Cueint bt ta,d

/2 /4y

8 23-1%,23 ®25-1,%523,k

=) Jul

(2.21)
Here |x) means the greatest integer y < x, and nnalugoucly Ix] meens

the least integer y > x . 3
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If n is even, the left side of (2.21) is Just o;, but if n is o4,
the tem oub“mtbomudn Cx’ The point of Winogred's method
is that the last tvo sums in (2.21) cen be precomputed and, once this hes

been done, roughly half the uswel nuber of multiplicstions sre required
to compute each o, using (2.22).

Supposing for simplicity that n is even, let us cslculate the mmber
of multiplicetions end edditions involved in the computation of C by
Winogred's method. Ve stall never distinguish between sdditions and swb-

trections. To compute n/2

2 e P8y %2 (2.22)
=

requires n/2 miltiplications snd (n/2 - 1) edditions, snd similsrly for
n/2
% ° E, P23-1,k%24,k . (2.29)

Hence, tO Precompute X,y X oo 5 X 804 ¥y, Yoroee s % takes (= + p)n/2

multiplications and (m + p)(n/2 - 1) sdditions.

Given x, snd y,, to campute c,, using (2.21) tekes n/2 multiplicetions
and (3n/2 + 1) sdditions. Thus the computstion of the entire mstrix pro-
duct C takes (mp + m + p)n/2 multiplications and (3mp + m+ P)n/2 ¢+ Wp = m = P
sdditions. From Sec. 2.1, we have saved (mp - m - P)n/2 multiplicetions at
the expense of (mp + m+ p)n/2 + 2mp - m - p edditions, in comperison with
the norml method.

Sincemp -m - p = (m - 1)(p - 1) - 1, there is no gain at all if
R=lorpsl, s0 the remarks above on the minimal number of multiplications
required for metrix times vector multiplicetion sre not contredicted.
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2.3

Supposing for simplicity thet m e n = p > 1, Winogrud's method saves
(n - 2)n°/2 multiplications, st the expense of (n° + 6n - b)n/2 additions.
Hence, there is & saving in the number of multiplicetions if n > § (recal)
thet ve sssumed thet n was even, but it mey cesily be verified that there
is no seving for n = 1 or 3). If n is large then about n’/? multiplications
heve been treded for sdditions. If s multiplicetion takes w times as long

88 en addition, we see thet Minogred time , ¥+ , orply . (2.2%)
" Normsl time 2(w)

so the most we can expect §s a gain of neerly 50% if v and n sre large.
Since (2.24) neglects loads, stores etc. the gain will probedbly be rether
less than this. Typicelly we might have v = 2 (say resl multiplication)
or v » b (say complex multiplication), giving savings of up to 17% and
30% respectively. In Sec. & we shall discuss how large n has to be for
eny goin in prectice, and the important question of roundoff error will
be discussed in 8ec. 3.




G aE B /N S e/ o S e =

2.4

2.3 Stressen's Method

Suppose there is an algorithm for the multiplication of n, X n,
metrices, for a certsin fixed By > 1, taking M multiplications and A
additions. Suppose further that this slgorithm is applicsble for ms-
trices over an arditrery ring. In particulsr, we are not allowed to
assume the commutative law for multiplication, so, for exsmple, Winogred's
method is excluded,

Let v(k) and w(k) be the number of multiplicstions and sdditions,

respectively, required to multiply n, x 0, matrices, for k=0, 1, 2 ¢cs o
We have v(0) =1, w0) =0,

(1) <M, w(1) <A.

(2.31)

Now consider n‘: 1 x n':' 1 matrices partitioned into ng blocks, each
block an n’ot x n: matrix. Our metrices may be rcgorded as ny X N, matrices
with elements in the (noncommtative) ring of ng x ng matrices, so our
algorithm is applicable. Applying it will take M multiplications, and A

sdditions, of n: x n: matrices.

Hence vk + 1) < M.v(k)
ok (2.32)
and w(k + 1) < Mow(k) + Amg" .
From (2.31) and (2.32) it follows by induction on k that
wK) g M*
: X o (2.33)
d k) < 5

an w(k) < (T_noé)( o )

for any k > O (provided that M ¢ ng, but M < n\,z, is impossible for

n,>1 anyway).
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2.5

Now, in order to multiply n x n matrices for any n > 1, just take
ks I'fl.ogn nl and embed the n x n matrices in no x nk mtrices with the
last uk - n rovs and columns zero, lnd use the sbove method. From (2.33),

(o}
the number of arithmetic operations required is

.G(H'\'o'non) - o(n1°‘no") asn% e, (2.34)

For example, the normsl method with eny ne > lhas M~ ng, logn Ms 3,

giving O(n') operations, which is no surprise.

From (2.34), square matrix multiplication can be done in O(n’)
operations, vhere § = locnon = (log M)/(log nc) . (It 1s interesting
to note that B is independent of A.) Cleerly there is a constant

B, = inf (8 | C-(n’) operations suffice} . (2.35)

The normsl method, and Winogred's method, both show that ’0 < 3, while
the results discussed in Sec. 2.1 show that 8, > 2. The actusl value of
8, is not known. While it might be considered "{ntuitively obvious" that

By = 5» this is false: as Stressen {5] has ghown,

0 S logyi 2.8 . (2.36)

Strassen's idea is to give an algoritim for the multiplication of 2 x 2
matrices over an arbitrary ring, with the algorithm involving 7 multipli-
cations (instead of the usual 8) and 18 additions (instead cf the uswml k).
Putting n, = 2, M= 7 and A = 18 in the above, hic result follows.
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2.6
Stressen's algoritim is based cn the following identities:
it %1 %12 i} ln 012 ) bu bl?.
n %22 S %2 by P2
then cu - qlcqj.qsq.q?’
% =« %Y )
2 « R*Y4o
™ ey . Rttt
vhere ql - (.n L .12)"22 ?
B = (ay - ayddyy, }(2.57)
q; - .a(bu + ba) »
q = (b, +d),
qs = (Iu + 8 )(b ) ) »
q - (.u + 021)(1:11 + ble) 5
snd % - (.12 + 022)(521 + 'ba.) J

Straszen in [5) gives no hint of how the identitics (2.27) were
discovered, and they sre certainly not immediatcly cbvious. I shell give
a "graphical” method which makes the idcas cleerer, ord which enables
one to rediscover the identities (2.37) in o fev minutes if they are not
st hand. We wvant the four sums of products

Cyp ™ Bgqbyy * 0yoboy (1, v =1, 2).

This might be represented diagrammatically thus:

bal 2l 11 vhere we want the four
bss x 22 | 12 sums of preducte which
bn o 1 corrcapond to similarly
bla on 12 labelled squarcs.

%1 'n %2 '
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A product ‘la + .n)(bn + ble) might be represented as:

by (the signs of the
522 terms are not

represented in the
b:l.e ‘ |

8 ‘11 022 85

Now consider the representations of the seven products Gyp ooe q7

of (2.37). For example,

e i ond g

It is immedistely obvious from the disgrsms that we can coumbine Q) snd Q,
linearly to give terms involving the products '11"12’ '12b22’ snd uubza.
It is conceivable that for a suitable combination the anbze term will
drop out and leave c,,. If the reader now drews the representations of
Qs U e 0 G and sees how they combine sccording to (2.37) to give
€177 °°° 2 o he will see that one could reconstruct the identities
(2.37) from the essily remembered graphical representations, apart from
ambiguities in sign. A little thought and juggling of signs will then give
¢ set of identities equivalent to Stressen's (there may be « triviel

permutetion of the suffices).

It is interesting to experiment with other grephical representations
and coavince oneself that it is impossidble to multiply 2 x 2 metrices in
less then seven multiplicstions. Winogrsd (8] claims to have proved this.

9
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In 8ec. & we shall discuss how to implement Strassen's method for
rectangular matrices, and hov to avoid any wsteful "bordering” with
zeros. The question of roundoff errors will dbe discussed in Sec. 3.
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2. Frror Amlysis

The most important cese in practice is that of resl matrices and
limited=precision nattu-point computation. I shall use Wilkinson's
notation [6), and assume sll arithmetic operstions sre done in t-digit
rounded binary orithet:lc’, o;zccpt that some operations may be especially
noted to be done in double-precision (2t-digit). Wilkinson's assumptions
concerning the method of rounding or trunceting will be made. Some of
these sssumptions, e.g. binary arithmetic, do not hold for the IBM 360,
and this will be discussed later. For simplicity, ell matrices will be

assumed to be square (n x n).

It will be convenient to use the nom

Ixll,, = mex x| (3.01)
M i B
K, 9¢n
(note that ||xv||M < ||xl|“.||!||M is generally false). This norm will usually
be written just as ||X|| . The results obtained may be expressed in terms of

more ususl metrix norms by using the attainable bounds
IXllyg < txelly < n-lixly (3.02)

vhere q stands forl, 2, » , or E.

Wilkinson [6] def‘nes numbers t, snd t, vhich are slightly less then t.
t

Wherever t, or t, sppear there is the implicit assumption that n.2" < 0.1,
wvhich is no restriction in practical cases.

# The analysis is similar with any bese p > 2, and in most csses the same
bounds will hold with 2™ replaced by #81°% . For s discussion of Wino-
gred's method, and some further applications of (2.21), with base g > 2,

see [12] .
11
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2:1 The Normsl Method

Wwilkinson (6] shows that if
C=0AR) = AB+E
then Il < (2 ) en Ml ol
He notec that if llAB“E << "A“E'“B“E then the relative

error in C way be high. On the other hand, if the inner-products are
accunulated in double-precision,

=% 7n %%
then “E“E S 2 '“AB“E + 2"2 ‘“A“E‘“B“! ’

and hence the relstive error in C will be low unless there is so much

cancellation that lIaflg. 1Bl ot

n
llasll

To get a bound in terms of the norm ||.||", consider a typical tem

in the product C. Such a term will be an inner-product

n
fl‘;"iyi) = gxiyi + e  say.

If the sum is accumulated in the natural order, we have

-t
lel s2 Lumelxylelyyl + melxplefyyl + (n-d).fxg).lys]

* .00 * 2o|xnlolyn') 9

-t 2
g0 |el<2 1, {n %" =2), mex|x, | .max|y,| .

As the x, are elements cf A, the yi elements of B, (3.15) and the

definition (3.0l1) give -t 2
e} + 30 - 2
"E“M S 2 ¢ Ln En )' l'A“M’“B“M °

(3.12) and (3.16) are of the same form

-t
lef <2 2. gn).iall.lgll ,
and a bound of this form, with some reasonable f(n), is the best we can
expect for any single-precision method.

12

3.2

(3.11)
(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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For double-precision sccumulation of inner-products, the bound

corresponding to (3.13) is
-t 2 G
Il < 2% Bl + § « (0% # 3n - 2.2 2[laf B, (3.18)

Again, unless there is exceptional cancellation, the re¢lative error in
C will be low.

3.2 Winogred's Method

First consider a simple inner-product
p=1fly -(E+1)),

n/2
where 7 = ﬂ( é (xed-l + y?J)(xQJ + y2."-1)) ’
n/2 } (5.21)

g = £1( é Xad_lan) ’

n/2
and 1‘ = n( yadyed-l) ?

computed by Winograd's method (n even).

A simple example illustrates what csn happen when limited-precision

arithmetic is used. Suppose we are using L-decimal floating arithmetic, n = 2,

X, = X, = 1.000'43, y, =y, = 1.000'3 ,

Then € = 1.000'+6

and 7 = 1.000'-6 (both exactly correct),

but y = 1,000'+6 (instead of the exact
1.000002000C01 '+6) ,

co p = 0.0CO instead of 2.000 . ﬁ'!ac difficulty is in

forming fl(x, 3.1 * V2 J) etc. when the elecments of x may differ widely in
megnitude from the elements of y . This conclusion will also follow from

the rigorous error analysis below.

13
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Let o = mex l*i' esnd b = mex |¥1|:

n/2
and let = é 323_1::25 + ¢g ete,

From (3.15) with n replaced by n/2 we get

and similarly -t

-t
l‘gl <2 ]'.02.(n2 +6n-8)/8,
Iyl < 2 1 v2.(n° + 6n - 8)/8 . }

If fi(x+y)mx+y+e (x any x,) yeonyy,)

x+y
-t
then legeyl <27 lhx] + |¥])
S Q-t.(l + b) .

Thus f1(x+y)(x'4y')) = (L + € )(x+ y + ) (x' + ¥’ + ¢)

= (x+y)(x'+y') + €, say,

where leJ< 2t ana le, Is1e,] < 2"t + 1) .

By expending (3.25) it follows that
-f;

|<-:3| <2 23.(a +1)°,

where ‘l'.5 is defined by
-1'.3 -t -2t =3t
2 ‘=2 +2 +2 |,

(so ir practice t:15 2t).

-t »
Hence |e7| <2 “Z.(3n/2).(a + ) +

-t -t
2 1,((n? + 2n - 8)/8)(a+b)(143.2 9) .

In all practical cases

t t

1l

-t - -
(30/2 + 3.2 {(n?+2n-8)/8)).2 > < (3n/2).2 1},

and with this assumption we get

-t
le,l €2 L.((n° + Ln - 8)/8).(a + b)%,

1k

3.4

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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From (3.23) end (3.27), the error ¢ in p is bounded by
le] < 2.t1 [((n2 + lin - 8)/8)(a + t»)2 + ((n2 + 6n - 8)/8)(.2 + be)

bl -g-nlelgl+ |n[] (3.26)

2 have been neglected, but they may dbe dealt with ss

(terms of order 2°
sbove (see [12])).
Now |7 -€-n snab+o(2, [g] <Ba®+ legl, 0] <502+ fog

and 02+b25(a+b)2,

t, 2
0 |efgc2 .2 "%2"'8'(:-”)2 . (3.29)

By considering (3.29) with n replaced by n - 1 and a term added for
the error in computing and adding x y,, it my be shown that (3.29)
holds whether n is even or odd, and bounds the error in computing ean
inner-product by Winograd's method. From (3.29) we obtain the bound

-t 2
Elg2 toE g2 o8, (4 pl)2 (3.210)

for matrix multiplication by Winograd's method. (A slightly stronger
result than (3.29) can be obtained if a = b, see [12]).)

guppose [|Al] / 1Bl = x. (Assuming k 40 or =)
Then

(1Al + JelD? = (x + 2 + 1/%) .l lig)) ,
vhich shows th't (3.210) will be much worse than (3.16)
wvhen k is very small or very large, and this is verified
by the exsmple above.

Scaling

Ignoring the cases ||All = 0 and ||B]] = 0, 1t is always possible to

A
£ind an integer A such that 1/2< %H < 2. Hence a practical

15
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3.6

scheme would be to compute ||A]] enda |3}l (in 0(n°) opersticns), find A ,
snd then apply Winogred's method to A enda 2° B rether then to A
and B, If this is done, then since

1/%:52 (kx +2 +1/k) = 9/2,

ve get, in place of (3.210), the bound
-t
el < 2 2.8.(n® + 220 - 8).[all.lIEll , (3.212)

vhich is of the form (3.17) and is not much worse than (3.16).
This shows that Winogred's method is feasible provided some form of

scaling is used to mke |A|| ~ ||B]| . Without scaling, the results mey

easily lose all significance. This does not seem to have been mentioned
by anyone recommending the use of Winogred's method: e.g. blindly fol-
lowing the procedure recommended :ln (2] could lead to disaster.

A more sophisticated fomm of scaling could be used, dbut it is im-
portant to keep the time for scaling to & minimum, or Winogred's method
becomes slower than the normsl method. The extras time taken by scaling

will be considered in Sec. 4.

If it is easy to accumilate inner-products in double-precision then
this may as well be done. The error bound will still be like (3.211)

though, unless the terms & 5.1 + ba:],k and 8y o4 + b2.1-1,k of (2.21)

are computed in double-precision. Then we get a bound

-t -21:-2 2 )
Iel <2 .uell + 2 2F-(a + 120 - 8).[|al.l15] , (3.212)
provided that the terms x, snd y, of (2.22), (2.23) are kept in

double-precision, and assuming scaling as above. (3.212) is very similar
to (3.18) and the same remarks apply.

16
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3:3 _ Stressen's Method

Assuning s bound  [Igll < 2"%.2(n). Al |12

for nxn mtrices, it is possible to deduce & similar expression for
2n x 2n matrices, if the multiplication of these matrices is reduced to
the multiplication and addition of n x n matrices using Strassen's
identities (2.37). This gives f£(2n) in terms of f(n), and as (3.31)
is certainly true vhen n = 1 (with £{1) = 1), we can find f£(n) for n
an integral power of 2. If the "bordering" method is used for genersl

n then the zeros will have no effect on the error, so the bound for the

next power of two may be used.

To express f(2n) in terms of f{n), let A, B, and C be 2n x 2n
matrices (deviating slightly from our usual notation), and regard A, B,
and C as 2 x 2 matrices with n x n blocks. Consider forming C =

2t 111 ve

f1(A.B) using the identities (2.37). Terms of order 2"
ignored, for although they msy be dealt with by replacing t by t'aert
as we replaced t by tl, t2 and 1:5

argument, and the results are not significantly different. For brevity

et o= [l = s, -

in Sec. 3.2, this complicates the

The error in computing q, of (2.37) will be denoted by Eqi’ so for
example £1( (an - °12)b22) = ('11 - 112)\322 + qu (vhere 879 8,00

b,, and E. are nxn mtrices). Similarly, the error in computing

22 ql

€y of (2.37) will be denoted by !:13. Thus

l*‘11.3“12) .

C = f1(AB) = A.B + E, vhereE = = L ke
' (vafvae

17

(3.31)

(3.32)
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3.8
8ince q, = r1( ('11 - 012) .bee) , where the n x n matrix
miltiplication is done by Stressen's method with the error bound (3.31),
and the metrix addition is done in the usual way, we have
-t
Bl <2 "(n+ 2(a))(llay, ]| + lla) 1)l
o gyl < 2"t ,2ab.(n + £(n)) , . (3.33)
and similarly for Eqa, qu, and th . Fori=5,6and?7
we get the bound
llegyll < 27% Lab.(2n+ £(n)) (3.34)
in the same way.
Now it follows from (2.37), neglecting terms in 2'2", thet
ot
Iyl < gyl + gyl + 2°%Clagll + gy A
but .
2nad fori-l’ 2’ 3,‘&
Nayll < (3.36)
bnab fori=5,6,7 ,
so from (3.33), (3.35) and (3.36) we obtain
£l < 27%.kab.(2n + £(n)) , (3.37)
and clearly the same bound holds for Eel' Similarly we have
Iyl < eyl + NEgl + sl + Vel +
-t
23l | + 3llall + 2lal + llah) (3.38)
(ussuming q,, 259 Qg and q, are added in this order),
so [l < 275 ab(bkn + 12¢(n)) , (3.39)
and similarly for E22' .
From (3.37) end (3.39) we see that
gl < 2°%.hbn + 122(n)) . Jall.|IE]| , (3.310)
so (3.31) will hold if f satisfies f(1) = 1 and f£(2n) =Lin + 122(n) .
(3.311)
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By induction on X, it follows from (3.311) that

2(2%) = %(27.12“ - 22,29 , (3.312)

0o 225 <-?-}.12“ .%'l.(e“)‘“‘e‘"’ . (3.313)

Hence, for genersl n, taking k such that n < ek <an ,

ve have el < 2°%.650°.|Iall.|IB
| Hadl 118 } (3.500)
vhere c-lo‘212=5.58 .

(3.314) gives a bound for the error in metrix multiplication by
Strassen's method, as described in Sec. 2.3. The bound is of the form
(3.17), although the function 5&1:5 .58 increases rather more repidly
than we would like. On the other hand, all the error estimstes cbtained
here are rather pessimistic, for the individual rounding errors sre un-
likely to be correlsted in the worst possible way. If our dbound is
2"2(n)|IAll.|[B]] then the actusl error is probably about 2°° Jff(n) [ll.|IBll
(see 8ec. 4.6).

The analysis above assumes that a "pure" form of Strassen's method
is used. In practice it turns out that Strassen's identities will be
applied until the mstrices to be multiplied are of order ~ 100 or less,
snd then the normal method will be used (see Sec. 4.3). Supposing we
have mtrices of order 2k.n°, and apply Strassen's identities k times,
multiplying the matrices of order n, by the normsl method. Then (3.311)
holds with
flng) = (a3 + 3n, - 2)/2 (from3.16) ,
s0, assuming n, > 6, we have
#(2"n;) < 16502 . . (3.315)
Thus, for n x n matrices, the bound becomes |[[E]| < 2" 45 2 Al . (3.316)
19
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Since k will be very smll in practice, the bound (3.316) is not
too bad. Comparing it with (3.16), it appears thet we mey lose up to
tvo bits of accurecy, compared to that of the normsl method, esch time
Stressen's identities are spplied recursively.

In using Stressen’'s method there does not seem to be much point in
doing some of the srithmetic in double-precision, unless it can all be done
in double-precision, when the above bounds hold with ¢ replaced dy 2t
(snd a factor of 3/2 with Wilkinson's assumptions about the method of

rounding or truncating).

It is interesting to note that with Stracsen's method there is no
point in sceling the matrices so that [AlW[Bll. This is becsuse, unlike
Winogred's identity, Strassen's identities never involve the eddition of

an element of A to an element of B.
J Complex thmetic

The sbove analysis is based on the assumptions thet fl(x + y) =
x(14€)+3(1+c) and ) =xx(l+c) vhere g <2,
i =1, 2, 3, These assumptions will be valid for complex arithmetic too,
provided that t is decressed by & smell smount (2 or 3) depending on how
the arithmetic is done. Hence, with this small chenge in t, the atove
bounds will hold for complex matrix multiplicetion. Similar remarks
apply to resl arithmetic done on 8 decimsl or hexadecims] mschine (e.g.
the IBM 360). A curious anomaly which appesred vhen Winogred's method

was being tested on an IBM 360/67 computer is descrited in Sec. 4.6 .

“ A stronger assumption sbout addition, used in Section 3.2, wms not
reslly necessary (see [12]).
0




= G

Ul TN W W ¥ T3 G .3

b, _Isplementation

In order to compere the normel, Winogred's snd itrassen's methods
in prectice, they were sll implemented in ALOOLW [1C]) on »n IBH 300/67
computer. Doudbtless all threc methods would run faster if coded in,
ey, TORTRAN-H or sssembly language, but their relative speeds would
probably be sbout the seme. While it would be cesy enough to code
the normel method and Winogred's method in FORTRAN or azsembly language,
for Stressen’'s method it is very convenlent to heve » langusge which
sllows recursive procedure cslls. 7The simplest wy Lo code Stressen's
nethod in & lengusge like FORTRAN would be to limit the depth of re-
cursion snd duplicste sny subroutines which would meturslly be called
recursively. The three methods were tested on doth resl snd complex
mtrices, vith results which will be swwsrized belov,

All three msthods were coded in the form of s pure procedure,
with calling sequence
neme (A, B, C, ¥, K, P)
toform CieA.B, vhere A isen M x N metrix (dimenzioned (1 33 K,
1::NM),Bis NxP, andC is Mx P. Colla such as nume (A, A,
Ay W, N, W) ere wlid, snd correct results should be returned for 4ny
M Nand P2 1, provided enough temporery storege is sveilsbdle.

At first the procedures were coded 20 that the “Inner loops”involved
references to dowly-subscripted srray elements. In ALOOLW such re-
ferences take consideradly longer then references to singly-sudbscripted
arrey elements (11), end it was found that sll the procedures could dbe
speeded up by paasing cross-sections of two-dimensiomsl arreys ss pars-
meters to procedures which then opereted on them as one-dimensionsl

a
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k.2

erreys. (Thic is not sllowed in ALOOL-60.) For example, instesd of:
Por I := 1 until N do
for J := 1 until N do A(I,J) = B(1,J);
ve use: /!’
Por I := 1 until N do assign (A(I,%),B(1,%),¥);
wvhere ve have defined
Procedure assign (resl arrey A, N*); integer value N);
for J 1= 1 until N do A(S) 1= B(J);
The second form will excoute faster provided ¥ > 10 . As this device
speeded up the norval method rether more than ftressen's method, it is
clesr tint & comperison of the three methods depetids on the languege
end the progremxing teciniques used to implement them.

The implemention of eech method will nov be described in more detail.
The procedure for the resl snd complex ceses are very similsr, end list-
ings for the reel cese sre given in the Appendix.

o) The Normsl Metiod

(Procedure MATMULT, see Appendix, linez 7€S.311.) There sre no

particulsy difficulties in the implementation of this method. Because

of the possibility that C ia the ssme a8 A or B in the csll, the product

is formed in & temporery arrey Q end then trensferred to C. Thus M.P

vords of temporery storege sre wsed. Inner-products sre sccumilated in
doudble-precision, for in ALOOLN this is very nesrly ss fast ac scoumu-

lation in single-precision. Hence the error bounds (3.13) and (3.18)

are spplicedle (vwith the slteretion noted in Sec. 3.4), end in most cases each
c“ vill be the correctly rounded result, slthough this cen not be guarenteed.

e
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k.2 Winogred's Method

(Procedure WINOGRAD, see Appendix, lines 219-285.) Agrin the
implementation is fairly streight-forvard. The matrices A and B
are scaled as descrided in Sec. 3.2, end the scaled mstrices are
stored temporerily in arreys D and B. Strictly spesking, scaling
should be done to the nearest power of 16 rather than 2, for sceling
by powers of 2 could irntroduce roundoff errors on the 360, end these
errors have not been token into account in the error anslysis (Sec. 3.2).
Taking account of these erors gives the error dound

e < 2 Txa2.all. ol r (s.20)
wvhere K is a smll constent, instesd of (3.211). In the complex case,

|Mx)| + |I(x)| rether then |x| wes used to ssve time. This incresses
the error dound by & factor of at most 1.15 .

The imner-products x, and y, of (2.22), (2.23) ere computed snd
stored in the arreys X and Y. As stated sbove, it is not significently
hmumm-nmz‘mykumwmmm, so this
is done.

Inell, (n+ 2)(m+ p) words of temporery storege sre used, vhich
is about twice ss much as for the normel method if m=sn e p. The sums
(.1'2‘_1 + b”’t) snd ‘.1.2.1 + "2.1-1,1:) of (2.21) ere computed in
single-precision, and then the immer-product involving them is computed,
as usual, in dowdle-precision. If n is odd then the necessary correction
1s made, ond the finsl result £1(C) is formed. It is interesting to note
that if the sume (01’2‘_1 + b”’k) ad ('1,2.1 + sz-l,k) were com-
puted in dowdle-precision, we would be using double-precision throughout,

25
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snd the bound (3.212) would apply. Unfortunstely,the extre time teken to
do this slows the procedure down so that it is never faster than the
normal method, so the sums could only be computed in single-precision,

and the best arror bound we cen get is of the form of (k.21).

k.3 Strassen's Method

(Procedure STRASSEN, see Appendix, lines 6-216.) The method im-
plemented is the following: First, if m, n and p sre sufficiently smll,
normsl metrix multiplication is used (see belov for the precise criterion).
Othervise, m iz replaced by 2p/g, n by 2(n/3d, snd p by 2pp/3 .

A is pertitioned into four m/2 by n/2 mstrices and B into four n/2 by
p/2 mtrices, ignoring the last rov end/or column if necesssry. The
block 2 by 2 metrices sre multiplied using Stressen's identities (2.37),
vhich involves seven recursive cslls to STRASSEY to compute the m/2 by
p/2 producte Qo oo0 G (sctuslly C is used in plsce of Q7 to save
storege). Fimlly, the result is corrected if the originel m, n or p
vere odd. This svoids wsting spece and time dy filling up the srreys
vith zerocs ss descrided in Sec. 2.5 . In cese C coincides with A or B,
come values needed for the correction step have been seved in arreys 81
snd 32,

Actuslly implementing the identities (2.37) is tedicus but streight-
formard. The fust, generel-purpose procedure OP i: used to teke advantage
of the facility, noted sbove, for passing cross-sections of arrays ss

peremeters to procedures. In forming Ut and Cops the terms G e G
onuddndbcrmq, oo g,, for othervise the error bound would de in-
creased slightly. All srithmetic is done in single-precision except

24
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for the sccumulstion of inner-products when normsl metrix multiplicetion
is used, so the error bound (3.516) is applicable. Becsuse of the douhie-
precision sccumulation of imner-products, the term hkne in this bound my
be replaced dy 5.12“:\0 .

Procedure IDENTITIES usec the temporery arrays T, U, Ql, Q2, «cc 5, Q0 ,

taking (mn + np + 6pm) /4 words. Since the procedure is cslled recursively,
st any one time we may need < (mn ¢ np + 6p-)(lo'1 s 424470, ... )

= (mn + np + 6pn) /3 words of temporsry storsge.
The sarreys 81 and 82, and the stack spece required for recursive proce-
dure calls, will be negligible if m, n and p are reasonsbly lerge. The
spece for the errey Q, used wvhen normsl metrix multiplicstion is invoked,
my be absorbed into (4.31). Hence the temporary storege used is rough-
1y bounded by (4.31), end if m = n = p this is 8n2/5 vords, or slightly
more than thet required by Winogred's method and 8/3 times thet required
by the normsl method. For sll three methods, the temporery storoge re-
quirements cen be reduced if C is not allowed to overlsp A or B.

b Comperison of the Three Methods

The three procedures described sbove were run under the ssme con-
ditions (idle with "nocheck” option) for verious test mstrices A end B.
Some running times for the csse of squsre mstrices sre given in Tadble 1.
In esch case the depth of recursion in procedure STRASSEN ws kept at

exactly one.

(4.31)
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Isblel Bunning Times (in 1/60 sec.)

Rsna=p Real cese Complex case
Norwl Winogred Stressen’  Noisl Vinogred Stressen’

20 28 3k b2 53 53 ' 66

30 8 8y 107 167 150 187

L0 184 184 22 38 330 ho)

50 7 336 392 ™. 615 ™e

60 58k 557 636

*Stresscn's method vith exactly one recursion. Run times veried
slightly, dbut were constant to + 1%.

By counting operetions it is clesr that the running time of esch
method should be s cubic in n, and for Stressen's method the coefficients
will depend on the depth of recursion. It turns cut that the constent
tern is negligidle, and the times in Tadble 1 sre given to ¢ 1% by cwbics
T(n) = ax’ + bn° + cn with the folloving coefficients:

Dile2  Qublo Cosfficlents, T = ax + ba + cn, 4n s sec

(] ® [
Borml ho a1 2000
Besl Minogred n 200 9500
Stressen 36 650 8000
Norml 90 320 2000
Complex  Winogred B 20 1%0
Streseen’ 8o ™0 8000
26
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Some interesting conclusions msy be drawn from Tebles 1 end 2.
Comparing the normel method with Winogred's method, we see thet
Winogred's vill be faster if 37n° + 200n° + 9500 < o’ + 270n° + 2000,
1.0, 42 n > 40 in the resl cese,and if T3n° + 220n° + 11500 < 90w +
320n° + 2000, 1.0 4f n > 21 in the complex cese, vhich may be verified
by inepection of Tadble 1. As h % @, Winogred's method vill run in
37/40 = 928 of the normal time in the resl case, and in 73/90 = 81%
of the normel time in the complex case. The gains sre significent
for ressonadbly smell n: e.g. for n = 100 Winogred's method vill ssve
7 (real) or 188 (complex). Hence, for moderstely large mstrices,
Wirogred's method leeds to significent, though not spectaculsr, savings,
and is vortiwhile especislly in the complex cese.

It 1s worth noting here that it does not pay to reduce the multi-
plication of tvo complex n by n metrices to three multiplications of
resl n by n mstrices (plus some additions) by using (A ¢+ Bi)(C+ D1) =
(RePNN*(CG-BE-7)4 vhereBaAC, PoBD, end G (A+B)(C+ D),
for complex matrix multiplication tskes less than three times as long
a8 resl matrix multiplicetion (using any of the three methods).

(s.M1)

It follows from Table 2 thet Stressen's method vill de faster
than the normsl method if n > 110 in the resl cese, snd if n > 0 in
the complex case. Hence procedure STRASSEN should check to see if
n<n, (vuhno set at 110 or 60), snd if g0 use the normsl method.
I a3 n, then Stressen's identities should be used to reduce n to n/2,
ond the seme test applied recursively. This is what the procedure ac-
tuslly does, except that n, is not compared just vith n, dut also vith m
end p in case the mstrices are rectangular. It can de seen by counting
mtlmmtmomuuotuum<no(n¢np+p) rether

{4
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than if n< nye The times given in Teble 1 were obtained vwith By reduced
s0 thet Stressen's identities would be used exactly once.

By counting operetions, it cen essily be seen that the time ra(u)
for multiplication of n by n metrices using Stressen’s methcd should de

given by 2
on’o-bn +¢en+ d 1rn<n°
Ts(") - 71‘8(n/2) + u'na +bdn+c' ifn> no . (b.42)

From (4.42) 4t follows thit, if
k = max(0, I_log.‘,(n/nou +1),
then k k k
Ta(n) . (g) o + ((;) b+ ;((;) - 1).')::2
k k
+ ((%) ce §((§) - 1)b')n (h.43)
+ (7‘4 + %(1k - 1le') .
The constents s, b, ¢ and 4 should be those given for the normsl method

in Teble 2 (4 is negligidble). The constants &', b’ and c' determined to fit
the : sta in Teble 1 erve:

Teble 3 Constants in (b.42) ( u sce.)
Resl case ' = 190 b = kOOC ¢' = 120000
Complex cese 22t kono 120000

The constants in Tebles 2 and 3 are not very wcll determined by the
dsts (especislly c and c'), ond ere not exactly consistent. For exsmple,
from (4.02) ond (b.43) we should heve, in Table 2, ng = 7.,/8, vhile the
Table gives o, « 36 ond 8y = 0. The consistency is sbout ss good as cen be

expected though.

Prom (4.42) end (Mh.47) it follows that ‘l‘s(n) . c(n1°‘27) ssnve,
26
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so for sufficiently large matrices Stressen's method is arditrerily faster
than the normal method or winomc'l'l method. In precticel cases, say for
n < 200, the normel method or Winogred's method appeers to be faster.

By the above formulae ve can estimate that Stressen's uth& will be
faster than Winogred's only if n > 270 (resl csse) or n > 260 (complex
case). On the other hand, these changeover points sre very sensitiwve

to changes in progremming techniques etc., 8o it is conceivable that
Stressen's method would be the fastest, in some langusge on some mschine,
for matrices of order ~150. In most practicel ceses, Winogred's method
vill be the fastest, except that the normal method will be faster for
sufficiently smll mstrices.

5.5 n& Machiner

Some mechines (e.g. the Burroughs B5500) heve s fairly smll physicsl
memory but ¢ lerge "virtusl” memory. The user's progrem and dets is divid-
ed into "peges”, some of vhich mey be held in fast core memory, snd the
others on s device such as & disc or drum. When reference is made to a
pege vhich is not in memory, s hardwre interrupt occurs, »nd the required
pege is resd into memory from the externsl device (to make room for it, e
pege my have to be saved on the device). Ve ssy that & "pege feult” has
occurred. As 8 relstively slov extermal device is involved, page feults
sre very time-consuming and should be avoided ss much es possidle. (For
e discussion of the concepts of virtusl memory, peging, segmentation etc.

see Rendell and Kushner [9].)
e

MNe Kellar and Coffmen (4] heve considered the nusber of pege faults
which will occur when certein matrix operations, including multiplication,
ere performed on largs mtrices using a mechine with peging like that

2




3 &= =N W =

o wd  Gwend

I
I
I
I
i
)
1
1
1
¥
f

k.10

described above. They conclude that, for a slight modification of the
normal method of metrix multiplication, it is bette, to store a large
mtrix by submstrices, with esch submatrix fitting inio s small number
of pages, than by rows or columns. Even then, the number of page faults
vill increase like n’ for sufficiently large n. Similar arguments would
apply to Winogred's method, again suitebly modified.

Unlike the normal method or Winogred's method, Stressen's method
vould perform well, with eventuslly 0(n2°®) page faults, even vhen
aimple rowv or column storage is used. This is because the only metrix
opergtions on mtrices with n > n, are assigmment and addition operations,
and these can be performed as efficiently vhen row or column storage is
used as for sny other method of storage. A few modifications to the
procedure STRASSEN in the Appendix should be made. By should be de-
creased if necessary so that N, by B, matrices can be multiplied in
core (without any pege faults). Also, inner loops should involve opere-

tions on one row rether then on one column, if row storege is used.
Thus we should chenge double loops like

For J = 1 until Ndo for I := 1 until M do ...
to ForI:s)luntil NdoforJ :=1 until Ndo ... .

This also applies to the "implicit" loops when procedure OP is called:
e.g. lines 138 - 139 should be chenged to

For I := 1 until M2 do

Q(T(I,*),A(I,*),A(I,*),E,O,N?,-1); .

Hence Strassen's method might be competitive with the other methods for
smller values of n on & paged machine than on a machine without peging.

30




4.6 Rounding Errors

The procedures were tested using matrices with elements uniformly
distributed in (-1/2, +1/2), or with real and imsginary parts having
this distribution. ||l-:||: and ||E||M were computed, assuming that the normal
method gave exsct results, which is reasonsble considering the error
bounds (3.13) end (3.18). As expected, the error bounds (3.211) and
(3.316) of the form |[E|| < 2't1'(n) lIAll-||B]] were too pessimistic, and the
actual |[E|j was more like 2°° fT(m) |All.|iB)l : See Table &.

Table 4 E 2™% fe(n) 1ALl JiB

n_ Real Strassen  Complex Strassen Complex Winograd
30 0.27 0.28 0.28

Lo 0.20 0.83 0.2

(taking £(n) -{%( n® + 12n -8) for Winograd,
¥%2% for Strassen, and t = 21)
A surprising result occurred with Winograd's method in the real case.

The single-precision results agreed exactly with those given by the normel
method! This might be expected if the error bound (3.212), rether than
(3.211), were applicable. The anomaly is spparently caused by the special
nature of the test matrices and the characteristics of floeting-point
arithmetic on the 360/67. As the elements of A and B were uniformly
distributed in (-1/2, +1/2), about 7/8 of them would have absolute values
in (1/16, 1/2). Since the 360 i3 a hexsdecimal machine, any two such

- numbers will be added exactly. This mesns that at least 49/6l4 of the sums
(x2:]-1 + y2.1) and (xaj + ye:,_l) of (3.21) will be formed exactly. As

31
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remarked in 8ec. 3.2, this mesns that we are effectively using at lesst
double-precision most of the time. Presumably the fev errors made in
computing the sbove sums were not enough to affect the rounded single-
precision results, slthough it seems strenge thet all the clements of

a 50 x 50 product should sgree, even to the last bdit, when ocomputed by
two such different methods. In the complex case this anocmsly dissppesrs,
for a rounding error will ususlly be made in adding either the resl or
the imsginsry perts of the shove sums.
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5.1

For 2 x @ mtrix multiplication, dboth the normal method and Stressen’s
msthod mey be descrided as follows: dmtlnn“.ndbw we form prod-
mql. vee p q,ottboton

Q= (Dot N T0aty) (5.01)
end then the O 87 linesr coabimetions of the q', 1.0. there are

constants such thet
’w °u . ’g?m% . (5002)

Substituting (5.01) 4in (5.02), equeting coefficients, and using
the definition of matrix multiplicetion, gives the set of equetions

i “las’mp ° Pnt®nla , (5.03)
vhere & is Kronecker's delta. (The subscripts on the c_ were reversed
to increase the symmetry of (5.03).) For the multiplicetion of M x N
mtrices by N x P matrices, ( 5.0?) cives (lll’)2 equations es 4, J, k,
Ly my and n renge over the integers 1< 4,n<N, 1< J,k<h, 1<L,m<P.
For example, in the 2 x 2 case with T = 7, ve have 64 equations in 84 un-
knowns, and Stressen's identities show that there is a solution. Stressen's
solution has the nice property that all the @y 4p .HD and — 0or
41 . Note that, if a solution of (5.03) exists, it will certainly not
be unique. ’

Stressen’ : asthod applied to & x & matrices shows that the
equations (5.03) have an (integrsl) solution vien M=N=P = 4,

T = 49 (there sre 4096 equations in 2352 unknowns). In genersl Stressen's

method shovs thet there is & solution with T = 7% when M= N = P = 25 .
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(5.2)

It there is ¢ resl solution with M« N = P ond o cortein 7, then
metrices of order n cen be miltipiied in G(n*°%7) eritimetic operetions
by o simple extension of the method desoribed at the deginning of Sec. 2.3.
While on integrel or retiomsl solution is desiredle, in theory.s resl or
even o complex solution would suffice.

The problem lesding to equation (5.03) cen be generelized in the
folloving wmy: suppose 839 ooo p 8y end bl.’ see o bJ ere non-commut-
ing varisdles, %5x is o given three-dimensionsl arrey of resl or complex
nusbers, snd wve want to compute the K sums of products % ° 80“3011»:
(k =1, .c. , X) in os fev multiplicetions es possidle. Then we went
the leest possible T and scelars Qe l“. Tnt such that from the T
products

P " ( ;oit.i)(g.dtb.‘l) »1€t<? , (5.08)

ve can form the Q a8 linesr combinetions of the Py o

qk-tgyktpt ’ lsksl. (,oO’)
Combining (5.04) and (5.05) snd equeting coefficients gives

Qa b/ s @
gl 103tk 13k

for 1<1<1, 1<3<J, 1<k<K,

(5.06)

and clesrly (5.03) 1s s specisl case of (5.06).

To sharpen the upper bound (2.36) for the constant B, defined by
(2.35), we could look for solutions of (5.03) with M= N = P end
1o¢“'r < 10(27 « For example, we would like to find solutions with N = 2,
TeborNe3 Te2lorNeh, TulB., As ( 5.03) is o special case of
(5.06), and as it is convenient to avoid triple subscripts vherever possibdle,

we shall first consider (5.06).
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In the case I = 1 1t is not difficult to shov thet the ainimsl T
for vhich s solution of (5.06) exists is the yenk of the J x K metrix
(om). ond sinilarly if JorKel, If I, J ond K are grester than
unity then there does not seem to de any such simple theorem, and
examples vith I o J o K = 2 show that the minimsl T may depend on
vlntlm-thoa“, l“ end Yy OF® sllowed to be retioml, resl, or
complex. m.tolomutrmmcmanwl. Hence wo
are led to try numerical methods for solving specisl cases of (5.06).
If these methods £ind a resl solution, then it is worthwhile to try
to £ind en integrel solution, dut if no resl solution exists there

is no point in looking for an integrel solutionm.
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Beceuse of the large nusber of equetions ( 4096 for N = &),
conventionsl numericsl methods 1ike Newton's method ere imprecticsl
for £inding e solution of (5.06). The prodlem may be regarded os cne
of function miniaizstion: we went to minimise the sum of squeres of
residusls of the set of equations (5.06). If § end 7 ere fixed , then
(5.C6) 43 o set of linesr equations in the 0goc Hence we could £ind o
lesst-squares solution of this (overdetermined) system, then fix 7 ,

& ond find & lesst squres solution for §, then for ), and repest the

cycle. The sum of squares of residusls vlil converge tO some none
negotive nuaber, end hopefully this will be zero. Even this method
would De imprecticsl, except thit the coefficient of Og¢ in the systea
of linear equations happens to be independent of i. In other words,
the metrix of coefficients hes I identicel T x T dlocks along the mein
disgonel, and zeros elsevhere, 80 coch lesst-squares prodlem splits uwp

into s number of smller ones.

Writing x, for (ger VO want the lesst squeres solution of Ax = b,
vhere A = (B ) (5,1),¢

The solution is given by x = (A’A)AT> (in the resd cese) ,
and ve have

ATA = (( g’dt’:’u)( g 7kt7ku))t’“
s Ab = ( Jz’:k IIYNCIT P

As noted sbove, (5.13) is independent of i, but (5.14) depends on 1.

36
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It 1s not clesr hov on¢ should make ¢ good initisl guess at &
solution of (5.06), but in any case, vith rendomly chosen g, §, snd 2,
the initia) retée of convergence ia rupid. Unfortunately the convergence
soon slows dowm. One possible dirficulty mey be 1llustreted by 8 two-
dimensional exasple: suppose we try to minimize s(0,8) by fixing 9,
mininizing s with respect to ¢, fixing o end minimizing s vith respect
to §, ctec. If the contour lines of s are ellipses os {llustrated in
the diagrea below, there will be s slov "zigzag” epproach to the
ninimm, N

Q

In the case illustreted, the following slgorithm will speed up
convergence:
1/ 1:=0; Quessay, B, .
2/ Find 87 to minimize s(g, + 0%8,).
3/ FMnd 6’ to minimize l(a1 + oa,pi + 6.).
4/ Fndw to minimize l(01+1,’1+1),
vhere @4l " + "a”iﬂ. = 31 + vo' .
5/ m i+,

6/ Go back to 2/ .
37
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5.6

In the simple cese of & quadretic function s(a,p), this slgoritim
vill find the ninimum in one cycle.

The come ides cen be used in our more gnerel problem. If s{c, ), 2)
ic the sum of squeres of residwsls, we ﬂnﬂf to mininise o(gogapbz) ’
then 8% to mintatse o(c + %0 + 0,5y ,
then 87 to minimize s(g + §°,p ¢ f.z +,
then v to minimize s(@',§'y2') where g'w g ¢ U!_° ete.

Since

e
a(a*8'57") = "gk [g (ag, + w5 )(0y, + v )(ry, ¢ vo;,)] y  (5.20)

we can express s 83 o sixth degree polynomisl in v, and then v csn de
chosen to minimize this polynomisl (glcbelly).

38
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6.1

A progrem was written to try to find s solution of (5.03) using
the least-squeres approsch descrided in Sec. 5. Although it would de
interesting to look for complex solutions, only the resl cese was
considered.

The positive definite symmetric mstrix ATA 18 found from (5.13)
snd Ap 1s found from (5.14), taking advantage of the identity.

o Para’mnulntd skt * ;.JM"IA\: . (6.01)

6.1 Cslculstion of l‘n.;)

We shnll use two or three subscripts on the 0, § and y es con-
venient. The sum of squares of residwmls of (5.00) 1s

2
- - , é.11
(302 1’%‘ g %P3t Txt . "1.11] (6.12)

so s(a,8,7) = 1o§k -Z °1t’.1t7kt]
ca,L (,,,, g.,,.,t,,t)

t 1

+ Z 2

1o (6.12)

The streightforvard evaluation of (6.11) for matrix multiplication with
MeNs=P takes ~a6'r operstions (Just counting multiplications). Using
(6.12) instead, the last two terms give no problems, in fact

: e
1§»k i 1:.1;§Iulm (8150 )~ = WeN-P (6.13)

29
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6.2
nd IR
. ‘.g."m § 1P 5t7xe
® a y .0..0.0 ‘
1,3,k Lymyn,t Sjt.utmtnl.‘ltll
- L oy (6.14)

1,35yt
end the evalmtion of (6.1%) requires mm’! operetions. 7The first

tem in (6.12) is :
e
S so® s E[Fecd@ueaGranl. e
end the right side of (6.15) involves +30°T2/2 opersticns (508 are
ssved by symmetry). 8ince we are interested in values ot!«ia's, s can
be found from (6.12) - (6.15) lnv”.'.‘/z operetions instesd of Nﬂe.e

using (6.11) . Hence it is much faster to use (6.12) - (6.15), slthough
this involves some loss of scocurecy,

6.2 dratic tion

At first the coefficients of v in the sixth degree polynomisl p(w)
of (5.21) were calculated using @ §, 2, &% &° end §7, and the globel
ninimm of p(v) vas found. Evaluation of the coefficients of p(v) wms
rether time-consuming, end it was noticed that the minimum usmlly occurred
for 1 < w< 2, and in this renge p(v) vas approximated very well by the
quadretic fitting p(0), p(1) and p(2).

Since p(0) = s(g,fs7) is alresdy known,
s voth  P1) = a(gre®,pee, 248")
and p(2) = s(a+28%,p+28P,4+287) may be found by the method of Sec. 6.1,
the progran was speeded up consideradly by using the quedrstic approximation,
and the rate of convergence was not noticeably diminished.

ko
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As 8 precaution, necesssry for the first fev iterstions anywy, v
was constreined to lie in (1, 3) . Once v was chosen, s(g_w_cf’, vwg.,
7+vg’) ws computed (using previously cslculated inner-products like

{ama“), snd & check made that it wvas less than p(1) and p(2) .
After the first fev iteretions these precautions usually turned out to
be unnecessery. Note thet, once s = E (a‘.‘l + xogu)(a“ + 36:') is

found for x = O, lande,nuuﬁndlnycxrru
-,-%((12-v)lo*(z-arz)-lﬂre*v)-g). vhere y =x -1 .
This device wvas also used to save some time. There is @ danger of

numerical instability unless |%(y2 - y)l <1, 1.0 unless 0<x< 3,
wvhich 1s one resson vhy v vas constreined to lie in (1, 3] .

IZ N = N = P, the number of operstions (Jjust counting multiplications)
per complete cycle is ~(15lz+'1')'1'2/2 . Since N° <T< ll’ for the cases of
interest, this grows very repidly with N. On the other hand, we are trying
to solve l‘ nonlinear equations in 5l2'r unknowns, so it would be surprising
if any other method could do much better.

6.3 Summary of Results

The attempt to lower the bound (2.36) war unsuccessful, but some
interesting negative results were obtained. For 2 x 2 metrices, many
solutions were found with T = 7, but s never fell below 1 for T = 6,
strongly indicating that Stressen's method gives the minimel nusber of
multiplications for 2 x 2 mtrices (at least for resl a, § and 7). With
T = 7 each iteration took about 0.2 sec. and convergence was fairly fust,
and appeared to be linear.

bl
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Trying T s 1, 2, «ee 7 for 2 x 2 matrices, it wvas found that
71T =5, 60r7
inf(s) + Tu{ 8 £ Tw 1, 2 0r3
7.59 i£ Tw=h , |
Thus the minimal sum of squares of residuals is usually integrel, dut
appears to be nonintegral for T = 4.

3 x 3 matrices may be multiplied in 26 multiplications by using

Strassen's method on a 2 x 2 submatrix. It appesrs that there is also

a solution with T = 25: the progrem (taking 3 sec./iteration) reduced

s to 0.183 in 33 iterations, and s was still slowly decressing. Knuth

has found a solution, involving cube roots of unity, with T = 24, How-
ever, 10332h > log,7, and in fact 10;521 < log,7 < 103322, so & solution
with T < 21 is necessary to improve the bound (2.36). When the program was
run wvith T = 21, s appeared to be tending to 2 rather than to zero. If
the rule inf(s(T)) + T> T

min
holds generally, this would indicate that for 3 x 3 matrices Tmin <283 .

s vhich was observed for the 2 x 2 case,

For 4 x 4 matrices the program was run with T = 48, to try to improve
on Strassen's 49. Unfortunately, each iteration took 18 sec., and con-
vergence was slow, so lack of computer time forced a return to smaller

problems.

Various cases of smell rectangular matrices were investigated. For
example, the program was runwithu'-P =2, N=LandwithM=P = §,
N = 2 . In these cases the smallest T for which s appeared to be tending
to zero was exactly the T to be expected by partitioning the matrices and

b2
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6.5

spplying Strassen's method. Convergence often slowed as s approached 1,
and speeded up again once s < 1, and there was no case in wvhich s <1
was attained, but for wvhich s failed to tend to zero. Perhaps s(a , 8, 2)

has some locsl minims or saddle points, dbut they all have s > 1.

To summarize the results: although nothing has been rigorously
proved, it appears likely thst, to improve on the bound (2.36), matrices
of size at least 4 x U4 must be investigated. It is plausible that there
are no (real) methods better than Strassen's for the 2x 2 or 3 x 3
case, and if this is so it iz unlikely that any new method could bde of
much practical use, although it would certainly be of theoretical interest.
A practical method needs to have retional a, § and 7, and to be fast for
reasonsbly small metrices most of the components of a, § and y should

vanish.
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7.1

1. __Conclusion

While the normsl method takes O(z’) operstions to multiply n x n
matrices, Strassen's method shows that O(na'e) suffice. In practice,
though, the normsl method is faster for n < 100 . Winogred's method,
while still taking O( i~ ) operations, tredes multiplicstions.for
additions and is definitely fuster than the normal method for moderete
and large n, with s gain of up to aboyt 10% for real matrices and up to
about 20% for complex matrices. The gain would be grester for double
or miltiple-precision arithmetic,

Floating-point error bounds can be given for Strassen's and Winogred's
methods, and the bounds are comparable to those for the normal method if

the same precision arithmetic is used. With Winogred's method the necessity

for prescaling can not be emphasized too strongly (see slso [12]).

Provided scaling is used, Winograd's method can be recommended, es-
pecially in the complex case, unless very high accurecy ;I.l essential. It
is much easier to code than Strassen's method. Possibly Strassen's method
would be preferable when working with large matrices on a paged machine.

Attempts to lower the constant 10327 = 2.8... given by Stressen's
method were unsuccessful. A completely new approsch seems necessary in
order to bring the upper and lower bounds on the computational complexity
of matrix multiplication much closer together. roi matrices of reasonable
size, though, it seems unlikely that any new method could de very much

faster than the known methods on a serial computer.

|
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[ 4

0001
0002
0003
0004
0008
0006
0007
0008
0009
0010
e 0011
0012
0013
2014
- 0015
0016
: 0017
0018
- 0019
0020
d 0021
0022
~ 0023
0024
: 0025
0026
- 0027
0028
.. 0029
0030
- 0031
0032
s 0033
0034
- 0035
0036
8 0037
0038
- 0039
0040
s 0041

0042
J 0043

3

0044
0045
0046

0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

) «
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RERIN COMMENT:
TEST PROARAM FOR PROCEOURE STRASSEN, WINOGRAD A MATMULT,
FILE 1S ARENT,TESTSTRASSEN ON SYSO09;

PROCEDURE STRASSEN (REAL ARRAY A, 8, C (o, o)
INTERER VALUF M, N, P);
BEGIN COMMENT:

IF A IS AN M XN MATRIX, AND B IS AN N X P MATRIX,

THEN THE M X P PRODUCT MATRIX A.8 IS RETURNED IN C.

A MODIFIED FORM OF STRASSEN'S METHOD IS USED WHEN

M, N, AND P ARE SUFFICIENTLY LARRE, T IS BASED ON THE
FOLLOWING IDENTITIES WHICH HOLD IN THE 2X2 CASE:

Cll1 = Q1 - Q3 - N5 ¢+ Q7,

Cl12 = n“ = QI'

C21 = N2 + Q3, AND

€22 = Q5 +» Q6 -~ N2 - Nk, WHERE
(A1l - A12).R22,

(A21 - A22),.811,
A22.(B11 » B821),
All1.(812 + 822),

(A1l + A22).(822 - B11),
(A11 * A21).(B11 « B12), AND
(A12 + A22),(B21 + R22)

A, B AND/OR € MAY BE IDFNTICAL OR OVERLAPPINGR IN THE
CALL TO STRASSEN, IN THE CASFE MsN=P THE INTERMENIATE
STORARE REQUIRED IS ABOUT 8Ne#2/3 REAL WORNS, TIIIS
COULN AF RENUCED TN Nees2 (OR MORF QRENERALLY

(MM o NP o PM)/3 ) RY BUILNINR UP THE PRODUCT AFTER
FACH CALL Th STRASSEN IN EVENMULT, BUT THEN C cCOULD
NOT OVFRLAP A OR B, AND THE PROCEDURE WOULD BE

RATHER SLOWFR,

IF 3MMP/(MNeNP+PH)<aNO THEN NORMAL MATRIX MULTIPLICATION
IS USFN, THIS IS BECAUSE STRASSEN'S IDENTITIES SAVE
TIME ONLY IF A MULTIPLICATION TAKES LONGER THAN 14
ADDITIONS, WHICH IS CERTAINLY FALSE FOR MATRICES SMALLER
THAN 16 X 14, OR A LITTLE LARGRER, THE NUMBER NO

IS MACHINE ANN COMPILER-NDEPENNDENT, RUT 100 IS ABOUT
g;;ag:kn;oa ALROLW ON THE 360/67 (WITH NDO ARRAY BOUNDS

THE TIME FOR PROCENDURE STRASSEN IS AROUT THE SAME AS
FOR THE NORMAL METHOD FOR SMALL M, N AND P, BUT FOR
LARGE M, N AND P THE TIME MULTIPLIES BY 7 (RATHER
*THAN 8) EACH TIME M, N AND P ARE DOUBLED, ACCURACY
IS NOT MUCH WORSE THAN FOR MATRIX MULTIPLICATION BY
;:Ec?g?SL METHOD WITH ALL OPERATIONS DONE IN SINGLE
N.

R BRRFNT, JULY 1989;

DD
[
a8

=
wm
aesenas

REAL PROCEDURE IP(RFAL ARRAY A, R(e); INTEGER VALUE N);
BEAIN COMMENT:
RETURNS THF INNER PRODUCT OF THE N=VECTNRS A ANN R;

LONA REAL S;

S t» 0L

FOR | s 1 UNTIL N DD S 3= S ¢ A(I)eB(1);
ROUNDTOREAL(S)

END 1P}

PROCENURE OP(REAL ARRAY A, 3, C(#); INTERER VALUE M1, M2, M3, F);
BEGIN COMMENT: q
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0087
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0093
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132

EFFECTIVELY DOES:

FPOR | 5= 1 UNTIL M1 DO

ACl) 1= B() o nz) . hc(l * M3)

WHERE F o 0

NOTE THAT l‘l Amol.u 1-0 ARRAY ACCESSES ARE MUCH
FASTER THAN 2-D ACCESSES;

IF F >0 THEN
BEGIN IF M2 = 0 THEN
REGIN IF M3 = 0 THEN
::sln FOR | 1= 1 UNTIL M1 DO ACI) s= BCI) ¢ C(1)

Ekg! FOR | 1= 1 UNTIL M1 DO A(1) 3o B(I) ¢ C(I + M3)

ELSE
BEAIN IF M3 = 0 THEN
:tnlu FOR | se 1 UNTIL M1 DO ACI) s B(I ¢ M2) ¢ C(I)
ND
5#3‘ FOR | s 1 UNTIL M1 NO ACI) s= BCI o M2) ¢ C(I ¢ M3)
END
ELSE IF F < 0 THEN
BEGIN IF M2 = 0 THEN
BEGIN IF M3 = 0 THEN
zsglu FOR | s» 1 UNTIL M1 DO A1) s= BCI) = C(1)
skgs FOR | s= 1 UNTIL M1 DO ACI) = BCI) = (I ¢ M3)
ELSE
BEGIN IF M3 = 0 THEN
3§g|n FOR | s= 1 UNTIL M1 DO A1) := B(I ¢ M2) = C(1)
Ekﬁ‘ FOR | := 1 UNTIL M1 DO AC1) 1= B(I & M2) = C(I ¢ M3)
END
ELSE
BEGIN IF M2 = 0 THEN
253|n FOR | = 1 UNTIL M1 DO ACI) se B(1)
gkge FOR | := 1 UNTIL 1 NO ACI) = R(1 & M2)
END OP;

COMMFNT: IF M, N, OR P SMALL USE NORMAL MATRIX MULTIPLICATION,
THE CONSTANT NO MENTIONED ABOVE 1S REDUCED TO 29 FOR
CHECKINR PURPNSES; ,

IF (3sMeNeP) (= (29¢(MeN ¢ NeP ¢ PeM)) THEN

BERIN COMMENT: WE USE A TEMPNRARY ARRAY 0t IN CASE C = A OR B;
REAL ARRAY 0 (1 :3 M, 1 :: P);

FOR | 3= 1 UNTIL M DO FOR J = ] UNTIL P PO

QCl,Jd) 3= IP(ACI,*), R(e,J), N);

Egg I 3=} UNTIL M DO OP(C(l ), alt,e), a(l, '). P, 0, 0, 0)

C

ELSE
BEGIN COMMFNT: USE STRASSEN'S METHOD;

PROCENURE IDENTITIES;
BERIN COMMENT:
THE INENTITIES ARE PUT HERE TN AVOID SEGMENT
OVERFLOW;

a8
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0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
(198

REAL ARRAY T (1 33 M2, 1 33 N2);
REAL ARRAY U (1 3 N2, 1 s P2);
REAL ARRAY Q1, 02, A3, Q&, OS5, no (1 ss M2, 1 33 P2);

FOR J := 1 UNTIL N2 NO

or ‘T‘.‘ J" A('o J" A(" J e “2" "2' °’ 0, '1”

FOR | 3= 1 UNTIL N2 NO

oP (UCI, =), BCI « N2, »), B(I, ), P2, P2, O, 0);
STRASSEN (T, U, a1, N2, N2, P2);

FOR | 3= 1 UNTIL M2 DO

OP (T(1, #), ACl ¢ M2, o), A() ¢ M2, o), N2, O, N2, =1);
STRASSEN (T, 8, Q2, M2, N2, P2);

FOR | 3= 1 UNTIL M2 DO

or ‘T‘.‘ ')‘ A(l M!, ')o ‘(" "o Nl, “z' °' 0);

FOR | 1= 1 UNTIL N2 DO )
oP (U(1, »), B(I, »), B(I + N2, #), P2, 0, 0, 1);
STRASSEN (T, U, O3, M2, N2, P2);

FOR J := 1 UNTIL P2 DO

OP (U(e, J), B(e, J ¢ P2), B(e, J ¢ P2), N2, 0, N2, 1);
STRASSEN (A, U, Q&, M2, N2, P2);

FOR | := 1 UNTIL M2 DO

oP {T(1, *), A(1, ¢), A(l » M2, ¢), N2, O, N2, 1);

FOR | t» 1 UNTIL N2 NO

opP (U(l, .)' B(l * Nzo ',' ."‘ "‘ Pz, Pz. 0, .1”
STRASSEN (T, U, NS, N2, N2, P2);

FOR | s= 1 UNTIL M2 DO

OP (T(1, *), A(l, *), A(l + M2, ¢), N2, 0, 0, 1);

FOR J := 1 UNTIL P2 DO

OP (U(e, J), B(e, J), B(e, J & P2), N2, 0, 0, 1);
STRASSEN (T, U, 06, N2, %42, P2);

FOR J := 1 UNTIL N2 NO

OP (T(e, J), A(e, J ¢ N2), A(e, J ¢ N2), M2, O, M2, 1);
FOR | := 1 UNTIL N2 NO

oP (U(1, =), R(I1 + N2, »), B(I ¢ N2, »), P2, O, P2, 1);
STRASSEN (T, U, € , M2, N2, P2);

= 1 UNTIL M2 DO FOR J := 1 UNTIL P2 NO

J) ts Q1(1,d) = N3 (1,4) ¢ C (1,J) = OAS(1,J);
J ¢+ P2) = Nk(1,d) - O1(1,J);

¢ 12,J) := Q2(1,d) ¢« Q3(1,J);
*M2,J+P2) :3:Q5(1,J) ¢ QB(1,J) = (N2(1,J) ¢ Qk(1,4))

END IDENTITIES;

REAL ARRAY S1(1 :: P);

REAL ARRAY S2(1 :: M);

INTERER M2, N2, P2;

M2 := M DIV 2; N2 = NDIV 235 P2 := P DIV 2;

COMMENT: THIS PART MUST BE DONE NOW IN CASE C = A OR B;

IF (2#112) < M THEN
BEGIN FOR J := 1 UNTIL 2+P2 NO
S1(J) = I1P(A(M,*), B(e,J), N)
END;

IF (2+P2) < P THEN
BEGRIN FOR | := 1 UNTIL M DO
S2(1) = 1P(ACI,®), R(e,P), N)
END;

IDENTITIES;

112 s= 2¢M2; N2 3= 2¢N2; P2 3= 2¢P2;
&
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0199
0200
. 0201
0202
0203
0204
. 0205
0206
‘ 0207
0208
P 0209
0210
0211
0212
b o 4 0213
0214
. 0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0269
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
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COMMENT: IF 1, N, OR P WAS ODD WE MAVE TO FIX UP THE BORDERS;

"ﬂggla N THEN
FOR | s= 1 UNTIL M2 NO FOR J 1= 1 UNTIL P2 DO
g:a.d) te C(1,9) * ACI,N)eB(N,J)
-ND;

IF M2 < M THEN
gsglu FOR J s= 1 UNTIL P2 NO C(M,J) 3= 81(J)
3

IF P2 < P THEN
g:gl“ FOR | t= 1 UNTIL M DO €(I,P) 3= 82(1)

END
CND STRASSEN;

PROCEDURE WINOARRAN (RFAL ARRAY A, 0, C(e,*); INTEQER VALUE M, N, P);

SEQGIN COMMENT:
IF A IS AN M X N MATRIX AND B AN N X P MATRII‘ THEN
THEIR PRODUCT A,B IS RETURNED IN C, WINNGRAD'S METHOD
1S USED WITH PRESCALING TO ENSURE GOOD ACCURACY;

REAL PROCEDPURF UP(RFAL ARRAY A, R(e); LONG REAL VALUE X, Y);
REGIN COMMENT:
RETURNS THE INNER PRODUCT OF THE N-VECTORS A AND 8,
USING PRECOMPUTED X AND ¥, N IS RLOBAL;

LONB REAL S;

S 1o «o(X ¢ ¥);

COMMENT: (F THE NEXT STATEMENT IS REPLACED BY:

FOR | := 2 STEP 2 UNTIL 2«(N NIV 2) DO

S :5 8 ¢+ (LONGCACI=1)) ¢ LONG(B(I)))*(LONGCA(I)) ¢ LONG(B(I1-1))).,
THEN THE CORRECTLY ROUNDEDN SINGLE-PRECISION RESULT IS USUALLY
RETURNED (ASSUMING PRESCALINAR). UNFORTUNATELY THIS SLOWS DOWN
THE ALGORITHII SO THAT IT IS NO LONRER FASTER THAN THE USUAL ONE;
FOR | 3= 2 STEP 2 UNTIL 2¢(N DIV 2) DO

S 1S ¢ (AC(1 = 1) ¢ B(I))e(A(1) « B(1 - 1));

IF (N REM 2) > 0O THEN S s S » A(N)'B(N)S

ROUNDTOREAL(S)

END WP;

LONG REAL PROCENURE XI(REAL ARRAY A(#));
BEGIN COMMENT:
USED TN PRECOMPUTE THE FUNCTIONS OF A REMUIRFED BY UP;

LONG REAL S;
S 3= 0L
Fon 1 3= 1 STEP 2 UNTIL N = 1 N0 S :1= S ¢ A(1)2A(1 ¢+ 1);

FNn X!;

PROCEDURE MAX (REAL ARRAY A(T¥Y REAL VA(UE RESULT BD);
FOR | := 1 UNTIL N DO IF BD < ABS(A(I1)) THEN BN := ABS(A(I1));

PROCEDURE MUL(REAL ARRAY A, B(e); REAL VALUE M);
FOR | := 1 UNTIL N DO A(1) 3= HeR(I);

REAL AMAX, BMAX, MULT;

COMMENT: THE ARRAYS D AND E ARE USED AS TEMPORARY STORAGE IN CASE
SOME OF A, B AND € COINCIDF;

REAL ARRAY D(1 13 M, 1 2: N);

REAL ARRAY F(1 :: N, 1 :3 P);
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0265
0268
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330

LONG REAL ARRAY X(1 s: M);
LONG REAL ARRAY Y(1 3: P);

COMMENT: A AND 8 ARE SCALED AY SUITABLE POWERS OF TWO TO AIVE Q00D
NUQESI:AL PROPERTIES, AND THE SCALED MATRICES STORED IN
N AN 3
AMAX 3= BMAX 3= 0,03
FOR ) 3= 1 UNTIL 1t DO MAXCACT,*), AMAX));
FOR K 3@ 1 UNTIL P DO MAX(B(e*,K), BMAX); l
MULT s= IF (AMAX > 0) AND (RMAX > 0) THEN
200éTgUgCATE((lOG(BMAX) = LOACANAX))/LOB(L) ¢ 200,5) - 200)
ELS 03
FOR | 1= 1 UNTIL M DO MUL(NCI,e), ACI1,e), MULT);
FOR K = 1 UNTIL P DO MUL(E(e,K), BR(e,K), MULT);
COMMENT: NOW SOME CONSTANTS ARE PRECOMPUTED AND SAVED IN X AND Y;
FOR | 3= 1 UNTIL 1 nO X(I) s= Xi(D(1,*));
FOR K = 1 UNTIL P NO Y(K) s= XI(E(e,K));
COMMENT: HOU THE INNER PRODUCTS ARE FOUND;
FOR ¢ := 1 UNTIL M DO FOR J s= 1 UNTIL P DO
CA1,Jd) s= UP(N(1,*), E(e,J), X(I1), Y(J))
END WINOGRAD};

PROCEDURE MATMULT (REAL ARRAY A, B, (e, *);

INTEGER VALUE M, N, P);
BEGIN COMMENT:
FORMS C := A,B IN THE USUAL WAY;
REAL PROCEDURE IP(RFAL ARRAY A, 8(e®); INTEGER VALUE N);
BEGIN COMMENT:
RETURNS THE INNER PRODUCT OF THE N-VECTORS A AND B;

LONG REAL S;

S 3= OL;

FOR | 2 1 UNTIL NDD S =3 S « A(1)eB(1);
ROUNDTOREAL(S)

END IP;

PROCEDURE ASSIGN (RFAL ARRAY A, B(*); INTFGER VALUE N);
FOR | = 1 UNTIL N DO A(1) := B(1);

COMMENT: Q IS USED IN CASE C COINCIDES WITH A OR 8;
REAL ARRAY Q(1 :: M, 1':3 P);

FOR | t= 1 UNTIL M NO FOR J := 1 UNTIL P NO

A1,J) 3= IPCACY,»), B(e,d), N);

FOR 1 := 1 UNTIL M DO ASSIABN (C(I,*), QO(l,*), P)
END MATMULT;

INTEGER RAN1, RAN2, RAN3, RAN&;
INTEGER ARRAY RANS5 (0 :: 255);

PROCEODURE RANINIT (INTERER VALUE R1);

REGIN COMMENT:
MUST 8FE CALLED WITH ANY INTEGER R1
TO INITIALIZE PROCENURE RANDOM;

INTOVFL := NULL; COMMENT: MASKS OFF INTERER OVERFLOW;
RAN1 := 13 RAN2 := 2¢ABS (R1) ¢+ 1;

FOR | t= O UNTIL 255 NO RANS (1) t= RAN2 := RAN2#65539
END RANINIT;

REAL PROCEDURE RANNOM;

TEGIN COMMENT:
USES T'IN SIMPLFE LFHMER GENERATORS OF THE FORM
X(Mel) = X{N)eA (MOD T) WITH
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0331 =~ ' Al = 11eel] (MOD T1) ® 8435, Tl = 2¢el3-] = §391,

0332 ee A2 = 200]8+3 o §5539, T2 » 2'031 ® 2167483643,
0333 ee THE FIRST GENERATOR JUST POINTS T0O THE TABLE OF
0334 o~ ENTRIES FOR THE SECOND AENERATOR, SO GOOD RANDOM
0335 == NUMBERS WITH A CYCLE LENGTH AT LEAST 2,100¢12 ARE
0338 =~ PRONUCEN,
0337 o= THE INDEA 1S DUE TO MACLAREN AND MARSAGLIA, SEE
0338 =- KNUTH, VOL 2, PG 30, ALGORITHM M,
0339 =o REAL QOUTPUT UNIFORM IN (0,1).
0340 == NOTE THAT INTERER RAN1, RAN2, RAN3, RANG AND
0341 == INTEGER ARRAY RANS (0::1255) MUST At DECLARED
0342 =~ RLOBALLY AND RANINIT MUST BE CALLED FOR
8;:: .o INITIALIZATION;
0345 == RAN1 := (RAN1¢643S5) REN 8191;
0346 =~ RAN3 := RAN1 REM 256;
0347 == RANG := RANS (RAN3);
0348 o~ RAN2 3= RANS (RAN3) 3= RAN2 « 65539;
0349 =o RANG ¢ 0,465681287°'-9
0350 -2 END RANDOM; .
0351 =~
0352 -
0353 «e PROCEDURE RANSET (RFAL ARRAY A(e,*)3 INTEGER VALUE M, N);
0354 == FOR | 3= 1 UNTIL M DN FOR 4 = 1 UNTIL N DO
0355 =- AC1,J) 3= RANDOM = 0,53
0356 =~
0357 =~
g;;: e COMMENT: CALLING PRONRAM;
0360 -~ INTEGER R, N, N, P, Ts REAL S, MAX, DEL, S\, MAXW;
0361 =~ READNCR);
0362 ~-~ WHILE R ™= 0 NO
0363 2- BERIN READON(M‘ N, P); nANlNIT(R)3 WRITEC™ "); WRITE(" ");
0364 =~ “R'TE("R" n' " P "' ”"‘ ”'
0365 -- PY, P);
0366 3- REGIN
0367 =- REAL ARRAY A(l :: M, 1 23 N);
0368 =-- REAL ARRAY B(1 :: N, 1 :: P);
0369 -- REAL ARRAY C, D, E(1 :: M, 1 :2 P);
0370 =- RANSET (A, N, N);
0371 =-- RANSET (8, N, P);
0372 == T = TIME(1);
0373 == HATMULT(A, B, D, N1, N, P);
0374 == WRITE (“MATMULT TIMF " TIME(I) - T);
0375 == T 1= TIME(1);
0376 -- STRASSEN (A, B, €, 1, N, P);
0377 =~ HRITE ("STRASSEN TIME" TIMF(I) - T); T :» TIME(1);
0378 =- WINORRANCA, B, €, M, n. P);
0379 == tmn‘:("muouann TIHF.", TIME(L1) - T);
0380 -~ S = MAX 3= SW := MAXY 3= 0
0381 -- FOR | := 1 UNTIL M NO FOR J 3= 1 UNTIL P DO
0382 &- BERIN DFL := ABS(C(1,4) = N(1,J4));
0383 -~ IF MAX < DEL THEN MAX := DEL;
0384 == S 1= S ¢ DFLeNFL;
0385 == DEL = ABS(N(1,d) - E(I1,J));
0386 -- IF MAXW < DEL THEN MAXY := DEL;
0387 -- SW t= SU ¢ DELeNEL
0388 -4 END}
0389 == NRITE("S e Sa, MAX ", MAX )3
0390 =~ ualret"su" sw, MAXU™, MAXW);
0391 -~ READ(R)
0392 -3 END
0393 -2 END
0394 -1 END,
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