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I. INTRODUCTION 

Except in rare ceses, it is necessary to discretize uncountable- 

state dynamic programs to obtain eyen an approximate solution. 

assume in the first two sections that the state space is impact, and 

so w. can construct a finite grid,so that any point i„ the space is 

in the neighborhood of a grid point. The problem is to find condi¬ 

tion. such that the approximations converge to the solution of the 

original problem as the mesh becomes finer. 

This paper may be regarded as a companion to Fox [3), although 

Che papers can be read independently. Except for the difference in 

the cardinality of the state space, the setups are roughly the same, 

n the last section, the approach., are combined. The re.ult is a 

recipe for finite-atate approximations to uncountable-state dynamic 

programs, where the state space need not be compact. This comple¬ 

ment. the analogous result in Fox [3) for denumerable-state prograsa. 

Let H{ have domain and rang« V, indexed by the states, and 

Av - sup {HjV : 6 € A}. 

Ib. Policy apace a i. the Cartesian product of decision aets. on. a.t 

for each state. u- - -. - 
We ..sume that »5 i. ,fftn., monotone, «d a uniform o —«Atu « uniiorm 

ontraction in policiea. That is, with .tat. .p.« g, v th. u 

of real-valued (payoff) function, on S, and .up metric d. 

should^ot ¿reinterpreted ¿¿ ^ °f They 
or the official op““oï cy*¿ ‘»Víf ^ °f ^ T 

research sponsors. Paper. L «p¿od“¿d by ¿¿."STS“*1" PrlT«* 
courtesy to members of its staff. * £*rpor4tlon M • 
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H6v(x) = + I q6(x,y)v(y)dy 
S 

q6(x,y) ¿ o 

d(Hôu,Hôv) ^ cd(u,v), c < 1 

for all 6. Then A is a contraction (e.g., see Denardo [1]). (Our re¬ 

sults can be extended to the case where H6 is a monotonie, N-stage 

ntraction, as defined in [1], but the notation becomes more involved.) 

This formulation encompasses discounted, discrete-time Markov programs- 

we do not require that the time intervals between points where deci¬ 
sions are made to be identical. 

For . given (finite) grid Gn (corresponding to the n-th epproxi- 

metior) pertition S into e.ction. euch that eech e.ction confine 

exactly one grid point. Suppose that Snl is the section containing 

the grid point For x€Snl, yis^, define 

'WX>F) - / 1S(8ni>t)dt 

Hn«V<,) ■ V*ni> + I Vd^ni^njivt«^). 

Anv " SUP iHn6v : i€A}. 

This setup is equivalent to a finite-state problem on G . One 
easily verifies that n 

d(Hnóu»Hnóv) * cd(u,v) 

and so Hn6 and An are contractions. Let the unique bounded fixed 

points corresponding respectively to H¿, H^, A, and A be v6, vn6, 

v , and vn . By results in [1], * ” 

V 
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n* r nfi 
V » sup {v : 6 € A} 

* A 
V = sup {v : 6 € A}. 

Without discretizing, it may not be possible to specify a finite al¬ 

gorithm for the original problem that finds even an approximately 

optimal policy. However, we can find vn* to within any positive tol¬ 

erance in a finite number of steps by schemes given in [1]. if each 

decision set is finite, vn can be found exactly in a finite number 

of steps. 

In the next section, we show that vn* v* uniformly over S, 

under weak conditions. 

Uncountable-state stochastic games can be discretized in an analo¬ 

gous manner and under similar conditions the values of the discretized 

games converge uniformly to the value of the original game. The proof 

is similar. One first shows uniform convergence when both players' 

policies are fixed The remainder of the argument goes through with 

minor modifications. 
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II. THE RESULT 

By assumption, 

(i) sup I I ¡ I < OD. 

(Ü) r6 and q¿ are continuous over S for each 6. 

(iii) S is a metric space and, for any ball B in S with arbi¬ 

trary positive radius, is in B for all sufficiently 

large n, for some i depending on n. 

(iv) Snl is convex for all n and i. 

(V) for aoy fixed v€v and x€s, HjVfx) le contlnnoue In 6 

in a topology for which Che decision set for x Is cow- 

pact. 

Observe that (i) implies that 

n6 °" the bou"da-T¡ of S„1. vnS can be discontinuo,,.. So we define 

intern TIT Th V ^ ^ t0 be *ive” '»)’ « continuou, 
erpolatlon forwula such that the sequence (w"5} i8 equlcontlnuou. 

on in view aasuwptions (1)-(1,). this 1. possible. For „„p!.. 

ir o is a subset of the reel 1-fno ►u , 
tion works. ^ ’ ll0“r ‘«•'Pol.- 

LEMMA 1. 

one limit 
{f6> fta8 a mif°mlÜ emergent subsequence with a continu. 

PROOF. This follows from the equicontinuity of {wn<5} and 

selection theorem (Feller ¿2], Theorem 3 on p. 263).11 
s standard 

LEMMA 2. d(vn5,wn6) + 0 ao n -*• »o. 

PROOF. Follows from (i)-(iv).|| 



LEMMA 3. w uniformly implies u6 = v5. 
n6 6 

PROOF. Since contraction mappings have unique fixed points, it suf¬ 

fices to show that H6u5 - u6. Since Hj is a contraction, wn6 - u6 

unlformly^implles that H,»“« . HjU5 unlfomiy. It ramalns to sh» 

that d(w ,H» ) » 0. From the deflnitlooe, x € Gn Implies that 

V (x) - H{v (x). Hence, by Lemma 2, wn5(x) - Häw"ä(x) » 0 (or all 

X In a set dense ln S. (By (111), «y converge, to a grid dense In 

S and, by Lemma 2. d^v"*.»,*"6) - 0 since ^ is a contraction.) 

Noting that the sequence is equlcontlnuous. It follows 

that d(w ,Hfiw ) •+■ 0 since S is compact. 11 

LEMMA 4. wn{ v5 uniformly. 

PROOF. Changing the notation slightly In Urn. 3, It Is easily seen 

that every convergent subeequence of (w"s) converge, to vS. By Lemma 

1 a convergent subsequence exists, and so It follows easily from a 

contradiction argument that the entire sequence converge, to vS.|| 

Defining wn analogously to wn{, we have the 

THEOREM. wn* » ,* tmifomly md vn* » v* uniformly. 

PROOF. By assumption (v) and Lemma 4, 

sup d(wn5,v5) •+• 0. 
6 

This implies that 

d(sup wni^,sup v^) •+• 0 
« 6 

by a simple contraction argument (not depending on the definitions), 

showing that d(." ,v ) * 0. Using Lemma 2, the proof of the eacond 

assertion is similar.|| 

COROLLARY. v is continuous. 
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III. WHEN S IS NOT COMPACT 

So far we have assumed that S was compact. If S is not compact 

we propose a two-step approximation procedure. First, define B.(v(x); 
<5 

S ) * H.v(x) if xÇS and 0 otherwise, where S is compact. This ef- n ô n n 
fectively truncates the problem to one with a compact state space S^, 

which we then discretize as before. Let 

5 -+-8, Tv- sup B.(v;S ), and zn* 
n n ß ô n 

be the unique fixed point of T . Using an argument similar to that 
6 e ^ 

in Fox [3], zn V pointuiae. 
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