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ABSTRACT

Riaxial ant uniaxia)l experiments have been conducted on

a thin shezt of natural rubber, which can be assumed to be incompress-

fbie, isotrcpic, and perfectly elastic. The strain energy function and #

A LRI o e I Y QAR

constitutive equations have been determined, and the material is clas~

si’‘ied as a Generalized Rivlin-Mooney tyope,

Bia:ial experiments were then conducted on the same sheet with

a circular cutocut arnd stress concentration factors were obtained,

é Results indicate & sigrificant increase in the factoer with increased
§ displacements,
i%g A modified Partizie ~ In ~ Cell (P,1.7.) method has been
g developed and analytical results were obtained for a sheet with a
3 rigid circular inclusion. It is shown that the stre-s concentration
E factor for a Rivlin-Moioney material;}ﬁcyé;;é;:Qyzgw;;creasing deforma-

tions, a result which is in qualitative agreement with solutions ob-
é; tained by other methods [31,32]. The use of the Generalized Rivlin-
Mooney mate-ial, however, leads to a decrease in stress concentration

i1 with increasing ceformations.
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LIST OF SYMBOLS
contravarient components of in-plane metric tensors [
of undeformed and deformed Sody
Rivl in-Mooney material constants
contravarient components of metric tenors of undeformed -
and deformed body -

strain invariants

stress concentration factor at bouxdary of rigid
inclusion (ratio of radial stress at boundary of
inclusion to that at edje of sheet)

stress concentration factor at hole bouidary (ratio of
tangential stress at edge of hole to that at edge
of sheet)

cell spacing used in °,1.C, method

stress resultant

shear resultant

radius of undeformed hole

displacement components

displacements at edge of sheet

strain energy density function (per unit volume of
undsformed body)

coordinates of a point in daeformed body

coordinates of sides of deformed sheet

coordinates of a point in uadeformed body




Xy Yy coordinates of sides of uadeformed sheet

physical component of stress tensor

ij !
B ratio of deformed to undeformed length of membrane
 (or 2.), elongation ratios in x (or 1) and y (or 2) directions

x 1
o (b x') respectively
) 5
) .,() ratio of deformed to undeformed lengths in x and y

x o y'®

directions respectively

-1j

component of stress tensor
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I. INTRODUCTICN

An ever increasing use of reinforced and unreinforced poly=-
meric materials in complex technological situations has given impetus
to the generai study of elastomeric materials subject to large deforma-

f1-10]

tions" . But, owing to the nonlinearities of the basic equations

for such materials, analytical solutions have been obtained for only a

limited number of problems, in general the material is assumed to 3

be perfectly elastic and incompressible, and the deformations are

homogeneous or highly symmetric, so that nonlinear partial differential

equations can be avoidzd in the analysis (see, for example, Chapter |11

of Ref. 7 for discussion of the work of Rivlin, also see Refs. 6, 11-18),
Although the 'iterature dealing with the classfcal stress

concentration problem for linear elastic materials abounds, (see for reawmstivest

example Refs. 19-22) only very few investigations can be found which

realistically treat the stress concentration of elastomeric materials
subject to large deformations, The reason lies in the difficulty in
solving the nonlinear partial differential equations which govern the
stress and displacement fields.

One way of attacking such problems is to use the method of

[1,10,23-25]

successive approximation to obtain solutions In such

cases the stress and displacement fields are expanded into power series

in a characteristic real paramzter ¢, which depends on the nature of

ey




the problem, When these seriec expansions are substituted into the field
equations of finite elasticity, the coefficients of the successive powers i
of ¢ in the resulting identities yieid linear equations for the deter=-
mination of the successive terms in the power series expansions. The
parameter = is so chosen that the identities correspording to the first
degree in ¢ coincide with the set of field equations in the classicai
linear theory. Because of the lengthy calculations required most of the
problems actually solved in this manner have been limited to the first rg

[26-28] i

and the second degree in =z. In particular, Adkirset &l ied

[19]

this method to plane problems, and, by using the complex variable technique ,

obtaired second-order solutions for an infinite plate with a circular

S R Jar s s e e s e M 25 2

hole or a circular rigid inclusion, subjected to a uniaxial tension at

infinity., The results showed that for a Mooney material the degree of

stress concentration at the hole is reduced as the load is increased,

[29],

Similar observations were made by Guz', Savin and Tsurpal in their

study of an infinite plate of physically nonlinear material having a

circular hole. They assumed that the displacement field was within the
range of applicability of infinitesimal strain theory,. In a recent paper, H
Evans and Pister[30] investigated the same problem by using a power series
expansion up to the third order. They showed that unless the deviation

from linearity in the stress=-strain relation is very small, the series u

soiutions do not converge rapidly enough to iead to reasonable approxima-

tions to the exact solutions.
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Another way of solving the resulting nonlinear equations of the

stress concentration problem is to employ numerical procedures. Using a '$;
forward integration method, Rivlin and Thomas[Bl] solved the problem of gé

by

the axially symmetric deformation produced in a circular sheet of a Mooney
material, containing a central circular hole, when subjected to radial
tensile forces at its outer periphery. Their displacement results were
found to be in good agreement with the experimental measurements on a

test piece of vulcanized natural rubber, No results on stress concentra-

[32]

.I tion was presented, Recently, Yang re-investigated the axisymmetric
problem and was able to reduce the equations to two decoupled first-order
equations, which were solved numerically by the Runge-Kuttas method. The

results, for both the hole and the rigid inclusion, indicate that the stress

and strain concentration factors increase with increasing l1oad for the

Mooney material. An analysis of the displacemants obtained by Rivlin and

[31]

Thomas reveals the same trend for the concentration factors. o

r

In this thesis, the problem of a highly elastic sheet with a

centered circular hole or rigid circular inclusion, subjected to a general
biaxial stress state, is considered. Since we consider very large deforma-

tions and general biaxial stress states, none of the previous approaches

are applicable, Instead the nonlinear partial differential equations are

linearized 5y adopting an incremental procedure. A variation of the

Particle-in-Cell (P,1.,C,) method, which has been so successfully applied

[13-36] K
to hydrodynamic blast problems™ » is developed specifically for _ |
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this type of elliptic problem. Essentially, the method combines the

features of the Eulerian and Lagrangian approaches by introducing an

tulerizn computational mesh and Ly keeping track of the material particles

as in a Lagrangian formulation. A description of this method car be

found in Chapter Il, Section H.

3

i Two series of experiments have been conducted, One, was carried

% out on the sheet without the hole, in order to characterize the mechanical

g. properties of the rubber for use in the analytical calculations. The f

second set were the biaxial stress concentration experiments performed on

the sheet with the hole,
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2. THEORY

10
A. Equilibrium Equations for a Thin Plane Sheet[7' ]

Consider a flat elastic sheet whose thickness before deforma=
tion ho is constant and is smail compared to its other dimensions,
The sheet undergoes a finite deformation symmetrical about .the middle
plane z=0 which thus becomes the middle plane Z=0 in the deformed

state. X, Y, Z are the coordinates of a point in the deformed body

2 which before deformation was at x,y,z, where both sets of coordinates

are referred to the same rectangular cartesian system,
The equilibrium equations, in the absence of body and inertia
forces, are:

-U”i = 0 (2-1)

. L qere el e b

w'iere the double line denotes covariant differentiation with respect to

i(X,Y, or Z). Since in rectangular coordinates the components of the

i e € . :
stress tensor T ) coincide with the physical components of the stress

cij' Eq. (2-1) can be written as:

Teere = 0 (2-2)

where 0. is the stress per unit area of the deformed body.

B T i R Sl PRSP ° R B - LI
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Integrating the equilibrium equations (2-2), and noting that

the surfaces of the plate are tractlon free, we obtain

ﬂm ’a = 0 (a,e = X:Y) (2-3)
where
h
nog = j‘. % dz (2-4)
Is the stress resultant per unit length of the deformed pli=zte and h s 3/

ifts thickness, The shear resultant

h

= J'.h cyz 92 = 0 (2-5)

due to the symmetrical stress distribution about the middle plane.
We define a scalar function A which represents the extension

ratfoc at the middle plane Z=0 in a direction normal tc it,

32
A= (2=0) (2-6)




7.
From (2-4):
n h
of 1 'r
——— e — Ivj dZ (2'8)
2ho 2h° h of
and from {2-T)
n
: of
Lim == X(c ), _
h 0 2h° o3’'7=0
0
Since the faces of the sheet are free from aspplied forces
Lim [~..] =0 (2-9)
h Y 0 ZZ Z= 0
0
For very small ho we can approximately write
[oy7l7.0= 9
and ng = 2ho K(Ga5)2= 0 (2-10)
Substituting (2-10) into (2-3), we obtain the final form of the membrane
equilibrium equations

(Mas)'a 0 (z=0) (2-11)

ORRSTRIR
LT L &




8.
or
3 3
;‘-X. ()\Gx.x) + S'Y- ()»(EXY) =0 (Z = 0)
3 (oy) + 2 o) =0 (Z=0) (2-12)
AX Xy aY Ytyy’ T

B. Constitutive Equations

If the sheet is made of a homogeneous, isotropic, elastic and

I = ‘ (2"' ;.-

and the strain energy density function W (measured per unit volume of

the undeformed body) takes the form
W=W T 2-1L

10
The inplane stresses on the middle plane can then be written as[ ]

"8 = %z = Ha + L A% (0,8 = x,v) (2-15)
where
aW 2 AW
H= 2(—+ A" 2
3TI 0T2
L=-22a2 2 _onlr f L p2) AW (2-16)
BII 1 are
o8 ,08 + .
and a , A are the inp'ane components at Z=0 of the metric tensors

(g'j) of the undeformed and (GIJ) deformed body, respectively. Thus

the general metric tensors at Z=0 are written as:
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S TR ER %2 93
r - L = -
610200 = [M2 A Syl [9:132:0= |212 2 9y (2-17)
G G G g q q
i 13 23 33] L 713 23 33]
where
G ii Q g L3 'aLr
‘I 236" 36 a6 ae
. r r
(‘:J=':2:3 ;Y =X,Y,2 sy X ‘X:Y:z) (2"8)
and ei are general curvilinear coordinates. We shall choose 6; so
that they coincide with the rectangular cartesian coordinates, X, Y, Z.
Thus we see that
= £ G = A
G‘J i AQB bOﬁ
and RS BN I & (2-19)
= = =
Hence A 'AO'SI 'GU 1
Since the deformation has been assumed to be symmetrical about
the middle plane it follows that x and y are even functions of 2z, and
thus at Z = 0 we have
X=‘-X(X:Y) y = Y(X:Y)
ox _ 3y fz _ 3z -
2-3z°%  Fx=37=.0 (2-20)
A A7 AX  AY
Ax Ay 0 ' EY Y 2 0
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. 10.
Y4 Az
and 5z ° A =7 - 1/n {2-21)
where > = A(X,Y) represents the extension ratio at the middle plane
in the Z direction and is assumed to be finite and nonzero. We now
can substitute Eqs. {2-20) and (2-21) into (2-17) and {2-18) to obtain
the values of the comporents of the metrlc tensors 9¢;° g'j at the
plane Z2=0,
3.2 Dy 2
oy = 2y = G%) * &P
- 3x 2x . DY 2V
Sxy = Sxy = 3x ™ T3 3
S, 2 oy, 2
. By = Ay = GO+ &P
;12,2 .2
- 9 = &) = WA
gxz = g\:z = C (2-22)
—aXX Ay ¢ |
or . 9” = aXY aYY 0 (2'23)
2
] 0 0 I/XJ
2
and 9=lg;;l =an (2-24)
p— a=la,l=a.a., - (a.)° (2-25)
B XX Yy Xy
]




VA

The component of the contravariant metric tensors g'J and aOB can

be determined from the equation:

i cofactor 91j

g7 = —— (2-26)

9

and are therefore

; 2
! xx  xr oy/M e

LS e | e 11
2
| &L XY L 2y~ _ L xy
} a/h2 a
i 2
’ o
] gYY - aYY N axx/x ) ill
a/Xz a
gZZ - a2 - >\2 (2_27)

2/
g XZ YZ
k g =9 =0
]
1
1
; XX XY o,

- gIJ B Xy YY 0 (2-28)

P
0 0 A ]
i 2 . XX vy Xy 3 '
and gl = A% [a" a'! & (2% ]== (2-29)
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The strain invarlants are¢ aiven by the expressions
rs . rs
1T 9 Gg= N tea A
rs i rs
= T = = -
I2 9y ¢ G "3 \2 +a_ A (2-30)
2
\"A

T = o o

3 G/g = i
§ and therefore a = 12 oecause of incompressibility.
2 5
§ a + a + a
: v
Finally, then = XX p'
i a
;‘ T = + & ;1 (2"3')
2= 3y " By T /2

. The most general power series form of W for an incompressible
homogeneous Isotropic elastic material is[37]
|
E
& =] i . 3
; We v 8o (1) (1,m3)] (2-32)
i=0 j=0

~

where C., are constants and C = 0,
ij 00

In the following, we assume a Rivlin-Mooney type of material

: which is expressed by

W= c,(I,-3)+c2(12-3) (2-33)

The necessary and sufficient conditions for W > 0 is that C' > 0 and

C,> 0. Substitution of (2-31) and (2-33) into (2-16) ylelds

S ..
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H= 2((2I + a C2)
L=-2a¢C - 2(axx +ayy - l/a)C2 (2-34)
Finally, the stresses of Eq. (2-15) can be written as follows:

o o B o g +2—-c2
XX I a 2 XX 1 a
a C
XX p) .
Oyy = 2CI T 2C2 ayy - 23(:I + 2 -y (2-35)
a
XY
opy = = 2(¢, + aCy) =

C. Displacement Equilibrium Equations

Replacing X and Y by the indices 1 and 2, respectively,

and appealing to Egs. (2-35), we have

¢ 13 C,

Moyx = Moyp = 2 73 85, = 2V a 8y, - 2vaTCy + 2
C, a C
) R 1 V3, 2 i
.. KUYY—K022—2T-2C2V3 322-23C|+2ﬁ (2-36)
; 212
? Noyy = Aojp = = 2(CI + ac2) 73
§

The equilibrium equations (2-12) then may be expressed as -

Cl2a(a;5ry = 3ppsy) + (a5, + 3a%) 35y = 35 31,]

+a, a(alla,] + a 8,2) + 2a2(a|2,2 + all’l) = 0 (2-37)

12




|
4.
and C[2a(a - a ) + (a,, + 3a2) Ay, = 34, 3y4]
121 11°2 11 2 12 =1 ‘
(2-38) g
~ 2 - i
i +a,2+a(a22 a,, + 3y, a,]) + 2a (312,l +322,2) =0 ‘
§ where = C]/C2 0 (2-39)
] and a comma denotes partial differentiation with respect to 1 or 2
(X or Y).
: We define the displacements in terms of the coordinates of the Y
deformed body
) .
'_ u(X,Y) = X = x{(X,¥) °
V(X!Y) =Y - Y(X!Y) (2'1*0)
Thus in terms of these displacements
|
2 2 i
a" = ("U!]) + (V!') '}
!
- 2 2 |
a22 - (U!2) + (]'V!z) (2"4’]) ;5
312 B8 o [(I-UDI)U!2 + (]'Vnz)V"] ’1
P} i
as= [(I'U’]) (]-V!2) - U!2 Vn]]
and the equilibrium equations in terms of the displacements are




2, .2 o .
c[ (\ I+V" )(U,22'2+V,22U,2 ) + 2(Vl U:2+V2~/p‘)(Ua|2V2+V.‘2LI.2)

+ V.tv,

v,.+u
2 1 ]

2
(usy, o1 V¥ U VaytuagVay ) = (Y Yomuagvs ) Tusg (o,

+

2 3 , 2
Us o (=Y Vs Vol #2055V VoV Vom s

+

2
(= 1

U,

V' 2

+

12 a 2 -
v +2V,IIIV2 u,2v,I )] =0

Vago (Us5¥)

and

2, 2 , )
c[ ("2+U’2 )(V!IIVI+U!IIV)I) + 2(\’2\’!]4"\]“'2) (V, lzv‘+u!12vil)

-+

+

+

2 3
v’l2(-u’2'2-u’2 +2v,lv v +u,

12721

+

-+

2 2
Us gy (Ve Vg¥2UssY Yomtsy vy )] = 0

where i

o 1 - U,l ’ Y2 = l = Vp2

D. Piecewise Linearization of the Equilibrium Equations

The two equilibrium equations (2-42)

partial differential equations in u and v,

and v we assume that the body is strained to

TN T T R L

1

> L2
Vi) ¥ Usgy (Ruspvs vy =V vt

2 2 :
=UsgVay ) Vg (usve v,

are second order nonlinear
In order to solve for

its final position by

S pe e e e

~—

. 4
+ (.,"§+u122)\u'll.v2+v!lluiz) + 3(VIY2-U,2v']) (UD‘]V.2+v!12V‘+UD2‘v)‘+u!2v!l‘)]

2

-3\'2v

12

2:
v,] \2

Yo F2usovsvy)

)

2 3 2 2 _ 2
+2v,lvl‘/2-3u,2v,I Y+ v,‘z(-»\,l v.‘.v"*u,z Vl+2u,2v,‘V2-v‘\2)

(2~42a)

2, 2 | 4
("|+V)l )(V:22V|+U:22V-‘) + 3(\2V"V:IU'2) (V]V!22W2U:‘2+Vplzup2+vtlU:22)]

2.,

. a o L% - 2 - ,2 .
(Voo U | V¥V 1 oUn gV g Uags ) = (inv =V s ) v poleuny ™ =3Y Yo#2Vs  us 5Y5)

V2+Ul

2
oty Yy)

2 N 32 . 2. 2
Us o (=5 Vs 1 #2Us 571 Vo3 Uag Vo MUy 5 (FY 5=ty Vot Vs Tipt2Us vy V) = V)

(2-42b)

(2-43)

u
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successive steps of small displacement increments Au and Av, The

total displacement after ntl such steps is expressed as

n

um-I = Z Aui + /\un-'.l ="+ [\um.l
— (2-bly)
n .

vn+| = ¥ Avl + AVn+l = vy [\vn+|
i=1

n a i ; g i
where u =2 Au , V= T Av (2-45)
i=1 i=1

It is assumed that Au, Av are sufficiently small so that
terms containing squares or higher order terms in Au, Av or their
partial derivatives can be neglected with respect to first order terms,

Thus, for example,

n+1

2
n+|) ™

nt+1,2
" )

"
(2-46)

+1
(1=u = (l-ur,‘l-AuT] )2- (l-ur,‘l)2 - 2(l-uT])Au +0(/u

Following this assumption all the expressions appearing in the
equilibrium equations are rewritten by expressing u, v in the forms of
(2-44) and retaining only first order terms in Au, Av and their deriva-

+1 ]

tives, For simplicity, the superscripts of un, vn, Au" s AV will

be omitted in writing the following linezrized form of the equilibrium

equations at the (n+l)th step

TR M AE T = S m el st e ————— e 4 e > ETTRIIICE =D W K

e M TR e

e b N A A




App Msgp ¥ Ay Auspy + Apy Busyy + Ay Ausy + Ay Aus,

; By Vgt Byp BVapy + Byp BVayp + By Avey + By Ay, 4 K =0 (2-U7a)
and
Dyy &usyy # Dpp dusgy + Dyy AUspy + Dy 2usy + D, Ausy
+ By aVapy + Epy AVagy + By AVag, ¥ Ep Ay + By AV, + Ky = 0 (2-4Tb)

The coefficients All’ 5006 Bll’ 000E Kl' Dll' 000€ E]'. 00 0E K2 are to
be found in Appendix A and are functions of the derivatives of the total
displacements at the completion of the nth step and contain the Rivlin-

a Mooney constants.
E. Modified P.!.C. Method

The linearized equilibrium equations (2-47) are solved numeri-
cally by using a modified form of the P.i.C. Method, which has been
successfully used in wave propagaticn problems[Bu]. The procedure
i follows.

First a fixed grid (Eulerian) is introduced, dividing the region

4 into a finite number of cells. The displacement of each cell is

represented by the displacement at its center. The partial derivatives
of Au, Av are expressed in finite difference form at each of the cell

i centers, which act as the pivotal points, The substitution of these

a finite difference forms into the differential equations (2-47), produces
a set of linear algebraic equations in the set of unknowns, Au and Av,

et each point. The incremental displacements determined in this first
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(Eulerian) part satisfy the eqeilibrium equations in the sense of class-
ical linear theory, where t is assumed that the final coordinates are
identical with the initial ones, The geometric norlinear effect, due to
changes in the configuration of the material, is accounted for in the
second part of the nrocedure.

We bSeqgin by distributing particles in each cell, where a cell
(i,j) is the square aro:md mesh point (i,j) bounded by the lines i=k/2

and j+k/2, These particles move durirg each step, and their incremental

displacements arz assumed to te the same as that of the cell center in
which they find themselves at the beginning of a step. The position
and total displacements of these particles are recorded throughout the

deformation, In solving for the incremental displacements of the n+lth

step, for example, it is necessary to know at each ce!l center the total

displacements accumulated during the first n steps. These displace-
'l ments are assumed to be equal to the average displacements of ail the

;} particles in the cell at the end of the nth step. If no particles

move in or out of a cell then its displacement remains unmodified.

At the end of each load step the nonlinear equations are
checked so as to be sure that the assumption of piecewise linearity is
reasonable, If the check faiis, the step has to be refined and the

computation rapeated.
F. Extension of a Thin Elastic Sheet with a Hecle at its Center

Consider a rectangular sheet subjected to biaxial extensions

along its sides, The sheet contains a traction free hole at its center,
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The method of solution described can be applied to a hcie of arbitrary
shape. if the hoie is symmerrical with respect to the axes of symmetry
of the sheet, then it is sufficient to consider only one quarter of the
sheet. In what follows, a hole with such symretry is assumed, and the
analysis is thus carried out for conly one quarier of the shaet., The
surface of the sheet is divided into cells by introducing a grid system
(Fig. 1). The pivstal points are located at the cell centers and have
a constant spacing k, The partial derivatives at i,j, expressed in

central difference form are:

Luli+k,j) = uli=k,j)]1/2k + 0(K%)

U-‘ (i’j:

Uy (i) = Culisjk) = uii,j=k)1/2k + 0(&) (2-48)
usyp (1) = Tulivk,§) = 20(6,)) + uli-k, 1A + 303)
g (1) = [ali,34k) = 20(i,§) + u(i,j-K)IAE + 0(P)
Vo lini) = [ulithk,j+k) = uli-k,j+k) = u(itk,j=k) + uli-k,j=k) 1K + (i)

Intreducing such torms for the partial derivatives into the
equilibrium equations (2-47) results in a set of algebraic equations
with eacn equation contairing the unknowns Au, Av of point (i,j) and

the eigiit surrounding points. Thus the equilibrium equations

in central difference form are
A Auli=k,j=k) + (uA22-2kA2) Au(i,j-k)-A!QAu(i+k.j-k) + (hAII-ZkAl)Au(i-k,j)
- 8(A ;+A22) Au(i,j)-+(hA|!+2kA]) du(i+k,j? -Alzau(i-k,j+k)

+ (l;A22+2kA?) auli,jrk) + Ao Auli+k,j<k) + B v(i-k,j-k)

12 8

(continued on next page)
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s'l
2 + (63,,-2K8,) Av(i,j-K) - B, Av(i+k,j-k) + (4B, ,-2kB,) Av(i-k,]) |
i - 8(8),%8,,) AV(i,j) + (4B, +2kB,) Av(i*k,j) - By, Av(i-k,j+K)
l + (b822+2k82) av{i,j+k) + 812 Av(i+k,j+  + K' =0 (2-45a)
;
2

-y

and !

012 tu(i=k,j=k) + (h022-2k02) suli,j-k) - 012 Au(i+k, j-k)

4 (l;D”-ekDI) pu(i=k,j) ~ 8(0”+022) Au(i,j) + (140”4-2le) Au(i+k,j)

- Dy, suli=k,j+k) + (’s022+2k02) su(i,j+k) + 0)n Au(l+k, j+k) + E1s Av(i-k,j-k)

+

(UE,,-2KE,) av(i,j=k) - By, bv(i+k,j=k) + (BE, -2kE;) av(i-k,])

. - 3(£”+522) av(i,j) + (ltE”+2kE') av(i+k,j) - E1o av(i-k, j+%)
+ {h522+2k52) av(i,j+h) + Ein Av(i+k,j+k) + K, = 0 {(2-L9b)

ﬁ- Boundary Conditions

é The x = and y - axes are axes of symmz:try, and, consequently,

(i

%:' u(l,j) = 0 on the y-axis,
2nd u(t-k,3) = = u(l+k,j) 5 v(l-k,j) = v(i+k,j), (2-59)
while v(ii,1j =0 on the x-axis,
and uli,t=k) = uli,1+k) 5 v(i,1=k) == v(i,1+k) (2-51)

Let x = X and y = Yy be the sides of the undeformed sheet (Fig. 1)

ther: at X = X'
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u=u (prescribed)

é and C'XY =0 (2'52)
v and at ¥ = ¥,
i
; % V=V (prescribed)
H
3
s anrd gy = 0 (2-33)

it is assumed that the sides X = X‘ and Y = Y‘ are far enough from

the hole so that we can replace the shearing stress conditions by the

OO R D50 o 5 GO O L9 O

linear dispiacement conditions,

[P

Y X
v = VT 2 ; u= Y: U (2-54)

The hole is free of traction so that

Ao £

xxt * oy ™= 0
§
; Tyyi * Syy M= 0 (2-55)
£
Q where the direction cosines of the unit normal are
| i< cos(NX) = 3% . Y
{é T COSULA =GN T @S
dy  =dX
m = cos(N,¥) = 55 = s (2-56)
;2 8y substituting Eqs. (2-56) into (2-55), the boundary conditions along
#
¥ the hole can be written as
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-d-l-f g-x-—o
“x d§ T “xy 35
dy % _ o (2-57)

XY 45 T “yy 95 T

where the stresses can be expressed in terms of the derivatives of the
displacements by utilizing Eqs. (2-26) and (2-41). The piecewise linear

form of the stress-displacement relationship can then be expressed as

ac + aeAu,z + b'Av,‘ + b + k'

XX= 23Uy 28Veo

acyy = d‘:;u'.' + d2.‘5u,2 + eIAV.‘ + e2.§.v.2 + k2 (2.58)

atyy = Fyiusy + fodus, + g1dvey = Grave, + kg

Where a‘) 32) b‘l b2) k‘, d‘, d2’ e‘) 82, k2 and f‘, f2. g', ‘92, k3
are given in Appendix A,

. dx dvy
The procedure for evaluating < » 4o s as follows., The

hole is delineated by placing evenly spaced particles on the boundary

curve, These particles then trace the boundary throughout the deforma-

tion process, The derivatives gé 5 %% at a particular boundary partic’e

i is obtained by expressing X = X(S) and Y = Y(S) at the points i-1
and i1+1 by a Taylor series expansion about point i (Fig. 2) and
retaining only terms up to the third order, The solution of the two

simul taneous, equations then results in the following expressions

) 2 . 2 . 2 . 2
ax ;) RO Gy m XD Gy g ) e XOTE ) = Oy 2
ds Siotyi Sivier Sianyi * SiL e
d_Y_(i).: Y(i"‘])(si_";)e - Y(i")(si,‘.’.‘)e*'Y(i){(si.i+‘)2‘ (Si-l,i 2]+0(52)
ds Statvi St 141 a1, * SiL i)
(2-59)
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where

iy = (DX = XG=112 + [Y(0) = v(i- 2P

‘ (2-60)
= {[X(+1) = X()12 + [Y(i+1) - ¥(1)]2P2

i, i+l

The partial derivatives in the linearized stress displacement relations,
Eqs. (2-58), must be expressed in forward difference farm at the boundary

of the hole and are, for example,

usy (i) = %E [~3u(i,j) + bu(i+k, ) - u(i+2k,j)] + 0(K°)

1 5 (2-61)
31 [=3u(i,5) + bu(i,j+k) = u(i,j+2k}] + 0(K")

U.Q(F.j)

The linearized finite difference form of the traction free boundary mav

then be expressed as

syculi, j)+i sulivk, j)#2 su(i+2k, j)+2, Au(i, j+k)+2 au(i, j+2K)
1 2 3 A 5°

+ m?;v(|,j)+m2Av(l+k,J)+m3jv(|+2k,j)+ﬂhﬂv(l’J+k)+m5AV(l-j+2k)

+ kl4 =0 (2-62a)
n]Au{i,j)+n2;u(i+k,j)+n3ﬁu(i+2k,j)+nhAu(i,j+k)+n5Au(i,j+2k)
+ p]Av(i,j)+p2Lv(i+k,j)+p35v(i+2k,j)+quv(i,j+k)+p5Av(i,j+2k)
+ kg = 0 (2-62b)
where

b= S U+ ) (D) - (3 + ay) S GL)]

o5 la) K () - F, B (L))

L)

(continued on next psage)
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) 2h, !
1 X . dy . .
23 &5 ﬁ[fl 3 (i,j) - a g (i,j)]
2 dy ,. . ax ,. .
7, = 1 lay g2 (1)) - £, g2 (i.))]
A T SR AT
is = % [f2 T {i,j) LTS (i,j)]

5

T PP IRTY -
Qo 1 o ~
- FAan i

2 dy ,. . ax .. .
mz=;[b|;g(hj)-glg(hj)]

i my = 5 [9y & (L) - b, T (1.9)]

% m, = 2 (b, S (1)) - 9, ()] ,
; mg = 2 [gy & (i,)) = by SF {041)] ‘
%‘ b=k T G0) - kg § L)

i3

?j n‘=3ﬂ[(dl+d2)g—§(i.j) - (f‘+f2)%(i-j)]

E =206 2 (1,5 -4 G

é ny =35 [ & (L)) - £ FGL3)]

1S 0 - g %

¢

é’ s =z [ dp 98 (0) = £, S (1,3)]
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b, =2 lle) +e)) B (1,)) - (g + 8) ¥ (.3)]
=21g, F (,0) - ) § (1,0
=;_|:[el R () - g F (L]
= 21g, T (1)) ~ ey S (1,0

Loy & Ghi) - oy 38 (1))

ks = kg T () - ki B (L)) (2-63)

The values of gé (i,j)» %% (i,j) at the center of each
boundary cell are obtained by averaging the values of the derivatives
of all of the boundary perticles lying in the cell at any step.
Again, it should be noted that the boundary conditions at each incremental

step are satisfied in the same sense as they are in classical elasticity

theory.
G. Extension of a Thin Elastic Sheet with a Rigid Inclusion at its Center

We consider a rectangular sheet subjected to biaxial extensions,
and having a rigid inclusion at its center. The inclusion is of
arbitrary shape; however, since we desire to consider only one quarter
of the sheet, symmetry of the inclusion is required., The previous
formulation for the traction free hole remains unchanged except for the
boundary conditions at the hole, Egs. (2-57), which is now replaced by

the statement that

e
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at the interface.

H. The Computer Program and the Computation Procedure

The program describe& here was written in fortran language and
run on an IBM 360, model 50, computer. In its present form it
represents the basic program necessary to solve the problems described,
No auxiliary storage facilities are used and the program is presently

limited, because of the machine storage capacity, to solutions of small

finite deformations. In order to be able to exceed the present range
it is necessary to include endugh auxiliary storage units so that it
will be possible to include the new cells which are required as the
deformation progresses. It is also necessary to use a machine which

- retains more significant figures since the loss of significant figures
is quite rapid in solutions of large matrices such as those encountered
here,

The program consists of a main program and a set of subroutines,

The main program reads in data, prints output, and controls the sub-
routines. The parameters of the problem are read into the main program

by data cards ard can be changed as desired, These parameters consist

of the spacirg k, the initial dimensions of the sheet and its material
coafficients, the shape of the hole, the size of displacement increments
and the number of incremental steps, and the spacing of the distributed

particles.
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The computation proceeds by first calling for the subroutine
which distributes the particles throughout the sheet and along the
boundary of the hole. This step is followed by a scanning subroutine
which scans the region of the hole and determines the location of the
boundary cells, which are defined as cells which contain one or more of
the boundary particles. The main program next calls for the subroutine

%é 5 %é at each of the boundary

which calculates the derivetives
particles and then attributes to the boundary cell in which they lie,
their average values. This is then followed by a subroutine which
calculates the coefficients of the linear algebraic simultaneous equations

arising from the finite difference solvtion of the piecewise 1inearized

forms of the equi'ibrium equations (2-49) and the boundary conditions

il (2~62) . The same subroutine also calculates the stresses at the end
of each step.

Both an iterative and direct method were used to solve the
simul taneous equations. The iterative method used is the S.0.R, which
can be described briefly as follows. Consider an nxn matrix A==(aij)
1 which is nonsingular and with nonzero diagonal elements., We seek the

solution of the system of 1inear equations

1<i<n (2-64)

R i R e
3
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The S,0.R. iteration process is given by the following algorithm[38]
(m1) __(m) =L % D N I m, X m
x, = x,  +wf-— T a,.x, - — L  a,.x, +—=-x. '}
' ' i =1 i jeir !
(2-65)

where w s the relaxation factor and (m), (m1) indicate the mth

and (m+l)th iteration respectively, When w=1 the S.0.R, method is
identical with the Gauss~Seidel iteration method.

When iteration is used, parameters such as maximum error and
numder of iterations allowed have to be read in. Starting with

assumed initial distribution of Au, Av, the iteration is carried vut by

moving along pivotal points which lie along lines parallel to one of the

i symmetry axes,with Au calculated first,followed by the calculations of

éi - Av at the same pivotal point, Proceeding from the outer boundary towards

% the hole or in the opposlte direction gave similar rates of convergence.
The direct method used is based on the Gauss elimination with

[39]

pivotal condensation . First we select the largest element of the

i coefficient matrix A, say aki’ which is called the pivot, A multiplier

'l . m, = - aij/akj is then computed for each row i#k. Next, the kth row

is multiplied by m. and added to the lth row. This leads to a new
matrix with zeros in the jth column, except for akj' The same pro-
cess is now repeated for the auxiliary matrix which excludes the jth
column and the kth row. The process yields an upper diagonal matrix

- which can be written with unit entries along its main diagonal. The solu~

tion is obtained by going from the last row of the upper diagonal matrix

to the first and in each row substituting all the known values and trans-
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ferring all te;ms off the main diagonal to the right hand side. Thus
the values of the right hand side yield the solution. The disadvantage
of this procedure is the rapid loss of significant figures which occurs
for large matrices.

The IBM GELB subroutine was used to carry out the direct method.
This subroutine is written for solution of banded matrices. It uses
Gaussian elimination with column pivoting only. The subroutine GELB
requires that the elements of the matrix be stored row after row as a
one dimensional array. Therefore, GELB is preceeded by a subroutine
which arranges the elements of the matrices in the proper order.

The solution of the simultaneous equations yields Au and Av
of each cell center, Next, a subroutine is called for which computes
the total displacements of each particle, their new cbordinates and
cells in which they liz., The new boundary cells are then found, and
the magnitude of the displacements associated with the cell centers &re
recalculated. This completes the computations for the first increment,
Further steps are computed by reading in the new prescribed end dis-
placement increments and repeating the general procedure described above.

The program was also adopted to the solution of the problem of
the rigid inclusior in a sheet, [t contains all the elements of the hole
program, with the exception that no derivatives are calculated along the

interface and that the boundary cells,of course, remain fixed.
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3. EXPER IMENTS

A, Experirental Equipment

A biaxial tes?ing apparatus, designed by the author, was used
to conduct the biaxial experiments, it consists of a locading mechanisem,
an environmental chamber and control and measuring instruments (Fig, 3}.
The loading mechanism consists of an electric motor (1/2 H.P,) connected
to four shafts through a conlcal gear transmission., The shafts are thus
driven simul taneouvsly and have identical speeds. Fach shaft is connected
to two parsllel driving screws by means of sprockets and chains, resulting
in movement of tha four crossheads, which in turn trensmit their motion to
the specimen through a loading frame, The stretching mechanism thus
ensures that the center of the specimen is always stationary and there-
fore always remains centered. Crosshead speeds in the two principal
directions can be varied independently by adjusting the gear ratios in
the chain-sprocket assembly. A range of crosshead speeds from 1 to 20
in/min can be obtained by a suitable adjustment of the cprocket assembly
and motor speed. Eatn crosshead has a travelling range of 15 in.

The test specimen (a rectargular thin sheet) was cut so that
a series of lugs was formed on each of its sides. Each of thase lfugs
was connected to a light aluminum end strip which is pinned to a roller,

consisting of a miniature ball bearing mcunted in an alumirum U-section.

[P PR

IO PR RRR
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The roliers are constrained to move along the ralls of the aluminum
foading frames {Fig. k), each side of which is connected to the crosshead
oy win parailel rods which pass through special fow friction guides,

The lengths of the rods are sdjustable for use with different size

™

specinens, Out of plane or lateral motions are preventad by support-
ing the loading frames on rollers which rest or an adjustable support
slatform. Loads are meazured by placing lcad cells between the gquide
rods and the crossheads,

The environmentai chamber is an insulated box, having test

chamber dimensions of 30 X 30 x 12 inches., CLooling coils and strip

heaters are attached along the side walls and four sma’! fans are used

for air circulation, so as to maintain a uniform temperature throughout the

chamber. “he cooling is done by connecting the coils to a i '/2 H.P, Bendix-

Y TIPS ORI 7 o A
R T R e i, WA

¢ el 574 SR A
e PSRN (S e

Westinghouse Co. iow temperature compressor, aid supplementing this by

using liquid nitroger Tor the very tow temperarures. A range of tem~

o]

garature from -80 to 200°F can be achieved with variatior of = 1°F

throughout the test chamber. Temperat:re is conirolled by a West Instrument
Corp. Gardsman control unit which controls the strip heaters. Below

room temperatures are reachzd by operating thre compressor continuously

and controlling the heai input of the heaters. it was found that this
operating procedure results ir a more stable temperature than when both
heating and cooling rates or only cooling rates are coniroiled, The

upper surface of the environmental chamber is covered by 2 thermal pare,

free to move along wo support rails, thereby permitting ootical measure-
ments of the displacements of the test piece, as well as easy access to

the chamber interior,
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Some uniarial experiments were also conducted, - The_equipient
Ll

used for these tests consists of a Universal Testing Instrument Model
TTC M1.3 made by Instron Ergineering Corporation, and an FRL Environ-
mental Box designad by Fabric Research Labgratories. Heating in the
chamber is accomplished by use of strip heaters, and cooling is done

by ute of aither dry ice or tiquid nitrogen, A Barber-Colma~ "o.
Wheelzo unit provides temperature control over a range of -100 to 400°F

by operating the strip heaters.
8. Specimen Preparation

The exper iments were performed on cuecimens of natural ribber
{cured with 1 part of di cusyl ceroxide, 2.5 pt dicup 40c) all of which
were cut from the same shest in order to reduce possible variations of
the material properties. The thickiess of the sheet was G.079 + 0,004
in, A specimer having 6 1/2 in. sides was used for the biaxial
experiments, and a strip having a length of 5 in. and a width of 0.375
in, was used for the uniaxial tests.

For the hiaxlz! experimenis a siik screer was prepared having
sub-divisions varying fron 1/L in, at its perimeter to 1/32 in, in its
irterior. Although the small sub-divisions wera not required for the
characterization experiments, they were recessary for the stress concen-
tration experiments which were cairied out on the same sheet,

The grid was printed on the specimen by placing the screen
over it and spreading a rubber base ink (Ridgway RC 154, R,l. White)

over the surface of the screen by pressing &4 squeegee over it,
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C. Experimental Procedure
The specimen wac placed in the loading rig and stretched to &
predetermined elongation i one direction., This elongation was thsn =

kept fixed while the perpendicular sides were stretched over a range of

elongation ratios from 1.0 to 1.8 in 0.1 steps. The procedure was
repeated for different values of the fixed elongation. isotropy in the
undeformed state was checked by repeating the tests with interchanged
principal axes, and noting that there was only a slicht variation in
loads corresponding tc interchanged eloncations., Refore each test the
specimen was relaxed for two hours a2t the highest temperature of the
tests (IBOOF) in order to release possible residual stresses,

7he experiments were performed at 30, 60, 90, 120 and 150°F,

. Only slight temperature effects could be detected in the Diexial

exper iments, and since these were within the experiment?»? srvgr,
temoerature effects could not be isolated.

The displacements of the shaet were reccrded st nrescribed

v

crosshead gositions by photographing the specimen with a 4 X & in, view

camera (made by Calumet Manufacturing Co.) mounted or a tripod placed

on the thermal pane cover (Fig. 5). By using high contrast film
the image on the negative appears a&s shain black lines on a clear

backgrouna. F typical negative is shown ir Fig., 6. Thz scales of

£
3
§ ;
§ ;
%

the nzgativec were determined by placing a standard ruler in the nlane

T 3
N N S T

ATy

of the specimer, while photographing. Distances betiwzen grid lines

P e e
e o

T

viere determined by scanning the negatives with a nicrodensitometer

T

(made by Joyce, Loebi and Co., England) or an x-y micrometer table mounted
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on a precision transmission poia.-iscope {made by Photoelastic Inc.).
Heasurirg sensitivities of both inctruments were at least of the order
of .000%1 in, The undeformed specimen was similarly analyzed and thus

displacemenrts and elcngation ratios were determined.

T

The biaxial tests were supplemented by a series of uniaxial
tests, A 3trip cut from the same sheet was tested zt temperatures

varyving from 30 to 150°F. Temperature effects in the uniaxiail tests

werez more pronounced than those observed in the biaxial experiments.

Aftes completion of the moterial characterization experiments

ane i

i At SR DR A
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4 a G.5 in, diameter “ole wes sunthed in the center of the sheet, A
8 . . : o
§j~ ser ies of st-s~< =7rceriration experimenis were conducted at 90°F,
[
£z - . . . . : . .
CoR using the ssme exte,; mantz. proceddre zs dJescribed. A typical photo-
b |
< H nrzeh of the deformed cpsciver is shown in Fig. 7. 3
gy
G, Hhaterisl Cravaciorization fxperisents

Analytical Analvsis

-y
L

fonsider 2 thin rectangular niane sheet of uniform thickness

having edges paralle! to the x and y axes. The sheet is subjected

to a pure homogenenus deufcrmation having principal directions paralle!

to the x, y and z axes,
Let K‘, KZ’ hz be the principal extention ratios. defined as
the ratios, in the princigai directions, of final length to original

fengt’s of the elements

N= gl (3-1)

5 .
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The sheev is assumed to te isotropic and incompressible, so that the con~

(3]

stitutive equations can be expressed as follows

TR v A (3-2)
(i = 1,2,3 or x,y,2)

wrere T is the principal vrue stress and p s an arbitrary hydro-
static pressure, The strain energy function W is expressible as a

function of the invariants T‘. 72. which, in terms of the principa!

extension ratios, are

2 2 2.2
T‘ = x] A5+ !/,_],.2 (3-3)
2 2 2.2
r - H 13 s
5 = ‘Iwi + ./le + k]AZ
Since 033 = D we can scive for p and rewrite Egs. (3-2) as
2 22 W, 20
G“ -~ 2(\‘ - ]/)\!4\2) (3T]+ ke axz)
(3-4)
2 2.2, oW 2 AW
~ = L o’ —— AN, T
Top = 20 = T/, (gzl v 45 B
. oW W .
Solving for S;;, g?; from Eq. (3-k) yields
2 2
by
I Tt ) DY -
L 321022 21522
I T L ST S (3-53)
T, ~ 2 .2 8
} 2(1\‘ - )\.2)
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- %2
o '_.\?- llexe 22 . l/hehi,l
~d = 2 2 1 _
a 31, LR (3-5b)
2(X2 - Kl)
The true stress can be expressed as
AF MF
11 22
%1 = Zh ad 05 =7 H (3-€)
20 1'o

where the Fi's are the total loads acting along the sides of undeformed
lengths li and ho is the thickness of the undeformed sheet, The

loads Fi are assumed to be evenly distributed atong the sidas of the

specimen, Experimental errors in measuring 9 and oo affect
. Eq. (3-5b) more scriousty tham £q. (3-5a}. To reduce the errors,

the smaller stress, say oy qr Was eliminated from £q. {3-5b), and

BW/Biz was determined from the resulting exprassion

-/

w7 %e w2
AT, = ‘_2,}\2 A a..zl.?/N (3-7)
o T )

For the case of uniaxial extension paratlel to the x-axis

2
Ay = '/7‘1 (3~8)

and Eq, {3-L} becomes

1 Bt
ISR {—I ) (3-9)

o AS:
1 /‘.l d‘]
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ii) Experimenta' Results
The biaxial tests were conducted by keeping cne of the extension
ratios fixed and varying the other. From these experiments the stresses

were determined as functions_of the extension ratlos, Xl and Xz, and

thus as functions of the invariants, Il and I2. These values were
used in Eqs. (3-5a) and (3-7) to determine %¥— and g¥— as functions
1 2
of I. and T,. Plots of aus as a function of T, and I, are
1 2 aI] 1 2

shown in Figs. 8. It is seen that within the experimental error %%—
1

is independent of both T‘ and T2, and is equal to the constant

_ . - AW .
C‘ = 20.28 psi, Similar plots of ST;- as a function of Il and I2
are given in Figs. 9. In Fig. 9a we observe that a reasonable fit

to the data is that g%— is independent of I , and Fig. 9b shows
5 1
that its value decreases with increasing values of I2. A least

square parabolic fit to the data vields the function:

M . [5.808 - 1.440 (T, - 3) + 0.1379 (I, - 3)°1 psi (3-10)

‘2
which is shown as a solid curve in Fig. 9b. Thus we may express

the strain energy function as

_ . _ay  Jb0 o 002 0.1379 3
W =20.28(I, -3) + 5.808(I,-3) 5— (I,-3)7 + 3 {7,-3) (3-11)

It should be noted that this form has been obtained from data in the

low ranges of and I,, i.e., I, and 12 < 8.

b
&
1 1

Since the stress concentration experiments will be conducted

so that the maximum values of I‘ and I2 are within this range, thess

low range results will be applicable.
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Uniaxial extension tests were conducted at 30, 67, 90, 120
and 150°F.,  The results show (Fig. 10) that the naterial becomes

stiffer with increasing temperature, a result which is in agreement

with the kinetic theory for rubber elasticity.

Fig. 11 shows a plot of the uniaxial stress as a function of
elongation ratio at a temperature of 90°F. The solid line has been
determined by using the form of the strain energy function obtained

from the biaxial experiments and substituting it into Eq. (3-9).
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4. NUMERICAL CALCULATIONS

The modified P.1.C, method was applied to the problems of a
circular hole and a rigid inclusfon in a sheet. Preliminary calculations
were performed on the former problem by assuming a 4 x 4 unit square
sheet having a circular hole of radius v, = 1 unit., A 20 x 20 grid

ik = 0,20) was used, thus resulting In approximately 800 simultareous i

equations (u,v are unknown at each cell center). The equations were so
arranged that a diagonally banded matrix containing over 100 elements was
obtained. Both direct and iteratfve methods were applied., Difficulties

c with convergence of the S.0.R, iterative scheme arose, while in the direct
method (Gaussion elimination with column pivoting) a great many significient

figures were lost after several incremental steps. While results showed

agreement with the linear theory for the first few incremental steps,

IS A i

no meaningful results could be obtained for finite deformations.
For the rigld fnclusion problem the displacement boundary conditions

did not result in a complication of thz matrix, as did the stress free

boundary conditions of the former case. A 10 x 10 grid (k = 0.3) was used,

and the direct method of solution yielded reasorable results, Since the

rtrn s armamp e+ e tamis - N e s o A s s

displacement functions were much smoother for the case of the rigid Inclusion

than tor the case of the cutout, it is to be expected that a courser gi'id

could be successfully applied to the former problem.
It should be pointed out that the analytical development of the

linearized equatfons of motion (2-47) was carrled out under the assumption
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that the material could be described by the Rivlin-Mooney constitutive
equations, However, the results of the experiments on the natural rubber
indicate that the materia! is described by Eq. (2-11), and thus will be
referred to as a Seneralized Rivlin-Mooney material, To make these two

results compatible, it was decided that in the analytical work, C2 would

be chosen to be a function of 12 as shown in Fig, (9b), that fs, it was

assumed thgt C2 ="3W (12)/812
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5. DISCUSSION

The results of the material characterization experiments.on a
thin sheet of natural rubber are presented in Figs. (8—11),E195,(8) show
that Bw/BI] is independent of the strain Invariants Il, 12. and has a value
C] = 20.28 psi, Similar graphs for FW/HIz are found In Figs.(9), which
indicate that BWIHIe is independent of Il and decreases with iIncreasing

values of 12. It should be noted that the form of the strain energy

function (3-11) has been obtained from data in the low ranges of I, and

1
12, i.e, for Il’ I2 < 8. Since the stress concentration experiments were
conducted so that the maximum values of Il and 12 fall within this range,

these fow range results are applicable.

At the completion of the material characterization experiments

Y

ML A

a circular hole was cut at the center of the sheet. A series of blaxial

5

experiments were then performed on the specimen at & temparatu-e of 90°F.

Fig. 12 shows the experimentally obtained displacements along the axis of

‘%

symmetry (x=o) for the equi-biaxial elongetions. Investigation of the

slopes In the vicinity of y/r0 = 13.0 Indicates that, essentially, an

PR &y ek S

isotropic strain state exists there, Thus the results cbtained are not

very different from those that would be obtained from an infinite sheat,

AL

T

it is for this reason that the ratio of the deformed to the undefarmmad

W

iength of the membrane is designated i ( = X]/x‘ = Yl/y}) for the

iR
bt Dy - 4- LA

equi-biaxial case. For the general biaxlal state (‘\x)m and (\y)m refer to

o< 5
O v
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the length ratios in the x- and y directions, respectively. Displacements
for the uni-~directional exteasicn, i.e. (Ex)w = 1,0, are presented in
Figs. 13, and the corresponding deformed shapes of the hole are shown in
Fig. 1k, Substituting the displacements and their derivatives into the
constitutlve equations (2-36) resuits in the experimentaily determined
stresses. The stress =, (circumferential) at the intersection of the
hole and the x - axis is plotted in Fig. 5. A comparison with lirear
theory indicates that no significant deviation occurs until = > 1.3.
A plot of the stress concentration facror Kt is presented i~ Fig. 15,
where it is seen that the factor varies from 2.0 for small strains to
approximately 4.0 st > = 1,6,

No analytical results were obtained for the probiem of the hole
in the sheet for reasons which are discussed it Chapter 1V, Althcugh no
experiments were performed on the sheet containing a rigid inclusicn, the
modified Particle = in - Cell {P.!.,€.) method was applied to the problem,
The results for the equi-biaxial case are presented in Figs, 17-20, The
stress ccncentration factor Kr’ is presented in Fig. 20 for a Generalized
Rivlin=Mooney (3-11)}, a Rivlin-Mooney (2-33) and a linear elastic material,
The curves indicate that the stress concentration factor decreases with
an increase in % _ for the Generalized Rivlin-Mooney material, whiie for
a Rivlin-Mooney material the situation is reversed, The results for the
Rivlin-Mooney material agree cualitatively with those obtained by Yang [32],
and with those obtained from an analysis of the displacements presented by

Rivlin and Thomas [31].
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-}E APPENDIX A
c ¥ COEFFICIENTS CF LINEARIZED EQUILIBRIUM AND
STRESS-DISPLACEMENT EQUATIONS
N
iy Let the displaccmnents at the end of the n-th siep be dencted by u
and v, The coefficients of the licearized equations at the (n + 1)-th step
H 5
are then given by the iollowing expressioans. ‘
E i) Coeificients of Linearized Equilibrium Equations (2-47) |
é A,= -Cl2V(l-u,,)+20u +3L4v +12L3M(1-v )1 ‘
: H 71 *2 ’12 B AR :
+L{- 2L {301 -0, M1 -v,5) =y, voy 0,y =28 (E-vy, 0 u,
- 2
E ; +2L {1 -v,zl 4, -(1 -u,l) v,l} Uy, 2N (1 -v,z) U5 2L Y,
. .
;’E 2 -27Z (1 ‘V,Z) u)22+2L[(1 'sz) V’l '(1 -u’l)u'Z] v’ll
E B © 2_ - 2_ &_ - \Z
{’ ; -2P (1 "V)Z) v)ll +L[(u:2) 3(1 url) (Vil) (1 V:ZI ] V)lz
e |
: o .2 - - - -
A, = CIWv,, #2Tv, 5 +2Y u,, +2U (1 ~a,) + Xv,  +3L% v, -1213Mv, ]
- 2 *22 i V2 A | ’11 ’11 S k
i | 2. 7. 'f
+ L {-2L (l-u,l)(u,ll+u,22)v,1-2L U2 ZN"'lu'xz'ZS“'u"'l 22‘"1“’22
2 - - 2 |
:, +L[W+2(v,1) ]v,ll-ZPv,lv,11 2LT Vi12 ZQ\,IZ &,1+L[(v,l) '
: | -(1 -u )Z]V =2R v, Vi, } +V 1
% ' ’1 '22 1 r22 11
i - - - - i
i A]l = Cc{xqQ v,2)+3L (1 V’Z)]+L S+ (1 V’Z) ;
| }
i 4 2 -
% AIZ = C[ZT(I‘V,2)+3L V,l]+L N+V,l
q. .
! N -
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+L 2L {{1 v,Z)v,l-(I u,l)u,z]u,u ZSu,uu,2

+L{{l-u )2+(u )2+3(v )?'-(1 -v )2}u -2LTu -2Zu,.,,u
i "1 '2 1 2 '12 122 12272

+2L[3v,lu,2-(l -u,l)(l -v,Z)]v,u- ZI:’v,nu,2 - ZNu,lzu,2

+2L[(1 -u,l)v, |-(i -v,Z)u,Z]v,IZ- ZQu,2 V% 2L Vio© ZRu,Zv,22 }

T4,y

b7.
. 2
CW{l-v,)+L"2

4 3
C[ZVV,1+2U(1-V,Z)+3L u,lZ-IZL Mu,z]

2

4

i b - 3 -
- C{Wu,,,+ 2Tu, ,+Xu, 1 +2Y (1-v,,) 4307y, 42U v, #1217 M(1-u,,)]

Y22
2 2
+L {-L[3(1 ~u, 4 (v, )7y =28 (1 -y, )0, #20T 0, = 2N(1 -y, )y, ,
. 2 2
+1i, {(v,l) -(1 -u,l) ]u,zz- 2Z {1 -u,l)u,zz-l- 2L (1 -u,l)v,1 (v,u-i-v,zz)

2 -
-2P ({1 -u,l)v,11 - 2L Viia T 2Q (1 -u,l) 112

- 2R (1 - u.,l) Viss } Sy,

4 2
C[Xu,2+3L u,Z]+L P +u,,

4
Cl2T u,, +3L" (1 - u,))] +L%0+ 01 - u,,)

CWu,2+LZR

C[WV+2TU+XY +3L*M) (A-1)

2
+ L [Su,ll+Nu,lz+Zu,22+Pv,ll+Qv,12+Rv,22]+M
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. where
; C = Cl/ CZ
- L = (1 -u,l)(i -V,Z) T Uy, Vi

M = (1°v’2)u’ll+(1 -ull) V’IZ +u’21 V,l+u,2V,ll

-4
il

(1 _u’l)z V’l +(V’1)3" 2‘4’2(] -uil)(l -V’Z) "Vsl (1 —V,2)2+(u,2)2 Vvl
P = a.-u)?-2v,(1-u. ) -v,)+3u, (v, )

’2 ,l ’l 'l ,2 ,?' ’l
Q «  (L-w?+ (L-u ) -0 - 2u,veg (1w ) +(1 v, )% -0, )
: R = w, ()2 -u.(l-0.0%~2v, (1~ -v,,)
; ’2 ’1 ’2 ’l ’1 ,l ’2

S = (1 °V’2)(V:1)2 +3(1 -usl)z (1 -V’Z) -2(1 -u’l) u’Zv’l

; . T = u,, (1 -u,l)-!~v,l {1 -V,Z)

; - -

P U = (1=v))u,,+8,%,
z vV = (1 —V,Z) u,ZZ-I-u,2 Vizo
2 2
‘ W = (l -u!l) +(v’l)
P
_ 2 2
, ! X = (l -V’Z) +(u’2)
Y = (l=vip)uyytu, vy
‘ Z = (1 -u,l) (1 = V,Z) -2 11,2 V’l ( "U-,l) = ‘v'l) (1 -V’ZI (A-Z)
i} and

- T = T v -7 4 =3 =

L Dl = -C[Wv,ll-{-?.l'v,lz-PZLu,Z+Xv,22+JL V’ZZ+12L MA(1 -v,z)
= =T . o y)
:_ +2Y(1 u,l)]-!-L{ZL(I v,Z)u,Z(\.,“-l-u,zz) 2R (1 v,z)u,11 2L Uy
i
' - 280 -vs,) 0y, - 2B(1 =v,5) sy, + D)% - (1 - vi,)°)
g 27 M2 127 g T g 2 BV
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- 2Z(3 vyt vy 420 v, - 2R (1 -v,5) v, - Tl(w,,)P4 30 v, ) v,

-2S(1 - V:z) V’ZZ } = V’ZZ

D2 = C[ZVu,Z"ZU(l -u,1)+3L v,lZ-IZL Mv,l]
— —2 - -
+L {=2L“y, ll-ZRv,1 uq + 2 L[(1 -v,Z) u,, - (1 -u,) v,l] Wy,
- ZQv,1 u,, + 2LJ[3 Uy Vyy = (1 - u,l}(l -V,Z)] Uy, - 2 Pu,22 \J]
~2LT v, =2Zv,y, voq +L[(1-%,)% +3(u,, )% + (v )%= (1 =0, )2 ] v
’11 711 " *2 '2 'i ’1 '12

-Zﬁv,l v’12+2£ [u’Z(l -u’l)-v’l (1 -V’Z)]V’ZZ -2 S-V’ZZ th}

-I-v,lZ

D. = CWuv,, +I°R
11 ’1
D, = C[2T v,  +3T%(1-v,,)]1+T2 Q8 +1-v
12 i '1 '2 2
D,, = C([Xv +3T4y ]+i2§+v
22 '1 e ’1 '1

. = - < = -4 -3=
E1 = C[Wu,ll-l-ZTu,lZ-l-X u,22+ZYv,1+3L u,ZZ-IZL NIu,2

+2U (1 -V,Z)]

- - 2 2 = Sy
+L {-L[(1 -v,z) - (u,z) ]u,l1 - 2R Uy W, - 2L T LI

- i 2 2 ||
-20 Uy, Wyt L [(1 - v,Z) + 3(u,2) ] Uy, - 2P U, 0,

v -~ —Z .—
-2L(1 - V’Z) u, (v,11 +v,22) 2 Zv,11 U, - 2L Vii2” 2N Viga Wy

-28S Viso u,2 } +u,22
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-— = —4 L =3 =
E2= C[-ZV(I-V,Z)-ZUV,1-3L u,lz-lAL M(l-u,l)}
+ L{2LTu,,;, -2 R(1 -9, ,)u, ,, + L[(v 1 -tu, )% -3(1-v, 5)°
' 11 17 ™11 B *2 '2
2 —
(] - i o = o o o
(1-u, )}, , 2Q (1 u,l)u,12+2L[(l 4 ) u,, - (1-v, ) v Ju,,
—-— —2 - -—
- 2P (1-u, 1) 8, 5,-2L% v, 1 = 2Z(1-u, |) (v, ;1) + 2T [(1-u, ) vy 4
-(l-v, 2)u, Z]V’IZ'ZR(I-U"I)V’IZ+ Zi.[u,zv,l-él (1 -u,l)(l-v_z)]v,ZZ
-25{1-u, ) vy 55} -u g,
E, = CW(l-u)+L°Z
1 11 ’1
E,,= C[2T(1-u,,)+30%q, ] +I°N +u
. 12 ! ' 2 ' 02
- E,, = C[X(l-u )+3L 1 -u )] +T%5S+1-u,
i 22 1 1 1
i .
K,= C[WV+2TU+X7+3L% M
| +L [Ru,ll+Qu,12+Pu,22+Zv,11+ Nv,12+Sv,22]+M (A-3)
[ where
L = (l-u,l)(l-v, 2) -ulzvil
M = (l-u,l)v,22+ (1'V,2) u,12+v,12u,2+ Vi Wy
= 2 3 2 2
N = (I'V: 2) u, 2+ (u: 2) -2 (l'uyl) (l‘V, 2) an' (1'11, 1) u, 2'+(V:1) unz
B e v, (-v,,)°-2u,. (I-a,) (-v, ) + 3(g, ,)° v
0] 2 9 2 1 2 22! Vi
: 3 2 2 2
A = (l-v,z) + (1-v, 2) [(u,z) - (v, 1) 1 - 2u, 2V (1-u, 1) 4+ (1-u, 1) (l-v,z)
| R o= [(w)* Qv )% v 2w, (1-u, ) (1-v, )
}i - lZI ’2 )1 ’2 Il ’2
- S = (].-u,l) (u.2)3+3(1-v,2)“ (l-u,l)-Z(l-v,Z)u,Zv,1
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Coefficientsof Linearized Stress-Displacement Equations (2~58).
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Vv, 1 (1-v, 2) + u, 2 (1'\1, 1)

(1=t} Vs 1o + Ve Wy
(=) ¥ gy #veg u gy
1-v, Z)Z + (u, 2)2

(1-u, )% + (v, )°
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(l'V, 2)2 (1 ~u, 1) - 2u, 2 v, l(l'vs 2) = (ll, 2)2 (1'!1, 1) (A -4)

- 4{2C L3 (. ,) + C,L [W(l-v, ,) + L(l-u, )]}

3
4[C1(2v, 1L +u, 2) +C, LWy, 1]

2

3

4[2C; L’u, , + C,L (W u, 5= v, L)]

a{c[2L> (t-u, ) - -V, ,)] + C,L W (1-u, )}

2

2(c (x-L% + c,0-L% w))

4{Cl[2L3(1-v, 2) = (1-u, )] + C,L X (1-v, Z)}

a2c L’

V, 1 + CZL (erl - Lu, 2)]
03
4[C (2L, , v, ) + C,L X u, ,]
3
4{2C; L (1-u, ) + C,L [X (1-u,,) + (1-v, ) L1}

2ic, (w-L% + c,a - L% x))

-2{C{u,, + C,L[Lu, ,+ 2 T (1-v, ,)]}
Z{Cl(l-u, ) +C, L[LA-y, )-2Tv, 1].}
2{Cy(1-v, ,) + C, L |L(i-v,,) - 2 T u, ,]}

-z{cl v, #C, L (L Vi  +2 T (I-y, 1)]} |

2T[C +C, LZ] (A-5)
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