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ABSTRACT 

I   . 

Biaxial  ar;r;  uniaxial   experiments  hsve been conducted on 

a  thin shs^t of natural   rubber, which can be assumed  to be   incompress- 

fb'Cf   isotrcpic,  and  perfectly elastic.    The strain energy function and 

constitutive equations  have been determined,  and  the rraterial   is c'las- 

si   ied as a Generalized Riv!in-Mooney type. 

Biaxial  experiments were  then conducted on the same sheet with 

a circular cutout  and  stress concentration  factors were obtained. 

Results   indicate a  significant   increase   in  the  factor with   increased 

dispiscements. 

A modiffed  Parti.:1e -   In -  Cell   (P.I.".)  method  has  been 

developed and analytical   results were obtained  for a  sheet with a 

rigid circular   inclusion.     It   is  shown  that  the stress  concentration 
.. ■**~~. ■■■■ — "—■ 

factor  for a  Rivlin-Moonty material   increases with  increasing deforma- 

tions,  a  result which   is   in qualitative agreement v^ith solutions  ob- 

tained by other methods [31»32],    The  use of the Generalized Rivlin- 

Mooney mate-ial,  however,   leads  to a decrease   in stress concentration 

with  increasing deformations. 
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LIST OF SYMBOLS 

a3  .aß 
a    ,A 

ci-c2 

h'h-h 

"P 

% 

o 

u,v 

u1.v1 

W 

X.Y.Z 

xrYi 
x.y.z 

contravarlent components of  in-plane metric tensors 
of undeformed and deformed body 

Rivlfn-Mooney material  constants 

contravarlent components of metric  tenors of undeformed 
and deformed body 

strain  invariants 

stress concentration factor at boundary of rigid 
Inclusion (ratio of radial stress at boundary of 
inclusion to that at edge of sheet) 

stress concentration factor at hole boundary   (ratio of 
tangential  stress at edge of hole to that at edge 
of sheet) 

cell   spacing used   in D.I.C. method 

stress  resultant 

shear resultant 

radius of  undeformed  hole 

displacement components 

displacements at edge of sheet 

strain energy density function   (per  unit volume of 
unds^ormed body) 

coordinates of a point   in deformed body 

coordinates of sides of deformed sheet 

coordinates of a point   in  undeformed  body 

«^ 



V yi 

'J 

coordinates of sides of indeformed sheet 

physical  component of stress  tensor 

ratio of deformed  to undeformed  length of membrane 

V(or^). 

y(or X2) 

-Ij 

elongation ratios in x (or 1) and y (or 2) directions 
respectively 

ratio of deformed to undeformed lengths in x and y 
directions respectively 

component of stress tensor 
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I.  INTRODUCTION 

An ever increasing use of reinforced and unreinforced poly- 

meric naterials in complex technological situations has given impetus 

to the general study of elastomeric materials subject to large deforma- 
rl-10l 

tions1'    .  But, owing to the nonl inearities of the basic equations 

for such materials, analytical solutions have been obtained for only a 

limited number of problems.   in general the material is assumed to 

be perfectly elastic and incompressible, and the deformations are 

homogeneous or highly symmetric, so that nonlinear partial differential 

equations can be avoided in the analysis (see, for example. Chapter III 

of Ref. 7 for discussion of the work of Rivlin, also see Refs. 6, 11-18). 

Although the 'iterature dealing with the classical stress 

concentration problem for linear elastic materials abounds, (see for 

example Refs. 19-22) only very few investigations can be found which 

realistically treat the stress concentration of elastomeric materials 

subject to large deformations.  The reason lies in the difficulty in 

solving the nonlinear partial differential equations which govern the 

stress and displacement fields. 

One way of attacking  such problems   is  to  use  the method  of 

•     ...       t       ,      • i   ...       [1 ,10,23-25] successive approximation to obtain solutions .       !n such 

cases  the stress and displacement fields are expanded   into power  series 

in a characteristic  real   pararr&ter    e, which depends on the  nature of 

r 
v. 
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the problem.  Wh^n these series expansions are substituteH into the field 

equations of finite elasticity, the coefficients of the successive powers 

of s  in the resulting identities yield linear equations for the deter- 

mination of the successive terms in the power series expansions.  The 

parameter s  is so chosen that the identities corresponding to the first 

degree in e  coincide with the set of field equations in the classical 

linear theory.  Because of the lengthy calculations required most of the 

problems actually solved in this manner have been limited to the first 

and the second degree in s.   In particular, Adkirßet al    '  applied 

[19] 
this method to plane problems, and, by using the complex variable technique 

obtained second-order solutions for an infinite plate with a circular 

hole or a circular rigid inclusion, subjected to a uniaxial tension at 

infinity.  The results showed that for a Mooney material the degree of 

stress concentration at the hole is reduced as the load is increased. 

[29] 
Similar observations were made by Guz', Savin and Tsurpal    in their 

study of an infinite plate of physically nonlinear material having a 

circular hole.  They assumed that the displacement field was within the 

range of applicability of infinitesimal strain theory.   In a recent paper, 

Evans and Pister    investigated the same problem by using a power series 

expansion up to the third order.  They showed that unless the deviation 

from linearity in the stress-strain relation is very small, the series 

solutions do not converge rapidly enough to lead to reasonable approxima- 

tions to the exact solutions. 
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Another way of solving the resulting nonlinear equations of the 

stress concentration problem is to employ numerical procedures. Using a 

forward   integration method,  Rivlin and Thomas solved the problem of 

the axially synrnetric deformation produced   in a circular sheet of a Mooney 

material, containing a central  circular hole, when subjected to radial 

tensile forces at  its outer periphery.     Their   displacement results were 

found  to be   in good agreement with  the experimental  measurements on a 

test piece of vulcanized  natural   rubber.      No results on stress concentra- 

[32] 
tion was  presented.       Recently,  Yang re-investigated  the axisymmetric 

problem and was able to reduce the equations  to two decoupled first-order 

equations, which v/ere solved  numerically by the Runge-Kutta method.      The 

results,   for both the hole and the rigid   inclusion,   indicate that the stress 

and  strain concentration factors   increase with  increasing  load  for  the 

Mooney material.      An analysis of the displacemants obtained by Rivlin and 

[on 
Thomai'" reveals   the same  trend   for  the concentration  factors. 

In  tnls  thesis,   the  problem of a  highly elastic  sheet with a 

centered  circular  hole or  rigid circular   inclusion,  subjected  to a  general 

biaxial   stress state,   is considered.      Since we consider very large deforma- 

tions and general   biaxial   stress states,  none of the previous approaches 

are applicable.       Instead   the nonlinear partial   differential  equations are 

linearized  by adopting an   incremental   procedure.      A variation of  the 

Particle-ln-Cel1   (P.I.C.)  method, which has been so successfully applied 

to    hydrodynamic blast problems ,   is developed specifically for 

v. 
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this type of elliptic problem.  Essentially, the method combines the 

features of the Eulerian and Lagrangian approaches by introducing an 

tulerir.n computational mesh and by keeping track of the material particles 

as in a Lagrangian formulation.  A description of this method can be 

found in Chapter II, Section H. 

Two series of experiments have been conducted.  One, was carried 

out on the sheet without the hole, in order to characterize the mechanical 

properties of the rubber for use in the analytical calculations.  The 

second set were the biaxial stress concentration experiments performed on 

the sheet with the hole. 

^^—l—.l UliUJMII II 
j^BsV   ■       ■■■j,.',;. - 
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2.   THEORY 

5. 

c 

A. Equilibrium Equations for a Thin Plane Sheet 
[7.10] 

Consider a flat elastic sheet whose thickness before Reforma- 

tion h  is constant and is small compared to its other dimensions. 

The sheet undergoes a finite deformation symmetrical about the middle 

plane z=0 which thus becomes the middle plane Z=0 in the deformed 

state.  X, Y, Z are the coordinates of a point in the deformed body 

which before deformation was at x,y,z, where both sets of coordinates 

are referred to the same rectangular cartesian system. 

The equilibrium equations, in the absence of body and inertia 

forces, are: 

•J = 0 (2-1) 

w'iere the double line denotes covariant differentiation with respect to 

i(X,Y, or Z).  Since in rectangular coordinates the components of the 

stress tensor r  J coincide with the physical components of the stress 

c.., Eq. (2-1) can be written as: 

CTij'i=0 (2-2) 

where tr,.  is the stress per unit area of the deformed body. 
•J 
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integrating the equilibrium equations   (2-2), and noting that 

the surfaces of the plate are traction free, we obtain 

naB.aB C   ^?-x'Y> (2-3) 

where 

"n* " / 
-h 

ffagd2 (2-^) 

is the stress resultant per unit  length of the deformed piste and    h    is 

Its thickness.      The «hear resultant 

qa= A a , dZ = 0 (2-5) 

due to the symmetrical stress distribution about the middle plane. 

We define a scalar function X. which represents the extension 

ratio at the middle plane Z=0 in a direction normal tc it, 

\ = 32 
3z 

(7 = 0) (2-6) 

Thus 

,. h   ..  ^Z  , 
n       oz 

h -♦ 0 0 
o 

Z-* 0 

(2-7) 

»t.fä«»»,' 

'.,'■.>' 

'•'t'' 
'■^ri\ 
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-r 

From (2-1*); 

2h" ' 2h~ J  ^ dZ 
o    o -h 

(2-8) 

and from (2-7) 

h -♦0   o 
o 

Since the faces of the sheet are free from applied forces 

Aim O,,], rt = 0 
h -»0 
o 

ZZJZ= 0 (2-9) 

For very small  h  we can approximately write 

[azz]z = o=ö 

and fVvc - 2h    ^-(o^.),    rt OS o       Os Z = 0 
(2-10) 

Substituting   (2-10)   into  (2-3), we obtain the final   form of the membrane 

equtl ibriun1 equations 

(^ae).a=o (Z = 0) (2-11) 

warn- ■ 
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^x (XCTXX) + 57 '^x^ = 0    V' M 

h (XOXY) + h ^YY) = 0   (Z e 0) (2-12) 

B.    Constitutive Equations 

If the sheet  Is made of a homogeneous,   Isotropie, elastic and 

Incompressible material 

T3-1 (2-13) 

and the strain energy density function W (measured per unit volume of 

the undeformed body) takes the form 

W = W(Tr 72) (2-1*0 

[10] The   inplane stresses on the middle plane can then be written as 

.08 
og " Gag 3 H a     + L A     (a'3 = X'Y) (2-1^) 

where 

2X2^--2(X2lr^.1A2)|W. 
ai, (2-16) 

oft      afi 
and    a    , A        are the  inp'ane components at 1-0 of the metric tensors 

iJ- :
?j' (g'J)    of the undeformed and     (G J)    deformed body,  respectively.      Thus 

the general metric tensors at Z= 0 are written as: 

b"   -. -   -  ■ 
en   ■.    • - mmm 
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c 

i 

[G
}j

3z.o 

An    Ai2    Gi3 

A12      ^      G23 

G13      G
23      G33 

5    C9Fj]Z=0 

•ll       a12      9l3 

'12      a22      923 

Lg'3     923     933 

(2-17) 

where 

GT 
= hLziL 

•J ae' 50J 

^r Sxr 

(J.j= 1.2,3 ;    yr=x,y,z    ;    xr-x,y,z) (2-18) 

and 0. are general curvilinear coordinates. We shall choose 0. so 

that they coincide with the rectangular cartesian coordinates, X, Y, Z. 

Thus we see that 

and 

Hence 

G.. =  5.. 
'J 'J 

G'U^J 

Q8   ' "06 

A06^06 
(2-19) 

A =  IA 
QS1 - V - • 

Since the deformation has been assumed to be symmetrical 

the middle plane it follows that x and y are even functions of 

thus at Z = 0 we have 

x = x(X,Y) 

^z = äz = 0 

^x = ^7 ' 0 

y = y(x,Y) 

?)X  ^Y  n 

about 

Z, and 

(2-20) 
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«and 32 1A {2-21) 

where >  » A(X,Y) represents the extension ratio at the middle plane 

in the Z direction and is assumed to be finite and nonzero.  We now 

can substitute Eqs. (2-20) and (2-21) into (2-17) and (2-18) to obtain 

the values of the components of the metric tensors g... g   at the 

plane Z « 0. 

9yy =- ayy = fey) + ^) XX " ^x oX' 

5x ^x     i>y ^y 
5XY " äXY ' 3X ^Y      BX ^Y 

3vY »  ayy =   %7)     +   (ff) 

gZ2 =  (^)   = !A 

9¥7 "  9v YZ (2-22) 

or 9iJ = 

aXX ^XY 0 

aXY        aYY 0 

0 1A 

(2-23) 

and 9=  Ig.j!  = aA^ (2-24) 

where a=   ^oe'   = aXXaYY -   (aXY)2 (2-25) 
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II. 

The component of the contravariant metric te 

be determined from the equation: 

nsors    gIJ    and    a06    can 

j.      cofactor gj» 
gJ= L 

(2-26) 

and are therefore 

gXXsaX/=V^_      aYY 

aA' 2   "    a 

g
XY = a

XY -  . aXYA   B      fxY 

aA2   = '    a 

aA2    ="r 

aAd (2-27) 

XZ YZ       n 
'J     = g     =0 

or 'J' 

= XX XY 
a a 0 

XY YY 
a a 

(2-28) 

and lgijl  =X2[aXXaYY.   (aXy)2]^ (2-29) 
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The strain invar;a^ts art oiven by the expressions 

_ rs   - ,2 ^     rs  A I, = g      G      =.v+a      A f r$ rs 

T r>rs , I Ars 1^ = g      G      T, = -^ + a      A 2      3rs 3      ,2 rs 
\ 

%2A 

2 
and  therefore    a = \      because or   incompressibility, 

(2-30) 

Finally,  then T    _ aXX + aYY + a 

a 

T2= axx + 8Yy+ 1/3 
(2-31) 

The most general  power series  form of    W    for an   incompressible 

r37l homogeneous   Isotropie elastic material   is  ^ 

OD CO 

w =   v: 
i=0    >0 

C,.   (V3)!   (V^J (2-32) 

where    C,    are constants and    C      =0. 
ij oo 

In  the following,  we assume a RIvlin-Mooney type of material 

which   is expressed by 

W = C^-BHCgd^) (2-33) 

The necessary and sufficient conditions for W > 0  is that C. > 0 and 

C, > 0.  Substitution of (2-31) and (2-33) Into (2-16) yields 
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n. 

H = 2{C. + a C2) 

L = - 2a Cj - 2(axx + aYY - l/a)C2 (2-34) 

Finally, the stresses of Eq. (2-15) can be written as follows: 

aYv C2 
CT«V « 2Ct — - 2C„ auv - 280, + 2 — 

a JXX = ^l ^^ * cv2 aXX  ^1 

^YY = 2C1 ¥ " 2C2 aYY " 2aCl + 2 T (2-35) 

VY aXY=-2(C1+aC2)-n 

C.    Displacement Equilibrium Equations 

Replacing    X    and    Y    by the   indices    I    and    2,  respectively» 

and appealing to Eqs.   {2-35)f we have 

\ow = Xo,, = 2 -A a„    - 2C„v/Ta11 - 2^0, + 2    2 

XX 'l 1  =     7a a22 11 i "^T? 

XCTYY = \a22 = 2    ^^ - 2C2 /? a22 - 2^0,  + 2 ^| (2-36) 

\aXY = \a12 = - 2(0, + aC0) "12 
1  + at2; "7? 

The equilibrium equations   (2-12)   then may be expressed as 

C[2a(a12,2 - a^.,)  +  (a22 + 3a ) a^ - a12 a,2] 

+ a.j + a(a1]a,1    + a|2 a,2) + 2a  (a,2,2 + a^.j) « 0      (2-37) 
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and C[2a(aloM  - a,,.,,) +   (a,,  + lad)  a,2 - a,,, a.,] ■,2-,   - cn.2/   ■   van 

o 2, + a,2 + a(a22 a,2 + a12 a^)  + 2<f{a}2,} + a22,2) = 0 

(2-38) 

where C = C,/^   . (2-39) 

and a comma denotes partial differentiation with respect to 1 or 2 

(X or Y). 

We define the displacements in terms of the coordinates of the 

deformed body 

u(X,Y) = X - x(X,Y) ' 

v(X,Y) = Y - y(X,Y) (2-40) 

Thus in terms of these displacements 

a,, = (1-u,,) + (v^)2 

a22 = (u.2)
2 + (I-v.2)

2 

a12 = - [(l-u.^u.g + (I-v.^v,,] 

a = [(l-un)(l-V.2) - u.2 v^]
2 

(2-41) 

and the equilibrium equations in terms of the displacements are 
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2      2 
^[(Yj+v^ )(U,22V2+V,22U,2  )  + 2(Y1U,2+Y2V,1)(U,12Y2+V,12U,2) 

2       2 4 +   (v2+u,2)(ufl jV2+v,1)ut2)  + SfYiYo-u.gY^)   (u.^Vg+v.jgYi+u.g^.^u.gV,^)] 

2 2 2 
+   (u'i|y2

+v«2lyl+u'21v,l+U,2V'lP  "   (viY2"u'2V,l^  fu,l^"v»l  v2"?VlV2+2u,2V,lVV 

2 3 2        2 2 2 
+  u'i2("vr'l"V*i f2u,2VlV2+V,IV2"U,2 V'P+ u'22(2u'2V,lVrVlV2+v,l  v2^ 

2 2^22 2 
+ v^jC-Y^.^v.^v^g-Su.gV.j )+ v']2^'Y\'v,\v^Ut2 v

1
+2«'2v'iV2"V1V2^ 

+ v'22(u'2V1+2v'1VlVU'2V'l2)] = 0 (2-42a) 

anH 

2       2, C[ (v2+u,2 )(v,11v1+u,nv,1)  + 2(v2v,1+\Ju,2) (v.^Y^u.^v.j) 

+   (v1+vtl )(v,22v1+u,22v,|) + 3(\2Y
v'iu»2^   (vjv»22+v2U,12+v'12u'2+V,lu'22^ 

+   (v.22V!+U'12V2+V'l2U'2+V'r'22)  "   ^"l^'T^^fV'22(-U'22vr3Y1V2+2v'lU'2V2) 

2      3 2 2 2        2 
+ V'^^'"^''^"11'? ,'2v'lV1V2+U,2VrU,2V'l   ^+ v'n(2u"3v'jv2"vlV2+U'2 VI^ 

2 2 3       2 2 2 
+  u,22(-v2v,1+2u,2Y1v2-3is2  V'^+U,12^"Y2'Ü'2 Y2+V,I  V2+2u,2V,lVrV1Y2) 

2 2 
+  u,.. (vtjV^UtgYjYg-u.g  v,^]  =  0 (2-426) 

where    v.  =  1   -  u,. Y2 = "2 (2-43) 

D.  Piecewise Linearization of the Equilibrium Equations 

The two equilibrium equations (2-42) are second order nonlinear 

partial differential equations in u and v.   In order to solve for u 

and v we assume that the body is strained to its final position by 

mmmmtm- 
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successive steps of small  displacement   increments    Au    and    Av.      The 

total  displacement after n+l   such steps   is expressed as 

n+l "    ,   i n+l n  .   4  n+l 
u        =      LAu+Au        =u+Au 

i=l 

n+l "    .   «       „n+l n n+l 
v        =      i.    äv    + Av        =  v    + Av 

1=1 

(2-kk) 

where 
n 

u   = 
t 

n 
Z    Au' 
i=l 

v   = 
n 
7    Av 
i=l 

(2-45) 

It   is assumed  that    Au,  Av    are sufficiently small  so that 

terms containing squares or higher order terms  in    Au, Av    or their 

partial  derivatives can be neglected with respect to first order terms. 

Thus,  for example. 

,.     n+K2 
d-u,.   ) (l-u?1-Au?^1)2. (1-u?,)2 - 2(1-u?1)Au?|1+0(Au?;1)2 

(2-46) 

Following this assumption all the expressions appearing in the 

equilibrium equations are rewritten by expressing u, v in the forms of 

(2-kk)  and retaining only first order terms in Au, Av and their deriva- 

tives.  For simplicity, the superscripts of u , v , Au  , Av    will 

be omitted in writing the following linearized form of the equilibrium 

equations at the (n+l)  step 

^ . .i-f5.'' 
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A11 Au*ll + A22 Au,22 + A12 AuM2 + AI Au,l + A2 Au,2 

+ Bn  Av,n + B22 iv,22 + B12 Av,12 + B1  Av.j + B2 Av,2 + K1 = 0 (2-47a) 

a no 

D^   ',u»ii + D22 iu,22 + D12 Au'12 * Dl  ^"'1  + D2 Au'2 

+ E,,  Lv,]]  + E22 Av,^ + E]2 Av,l2 + E1  Av,,  + E2 Av,2 + Kg -  0 (2-47b) 

The coefficients    A. ••i  B||i   •••!  K.»  D..»   •••« E||t   ••••  K_    are to •ir • 
be found in Appendix A and are functions of the derivatives of the total 

displacements at the completion of the n   step and contain the Rfvlin- 

Mooney constants. 

E. Modified P.I.C. Method 

The linearized equilibrium equation? (2-47) are solved numeri- 

cally by using a modified form of the P.i.C. Method, which has been 

[34] 
successfully used in wave propagation problems   .  The procedure 

fol1ows . 

First a fixed grid (Eulerian) is introduced, dividing the region 

into a finite number of cells.  The displacement of each cell is 

represented by the displacement at its center.  The partial derivatives 

of Au, ^v are expressed in finite difference form at each of the cell 

centers, which act as the pivotal points.  The substitution of these 

finite difference forms into the differential equations (2-47), produces 

a set of linear algebraic equations in the set of unknowns, Au and Av, 

et each point.  The incremental displacements determined in this first 

\  



18. 

(Eulerian) part satisfy the eqi'il ibriun equations in the sense of class- 

ical linear theory, where »fc is assumed that the final coordinates are 

identical with the initial ones.  The geometric nonlinear effect, due to 

changes in the configuration of the material, is accounted for in the 

second part of the procedure. 

We begin by distributing particles in each cell, where a cell 

(i,j) Is the square aro'/nd mesh point (i,j) bounded by the lines  i i k/2 

and j±k/2. These particles move durlr.g each step, and their incremental 

displacements are assumed to be the same as that of the cell center in 

which they find themselves at the beginning of a step.  The position 

and total displacements of these particles are recorded throughout the 

deformation.  In solving for the incremental displacements of the n+l 

step, for example, it is necessary to know at each cell center the total 

displacements accumulated during the first n steps.  These displace- 

ments are assumed to be equal to the average displacements of all the 

t'h 
particles in the cell at the end of the n   step.  If no particles 

move in or out of a cell then its displacement remains unmodified. 

At the end of each load step the nonlinear equations are 

checked so as  to be sure that rhe assumption of piecewise linearity is 

reasonable.  if the check fai's, the step has to be refined and the 

computation repeated. 

F. Extension of a Thin Elastic Sheec with a Hole at its Center 

Consider a rectangular sheet subjected to biaxial extensions 

along its sides.  The sheet contains a traction free hole at its center» 

#„. ^vSHi^' 
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The method of solution described can be applied to a hole of arbitrary 

shape.  if the hole is symmeii*ical with respect to the axes of symmetry 

of the sheet, then it is  sufficient to consider only one quarter of the 

sheet.  In what follows, a hole with such symnetry is assumed, and the 

analysis i.s thus carried out for only one quarter of the sheet.  The 

surface of the sheet is divided into cells by introducing a grid system 

(Fig. 1).  The pivotal points are located at the cell centers and have 

a constant spacing k.  The partial derivatives at !,j, expressed in 

central difference form are: 

u^O.j; * [u(J+k,j) - u(i-k.j)]/2k + 0{k2) 

u.2{i.j) « CuCi.j+k) - u(i,j-k)]/?k + 0(k2) (2-48) 

u,n(i,j) = [u(f+k,j) - 2u(i.j) + u(i-k,j)]/k
2 + 0(k2) 

ii.220.j) = Mi.j+k) - 2u(;,j) + u(i,j-k)]/k2 + o{k2) 

u,12(i,j) = fu(i+k,j+k) - u(i-k.j+k) - u(i+k.j-k) + u(i'k,j-k)]Ak
2 + 0(k2) 

fntrcducing such forms for the partial  derivatives   into the 

equilibrium equations   (2-47)   results  in a set of algebraic equations 

wirh each equation contairirKj  the  unknowns    .Au, ^v    of point   it,})  and 

the eigtit surrounding points. Thus the equilibrium equations 

in centra!  difference form are 

A12 Au(i-k,j-k) +   (itA22-2kA2) Au(l rj-k)-AJ2Au(i+k,j-k) +   (^,-21^ )ftu(i-k,j) 

- B(An-r-A22) Äu(i,j)+(^Ajj+SkA^ Au(i+k.J)-A12iu(i-k,j+k) 

+   (4A22+2kA?) Äu(i,j>k) + f\]2 Au(i+k,j--k) + B]2 Äv(i-k,j-k) 

(continued on next page) 
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+   (43^-21482) Av(i.j-k)  - B12 Av(i+k.j-k) +   (i»B1I-2kB1)  Av(?-k.j) 

- SlSj^B^) Av(i,j) +  (i»B11+2kB1) Av(!+k,j)  - 6]2 Av(I-k.j-Hc) 

+  (^B^kB^) Av(i,j+lc) + B12^v(f+k.j+'     + ^  = 0 (2-493) 

and 

D12 Au{i-k.j-k)+    (4022-2kD2)  Au(i.j-k)  - 0J2 Au(i+k.j-k) 

■»   (kD]r2kD])  Au(f-k.j)  - 8(Dn+022)  Mi.])  +  (4Dn+2kDJ)  Au(i+k,j) 

- Dl2 AuCf-k.j+k) +  ('fD22+2kD2) Au{i.j+k) + DI2 Au{I+k.j+k) + E)2 Av(!-k,j-k) 

+  (4E22-2kE2)  ^(i.j-k)  - E]2 Av(f+k,j-k) +   (4En-2kE1) Av(f-k.j) 

- 8(E11+E22)  Av(l.j) +   {4En+2kEl)  Av{i+k.j)  - E12 Av(Nk,j+!;) 

+  (kE22+2kE2) äv(!.j+;;) + E^ vrv{J+k.J+k) + K,, = 0 (2.1,9b) 

Boundary Conditions 

and 

while 

and 

The x - and y - axes are axes of symmetry, and, consequently, 

u(l,})  =0 on the y-axis, 

u(I-k.j) = - u(l+k,j) ;  v(l-k,i) - v(l+k,i),   (2-50) 

v(i,l) »0 on the x-axis, 

u(i,l-k)= uli,l+k) ; v(r,J-k)=- v(M+k) (2-51) 

Let x = x.    and    y = y,    be the sides olf the  undeformed sheet   (Fig.  I) 

then at X = Xj 

- ail! 
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and 

u =  u     (prescribed) 

r      =   0 XY (2-52) 

and at Y = Y. 

and 

v = v. (prescribed) 

XY = 0 (2-53) 

It is assumed that the sides X = X. and ^ = Y. are far enough from 

the hole so that we can replace the shearing stress conditions by the 

linear displacement conditions. 

.,-, 
X 

The hole   is free of traction so that 

'xx* + V" = 0 

'XY' + -'" ^, = 0 'YY 

(2-5^) 

(2-55) 

where the direction cosines of the unit normal are 

i  *  cos(N>X) 

m = co5(N,Y) 

dX 
dN 

dY 
dN 

dY 
dS 

-dX 
dS (2-56) 

8y substituting Eqs. (2-56) into (2-55)» the boundary conditions along 

the hole can be written as 

f 



22, 

CXX  dS '  CXY df = 

"XY ^ " '■vv f ' 0 ^ 

where the stresses car, be expressed   in terms of the derivatives of  the 

displacements by  utilizing Eqs.   (2-36)  and  (2-41).      The piecewise  linear 

form of the stress-displacement  relationship can then be expressed as 

acxx= a^'.u.j + SgAu.g + b]&v'] + b2^v,2 + kl 

acYY = djiu.,  + d2iü.2 + e^v.,  + e2Av.2 + ^ (2 ^ 

acTXY =  f^.u.,  + f^u^ + g^'.v.,  * g2(iv,2 + k3 

where    a., a2, bj, b2,  kj, d^, dg, e^, e2,  k^    and    f^,  f2,  gj,  g2,   k^ 

are given  in Appendix A. 

dX      dY 
The procedure  for evaluating    J? » 7T    is as  follovjs.      The 

hole  is delineated  by placing evenly spaced  particles  on  the boundary 

curve.      These particles   then trace the boundary  throughout  the deforma- 

tion process.      The derivatives    "Tc   » TTc    at a particular boundary partic'e 

i     is  obtained  by expressing    X = X(S)     and    Y =  Y(S)     at  the points   i - 1 

and     i + 1    by a Taylor series expansion about point     i     (Fig. 2)  and 

retaining only  terms  up to the  third order.       The solution of the  two 

simultaneous equations  then results   in the following expressions 

.Y        x(i+i)(s. . .)2 - x(i-i)(s. f.,)
2 + x(i)[(s. .+1)

2 - (-   . .)2l 2 

ds(,) = s. . . s. r: (s. . . + s. m) '—+ 0{s ) 

dv(i) = Y^Hy,.^ - lii^i.w:+ ii2L<w: - (sM.in i s2) 
dS S,   ,   •  S.   .   . (S,   .   . + S.   ...) 

(2-59) 

^ •-,  >;■- 

-,- 



23 

where 

S. . . = f[X(I) - X(M)32 + [Y(i) - Y{r-i)]2^ 

(?-6o) 

The partial derivatives in the linearized stress displacement relations, 

Eqs. (2-58), must be expressed in forward difference form at the boundary 

of the hole and are, for example. 

u,1 (I,J') = k f-3u(i,j) + 4u(i+k,j) - u(i+2k,j)] + 0(k2) 

u.2(i.j) = ~ f-3ii(i,j) + Mi,j+k) - u(i,j+2k)] + 0(k2) 
(2-61) 

The linearized finite difference form of the traction free boundary raa^ 

then be expressed as 

/1;u(i.j)+^u(i+k,j)«-;3iu(i+2k,j)+/ifAu(i,j+k)+;5liu(i,j+2k) 

+ m|Av(I, j )+m2Av( r+l<, j )+m  'v{i+2k,j )+^v(i, j+k)+m Av(i, j+2k) 

+ k.   =  0 (2-62a) 

nj&ufi.j^+n^ud+k.j^+n /.u(i+2k,j)+n^u(i,j+k)+n Au(i,j+2k) 

•i- PIAv(i,j)+p2llv(i+k,j)+p3iv{i+2k,j)+plfAv{i,j+k)+p Av(i,j+2k) 

+ k_ =  0 
5 

(2l-62b) 

where 

^ =luC^ + ^)§  C'J)  -   («, +aJ^ (i.j)] 1       2k L v,l 2'  dS 

dY 

1       "2'  dS 

dX 
^ kfal  d? (f'J) ' fl  dS  (F'j)] 

(continued on next p&ge) 
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V" Sk^' § (?'j) ai inf (?'j)] 

2
    r      dY   c   M f2g d.j)] 

S=2kCf2dS   (,'J) a2£ C.j)] 

,,^= k Cbl £  (?'j)  " 91  dS   (?'j)] 

i     r       dX   /.   .\       •     dY   ».   .\i 
m3=2kC9l  dS   (,'j)  " bl  dS   (F'j)] 

mi   * 
dY dX 

1*      k LU2 dS fbc» ^c   (f»J)  -  9o±  O.j)] 2 dS 

1     c       dX,...       .     dY   /.   . »■• 
"b'^^ads (,'j) " b2ds ^,'j)] 

S^ kl § (!'j) " k3 § (?'j) 

I      2k 
dX dY   ,.   ., 

[(d,  + d2) ^   (i.j)   -   (f,  +  f2) ^   (i,j)] 

n« = 
dY dX 

2      k L   1 dS [f, ^ (i.j) - d, -nr (**j)] 1  dS 

n4 = l[f2S  0'J)   " d2S  (f'j)] 

n5 = ikC  d2f  (f*j)  "  f2^  (i'j)] 



25. 

», =li;f<«i + '2>3l'i-J>-<9i + V5?<i-i" 

^  k[9l  d?  (''j)  " el  dS   (,'j)] 

1 r       dX   ».   .« dY   /.   .\-t 
P3=2k[e1  dS   (,'j) - 91  dS   (,'j)] 

2 r       dY   ,.   .x dX   ,.   .», 
^=  k[92dS   {,'j)  "e2dS   (,'j)] 

1        r dX     /.     .. ^Y     »,     .»T 

^^ 2kCe2dS   (,'j)  "  % dS   (,'j)] 

k5=k3f  (f.j)  - l^f  (t.j) (2-63) 

The values of -rr (t pj), -T? (i»j) at the center of each 

boundary eel 1 are obtained by averaging the values of the derivatives 

of all of the boundary prrticles lying in the cell at any step. 

Again, it should be noted that the boundary conditions at each incremental 

step are satisfied in the same sense as they are in classical elasticity 

theory. 

G. Extension of a Thin Elastic Sheet with a Rigid Inclusion at its Center 

We consider a rectangular sheet subjected to biaxial extensions, 

and having a rigid inclusion at its center.  The inclusion is of 

arbitrary shape; however, since we desire to consider only one quarter 

of the sheet, symmetry of the inclusion is required.  The previous 

formulation for the traction free hole remains unchanged except for the 

boundary conditions at the hole, Eqs. (2-57), which is now replaced by 

the statement that 

♦ 
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u = v » 0 

at the interface. 

H. The Computer Program and the Computation Procedure 

The program described here was written in fortran language and 

run on an IBM 36O, model 50» computer.  In Its present form it 

represents the basic program necessary to solve the problems described. 

No auxiliary storage facilities are used and the program is presently 

limited» because of the machine storage capacity, to solutions of small 

finite deformations.  In order to be able to exceed the present range 

it is necessary to include enough auxiliary storage units so that it 

will be possible to include the new cells which are required as the 

deformation progresses.  It is also necessary to use a machine which 

retains more significant figures since the loss of significant figures 

is quite rapid in solutions of large matrices such as those encountered 

here. 

The program consists of a main program and a set of subroutines. 

The main program reads in data, prints output, and controls the sub- 

routines.  The parameters of the problem are read into the main program 

by data cards and can be changed as desired.  These parameters consist 

of the spacing k, the initial dimensions of the sheet and its material 

coefficients, the shape of the hole, the size of displacement increments 

and the number of incremental steps, and the spacing of the distributed 

particles. 

Bt( ''■"' , .'' 
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The computation proceeds by first calling for the subroutine 

which distributes the particles throughout the sheet and along the 

boundary of the hole.  This step is followed by a scanning subroutine 

which scans the region of the hole and determines the location of the 

boundary cells, which are defined as cells which contain one or more of 

the boundary particles.  The main program next calls for the subroutine 

which calculates the derivatives JC" » '3c' a* each of the boundary 

particles and then attributes to the boundary cell in which they lie» 

their average values.  This is then followed by a subroutine which 

calculates the coefficients of the linear algebraic simultaneous equations 

arising from the finite difference solution of the piecewise linearized 

forms of the equilibrium equations (2-49) and the boundary conditions 

(2-62).  The same subroutine also calculates the stresses at the end 

of each step. 

Both an iterative and direct method were used to solve the 

simultaneous equations.  The iterative method used is the S.O.R. which 

can be described briefly as follows.  Consider an nxn matrix A= (a..) 

which is nonsingular and with nonzero diagonal elements.  We seek the 

solution of the system of linear equations 

Ax = K 

n 
or S a., x. = k.    1 < I < n (2-Ö0 

j=1  U J   -     -  - 

T 
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The S.O.R.   iteration process   is qiven by the following algorithm' [38] 

I . l    a..    h]     IJ  j a..    >f+1     rj  j a..       .      » 

(2-65) 

where     m     is  the relaxation factor and     (m),   (m+l)     indicate the    m 

and (nH-l) iteration respectively.      When   u)=l   the S.O.R, method  is 

identical with the Gauss-Seidel   Iteration method. 

When  iteration  is  used,  parameters such as maximum er^or and 

number of iterations allowed have to be read in.  Starting with 

assumed initial distribution of Au, Av, the iteration is carried out by 

moving along pivotal points which lie along lines parallel to one of the 

symmetry axes,with Au calculated first,followed by the calculations of 

Av at the same pivotal point.  Proceeding from the outer boundary towards 

the hole or in the opposite direction gave similar rates of convergence. 

The direct method used is based on the Gauss elimination with 

[391 
pivotal condensation  J .  First we select the largest eleirent of the 

coefficient matrix A, say a.., which is called the pivot.  A multiplier 

th 
m. = - a,,/a. ,     is then computed for each row    i^k.      Next,  the    k        row 

1 J      J 

Is multiplied by    m.    and added  to the     i row.      This  leads  to a new 

matrix with zeros   in the    j        column, except for    a...      The same pro- 

th 
cess   is  now repeated for the auxiliary matrix which excludes  the    j 

column and  the    k        row.      The process yields an upper diagonal  matrix 

which can be written with unit entries along  its main diagonal.      The solu- 

tion  is obtained by going from the last row of the upper diagonal  matrix 

to the first and  in each row substituting all  the known values and trans- 

. -■ *   ■ 
SStt?. 

m^-^' ■'■■ 
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I 
ferrfng all terms off the main diagonal to the right hand side.  Thus 

the values of the right hand side yield the solution.  The disadvantage 

of this procedure Is the rapid loss of significant figures which occurs 

for large matrices. 

The IBM GELB subroutine was used to carry out the direct method. 

This subroutine is written for solution of banded matrices. it uses 

Gaussian elimination with column pivoting only. The subroutine GELB 

requires that the elements of the matrix be stored row after row as a 

one dimensional array. Therefore, GELB is preceeded by a subroutine 

which arranges the elements of the matrices in the proper order. 

The solution of the simultaneous equations yields A" and Av 

of each cell center.  Next, a subroutine is called for which computes 

the total displacements of each particle, their new coordinates and 

cells in which they He.  The new boundary cells are then found, and 

the magnitude of the displacements associated with the cell centers ere 

recalculated.  This completes the computations for the first increment. 

Further steps are computed by reading in the new prescribed end dis- 

placement increments and repeating the general procedure described above. 

The program was also adopted to the solution of the problem of 

the rigid inclusion In a sheet.  It contains all the elements of the hole 

program, with the exception that no derivatives are calculated along the 

interface and that the boundary eel Is,of course, remain fixed. 

T" 

m 
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3.   EXPERIMENTS 

A,    Experimenta!  Equipment 

A biaxial   testing Apparatus, designed by the author, was used 

to conduct the biaxfal  experiments,       it consists of a loading Hiechanis?r:, 

an environmental  chamber end control and measuring instruments   (Fig. 3). 

The loading mechanism consists of an electric motor   (1/2 H.P.) connected 

to four shafts through a conical  gear transmission.      The shafts are thus 

driven simultaneously and have  identical   speeds.      Each shaft  is conr^scted 

to two parallel driving screws fay means of sprockets and chains,  resulting 

fn movement of the four crossheads, which  in turn transmit  their motion to 

the specimen through a loading frame.      The stretching mechanism thus 

ensures that the center of the specimen  is always stationary and there- 

fore always remains centered,      Crosshead speeds   in the two principal 

directions can be varied  independently by adjusting the gear ratios  in 

the chain-sprocket assembly.      A range of crosshead speeds from 1   to 20 

in/min can be obtained by a suitable adjustment of the sprocket assembly 

and motor speed.      Each crosshead has a travelling range of 15  in. 

The test specimen  (a rectangular thin sheet) was cut so that 

a series of lugs was formed on each of  Its sides.      Each of these lugs 

was connected to a light aluminum end strip which  is pinned to a roller, 

consisting of a miniature ball  bearing mounted  in an aluminum U-section. 
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Iht rollers  are constraJned to nove along the rails of the alumfn'.jm 

loading frames (Ffg.f»), each side of which is connected to the crosshead 

by win parallel rods which pass through special fow friction guides. 

The lengths of the rods are adjustable for use with different size 

speciRiens.  Out of plane or lateral motions arc prevented by support- 

in« the loading frames on rollers which rest of? an adjustable support 

platform.  Loads are meac jred by placing Joed cells between the guide 

rods and the crossheads. 

The environmental chamber is an insulated box, having test 

chamber dimensions of 30 X 30 X 12 inches.  Cooling coils and strip 

heaters are attached along the side walls and four sir*" fans are used 

for air circulation, so as to maintain a uniform temperature throughout the 

chamber.  The cooling is done by connecting the coils to a i ?/2 H.P. Sendix- 

Wsstinghouse Co. low temperature compressor, and supplementing this by 

using liquid nitrogen for the very low temperatures.  A range of tem- 

parature from -80 to 200 F can be achieved with variation of ~ \  F 

throughout the test chamber.  Temperature is controlled by a West Instrument 

Corp. Gardsman  control unit which controls the strip heaters.  Below 

room temperatures are reached by operating the cempressor continuously 

and controlling the heat input of the heaters   It was found that thl» 

operating procedure results in a more stable temperature than when both 

heating and cooling rates or only cooling rates are concrolled.  The 

upper surface of the environmental chamber is covered by a thermal pane, 

free to move along cwo support rails, thereby permitting ootical measure- 

ments of the displacements of the test piece, as well as easy access to 

the chamber interior. 
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Sone uniaxial  experiments were also conducted.   -   The_eguip;nenl 

used for these tests consists of a Universal  Testing   Instrument Model 

TTC hi.3 made by   Instroo Engineering Corporation, and an FRL Environ- 

mental  Box designad by Fabric Research Laboratories.      H»ating  in the 

chamber  is accomplished by use of strip heaters, and cooling   is done 

by use of either dry  ice or liquid nitrogen,      A Barber-Col man '"o. 

Wheelco unit provides  temperature control  over a range of -100 to WO F 

by operating the strip heaters. 

8.    Specimen Preparation 

The experiments were performed on rpecimens of natural   rubber 

(cured with I   part of di cumyl   peroxide« 2.5 pt dicup 40c)  all   of which 

were cut from the same sheet   in order  to reduce possible variations of 

the material   properties.      The  thickness of the sheet was   0.079 i 0.001+ 

in,      A specimen having 6 1/2  in. sides was  used  for  the biaxial 

experiments, and a strip having a length of 5 in- and a width of 0.37? 

in. was  used for the uniaxia!   tests. 

For the biaxial  experimerus a silk screer- was prepared having 

sub-divisions varying fran \lh  in. at   its perimeter to I/32  in.   in  i^s 

irterior.      Although the small  sub-divisions were not required   for  the 

characterization experiments,   they were necessary for  the stress concen- 

tration experiments which were carried out on the same sheet. 

The grid was printed on the specimen b/ placing the screen 

over  It and spreading a rubber base  ink (Ridgway RC il^, R.I. White) 

over the surface of the screen by pressing a squeegee over  it. 
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C. Experimental Procedure 

The specimen w»* placed in the loading rig and stretched to «. 

predetermined elongation ir; one direction.  This elongation was thsn 

kept fixed while the perpendicular sides were stretched over a range of 

elongation ratios from !.0 to 1,8 in 0.1 steps.     The procedure was 

repeated for different values of the fixed elongation.  isotropy in the 

undeformed state was checked by repeating the tests with interchanged 

principal axes, and noting that there was only a slight variation in 

loads corresponding to interchanged eloncations.  Before each test the 

specimen was relaxed for two hours et the highest temperature of the 

tests (1500F) in order to release possible residual stresses. 

The experiments were performed at 30, 60, 90, 120 and 150OF. 

Only slight temperature effects could be detected in the biex!»! 

experiments, and since these were within the experiment.?^ errcr. 

teT.peraturc effects could not be isolated. 

The displacements of the sheot were recorded s»; prescribed 

crosshead positions by photographing the specimen with a 4 X "? in. view 

camera (made by Calumet Manufacturing Co.) mounted on a tripod placed 

on the thermal pane cover (Fig, 5)-  By using high contrast film 

the image on the negative appears &s  sharp black lines on a clear 

background.  A typical negative is shown ir Fig, 6.  Ths sr.ales of 

the nsgativec were determined by placing a standar-| ruler in the plane 

of the specimen while photographing.  Distances between grid lines 

v;ere determined by scanning the negatives with a .nicrodens itometer 

(made by Joyce, Loebi and Co,. Englond) or an x-y micrometer table mounted 

^ 

I; 
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on a prec«5iori transmission poiss'tscope  {made by Photoelastic   Inc.). 

Heasurlrg sensiti'vitles of both  in^truments were at least of the order 

of   .0001   in.      The undtformed specimen was similarly analyzed and  thus 

displacements and elongation ratios were determined. 

Tt-e biaxial   tests were supplemented by 3 scries of uniaxial 

tests.      A strip cut  from the same sheet was  tested st  temperatures 

varying from 30 to 150 F.      Temperature effects   in the  uniaxiai   tests 

were more pronounced than those observed   in the biaxial experiments. 

Aftei" completion of the material  characterization experiments 

a 0.5  in. diameter hote was  panched   in the center of the sheet.      A 

series of sf"-.«;  -^r *er.crat?or> e^perlmsnls were conducted at 90 F, 

■JSMKJ tKs sans; exce,'.«..»r^ai  procedure ts described.      A typical  photo- 

yrSj-h cf  Lös deformed spsclnseo   is  shown   in Fig,   7. 

D.    Mfttsrisl  Osröctni-Sz-at ior Expe:'?;nenfs 

i)    Analytical Analysis 

Consider a thlr rectangular plane sheet of uniform thickness 

having edges parallel   to the    x    a~ö    y    axes.      The sheet  is subjected 

to a pure homogeneous deformation having principal  directions parallel 

to the x, y and z axesr 

Let X., \p, >v_  be the principal  extention ratios, defined ac 

the tatios,   in the principal directions, of final   length to original 

lengths of the elements 

X = V'o O-D 

n-^.. 
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The sheev is assumed to be Isotropie and Incompressible, so that the con- 

stitutive equations can be expressed as follows 

Cii - 2("i ^7" ^^  P ^-2) 
(i = 1,2,3 or x.y.z) 

where c.  is the principal vrue stress and p is an arbitrary hydro- 

static pressure.  The strein energy function W  Is expressible as a 

function of the invariants T,, T
i), which, in tersns of the principal 

extension ratios, are 

T, = ^ + ^ + lA-^ (3-3) 

T
2=1A^IA2 + ,^ 

Since    c      =  0 we can solve  for    p    and  rewrite Eqs.   (3-2)  as 

«n^^^f/^ 

c22' 2(*2      'AIV(|T7+ \ ^ 

Solving for rr""» ^T~ from Eq. (3-^) yields 
3 I 3T2 

r   j Pil      X2 ^  -. 

^r      2(x.2-\2) 

(3-^) 

(3-^) 
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and 
aw 
5l^ 

-    un 22 
2,2 i 

'v2* 
IA1v 

2(>| - xf) 
(3-5b) 

The true stress can be expressed as 

0ll = /2ho 
and 

"22 ;iho 
(3-6) 

wSere the    F.'s are  the  total   loads acting along  t.he sides of undeformed 

leoqths    I.    and    h    is  the  thickness of the undeformeH sheet.      The 3 i o 

loads    F.    are assumed to be evenly oictributed along the sides of  the 

specimen.      Experimental  errors   in fneasufing    a.,     and    c.-    affect 

Eq,   (3-**)  more seriously than Eq.   (3-5a).      To reduce the errors, 

the smaller stress,  say    c.j, was eliminated  from Eq.   (3-5b)»  and 

^W/^I-    was determined  from the resulting expression 

5Ü, J22 

2'\2 - l/Ä2) Ä1   ' r 
(3-7) 

For  the case of  unlexial  extension parallel   to the x-axis 

>| =  'A, (3-8) 

and  Eq.   (^-4)   becomes 

rt    . PA2    .Lw^L + .!_ 2*U (3-9) 
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if)     Experimenta'  Results 

The biaxial   tests were conducted by keeping one of the extension 

ratios fixed and varying the other.      From these experiments  the stresses 

were determined as functions^of the extension ratios,    A.      and    X^' an^ 

thus as functions of the   invariants,    I.    and    T   .      These values were 

used   in Eqs.   (3-*») and   (3-7)  to determine   r=—   and   5=—   as functions 

of    T,    and    T_.      Plots of   rr—   as a function of    T.    and    I,    are 
Id 311 1 c 

shown   in Figs. 8.       It   is seen that within the experimental error   57— ax, 

is   independent of both    T.    and    T   , and   is equal   to the constant 

C.  = 20.28 psi.      Similar  plots of ST as a function of    T.    and    I 

are  given  in Figs.   9 .       In Fig.    9a we observe  that a  reasonable fit 

ÄW 
to the data  is that    5=—    is   independent of    I., and Fig,   9b   shows 

that  its value decreases with  increasing values of    Ip.      A  least 

square  parabolic  fit  to the data yields  the  function: 

;—= [^.808 - 1M0 (I2 - 3) + 0.1379 (I2 - 3)2]  psi (3-10) 

which  is  shown as a solid curve   in  Fig.     9b.      Thus we may express 

the  strain energy function as 

W= 20.28(1,-3) + 5.808(I2-3) --4^ (r2'-3)2 + MH9 (T2-3)3      (3-11) 

It should be noted that this form has been obtained from data in the 

low ranges of I.  and 1^, i.e., I.  and I_ < 8. 

Since the stress concentration experiments will be conducted 

so that the maximum values of I. and I_ are within this range, these 

low range results will be applicable. 

■■ iVWW.t^iKiftHMIlv«^ 
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Uniaxial extens'on tests were conducted at 30, 6^,  90,   120 

and  150 F.      The  results show   (Fig.  10)   that  the material   becomes 

stiffer with  increasing temperature,  a result which   is   in agreement 

with the kinetic  theory for  rubber elasticity. 

Fig.  11   shows a plot of the  uniaxial   stress as a  function of 

elongation ratio at a  temperature of 90 F.      The solid   line  has  been 

determined by using  the form of  the strain energy  function obtained 

from the biaxial  experiments and substituting   it   into Eq.   (3-9). 
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4.    NUMERICAL CALCULATIONS 

r 

The modified P.f.C« method was applied to the problems of a 

circular hole and a rigid Inclusion In a sheet. Preliminary calculations 

were performed on the former problem by assuming a k x k  unit square 

sheet having a circular hole of radius r = I unit. A 2o x 2o grid 
o 

(k s 0.20) was used, thus resulting in approximately 800 simultaneous 

equations (u,v are unknown at each cell center). The equations were so 

arranged that a diagonally banded matrix containing over 100 elements was 

obtained. Both direct and iterative methods were applied. Difficulties 

with convergence of the S.O.R. iterative scheme arose, while In the direct 

method (Gaussion elimination with column pivoting) a great many slgnlficient 

figures were lost after several incremental steps. While results showed 

agreement with the linear theory for the first few incremental steps, 

no meaningful results could be obtained for finite deformations. 

For the rigid Inclusion problem the displacement boundary conditions 

did not result In a complication of the matrix, as did the stress free 

boundary conditions of the former case. A 10 x 10 grid (k = 0.3) was used, 

and the direct method of solution yielded reasonable results. Since the 

displacement functions were much smoother for the case of the rigid Inclusion 

than for the case of the cutout, it is to be expected that a courser grid 

could be successfully applied to the former problem. 

It should be pointed out that the analytical development of the 

linearized equations of motion (2-^7) was carried out under the assumptfon 
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that the material  could be described by the RIv!In-Mooney constitutive 

equations.    However,  the results of the experiments on the natural   rubber 

Indicate that the materla?   is described by Eq,   (3-11), and thus will  be 

referred to as a Generalized RivlIn-Mooney material.    To make these two 

results compatible,   it was decided that   in the analytical  work, Cp would 

be chosen to be a function of I« as shown   in Fig.   (9b),  that  is,   it was 

assumed that C2 = BW  (I2)/BI2 
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5.    DISCUSSION 

The results of the material characterization experiments.on a 

thin sheet of natural  rubber are presented  in Figs.  (8-11). FIgS.(8)  show 

that SW/5I.   Is  Independent of the strain  invariants I., I_, and has a value 

C.  = 20.28 psi.    Similar graphs for ^WAVT    are found  in Ffgs.(9)t which    . 

indicate that ftW/^Ip  is   Independent of Tj  and decreases with  Increasing 

values of I«.     It should be noted that the form of the strain energy 

function  (3-11)  has been obtained from data  in the low ranges of T.  and 

Tp.   i.e. for I., I_ < 8.    Since the stress concentration experiments were 

conducted so that the maximum values of I.  and Ip fall within this range, 

these low range results are applicable. 

At  the completion of the material  characterization experiments 

a circular hole was cut at the center of the sheet.    A series of biaxial 

experiments were then performed on the specimen at a temperature of 90 F. 

Fig.  12 shows the experimentally obtained displacements along the axis of 

symmetry  (x=o)  for the equi-biaxlal  elongations.     Investigation of the 

slopes  In the vicinity of y/r   =  13.0  Indicates that, essentially, an 

Isotropie strain state exists  there.    Thus  the results obtained ere not 

very different from those that would be obtained   from an  'nfinite sheet. 

It  Is for this reason that the ratio of the deformed to the undeformed 

length of the membrane  is designated \m{ = X./x. = ^i^]^   ^or  t'ie 

equ'-blaxtal  case.    For the general  biaxial  state  (\ );n and  (\ )    refer to 
x ■ y 
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the  length ratios   in the x- and y directions,  respectively.    Oisp'acesnents 

for the unl-dfrectional  extension,   i.e.   C'.  )    =  1.0, are presented   in 

Figs.  13» and the corresponding deforme-J shapR3 of the hole are shown  in 

Ffg.  ]k.    Substituting the displacements and  the'r derivatives  Into the 

constitutive equations   (2-36)  results   In the experimentally determined 

stresses.    The stress '„„  (circumferential)  at  the   intersection of the 

hole and  the x - axis   is plotted   In f.g,  15.    A comparison with  Mnear 

theory   indicates  that no significant deviation occurs  until '-a >  1.3. 

A  plot of the stress concentration factor K    is  presented   ir  Fig,  1o, 

where   It   is seen that  the factor varies  from ?,0 for small   strains  to 

approximately ^.0 at *   «1.6. 

No analytical   results were obtained for  the problem of the hole 

In the sheet for reasons which are discussed   M. Chapter   IV.    Although no 

experiments were performed on the sheet containing a rigid  inclusicnj   the 

modified  Particle -   In - Cell   (P.S.C.)  method was applied  to the problem. 

The results  for the equl-biaxial  case are presented   in Figs.  17-20,    The 

stress concentration factor K  ,   is presented   in Fig. 20 for a Generalized 

Rivlin-Kooney   (3-11),  a RivTin-Mooney   (2-33)  and a  linear elastic material. 

The curves   indicate that the stress concentration factor decreases with 

an  Increase  In \     for the Generalized Rivlin-Mooney material, while for 

a Rivl in-Mooney material   the situation  is reversed.    The results  for the 

Rivlin-Mooney material   agree qualitatively with those obtained by Yang [32], 

and with those obtained  from an analysis of the displacempnts presented by 

RivlIn and Thomas [31]. 

N   i 
""«««»JWSKÄtSäSflV* -■■.:•• ;v«^'-- -^ ■:■■- -■:.   ;\.-i.iv.^^i^_ -.■■^■■^■^y-T^'J.^-r^,--'- 
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APPENDIX A 

COEFFICIENTS OF LINEARIZED EQUILIBRIUM AND 

STRESS-DISPLACEMENT EQUATIONS 

Let ths displacements at the end of the n-th siep be denoted by u 

and v. The coefficients cf the linearized equations at the (n + l)-th step 

are then given by the following expresFions, 

i)   Coefficients of Linearized Equilibrium Equations (2-47) 

A, =      -C [2 V(l -u.j) + 2U u,2 + 3L4 v,u + 12 L3 M (1 - v,2)l 

+ L {- 2L [3{1 -u.jKl -v,2)  - u,2 v.j ] u.j,   - 2S (1 -v^) U.JJ 

2 
+ 2L [(1 -v,2) u,2 -{1 -u.j) v.j j u>12- 2N{1 -v,2) u>12- 2L    u,22 

-2Z (1 -v,2) u,22 -$- 2 L [{1 -v,2} v.j - {1 -u.j) u,2] V.JJ 

-2P (1 -v,2) v,u +L[(u,2)2- 3 (1 -u.j)2- (v.j)2- (1 -v>2)
2] v.12 

-2Q (1 -v>2) v,12+ 2LT v,22 - 2R (1 -v,2) v,22 } - v,12 

A2   = C[Wv,22+2Tv,12 + 2Y u,2 + 2U(l -u.j) +Xv,11 + 3L4 v,11-12L3Mv,1] 

+ L {- 2L (1 -u.jXu.jj + u,22)v,1 - 2L   u.j-. - 2Nv>} u,12-2Stt,11 v^-2 Zv^u^; 

+ L [W + 2(v,1)2]v.11 -2Pv,1v,11 -2LT v,12- 2Qv,12 v.j +L [(v^)2 

- (1 - u.j)   ] v,22 - 2R v.j v,22 } +v,11 

An   =     C [ X (1 - v,2) + 3 L4 (1 ~ v,2)] +L2S + (1 - v>2) 

4 n    .   T 2 
A 12   =     C [ 2T (1 - v,2) + 3 L   v.jl+L    N + v.j 
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AZi C W (1  - vf2) + L^ Z 

B,       =       C[2 V v.j + 2U (1 - v.2)+ 3L4u,12 - i2L3Mu,2] 

+ L { 2L [{1 " v,2) v.j - (1 -u.j) u,2 ] U.JJ - 2 Sufn u,2 

+ L [ (1 -u.j)2 + (u.2)2 + 3 (v.j)2 - (1 -v.2r ] u.12 - 2LT u,22 - 2Zu,22u.2 

+ 2L{3v,1u,2-(l -u.jHl -v»2)]v,11- 2Pv,11u,2 - 2Nu,12u.2 

+ 2L[(1 -u.^v, ,-(! -Vf2)vi,z]v,lz- ZQu,2 v,12- 2L  v,22- 2Ru,2vf22 } 

+ u'12 

B. - C[Wu.22+ 2Tu,12+Xu,11 + 2Y(l-v,2) + 3L4u.11+2Uv,1+12L3M(l-u.1)] 

+L {-L[3(l -ufl)
2 + {v,1)2]ufll-2S(l -u.1)u,11+2LTu.12-2N(l -u.^u,^ 

+ L[(v,1)2-(l-u,1)2]u.22-2Z(l-u,1)u.22+2L(l-ufl)v.1(v,11+v,22) 

- 2P(1 -u.j) V.JJ -2Le'v,l2 - 2Q (1 -u.j) v.12 

-2R (I -Usi)v.22} -U.JJ 

B 11 
C [Xu,? + 3 L4u>;,] + L2P + u,. 

'12 
C [2T u, 2 + 3L" (1  - u.j) ] + I/O + (1  - u.j) 

B 22 C W u,2 + L" P. 

K, C  [W V + 2 T U + XY + 3 L*M ] (A-l) 

+ iJ- [S U.JJ + N u, 12 + Z u.22 + P V.JJ + Q v,12 + R v.22] + M 

•■-■J-M!'.i-JJ$iti*riii&-f>^,?'.-:-.^! :W H. 
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VBhere 

c   =    cl/cz 

L   =       (1 - u.jXi  - y,2) - u,2 v^ 

M   =      (1-v,2) U.JJ + (1 -u.j) v,12  + u,21 v.j +u,2 v,1]L 

N    =      (l-u.j^v.j   +(v,1)3- 2u.2(I -u.^Cl -v>2)-v.I(l-v,2)2 + (u>2)
2 v.j 

P    =      a.2 (1 -U.J)2 -2 v.^l -u.jXl - vt2) + 3uv (v.j)2 

Q   -■       (1 -u.1>3 + (l-u.1)[(v,1)2 -(uf2)2] - 2u.2v.1(l-v,2) + (l-v,2)2(l-u,1) 

2 2 R   '      u,2 (v.j)    -u^Cl-u.j)    - 2 v.j (1 - u.jXl - v,2) 

S   =        (1  - v.^Hv,.)2 + 3 (1  -u,,)2 (1  - v.?) - 2 (1  -u.^u.^v. 
'2"T,1' 1' ~'Z*'\ 

T   =      u,2 (1 - u.j) + v.j (1 - v,2) 

U   =      (1 -v.2)u.12+u.2v,12 

V   =      (1 -v,2)u,22+u,2 v,22 

W  -       (1 -u.j)2 + {v,1)2 

X   =       (1 - v.2)2 + (uJ2)2 

Y   =       (1 - v,2) U.JJ + u,2 V.JJ 

2 2 
Z   =       (l-u.j)    (1 - v,2) - 2 u,2 v^ (1 -u.j) - {v7l)    (l-v,2) (A-2) 

and 

Dl C [Wv,11+2Tv,12 + 2Üu.2 + Xv,22 + 3L4v,22 +12 L3M(1 -v,,) 

r2 
+ 2 Y(l -u.j)] +L{2L(l-v,2)u,2(u,11 + u,22)-2R(l-v,2)u,11-2L^u,1. 

- 2Q(1-v,2) u,12  - 2P(1 -v,2) u,22 + L[(u,2)    -(l-v>2)   \,y,ll 
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ZZd-v.^v.jj+ZLTv.^ -2N(l-vf2)v,l2-L[(u,2)2+3U-v.2y2lvJ 22 

2S(1 -v.2)v.22 } -v>22 

D2   = 
r4 r3r% C[2Vuf 2

T2U(I -u,1) + 3 L   v.12 - 12 Lj M v.j ] 

+ L{-2i:2u>11-2Rv,1usll +2L[(1 - v.2) u.2 -(1 -u.^v.jju. 
12 

- 2QV.J u.u + 2 L [3 u,2 vfl  - (1  - u.jKl -v,2)l u,22 - 2 Pu,22 v.j 

-2 LT V.JJ^ZV.JJ v.,+i:[{l-v.2)2+3(u.2)2 + (v,i)2-(l-U.J)2] V.12 

-2Nv»l v'12 + 2l:tu'2(1-u'l,"v'l(1-v'2)lv'22 -2§"v'22v'l} 

+   v. 12 

D 
11 C W v, j + L2 R 

i 
m 

D12   =        C [2T  v.j + 3 L4 (1  - v.2)] + L2 Q  + 1 - v,2 

D22   =        C[ X v.j + S^v.j] fL2  P +vJ1 

C [ W u,ll + 2 Tu,12 + X u,22 + 2 Yv.j + 3 L4 u,22 - 12 L3 Mu,, 

+ 2Ü (1 -v.A 

+ L {- L[{1 - v,2)    - {u,2)   ] u,^   - 2R n,ll u.2 - 2LT u,12 

- 2 Q u<12 u,2 + L [(1 - v,2)2 + 3{u,2)2 ] u.22 - 2 P u.22 u,2 

-2L(1 -v,2)u,2 (v,11+v,22) -2Zv,11u,z -2L2v,12-2Nvfl2u, 

-2S   v'22u'2 }+U'22 

■^PWW» 
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E2 = C [-2V (1  - v. 2) - 2 U v, 1  - 3 L4 u, 12 - 12 L3 M(l  - u.j }] 

+ L{2L,fu, JJ  - 2 X{1  -a,1)xx,ll + L [(v, ^ ~{n, Z)Z -3(l-v, 2)
2 

-{1-u, j) ] u, 12 - 28 (1 -u, j) u, 12+2L[(l-u, j) u. 2 " (1-v, 2) v   ,] u, 22 

.7-2 2P (1 -u, j) u, 2;>-2l/- v, JJ - 2Z(l-u. j) {v. n) + 2T. [(1-u. j) v, 1 

- (1 -v, 2)u, 2]vI12-2N{l-u.1)vM2+ 2L[u,2v,1-3 (1 -u, jXl-v.2)]v,22 

- 2S {1 -u.j) v, 22} - u5 i2 

EJJ =   C W (1 -u, j) + L2 Z 

E12 =   C [2T (1 - u.j) + 3L4uf 21 + tfN   + u, 2 

E22 =   C [X (1 -u. j) + 3L4 (1 - u, j)] + 12 S + 1 - u, j 

K? =      C [W V + 2 T U + XY + 3 L4 M] 

2r^ + L   [RU.JJ + QU.^+PU.^+ZV.JJ+NV, 12+Sv,22j+M (A-3) 

where 

L   =       {1-u, jHl-v, 2) - u, 2 v, j 

M 

R 

S 

(1-u, j) v. 22+ (1-v, 2) u. 12+ v. ^u. 2+ v. j u, 22 

— 2 3 2 2 
N = (i-v. 2^    u'2+ ^U'2^    " 2 U"11» i) (i'V» 2^ v'l" ^""'l^ ^ 2f^V'l^ u'2 

P ^ v. j (1-v. 2)2 - 2 u, 2 (1-u. j) (1-v, 2) + 3 (u, 2)2 v, j 

8 = (l-v,2)3+ (l-v,2)[/u.2)2- (v, j)2] -2u,2v,1 (1-u, 1) + (l-u,1)2(l-v,2) 

? 2 
[(u, 2)'- (1-v, 2) ] v, j-2 u, 2 (1-u, j) (1-v, 2) 

(l-u, j) (u. 2)
Z + 3 (1-v. ,)2 (1-u, j) - 2 (1-v, 2) u, 2v, 1 
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T = 

15 = 

v = 

w = 

X = 

Y = 

Z = 

v, j (l-v, 3) + u» 2 ^1"u'i^ 

(1"u'l)v'12+v'lu'I2 

(1-U, j) V, JJ   + V, j U, JJ 

0-v.2)2 + (u,2)2 

(1-u.j)2 + (v,j)2 

(1"U'1)V'22+V'1U'22 

2 2 
(l-v, 2)    (1-u, j) - 2u, 2 v, 1(l-v, 2) - (u, 2)    (1-u, j) (A-4) 

ii)   Coefficients of Linearized Stress-Displacement Equations (2-58). 

3, 
al = 

bl = 

kI = 

4{2C1L
J(l-v. 2) + C2L [W(l-v, 2) + L(l-u, j)]} 

4[C1(2v. jL3 + u, 2) + C2L W v, j] 

4[2CJ L3u, 2 + C2L (W u, 2- v, jL)] 

b2 =      4{C1[2L3 (1-u, j) - (l-v. 2)] + C2L W (1-u. j} 

2[C1(X-L4) + C2(l-L2 W)] 

dl = 

d2- 

e2 = 

4{C1[2L3(l-v. 2) - (l-u.j)] + C2L X (l-v, 2)} 

4[2C1L
3 v, 1 + C2L (Xv, j - Lu, 2)] 

4[C1(2L3ul 2 +v, j) + C2L X u, 2] 

4(2^ L^U-u.j) + C2L [X (l-u,^ + (l-v, 2) L]} 

k2 = 2[C1 (W-L4) + C2(l - L2 X)] 

fj   = -2{C1 u, 2 + C2L [L u. 2+ 2 T (l-v, 2)]} 

f2  = 2{C1(l-u,1) + C2 L[L(l-u,1)-2 T v.j]} 

gj = 2{C1(l-v, 2) + C2 L [L(l-v, 2) - 2 T u, 2]} 

g2 = -2{C1 v. j + C2 L [L v. j + 2 T {1-u, j)]} 

k3 = 2 T [Cj + C2 L2] (A-5) 
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FIG. 3     BIAXIAL TESTING APPARATUS 
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FiG.  k     PHOTOGRAPH  GF SPECIMEN   IN  LOADING  FRAME 

P'G0  S     PHOTOGRAPH OF TEST SET-UP 



6     PHOTOGRAPH   3::  OM-I-DUARTER  OF  UNDEFORMED   2R\d 

3.   7     -HOTOGRA^H 0! DEFORMED   GRID   (GRiD  SPACING:   1/3?  -   1 A*   in,) 
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FI3.  10    TtHPEi<ATJK,T O.IPfNDzNCE OF STRIP   IN UNIAXIAL TENSION 
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X/r, 

FIG.  14    SHAPE OF HOLE:    BIAXIAL EXTENSION [ (X  )c6 =   1.0] 
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FIG.  18       (CIRCUMFERENTIAL)  EXTENSION RATIO ALONG AXIS OF SYMMETRY   ( x =  o ) 

RIGID   INCLUSION,  EQUI-BIAXIAL  EXTENSION 
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FIG.  19    STRESS DiSTRIBUTION ALONG SYMMETRY AXIS   ( x =  o ) 

RIGID   INCLUSION,  EQUI-BIAXIAL  EXTENSION 
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