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PREFACE 

When I was a boy of 14 my father was so ignorant I could hardly 
stand to have the old man around. But when 1 got to be 21, 

I was astonished at how much the old man had learned in 7 years. 
MARK TWAIN 

There are several reasons for the acceleration of interest in graph theory. It 
has become fashionable to mention that there are applications of graph 
theory to some areas of physics, chemistry, communication science, computer 
technology, electrical and civil engineering, architecture, operational research, 
genetics, psychology, sociology, economics, anthropology, and linguistics. 
The theory is also intimately related to many branches of mathematics, 
including group theory, matrix theory, numerical analysis, probability, 
topology, and combinatorics. The fact is that graph theory serves as a 
mathematical model for any system involving a binary relation. Partly 
because of their diagrammatic representation, graphs have an intuitive and 
aesthetic appeal. Although there are many results in this field of an ele- 
mentary nature, there is also an abundance of problems with enough 
combinatorial subtlety to challenge the most sophisticated mathematician. 

Earlier versions of this book have been used since 1956 when regular 
courses on graph theory and combinatorial theory began in the Department 
of Mathematics at the University of Michigan. It has been found pedagogi- 
cally advantageous not to in:iude proofs of all theorems. This device has 
permitted the inclusion of more theorems than would otherwise have been 
possible. The book can thus be used as a text in the tradition of the "Moore 
Method." with the student gaining mathematical power by being encouraged 
to prove all theorems stated without proof. Note, however, that some of the 
missing proofs are both difficult and long. The reader who masters the 
content of this book will be qualified to continue with the study of special 
topics and to apply graph theory iO other fields. 

An effort has been made to present the various topics in the theory of 
graphs in a logical ordei, to indicate the historical background, and to 
clarify the exposition by including figures to illustrate concepts and results. 
In addition, there are three appendices which provide diagrams of giaphs. 
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directed graphs, and trees. The emphasis throughout is on theorems rather 
than algorithms or applications, v/hich however are occasionally mentioned. 

There are vast differences in the level of exercises. Those exercises which 
are neither easy nor straightforward are so indicated by a bold-faced number. 
Exercises which are really formidable are both bold faced and starred. The 
reader is encouraged to consider every exercise in order to become familiar 
with the material which it contains. Many of the "easier" exercises may be 
quite difficult if the reader has not first studied the material in the chapter. 

The reader is warned not to get bogged down in Chapter 2 and its many 
exercises, which alone can be used as a miniature course in graph theory for 
college freshmen or high-school seniors. The instructor can select material 
from this book for a one-semester course on graph theory, while the entire 
book can serve for a one-year course. Some of the later chapters are suitable 
as topics for advanced seminars. Since the elusive attribute known as "mathe- 
matical maturity" is really the only prerequisite for this book, it can be used 
as a text at the undergraduate or graduate level. An acquaintance with 
elementary group theory and matrix theory would be helpful in the last four 
chap.ers. 

I owe a substantial debt to many individuals for their invaluable as- 
sistance and advice in the preparation of this book. Lowell Beineke and 
Gary Chartrand have been the most helpful in this respect over a period of 
many years! For the past year, my present doctoral students, Dennis Geller, 
Bennet Manvel, and Paul Stockmeyer, have been especially enthusiastic in 
supplying comments, suggestions, and insights. Considerable assistance was 
also thoughtfully contributed by Stephen Hedetniemi, Edgar Palmer, and 
Michael Plummer. Most recently, Branko Grünbaum and Dominic Welsh 
kindly gave the complete book a careful reading. I am personally responsible 
for all the errors and most of the off-color remarks. 

Over the past two decades research support for published papers in the 
theory of graphs was received by the author from the Air Force Office of 
Scientific Research, the National Institutes of Health, the National Science 
Foundation, the Office of Naval Research, and the Rockefeller Foundation. 
During this time I have enjoyed the hospitality not only of the University 
of Michigan, but also of the various other scholarly organizations which 1 
have had the opportunity to visit. These include the Institute for Advanced 
Study, Princeton University, the Tavistock institute of Human Relations in 
London, University College London, and the London School of Economics. 
Reliable, rapid typing was supplied by Alice Miller and Anne Jenne of the 
Research Center for Group Dynamics. Finally, the author is especially 
grateful to the Addison-Wesley Publishing Company for its patience in 
waiting a full decade for this manuscript from the date the contract was 
signed, and for its cooperation in all aspects of the production of this book. 

July /%<V F. H. 
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CHAPTER  1 

DISCOVERY! 

Eureka! 
ARCHIMEDES 

It is no coincidence that graph theory has been independently discovered 
many times, since it may quite properly be regarded as an area of applied 
mathematics.* Indeed, the earliest recorded mention of the subject occurs in 
the works of Euler, and although the original problem he was considering 
might be regarded as a somewhat frivolous puzzle, it did arise from the 
physical world. Subsequent rediscoveries of graph theory by Kirchhoff 
and Cayley also had their roots in the physical world. Kirchhoff s investiga- 
tions of electric networks led to his development of the basic concepts and 
theorems concerning trees in graphs, while Cayley considered trees arising 
from the enumeration of organic chemical tsomers. Another puzzle approach 
to graphs was proposed by Hamilton. After this, the celebrated Four Color 
Conjecture came into prominence and has been notorious ever since. In 
the present century, there have already been a great many rediscoveries of 
graph theory which we can only mention most briefly in this chronological 
account. 

THE KÖNIGSBERG BRIDGE PROBLEM 

Euler (1707-1782) became the father of graph theory as well as topology 
when in 1736 he settled a famous unsolved problem of his aay called the 
Königsberg Bridge Problem. There were two islands linked to each other 
and to the banks of the Pregel River by seven bridges as shown in Fig. 1.1. 
The problem was to begin at any of the four land areas, walk across each 
bridge exactly once and return to the starting point. One can easily try to 

* The basic combinatorial nature of graph theory and a clue to its wide applicability are 
indicated in the words of Sylvester, "The theory of ramification is one of pure colligation, for 
it lakes no account of magnitude or position; geometrical lines are used, but have no more 
rea1 bearing on the matter than those employed in genealogical tables have in explaining the 
laws of procreation." 
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B 

Fig. 1.1.  A park in Königsberg, 1736. 

solve this problem empirically, but all attempts must be unsuccessful, for 
the tremendous contribution of Euler in this case was negative, see [E5]. 

In proving that the problem is unsolvable, Euler replaced each land area 
by a point and each bridge by a line joining the corresponding points, 
thereby producing a "graph." This graph* is shown in Fig. 1.'«, where the 
points are labeled to correspond to the four land areas of Fig. 1.1. Showing 
that the problem is unsolvable is equivalent to showing that the graph of 
Fig. 1.2 cannot be traversed in a certain way. 

Rather than treating this specific situation, Euler generalized the problem 
and developed a criterion for a given graph to be so traversable; namely, that 
it is connected and every point is incident with an even number of lines. 
While the graph in Fig. 1.2 is connected, not every point is incident with an 
even number of lines. 

TSv 

Fig. 1.2.  The graph of the Königsberg Bridge Problem. 

ELECTRIC NETWORKS 

Kirchhoff [K7] developed the theory of trees in 1847 in order to solve the 
system of simultaneous linear equations which give the current in each 
branch and around each circuit of an electric network. Although a physicist, 
he thought like a mathematician when he abstracted an electric network 

* Actually, this is a "multigraph" as we shall see in Chapter 2. 
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CHEMICAL ISOMERS        3 

with its resistances, condensers, inductances, etc., and replaced it by its 
corresponding combinatorial structure consisting only of points and lines 
without any indication of the type of electrical element represented by in- 
dividual lines. Thus, in effect, Kirchhoff replaced each electrical network 
by its underlying graph and showed that it is not necessary to consider 
every cycle in the graph of an electric network separately in order to solve 
the system of equations. Instead, he pointed out by a simple but powerful 
construction, which has since become standard procedure, that the inde- 
pendent cycles of a graph determined by any of its "spanning trees" will 
suffice. A contrived electrical network JV, its underlying graph G, and a 
spanning tree T are shown in Fig. 1.3. 

N: 

1 sAAAA AAA/\—* 

G: 

Fig. 1.3.  A network N, its underlying graph G, and a spanning tree T. 

CHEMICAL ISOMERS 

In 1857, Cayley [C2] discovered the important class of graphs called trees 
in the very natural setting of organic chemistry. He was engaged in enumer- 
ating the isomers of the saturated hydrocarbons C„H2lI+2, with a given 
number n of carbon atoms, as shown in Fig. 1.4. 

Of course, Cayley restated the problem abstractly: find the number 
of trees with p points in which every point has degree 1 or 4. He did not 
immediately succeed in solving this and so he altered the problem until he 
was able to enumerate: rooted trees (in which one point is distinguished from 
the others), trees, trees with points of degree at most 4, and finally the chemical 
problem of trees in which every point has degree 1 or 4, see [C3]. Jordan 
later (1869) independently discovered trees as a purely mathematical dis- 
cipline, and Sylvester (1882) wrote that Jordan did so "without having any 
suspicion of its bearing on modern chemical doctrine," see [K10, p. 48]. 
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Fig. 1.4. The smallest saturated hydrocarbons. 

Isobutane 

AROUND THE WORLD 

A game invented by Sir William Hamilton* in 18S9 uses a regular solid 
dodecahedron whose 20 vertices are labeled with the names of famous 
cities. The player is challenged to travel "around the world" by finding a 
closed circuit along the edges which passes through each vertex exactly 
once. Ham: on sold his idea to a maker of games for 25 guineas; this was 
a shrewd move since the game was not a financial success. 

Ffe. 1.5. 
"Around the world. 

In graphical terms, the object of the game is to find a spanning cycle in 
the graph of the dodecahedron, shown in Fig. 1.5. The points of the graph 
are marked 1,2, • • •, 20 (rather than Amsterdam, Ann Arbor, Berlin, Budapest, 
Dublin, Edinburgh, Jerusalem, London, Melbourne, Moscow, Novosibirsk, 
New York, Paris, Peking, Prague, Rio di Janeiro, Rome, San Francisco, 
Tokyo, and Warsaw), so that the existence of a spanning cycle is evident. 

* See Ball and Coxeter[BCl. p. 262] for a more complete description. 
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THE FOUR COLOR CONJECTURE 
The most famous unsolved problem in graph theory and perhaps in all of 
mathematics is the celebrated Four Color Conjecture. This remarkable 
problem can be explained in five minutes by any mathematician to the so- 
called man in the street. At the end of the explanation, both will understand 
the problem, but neither will be able to solve it. 

The following quotation from the definitive historical article by May 
[M5] states the Four Color Conjecture and describes its role: 

[The conjecture states that] any map on a plane or the surface of a sphere can he 
colored with only four colors so that no two adjacent countries have the same 
color. Each country must consist of a single connected region, and adjacent 
countries are those having a boundary line (not merely a single point) in common. 
The conjecture has acted as a catalyst in the branch of mathematics known as 
combinatorial topology and i > closely related to the currently fashionable field of 
graph theory. More than half a century of work by many (sou ~qv all) mathe- 
maticians has yielded proofs for special cases ... The consensus is that the con- 
jecture is correct but unlikely to be proved in general. It seems destined to retain 
for some time the distinction of being both the simplest and most fascinating 
unsolved problem of mathematics. 

The Four Color Conjecture has an interesting history, but its origin 
remains somewhat vague. There have been reports that Möbius was familiar 
with this problem in 1840, but it is only definite that the problem was com- 
municated to De Morgan by Guthrie about 1850. The first of many erroneous 
"proofs" of the conjecture was given in 1879 by Kempe [K6]. An error was 
found in 1890 by Heawood [H38] who showed, however, that the conjecture 
becomes true when "four" is replaced by "five." A counterexample, if ever 
found, will necessarily be extremely large and complicated, for the con- 
jecture was proved most recently by Ore and Stemple [OS1] for all maps 
with fewer than 40 countries. 

The Four Color Conjecture is a problem in graph theory because every 
map yields a graph in which the countries (including ihe exterior region) are 
the points, and two points are joined by a line whenever the corresponding 
countries are adjacent. Such a graph obviously can be drawn in the plane 
without intersecting lines. Thus, if it is possible to color the points of every 
planar graph with four or fewer colors so that adjacent points have different 
colors, then the Four Color Conjecture will have been proved. 

GRAPH THEORY IN THE 20th CENTURY 

The psychologist Lewin [L2] proposed in 1936 that the "life space" of an 
individual be represented by a planar map.* In such a map, the regions 
would represent the various activities of a person, such as his work environ- 

* Lewin used only planar maps because he always drew his figures in the plane. 
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Fig. 1.6. A map and its corresponding graph. 

meni. his home, and his hobbies. It was pointed out that Lewin was actually 
dealing with graphs, as indicated by Fig. 1.6. This viewpoint led the psy- 
chologists at the Research Center for Group Dynamics to another psycho- 
logical interpretation of a graph, in which people are represented by points 
and interpersonal relations by lines. Such relations include love, hate, 
communication, and power. In fact, it was precisely this approach which led 
the author to a personal discovery of graph theory, aided and abetted by 
psychologists L. Festinger and D. Cartwright. 

The world of theoretical physics discovered graph theory for its own 
purposes more than once. In the study of statistical mechanics by Uhlenbeck 
[Ul], the points stand for molecules and two adjacent points indicate 
nearest neighbor interaction of some physical kind, for example, magnetic 
attraction or repulsion. In a similar interpretation by Lee and Yang [LYl], 
the points stand for small cubes in euclidean space, where each cube may or 
may not be occupied by a molecule. Then two points are adjacent whenever 
both spaces arc occupied. Another aspect of physics employs graph theory 
rather as a pictorial device. Feynmann [F3] proposed the diagram in 
which the points represent physical particles and the lines represent paths of 
the particles after collisions. 

The study of Markov chains in probability theory (see, for example, 
Feller [F2. p. 340]) involves directed graphs in the sense that events are 
represented by points, and a directed line from one point to another indicates 
a positive probability of direct succession of these two events. This is made 
explicit in the book [HNC1, p. 371] in which a Markov chain is defined as a 
network with the sum of the values of the directed lines from each point 
equal to 1. A similar representation of a directed graph arises in that part 
of numerical analysis involving matrix inversion and the calculation of 
eigenvalues. Examples are given by Varga [V2, p. 48]. A square matrix is 
given, preferably "sparse," and a directed graph is associated with it in the 
following way. The points denote the index of the rows and columns of the 
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given matrix, and there is a directed line from point / to point j whenever 
the i,;' entry of the matrix in nonzero. The similarity between this approach 
and that for Markov chains is immediate. 

The rapidly growing fields of linear programming and operational 
research have also made use of a graph theoretic approach by the study of 
flows in networks. The books by Ford and Fulkerson [FF2], Vajda [VI] 
and Berge and Ghouila-Houri [BG2] involve graph theory in this way. The 
points of a graph indicate physical locations where certain goods may be 
stored or shipped, and a directed line from one place to another, together 
with a positive number assigned to this line, stands for a channel for the 
transmission of goods and a capacity giving the maximum possible quantity 
which can be shipped at one time. 

Within pure mathematics, graph theory is studied in the pioneering 
book on topology by Veblen [V3, pp. 1-35]. A simplicial complex (or 
briefly a complex) is defined to consist of a collection V of "points" together 
with a prescribed collection S of nonempty subsets of V, called "simplexes." 
satisfying the following two conditions. 

1. Every point is a simplex. 
2. Every nonempty subset of a simplex is also a simplex. 

The dimension of a simplex is one less than the number of points in it; that 
of a complex is the maximum dimension of any simplex in it. In these terms, 
a graph may be defined as a complex of dimension 1 or 0. We call a 1- 
dimensional simplex a line, and note that a complex is 0-dimensional if and 
only if it consists of a collection of points, but no lines or other higher 
dimensional simplexes. Aside from these "totally disconnected" graphs, 
every graph is a 1-dimensional complex. It is for this reason that the subtitle 
of the first book ever written on graph theory [K.10] is "Kombinatorische 
Topologie der Streckenkomplexe." 

It is precisely because of the traditional use of the words point and line 
as undefined terms in axiom systems for geometric structures that we have 
chosen to use this terminology. Whenever we are speaking of "geometric" 
simplicial complexes as subsets of a euclidean space, as opposed to the 
abstract complexes defined above, we shall then use the words vertex and 
edge. Terminological questions will now be pursued in Chapter 2, together 
with some of the basic concepts and elementary theorems of graph theory. 



CHAPTER 2 

GRAPHS 

What's in a name? That which we call a rose 
By any other name would smell as sweet. 

WILLIAM SHAKESPEARE, Romeo aid Juliet 

Most graph theorists use personalized terminology in their books, papers, 
and lectures. In order to avoid quibbling at conferences on graph theory, 
it has been found convenient to adopt the procedure that each man state in 
advance the graph theoretic language he would use. Even the very word 
"graph" has not been sacrosanct. Some authors actually define a "graph" 
as a graph,"1 but others intend such alternatives as multigraph, pseudograph, 
directed graph, or network. We believe that uniformity in graphical 
terminology will never be attained, and is not necessarily desirable. 

Alas, it is necessary to present a formidable number of definitions in 
order to make available the basic concepts and terminology of graph theory. 
In addition, we give short introductions to the study of complete subgraphs, 
extremal graph theory (which investigates graphs with forbidden subgraphs), 
intersection graphs (in which the points stand for sets and nonempty inter- 
sections determine adjacency), and some useful operations on graphs. 

VARIETIES OF GRAPHS 

Before defining a graph, we show in Fig. 2.1 all 11 graphs with four points. 
Later we shall see that 

i) every graph with four points is isomorphic with one of these, 

ii) the 5 graphs to the left of the dashed curve in the figure are disconnected, 

iii) the 6 graphs to its right are connected, 

iv) the last graph is complete, 

v) the first graph is totally disconnected, 

vi) the first graph with four lines is a cycle, 

vii) the first graph with three lines is a path. 

* This is most frequently done by the canonical initial sentence. "In this paper we only consider 
finite undirected graphs without loops or multiple edges." 
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Fig. 2.1,  The graphs with four points. 

Rather than continue with an intuitive development of additional 
concepts, we proceed with the tedious but essential sequence of definition 
upon definition. A graph G consists of a finite nonempty set V of p points* 
together with a prescribed set X of q unordered pairs of distinct points of 
V. Each pair x = {u,v} of points in X is a line* of C, and x is said to join u 
and v. We write x - uv and say that u and v are adjacent points (sometimes 
denoted u adj v); point u and line x are incident with each other, as are v 
and x. If two distinct lines x and y are incident with a common point, then 
they are adjacent lines. A graph with p points and q lines is called a (p, q) 
graph. The (1, 0) graph is trivial. 

G. 

Fig. 2.2.   A graph to illustrate adjacency. 

It is customary to represent a graph by means of a diagram and to refer 
to it as the graph. Thus, in the graph G of Fig. 2.2, the points u and t' are 
adjacent but u and w are not; lines x and y are adjacent but x and : are not. 
Although the lines x and z intersect in the diagram, their intersection is not 
a poinl of the graph. 

* The following is a lisi of synonyms which have been used in the literature, noi always with the 
indicated pairs: 

point,   vertex,   node,   junction,   0-siniplex.   element, 
line.      edge.      arc.      branch,     l-sirnplex,   element. 
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There are several variations of s'aphs which deserve mention. Note that 
the definition of graph permits no loop, that is, no line joining a point to 
itself. In a multigraph, no loops arc allowed but more than one line can join 
two points; these are callrj multiple lines. If both loops and multiple lines 
are permitted, we have a pseudograph. Figure 2.3 shows a multigraph and 
a pseudograph with the same "underlying graph," a triangle. We now see 
why the graph (Fig. 1.2) of the Königsberg bridge problem is actually a 
multigraph. 

Fig. 2.3.  A multigraph and a pseudograph. 

A directed graph or digraph D consists of a finite nonempty set V of 
points together with a prescribed collection X of ordered pairs of distinct 
points. The elements of X are directed lines or arcs. By definition, a digraph 
has no loops or multiple arcs. An oriented graph is a digraph having no 
symmetric pair of directed lines. In Fig. 2.4 all digraphs with three points and 
three arcs are shown; the last two are oriented graphs. Digraphs constitute 
the subject of Chapter 16, but we will encounter them from time to time in 
the interim. 

Fig. 2.4.  The digraphs with three points and three arcs. 

A graph G is labeled when the p points are distinguished from one another 
by names* such as vu r2, • • •, vp. For example, the two graphs G, and G2 of 
Fig. 2.5 are labeled but G3 is not. 

Two graphs G and H are isomorphic (written G s H or sometimes 
G = H) if there exists a one-to-one correspondence between their point 
sets whic!) preserves adjacency. For example. G, and G2 of Fig. 2.5 are 
isomorphic under the correspondence r,«-» u,, and incidentally G3 is iso- 

* This notation tor points was chosen since c is the first letter of vertex.  Another author calls 
them vertices and writes/>!,/>2, ■ ■   , />.. 
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tmas 

C,: 

Fig. 2.5.  Labeled and unlabeled graphs. 

morphic with each of them. It goes without saying that isomorphism is an 
equivalence relation on graphs. 

An invariant of a graph G is a number associated with G which has the 
same value for any graph isomorphic to G. Thus the numbers p and q are 
certainly invariants. A complete set of invariants determines a graph up to 
isomorphism. For example, the numbers p and q constitute such a set for 
all graphs with less than four points. No decent complete set of invariants 
for a graph is known. 

A subgraph of G is a graph having all of its points and lines in G. If G, 
is a subgraph of G, then G is a supergraph of Gv A spanning subgraph is a 
subgraph cont. uing all the points of G. For any set S of points of G, the 
induced subgraph <S> is the maximal subgraph of G with point set S. Thus 
two points of S are adjacent in <S> if and only if they are adjacent in G. In 
Fig. 2.6, G2 is a spanning subgraph of G but G, is not; G, is an induced 
subgraph but G2 is not. 

G,: Ga: 

Fig. 2.6.  A graph and two subgraphs. 

The removal of a point vt from a graph G results in that subgraph G - v f 
of G consisting of all points of G except vt and all lines not incident with 
r,. Thus G - vt is the maximal subgraph of G not containing vt. On the 
other hand, the removal of a line Xj from G yields the spanning subgraph 
G - Xj containing all lines of G except x}. Thus G - Xj is the maximal 
subgraph of G not containing Xj. The removal of a set of points or lines from 
G is defined by the removal of single elements in succession. On the other 
hand, if r, and Vj are not adjacent in G, the addition of line v(Vj results in the 
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G: G-vt: 

C-Ojiv G+i>jUs: 

fs L\ fa 

Fig. 2.7.  A graph plus or minus a specific point or line. 

smallest supergraph of G containing the line vtVj. These concepts are illus- 
trated in Fig. 2.7. 

There are certain graphs for which the result of deleting a point or line, 
or adding a line, is independent of the particular point or line selected. If 
this is so for a graph G, we denote the result accordingly by G - v, G - x, 
or G + x; see Fig. 2.8. 

It was suggested by Ulam [U2, p. 29] in the following conjecture that 
the collection of subgraphs G — vs of G gives quite a bit of information 
about G itself. 

(/-£>: G-x 

f 
J 

G+x: 

Fig. 2.8.  A graph plus or minus a point or line. 

('lam's Conjecture.* Let G have p points i\ and H have p points u„ with 
p > 3. If for each i, the subgraphs G, = G - i', and Ht = H - Mj are 
isomorphic, then the graphs G and H are isomorphic. 

There is an alternative point of view to this conjecture [H29]. Draw 
each of the/) unlabeled graphs G — r,ona3 x 5 card. The conjecture then 
states that any graph from which these subgraphs can be obtained by de- 
leting one point at a time is isomorphic to G.  Thus Ulam's conjecture 

* The reader is urged noi to try to scale this conjecture since it appears to be rather difficult. 
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asserts that any two graphs with the same deck of cards are isomorphic. 
But we prefer to try to prove that from any legitimate* deck of cards, only 
one graph t«n be reconstructed. 

WALKS AND CONNECTEDNESS 

One of the most elementary properties that any graph can enjoy is that of 
being connected. In this section we develop the basic structure of connected 
and disconnected graphs. 

A walk of a graph G is an alternating sc^uwice of points and lines 
t'o« xu rn " '» "11-1' *«« l'«' beginning and ending with points, in which each 
line is incident with the two points immediately preceding and following it. 
This walk joins v0 and vn, and may also be denoted v0 r, IN • • • vn (the lines 
being evident by context); it is sometimes called a v0-v„ walk. It is closed 
if i'0 = v„ and is open otherwise. It is a trail if all the lines are distinct, and 
a path if all the points (and thus necessarily all the lines) are distinct. If 
the walk is closed, then it is a cycle provided its n points are distinct and 
n > 3. 

In the labeled graph G of Fig. 2.9, vxv2ViV2v3 is a walk which is not a 
trail and iv^jtVa1^ 's a tra'' which is not a path; ViV2vsv4 '

s a Path a°d 
v2v4v5v1 '

s a cycle. 

I'l P« v3 

Fig. 2.9.  A graph to illustrate walks. 

We denote by C„ the graph consisting of a cycle with n points and by 
P„ a path with n points, C3 is often called a triangle. 

A graph is connected if every pair cf points are joined by a path. A maxi- 
mal connected subgraph of G is called a connected component or simply 
a component of G. Thus, a disconnected graph has at least two components. 
The graph of Fig. 2.10 has 10 components. 

The length of a walk r0 t>, • • • vH is M, the number of occurrences ol lines 
in it. The girth of a graph G. denoted g{G\ is the length of a shortest cycle 
(if any) in G; the circumference c(G) the length of any longest cycle. Note 
that these terms arc undefined if    Has no cycles. 

* This is a deck which can actually be obtained from some graph; another apparently difficult 
problem is to de'.rmine when a given deck is legitimate. 
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Fig. 2.10.  A graph with 10 components. 

The distance d(u, v) bttween two points u and v in G is the length of a 
shortest path joining them if any; otherwise d{u, v) = oo. In a connected 
graph, distance is a metric; that is, for all points u, t\ and w, 

1. d{u, v) > 0, with d(u, v) - 0 if and only if u = v. 

2. d(u, v) = d(v, u). 

3. d(u, v) + d(v. w) > d{u, w). 

A shortest u-v path is often called a geodesic. The diameter d(G) of a 
connected graph G is the length of any longest geodesic. The graph G of 
Fig. 2.9 has girth g = 3, circumference c = 4, and diameter d = 2. 

The square G2 of a graph G has K(G2) = V[G) with u, t> adjacent in G2 

whenever d(u, y) < 2 in G. The powers G3, G4, •• • of G are defined similarly. 
For example C\ = Ks, while P4 - K4 - x. 

DEGREES 

The degree* of a point vt in graph G, denoted dt or deg tfj, is the number of 
lines incident with i;,. Since every line is incident with two points, it contrib- 
utes 2 to the sum of the degrees of the points. We thus have a result, due to 
Euler [E6], which was the first theorem of graph theory! 

Theorem 11 The sum of the degrees of the points of a graph G is twice 
the number of lines, 

Idegt;,. = 2o. (2.1) 

Corollary 11(a)     In any graph, the number of points of odd degree is even.t 

In a (p, q) graph, 0 < deg v < p — 1 for every point v. The minimum 
degree among the points of G is denoted min deg G or 8(G) while A(G) = 
max deg G is the largest such number. If 6(G) = A(G) = r, then all points 
have the same degree and G is called regular of degree r. We then speak 
of the degree of G and write deg G = r. 

A regular graph of degree 0 has no lines at all. If G is regular of degree 
I, then every component contains exactly one line; if it is regular of degree 2, 

• Sometimes called valency. 
t The reuder is reminded (see the Preface) that not all theorems are proved in the text. 
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Fig. 2.11. The cubic graphs with six points. 

every component is a cycle, and conversely of course. The first interesting 
regular graphs are those of degree 3; such graphs are called cubic. The 
two cubic graphs with six points are shown in Fig. 2.11. The second of 
these is isomorphic with each of the three graphs of Fig. 2.5. 

Corollary 11(b)  Every cubic graph has an even number of points. 

It is convenient to have names for points of small degree. The point v 
is isolated if deg v = 0; it is an endpoint if deg v = 1. 

THE PROBLEM OF RAMSEY 

A puzzle which has become quite well known may be stated in the following 
form: 

Prove that at any party with six people, there are three mutual acquain- 
tances or three mutual nonacquaintances. 

G: G: 

Fig. 2.12.  A graph and its complement. 

This situation may be represented by a graph G with six points standing 
for people, in which adjacency indicates acquaintance. Then the problem is 
to demonstrate that G has three mutually adjacent points or three mutually 
nonadjacent ones. The complement G of a graph G also has V(G) as its 
point set, but two points are adjacent in G if and only if they are not adjacent 
in G. In Fig. 2.12, G has no triangles, while G consists of exactly two triangles.* 
A self-complementary graph is isomorphic with itscomplement. (See Fig. 2.13.) 

* When drawn as G in Fig. 2.12. the union of two triangles has been called the David graph. 
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Fig. 2.13. The smallest nontrivial self-complementary graphs. 

The complete graph Kp has every pair of its p points* adjacent. Thus 
Kp has ip2) lines and is regular of degree p - I. As we have seen. K3 is 
called a triangle. The graphs Kp are totally disconnected, and are regular 
of degree 0. 

In these terms, the puzzle may be reformulated. 

Theorem 2.2  For any graph G with six points. G a G contains a triangle. 

Proof. Let r be a point of a graph G with six points. Since v is adjacent 
either in G or in G to the other five points of G. we can assume without 
loss of generality that there are three points i*,. u2, u3 adjacent to t in G. 
If any two of these points are adjacent, then they are two points of a triangle 
whose third point is v. If no two of them are adjacent in G, then u,, u2, and 
u3 are the points of a triangle in G. 

The result of Theorem 2.2 suggests the general question: What is the 
smallest integer r(m, n) such that every graph with r(m, n) points contains 
Kmor*„? 

The values rim, n) are called Ramsey numbers.f Of course r{m, n) = 
;(/!, HI). The determination of the Ramsey numbers is an unsolved problem, 
although a simple bound due to Erdös and Szekeres [ESI] is known. 

r{m. v     (m + n - 2\ 
(2.2) 

This problem arose from a theorem of Ramsey. An infinite graph% has 
an infinite point set and no loops or multiple lines. Ramsey [R2] proved 
(in the language of set theory) that every infinite graph contains X\, mutually 
adjacent points or K0 mutually nonadjacent points. 

All known Ramsey numbers are given in Table 2.1. in accordance with 
the review article by Graver and Yakel [GY1]. 

* Since V is not empty, p > 1. Some authors admit the "empty graph" (which we would 
denote k„ if it existed) and are then faced with handling its properties and specifying that 
certain theorems hold only for nonempty graphs, but we consider such a concept pointless. 

t After Frank Ramsey, late brother of the present Archbishop of Canterbury. For a proof 
that r(m. n) exists for all positive integers m and n. see for example Hall [H7, p. 57]. 

I Note that by definition, an infinite graph is not a graph. A review article on infinite graphs 
»as written by Nash-Williams [N3]. 
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\HI 

Table 2.1 

RAMSEY NUMBERS 

2 2 3 4 5 6 7 
3 3 6 9 14 18 23 
4 4 9 18 

EXTREMAL GRAPHS 

The following famous theorem of Turän [T3] is the forerunner of the field 
of extremal graph theory, see [E3]. As usual, let [r] be the greatest integer 
not exceeding the real number r, and {r} = -[-r], the smallest integer 
not less than r. 

Theorem 2.3 The maximum number of lines among all p point graphs with no 
triangles is [p2/4]. 

Proof. The statement is obvious for small values of p. An inductive proof 
may be given separately for odd p and for even p; we present only the latter. 
Suppose the statement is true for all even p < 2n. We then prove it for 
p = 2n + 2. Thus, let G be a graph with p = 2n + 2 points and no triangles. 
Since G is not totally disconnected, there are adjacent points u and v. The 
subgraph G' = G — {u,v} has 2n points and no triangbs, so that by the 
inductive hypotheses G' has at most [4n2/4] = n2 lines. How many more 
lines can G have? There can be no point w such that u and v are both adjacent 
to w, for then u, v, and w would be points of a triangle in G. Thus if u is 
adjacent to k points of G', v can be adjacent to at most 2n — k points. Then 
G has at most 

n2 + k + (2n - k) + 1 = n2 + 2« + 1 = p2/4 = [p2/4] lines. 

To complete the proof, we must show that for all even p, there exists a 
(p, p2/4).graph with no triangles. Such a graph is formed as follows: Take 
two sets Vx and V2 of p/2 points each and join each point of K, with each 
point of V2. For p = 6, this is the graph G, of Fig. 2.5. 

A bigraph (or bipartite graph*) G is a graph whose point set V can be 
partitioned into two subsets Vv and V2 such that every line of G joins K, with 
V2. For example, the graph of Fig. 2.14(a) can be redrawn in the form of 
Fig. 2.14(b) to display the fact that it is a bigraph. 

If G contains every line joining Vx and V2, then G is a complete bigraph. If 
K, and V2 have m and n points, we write G = Km   - K(m, n). A .start is a 

* Also called bicolorable graph, pair graph, even graph, and other things. 
tWhenn = 3. Hoffman [H43] calls K,„ a "claw": Erdösand Renyi [ER1], a "cherry." 
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(a) (b) 

Fig, 2.14.  A bigraph. 

complete bigraph Ku„. Clearly Km„ has mn lines. Thus, if p is even. 
KiplX p/2) has p2/4 lines, while if p is odd, K([p/2], {p/2}) has [p/2]{p/2j - 
[p2/4] lines. That all such graphs have no triangles follows from a theorem 
ofKönig[K10,p. 170]. 

Theorem 2.4 A graph is bipartite if and oniy if all its cycles are even. 

Proof. If G is a bigraph, then its point set V can be partitioned into two sets 
V\ and V2 so that every line of G joins a point of K, with a point of F2. Thus 
every cycle v{v2 • • • i'Bt, in G necessarily has its oddly subscripted points 
in K,, say, and the others in V2, so that its length n is even. 

For the converse, we assume, without loss of generality, that G is 
connected (for otherwise we can consider the components of G separately). 
Take any point vt e V, and let Vx consist of K, and all points at even distance 
from vu while V2 = V - Vv Since all the cycles of G are even, every line 
of G joins a point of K, with a point of V2. For suppose there is a line uv 
joining two points of Vt. Then the union of geodesies from r, to v and from 
i', to M together with the line uv contains an odd cycle, a contradiction. 

Theorem 2.3 is the first instance of a problem in "extremal graph theory": 
for a given graph H, find ex (p, H), the maximum number of lines thai a 
graph with p points can have without containing the forbidden subgraph H. 
Thus Theorem 2.3 states that ex {p, K3) - [p2/4]. Some other results [E3] 
in extremal graph theory are: 

ex(p, Cp)= I +/>(/>+ D/2, 

ex (p, K4 - x) = [p2/4], 

ex(p,K,.3 +x)= [p2/4]. 

(2.3) 

(2.4) 

(2.5) 

Turän [T3] generalized his Theorem 2.3 by determining the values of 
ex (p, Kr) for all n < p. 

ex (/>, K„) = 
(« - 2)(/)2 - '•'l C 

2(n - 1) I ">. (2.6) 
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where p s r mod (n - 1) and 0 g r < n ~ I. A new proof of this result 
was given by Motzkin and Straus [MSI]. 

It is also known that every (2«, n2 + 1) graph contains n triangles, every 
(p, 3p - 5) graph contains two disjoint cycles for p > 6, and every 
(3/i, 3n2 + 1) graph contains n2 cycles of length 4. 

INTERSECTION GRAPHS 

Let 5 be a set and F = {5„ • • •, Sp} a family of distinct nonempty subsets 
of 5 whose union is S. The intersection graph of F is denoted Q(F) and defined 
by V(Q(F)) = F, with 5, and Sj adjacent whenever i ^ j and S, n S, # 0. 
Then a graph G is an intersection graph on S if there exists a family F of 
subsets of S for which G £ Off). An early result [M4] on intersection 
graphs is now stated. 

Theorem 2.5 Every graph is an intersection graph. 

Proof. For each point vt of G, let St be the union of {vt} with the set of lines 
incident with r,. Then it is immediate that G is isomorphic with Q(F) where 
F = (SJ. 

In view of this theorem, we can meaningfully define another invariant. 
The intersection number to(G) of a given graph G is the minimum number of 
elements in a set S such that G is an intersection graph on S. 

Corollary 2.5(a) If G is connected and p > 3, then <w(G) < <?. 

Proof. In this case, the points can be omitted from the sets S, used in the 
proof of the theorem, so that S = X(G). 

a + Po- 

pruui ui me incurciu, su mai o = A[*J). 

Corollary 2.5(b) If G has />0 isolated points, then (o{G) < 

The next result tells when the upper bound in Corollary 2.5(a) is attained. 

Theorem 2.6 Let G be a connected graph with p > 3 points. Then w(G) = <7 
if and only if G has no triangles. 

Proof. We first prove the sufficiency. In view of Corollary 2.5(a), it is only 
necessary to show that w(G) > q for any connected G with at least 4 points 
having no triangles. By definition of the intersection number, G is isomorphic 
with an intersection graph Q(F) on a set S with |5| = <o(G). For each point 
Vj of G. let 5, be the corresponding set. Because G ha no triangles, no 
element of 5 can belong to more than two of the sets 5,, and 5, n Sj # 0 
if and only if vtVj is a line of G. Thus we can form a 1-1 correspondence 
between the lines of G and those elements of 5 which belong to exactly two 
:ets Sj. Therefore viG) — \S\ > q so that io(G) = q. 

To prove the necessity, let io{G) = q and assume that G has a triangle. 
Then let Gt be a maximal triangle-free spanning subgraph of G. By the 
preceding paragraph. f>(G,) = qx = |A'(G,)|.   Suppose that  G, = ft(f). 
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where F is a family of subsets of some set S with cardinality </,. Let x be a line 
of G not in G, and consider G2 = G, + x. Since G, is maximal triangle-free. 
G2 must have some triangle, say u,u2w3, where x = K,U3. Denote by 
S„ S2, S3 the subsets of S corresponding to w,, M2, M3. NOW if M2 is adjacent 
to only M, and u3 in Gj, replace S2 by a singleton chosen from S, n S2, and 
add that element to S3. Otherwise, replace S3 by the union of S3 and any 
element in S, n S2. In either case this gives a family F' of distinct subsets 
of S such that G2 = 0(F). Thus <o(G2) = </, while |A'(G2)i * ^, + I. If 
G2 ^ G, there is nothing to prove. But if G2 # G, then let 

IX(G)| - |*(G2)| - q0. 

It follows that G is an intersection graph on a set with </, + q0 elements. 
However, </, + q0 = q - 1. Thus («(G) < q. completing the proof. 

The intersection number of a graph had previously been studied by 
Erdös, Goodman, and Pösa [EGP1]. They obtained the best possible upper 
bound for the intersection number of a graph with a given number of 
points. 

Theorem 2.7  For any graph G with p > 4 points, w(G) < [p2/4]. 
Their proof is essentially the same as that of Theorem 2.3. 

There is an intersection graph associated with every graph which depends 
on its complete subgraphs. A clique of a graph is a maximal complete 
subgraph. The clique graph of a given graph G is the intersection graph of 
the family of cliques of G. For example, the graph G of Fig. 2.15 obviously 
has K4 as its clique graph. However, it is not true that every graph is the 
clique graph of some graph, for Hameiink [H9] has shown that the same 
graph G is a counterexample! F. Roberts and J. Spencer have just char- 
acterized clique graphs: 

Theorem 2.8 A graph G is a clique graph if and only if it contains a family 
F of complete subgraphs, whose union is G, such that whenever every pair 
of such complete graphs in some subfamily F' have a nonempty inter- 
section, the intersection of all the members of F' is not empty. 

Fig. 2.15.   A graph and its clique graph. 

Excursion 

A special class of intersection graphs was discovered in the field of genetics 
by Benzer [B9] when he suggested that a string of genes representing a 
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bacterial chromosome be regarded as a closed interval on the real line. 
Hajos [H2] independently proposed that a graph can be associated with 
every finite family F of intervals Sh which in terms of intersection graphs, is 
precisely Q(F). By an interval graph is meant one which is isomorphic to 
some graph 0(F), where F is a family of intervals. Interval graphs have been 
characterized by Boland and Lekkerkerker [BL2] and by Gilmore and 
Hoffman [GH2]. 

Gx- Gt: GtUGj: C,+Oa: 

Fig. 2.16.  The union and join of two graphs. 

OPERATIONS ON GRAPHS 

It is rather convenient to be able to express the structure of a given graph 
in terms of smaller and simpler graphs. It is also of value to have notational 
abbreviations for graphs which occur frequently. Wc have already introduced 
the complete graph Kp and its complement Kp, the cycle C„, the path P„, 
and the complete bigraph Kmn. 

Throughout this section, graphs G, and G2 have disjoint point sets Vx 

and V2 and line sets Xx and X2 respectively. Their union* G = Gt u G2 has, 
as expected, V = K, u V2 and X = Xx u X2. Their join defined by 
Zykov [Zl] is denoted G, + G2 and consists of G, u G2 and all lines 
joining K, with V2. In particular, Kmn = K„ + Kn. These operations are 
illustrated in Fig. 2.16 with G, = K2 = P2 and G2 = KU2 = P3. 

For any connected graph G, we write nG for the graph with n components 
each isomorphic with G. Then every graph can be written as in [HP 14] in 
the form U /i,G, with G, different from G; for /* * j. For example, the 
disconnected graph of Fig. 2.10 is 4K, u 2>K2 u 2K3 u K, 2. 

There are several operations on G, and G2 which result in a graph G 
whose set of points is the cartesian product K, x V2. These include the 
product (or cartesian product, see Sabidussi [S5]), and the composition 
[H21] (or lexicographic product, see Sabidussi [S6]). Other operationsf cf 
this form are developed in Harary and Wilcox [HW1]. 

* Of course ihc union of two graphs which arc not disjoint is also defined this way. 
+ These include the tensor product (Weichsel [W6], MeAndrew [M7], Harary and Trauth 
[HTIj, Brualdi[Bl7]), and other kinds of product defined in Berge[BI2, p. 23]. Orel"05, p. 35], 
and Teh and Yap[TYI]. 

■ 
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«i («I. «J> («I, Vt) («,, Wj) 

Gt: Gt:     +- 

• 

(«i. «a) 

GifG,]: 

»i 
GtXG,: 

Fig. 2.17. The product of two graphs 

(»I. »») («1. H-,) 

(H-2, «l) 

Fig. 2.18.  Two compositions of graphs. 

(«a. i>i) 

to, «i) 

(Wj, l>,) 

To define the product G, x G2, consider any two points u = (uu u2) 
and v = (i>lf J;2) in V = V, x V2. Then u and u are adjacent in Gj x G2 

whenever \ux = r, and u2 adj t>2] 
or [M2 = v2 and "i adj vt"\. The product 

of Gi = P2 and G2 = P3 is shown in Fig. 2.17. 
The composition G = Gi[G2] also has V = Vx x V2 as its point set, 

and u = (uj, u2) is adjacent with u = (t;„ v2) whenever [MJ adj u,] or 
[«i = Vi and «2 adj u2]. For the graphs G, and G2 of Fig. 2.17, both com- 
positions Gi[G2] and G2[Gj], which are obviously not isomorphic, are 
shown in Fig. 2.18. 

If Gj and G2 are (pu qx) and (p2, q2) graphs respectively, then for each of 
the above operations, one can calculate the number of points and lines in the 
resulting graph, as shown in the following table. 

Table 2.2 

BINARY OPERATIONS ON GRAPHS 

Operation Number of points Number of lines 

Union          G, u G2 Pi  +/>2 <7i + Hi 
Join              G, + G2 Px + Pi <7i + Qi + PiPi 
Product         G{ x G2 PiPi P\<1i + Pi1\ 
Composition G,[G2] PiPi Pl<i2  + Pill 
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ö,: 

100 

Fig. 2.19.  Two cubes 

The complete n-partite graph K{pu p2, ■ • •, p„) is defined as the iterated 
join RPl + KPi + ■ • • + KPn. h obviously has Zpt points and Z^jPiPj 
lines. 

An especially important dass of graphs known as cubes are most naturally 
expressed in terms of products.  The n-cube Qn is defined recursively by 
0, = K2 and Q„ = K- Thus Q„ has 2" points which may be 
labeled axa2 • • • am where each a, is either 0 or 1. Two points of Q„ are 
adjacent if their binary representations differ at exactly one place. Figure 
2.19 shows both the 2-cube and the 3-cube, appropriately labeled 

If G and H are graphs with the property that the identification of any 
point of G with an arbitrary point of H results in a unique graph (up to 
isomorphism), then we write G • H for this graph. For example, in Fig. 2.16 
G2 = K2- K2, while in Fig. 2.7 G - v3 = K3 • K2. 

EXERCISES* 

2.1 Draw all graphs with five points.  (Then compare with the diagrams given in 
Appendix I.) 

2.2 Reconstruct the graph G from its subgraphs Gt = G - vt, where G, = KA - x, 
G2 = P3u Ku Gj - A',3, Gt = Gs = KU3 + x. 

2.3 A closed walk of odd length contains a cycle.* 

2.4 Prove or disprove: 

a) The union of any two distinct walks joining two points contains a cycle. 
b) The union of any two distinct paths joining two points contains a cycle. 

2.5. A graph G is connected if and only if for any partition of V into two subsets K, and 
K2, there is a line of G joining a point of K, with a point of V2. 

2.6 If d(u, v) - m in G, what is d(u, v) in the nth power G"? 

* Whenever a bald statement is made, it is to be proved. An exercise with number in bold face 
is more difficult, and one which is also starred is most difficult. 
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17 A graph // is a square root of ö if//1 ■ G. A graph G with p points has a square 
root if and only if si contains p complete subgraphs G, such that 

i.  r, *G,. 
2. r, € <»j if am! only if r, e G(, 
3. each line of 6" is in some (i. (Mukhopadhyay[!vt!8]) 

.18 A finite metric space {5, */) is isomorphic to the distance space of some graph if 
and only if 

i. The distance between any two points of S is an integer. 
2   If tfttt, r) > 2, then there is a third point tv such that </(u. w) + d{\\\ i) •= </(«. r). 

(Kay and Chartrand [KCI]) 

2.9  In a connected graph any two longest paths have a poir.t in common. 

2.10 it is not true that in every connected graph all longest paths have a point in 
common. Verify that Fig. 2.20 demonstrates this. (Walther [W4]) 

Fig. 2.20.  A counterexample for Exercise 2.10. 

Ill   Every graph with diameter d and girth Id + I is regular. (Singleton [SI3]) 

2.12 Let G be a (p. </) graph all of whose points have degree Je or Je + 1.  If G has 
pk > 0 points of degree k and pk t, noints of degree k + 1, then pk - (k + Dp - 2q. 

2.13 Construct a cubic graph wit. In points (n > 3) having no triangles. 

2.14 If G has p points and 6(G) ^ (p - l)/2, then G is connected. 

2.15 If G is not connected then ö is. 

2.16 Every self complementary graph has 4>i or 4« + I points. 

117 Draw the four self-complementary graphs with eight points. 

118 Every nontrivial self-complementary graph has diameter 2 or 3. 

(Ringel [Rl I ]. Sachs [S8]) 

2.19 The Ramsey numbers satisfy the recurrence relation, 

rim. n) < r(m -   I. n) f rOn. n - I). (Erdös [E4]) 

2.20 I-"ind the maximum number of lines in a graph with p points and no even cycles. 
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121 Find the extremal graph; which do not contain AC4. (Turan [T3]) 

122 Every (/>, p + 4) graph contains two line-disjoint cycles. (Erdös [E3]) 

2.23 The only (p. [p2/4]) graph with no triangles is K([p/2], {p/2}). 

2.24 Prove or disprove: The only graph on p points with maximum intersection number 
is K([p/2], {p/2}). 

125 The smallest graph having every line in at least two triangles but some line in no 
K4 has 8 points and 19 lines. Construct it. (J. Cameron and A. R. Meetham) 

126 Determine i»(Kp\ uiCH + K,), oAC„ + CJ, and wfCj. 

2.27 Prove or disprove: 

a) The number of cliques of G does not exceed w(G). 
b) The number of cliques of G is not less than w(G). 

128 Prove that the maximum number of cliques in a graph with p points where 
p - 4 = 3r + s, s = 0, I or 2, is 22_,3,*\ (Moon and Moser [MM!]) 

2.29 A cycle of length 4 cannot be an induced subgraph of an interval graph. 

2.30 Let sin) denote the maximum number of points in the «-cube which induce a 
cycle. Verify the following table: 

2   3   4     5 

Mn) 4   6   8    14 (Danzer and Klee [DK1]) 

2.31 Prove or disprove: If G, and G2 are regular, then so is 

a) G, + G2.      b) G, x G2.      c) Gi[G2]. 

2.32 Prove or disprove: If G, and G2 are bipartite, then so is 

a) G, + G2.       b) G, x Gs.      c) Gt[G2]. 

2.33 Prove or disprove: 

a) G, + G2 = G, + G2.     b) G^~x~G~2 = G, x G2.     c) G^G^] = G|[G2]. 

134 a) Calculate the number of cycles in the graphs (a) C„ + Kt, (b) Kr (c) KmH. 

(Harary and Manvel [HM1]) 

b) What is the maximum number of line-disjoint cycles in each of these three 
graphs? (Chartrand, Geller, and Hedetniemi [CGH2]) 

135 The conjunction G, A G2 has K, x V2 as its point set and « = (u,, u2) is adjacent 
to v = (»i, v2) whenever u, adj c, and u2 adj D2. Then G, x G2 S G, A G2 if and 
only if G, 3 G2 »Cto+I. (Miller [Ml!]) 
2.36 The conjunction G, A G2 of two connected graphs is connected if and only if 
G, or G2 has an odd cycle. 

*137 There exists a regular graph of degree r with r2 + I points and diameter 2 only 
for r = 2, 3, 7, and possibly 57. (Hoffman and Singleton [HS1]) 

*138 A graph G with p = In has the property that for every set S of n points, the 
induced subgraphs <S> and (V - S> are isomorphic if and only if G is one of the 
following: A.'2(l, K„ x K2, 2K„, 2C4, and their complements. 

(KellyandMcrncll[KMI]) 



CHAPTER 3 

BLOCKS 

Not merely a chip of the old block, 
but the old block itself. 

EDMUND BURKE 

Some connected graphs can be disconnected by the removal of a single 
point, called a cutpoint. The distribution of such points is of considerable 
assistance in the recognition of the structure of a connected graph. Lines 
with the analogous cohesive property are known as bridges. The fragments 
of a graph held together by its cutpoints are its blocks. After characterizing 
these three concepts, we study two new graphs associated with a given 
graph: its block graph and its cutpoint graph. 

CUTPOINTS, BRIDGES, AND BLOCKS 

A cutpoint of a graph is one whose removal increases the number of com- 
ponents, and a bridge is such a line. Thus if r is a cutpoint of a connected 
graph G, then G - v is disconnected. A nonseparable graph is connected, 
nontrivial, and has no cutpoints. A block of a graph is a maximal nonsepar- 
able subgraph. If G is nonseparable, then G itself is often called a block. 

Fig. 3.1.   A graph and its blocks. 

26 
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In Fig. 3.1, y is a cutpoint while w is not; x is a bridge but y is not; and 
the four blocks of G are displayed. Each line of a graph lies in exactly one 
of its blocks, as does each point which is not isolated or a cutpoint. Further- 
more, the lines of any cycle of G also lie entirely in a single block. Thus in 
particular, the blocks of a graph partition its lines and its cycles regarded 
as sets of lines. The first three theorems of this chapter present several 
equivalent conditions for each of these concepts. 

Theorem 3.1 Let v be a point of a connected graph G. The following state- 
ments are equivalent: 

(1) t is a cutpoint of G. 

(2) There exist points u and w distinct from v such that v is on every u-w 
path. 

(3) There exists a partition of the set of points V - {v} into subsets U and 
W such that for any points ueU and w eW, the point v is on every 
u-w path. 

Proof. (V) implies (i) Since t; is a cutpoint of G.G - v is disconnected and has 
at least two components. Form a partition of V - {v} by letting U consist 
of the points of one of these components and W the points of the others. 
Then any two points ue U and w e W lie in different components of G — v. 
Therefore every u-w path in G contains v. 

(3) implies (2) This is immediate since (2) is a special case of (3). 

(2) implies (/) If v is on every path in G joining u and w, then there cannot be 
a path joining these points in G - v. Thus G — vis disconnected, so v is a 
cutpoint of G. 

Theorem 3.2 Let x be a line of a connected graph G. The following statements 
are equivalent: 

(1) x is a bridge of G. 

(2) x is not on any cycle of G. 

(3) There exist points u and v of G such that the line x is on every path 
joining u and v. 

(4) There exists a partition of V into subsets V and W such that for any 
points u e U and w e W, the line x is on every path joining u and w. 

Theorem 3.3 Let G be a connected graph with at least three points. The 
following statements are equivalent: 

(1) G is a block. 

(2) Every two points of G lie on a common cycle. 

(3) Every point and line of G lie on a common cycle. 

1 '■ 
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(4) Every two lines of G lie on a common cycle. 

(5) Given two points and one line of G, there is a path joining the points 
which contains the line. 

(6) For every three distinct points of G, there is a path joining any two of 
them which contains the third. 

(7) For every three distinct points of G, there n a path joining any two of 
them which does not contain the third. 

Proof, i I) implies {2) Let u and v be distinct points of G, and let V be the set of 
points different from M which lie on a cycle containing u. Since G has at 
least three points and no cutpoin's, it has no bridges; therefore, every point 
adjacent to u is in U, so U is not empty. 

...  r 
Po 

HI I) 

(a) 

Fig. 3.2.  Paths in blocks. 

Suppose v is not in U. Let w be a point in U for which the distance 
d(w, v) is minimum. Let P0 be a shortest w-v path, and let P, and P2 be the 
two u-w paths of a cycle containing u and w (see Fig. 3.2a). Since w is not a 
cutpoint, there is a u-v path P' not containing w (see Fig. 3.2b). Let w' be the 
point nearest u in F which is also in P0, and let u' be the last point of the 
u-w' subpath of F in either Px or P2. Without loss of generality, we assume 
«' is in Pv 

Let Q, be the u~w' path consisting of the u-u' subpath of Px and the 
u'-w' subpath of F, Let Q2 be the u-w' path consisting of P2 followed by the 
w-w' subpath of PQ. Then Qx and Q2 are disjoint u~w' paths. Together 
they form a cycle, so w' is in V. Since w' is on a shortest w-v path, 
d(w\ v) < d(w, v). This contradicts our choice of w, proving that u and v do 
lie on a cycle. 

(2) implies (i) Let u be a point and i;w a line of G. Let Z be a cycle containing 
uandr. A cycle Z' containing w and vw can be formed as follows. If w is on 
Z, then Z' consists of t>w together with the v-w path of Z containing w. If w 
is not on Z, there is a w-u path P not containing v, since otherwise v would be a 
cutpoint by Theorem 3.1. Let u' be the first point of P in Z. Then Z' consists 
of vw followed by the w-u' subpath of P and the u'-v path in Z containing w. 

(3) implies (4) This proof is analogous to the preceding one, and the details 
are omitted. 
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(4) implies (5) Any two points of G are incident with one line each, which lie on 
a cycle by (4). Hence any two points of G lie on a cycle, and we have (2\ so 
also (3). Let w and v be distinct points and x a line of G. By statement (3). there 
are cycles Zt containing u and v, and Z, containing r and v. If v is on Z, or 
u is on Z,. there is clearly a path joining u and r containing x. Thus, we need 
only consider the case where v is not on Z, and u is not on Z2. Begin with 
w and proceed along Z, until reaching the first point w of Z,, then take the 
path on Z: joining w and r which contains v. This walk constitutes a path 
joining u and r that contains x. 

(5) implies (6) Let u, v, and K> be distinct points of G. and let x be any line in- 
cident with w. By (5), there is a path joining u and v which contains x, and 
hence must contain w. 

(6) implies (7) Let u, t?, and w be distinct points of G. By statement (6), there 
is a u-H' path P containing v. The M-U subpath of P does not contain w. 

(7) implies (/) By statement (7), for any two points u and t\ no point lies on 
every u-v path. Hence, G must be a block. 

Theorem 3.4 Every nontrivial connected graph has at least two points 
which are not cutpoints. 

Proof. Let u and v be points at maximum distance in G, and assume v is a 
cutpoint. Then there is a point w in a different component of G - v than u. 
Hence v is in every path joining u and w, so </(a, w) > </(//, r), which is im- 
possible. Therefore v and similarly u are not cutpoints of G. 

BLOCK GRAPHS AND CUTPOINT GRAPHS 

There are several intersection graphs derived from a graph G which reflect 
its structure. If we take the blocks of G as the family F of sets, then the 
intersection graph fi(F) is the block graph of G. denoted by B(G). The blocks 
of G correspond to the points of fl(G) and two of these points are adjacent 
whenever the corresponding blocks contain a common cutpoint of G. On 

B(G). 

C(G): 

Fig. 3,3.  A graph, iis block graph, and its cutpoint graph. 
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the other hand, to obtain a graph whose points correspond to the cutpoints 
of G, we can take the sets S, to be the union of all blocks which contain the 
cutpoint vt. The resulting intersection graph Ci(F) is called the cutpoint 
graph, C(G). Thus two points of C(G) are adjacent if the cutpoints of G to 
which they correspond lie on a common block. Note that C{G) is defined 
only for graphs G which have at least one cutpoint. Figure 3.3 illustrates 
these concepts, which were introduced in [H28]. 

Theorem 3.5 A graph H is the block graph of some graph if and only if every 
block of H is complete. 

Proof. Let H = B(G\ and assume there is a block //, of H which is not 
complete. Then there are two points in //, which are nonadjacent and lie on 
a common cycle Z of length at least 4. But the union of the blocks of G 
corresponding to the points of//, which lie on Z is then connected and has no 
cutpoint, so it is itself contained in a block, contradicting the maximality 
property of a block of a graph. 

On the other hand, let H be a given graph in which every block is com- 
plete. Form B(H), and then form a new graph G by adding to each point //, 
of B(H) a number of endlines equal to the number of points of the block //, 
which are not cutpoints of H. Then it is easy to see that B(G) is isomorphic 
to//. 

Clearly the same criterion also characterizes cutpoint graphs. 

EXERCISES 

3.1 What is the maximum number of cutpoints in a graph with p points? 

3.2 A cubic graph has a cutpoint if and only if it has a bridge. 

3.3 The smallest number of points in a cubic graph with a bridge is 10. 

3.4 If v is a cutpoint of G, then v is not a cutpoint of the complement G. 

(Harary[H15]) 

3.5 A point v of G is a cutpoint if and only if there are points u and w adjacent to 
v such that v is on every u-w path. 

3.6 Prove or disprove: A connected graph G w>th p ä 3 is a block if and only if 
given any two points and one line, there is a path joining the points which does not 
contain the line. 

3.7 A connected graph with at least two lines is a block if and only if any two adjacent 
lines lie on a cycle. 

3.8 Let G be a connected graph with at least three points. The following statements 
are equivalent: 

1. G has no bridges. 
2. Every two points of G lie on a common closed trail. 
3. Every point and line of G lie on a common closed trail. 
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4. Every two lines of G lie on a common closed trail. 
5. For every pair of points and every line of G, there is a trail joining the points 

which contains the line. 
6. For every pair of points and every line of G, there is a path joining the points 

which does not contain the line. 
7. For every three points there is a trail joining any two which contains the third. 

3.9 If f» is a block with & a 3, then there is a point v such that G - vis also a block. 

(A. Kaugars) 

3.10 The square of every nontrivial connected graph is a block. 

3.11 If G is a connected graph with at least one cutpoint, then B{B{G)) is isomorphic 
to C{G). 

3.1? Let b(v) be the number of blocks to which point v belongs in a connected graph 
G Then the number of blocks of G is given by 

HG) - 1 = £ IHV) - I]. (Harary [H22]) 

3.13 Let dB) be the number of cutpoints of a connected graph G which are points of 
the block B. Then the number of cutpoints of G is given by 

c{G) - 1 = £ [c(B) - 1]. (Gallai [G3]) 

3.14 A block G is line-critical if every subgraph G - x is not a block. A diagonal of G 
is a line joining two points of a cycle not containing it. Let G be a line-critical block 
with p ^ 4. 

a) G has no diagonals. 
b) G contains no triangles. 
c) p £ q £ 2p - 4. 
d) The removal of all points of degree 2 results in a disconnected graph, provided 

G is not a cycle. (Plummer [P4]) 



CHAPTER 4 

TREES 

Poems are made by fools like me. 
But only God can make a tree. 

JOYCE KILMER 

There is one simple and important kind of graph which has been given the 
same name by all authors, namely a tree. Trees are important not only for 
sake of their applications to many different fields, but also to graph theory 
itself. One reason for the latter is that the very simplicity of trees make it 
possible to investigate conjectures for graphs in general by first studying 
the situation (or trees. An example is provided by Ulam's conjecture 
mentioned in Chapter 2. 

Several ways of defining a tree are developed. Using geometric termin- 
ology, we study centrality of trees. This is followed by a discussion of a tree 
which is naturally associated with every connected graph: its block-cutpoint 
tree. Finally, we see how each spanning tree of a graph G gives rise to a 
collection of independent cycles of G, and mention the dual (complementary) 
construction of a collection of independent cocycles from each spanning 
cotree. 

CHARACTERIZATION OF TREES 

A graph is acyclic if it has no cycles. A tree is a connected acyclic graph. Any 
graph without cycles is a forest, thus the components of a forest are trees. 
There are 23 different trees* with eight points, as shown in Fig. 4.1. There 
are numerous ways of defining trees, as we shall now see. 

Theorem 4.1  The following statements are equivalent for a graph G: 

(1) G is a tree. 

(2) Every two points of G are joined by a unique path. 

* It is interesting to ask people to draw the trees with eight points. Some trees will frequently 
he missed and others duplicated. 

W 
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r* 
«—•—■•—• •—*—t—•—•—• T~r ~n 

A- •—»   A   « ~TK 
Fig. 4.1.  The 23 trees with eight points. 

(3) G is connected and p = q + 1. 

(4) G is acyclic and p = q + 1. 

(5) G is acyclic and if any two nonadjacent points of G are joined by a line x, 
then G + x has exactly one cycle. 

(6) G is connected, is not Kp for p > 3, and if any two nonadjacent points 
of G are joined by a line x, then G + x has exactly one cycle. 

(7) G is not K3 u K, or K3 u K2, p = <y + 1, and if any two nonadjacent 
points of G are joined by a line x, then G + x has exactly one cycle. 

Proof. (1) implies (2) Since G is connected, every two points of G are joined by 
a path. Let Px and P2 be two distinct paths joining w and v in G, and let w 
be the first point on Px (as we traverse />, from w to i>) such that w is on both 
Pt and P2 but its successor on Pt is not on P2. If we let w' be the next point 
on Px which is also on Z^, then the segments of />, and Pi which are between 
w and w' together form a cycle in G. Thus if G is acyclic, there is at most one 
path joining any two points. 

(2) implies (3) Clearly G is connected. We prove p = q + 1 by induction. It 
is obvious for connected graphs of one or two points. Assume it is true 
for graphs with fewer than p points. If G has p points, the removal of any 
line of G disconnects G, because of the uniqueness of paths, and in fact this 
new graph will have exactly two components. By the induction hypothesis 
each component has one more point than line. Thus the total number of 
lines in G must be p - 1. 

{3) implies (4) Assume that G has a cycle of length n. Then there are n points 
and n lines on the cycle and for each of the p — n points not on the cycle, 
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there is an incident line on a geodesic to a point of the cycle. Each such line 
is different, so q > p, which is a contradiction. 

(4) implies (5) Since G is acyclic, each component of G is a tree. If there are k 
components, then, since each one has one more point than line, p = q + k, so 
k — 1 and G is connected. Thus G is a tree and there is exactly one path 
connecting any two points of G. If we add a line uv to G, that line, together 
with the unique path in G joining u and v, forms a cycle. The cycle is unique 
because the path is unique. 

(5) implies (6) Since every Kp for p > 3 contains a cycle, G cannot be one of 
them. Graph G must be connected, for otherwise a line x could be added 
joining two points in different components of G, and G + x would be 
acyclic. 

(6) implies (7) We prove that every two points of G are joined by a unique 
pa! h and thus, because (2) implies (3), o = q + 1. Certainly every two points 
of G are joined by some path. If two points of G are joined by two paths, then 
by the pi oof that (1) implies (2), G has a cycle. This cycle cannot have four or 
more points because, if it did, then we could produce more than one cycle 
in G + x by taking x joining two nonadjacent points on the cycle (if there 
are no nonadjacent points on the cycle, then G itself has more than one 
cycle). So the cycle is K3, which must be a proper subgraph of G since by 
hypothesis G is not complete with p > 3. Since G is connected, we may 
assume there is another point in G which is joined to a point of this K3. 
Then it is clear that if any line can be added to G, then one may be added so as 
to form at least two cycles in G + x. If no more lines may be added, so that 
the second condition on G is trivially satisfied, then G is Kp with p > 3, 
contrary to hypothesis. 

(7) implies (/) If G has a cycle, that cycle must be a triangle which is a com- 
ponent of G, by an argument in the preceding paragraph. This component 
has three points and three lines. All other components of G must be trees 
and, in order to make p = q + 1, there can be only one other component. If 
this tree contains a path of length 2, it will be possible to add a line x to G and 
obtain two cycles in G + x. Thus this tree must be either #, or K2. So 
G must be K3 u K, or K3 u K2, which are the graphs which have been 
excluded. Thus G is acyclic. But if G is acyclic and p = q + 1, then G is 
connected since (4) implies (5) implies (6). So G is a tree, and the theorem is 
proved. 

Because a nontrivial tree has £ dt 

two points with degree less than 2. 
2q = 2(p - 1), there are at least 

Corollary 4.1(a)  Every nontrivial tree has at least two endpoints. 

This result also follows from Theorem 3.4. 
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6 » -•7 

-•7 

Fig. 4.2. The eccentricities of the points of a tree. 

CENTERS AND CENTROIDS 

The eccentricity e\v) of a point v in a connected graph G is max </(u, v) for all 
uinG, The radius r(G) is the minimum eccentricity of the points. Note that 
the maximum eccentricity is the diame!".* A. point v is a central point if 
e(v) = r[G\ and the center of G is the set of all central points. 

In the tree of Fig. 4.2, the eccentricity of each point is shown. This tree 
has diameter 7, radius 4. and the center consists of the two points u and r. 
each with minimum eccentricity 4. The fact that u and v are adjacent 
illustrates a result discovered by Jordan* and independently by Sylvester; see 
König [K10, p. 64]. 

Theorem 4.2 Every tree has a center consisting of either one point or two 
adjacent points. 

Proof. The result is obvious for the trees K, and K2. We show that any 
other tree T has the same central points as the tree T obtained by removing 
all endpoints of T. Clearly, the maximum of the distances from a given point 
u of T to any other point v of T will occur only when v is an endpoint. 

Thus, the eccentricity of each point in T will be exactly one less than the 
eccentricity of the same point in T. Hence the points of T which possess 
minimum eccentricity in T are the same points having minimum eccentricity 
in T", that is, T and T have the same center. If the process of removing 
endpoints is repeated, we obtain successive trees having the same center 
as T. Since T is finite, we eventually obtain a tree which is either K j or K2. 
In either case all points of this ultimate tree constitute the center of T which 
thus consists of just a single point or of two adjacent points. 

A branch at a point u of a tree T is a maximal subtree containing u as an 
endpoint. Thus the number of branches f!t u is deg M. The weight at a point 
u of T is the maximum number of lines in any branch at u. The weights at the 

* Of Jordan Curve Theorem fame. 

. iB*lr .».WRP-- 
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9 12 

Fig. 4.3. The weights at the points of a tree. 

nonendpoints of the tree in Fig. 4.3 are indicated. Of course the weight at 
each endpoint is 14, the number of lines. 

A point v is a centroid point of a tree T if v has minimum weight, and the 
centroid of T consists of all such points. Jordan [J2] also proved a theorem 
on the centroid of a tree analogous to his result for centers. 

Theorem 43 Every tree has a centroid consisting of either one point or two 
adjacent points. 

The smallest trees with one and two central and centroid points are 
shown in Fig. 4.4. 

1 Center ? 

Centroid 
< 

Fig. 4.4.  Trees with all combinations of one or two central and centroid points. 

BLOCK-CUTPOINT TREES 

It has often been observed that a connected graph with many cutpoints 
bears a resemblance to a tree. This idea can be made more definite by as- 
sociating with every connected graph a tree which displays the resemblance. 

For a connected graph G with blocks {B,} and cutpoints {cj, the 
block-cut point graph of G, denoted by bc\G), is defined as the graph having 
point set \Bi,} u {cj}, with two points adjacent if one corresponds to a block 
8, and the other to a cutpoint Cj and Cj is in B,. Thus bc(G) is a bigraph. This 
concept was introduced in Harary and Prins [HP22] and also in Gallai 
[G3]. (See Fig. 4.5.) 

1 
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•      • > • 

» 11 

i > ■ 

bc(G)\ 

Fig. 4.5.  A graph and its block-cutpoint graph. 

Theorem 4.4 A graph G is the block-cutpoint graph of some graph H if 
and only if it is a tree in which the distance between any two endpoints is 
even. 

In view of this theorem, we will speak of the block-cutpoint tree of a graph. 

INDEPENDENT CYCLES AND COCYCLES 

We describe two vector spaces associated with a graph G: its "cycle space" 
and "cocycle space." For convenience, these two vector spaces will be taken 
over the two element field F2 = {0, 1}, in which 1 + 1=0 (even though 
the theory can be modified to hold for an arbitrary field). In particular, the 
e, which occur repeatedly in the following definitions are always either 0 or 1. 

As usual, let G be a graph with points i>„ " ' < "■ and nnes *i« x„ 
A 0-chain of G is a formal linear combination Z e(r,- of points and a I-chain 
is a sum Z fi,.Xj of lines. The boundary operator ? sends 1-chains to 0-chains 
according to the rules: 

a) d is linear. 

b) if \- - m\ then r.v = u + r. 

On the other hand, the coboundary operator 6 sends 0-chains to 1-chains by 
the rules: 

a) 6 is linear. 

b) t5r = S ßj-x,-, where *:, = 1 whenever v, is incident with v. 
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V* X, Vi X, Vt 

Fig. 4.6.  A graph to illustrate the boundary and coboundary operators. 

In Fig. 4.6, the 1-chain <r, = x, + x2 + x4 + x9 has boundary 

day = (17, + V2) + (t7j + Bj) + {v, + v4) + (v5 + t>6) 

-  »3  +  f4 +   Vs  +   ^6» 

and the 0-chain o0 = v3 + v4 + v5 + v6 has as its coboundary 

S°o = U2 + x3 + x6 + x7) + (x4 + x8) 

+ (*s + x6 + x8 + x9) + (x7 + x9) 

= x2 + x3 + x4 + x5. 

A 1-chain with boundary 0 is a cycle vector* of G and can be regarded as 
a set of line-disjoint cycles. The collection of all cycle vectors forms a vector 
space over F2 called the cycle space of G. A cycle basis of G is defined as a 
basis for the cycle space of G which consists enlnely of cycles. We say a 
cycle-vector Z depends on the cycles Z1,Z2,m-,Zk if it can be written 
as Zf =, £,Zj. Thus a cycle basis of G is a maximal collection of independent 
cycles of G, or a minimal collection of cycles on which all cycles depend. 

A cutset of a connected graph is a collection of lines whose removal 
results in a disconnected graph. A cocycle is a minimal cutset. A coboundary 
of G is the coboundary of some 0-chain in G. The coboundary of a collection 
V of points is just the set of all lines joining a point in U to a point not in 
U. Thus every coboundary is a cutset. Since we define a cocycle as a minimal 
cutset of G and any minimal cutset is a coboundary, we see that a cocycle 
is just a minimal nonzero coboundary. The collection of all coboundaries 
of G is called the cocycle space of G, and a basis for this space which consists 
entirely of cocycles is called a cocycle basis for G. 

We proceed to construct for the cycle space of G a basis which corre- 
sponds to a spanning tree T. In a connected grapn G, a chord of a spanning 
tree T is a line of G which is not in T, Clearly the subgraph of G consisting 
of T and any chord of T has exactly one cycle.   Moreover, the set Z(T) 

• Most topologists and some graph theorists call this a "cycle." 
"elementary cycles" or "polygons" for our cycles. 

They then use "circuits" or 

1 
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Fig. 4.7. Graph, tree, and cotree. 

h i n v ~h 
Fig. 4.8.  A cocycle basis for G of Fig. 4.7. 

of cycles obtained in this way (one from each chord) is independent, since 
each contains a line not in any of the others. Also, every cycle Z depends 
on the set Z(T), for Z is the symmetric difference of the cycles determined by 
the chords of T which lie in Z. Thus if we define m(G), the cycle rank, to be 
the number of cycles in a basis for the cycle space of G, we have the following 
result. 

Theorem 4.5 The cycle rank of a connected graph G is equal to the number 
of chords of any spanning tree in G. 

Corollary 4.5(a)   If G is a connected (p, q) graph, then m(G) = q — p + 1. 

Corollary 4.5(b)   If G is a (p, q) graph with A components, then 

m{G) - q - p + k. 

Similar results are true for the cocycle space. The cotree T* of a spanning 
tree T in a connected graph G is the spanning subgraph of G containing 
exactly those lines of G which are not in T. A cotree of G is the cotree of 
some spanning tree T. In Fig. 4.7, a spanning tree T and its cotree T* 
are displayed for the same graph G as in Fig. 4.6. The lines of G which are 
not in 7 * are called its twigs. The subgraph of G consisting of T* and any 
one of its twigs contains exactly one cocycle. The collection of cocycles 
obtained by adding twigs to T*, one at a time, is seen to be a basis for the 
cocycle space of G. This is illustrated in Fig. 4.8 for the graph G and cotree 
T* of Fig. 4.7, with the cocycles indicated by heavy lines. The cocycle rank 
m*(G) is the number of cocycles in a basis for the cocycle space of G. 

1 
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Theorem 4.6 The cocycle rank of a connected graph G is the number of 
twigs in any spanning tree of T. 

As in the case of cycles, we have two immediate corollaries. 

Corollary 4.6(a)   If G is a connected {p, q) graph, then m*(G) = p - 1. 

Corollary 4.6(b)   If G is a (p, q) graph with k components, then m*(G) = p - k. 

Excursion 
The 1-dimensional case of an important general result about simplicial 
complexes can be derived from Theorem 4.5. The Euler Poincare equation 

<XQ — <X1 + Ä2 — ßo - ßl + ßl 

where the ß„ are the Betti numbers and the a„ are the numbers of simplexes 
of each dimension, holds for every simplicial complex. By definition, ß„ is 
the rank of the vector space of «-dimensional cycles. Recall from Chapter 1 
that every graph is a simplicial complex, with its points 0-simplexes and its 
lines 1-simplexes. For a graph, ß0 = k, the number of connected components, 
and ßi = m(G), the number of independent cycles of G. Since no graph 
contains an «-simplex with n > 1, a„ = ßn = 0, for all n > 1. Thus 
ao_ai =ßo~ßis°P~(i = k — m(G) and we see that Corollary 4.5(b) 
is the Euler-Poincare equation for graphs. 

MATROIDS 

This subject was first introduced by Whitney [W15]. A discussion of the 
basic properties of matroids, as well as several equivalent axiomatic formula- 
tions, may be found in Whitney's original paper. 

A matroid consists of a finite set M of elements together with a family 
¥> = [C,, C2, • • } of nonempty subsets of M, called circuits, satisfying the 
axioms: 

1. no proper subset of a circuit is a circuit; 

2. if x e Cj n C2, then Cj u C2 - {x} contains a circuit. 

With every graph G, one can associate a matroid by taking its set X of 
lines as the set M, and its cycles as thw circuits. It is easily seen that the two 
axioms are satisfied. It is slightly less obvious that G yields another matroid 
by taking the cocycles of G as the circuits. These are called respectively the 
cycle matroid and the cocycle matroid of G. 

Another, equivalent, definition of matroid is as follows. A matroid 
consists of a finite set M of elements together with a family of subsets of M 
called independent sets such that: 

1. the empty set is independent; 
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2. every subset of an independent set is independent; 
3. for every sublet A of M, all maximal independent sets contained in A 

have the same number of elements. 

A graph G yields a matroid in this sense by taking the lines of G as set 
M and the acyclic subgraphs of G as the independent sets. 

The duality (cycles vs. cocycles, trees vs. cotrees) which appears in the 
preceding section is closely related to duality in matroids. Minty [M12] 
constructed a self-dual axiom system for "graphoids" which displays matroid 
duality explicitly. 

A graphoid consists of a set M of elements together with two collections 
<£ and 3 of nonempty subsets of M, called circuits and cocircuits respectively, 
such that: 

1. for any C e * and D e 9, \C n D\ * 1; 
2. no circuit properly contains another circuit and no cocircuit properly 

contains another cocircuit; 
3. for any painting of A/ which colors exactly one element green and the 

rest either red or blue, there exists either 

a) a circuit C containing the green element and no red elements, or 
b) a cocircuit D containing the green element and no blue elements. 

While the cycles of every graph form a matroid, not every matroid can 
so arise from a graph, as we shall see in Chapter 14. Two comprehensive 
references on matroid theory are Minty [M12] and Tutte [T19]. 

Excursion 
UlarrTs conjecture is still as unsolved as ever for arbitrary graphs. But 
Kelly [K5] proved its validity for trees. As we have seen, the point of view 
toward this conjecture proposed in [H29] is that if G has p > 3 and one is 
presented with the p unlabeled subgraphs G( = G — r„ then the graph G 
itself can be reconstructed uniquely from the G,. Kelly's result for trees 
was extended in [HP6] where it is shown that every nontrivial tree Tcan be 
reconstructed from only those subgraphs 7] = T - r, which are themselves 
trees, that is, such that r, is an endpoint. This has been improved, in turn, by 
Bondy, who showed [B15] that a tree T can be reconstructed from its 
subgraphs T - c, with the r, the peripheral points, those whose eccentricity 
equals the diameter of T. Manvel [M2] then showed that almost* every tree 
T can be reconstructed using only those subtrees 7' - r, which are non- 
isomorphic. Another class of graphs has been reconstructed by Manvel 
[M3]. namely unk yelk graphs, which are connected and have just one cycle. 

* Wiili just two pairs of exceptional trees. 
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EXERCISES 

4.1 Draw all trees with nine points. Then compare your diagrams with those in 
Appendix II. 

4.2 Every tree is a Digraph. Which trees are complete bigraphs? 

4.3 The following four statements are equivalent. 

(1) G is a forest. 
(2) Every line of G is a bridge. 
(3) Every block of G is K2- 
(4) Every nonempty intersection of two connected subgraphs of G is connected. 

4.4 The following four statements are equivalent. 

(1) G is unicyclic. 
(2) G is connected and p = q. 
(3) For some line x of G, the graph G - x is a tree. 
(4) G is connected and the set of lines of G which are not bridges form a cycle. 

(Anderson and Harary [AH1]) 

4.5 For any connected graph G, r(G) <, d(G) <, 2r(G). 

4.6 Construct a tree with disjoint center and centroid, each having two points. 

47 The center of any connected graph lies in a block. (Harary and Norman [HN2]) 

4.8 Given the block-cutpoint tree bc(G) of a connected graph G, determine the block- 
graph fi(G) and the cutpoint-graph C(G). 

4.9 Determine the cycle ranks of (a) Kr (b) KmH, (c) a connected cubic graph with 
p points. 

4.10 The intersection of a cycle and a cocycle contains an even number of lines. 

4.11 A graph is bipartite if and only if every cycle in some cycle basis is even. 

4.12 Every connected graph has a spanning tree. 

4.13 Show how the block-cutpoint graph of any graph can be denned as an intersection 
graph. 

4.14 A cotree of a connected graph is a maximal subgraph containing no cocycles. 

4.15 A tree has diameter 2 if and only if it is a star. 

4.16 Prove or disprove: 

a) If G has diameter 2, then it has a spanning star, 
h) If G has a spanning star, then it has diameter 2. 

4.17 Determine all connected graphs G for which G = btiG). 

"4.18 The maximum number of lines in a graph with p points and radius r is 

C) if   r = 1, 

[pip - 21/2]       if   r = 2, 

\(p2     4rp f 5p + 4r2 - 6r)       if   r > 3. (Vizing [V5]) 

4.19 G is a block if and only if every two lines lie on a common cocycle. 



CHAPTER 5 

CONNECTIVITY 

We must all hang together, 
or assuredly we shall all hang separately. 

B. FRANKLIN 

The connectivity of graphs is a particularly intuitive area of graph theory 
and extends the concepts of cutpoint, bridge, and block. Two invariants 
called connectivity and line-connectivity are useful in deciding which of two 
graphs is "more connected." 

There is a rich body of theorems concerning connectivity. Many of 
these are variations of a classical result of Menger, which involves the number 
of disjoint paths joining a given pair of points in a graph. We will see that 
several such variations have been discovered in areas of mathematics other 
than graph theory. 

■ 

■ 

CONNECTIVITY AND LINE-CONNECTIVITY 

The connectivity K = K{G) of a graph G is the minimum number of points 
whose removal results in a disconnected or trivial graph. Thus the con- 
nectivity of a disconnected graph is 0, while the connectivity of a connected 
graph with a cutpoint is 1. The complete graph Kp cannot be disconnected 
by removing any number oi points, but the trivial graph results after re- 
moving p - 1 points; therefore, K{KP) = p - 1. Sometimes K is called the 
point-connectivity. 

Analogously, the line-connectivity k — k{G) of a graph G is the minimum 
number of lines whose removal results in a disconnected or trivial graph. 
Thus k(K{) = 0 and the line-connectivity of a disconnected graph is 0, while 
that of a connected graph with a bridge is 1. Connectivity, line-connectivity, 
and minimum degree are related by an inequality due to Whitney [Wl 1]. 

Theorem 5.1   For any graph G, 

K(G) < k(G) < 0(G). 

43 
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Proof. We first verify the second inequality. If G has no lines, then X — 0. 
Otherwise, a disconnected graph results when all the lines incident with a 
point of minimum degree are removed. In either case, X < 6. 

To obtain the first inequality, various cases are considered. If G is 
disconnected or trivial, then tc — X = 0. If G is connected and has a bridge x, 
then X = I. In this case, K = 1 since either G has a cutpoint incident with x 
or G is K2. Finally, suppose G has X > 2 lines whose removal disconnects 
it. Clearly, the removal of X - 1 of these lines produces a graph with a 
bridge x = uv. For each of these X - 1 lines, select an incident point different 
from u or v. The removal of these points also removes the X — 1 lines and 
quite possibly more. If the resulting graph is disconnected, then K < A; if 
not, x is a bridge, and hence the removal of u or r will result in either a 
disconnected or a trivial graph, so K <, X in every case. (See Fig. 5.1.) 

i 

Fig. 5.1.  A graph for which tc ■» 2, i = 3, and S = 4. 

Chartrand and Harary [CH4] constructed a family of graphs with 
prescribed connectivities which also have a given minimum degree. This 
result shows that the restrictions on K, A, and Ö imposed by Theorem 5.1 
cannot be improved. 

Theorem 5.2  For all integers a, b, c such that 0 < a < b < c, there exists a 
graph G with K(G) = a, X(G) = b, and S(G) = c. 

Chartrand [C8] pointed out that if 6 is large enough, then the second 
inequality of Theorem 5.1 becomes an equality. 

Theorem 5.3  If G has p points and <5(G) > [p/2], then X(G) = ö{G). 

For example, if G is regular of degree r > p/2, then X(G) = r. In 
particular, X(KP) = p — 1. 

The analogue of Theorem 5.3 for connectivity does not hold. The 
problem of determining the largest connectivity possible for a graph with a 
given number of points and lines was proposed by Berge [B11] and a solution 
was given in [H26]. 

Theorem 5.4 Among all graphs with p points and q lines, the maximum 
connectivity is 0 when q < p — 1 and is [2<//p], when q > p — 1 

i 
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Outline of proof. Since the sum or the degrees of any (p, q) graph G is 2q, the 
mean degree is 2q/p. Therefore 6(G) ^ [2q/p], so K{G) ^ [2^/p] by Theorem 
S.l. To show that this value can actually be attained, an appropriate family 
of graphs can be constructed. The same construction also gives these 
(p, q) graphs with maximum line-connectivity. 

Corollary 5.4(a) The maximum line-connectivity of a (p, q) graph equals the 
maximum connectivity, 

Only very recently the question of separating a graph by removing a 
mixed set of points and lines has been studied. A connectivity pair of a graph 
G is an ordered pair (a, b) of nonnegative integers such that there is some sei 
of a points and b lines whose removal disconnects the graph and there 
is no set of a — 1 points and b lines or of a points and b — 1 lines with this 
property. Thus in particular the two ordered pairs (K, 0) and (0, /) are 
connectivity pairs for G, so that the concept of connectivity pair generalizes 
both the point-connectivity and the line-connectivivy of a graph. It is readily 
seen that for each value of a, 0 < a < K, there is a unique connectivity pair 
(a. ba); thus G has exactly K + 1 connectivity pairs. 

The connectivity pairs of a graph G determine a function / from the 
set {0, 1, • • •, K} into the nonnegative integers such that f(tc) = 0 (cf. 
Theorem 5.1). This is called the connectivity function of G. It is strictly 
decreasing, since if (a, b) is a connectivity pair with b > 0 there is obviously 
a set of a + 1 points and b — 1 lines whose removal disconnects the graph 
or leaves only one point. The following theorem, proved by construction in 
Beineke and Harary [BH6], shows that these are the only conditions which 
a connectivity function must satisfy. 

Theorem 5.5 Every decreasing function / from {0, 1, • • •, K) into the non- 
negative integers such that f(k) = 0 is the connectivity function of some 
graph. 

A graph G is n-connected if K(G) > n and n-line-connected if k(G) > n. 
We note that a nontrivial graph is 1-connected if and only if it is connected, 
and that it is 2-connected if and only if it is a block having more than one 
line. So K2 is the only block not 2-connected. From Theorem 3.3, it 
therefore follows that G is 2-connected if and only if every two points of G 
lie on a cycle. Dirac [D8] extended this observation to n-connected 
graphs. 

Theorem 5.6 If G is «-connected, n > 2, then every set of n points of G lie 
on a cycle. 

By taking G to be the cycle C„ itself, it is seen that the converse is not 
true for n > 2. 

A characterization of 3-connected graphs also exists, although its 
formulation is not as easily given.  In order to present this result, we need 
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i 

W.-tf.+C,: 

Flg. 5.2.  Awheel. 

the "wheel" invented by the eminent graph theorist W. T. Tutte. For w > 4, 
the wheel Wn is defined to be the graph K, + C„_,. (See Fig. 5.2.) 

Tutte's theorem [TI3] characterizing 3-connected graphs can now be 
stated. 

Theorem 5.7 A graph G is 3-connected if and only if G is a wheel or can be 
obtained from a wheel by a sequence of operations of the following two 
types: 

1. The addition of a new line. 

2. The replacement of a point v having degree at least 4 by two adjacent 
points v\ v" such that each point formerly joined to u is joined to exactly 
one of// and v" so that in the resulting graph, deg v' ^ 3 and deg v" ^ 3. 

The graph G of Fig. 5.3 is 3-connected since it can be obtained from the 
wheel W5 as indicated. 

An n-component of a graph G is a maximal n-connected subgraph. In 
particular, the 1-components of G are the nontrivial components of G while 
the 2-components are the blocks of G with at least 3 points. It is readily 
seen that two different I-components have no points in common, and two 

w<\ 

(c) (d) 

Hg. 5.3.   Demonstration that a graph is 3-connected. 

i 
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Fig. 5.4.  A graph with two 3-cotnponents which meet in two points. 

distinct 2-components meet in at roost one point. These facts have been 
generalized by Harary and Kodama [HK1]. (See Fig. 5.4.) 

Theorem 5.8 Two distinct «-components of a graph G have at most n — 1 
points in common. 

GRAPHICAL VARIATIONS OF MENGER'S THEOREM 

In 1927 Menger [M9] showed that the connectivity of a g:aph is related to 
the number of disjoint paths joining distinct points in the graph. Many 
of the variations and extensions of Menger's result which have since appeared 
have been graphical, and we discuss some of these here. By emphasizing the 
form these theorems take, it is possible to classify them in an illuminating 
way. 

Let u and t; be two distinct pciuts of a connected graph G. Two paths 
joining u and v are called disjoint (sometimes called point-disjoint) if they 
have no points other than u and v (and hence no lines) in common; thjy are 
line-disjoint if they have no lines in common. A set S of points, lines, or points 
and lines separates u and v if u and v are in different components of G — S. 
Clearly, no set of points separates two adjacent points. Menger's Theorem 
was originally presented in the "point form" given in Theorem 5.9. 

Theorem 5.9 The minimum number of points separating two nonadjacent 
points s and t is the maximum number of disjoint s-t paths. 

Proof. We follow the elegant proof of Dirac [Dll]. It is clear that if k 
points separate s and f, then there can be no more than k disjoint paths 
joining s and f. 

It remains to show that if it takes k points to separate s and t in G, there 
are k disjoint s-t paths in G. This is certainly true if k = 1, Assume it is not 
true for some k > 1. Let h be the smallest such k, and let F be a graph with 
the minimum number of points for which the theorem fails for h. We 
remove lines from F until we obtain a graph G such that h points are required 
to separates and t'mG but for any line x of G, only h — 1 points are required to 
separate s and f in G - :•• We first investigate the properties of this graph G, 
and then complete the proof of the theorem. 
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By the definition of G, for any line v of G there exists a set S(x) ofh-l 
points which separates s and / in G - x. Now G - S(x) contains at least 
one s-t path, since it takes h points to separate s and t in G. Each such s-t 
path must contain the line x *■ uv since it is not a path in G - x. So 
H, » £ S(.v) and if M # s, f then S(x) u J M J separates 5 and r in G. 

If there is a point w adjacent to both s and t in G, then G - w requires 
h — 1 points to separate s and t and so it has h — 1 disjoint s-t paths. 
Replacing w, we have h disjoint s-t paths in G. So we have shown: 

(I) No point is adjacent to both s and t in G. 
Let W be any collection of h points separating 5 and t in G. An v W 

path is a path joining s with some w, e W and containing no other point of 
W, Call the collections of all s- W paths and W-t paths Ps and P, respectively. 
Then each s-t path begins with a member of P„ and ends with a member of 
/>,, because every such path contains a point of W. Moreover, the paths in 
Ps and P, have the points of W and no others in common, since it is clear 
that each wt is in at least one path in each collection and, if some other point 
were in both an s-W and a W-t path, then there would be an s-t path con- 
taining no point of W. Finally, either Ps - W = {s} or P, - W = {f}, 
since, if not, then both Ps plus the lines {w,f, w2t, • • •} and P, plus the lines 
{sw„ sw2, ■'} are graphs with fewer points than G in which s and / are 
nonadjacent and /{-connected, and therefore in each there are h disjoint 
s-t paths. Combining the s-W and W-t portions of these paths, we can 
construct h disjoint s-t paths in G, and thus have a contradiction. Therefore 
we have proved: 

(II) Any collection W of h points separating s and t is adjacent either to 
s or to t. 

Now we can complete the proof of the theorem. Let P = {s, «,, M2, ■ • •, /} 
be a shortest s-t path in G and let W,M2 = *• Note that by (I), u2 ■'■ t, Form 
S(.x) = {r,, r2, • • •, ^_,{ as above, separating s and I in G - . . By (I), 
«,/ £G, so by (II), with VK = 5(x) u {«,}, M,eG, for all i. Thus by (I), 
V{t $ G, for all I However, if we pick W — S(x) u \u2} instead, we have by 
(II) that su2 e G, contradicting our choice of P as a shortest s-t path, and 
completing the proof of the theorem. 

In Fig. 5.5 we display a graph with two nonadjacent points s and t 
which can be separated by removing three points but no fewer. In accordance 
with the theorem, the maximum number of disjoint s-t paths is 3. 

Chronologically the second variation of Menger's Theorem was pub- 
lished by Whitney in a paper [Wl 1] in which he included a criterion for a 
graph to be «-connected. 

Theorem 5.10  A graph is «-connected if and only if every pair of points are 
joined by at least n point-disjoint paths, 
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Fig. 5.5.  A graph illustrating Menger s Theorem. 

An indication of the relationship between Theorems 5.9 and 5.10 is easily 
supplied by introducing the concept of local connectivity. The local con- 
nectivity of two nonadjacent points u and v of a graph is denoted by K(U, V) 

and is defined as the smallest number of points whose removal separates 
u and v. In these terms, Menger's Theorem asserts that for any two specific 
nonadjacent points u and v, K{U, V) ~ p0(u, v), the maximum number of 
point-disjoint paths joining u and v. Obviously both theorems hold for 
complete graphs. If we are dealing with a graph G which is not complete, 
then the observation which links Theorems 5.9 and 5.10 is that K(G) = 
min K(U, V) over all pairs of nonadjacent points u and v. 

Strangely enough, the theorem analogous to Theorem 5.9 in which the 
pair of points an separated by a set of lines was not discovered until much 
later. There are several nearly simultaneous discoveries of this result which 
appeared in papers by Ford and Fulkerson [FF1] (as a special case of their 
"max-flow, min-cut" theorem) and Elias, Feinstein, and Shannon [EFS1], 
and also in unpublished work of A. Kotzig. 

Theorem 5.11 For any two points of a graph, the maximum number of line- 
disjoint paths joining them equals the minimum number of lines which 
separate them. 

Referring again to Fig. 5.5, we see that u and v can be separated by 
the removal of five lines but no fewer, and that the maximum number of 
line-disjoint u-v paths is five. 

Even with only these three theorems available, we can see the beginnings 
of a scheme for classifying them. The difference between Theorems 5.9 and 
5.10 may be expressed by saying that Theorem 5.9 involves two specific 
points of a graph while Theorem 5.10 gives a bound in terms of two general 
points. This distinction, as well as the obvious one between Theorems 5.9 
and 5.11, is indicated in Table 5.1. 

Thus we see that with no additional effort we can get another variation of 
Menger's Theorem by stating the line form of the Whitney result. 
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TaMeS.1 

Theorem Objects separated Maximum number Minimum number 

5.9 
5.10 
5.11 

specific u, v 
general u, v 
specific H, v 

disjoint paths 
disjoint paths 

line-disjoint paths 

points separating u, v 
points separating u, v 
lines separating u, v 

Theorem 5.12 A graph is n-line-connected if and only if every pair of points 
are joined by at least n line-disjoint paths. 

In Menger's original paper there also appeared the following variation 
involving sets of points rather than individual points. 

Theorem 5.13 For any two disjoint nonempty sets of points Kj and V2, the 
maximum number of disjoint paths joining Vx and V2 is equal to the minimum 
number of points which separate F, and V2. 

Of course it must be specified that no point of Vx is adjacent with a 
point of V2 for the same reason as in Theorem 5.9. Two paths joining F, 
and V2 are understood to be disjoint if they have no points in common other 
than their endpoints. A proof of the equivalence of Theorems 5.9 and 5.13 
is extremely straightforward and only involves shrinking the sets of points 
V{ and V2 to individual points. 

Another variation is given in the next theorem, considered by Dirac 
[D10], Because the proof involves typical methods in the demonstration of 
equivalence of these variations, we include it in full. 

Theorem 5.14 A graph with at least In points is «-connected if and only if 
for any two disjoint sets K, and V2 of n points each, there exist n disjoint 
paths joining these two sets of points. 

Note that in this theorem these n disjoint paths do not have any points 
at all in common, not even their endpoints! 

Proof. To show the sufficiency of the condition, we form the graph G' from 
G by adding two new points w, and w2 with w, adjacent to exactly the points 
of Vi, i = I, 2. (See Fig. 5.6.) 

Since G is n-connected, so is G\ and hence by Theorem 5.9 there are n 
disjoint paths joining w, and w2. The restrictions of these paths to G are 
clearly the n disjoint Vt-V2 paths we need. 

To prove the other "half," let S be a set of at least n - 1 points which 
separates G into G, and G2, with points sets V\ and V2 respectively. Then, 
since \V\\ > 1, \V'2\ > 1, and \V\\ + \V2\ + |S| = \V\ > In, there is a 
partition of S into two disjoint subsets S, and S2 such that \V\ u S,| > n 
and \V2 u S2\ > n. Picking any n-subsets K, of V\ u 5,, and V% of V2 u S2, 

i 
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Fig. 5.6.  Constructior. of G'. 

we have two disjoint sets of fi points each. Every path joining V, and V2 

must contain a point of S, and since we know there are n disjoint Vx- V2 

paths, we see that |S| > n. and G is «-connected. 
We have defined connectivity pairs for a graph. Similarly, one can define 

connectivity pairs for two specific points u and r>. It is then natural to ask for 
a mixed form of Menger's Theorem involving connectivity pairs. The 
following theorem of Beineke and Harary [BH6] is one such result; a proof 
can be readily supplied by imitating that of Theorem 5.9. 

Theorem 5.15 The ordered pair (a, b) is a connectivity pair for points u and v 
in a graph G if and only if there exist a point-disjoint u-v paths and also b 
line-disjoint u-v paths which are line-disjoint from the preceding a paths, 
and further these are the maximum possible numbers of such paths. 

In general, all of the theorems we have mentioned have corresponding 
digraph forms, and in fact Dirac points out that his proof of Menger's 
Theorem works equally well for directed graphs. At this point, then, we 
could add eleven more theorems to Table 5.1, namely Theorems 5.12 through 
5.15, and the directed forms of Theorems 5.9 through 5.15. This would be a 
somewhat futile effort, however, since it should be clear that the table would 
still be far from complete. To count the total number of variations which 
have been suggested up to this point, we note that we may consider either a 
graph G or a digraph D, in which we may separate 

i) specific points u, t\ 

ii) general points M, I\ 

iii) two sets of points K,, V2 (as in Theorem 5.13). 

This separation may be accomplished by removing 

i) points, 

ii) lines, or 

iii) points and lines (as in Theorem 5.15). 
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By taking all possible combinations ol these alternatives, we could 
construct 2-3-3 = 18 theorems. The fact that at! of these theorems are 
true may be verified by the reader, although it would be a tedious exercise. 

Finally, Fulkerson [F13] roved the following theorem, which deals 
with disjoint cutsets instead of disjoint paths. 

Theorem 5.16 In any graph, the maximum number of line-disjoint cutsets 
of lines separating two points u and v is equal to the minimum number of 
lines in a path joining u and v; that is, to c/(n, v). 

Although this theorem is of Mengerian type, it is much easier to prove 
than Menger's Theorem. By taking all the possible variations of this theorem, 
as we have with the theorems involving paths, we could increase the number 
of Mengerian theorems again. 

FURTHER VARIATIONS OF MENGER'S THEOREM 

In this section we include several additional variations of Menger's Theorem, 
all discovered independently and only later seen to be related to each other 
and to a graph theoretic formulation. 

A network N may be regarded as a graph or directed graph together with 
a function which assigns a positive real number to each line. For precise 
definitions of "maximum flow" and "minimum cut capacity," see the book 
[FF2] by Ford and Fulkerson. 

i 

N 

»<r 

Fig. 5.7.  A network with integral capacities. 

Theorem 5.17  In any network N in which there is a path from M to r, the 
maximum flow from u to v is equal to the minimum cut capacity. 

It is straightforward but not entirely obvious to verify that in Fig. 5.7 
the maximum flow in the network from w to v is 7, and that the minimum 
cut capacity is also 7. 

In the case where all the capacities are positive integers, as in this net- 
work, there is an immediate equivalence between the maximum flow theorem 
and that variation of Menger's Theorem in which the setting is a directed 
multigraph D and there are two specific points u and t>. The transformation 
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in V in /) 

Fig. 5.8.  The transformation from network to multigraph. 

which makes this equivalence apparent is displayed in Fig. 5.8 in which 
the directed line from u to p, in Fig. 5.7 which has capacity 3 is transformed 
into thr x directed lines without any capacity indicated. 

Lfi us define a line of a matrix as either a row or a column. In a binary 
matrix Jlf, a collection of lines is said to cover all the unit entries of M 
if every I is in one of these lines. Two I's of M are called independent if they 
are neither in the same row nor in the same column. König [K9] obtained 
the next variation of Monger's Theorem in these terms; compare Theorem 
10.2. 

Theorem 5.18 In any binary matrix, the maximum number of independent 
unit elements equals the minimum number of lines which cover all the units. 

M = 

0 0 10 0   0 
! 1 0   I 0   I 
0 0 10 0   1 
0 I 1    0 I    0 
0 0 10 0! 

M' 

o o  i o o o 
10   0 0 0 0 
0   0   0 0 0 I 
0    10 0 0 0 
0   0   0 0 0 0 

We illustrate Theorem 5.18 with the binary matrix M above. All the 
unit entries of M are covered by rows 2 and 4 and columns 3 and 6. but there 
is no collection of three lines of M which covers all its I's. In the matrix M' 
there are shown four independent unit entries of M and there is no set of five 
independent I's in M. 

When this matrix M is regarded as an incidence matrix of sets versus 
elements. Theorem 5.18 becomes very closely related to the celebrated 
theorem of P. Hall [H8], which provides a criterion for a collection of finite 
sets 5|, S2. ■ ■ ■, Sm to possess a system of distinct representatives. This 
means a set {«?,, et, ■ • •, em] ofdistinct elements such that ef is in S„ for each /. 
We present here the proof of Hall's Theorem which is due to Rado [Rl]. 

Theorem5.19 There exists a system ofdistinct representatives for a family 
ofdistinct sets 5,. S2, • • •, Sm if and only if the union of any A of these sets 
contains at least k elements, for all A from I to m. 

Proof. The necessity is immediate. For the sufficiency we first prove that if 
thecollection {S(} satisfies the stated conditions and |SJ > 2, then there is an 
element e in Sm such that the collection of sets S,, .S\. • • •, Sm  ,, Sm - {e} 

i 
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also satisfies the conditions. Suppose this is not the case. Then there are 
elements e and/in Sm and subsets J and K of {1,2, • • *, m - 1} such that 

e}}\ < \J\ + 1   and 
V      \ 
■ USiJwft {/}) < \K\ + 1. 

But then 

K{ - Ky s,ju (Sm *{e})!+!(ys<)u (SM _ {f}) 

>-(us)uSm + us,| 

>|JuK| + 1 + \J nK\ >\J\ +\K\, 

which is a contradiction. 
The sufficiency now follows by induction on the maximum of the 

numbers |S,|. If each set is a singleton, there is nothing to prove. The in- 
duction step is made by application (repeated if necessary) of the above 
result to the sets of largest order. 

t 

B: 

Fig. 5.9.  A bipartite graph illustrating Hall's Theorem. 

In Fig. 5.9 we show a bipartite graph G in which the points refer either to 
sets S, or to elements a,. Two points of B are adjacent if and only if one is a 
set point, the other is an element point, and the element is a member of the 
set. The link between Theorem 5.19 and Menger's Theorem is accomplished 
by introducing two new points into a graph of the form of Fig. 5.9. Call 
these points u and v and join u to every set point St and v with every element 
point üj to obtain a new graph. Theorem 5.19 can then be proved by applying 
either the maximum flow theorem or the appropriate line form of Menger's 
Theorem to this graph. 

Although the following theorem due to Dilworth [D4] is expressed in 
terms of lattice theory,* it has been established (see Mirsky and Perfect 
[MP1]) that the result is equivalent to Hall's Theorem. Two elements of a 
lattice (see Birkhoff [B13]) are incomparable if neither dominates the other. 

* More generally the result holds for partially ordered sets. 
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By a chain in a lattice is meant a downward path from an upper element to a 
lower element in the "Hasse diagram" of the lattice. 

Theorem 5.20 In any finite lattice, the maximum number of incomparable 
elements equals the minimum number of chains which include all the 
elements. 

For example, in the lattice of the 3-cube, there are at most three incom- 
parable elements; it is easy to cover all the elements with three chains but 
impossible to do so with only two chains. 

We have seen in this section several theorems of Mengerian type 
occurring in settings which are not graph theoretic. A more extensive 
treatment of such results appears in the review article [H33]. For an elegant 
summary of the vast literature on theorems involving systems of distinct 
representatives, see Mirsky and Perfect [MP1]. 

EXERCISES 

5.1 The connectivity of 

a) the octahedron R2 + C4 is 4. 
b) the square of a polygon C„, n 2: 5, is 4. 

5.2 Every n-connected graph has at least pn/2 lines. 

5.3 Construct a graph with K = 3, X = 4, & = 5. 

5.4 Theorem 5.3 does not hold if A(G) is replaced by K(G). 

5.5 There exists no 3-connected graph with seven lines. 

5.6 The connectivity and line-connectivity are equal in every cubic graph. 

5.7 Determine which connectivity pairs can occur in 4-regular graphs. 

5.8 If G is regular of degree r and K = 1, then k < [r/2]. 

5.10 Let G be a complete n-partite graph other than C4. Then every minimum line 
cutset is the coboundary of some point. (M. D. Plummer) 

5.11 Find the connectivity function for s and t in the graph of Fig. 5.5. 

5.12 Find a graph with points s and f for which the connectivity function is (0. 5), (i, 3), 
(Z 2\ (3,0). 

5.13 Use Tune's Theorem 5.7 to show that the graph of the cube is 3-connected. 

5.14 Every block of a connected graph G is a wheel if and only if q = 2p - 2 and 
K(U. V) = 1 or 3 for any two nonadjacent points u. r. (Bollobäs [B14]) 

5.15 Every cubic triply-connected graph can be obtained from K4 by the following 
construction. Replace two distinct lines u,r, and u2r2 (u, = w2 is permitted) by the 
subgraph with two new points w,, w2 and the new lines UxW^ w,u,, u2w2, w2i>2, and 

^feP$<^ttfettMf*t^^ -^.i^^^^miSie^mem-t^mm^A^ • 
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5.16 Given two disjoint paths P. and P2 joining two points u and v of a 3-connected 
graph G, a it always possible to find a third path joining u and t> which is disjoint from 
both Px and PJ 

5 17 State the result analogous to Theorem 5.9 for the maximum number of disjoint 
paths joining two adjacent points of a graph. 

•5.38 UfXp) is the smallest number such that for q > f,(p) every (p, q) graph has two 
points joined by r disjoint paths, then 

fiiP) = P.     hiP) = [Op - D/2],      and     Up) = Ip - 1. 

(Bollobas [B14]) 

5.19 If G has diameter d and * £ 1, then p £ /c(rf + 1) - 2. (Watkins [W5]) 

5.20 Let C be the maximum number such that every set of £ points in G is contained in 
some cycle. In a triply connected graph G, K » { if and only if G has a set S of K 

points such that K(G - S) £ K + I. (Watkins [WS]) 

5.21 If G is connected, then 

K(G) = 1 + min K(G - v) 

5.22 In any graph, the maximum number of disjoint cutsets of points separating two 
points u and v equals d(u, v) — 1. 

5.23 In a K-minimai graph G, K(G - x) < K(G) for every line x. 

a) GisK-minimalifandonlyif»v-(u, v) - K(G) for every pair of adjacent points u, v. 
b) If G is «-minimal then S = JC. (Halin [115]) 

5.24 Prove the equivalence of Theorems 5.18 and 5.19. (See for example M. Hall 
[H7,p.49]). 

5.25 If G is «-connected, n £ 2, and S(G) £ (3n - l)/2, then there exists a point v in G 
such that G - v is n-connected. (Chartrand, Kaugars, and Lick [CKL1]) 
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CHAPTER 6 

PARTITIONS 

GaHia est omnia divisa in partes tres. 
JULIUS CAESAR, de Bcllo Gallien 

The degrees du • • •, dp of the points of a graph fonn a sequence of non- 
negative integers, whose sum is of course 2q. In number theory it is customary 
to define a partition of a positive integer n as a list or unordered sequence 
of positive integers whose sum is n. Under this definition, 4 has five partitions: 

4,   3 + 1,   2 + 2,   2+1 + 1,    1 + 1 + 1 + 1. 

The order of the summands in a partition is not important. The depr ;es 
of a graph with no isolated points determine such a partition of 2q, but 
because of the importance of having a general definition holding for all 
graphs, it is convenient to use an extended definition, changing positive 
to nonnegative. 

2+, + ! 1 + 1 + H-l 

Fig. 6.1.  The graphical partitions or 4. 

A partition of a nonnegative integer n is a finite list of nonnegative 
integers with sum n. In this sense, the partitions of 4 also allow an arbitrary 
finite number of zero summands. The partition of a graph is the partition of 
2q as the sum of the degrees of the points, 2q = I d(, as in Theorem 2.1. Only 
two of the five partitions of 4 into positive summands belong to a graph, see 
Fig 6.1. 

A partition S d( of« into p parts is graphical if there is a graph G whose 
points have degrees d,. If such a partition is graphical, then certainly every 
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di■ < p — 1, and n is even. These two conditions are not sufficient for a 
partition to be graphical, as shown by the partition 10 = 3 + 3 + 3+ 1. 
Two related questions arise. First, how can one tell whether a given partition 
is graphical? Second, how can one construct a graph for a given graphical 
partition? An existential answer to the first was given by Erdös and Gallai 
[EG1]. Another answer found independently by Havel [H36] and Hakimi 
[H4] is constructive in nature, and so answers the second question as well. 
We first give this result. »»v   in«  gi»v   n"J  IWUII, 

Theorem 6.1 A partition n = (</., d2, • • •, dp) of an even number into p 
parts with p - 1 > dx > d2 > " ■ > dp is graphical if and only if the 
modified partition 

rr = (d2 - i, d3 - l, • • •, dä) + ] I, "d, + 2' ■, d.) 

is graphical. 

Proof. If FT is graphical, then so is ri, since from a graph with partition n' 
one can construct a graph with partition n by adding a new point adjacent 
to points of degrees d2 - l,d3 - 1, • • •, ddl+ , - 1. 

Now let G be a graph with partition FI. If a point of degree </, is adjacent 
to points of degrees dt for / = 2 to d{ + 1, then the removal of this point 
results in a graph with partition IT. 

Therefore we will show that from G one can get a graph with such a 
point. Suppose that G has no such point. We assume that in G, point i\ has 
degree dh with r, being a point of degree dx for which the sum of the degrees 
of the adjacent points is maximum. Then there are points i>, and v} with 
</, > dj such that v{Vj is a line but ViVt is not. Therefore some point vk is 
adjacent to v, but not to Vj. Removal of the lines otv} and vkv, and addition 
ol ;y, and vkVj results in another graph with partition n in which the sum 
of the degrees of the points adjacent to r, is greater than before. Repeating 
this process results in a graph in which r, has the desired property. 

The theorem gives an effective algorithm for constructing a graph with a 
given partition, if one exists. If none exists, the algorithm cannot be applied 
at some step. 

Corollary 6.1   (Algorithm) A given partition FI = (</,, d2. 

p - I > </, > d2 > • ■ • > d„ 

. d„) with 

is graphical if and only if the following procedure results in a partition with 
every summand zero. 

1. Determine the modified partition n' as in the statement of Theorem 6.1. 
2   Reorder the terms of IT so that they are nonincreasing. and call the 

resulting partition FI,. 
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Fig. 6.2.  An example of the algorithm for graph'Cal partitions. 

3. Determine the modified partition IT' of FI, as in step 1, and the re- 
ordered partition n2. 

4. Continue the process as long as nonnegative summands can be obtained. 

If a partition obtained at an intermediate stage is known to be graphical, 
stop, since n itself is then established as graphical. To illustrate this algorithm, 
we test the partition 

n = (5. 5, 3, 3, 2. 2. 2) 

IT = ( 4. 2, 2, 1, 1, 2) 

FI. -( 4.2.2,2, I. 1) 

n" = (       1,1,1,0,1). 

Clearly IT' is graphical, so FI is also graphical. The graph so constructed is 
shown in Fig. 6.2. 

The theorem of Erdös and Gallai [EG1] is existential in nature, but its 
proof uses the same construction. 

Theorem 6.2 Let FI = (</„ d2, •', <•',,) be a partition of 2q into p parts, 
d{ > </, > • • • > dp. Then II is graphical if and only if for each integer r, 
I <»•</>- 1, 

£</, < r(r - I) +   £ min [r, </,}. (6.1) 
i^ 1 i = r+ I 

Proof. The necessity of these conditions (6.1) is straightforward. Given 
that n is a partition of 2q belonging to a graph G, the sum of the r largest 
degrees can be considered in two parts, the first being the contribution to this 
sum of lines joining the corresponding r points with each other, and the 
second obtained from lines joining one of these r points with one of the 
remaining/) - r points. These two parts are respectively at most r(r - l)and 
Ifir+I min \r. d,}. 
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The proof of the sufficiency is by induction on p. Clearly the result holds 
for sequences of one or two parts. Assume that it holds for sequences of p 
parts, and let du d2, ■ ■ •, dp+, be a sequence satisfying the hypotheses of the 
theorem. 

Let m and n be the smallest and largest integers such that 

4»-i = •• = ddl + i m ••• = dn. 

Form a new sequence of p terms by letting 

— 1       for   i = 1 to m — 1 and n — (dt — m) to n. 

otherwise. 
/*♦■ 

*"(*.. 

If the hypotheses of the theorem hold for the new sequence eu- ••, ep, 
then by the induction hypothesis, there will be a graph with the numbers et 

as degrees. A graph having the given degree sequence d{ will be formed by 
adding a new point of degree dt adjacent to points of degrees corresponding 
to those terms e, which were obtained by subtracting 1 from terms di+1 as 
above. 

Clearly p > e, £ e2 > • • • > ep. Suppose that condition (6.1) does not 
hold and let h be the least value of r for which it does not. Then 

2>,>W- U+   t min {/>,<?<}. 
i=l i = *+l 

But the following inequalities do hold: 

Zd,<h(h+ 1) +   £ min{A + l,dt}, 
i=l (=*+2 

2>, £ (h - M - 2) + f min {h - 1, e,}, 
i=l i = h 

Ze,£ (ft -2X^-3)+   £ min {Ä - 2, «,}. 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
i= 1 ( = /i-l 

Let s denote the number of values of i <, h for which et = di+l — 1. 
Then (6.3)-(6.5) when combined with (6.2) yield 

di + s < 2h +   ]T (min {ft + 1, di+l} - min {ft, e,}), (6.6) 
i=*+i 

eÄ > 2(ft - 1) - min {ft - 1, eh} +   J) (min {/i, <?,} - min {ft - 1, <?,}), 

(6.7) 
ek-i + ek> 4h -6 - min {ft - 2, e„_,} a {ft - 2, <?,,} 

+   £ (min {ft, «,} - min {A - 2, <?,}).   (6.8) 
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Note that e„ 2; ft since otherwise inequality (6.7) gives a contradiction. 
Let a, ft, and c denote the number of values of i > ft for which e, > ft, et = ft, 
and et < ft, respectively. Furthermore, let a', ft', and c' denote the numbers 
of these for which et = di+l — 1. Then 

d, - s + a' + b' + c'. (6.9) 

The inequalities (6.6)-(6.8) now become 

dt + s < 2ft + a + b' + c', (6.10) 

e„ > h + a + 6, (6.11) 
p 

<?„_, + efc > 2Ä - 1 +   £ (min ft e:) ~ min {* ~ 2, *,}).   (6.12) 
i = *+l 

There are now several cases to consider. 

CASE I. c' = 0. Since dv £ eh, we have from (6.11), 

h + a + b < dv 

But a combination of (6.9) and (6.10) gives 

2dx < 2h + a + a' + 2b', 

which is a contradiction. 

CASE 2. c' > 0 and dH+i > h. This means that d;+1 = e{ + 1 whenever 
dj+1 > ft. Therefore since dfc+1 > ft, s = ft and a = a'. But the inequalities 
(6.10) and (6.9) imply that 

dx + ft < 2ft + a' + b' + c' = dx + ft, 

a contradiction. 

CASE 3. c' > 1 and dk+i — h. Under these circumstances, ek « ft and a = 
ft = 0, so dx = s + c\ Furthermore, since eh = </,,+ „ <?f = ft - 1 for at 
least c' values of i > ft. Hence inequality (6.12) implies 

eÄ_i > ft - 1 + c' > ft 

so that fh_, = dh - 1. Therefore s = ft - 1, and 

d, = ft - 1 + c' se»-i <<**, 

a contradiction. 

CASE4. c' = 1 and dh +, - ft. Again, eh = ft, a = h = 0, and </, = s + c'. 
Since s < ft - 1, </, = ft. But this implies s = 0 and d, = 1, so all d, = \. 
Thus (6.1) is obviously satisfied, which is a contradiction. 

Since eh > ft and dfc+, > eh, we see that dfc+l cannot be less than ft. 
Thus all possible cases have been considered and the proof is complete. 
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I",: rs: 

Fig. 6.3.  Two trees with the same partition. 

Sometimes, it can be determined quite rapidly whether a given partition 
is graphical and, if it is, the nature of the graphs having this partition may 
also be discernible. For example, it is easy to give a criterion for a partition 
to belong to a tree. This result answers a question posed by Ore [05, p. 62]; 
it has been found independently many times. 

Theorem 6.3 A partition 2q = £? d{ belongs to a tree if and only if each dt is 
positive and q = p — 1. 

As an illustration, consider the partition 16 = 5 + 3 + 2+1 + 1 + 
1 + 1 + 1 + 1. Here dt > 0 for each i and q - 8 while p = 9. Thus 
Theorem 6.3 assures us that this is the partition of a tree. Two trees to which 
this partition belongs are shown in Fig. 6.3. 

EXERCISES 

6.1 Which of the following partitions are graphical? 

a) 4 + 3 + 3 + 3 + 2 + 2 + 2+1. 
b) 8 + 7 + 6+ 5 + 4 + 3 + 2 + 2+1. 
c) 5 + 5 + 5 + 3 + 3 + 3 + 3 + 3. 
d) 5^4 + 3 + 2+1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. 

6.2 Draw all the graphs having the partition 5 -f 5 + 3 + 3 + 2 + 2. 

6.3 The partition 16 = 5 + 3 + 2+1 + 1 + 1 + 1 + 1 + 1 belongs to each of 
the trees in Fig. 6.3. Are there any other trees with this partition? 

6.4 Construct all regular graphs with six points. 

6.5 Construct all 5 connected cubic graphs with 8 points; all 20 with 10 points. 

(Balaban [B2]) 

6.6 There is no graphical partition in which the parts are distinct. Whenever p > 2, 
there are exactly two graphs with p points in which just two parts of the partition are 
equal, and these graphs are complementary. (Beh/ad and Chartrand [BC3]) 

6.7 A graphical partition is simple if there is exactly one graph with this partition. 
Every graphical partition with four parts is simple, and the smallest number of parts 
in a graphical partition which is not simple is five. 

6.8 A partition (</,, d2, "•. dp) belongs to a pseudograph (note that a loop contributes 
2 to the degree of its point) if and only if I dt is even. (Hakimi [H4]) 
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6.9 If a partition of an even integer Iq has the form n = (</,, d2, • '•, dp) with 
dx > d2 > ■ ■ • > dp, then n belor.gs to some mult igt aph if and only if q > dv 

(Hakimi [H4]) 

*6.10 A partition n which belongs to some multigraph (see preceding exercise) belongs 
to exactly one if and only if at least one of the following conditions holds: 

1. p<3 
2. dl=d2 + --- + dp 

3. d, + 2 - d% + • • * + dp and dt * d3 + • • • + dp 

4. p = 4 and d3 > d4 = 1 
5. d2 m •  • . dp m 1. (Senior [SI 1]; Hakimi [H4]) 

6.11 Prove or disprove: A tree partition belongs to more than one tree if and only if 
at least one part is greater than 2, three parts are greater than 1, and if only three, then 
they are not equal. 

6.12 Let n = (<f„ d2, • • •, dp) with </, > d2 ^ ••• S dp and p > 3 be a graphical 
partition. Then 

a) n belongs to some connected graph if and only if dp > 0 and Z d{ > 2(p - 1). 
b) n belongs to some block if and only if dp > 1 and £ d{ > 2{p - 1 + dt). 

6.13 A graphical partition FI as in the preceding exercise belongs to some «-line- 
connected graph with « > 2 if and only if every d, > n. (Edmonds [El]) 

6.14 For any nontrivial graph G and for any partition p = px + p2, there exists a 
partition V = K, u V2 such that \V,\ - p, and A«K,» + A«K2» < A(G). 

(Loväsz [L4]) 



CHAPTER 7 

TRAVERSABILITY 

A lie will get you a long way, 
but it won't take you home. 

ANONYMOUS 

One feature of graph theory that has helped to popularize the subject lies in 
its applications to the area of puzzles and games. Often a puzzle can be 
converted into a graphic? 1 problem: to determine the existence or non- 
existence of an "eulerian trail" or a "hamiltonian cycle" within a graph. As 
mentioned in Chapter 1, the concept of an eulerian graph was formulated 
when Euler studied the problem of the Königsberg bridges. Two char- 
acterizations of eulerian graphs are presented. Hamiltonian graphs are 
studied next and some necessary conditions and some sufficient conditions for 
graphs to be hamiltonian are given. However, it still remains a challenging 
unsolved problem to discover an elegant, useful characterization of 
hamiltonian graphs, rather than only a disguised paraphrase of the definition. 

EULERIAN GRAPHS 

As we have seen in Chapter 1, Euler's negative solution of the Königsberg 
Bridge Problem constituted the first publicized discovery of graph theory. 
The perambulatory problem of crossing bridges can be abstracted to a 
graphical one: given a graph G, is it possible to find a walk that traverses 
each line exactly once, goes through ail points, and ends at the starting point? 
A graph for which this is possible is called eulerian. Thus, an eulerian graph 
has an eulerian trail, a closed trail containing all points and lines. Clearly, 
an eulerian graph must be connected. 

Theorem 7.1 The following statements are equivalent for a connected 
graph*   G: 

(1) G is eulerian. 
(2) Every point of G has even degree. 
(3) The set of lines of G can be partitioned into cycles. 

* The theorem clearly holds for multigraphs as well. 
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Proof. (/) implies (2) Let T be an eulerian trau in G Each occurrence of a 
given point in T contributes 2 to the degree ofthat point, and since each line 
of G appears exactly once in T, every point must have even degree. 

(2) implies (3) Since G is connected and nontrivial, every point has degree at 
least 2, so G contains a cycle Z. The removal of the lines of Z results in a span- 
ning subgraph G, in which every point still has even degree. If G, has no 
lines, then (3) already holds; otherwise, a repetition of the argument applied 
to G, results in a graph G2 in which again all points are even, etc. When a 
totally disconnected graph G„ is obtained, we have a partition of the lines of 
G into n cycles. 

(3) implies (1) Let Zt be one of the cycles of this partition. If G consists only 
of this cycle, then G is obviously eulerian. Otherwise, there is another cycle 
Z2 with a point i> in common with Z,. The walk beginning at v and con- 
sisting of the cycles Z, and Z2 in succession is a closed trail containing the 
lines of these two cycles. By continuing this process, we can construct a 
closed trail containing all lines of G; hence G is eulerian. 

Fig. 7.1.  An eulerian graph. 

For example, the connected graph of Fig. 7.1 in which every point has 
even degree has an eulerian trail, and the sot of lines can be partitioned into 
cycles. 

By Theorem 7.1 it follows that if a connected graph G has no points of 
odd degree, then G has a closed trail containing all the points and lines of G. 
Theis is an analogous result for connected graphs with some odd points. 

Corollary 7.1(a) Let G be a connected graph with exactly In odd points, 
n > 1. Then the set of lines of G can be partitioned into n open trails. 

Corollary 7.1(b) Let G be a connected graph with exactly two odd points. Then 
G has an open trail containing all the points and iines of G (which begins at 
one of the odd points and ends at the other). 

HAMILTONIAN GRAPHS 

Sir William Hamilton suggested the class of graphs which bears his name 
when he asked for the construction of a cycle containing every vertex of a 
dodecahedron. If a graph G has a spanning cycle Z, then G is called a 
hamiltonian graph and Z a hamiltonian cycle.  No elegant characterization 
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Fig. 7.2.  A nonhamiltonian block. 

of hamiltonian graphs exists, although several necessary or sufficient con- 
ditions are known. 

A theta graph is a block with two nonadjacent points of degree 3 and all 
other points of degree 2. Thus a theta graph consists of two points of degree 
3 and three disjoint paths joining them, each of length at least 2. 

Theorem 7.2 Every hamiltonian graph is 2-connected. Every nonhamiltonian 
2-connected graph has a theta subgraph. 

It is easy to find a theta subgraph in the nonhamiltonian block of Fig. 7.2. 
The next theorem, due to Pösa [P7], gives a sufficient condition for a 

graph to be hamiltonian. It generalizes earlier results by Ore and Dirac 
which appear as its corollaries. 

Theorem 7.3 Let G have p > 3 points. If for every n, 1 < n < (p — l)/2, 
the number of points of degree not exceeding r. is less than n and if, for odd p, 
the number of points of degree (p - l)/2 does not exceed (p - l)/2, then 
G is hamiltonian. 

Proof. Assume the theorem does not hold and let G be a maximal non- 
hamiltonian graph with p points satisfying the hypothesis of the theorem. 
It is easy to see that the addition of any line to a graph satisfying the con- 
ditions of the theorem results in a graph which also satisfies these conditions. 
Thus since the addition of any line to G results in a hamiltonian graph, any 
two nonadjacent points must be joined by a spanning path. 

We first show that every point of degree at least (p - l)/2 is adjacent 
to every point of degree greater than (p - l)/2. Assume (without loss of 
generality) that deg i>, > (p - l)/2 and deg vp > p/2, but vx and vp are not 
adjacent. Then there is a spanning path u, v2 • • ■ vp connecting i>, and vp. 
Let the points adjacent to i, be vh, • • •, vin where n = deg v{ and 2 = 
»l < h < " ' < '«■ Clearly vp cannot be adjacent to any point of G of the 
form i'j   „ for otherwise there would be a hamiltonian cycle 

Vi v2 0   V r lp- 

in G. Now since n > (p - l)/2, we have p/2 < deg vp < p - 1 - n < p/2 
which is impossible, so v, and vp must be adjacent. 



HAMILTONIAN GRAPHS 67 

O,: 

Fig. 7.3.  Illustrations for the theorem of Pösa. 

It follows that if deg v > p/2 for all points v, then G is hamiltonian. 
(This is stated below as Corollary 7.3(b).) For the above argument implies 
that every pair of points of G are adjacent, so G is complete. But this is ? 
contradiction since Kp is hamiltonian for all p > 3. 

Therefore there is a point inn G with deg v < p/2. Let m be ibe maximum 
degree among all such points and choose vt so that deg t>, = m. By hypoth- 
esis the number of points of degree not exceeding m is at most m < p/2. 
Thus there must be more than m points having degree .skater than m and 
hence at least p/2. Therefore there is some point, say vp, of degree at least p/2 
not adjacent to iv Since i\ and vp are not adjacent, there is a spanning path 
t-, tv * vp. As above, we write v(l, • • •, vim as the points of G adjacent to 
I-, and note that vp cannot be adjacent to any of the m points i>, , for 
1 < j < m. But since i\ and vp are not adjacent and vp has degree at least 
p/2, m must be less than (p — l)/2, by the first part of the proof. Thus, by 
hypothesis, the number of points of degree at most m is less than m, and so 
at least one of the m points i\,._,, say v\ must have degree at least p/2. 
We have thus exhibited two nonadjacent points vp and v\ each having 
degree at least p/2, a contradiction which completes the proof. 

These sufficient conditions are not necessary. The cubic graph G, in 
Fig. 7.3 is hamiltonian, yet it clearly does not satisfy the conditions of the 
theorem. However, the theorem is best possible in that no weaker form of it 
will suffice. For example, choose p > 3 and 1 < n < (p - l)/2, and form 
a graph G2 with one cutpoint and two blocks, one of which is K„+, and the 
other Kp„n. This graph is not hamiltonian, but it violates the theorem only 
in that it has exactly n points of degree n. The construction is illustrated in 
Fig. 7.3 for p = 8and/i = 3. If we choose p = 2« + 1, n > 1, and form the 
graph G - K„ B+,, then G is not hamiltonian but violates the theorem only 
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Fig. 7.4. The Tutte graph. 

by having (p - l)/2 + 1 points of degree (p - l)/2. The graph G3 = K2<3 

of Fig. 7.3 illustrates this construction for p = 5. 
By specializing Pösa's Theorem, we obtain simpler but less powerful 

sufficient conditions due to Ore [03] and Dirac [D6] respectively. 

Corollary 7.3(a)  If p ^ 3 and for every pair u and v of nonadjacent points, 
deg u + deg v > p, then G is hamiltonian. 

Corollary 7.3(b)  If for all points v of G, deg v > p/2, where p > 3, then G is 
hamiltonian. 

Actually, the cubic hamiltonian graph Gj of Fig. 7.3 has four spanning 
cycles. The smallest cubic hamiltonian graph, K4, has three spanning cycles. 
These observations serve to illustrate a theorem of C. A. B. Smith which 
appears in a paper by Tutte [T6]. 

Theorem 7.4 Every cubic hamiltonian graph has a* least three spanning 
cycles. 

Tait [Tl] conjectured that every 3-connected planar graph* coniains 
a spanning cycle. Tutte [T6] settled this in the negative by showing that the 
3-connected planar graph with 46 points of Fig. 7.4 is not hamiltonian. 

The smallest known nonhamiltonian triply connected planar graph, 
having 38 points, was constructed independently by J. Lederberg, J. Bosak, 
and D. Barnette; see Grünbaum [G10, p. 359]. 

The apparent lack of any relationship between eulerian and hamiltonian 
graphs is illustrated in Fig. 7.5 where each graph is a block with eight points. 

* See Chapter II for a discussion of planarity. Tait's conjecture, if true, would have settled 
the Four Color Conjecture. 



, 

EXERCISES 69 

Hamiltonian Nonhamiltonian 

Eulerian 

V\ 
<      ■   1 

V Noneuleriaii 

Fig. 7.5.  Eulerian and/or hamiltonian graphs. 

However, in the next chapter we shall relate eulerian and hamiltonian 
graphs by way of the "line graph." 

Incidentally, M. D. Plummer conjectures that the square of every 
2-connected graph is hamiltonian. 

EXERCISES 

7.1 Find an eulerian trail in the graph G of Fig. 7.1 and a partition of the lines of G 
into cycles. 

7.2 If every block of a connected graph G is eulerian, then G is eulerian, and conversely. 

7.3 In Corollary 7.1(a), the partition cannot be done with fewer than n trails. State 
and prove the converse of Corollary 7.1(b). 

7.4 A graph is arbitrarily traversablefrom a point v0 if the following procedure always 
results in an eulerian trail: Start at point v0 by traversing any incident line; on arriving 
at a point u depart by traversing any incident line not yet used, and continue until no 
new lines remain. 

a) An eulerian graph is arbitrarily traversable from v0 if and only if every cycle 
contains v0. (Ore [02]) 

b) If G is arbitrarily traversable from t>0, then v0 has maximum degree. 

(Bäbler [Bl]) 

c) If G is arbitrarily traversable from DQ, then either v0 is the only cutpoint or 
G has no cutpoints. (Harary [H17]) 

7.5 Prove or disprove: If a graph G contains an induced theta subgraph, then G is 
not hamiltonian. 

7.6 a) For any nontrivial connected graph G, every pair of points of G3 are joined by 
a spanning path. Hence every line of G3 is in a hamiltonian cycle. 

(Karaganis [K.2]) 

b) If every pair of points of G are joined by a spanning path and p > 4, then G 
is 3-connected. 
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7.7 Give an example of a nonhamiltunian graph with 10 points such that for every 
pair of nonadjacent points u and r, d„g u + deg v > p - 1. 

7.8 How many spanning cycles are there in the complete bigraphs K,% 3 and K43? 

7.9 A graph G is called randomly traceable [randomly hamiltonian] if a spanning 
path [hamiltonian cycle] always results upon starting at any point of G and then 
successively proceeding to any adjacent point not yet chosen until no new points are 
available. 

a) A graph G with p > 3 points is randomly traceable if and only if it is randomly 
hamiltonian. 

b) A graph G with p > 3 points is randomly traceable if and only if it is one of the 
graphs Cp, Kp. or K„if with p = 2«. (Chartrand and Kxonk [CK1]) 

7.10 Theorem 7.3 can be regarded as giving sufficient conditions for a graph to be 
2-connected. This can be generalized to the n-connected case. 

Let G be nontrivial and let 1 < « < p. The following conditions are sufficient 
for G to be n-connected: 

1. For every k such that n - 1 < k < (p + n - 3)/2, the number of points of 
degree nut exceeding k does not exceed k + 1 - «. 

2. The number of points of degree not exceeding (p + n - 3)/2 does not exceed 
p - »i. (Chartrand, Kapoor, and Kronk [CKK1]) 

7.11 Posa's theorem can also be generalized in another way. 
Let G have p > 3 and let 0 < k < p - 2. If for every integer i with k 4 1 < 

i < (p + k)/2, the number of points not exceeding i is less than i - k, then every path of 
length k is contained in a hamiltonian cycle. (Kronk [K13]) 

7.12 Recall that two labeled graphs are isomorphic if there is a label-preserving 
isomoiphism between them. By an ?-graph is meant one in which every point has even 
degree. 

a) The number of labeled graphs with p points is 2pip'i)l2. 
b) The number of labeled ^-graphs with p points equals the number of labeled 

graphs with p - 1 points. (R. W. Robinson) 

7.13 If G is a (p, q) graph with p > 3 and q ^ (p2 - 3p + 6)/2, then G is hamiltonian. 

(Ore [04]) 

7.14 If for any two nonadjacent points u and t> of G, deg u + deg v > p + 1, then there 
is a spanning path joining every pair of distinct points. (Ore [06]) 

7.15 If G is a graph with v > 3 points such that the removal of any set of at most n 
points results in a hamiltonian graph, then G is (n + 2)-connected. 

(Chartrand, Kapoor, Kronk [CKK1]) 

7.16 Consider the nouhamiltonian graphs G such that every subgraph G - v is 
hamiltonian. There is exactly one such graph with 10 points and none smaller. 

(Gaudin, Herz, and Rossi [GHR1]) 

7.17 Do there exist nonhamiltonian graphs with arbitrarily high connectivity? 



CHAPTER 8 

LINE GRAPHS 

A straight line is the shortest distance between two points. 
EUCLID 

The concept of the line graph of a given graph is so natural that it has been 
independently discovered by many authors. Of course, each gave it a different 
name*: Ore [05] calls it the "interchange graph," Sabidussi [S7] "derivative" 
and Beineke [B8] "derived graph," Seshu and Reed [SRI] "edge-to-vertex 
dual," Kasteleyn [K4] "covering graph," and Menon [MIO] "adjoint." 
Various characterizations of line graphs are developed. We also introduce 
the total graph, first studied by Behzad [B4], which has surprisingly been 
discovered only once thus far, and hence has no other names. Relationships 
between line graphs and total graphs are studied, with particular emphasis 
on eulerian and hamiltonian graphs. 

SOME PROPERTIES OF LINE GRAPHS 

Consider the set X of lines of a graph G as a family of 2-point subsets of 
V{G). The line graph of G, denoted L(G), is the intersection graph Q(X). Thus 
the points of L(G) arc the lines of G, with two points of L(G) adjacent whenever 
the corresponding lines of G are. If x = uv is a line of G, then the degree of 
x in L(G) is clearly deg u + deg v - 2. Two examples of graphs and their 
line graphs are given in Fig. 8.1. Note that in this figure G2 = L(G,), so that 
L(GZ) = L(L(GX)). We write Ll{G) = L(G), L2(G) = L(L(G^ and in general 
the iterated line graph is I?(G) = UV!' \G)). 

As an immediate consequence of the definition of L(G\ we note that 
every outpoint of L(G) is a bridge of G which is not an endline, and conversely. 

When defining any class of graphs, it is desirable to know the number of 
points and lines in each; this is easy to determine for line graphs. 

* Hoffman|H46] uses "line graph" even though he chooses "cage" Whitney [Wll] was the 
first to discover these graphs but didn't give them a name, 
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K<7>):      *»«£ 

G,: / £«?,): 

Fig. 8.1. Graphs and their line graphs. 

Theorem 8.1  If G is a (p, q) graph whose points have degrees dh then L{G) 
has q points and qL lines, where 

/Voo/ By the definition of line graph, L(G) has q points.  The d, lines 
incident with a point vt contribute ($) to q, so 

QL - 1(2') -4X4M - D = iS^.? -ili. = ±YJ? - «■ 
The next result can be proved in many different ways, depending on 

one's whimsy. 

Theorem 8.2 A connected graph is isomorphic to its line graph if and only 
if it is a cycle. 

Thus for a (not necessarily connected) graph, G S L(G) if and only if 
G is regular of degree 2. 

If G, and G2 are isomorphic, then obviously UGV) and L(G2) are. 
Whitney [Wll] found that the converse almost always holds by displaying 
the only two different graphs with the same line graph. The proof given here 
is due to Jung [J3]. 

Theorem 8.3  Let G and G' be connected graphs with isomorphic line graphs. 
Then G and G' are isomorphic unless one is K3 and the other is #ii3. 

Proof. First note that among the connected graphs with up to four points, 
the only two different ones with isomorphic line graphs are K3 and Ku3. 

■'    . 
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Note further that if 4> is an isomorphism of G onto G', then there is a derived 
isomorphism 0, of UG) onto UG'). The theorem will be demonstrated 
when the following stronger result is proved. 

If G and G' have more than four points, then any isomorphism 0, of 
UG) onto Up') is derived from exactly one isomorphism of G to G'. 

We first show that <j>, is derived from at most one isomorphism. Assume 
there are two such, <f> and 0. We will prove that for any point v cf G, <p(t?) ~ 
^(v). There must exist two lines x = uv and y = MW or vw. If y = »w, then 
the points 0(D) and ^(v) are on both lines 4>x{x) and «^(v), so that since only 
one point is on both these lines, <j>(v) - ^(t>). By the same argument, when 
y = uw, <f>(u) = \f/(u) so that since the line 0t(x) contains the two points 
4>(v) and 0(u) = (/>('•), we again have <p(i>) = ij/{v). Therefore <p, is derived 
from at most one isomorphism of G to G'. 

We now show the existence of an isomorphism 0 from which 0, is 
derived. The first step is to show that the lines xt = wx, x2 - uv2, and 
x3 = uv3 of a Ky 3 subgraph of G must go to the lines of a Kl>3 subgr >h of 
G' under tj>,. Let y be another line adjacent with at least one of the x„ which is 
adjacent with only one or all three. Such a line y must exist for any graph 
with p > 5 and the theorem is trivial for p < 5. If the three lines 0i(x,) 
form a triangle instead of Kl3 then 0t(y) must be adjacent with precisely 
two of the three. Therefore, every Kl3 must go to a K1>3. 

Let S(v) denote the set of lines at v. We now show that to each v in G, 
there is exactly one v' in G' such that S{v) goes to S(v') under <\>x. If deg v > 2, 
let y, and y2 be lines at v and let t/ be the common point of (j>i(yx) and 0t(y2). 
Then for each line x at u, D' is incident with <px{x) and for each line x' at v', 
v is incident with <f>\~ '(x'). If deg v = 1, let x - uv be the line at v. Then 
deg u ^ 2 and hence S(u) goes to S(M') and 0,(x) = u'v'. Since for every line 
x' at v\ the lines <\>x 

l(x') and x must have a common point, u is on 0j" '(x') 
and u' is on x'. That is, x' = 0,(x) and deg v' = I. The mapping 0 is 
therefore one-to-one from K to F since S{u) = S(u) only when u = v. Now 
given i/ in V, there is an incident line x'. Denote <l>il{x') by uv. Then 
either 0(u) = v' or 0(t?) = v' so 0 is onto. 

Finally, we note that for each line x = uv in G, 0,(x) = 0(w)0(i;) and for 
each line x' = u'v' in G, (/»^'(x) = 0-1(u')0_i(A so that 0 is an iso- 
morphism from which 0, is derived. This completes the proof. 

CHARACTERIZATIONS OF LINE GRAPHS 

A graph G is a line graph if it is isomorphic to the line graph L(H) of some 
graph //. For example, A'4 - x is a line graph; see Fig. 8.1. On the other 
hand, wc now verify that the star X13 is not a line graph. Assume Kl3 = 
L(H). Then H has four lines since Kti3 has four points, and H must be 
connected. All the connected graphs with four lines are shown in Fig. 8.2. 
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Fig. S.2.  The connected graphs with four lines. 

Since L(C4) = C4 by Theorem 8.3 and L(K,,3 + x) = K4 - x (see Fig. 8.1), 
it follows that H is one of the three trees. But the line graphs of these trees 
are the path P4, the graph K3 • K2, and K4, showing that K13 is not a line 
graph. We will see that the star K, 3 plays an important role in characterizing 
line graphs. The first characterization of line graphs, statement (2) of 
the next theorem and due to Krausz [K12], was rather close to the defini- 
tion. The situation was improved by van Rooij and Wilf [RW1] who were 
able to describe in (3) a structural criterion for a graph to be a line graph. 
Finally, Beineke [B8] and N. Robertson (unpublished) displayed exactly 
those subgraphs which cannot occur in line graphs. Recall that an induced 
subgraph is one which is maximal on its point set. A triangle T of a graph G 
is called odd if there is a point of G adjacent to an odd number of its points, 
and is even otherwise. 

Theorem 8.4 The following statements are equivalent: 

(1) G is a line graph. 
(2) The lines of G can be partitioned into complete subgraphs in such a 

way that no point lies in more than two of the subgraphs. 

(3) G does not have A, 3 as an induced subgraph, and if two odd triangles 
have a common line then the subgraph induced by their points is K4. 

(4) None of the nine graphs of Fig. 8.3 is an induced subgraph of G. 

Proof. (1) implies (2) Let G be the line graph of//. Without loss of generality 
we assume that H has no isolated points. Then the lines in the star at each 
point of// induce a complete subgraph of G, and every line of G lies in exactly 
one such subgraph. Since each line of H belongs to the stars of exactly 
two points of //, no point of G is in more than two of these complete 
subgraphs. 

(2) implies (1) Given a decomposition of the lines of a graph G into complete 
subgraphs S,, S2, • • •, S„ satisfying (2), we indicate the construction of a 
graph H whose line graph is G. The points of H correspond to the set S of 
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G,: G,: G3. 

Fig. 8.3.  The nine forbidden subgraphs for line graphs. 

subgraphs of the decomposition together with the set U of points of G 
belonging to only one of the subgraphs S,. Thus S u U is the set of points of 
H and two of these points are adjacent whenever they have a nonempty 
intersection; that is, H is the intersection graph Q(S u U). 

(2) implies (4) It can be readily verified that none of the nine graphs of Fig. 8.3 
can have its set of lines partitioned into complete subgraphs satisfying the 
given condition. Since every induced subgraph of a line graph must itself 
be a line graph, the result follows. 

(4) implies (3) We show that if G does not satisfy (3), then it has one of the nine 
forbidden graphs as an induced subgraph. Assume that G has odd triangles 
abc and abd with c and d not adjacent. There are two cases, depending on 
whether or not there is a point v adjacent to an odd number of points of 
both odd triangles. 
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CASE 1. There is a point v adjacent to an odd number of points of triangle 
abc and of triangle abd. Now there are two possibilities: either v is adjacent to 
exactly one point of each of these triangles or it is adjacent to more than one 
point of one of them. In the latter situation, v must be adjacent to all four 
points of the two triangles, giving G3 as an induced subgraph of G. In the 
former, either v is adjacent only either to a or b, giving 6',, or to both c and d, 
giving G2. 

CASE 2. There is no point adjacent to an odd number of points of both 
triangles. In this case, let u and v be adjacent to an odd number of points in 
triangles abc and abd, respectively. There are three subcases to consider: 

Case 2.1. Each of u, v is adjacent to exactly one point of the corre- 
sponding triangle. 
Case 2.2. One of u, v is adjacent to all three points of "its" triangle, the 
other to only one. 
Case 2.3. Each of u, v is adjacent to all three points of (he corresponding 
triangle. 
Before these alternatives are considered, we note two facts. If u or v 

is adjacent to a or b, then it is also adjacent to c or to d, since otherwise G, is 
an induced subgraph. Also, neither u nor v can be adjacent to both c and 
d since then G2 or G3 is induced. 

CASE 2.1, If uc, vd e G then, depending on whether or not line uv is in G, we 
have G4 or G7 as an induced subgraph. If ub, vdeG then it follows from 
the preceding remarks that udeG while vc$G; if uv£G then points 
{a,d,u,v} induce G„ while if uveG, then {a, b, c, d, u, v} induce G8. If 
ub, vaeG then necessarily ud, vc e G, so that if uv $ G, G8 is induced, while if 
uv e G then G2 appears. Finally if ub, vb e G, then again ud, vceG from which 
it follows that either G9 or Gj is an induced subgraph of G, depending on 
whether or not uv e G. 

CASE2.2. Let uu,ub,uceG. Clearly if udeG then G3 is induced; thus 
ud $ G. Now v can be adjacent to d or b. if vd e G, then depending on 
whether or not uv e G, we find G2 or G5 induced. If vb e G then either G3 

or Gt is induced, depending on whether or not v is adjacent to both c and u. 

CASE 2.3. If ud, vc, or uv 6 G, then G3 is induced. The only other possibility 
gives G6. 

3. implies 1. Suppose that G is a graph satisfying the conditions of the 
statement. We may clearly take G to be connected. Now, exactly one of the 
following statements must be true: 

1. G contains two even triangles with a common line. 
2. Whenever two triangles in G have a line in common, one of them is odd. 

i 

«4 
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H>: H, 

Fig. 8.4.  Three line graphs. 

It can be shown that if G satisfies the first statement, then it is one of the 
graphs Hx = KK,i3 + x), H2 = Ufli\ or H3 = L{K4) displayed in 
Fig. 8.4. So suppose that G satisfies the second statement. We indicate the 
method of constructing a graph H such that G = L(H). 

Let Ft be the family of all cliques of G which are not even triangles, 
where each such clique is considered as a set of points. Let F2 be the family 
of points (taken as singletons) of G lying in some clique K in F, but not 
adjacent to any point of G - K. Finally, let F3 be the family of lines (each 
taken as a set of two points) of G contained in a unique and even triangle. It 
is not difficult to verify that G is isomorphic to the line graph of the inter- 
section graph H = fifF, u F2 u F3). This completes the proof. 

This last construction is illustrated in Fig. 8.5, in which the given graph 
G has families F, = {{1, 2, 3,4}, {4, 5, 6}}, F2 = {{1}, {2}, {3}}, and 
F3 = U5» % {6. 7)} leading to the intersection graph H; thus G = L(H). 

{i} 

G: 

{2}»- 

H. 

{1,2,3,4} 

P) 

,{4. 5, 6} 

{6,7} 

Fig. 8.5.   A line graph and its graph. 

SPECIAL LINE GRAPHS 

In this section, characterizations are presented for line graphs of trees, 
complete graphs, and complete bigraphs. 

The next result, due to G. T. Chartrand, specifies when a graph is the 
line graph of a tree. 

■ 
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B, Bt 

Fig. 8.6.  The line-graph G of a tree T. 

Theorem 8.5 A graph is the line graph of a tree if and only if it is a connected 
block graph in which each cutpoint is on exactly two blocks. 

Proof. Suppose G = UT),T some tree. Then G is also B(T) since the lines 
and blocks of a tree coincide. Each cutpoint x of G corresponds to a bridge 
uv of T, and is on exactly those two blocks of G which correspond to the 
stars at u and v. This proves the necessity of the condition. 

To see the sufficiency, let G be a block graph in which each cutpoint is 
on exactly two blocks. Since each block of a block graph is complete, there 
exists a graph H such that L(//) = G by Theorem 8.2. If G = K3, we can 
take H = K, 3. If G is any other block graph, then we show that H must be 
a tree. Assume that H is not a tree so that it contains a cycle. If H is itself 
a cycle, then by Theorem 8.3, L(H) - H, but the only cycle which is a block 
graph is K3, a case not under consideration. Hence H must properly contain 
a cycle, thereby implying that H has a cycle Z and a line x adjacent to two 
lines of Z. but not adjacent to some line y of Z. The points x and y of L(H) 
lie on a cycle of L(H\ and they are not adjacent. This contradicts the 
condition of Theorem 3.5 that L\H) is a block graph. Hence H is a tree, and 
the theorem is proved. 

In Fig. 8.6, a block graph G is shown in which each cutpoint lies on just 
two blocks. The tree T of which G is the line graph is constructed by first 
forming the block graph B(G) and then adding new points for the non- 
cutpoints of G and the lines joining each block with its noncutpoints. 

The line graphs of complete graphs and complete bigraphs are almost 
always characterized by rather immediate observations involving adjacencies 
of lines in KF and Km „. The case of complete graphs was independentlv 
settled by Chang [C7] and Hoffman [H43], [H44]. 
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Theorem 8.6  Unless p = 8, a graph G is the line giaph of Kp if and only if 

1. G has(?)   points. 

2. G is regular of degree 2(p - 2\ 

3. Every two nonadjacent points are mutually adjacent to exactly four 
points, 

4. Every two adjacent points are mutually adjacent to exactly p - 2 
points. 

It is evident that L(KP) has these four properties. It is not at all obvious 
that when p = 8, there are exactly three exceptional graphs satisfying the 
conditions. 

For complete bigraphs, the corresponding result was found by Moon 
[Ml3], and Hoffman [H46]. 

Theorem 8.7 Unless m = n ■— 4, a graph G is the line graph of Kmn if and 
only if 

1. G has mn points, 

2. G is regular of degree m + n - Z 

3. Every two nonadjacent points are mutually adjacent to exactly two 
points, 

4. Among the adjacent pairs of points, exactly n(") pairs are mutually 
adjacent to exactly m — 2 points, and the other nil) PaifS to n — 2 
points. 

There is only one exceptional graph satisfying these conditions. It has 
16 points, is not L(K44), and was found by Shrikhande [SI2] when he 
proved Theorem 8.7 for the case m = n. 

LINE GRAPHS AND TRAVERSABILITY 

We now investigate the relationship of eulerian and hamiltonian graphs 
with line graphs. 

If x = uv is a line of G. and w is not a point of G, then x is subdivided 
when it is replaced by the lines uw and wv. If every line of G is subdivided, the 

G: S(G):     ' 

Fig. 8.7.   A graph and its subdivision graph. 
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L(<?r- 

Fig. 8.8. A counterexample. 

i ; " 

G L{G) L3(G) 

Fig. 8.9. Another counterexample. 

i 

resulting graph is the subdivision graph S(G); see Fig. 8.7. If we denote by 
S„(G) the graph obtained from G by inserting n new points of degree 2 into 
every line of G, so that S(G) = Si(G), we can then define a new graph 
L„{G) = KSB_,(G)). Note that, in general, L„(G) $ E(G\ the nth iterated 
line graph of G. 

Theorem 8.8 If G is eulerian, then 1{G) is both eulerian and hamiltonian. If 
G is hamiltonian, then L(G) is hamiltonian. 

It is easy to supply counter-examples to the converses of these statements. 
For example in Fig. 8.8, L(G) is eulerian and hamiitonian while G is not 
eulerian; in Fig. 8.9, L{G) is hamiltonian while G is not. 

A refinement of the second statement in Theorem 8.8 is provided by the 
following result of Harary and Nash-Williams [HN1] which follows readily 
from the preceding theorem and the fact that L2{G) = L(S(G)). 

Theorem 8.9 A sufficient condition for L2(G) to be hamiltonian is that G 
be hamiltonian and a necessary condition is that 1{G) be hamiltonian. 

The graphs of Figs. 8.10 and \.9 show that the first of these conditions 
is not necessary and the second ' ot sufficient for L^G) to be hamiltonian. 
We note also (see Fig. 8.11) that L{G) = L,{G) and L2(G) may be hamiltonian 

«4 
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MO: 

Fig. 8.10.  Still another counterexample. 

L{G) L,(G) 

Fig. 8.11.  A sequence of graphs L,{G). 

L3(G) 

without G being culcrian.   However, the next graph L3{G) in this series 
provides the link between these two properties. 

Theorem 8.10 A graph G is eulerian if and only if L3(G) is hamiltonian. 

For almost every connected graph G, however, nearly all of the graphs 
E{G) are hamiltonian, as shown by Chartrand [C9], 

Theorem 8.11 If G is a nontrivial connected graph with p points which is not 
a path, then C(G) is hamiltonian for all n > p - 3. 

An example is given in Fig. 8.12 in which a 6-point graph G, as well as 
UGi !}{G), and the hamiltonian graph I}(G) are shown. 

L(G) V(G) 

Fig. 8.12.   A sequence of iterated line graphs. 

LHO 
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A'v       xi, T(K,): 

Flg. 8.13.  Formalion of a total graph. 

TOTAL GRAPHS 

The points and lines of a graph are called its elements. Two elements of a 
graph are neighbors if they are either incident or adjacent. The total graph 
T(G) has point set V{G) u X(G\ and two points of T(G) are adjacent whenever 
they are neighbors in G. Figure 8.13 depicts the formation of the total 
graph T{K,). It is easy to se*. that T(G) always contains both G and L{G) as 
induced subgraphs. 

An alternative characterization of trial graphs was given by Behzad 
[84], 

Theorem 8.12 The total graph T(G) is isomorphic to the square of the sub- 
division graph S(G). 

Corollary 8.12(a) If v is a point of Cr, then the degree of point v in T(G) is 
2 deg r. If x = uv is a line of G, then the degree of point v in T(G) is 
deg u f deg v. 

Corollary 8.12(b) If G is a (/>, q) graph whose points have degrees </,, then the 
total graph T(G) has p, = p + q points and q, =■ 2q + \ I d? lines. 

The Ramsey function r(nu n) was defined in Chapter 2, where it was noted 
that its general determination remains an unsolved problem. Behzad and 
Radjavi [BRI] defined and solved an analogue of the Ramsey problem, 
suggested by line graphs. The line Ramsey number r,(w. n) is the smallest 
positive integer p such that every connected graph with p points contains 
either n mutually disjoint lines or m mutually adjacent lines, that is, the star 
Klm. Thus rt{m,n) is the smallest integer p such that for any graph G 
with /> points. L(G) contains Km or LjG) contains K„. 

Theorem 8.13 For n > I, we always have r,(2, n) ~ 3. For all other m and M, 

r,(m,n) = (m - IK« ~ I) + 2. 

Note that it is not always true that r.inun) = r,(n,m). Furthermore, 
in contrast with Ramsey numbers. ;,(»«.«) is defined only for connected 
graphs. 
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EXERCISES 

8.1 Under what conditions can the lines of a line graph be partitioned into complete 
subgraphs so that each point lies in exactly two of these subgraphs? 

8.2 Determine the number of triangles in L(G) in terms of the number n of triangles of 
G and the partition of G. 

8.3 Determine a criterion for a connected graph to have a regular line graph. 

8.4 A graph G can be reconstructed from the collection of q spanning subgraphs 
G - Xj if a^d only if its line graph L{G) satisfies Ulam's Conjecture (p. 12). 

(Hemminger [H41]) 

8.5 If G is «-line-connected, then 

1. IJfl) is «-connected, 
2. L(G) is (2« - 2)-line-connected, and 
3. I}(G) is (2n - 2)-connected. (Chartrand and Stewart [CS1]) 

8.6 a) Construct a connected graph G with p > 4 such that L{G) is not eulerian but 
13(G) is. 

b) There is no connected graph G with p > 5 such that 13(G) is not eulerian and 
L3(G) is. 

8.7 The smallest block whose line graph is not hamiltonian is the theta graph with 
8 points in which the distance between the points of degree 3 is 3. (J. W. Moon) 

8.8 L{G) is hamiltonian if and only if there is a closed trail in G which includes at 
least one point incident with each line of G. 

8.9 The graph L2(G) is hamiltonian if and only if G has a closed spanning trail. 

(Harary and Nash-Williams [HN1]) 

8.10 The following statements are equivalent 

(1) L(G) is eulerian. 
(2) The degrees of all the points of G are of the same parity. 
(3) 7(G) is eulerian. 

8.11 T(KP) is isomorphic to L(KP+,).    (Behzad, Chartrand, and Nordhaus [BCN1]) 

8.12 Define a family F of subsets of elements of G such that T(G) - ß(F). 

8.13 a) If G is hamiltonian, so is T(G). If G is eulerian, then T(G) is both eulerian and 
hamiltonian. 

b) The total graph T(G) of every nontrivial connected graph G contains a spanning 
eulerian subgraph. 

c) If a nontrivial graph G contains a spanning eulerian subgraph, then T(G) is 
hamiltonian. 

d) If G is nontrivial and connected, then T2(G) is hamiltonian. 

(Behzad and Chartrand [BC2]) 

8.14 For any multigraph M, define the line graph L(M) by V(L{M)) = X(M) and 
.v adj y in L(M) whenever x andy are di . t lines meeting at either one or two points. 
Then a graph G is the line graph of some multigraph if and only if it has no induced 
subgraph of the form G,, G„, or G«, of Fig. 8.3. (D. P. Geller) 



CHAPTER 9 

FACTORIZATION 

The whole is equal to the si<m of its parts. 
EUCLID, Elements 

The whole is greater than the sum of its parts. 
MAX WERTHEIMER, Productive Thinking 

A problem which occurs in varying contexts is to determine whether a given 
graph can be decomposed into line-disjoint spanning subgraphs possessing 
a prescribed property. Most frequently, this property is that of regularity 
of specified degree. In particular, a criterion for the existence in a graph of a 
spanning regular subgraph of degree 1 was found by Tutte. Some observa- 
tions are presented concerning the decomposition of complete graphs into 
spanning subgraphs regular of degree 1 and 2. 

The partitioning of the lines of a given graph into spanning forests is 
also studied and gives rise to an invariant known as "arboricity." A formula 
for the arboricity of a graph in terms of its subgraphs was derived by Nash- 
Williams, and explicit constructions for the minimum number of spanning 
forests in complete graphs and bigraphs have been devised. 

1-FACTORIZATION 

A factor of a graph G is a spanning subgraph of G which is not totally dis- 
connected. We say that G is the sum* of factors G( if it is their line-disjoint 
union, and such a union is called a factorization of G. An n-factor is regular of 
degree n. If G is the sum of n-factors, their union is called an n-factorization 
and G itself is n-factor able. Unless otherwise stated, the results presented in 
this chapter appear in or are readily inferred from theorems in König 
[K10, pp. 155-195], where the topic is treated extensively. 

When G has a 1 -factor, say G„ it is clear that p is even and the lines of G, 
are independent. In particular, K2H+i cannot have a 1-factor, but K2n 

certainly can. 

* Some call this product; others direct sum. 

84 
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c, «a 

<»>: 

ii                ii 

■ • 

II ii 

Fig. 9.1. A 1 -factorization of K„. 

Theorem 9.1 The complete graph K2n is i -factorable. 

Proof. We need only display a partition of the set X of lines of K2n into 
(2M - 1) 1-factors. For this purpose we denote the points of G by 
vit v2,--, v2n, and define, for i = 1, 2, • • •, 2M - 1, the sets of lines 
Xi = {vtv2u} u {vl-jvi+j;j = 1, 2, • • •, n - 1}, where each of the subscripts 
i - j and i + j is expressed as one of the numbers 1, 2, • • •, (2n - 1) modulo 
(2« - 1). The collection {Xt} is easily seen to give an appropriate partition 
of X, and the sum of the subgraphs G, induced by X{ is a 1-factorization of 
K2n. 

For example, consider the graph K6 shown in Fig. 9.1. The 1-factoriza- 
tion presented in the proof of the theorem produces the five 1-factors G,. 

Although the complete bigraphs Km „ have no 1-factor if m # n, the 
graphs Knn are 1-factorable, as seen by the next statement. 

Theorem 9.2 Every regular bigraph is 1-factorable. 

It is not an easy problem to determine whether a given graph is 1- 
factorable, or, indeed, to establish whether there exists any 1-factor. Beineke 
and Plummer [BP2] have shown, however, that many graphs cannot have 
exactly one 1-factor. 

Theorem 9.3 If a 2-connected graph has a 1-factor, then it has at least two 
different 1-factors. 

The graph G in Fig. 9.2 is a block with exactly two 1-factors, and they 
have one common line. 

The most significant result on factorization is due to Tutte [T7] and 
characterizes graphs possessing a 1-factor. In general, this test for a 1-factor 
is quite inconvenient to apply. The proof given here is based on Gallai [Gl]. 
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G: 

C,: 

Fig. 9.2.  Two 1 -fac»ors of a biock. 

A set of mutually nonadjacent lines is called independent. By an odd 
component of G we mean one with an odd number of points. 

Theorem 9.4 A graph G has a 1-factor if and only if p is even and there is no 
set S of points such that the number of odd components of G - S exceeds 
\S\. 

Proof. The easier half of this theorem is its necessity. Let S be any set of 
points of G and let H be a component of G - S. In any 1-factor of G, each 
point of H must be paired with either another point of H or a point of S. 
But if H has an odd number of points, then at least one point ofH is matched 
with a point of S. Let k0 be the number of odd components of G - S. If 
G has a 1-factor then \S\ > k0. since in a 1-factor each point of S can be 
matched with at most one point of G - S and therefore can take care of 
at most one odd component. 

In order to prove the sufficiency, assume that G does not have a 1-factor, 
and let 5 be a maximum set of independent lines. Let T denote the set of 
lines not in S, and let M0 be a point incident only with lines in T. A path is 
called alternating if the lines alternately lie in S and T. For each point 
v # M0, call v a 0-point if there are no «0-r alternating paths; if there is such 
a path, call v an S-point if all these paths terminate in a line of S at v, a T- 
point if each terminates in a line of T at i\ and an ST-point if some terminate 
in each type of line. The following statements are immediate consequences. 

Every point adjacent to u0 is a T- or an ST-point. 
No S- or 0-point is adjacent to any T- or ST-point. 
No T-point is joined by a line of S to any T- or 0-point. 
Therefore, each S-point is joined by a line of S to a T-point. Furthermore, 

each T-point t> is incident with a line of S since otherwise the lines in an 
alternating u0-v path could be switched between S and T to obtain a larger 
independent set. 
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Let H be the graph obtained by deleting the T-points. One component 
of H contains u0, and any other points in it are ST-points. The other com- 
ponents either consist of an isolated S-point, only ST-points, or only 
0-points. 

We now show that any component Ht of H containing ST-points has an 
odd number of them. Obviously H, either contains u0 or has a point u, 
joined in G to a T-point by a line of S such that some alternating u0 -w, 
path contains this line and no other points of //,. If W, contains H0, we take 
M, = M0. The following argument will be used to show that within W, every 
point v other than u, is incident with some line of 5. This is accomplished by 
showing that there is an alternating M,-I< path in W, which terminates in a 
line of S. 

The first step in doing this is showing that if there is an alternating 
u,-r path Px, then there is one which terminates in a line of S. Let P2 be 
an alternating u0-v path ending in a line of T, and let u'v' be the last line of 
P2, if any, which does not lie in //,. Then u' must be a T-poini and u'v' a line 
in S. Now go along Px from M, until a point w' ofP2 is reached. Continuing 
along P2 in one of the two directions must give an alternating path. If 
going to v' results in an alternating path, then the original u0-ut path P0 

followed by this new path and the line v'u would be a M0-M, path terminating 
in a line of S and u' could not be a T-point. Hence there must be a ux-v 
path terminating in a line of 5. 

Now we show that there is necessarily a ux-v alternating path by as- 
suming there is not. Then there is a point w adjacent to v for which there is a 
u,-w alternating path. If line wv is in S, then the u,-vv alternating path 
terminates in a line of T, while if wv is in T, the preceding argument shows 
there is a ut-w path terminating in a line of S. In either case, there is a 
w,-r alternating path. 

This shows that the component H, has an odd number of points, and 
that if H, does not contain M0, exactly one of its points is joined to a T-point 
by a line of S. Hence, with the exception of the component of H containing 
u0 and those consisting entirely of 0-points, each is paired with exactly one 
T-point by a line in S. Since each of these and the component containing 
M0 is odd, the theorem is proved. 

The graph of Fig. 9.3 has an even number of points but contains no 1- 
factor, for if the set S {Vy v2) is removed from G, four isolated points 
(and therefore four odd components) remain. 

Fig. 9.3.   A graph with no 1-factor. 
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Building up on his criterion for the existence of a 1-factor in a given 
graph, Tutte [T10] was able to characterize those graphs having a spanning 
subgraph with prescribed degree sequence, and later, [Til], proved this 
result as a straightforward consequence of Theorem 9.4. Consider a labeling 
of G and a function / from V into the nonnegative integers. Let S and 
T be disjoint subsets of K, let H be a component of G - (S u T\ and let 
q{H, T) be the number of lines of G joining a point of H with one in T. Then 
we may write k0(S, T) as the number of components H of G - (S u T) 
such that q(H, T) + IBeH/(«) is odd. 

Theorem 9.5 Let G be a given graph and let/be a function from V into the 
nonnegative integers. Then G has a spanning subgraph whose degree sequence 
is prescribed by/ if and only if there exist disjoint sets 5 and T of points such 
that 

Zf(u) < MS, T) + Hf{v) - dG-Ml 
Uf.V reT 

2-FACTORIZATION 

If a graph is 2-factorable, then each factor must be a union of disjoint cycles. 
If a 2-factor is connected, it is a spanning cycle. We saw that a complete 
graph is 1-factorable if and only if it has an even number of points. Since 
a 2-factorable graph must have all points even, the complete graphs K2„ 
are not 2-factorable. The odd complete graphs are 2-factorable, and in 
fact a stronger statement can be made. 

*7: Z,: 

■/-,: 

Fig. 9.4.   A 2-factorization of /C7. 
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Theorem 9.6 The graph K2n+, is the sum of n spanning cydes. 

Proof. In order to construct n line-disjoint spanning cycles in K2n+l, first 
label its points i>„ v2,'", Vu+v Then construct n paths Pt on the points 
Pi» t>2> • *. "2» as follows: P, = v, v,.., v,+, v,.2''' "i-« "<+»• Ihus the yth 
point of P, is t»t, where it - i + (-l)y+l[y/2] and all subscripts are 
taken as the integers 1. 2. • • •, In (mod 2n). The spanning cycle Z, is then 
constructed by joining r2n+, to the endpoints ofP,. 

This construction is illustrated in Fig. 9.4 for the graph K7. The lines 
of the paths Pt are solid and the two added lines are dashed. 

There is a decomposition oiK2n which embellishes the result of Theorem 
9.1. 

Theorem 9.7 The complete graph K2n is the sum of a 1-factor and n - 1 
spanning cycles. 

Of course, every regular graph of degree 1 is itself a 1-factor and every 
regular graph of degree 2 is a 2-factor. If every component of a regular 
graph G of degree 2 is an even cycle, then G is also 1-factorable since it can 
be expressed as the sum of two 1 -factors. If a cubic graph contains a 1 -factor, 
it must also have a 2-factor, but there are many cubic graphs which do not 
have 1-factors. 

The graph of Fig. 9.5 has three bridges. Petersen [P3] proved that any 
cubic graph without a 1-factor must have a bridge. 

Fig. 9.5.  A cubic graph with no l-f:»ctor. Fig. 9.6.  The Petersen graph. 

Theorem 9.8 Every bridgelcss cubic graph is the sum of a 1-factor and a 
2-factor. 

Peterson showed thai this result could not be strengthened by exhibiting 
a bridgeless cubic graph which is not the sum of three 1-factors. This well- 
known graph, shown in Fig. 9.6, is called the Petersen graph. By Theorem 9.8, 
it is the sum of a 1-factor and a 2-factor. The pentagon and pentagram 
together constitute a 2-factor while the five lines joining the pentagon with 
the pentagram form a I-factor. 
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A criterion for the decomposability of a graph into 2-factors was also 
obtained by Petersen [P3], 

Theorem 9.9 A connected graph is 2-factorable if and only if it is regular of 
even degree. 

ARBORICITY 

In the only type of factorization considered thus far, each factor has been 
an fl-factor. Several other kinds of factorizations have been investigated 
and we discuss one now and others in Chapter 11. Any graph G can be 
expressed as a sum of spanning forests, simply by letting each factor contain 
only one of the q lines of G. A natural problem is to determine the minimum 
number of line-disjoint spanning forests into which G can be decomposed. 
This number is called the arboricity of G and is denoted by T(G). For example, 
Y(X4) = 2 and T(KS) = 3; minimal decompositions of these graphs into 
spanning forests are shown in Fig. 9.7. 

Fig. 9.7.   Minimal decompositions into spanning forests. 

A formula discovered by Nash-Williams [N2] gives the arboricity of 
any graph. 

Theorem 9.10 Let G be a nontrivial (p, q) graph and let qH be the maximum 
number of lines in any subgraph of G having n points. Then 

T(G) = max ■W- 
The fact that X(G) > max„ {qj(n - 1)J can be shown as follows. 

Since G has p points, the maximum number of lines in any spanning forest 
is p - 1. Hence, the minimum possible number of spanning forests required 
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to fill G, which by definition is T(G), is at least q/(p - 1). But the arboricity 
ofG is an integer, so Y(G) ^ {q/{p - 1)}. The desired inequality now follows 
from the fact that for any subgraph H of G, T(G) > T(H). 

Among all subgraphs H with n < p points, max Y(H) will occur in those 
induced subgraphs containing the greatest number of lines. Thus if H is a 
subgraph of G, T(H) can be greater than {q/(p - 1)}. The (10, 15) graph in 
Fig. 9.8 illustrates this observation. Taking« = 5andq„ = 10 (for H = K5), 
we have 

T(H) *W-j>a-W 
For Kp, the maximum value of q„ clearly occurs for n -■■ p so that 

Y(KP) = {p/2}. Similarly, for the complete bigraph Krs, {qj(n - 1)} 
assumes its maximum value when n = p = r + s. 

Fig. 9.8.  A graph G with a dense subgraph H. 

Corollary 9.10(a)  The arboricities of the complete graphs and bigraphs are 

Although Nash-Williams' formula gives the minimum number of 
spanning forests into which an arbitrary graph can be factored, his proof 
does not display a specific decomposition. Beineke [B5] accomplished this 
for complete graphs and bigraphs, the former of which we present here. For 
p = 2n. Kp can actually be decomposed into n spanning paths. Labeling the 
points r,, v2, • • •, v2„, we consider the same n paths 

Pi — Vj Vj _ i r, +, r,. 2 »1 + 2 • 'V ^i + n- 

as in proof of Theorem 9.6. For p — In + 1, the arboricity of Kp is /; + 1 
by Corollary 9.10(a). A decomposition is obtained by taking the paths just 
described, adding an extra point labeled v2n +1 to each, and then constructing 
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i>« "» 

Fig. 9.9.  A minimal decomposition of K9 into spanning forests. 

a star by joining v2n+1 to the other 2« points. The construction for p = 9 
is shown in Fig. 9.9. It is easily seen to consist of the star at one of the points 
of Kq together with spanning subforests corresponding to the four spanning 
paths of Ks indicated above. 

EXERCISES 

9.1 The graph K4 has a unique 1-factorization. Find the number of 1 -factorizations 
of K3i3 and of K6. 

9.2 Display a 1-factorization for K8. 

9.3 The number of 1-factors in K2n is (2n)!/(2*ft!). 

9.4 K6B_2 has a 3-factorization. 

9.5 For n £ 1, X4„+, is 4-factorable. 

9.6 Use Tutte's Theorem 9.4 to show that the graph of Fig. 9.5 has no 1-facicr. 

9.7 If an «-connected graph G with p even is regular of degree n, then G haj 3 1-factor. 

(Tutte [T7]) 

9.8 Let G be a graph with a 1-factor F.   A line of G is in more than one 
1-factor if and only if it lies on a cycle whoss lines are alternately in F. 

(Beineke and Plummer [BP2]) 

9.9 Express K9 as the sum of four spanning cycles. 

9.10 Is the Petersen graph hamütonian? 

1 
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*9.11 Corresponding to any two integers d ^ 3 and g > 3, there exists a graph G with 
the following properties: 

1. G is regular of degree«/. 
2. G has girth g. 
3. G is hamiltoaian. 
4. The cycles o/' length g are üne-disjoint and constitute a 2-factor of G. 
5. G is the sum of this 2-factor and (</ - 2) 1 -factors. (Sachs [S9]) 

9.12 Display a minimal decomposition of KAA into spanning forests. 

9.13 Find the smallest connected ip, q) graph G such that 

max.. Mr - 1)} > {«&" - 1)}, 

where gr is the maximum numb;  of lines in any induced subgraph of G with r points. 

«I 



CHAPTER 10 

COVERINGS 

Through any point not on a given line, there passes 
a unique line having no points in common with the given line. 

EUCLID 

Through uny point not on a given line, there passes 
no line having no points in common with the given line. 

RlEMANN 

Through any point not on a given line, there pass 
more than one line having no points in common with the given line. 

BOLYAI 

It is natural to say that a line x = urofG covers the points wandt'. Similarly, 
we may consider each point as covering all lines incident with it. From this 
viewpoint, one defines two invariants of G: the minimum number of points 
(lines) which cover all the lines (points). Two related invariants are the 
maximum number of nonadjacent points and lines. These four numbers 
associated with any graph satisfy several relations and also suggest the study 
of special points and lines which are critical for covering purposes. These 
concepts lead naturally to two special subgraphs of G called the line-core 
and point-core. Criteria for the existence of such subgraphs are established 
in terms of covering properties <f the graph. 

COVERINGS AND INDEPENDENCE 

A point and a line are said to cover each other if they are incident. A set of 
points which covers all the lines of a graph G is called a point cover for G, 
while a set of lines which covers all the points is a line cover. The smallest 
number of points in any point cover for G is called its point covering number 
and is denoted by a0(G) or a„. Similarly, *i(G) or a, is the smallest number of 
lines in any line cover of G and is called its line covering number. For example, 
a0(Kp) = p — 1 and «,(£,,) = [(p + l)/2]. A point cover (line cover) is 
called minimum if it contains «0 (respectively a,) elements. Observe that a 

«M 
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Fig. 10.1.  The graph AT4   tf4. 

point cover may be minimal without being minimum; such a set of points 
is given by the 6 noncutpoints in Fig. 10.1. The same holds for line covers; 
the 6 lines incident with the cutpoint serve. 

A set of points in G is independent if no two of them are adjacent. The 
largest number of points in such a set is called the point independence number 
of G and is denoted by ß0(G) or ß0. Analogously, an independent set of lines 
of G has no two of its lines adjacent and the maximum cardinality of such a 
set is the line independence number ß^G) or /?,. For the complete graph, 
ß0(Kp) = land/?,(£„) = [p/2]. Obviously 0,(G) = p/2 if and only if G has 
a 1-factor. The numbers just defined are ß0(G) = 2 and /?,(G) = 3 for the 
graph G of Fig. 10.1. 

For this graph as well as for Kp,ix0 + ß0 = a, + ßt = p. Gallai [G2] 
proved that this identity always holds. 

Theorem 10.1   For any  nontrivial  connected  graph  G, 

<*o + ßo = P = «1 + ßv 

Proof. Let M0 be any maximum independent set of points, so that | M0| = ß0. 
Since no line joins two points of M0, the remaining set of p - ß0 points 
constitutes a point cover for G so that ct0 <, p - ß0. On the other hand, 
if N0 is a minimum point cover for G, then no line can join any two of the 
remaining p - <x0 points of G, so the set V - N0 is independent. Hence, 
ßo> p - a0, proving the first equation. 

To obtain the second equality, we begin with an independent set M, of 
ßi lines. A line cover Y is then produced by taking the union of M, and a 
set of lines, one incident line for each point of G not covered by any line 
in Mx. Since |M,| + |K| = p and \Y\ >_ a„ it follows that a, + ß{ <, p. 
In order to show the inequality in the other direction, let us consider a 
minimum line cover N, of G. Clearly, N, cannot contain a line both of whose 
endpoints are incident with lines also in A/,. This implies that N, is the sum 
of stars of G (considered as sets of lines). If one line is selected from each of 
these stars, we obtain an independent set W of lines. Now, |N,| + IM7] = p 
and \W\ < a,; thus, a, + /?, > p, completing the proof of the theorem. 
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Hedetniemi [H39] noticed that the proof of the first equation in 
Theorem 10.1, 

<*o + ßo = A 

applies in a more general setting. A property P of a graph G is hereditary 
if every subgraph of G also has this property. Examples of hereditary 
properties include a graph being totally disconnected, acyclic, and bipartite. 
A set S of points of G is called a P-sct if the induced subgraph <5> has property 
P; it is called a P-set if every subgraph of G without property P contains a 
point of S. Let ß0(P) be the maximum cardinality of a /'-set of G and let 
a0(P) be the minimum number of points of a P-sct. Then the proof of the 
next statement is obtained at once from that of Theorem 10.1. 

Corollary 10.1(a)  If P is an hereditary property of G, then u0(P) + ß0(P) = p. 

A collection of independent lines of a graph G is sometimes called a 
matching of G since it establishes a pairing of the points incident to them. For 
this reason, a set of ß, independent lines in G is called a maximum matching of G. 
KG is bipartite, then more can be said. The next theorem due to König [K9] 
is intimately related to his Theorem 5.18 on systems of distinct representatives 
stated in matrix form, in fact it is the same result. 

Theorem 10.2 If G is bipartite, then the number of lines in a maximum 
matching equals the point covering number, that is, /?, = a0. 

The problem of finding a maximum matching, the so-called matching 
problem, is closely related to that of finding a minimum point cover. 

Let M c X(G) be a matching of G. In an alternating M-walk, exactly 
one of any two consecutive line« is in M. An augmenting M-walk is an 
alternating M-walk whose endpoints are not incident with any line of M. 
Such a walk must be a path because M is a matching. If G has no augmenting 
M-walk, then matching M is unaugmentable. Clearly every maximum 
matching is unaugmentable; the converse is due to Berge [BIO] and the 
proof given below appears in Norman and Rabin [NR1]. 

Theorem 10.3 Every unaugmentable matching is maximum. 

Proof. Let M be unaugmentable and choose a maximum matching M' for 
which |M - M'|, the number of lines which are in M but not in M', is 
minimum. If this number is zero then M = M'. Otherwise, construct a 
walk W of maximum length whose lines alternate in M - M' and M'. Since 
M' is unaugmentable, walk Wcannot begin and end with lines of M - A/and 
has equally many lines in M - M' and in M'. Now we form a maximum 
matching N from M' by replacing those lines of W which are in M' by the lines 
of W in M - M'. Then |M - N\ < \M - M'|, contradicting the choice of 
M' and completing the proof. 

J 
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Norman ;.nd Rabin [NR1] developed an algorithm, based on the next 
theorem, for rinding all minimum line covers in a given graph. Let Y be a 
line cover of G. An alternating K-walk is a K-reducing walk if its endlines 
are in Y and its endpoints are incident to lines of V which are not endlines of 
the walk. Obviously every minimum line cover has no reducing walk. 

Theorem 10.4 If Y is a line cover of G such that there is no V-reducing walk, 
then Y is a minimum line cover. 

The cover invariants ot0 and a, of G refer to the number of points needed 
to cover all the lines and vice versa. We may also regard each point as 
covering itself and two points as covering each other if they are adjacent, and 
similarly for lines. Then other invariants suggest themselves. 

Let a00 be the minimum number of points needed to cover V, and let 
«p0 be the minimum number* of independent points which cover V. Then 
both these numbers are defined for any graph. Let a,, and a',, have similar 
meanings for the covering of lines by lines. The relationships among these 
invariants were determined by Gupta [Gil]. 

Theorem 10.5 For any graph G, 

Ofoo ^ aoo and a,, mat ii- 

CRITICAL POINTS AND LINES 

Obviously, if H is a subgraph of G, then a0(H) < <x0(G). In particular, this 
inequality Mds when H = G - v or H = G - x for any point v or line x. 
If a0(G - v) < a0(G), then v is called a critical} point; if a0(G - .Y) < ct0(G\ 
then x is a critical line of G. Clearly, if v and x are critical, it follows that 
a0(G - v) = a0(G - x) = a0 - 1. Critical points are easily characterized. 

Theorem 10.6 A point r is critical in a graph G if and only if some minimum 
point cover contains v. 

Proof. If M is a minimum point cover for G which contains v, then M - {v} 
covers G - v; hence, a0(G - v) <, \M - {v}\ = \M\ - 1 = a0(G) - 1 so 
that v is critical in G. 

Let c be a critical point of G and consider a minimum point cover M' 
for G - v. The set M' u {v} is a point cover for G, and since it contains one 
more element than M\ it is minimum. 

If the removal of a line x = uv from G decreases the point covering 
number, then the removal of u or v must also result in a graph with smaller 
point covering number.  Thus, if a line is critical both its endpoints are 

* Berge [BI2] calls »„„ the "external stability number" and ß0 the "internal stability number." 
t In this chapter, "critical" refers to covering; in Chapter 12. the same word will involve coloring. 
The meanings should be clear by context. 
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Fig. 10.2.   Line-critical graphs. 

critical. If a graph has critical points, it need not have critical lines; for 
example, every point of C4 is critical but no line is. 

A graph in which every point is critical is called point-critical while one 
having all lines critical is line-critical. Thus a graph G is point-critical if and 
only if each point of G lies in some minimum point cover for G. From our 
previous remarks, every line-critical graph is point-critical. Among the 
line-critical graphs are the complete graphs, the cycles of odd length, and the 
graphs of Fig. 10.2. 

A constructive criterion for line-critical graphs is not known at present; 
however, the first two corollaries to the following theorem of Beincke, 
Harary, and Plummer [BHP1] place some rather stringent conditions on 
such graphs. 

Theorem 10.7 Any two adjacent critical lines of a graph lie on an odd cycle. 

Corollary 10.7(a) Every line-critical graph is a block in which any two adjacent 
lines lie on an odd cycle. 

Theorem 10.7 was derived by generalizing the next result due to Dulmage 
and Mendelsohn [DM1]. 

Corollary 10.7(b) Any two critical lines of a bipartite graph are independent. 

LINE-CORE AND POINT-CORE 

The line-core* Ct(G) of a graph G is the subgraph of G induced by the union 
of all independent sets V of lines (if any) such that | Y\ = <x0(G). This concept 
was introduced by Dulmage and Mendelsohn [DMI], who made it an 
integral part of their theory of decomposition for bipartite graphs. It is not 
always the case that a graph has a line-core, though by Theorem 10.2, every 
bipartite graph which is not totally disconnected has one. As an example of 
a graph with no line-core, consider an odd cycle Cp. Here we find that 
<*o(fp) - (P + H/2 but that /J,(C-) = {p - l)/2, so C. has no line-core. 

Called "core" in[DMI] and[HPI9], 
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G: 

Fig. 10.3.  A graph and its line-core. 

Harary and Plummer [HP19] developed a criterion for a graph to have a 
line-core. A minimum point cover M for a graph G with point set V is said to 
be external if for each subset M' of M, \M'\ < \U(M% where V(M') is the 
set of all points of V - Af which are adjacent to a point of M'. 

Theorem 10.8 The following are equivalent for any graph G: 

(1) G has a line-core. 
(2) G has an external minimum point cover. 
(3) Every minimum point cover for G is external. 

As an example, consider the graph G of Fig. 10.3. This graph has two 
minimum point covers: Af, = {v2, v5, v6} «id M2 = {v2, v5, v7}. Let us 
concentrate on M,. If Af', = M„ then U(M',) = {vu v3, v4, vn). For 
M"i = {vs, »«}, V(M\) = {v3, vA, v7}. We observe that \M\\ < |C/(M',)| and 
|M'i| <, |C/(Afj)|, a fact which is true for every subset of Af,; hence, by 
definition, M( is external. Obviously, M2 is also external. 

On the other hand, there are graphs which are equal to their line-core. 
This family of graphs is characterized in the next theorem, given in [HP19]. 
Following the terminology of Dulmagc and Mendelsohn [DM1], we 
consider a bigraph G whose point set V is the disjoint union Sul We say 
that G is semi-irreducible if G has exactly one minimum point cover M and 
either Af_n S or M n T is empty. Next, G is irreducible if it has exactly two 
minimum point covers M, and M2 and either Af, n S = 0 and AT nT = <f> 
or Af, n T = $ and Af2 n S = <f>. Finally, G is reducible if it is neither 
irreducible nor semi-irreducible. 

I?,: C2:        W: 

Fig. 10.4.   A semi-irreducible and an irreducible graph. 

-—    - - *-■ ** 
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Theorem 10.9 A graph G and its line-core CX{G) are equal if and only if G is 
bipartite and not reducible. 

Consider the bigraphs G, and G2 of Fig. 10.4. In G„ let St = {t?3, t>6} 
and 7*! = {vu v2, t>4, t>$, »7}. The bigraph G, has the unique minimum point 
cover M, = {t>3, i>6}, and since A^ n T, = 0, Gt is semi-irreducible and 
hence equals its line-core. In G2, set S2 - {uu u4, u5} and T2 = {u2, u3, u6}. 
There are two minimum point covers, namely, M2 = {uu u4, u5} and 

^2 = (M2> M3» "«}• However, M2 r\T2 - </> a°d W2 
n $2 ■ $> therefore, 

G2 is irreducible and also equals its line-core. 

EXERCISES 

10.1 Prove or disprove: Every point cover of a graph G contains a minimum point 
cover, 

10.2 Prove or disprove: Every independent set of lines is contained in a maximum 
independent set of lines. 

10.3 For any graph G, ot0(G) £ ß,(G) and a,(G) £ /?0(G). 

10.4 Find a necessary and sufficient condition that a,(G) = /?,(G). 

10.5 If G has a closed trail containing a point cover, then Up) is hamiltonian. 

10.6 For any graph G, a0(G) 7t S(G). 

10.7 If G is a bigraph then q <, x0ß0, with equality holding only for complete bigraphs. 

10.8 If G is a complete n-partite graph, then 

a) a0 = S = K = k. 
b) G is hamiltonian if and only if p < 2oc0. 
c) If G is not hamiltonian, then its circumference c = 2a0 and G has a unique 

minimum point cover. (M.D. Plummer) 

d) ßi = min {S, [p/2]}. (Chartrand, Geller, Hedetniemi [CGH2]) 

10.9 a) Let ßK be the maximum number of points in a set S c V(G) such that <S> is 
disconnected. Then K = p - ßK. 

b) Defining ßx analogously, A = q - ßk. (Hedetniemi [H39]) 

10.10 Calculate: 

a) «,,(*„),      b) a00(Xmi.),      c) a,,(/Cm.J. 

10.11 The "chess-queen graph" has the 64 squares of a chess board as its points, two 
of which are adjacent whenever one can be reached from the other by a single move of a 
queen: the chess-knight, chess-bishop, and chess-rook graphs are defined similarly. 
What is the number a00 for each of these four graphs? 

(Solutions are displayed in Berge [B12, pp. 41-42]) 

10.12 Some relationships among <XQ, a00, and ct'00 are as follows: 

a) <Xoo ^ «o- 
b) For some graphs, a0 < ot'00. 
c) For some graphs, tx^o < «0- 
d) For some graphs, a00 < aoo- 
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10.13 Prove or disprove: A line x is critical in a graph G if and only if there is a minimum 
line cover containing x. 

10.14 Prove or disprove: Every 2-connected line-critical graph is hamiltonian, 

10.15 The converse of Corollary 10.6(a) does not hold. Construct a block which is not 
line-critical in which any two adjacent lines lie on an odd cycle. 

10.16 A tree T equals its line-core if and only if T is a block-cutpoint tree. 

(Harary and Plummer [HP19]) 

10.17 for any graph G, the following are equivalent: 

1. G has a line-core, 
2. ot0(G) = 0,(G), 
3. ot,(G) = 0o(G)- (Harary and Plummer [HP19]) 

10.18 If G is a connected graph having a line-core Ct(G), then 

a) C^G) is a spanning subgraph of G, 
b) 0,(0,(0)) = CtfX 
c) the components of C,(G) are bipartite subgraphs of G which are not reducib1 

(Harary and Plummer [HP191I 

10.19 If G is a graph with line-core C{{G) and 6 is a bipartite subgraph of G properly 
containing Ct(G\ then B is reducible. (Harary and Plummer [HP 19]) 

10.20 The point-core C0(G) is the subgraph of G induced by the union of all independent 
sets S of <x,(G) points. A graph G has a point-core if and only if it has a line-core. 

(Harary and Plummer [HP 18]) 

10.21 If G = C„(G), then G has a 1-factor. (Harary and Plummer [HP 18]) 

10.22 If G is regular of degree n, then there is a partition of V into at most 1 + [n/2] 
subsets such that each point is adjacent to at most one other point in the same subset. 

(Gerencser [G6]) 

■■■     ' ::.-.. 



CHAPTER  II 

PLANARITY 

Return with me a while to the plains of Flatland, 

and I will shew you that which you have often 

reasoned and thought about... 
EDWIN A. ABBOTT, Flatland 

Topological graph theory was first discovered in 1736 by Euler (V - E + 
F = 2) and then was dormant for 191 years. The subject was revived when 
Kuratowski found a criterion for a graph to be planar. Another pioneer in 
topological graph theory was Whitney, who developed some important 
properties of the embedding of graphs in the plane. 

All the known criteria for planarity are presented. These include the 
theorems of Kuratowski and Wagner, which characterize planar graphs in 
terms of forbidden subgraphs, Whitney's result in terms of the existence of a 
combinatorial dual, and MacLane's description of the existence of a pre- 
scribed cycle basis. 

Several topological invariants of a graph are introduced. The genus of 
a graph has been determined for the complete graphs and bipartite graphs, 
the thickness for "most" of them, and the crossing number for only a few. 

PLANE AND PLANAR GRAPHS 

A graph is said to be embedded in a surface S when it is drawn on S so that 
no two edges intersect. As noted in Chapter 1, we shall use "points and lines" 
for abstract graphs, "vertices and edges" for geometric graphs (embedded 
in some surface).  A graph is planar if it can be embedded in the plane; a 

(a) (b) 

Fig. I I.I.   A pliinar graph and an embedding. 

102 
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plane graph has already been embedded in the plane. For example, the cubic 
graph of Fig. 11.1(a) is planar since it is isomorphic to the plane graph in 
Fig. 11.1(b). 

We will refer to the regions defined by a plane graph as its faces, the 
unbounded region being called the exterior face. When the boundary of 
a face of a plane graph is a cycle, we will sometimes refer to the cycle as a 
face. The plane graph of Fig. 11.2 has three faces, fuf2 and the exterior 
face/3. Of these, only/2 is bounded by a cycle. 

Fig. 11.2.  A plane graph. 

The subject of planar graphs was discovered by Euler in his investigation 
of polyhedra. With every polyhedron there is associated a graph consisting 
only of its vertices and edges, called its 1-skeleton. For example, the graph 
Ö3 is the 1-skeleton of the cube and K2,2,2 that of the octahedron. The 
Euler formula for polyhedra is one of the classical results of mathematics. 

Theorem 11.1  (Euler Polyhedron Formula).  For any spherical polyhedron 
with V vertices, E edges, and F faces, 

V - E + F = 2. (11.1) 

For the 3-cube we have V = 8, E = 12, and F = 6 so that (11.1) holds; 
for a tetrahedron, V = F = 4 and E = 6. Before proving this equation, we 
will recast it in graph theoretic terms. A plane map is a connected plane 
graph together with all its faces. One can restate (11.1) for a plane map in 
terms of the numbers p of vertices, q of edges, and r of faces, 

p - q + r = 2. (11.1') 

It is easy to prove this theorem by induction. However, this equation 
has already been proved in Chapter 4 where it was established that the cycle 
rank m of a connected graph G is given by 

m — q — p + 1. 

Since it is easily seen that if (11.1') holds for the blocks of G separately, then 
(11.1) holds for G also, we assume from the outset that G is 2-connected. 
Thus every face of a plane embedding of G is a cycle. 

We have just noted that p = V and q = E for a plane map. It only 
remains to link m with F. We now show that the interior faces of a plane 
graph G constitute a cycle basis for G, so that they are m in number. This 
holds because the edges of every cycle Z of G can be regarded as the symmetric 
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difference of the faces of G contained in Z. Since the exterior face is thus the 
sum (mod 2) of all the interior faces (regarded as edge sets), we see that 
m = F - 1. Hence m = q - p + 1 becomes F-1=E-V+1. 

Euler's equation has many consequences. 
Corollary 11.1(a) If G is a (p, q) plane map in which every face is an n-cycle, 
then 

q = n(p-2y(n~2). (11.2) 

Proof. Since every face of G is an n-cycle, each line of G is on two faces and 
each face has n edges. Thus nr = 2q, which when substituted into (11.1') 
gives the result. 

A maximal planar graph is one to which no line can be added without 
losing planarity. Substituting n - 3 and 4 into (11.2) gives us the next 
result. 

Corollary 11.1(b) If G is a (p, q) maximal plane graph, then every face is a 
triangle and q = 3p - 6. If G is a plane graph in which every face is a 4-cycle, 
then q = 2p - 4. 

Because the maximum number of edges in a plane graph occurs when 
each face is a triangle, we obtain a necessary condition for planarity of a 
graph in terms of the number of lines. 

Corollary 11.1(c) If G is any planar (p, q) graph with p ^ 3, then q ^ 3p - 6. 
If G is 2-connected without triangles, then q ^ 2p - 4. 

Corollary 11.1(d) The graphs K5 and K33 are nonplanar. 

Proof. The (5,10) graph K5 is nonplanar because q = 10 > 9 = 3p - 6; 
for K3t3, q = 9 and 2p - 4 = 8. 

As we will soon see, the graphs Ks and K3i3 play a prominent role in 
characterizing planarity. The above corollaries are extremely useful in 
investigating planar graphs, especially maximal planar graphs. 

Corollary 11.1(e) Every planar graph G with p > 4 has at least four points 
of degree not exceeding S. 

Clearly, a graph is planar if and only if each of its components is planar. 
Whitney [W12J showed that in studying planarity, it is sufficient to consider 
2-connected graphs. 

Theorem 11.2 A graph is planar if and only if each of its blocks is planar. 

It is intuitively obvious that any planar graph can be embedded in the 
sphere, and conversely. This fact enables us to embed a planar graph in the 
plane in many different ways. 
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Theorem 11.3 Every 2»comiected plane graph can be embedded in the plane 
so that any specified face is the exterior. 

Proof. Let/be a nonexterior face of a plane block G. Embed G on a sphere 
and call some point interior to/the "North Pole." Consider a plane tangent 
to the sphere at the South Pole and project* G onto that plane from the 
North Pole. The result is a plane graph isomorphic to G in which/is the 
exterior face. 

Corollary 11.3(a) Every planar graph can be embedded in the plane so that a 
prescribed line is an edge of the exterior region. 

Whitney also proved that every maximal planar graph is a block, 
and more. 

Theorem 11.4 Every maximal planar graph with p ^ 4 points is 3-connected. 

(a) (b) 
Fig. 11.3. Plane wheels. 

There are five ways of embedding the 3-connected wheel Ws in the 
plane: one looks like Fig. 11.3(a), and the other four look like Fig. 11.3(b). 
However, there is only one way of embedding Ws on a sphere, an observation 
which holds for all 3-connected graphs (Whitney [W13]). 

Theorem 11.5 Every 3-connected planar graph is uniquely embeddable on 
the sphere. 

Ga: 

Fig. 11.4. Two plane embedding» of a 2-connected graph. 

To show the necessity of 3-connectedness, consider the isomorphic 
graphs G, and G2 of connectivity 2 shown in Fig. 11.4. The graph G, is 
embedded on the sphere so that none of its regions are bounded by five 
edges while G2 has two regions bounded by five edges. 

This is usually called stereographic projection. 

■v.j,,,.       .■.-*-     ■ 
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A polyhedron is convex if the straight line segment joining any two of its 
points lies entirely within it. The next theorem is due to Steinitz and 
Rademacher [SR2]. 

Theorem 11.6 A graph is the 1 -skeleton of a convex 3-dimensional polyhedron 
if and only if it is planar and 3-connected. 

One of the most fascinating areas of study in the theory of planar 
graphs is the interplay between considering a graph as a combinatorial 
object and as a geometric figure. Very often the question arises of placing 
geometric constraints on a graph. For example, Wagner [Wl], Fary [Fl], 
and Stein [SI5] independently showed that every planar graph can be 
embedded in the plane with straight edges. 

Theorem 11.7 Every planar graph is isomorphic with a plane graph in which 
all edges are straight line segments. 

OUTERPLANAR GRAPHS 

A planar graph is outerplanar if it can be embedded in the plane so that all its 
vertices lie on the same face; we usually choose this face to be the exterior. 
Figure 11.5 shows an outerplanar graph (a) and two outerplane embeddings 
(b) and (c). In (c) all vertices lie on the exterior face. 

(a) (b) (c) 

Fig. 11.5.  An outerplanar graph and two outerplane embeddings. 

In this section we develop theorems for outerplanar graphs parallel 
with those for planar graphs. The analogue of Theorem 11.2 is immediate. 

Theorem 11.8 A graph G is outerplanar if and only if each of its blocks is 
outerplanar. 

An outerplanar graph G is maximal outerplanar if no line can be added 
without losing outerplanarity. Clearly, every maximal outerplane g»aph is 
a triangulation of a polygon, while every maximal plane graph is a tri- 
angulation of the sr}fcs.«c. The three maximal outerplane graphs with 6 
vertices are shown in Fig. 11.6, 

Theorem 11.9  Let (j be a maximal outerplane graph with /> > 3 vertices all 
lying on the exterior face. Then 6' has [> - 2 interior faces. 



OUTERPLANAR GRAPHS 107 

(a) (b) 

Fig. 11,6. Three maximal outerplanar graphs. 

(c) 

Fig. 11.7. The forbidden graphs Tor outerplanarity. 

Proof. Obviously the result holds for p = 3. Suppose it is true for p = n 
and let G have p = n + 1 vertices and m interior faces. Clearly G must have 
a vertex v of degree 2 on its exterior face. In forming G - v we reduce the 
number of interior faces by 1 so that m - 1 = n ~ 2. Thus m — n — 1 = 
p - 2, the number of interior faces of G. 

This theorem has several consequences. 

Corollary 11.9(a)  Every maximal outerplanar graph G with p points has 

a) 2/> - 3 lines, 

b) at least three points of degree not exceeding 3, 

c) at least two points of degree 2, 

d) K(G) = 2. 

All plane embeddings of K4 and K2 3 are of the forms shown in Fig. 11.7, 
in which each has a vertex inside the exterior cycle. Therefore, neither of these 
graphs is outerplanar. We now observe that these are the two basic non- 
outerplanar graphs, following [CH3]. 

Two graphs are homeomorphk if both can be obtained from the same 
graph by a sequence of subdivisions of lines. For example, any two cycles 
are homeomorphic, and Fig. 11.8 shows a homeomorph of K4. 

Theorem 11.10 A graph is outerplanar if and only if it has no subgraph 
homeomorphic to K4 or K2 , except K4 - .x. 

It is often important to investigate the complement of a graph with a 
given property.   For planar graphs, the following theorem due to Battle, 
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Fig. 11.8.  A homeomorph of KA. 

Harary, and Kodama [BHKl] and proved less clumsily by Tutte [T16], 
provides a sufficient condition for the complement of a planar graph to be 
planar. 

Theorem 11.11 Every planar graph with at least nine points has a nonplanar 
complement, and nine is the smallest such number. 

This result was proved by exhaustion; no elegant or even reasonable 
proof is known. 

The analogous observation for outerplanar graphs was made in [GS]. 

Theorem 11.12 Every outerplanar graph with at least seven points has a 
nonouterplanar complement, and seven is the smallest such number. 

Fig. 11.9. The four maximal outerplanar graphs with seven points. 

Proof. To prove the first part, it is sufficient to verify that the complement 
of every maximal outerplanar graph with seven points is not outerplanar. 
This holds because there are exactly four maximal outerplanar graphs with 
p = 7 (Fig. 11.9) and the complement of each is readily seen to be non- 
outerplanar. The minimality follows from the fact that the (maximal) 
outerplanar graph of Fig. 11.6(b) with six points has an outerplanar 
complement. 

KURATOWSKI'S THEOREM 

Until Kuratowski's paper appeared [K.14], it was a tantalizing unsolved 
problem to characterize planar graphs. The following proof of his theorem 
is based on that by Dirac and Schuster [DS1]. 

1 
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Theorem 11.13 A graph is planar if and only if it has no subgraph homeo- 
morphic to K 5 or K33. 

Proof. Since Ks and K33 are nonplanar by Corollary 11.1(d), it follows that 
if a graph contains a subgraph homeomorphic to either of these, it is also 
nonplanar. 

The proof of the converse is a bit more involved. Assume it is false. Then 
there is a nonplanar graph with no subgraph homeomorphic to either K5 

orK33. Let G be any such graph having the minimum number of lines. Then 
G must be a block with 0(G) > 3. Let x0 = u0v0 be an arbitrary line of G. 
The graph F = G - x0 is necessarily planar. 

We will find it convenient to use two lemmas in the development of the 
proof. 

Lemma 11.13(a) There is a cycle in F containing u0 and v0. 

Proof of Lemma. Assume that there is no cycle in F containing u0 and v0. 
Then u0 and t?0 lie in different blocks of F by Theorem 3.3. Hence, there 
exists a cutpoint w of F lying on every uc~v0 path. We form the graph F0 

by adding to F the lines wu0 and wv0 if they are not already present in F. 
In the graph F0, u0 and v0 still lie in different blocks, say Bt and B2, which 
necessarily have the point w in common. Certainly, each of Bt and B2 has 
fewer lines than G, so either B, is planar or it contains a subgraph homeo- 
morphic to Ks or K33. If, however, the insertion of wu0 produces a subgraph 
H of Bt homeomorphic to Ks or K33, then the subgraph of G obtained by 
replacing wu0 by a path from uQ to w which begins with x0 is necessarily 
homeomorphic to H and so to K s or K33, but this is a contradiction. Hence, 
Bx and similarly B2 is planar. According to Corollary 11.3(a), both Bx and 
B2 can be drawn in the plane so that the lines wu0 and wv0 bound the exterior 
region. Hence it is possible to embed the graph F0 in the plane with both 
wu0 and wv0 on the exterior region. Inserting x0 cannot then destroy the 
planarity of F0. Since G is a subgraph of F0 + x0, G is planar; this contra- 
diction shows that there is a cycle in F containing u0 and v0. 

Let F be embedded in the plane in such a way that a cycle Z containing 
u0 and v0 has a maximum number of regions interior to it. Orient the edges 
of Z in a cyclic fashion, and let Z[u, v] denote the oriented path from u to v 
along Z. If v does not immediately follow u on Z, we also write Z(u, v) to 
indicate the subpath of Z[u, i>] obtained by removing w and v. 

By the exterior of cycle Z, we mean the subgraph of F induced by the 
vertices lying outside Z, and the components of this subgraph are called the 
exterior components of Z. By an outer piece of Z, we mean a subgraph of 
F induced by all edges incident with at least one vertex in some exterior 
component or by an edge (if any) exterior to Z meeting two vertices of Z. 
In a like manner, we define the interior of cycle Z, interior component, and 
inner piece. 



110 PLANARITY 

OfD} 

Fig. 11.10. Separating cycle Z illustrating lemma. 

An outer or inner piece is called u-v separating if it meets both Z(M, V) 

and Z(v, u). Clearly, an outer or inner piece cannot be u-v separating if w and 
v are adjacent on Z. 

Since F is connected, each outer piece must meet Z, and because F has 
no cutvertices, each outer piece must have at least two vertices in common 
with Z. No outer piece can meet Z(M0, V0) or Z(v0, u0) in more than one 
vertex, for otherwise there would exist a cycle containing u0 and v0 w;*h more 
interior regions than Z. For the same reason, no outer piece can r jt M0 or 
t0. Hence, every outer piece meets Z A\ exactly two vertices and is M0 t'o 
separating. Furthermore, since .*„ cannot be added to F in planar fashion, 
there is at least one u0-v0 separating inner piece. 

Lemma 11.13(b) There exists a u0~ t'o separating outer piece meeting Z(u0, t<0), 
say at »,, and Z(r0, M0), say at r,, such that there is an inner piece which is 
both u0~v0 separating and w, r, separating. 

Proof of Lemma. Suppose, to the contrary, that the lemma does not hold. 
It will be helpful in understanding this proof to refer to Fig. 11.10. 

We order the M0-T0 separating inner pieces for the purpose of relocating 
them in the plane. Consider any u0-t'o separating inner piece /, which is 

1 
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Fig. 11.11.  The possibilities for nonplanar subgraphs. 

nearest to u0 in the sense of encountering points of this inner piece on moving 
along Z from u0. Continuing out from u0, we can index the u0~v0 separating 
inner pieces I2,13, and so on. 

Let u2 and M3 be the first and last points of /, meeting Z(u0, v0) and v2 

and v3 be the first and last vertices of/, meeting Z{v0, u0). Every outer piece 
necessarily has both its common vertices with Z on either Z[r3, M2] 

or 

Z[u3, v2], for otherwise there would exist an outer piece meeting Z(u0, v0) 
at u, and Z(v0, u0) at vv and an inner piece which is both u0-v0 separating 
and «,-1?, separating, contrary to the supposition that the lemma is false. 
Therefore, a curve C joining v3 and u2 can be drawn in the exterior region so 
that it meets no edge of F. (See Fig. 11.10.) Thus, /, can be transferred outside 
of C in a planar manner. Similarly, the remaining u0-v0 separating inner 
pieces can be transferred outside of Z, in order, so that the resulting graph 
is plane. However, the edge x0 can then be added without destroying the 
planarity of F, but this is a contradiction, completing the lemma. 

Proof of Theorem. Let H be the inner piece guaranteed by Lemma 11.13(b) 
which is both u0-v0 separating and u,-r, separating. In addition, let 
w'o. w0i W], and w\ be vertices at which H meets Z(«0, v0\ Z(r0, u0), Z(M,, r,), 
and Z(r„ u,), respectively. There are now four cases to consider, depending 
on the relative position on Z of these four vertices. 

CASE I. One of the vertices w, and w\ is on Z(M0, I0) and the other is on 
Z(r0, u0). We can then take, say, wQ — wt and w'0 = w\, in which case G 



y 
f 

112 PLANARITY 

contains a subgraph homeomorphic to K33, as indicated in Fig. 11.11(a), in 
which the two sets of vertices are indicated by open and closed dots. 

CASE 2. Both vertices tv, and w\ are on either Z(u0, v0) or Z{VQ, U0). Without 
loss of generality we assume the first situation, liiere are two possibilities: 
either vx / W'0OTVX = w'0. Ifi>, # w'0, then G contains a subgraph homeo- 
morphic to K3i3, as shown in Fig. 11.11(b) or (c), depending on whether w'0 

lies on Z(uu t>,) or Z(v,, MJX respectively. If v, = w'0 (see Fig. 11.11 dX 
then H contains a vertex r from which there exist disjoint paths to wt, w\, 
and »!, all of whose vertices (except w„ w'l5 and t?t) belong to //. In this case 
also, G contains a subgraph homeomorphic to K3t3. 

CASE 3. wt ■- vQ and w', ^ u0. Without loss of generality, let w\ be on 
Z(UQ, V0). Once again G contains a subgraph homeomorphic to K33. If 
Wo is on (VQ, v{), then G has a subgraph X3>3 as shown in Fig. 11.11(e). If, on 
the other hand, w0 is on Z(vt, u0), there is a Ky3 as indicated in Fig. 11.1 !(f). 
This figure is easily modified to show G contains K3 3 if w0 = i;,. 

CASE 4. w, = t;0 and w', = u0. Here we assume vv0 = u, and w'0 = ü„ for 
otherwise we are in a situation covered by one of the first 3 cases. We 
distinguish between two subcases. Let P0 be a shortest path in H from ur 

to PQ, and let P{ be such a path from uy to v{. The paths P0 and /^ must 
intersect. If PQ and Pj have more than one vertex in common, then G 
contains a subgraph homeomorphic to K33, as shown in Fig. 11.11(g); 
otherwise, G contains a subgraph homeomorphic to K$ as in Fig. 11.11(h). 

Since these are all the possible cases, the theorem has been proved. 

In his paper "How to draw a graph," Tutte [T17] gives an algorithm 
for drawing in the plane as much of a given graph as possible and shows 
that whenever this process stops short of the entire graph, it must contain 
a subgraph homeomorphic to Ks or K3 3. Thus his algorithm furnishes an 
independent proof of Theorem 11.13. 

An elementary contraction of a graph G is obtained by identifying two 
adjacent points u and v, that is, by the removal of u and v and the addition 

u%      ws 

(a) (b) (c) 

Fig. 11.12.   Nonplanarity of the Petersen graph. 
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of a new point w adjacent to those points to which u or v was adjacent. 
A graph G is contractible to a graph // if H can be obtained from G by a 
sequence of elementary contractions. For example, as indicated in Fig. 
11.12(a) and (b), the Petersen graph is contractible tc K5 by contracting 
each of the five lines w(r, joining the pentagon with the pentagram to a new 
point w,. A dual form of Kuratowski's theorem (in the sense of duality in 
matroid theory) was found independently by Wagner [W2] and Harary 
and Tutte [HT3]. 

Theorem 11.14 A graph is planar if and only if it does not have a subgraph 
contractible to AC, or K3 3. 

We have just seen that the Petersen graph is contractible to Ks. Since 
every point has degree 3, it clearly does not have a subgraph homeomorphic 
to K5; Fig. 11.12(c) shows one homeomorphic to Ki3. 

OTHER CHARACTERIZATIONS OF PLANAR GRAPHS 

Several other criteria for planarity hav: been discovered since the original 
work of Kuratowski. We have already noted the "dual form" in terms of 
contraction in Theorem 11.14. Tutte's algorithm for drawing a graph in 
the plane may also be regarded as a characterization. 

Whitney [W12, W14] expressed planarity in terms of the existence of 
dual graphs. Given a plane graph G, its geometric dual G* is constructed 
as follows: place a vertex in each region of G (including the exterior region) 
and, if two regions have an edge x in common, join the corresponding 
vertices by an edge x* crossing only x. The result is always a plane pseudo- 
graph, as indicated in Fig. 11.13 where G has solid edges and its dual G* 
dashed edges. Clearly G* has a loop if and only if G has an end vertex, and G* 
has multiple edges if and only if two regions of G have at least two edges in 
common. Thus, a 2-connected plane graph always has a graph or multi- 
graph as its dual, while the dual of a 3-connected graph is always a graph. 
Other examples of geometric duals are given by the Platonic graphs: the 
tetrahedron is self-dual, whereas the cube and octahedron are duals, as are 
the dodecahedron and the icosahedron. 

\3/ 
Pig. 11.13.  A plane graph und its geometric dual. 
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G*. 

H. H*: 

Fig. 11.14.  Different geometric duals of the same abstract graph. 

As defined, the geometric dual of a plane graph G is also plane, and it 
follows that the dual of the dual of G is the original graph G. However, an 
abstract graph with more than one embedding on the sphere can give rise to 
more than one dual graph. This is illustrated in Fig. 11.14 in which graphs 
G and H are abstractly isomorphic, but as embedded they have different 
duals G* and H*. However, since a triply connected graph has only one 
spherical embedding, as noted in Theorem 11.5, it must have a unique 
geometric dual. 

Whitney gave a combinatorial definition of dual, which is an abstract 
formulation of the geometric dual. To state this, we recall from Chapter 4 
that for a graph G with k components, the cycle rank is given by m(G) = 
q - p + k and the cocycle rank by m*{G) = p - k. 

The relative complement G - H of a subgraph H of G is defined to be 
that subgraph obtained by deleting the lines of//. A graph G* is a combina- 
torial dual of graph G if there is a one-to-one correspondence between their 
sets of lines such that for any choice Y and Y* of corresponding subsets of 
lines, 

m*(G - Y) = m*(G) - m« )'*», (11.3) 

where < K*> is the subgraph of G* with line set Y*. This definition is illus- 
trated by Fig. 11.15 where the correspondence is x,-*-»>',■. Here Y = 
{x2, x3, .v4, Xf,}, so that m*(G - Y) = 1, m*(G) = 4, and m(Y*) = 3, so 

I 
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C:      Jti G*. 

G-Y. <y*>: 

Fig. 11.15.  Combinatorial duals. 

the defining equation is satisfied. It is of course very difficult to check 
whether two graphs are duals using (11.3) since it involves verifying this 
equation for every set y of lines in G. 

As with geometric duals, combinatorial duals of planar graphs are not 
necessarily unique. However, if two graphs are combinatorial duals of 
isomorphic graphs, there is a one-to-one correspondence between their sets 
of lines which preserves cycles as sets of lines vthat is, their cycle matroids 
are isomorphic). The correspondence x, <-* y, of G* and H* in Fig. 11.14 
illustrates this. 

Whitney proved that combinatorial duals are equivalent to geometric 
duals, giving another criterion for planarity. 

Theorem 11.15 A graph is planar if and only if it has a combinatorial dual. 

Another criterion for planarity due to MacLane [Ml] is expressed in 
terms of cyclic structure. 

Theorem 11.16 A graph G is planar if and only if every block of G with at least 
three points has a cycle basis Zi,Z2,---,Zm and one additional cycle Z0 

such that every line occurs in exactly two of these m + 1 cycles. 

We only indicate the necessity, which is much easier. As mentioned 
in the proof of Theorem 11.1, all the interior faces of a 2-connected 
plane graph G constitute a cycle basis Zi,Z2,---,Zm, where m is the cycle 
rank of G. Let Z0 be the exterior cycle of G. Then obviously each edge of 
G lies on exactly two of the m + 1 cycles Z{. 

To prove the sufficiency, it is necessary to construct a plane embedding 
of a given graph G with the stipulated properties. 
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All of these criteria for planarity are summarized in the following 
list of equivalent conditions for a graph G. 

(1) G is planar. 
(2) G has no subgraph homeomorphic to K s or K3t3. 
(3) G has no subgraph contractible to K5 or Kyi. 
(4) G has a combinatorial dual. 
(5) Every nontrivial block of G has a cycle basis Z„ Z2, • • •, Zm and one 

additional cycle Z0 such that every line x occurs in exactly two of these 
m + 1 cycles. 

GENUS, THICKNESS, COARSENESS, CROSSINC NUMBER 

In this section four topological invariants of a graph G are considered. 
These are genus: the number of handles needed on a sphere in order to 
embed G, thickness: the number of planar graphs required to form G, 
coarseness: the maximum aumber of line-disjoint nonplanar subgraphs 
in G, and crossing number: the number of crossings there must be when G 
is drawn in the plane. We will concentrate on three classes of graphs—com- 
plete graphs, complete bigraphs, and cubes—and indicate the values of 
these invariants for them as far as they are known. 

Fig. 11.16.  Embedding a graph on an orientable surface. 

As observed by König, every graph is embeddible on some orientable 
surface. This can easily be seen by drawing an arbitrary graph G in the plane, 
possibly with edges that cross each other, and then attaching a handle to 
the plane at each crossing and allowing one edge to go over the handle 
and the other under it. For example, Fig. 11.16 shows an embedding of Ks 

in a plane to which one handle has been attached. Of course, this method 
often uses more handles than are actually required. In fact, König also 
showed that any embedding of a graph on an orientable surface with a 
minimum number of handles has all its faces simply connected. 
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Ml «1 «3 "4 

6 4 16 

1 

Fig. 11.17. An embedding of K7 on the 
torus. 

Fig. 11.18. A  toroidal embedding of 
K«,4' 

We have already noted that planar graphs can be embedded on a sphere. 
A toroidal graph can be embedded on a torus. Both K s and K 3 3 are toroidj 1; 
in fact Figs. 11.17 and 11.18 show embeddings of K7 and KiA on the torus, 
represented as the familiar rectangle in which both pairs of opposite sides 
are identified. No characterization of toroidal graphs analogous to Kura- 
towski's Theorem has been found. However, Vollmerhaus [V6] settled a 
conjecture of Erdös in the affirmative by proving that for the torus as well 
as any other orientable surface, there is a finite collection of forbidden 
subgraphs. 

The genus y(G) of a graph G is the minimum number of handles which 
must be added to a sphere so that G can be embedded on the resulting surface. 
Of course, y(G) = 0 if and only if G is planar, and homeomorphic graphs have 
the same genus. 

The first theorem of this chapter presented the Euler characteristic 
equation, V - E + F = 2, for spherical polyhedra. More generally, the 
genus of a polyhedron* is the number of handles needed on the sphere for 
a surface to contain the polyhedron. Theorem 11.1 has been generalized 
to polyhedra of arbitrary genus, in a result also due to Euler. A proof may 
be found in Courant and Robbins [CR1]. 

Theorem 11.17  For a polyhedron of genus y with V vertices, E edges and 
F faces, 

V-E + F = 2-2y. (11.4) 

This equation is particularly useful in proving the easy half of the results 
to follow on the genus and thickness of particular graphs. Its corollaries, 
which offer no difficulty, are often more convenient for this purpose. 

For a combinatorial treatment of the theory of polyhedra. see Griinbaum[G10]. 
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Corollary 11.17(a)  If G is a connected graph of genus y in which every face 
is a triangle, then 

q = 3(p-2 + 2y); (11.5) 

when every face is a quadrilateral, 

q = 2(p-2 + 2y). (11.6) 

As mentioned in [BH2], it is easily verified from these two equations 
that the genus of a graph has the following lower bounds. 

Corollary 11.17(b)  If G is a connected graph of genus y, then 

7 > to - KP - 2); 
if G has no triangles, then 

y > k - 2<P - 2). 

(11.7) 

(118) 

The determination of the genus of the complete graphs has been a long, 
interesting, difficult, successful struggle. In its dual form, it was known as 
the Heawood Conjecture and stood unproved from 1890 to 1967. We 
return to this aspect of the problem in the next chapter. There have been 
many contributors to this result and the coup de grace, settling the conjecture 
in full, was administered by Ringel and Youngs [R Yl]. 

Theorem 11.18 For every positive integer p, the genus of the complete 

The proof of the easier half of equation (1 i.9) is due to Heawood [H38]. 
It amounts to substituting q(Kp) into inequality (11.7) to obtain 

y{K0) > 
1, 

-\(p-2) = 
(p - 3Xp - 4) 

12 

Then since the genus of every graph is an integer, 

«P-3HP- Up - 3)(/> - 4)\ 

'TIT-} >'(*,) 

The proof that this expression is also an upper bound for y(Kp) can only be 
accomplished by displaying an embedding of Kp into an orientable surface 
of the indicated genus. When Heawood originally stated the conjecture 
in 1890, he proved that y{Kn) — 1, as verified by the embedding shown in 
Fig. 11.17, which triangulates the torus. 

Heffter proved (11.9) in 1891 for p = 8 through 12. Not until 1952 did 
Ringel prove it for p = 13. At that stage, it was realized that because of its 
form, it was natural to try to settle the question for one residue class of p 



- 
7 

oENUS, THICKNESS, COARSENESS, CROSSING NUMBER 119 

modulo 12 at a time. Writing p = 12s f r, Ringel (see [RIO]) proved (11.9) 
in 19S4 for all complete graphs Kp with r = 5. During 1961-65, Ringel 
extended the result to r = 7,10, and 3, and concurrently Youngs [Yl] with 
his colleagues Gustin, Terry, and Welch settled the cases r — 4,0,1,9,6. In 
1967-68, Ringel and Youngs [RY1, 2] worked together to achieve appro- 
priate embeddings of Kp for r = 2, 8, and 11. The isolated cases p = 18, 
20, and 23 remained unproved by these methods. The proof was completed 
by the Professor of French Literature at the University of Montpellier, 
named Jean Mayer, when he embedded Kp for these three values of p, 
see [M6]. 

For complete Digraphs, the corresponding result is less involved, and 
was obtained by Ringel alone. Since inequality (11.8) applies to the graph 
KmA we have 

1 1 
y(KmtH) £ ^ mn - - (m + n - 2) = 

(m - 2K« - 2) 

The other inequality is demonstrated [R12] by displaying a suitable em- 
bedding of Kmn. 

Theorem 11.19 The genus of the complete bigraph is 

I (m - 2Xn - 2)1 
y(K, ,,)-£ 

! 
(11.10) 

The genus of the cube was derived by Ringel [R13] and Beineke and 
Harary [ßH3]. For the graph Q„, we have p = 2" and q = M2"~ \ so that 
by (11.8), 

y{Q.)< 1 +(«-4)2--3, 

proving the easier half of the next equation. 

Theorem 11.20 The genus of the cube is 

y(ß„) = ! + («- 4)2"-3. 111.11) 

We now mention some more general considerations involving genus. 
It was show;> in Battle, Harary, Kodama and Youngs [BHKY1] that the 
genus of a graph depends only on the genus of its blocks, as anticipated in 
Theorem 11.2. 

Theorem 11.21   If a graph G has blocks B,, B2, • • •, B„, then 

v(G) -1 my (11.12) 
i= 1 

This result was generalized slightly by Harary and Kodama [HK1]. 
Recall from Theorem 5.8 that two «-components of a graph have at most 
n points ir common. 
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Theorem 11.22 Let an «-connected graph G be the union of two (n + 1)- 
components B and C. Let vu •••, v„ be the set of points ofBnC. Call Gu 

the graph obtained by adding line vpj to G. If y(Gu) = y(G) + 1 whenever 
1 < i < j < n, then 

y(G) = y(B) + y(Q + n-L (11.13) 

We have already observed in Theorem 11.10 that every planar graph 
with 9 points has a nonplanar complement. Define the thickness 6(G) of a 
graph as the minimum number of planar subgraphs whose union is G. 
Then Theorem 11.11 can be stated in the form 6{K9) > 2. Actually the thick- 
ness ofK9 is 3 but K9 is critical with respect to thickness since 0(Kq - x) = 2. 
Therefore 0(KP) = 2 for p - 5 to 8. Of course 6(G) = 1 if and only if G 
is planar. Since a maximal planar graph has q = 3p - 6 lines, it follows 
that the thickness 0 of any (p, q) graph has the bound, 

6> 
3p-6 (11.14) 

This observation is useful in making conjectures about thickness and proving 
the easier half. 

The thickness of the complete graphs was investigated in [BH5] and 
Beineke [B6]. Applying (11.14) to K„, we find 

WP)> 
pip - l)/2 
3(p-2) 

Applying some algebraic manipulations, we obtain 

p{p - l)/2 + 3(p - 2) - 1 
0iKP) 4' ]-m 3(p -2) 

Theorem 11.23 Whenever p ^ 4 (mod 6), the thickness of the complete graph 

/> + 
is 

w = 
' 

(11.15) 

unless p = 9. 

When p = 4 (mod 6), sometimes equation (11.15) holds and sometimes 
it doesn't. For 0(K,o) = 3 * [V], but Hobbs and Grossman [HG1] 
produced a decomposition of K22 into 4 = ["] planar subgraphs and 
Beineke [B6] showed that 0(K28) = 5 = [x]- Very recently, Jean Mayer 
(again!) obtained constructions showing that 9iKi4) = 6 and 6iK40) = 7. 
The only value of p < 45 for which 0iKp) is not yet known is p = 16. It is 
conjectured that 0(K16) = 4, but for all p = 4 (mod 6), and p > 46, that 
(11.15) holds. 

The thickness of complete Digraphs was studied in [3HM1] and Beineke 
[B7]. 
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Theorem 11.24 The thickness or the complete Digraph is 

(KKm,„) L m -1 
\2(m + n - 2)j 

(11.16) 

except possibly when m < n,mn is odd, and there exists an integer k such 
that n = [2k{m - 2)/(m - 2k)]. 

Corollary 11.24(a) The thickness of £„,„ is [(« + 5) 4], 
The corresponding problem for the cube was settled by Kleinert [K8]. 

Theorem 11.25 The thickness of the cube is 

Oi.Qn) -m (11.17) 

P. Erdös (verbal communication) made a fortuitous slip, while trying 
to describe the concept of thickness. By speaking of the maximum number 
of line-disjoint nonplanar subgraphs contained in the given graph G, he 
first defined the coarseness {(G). Thus both thickness and coarseness involve 
constructions which factor a graph into spanning subgraphs (planar and 
nonplanar respectively) in the sense of Chapter 9. Formulas for the coarse- 
ness of a complete graph are not as neat as those for other topological 
invariants. The reason is that K3<3 or a homeomorph thereof is a most 
convenient subgraph for coarseness constructions. This suggests the reason 
for the form of the next result due to Guy and Beineke [GB1]. Figure 11.19 
shows four line-disjoint homeomorphs of K3 3 contained in Kl0, 

Theorem 11.26 The coarseness of the complete graphs is given by 

«Ki.fi) 

£(K3B+2) 

10 
09* DO 

CHI 
/n\     TU« + 1~| (0+bn- 

(p = 3/i < 15), 

(p = 3« > 30), 

(p = 3« + 1 > 19 
and p ? 9r + 7), 

(11.18) 

All of the values of £{Kp) are either known exactly from (11.18) or have the 
value given in Table 11.1 or 1 greater; see [GB1]. 

For the coarseness of the complete bigraph, the results of Beineke and 
Guy [BG1] are incomplete and involve many cases. 
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045032078 3 69 

3 7 9 8 4 J 6 4 

Fig. 18.19. Four nonplanar subgraphs of AT, 0. 

Theorem 11.27 The coarseness of the complete bigraph Kmn satisfies 

Z(K3r+it3,+e) = rs + minM jLj j J 

^3r+2.3.) = rs + 
ffl 

for   d - 0 or 1   and   e - 0 or 1. 

when r £ 1. 

£(^3r+2,3s+l)    < 

Ir + s] [2s] [Sr + 16s + 2~|\ 
T'nm—39—\) 

> rs + max | 

(These are equal when r > 2s.) 

<, rs + min 

(11.19) 

for   r £ 2, s £ 7. 

16s + 4" 

£(^3r + 2,3j+2) 

h«*ß] 
39 

for   1 ^ r ^ s. 

The crossing number v(G) of a graph G is the minimum number of 
pairwise intersections of its edges when G is drawn in the plane. Obviously 
v(G) = 0 if and only if G is planar. The exact value of the crossing number 
has not yet been determined for any of the three families of graphs; only 
upper bounds are definitely established. The prevailing conjecture is that 
the bounds in (11.20) and (11.21) are exact. Several authors have deluded 
themselves into thinking they had proved equality. For details, see Guy 
[012]. 
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TaMell.l 

CONJECTURED VALUES FOR i(KJ 

p 13 18 21 24 27 9n + 7 

«*„) 7 15 21 28 36 (9n2 + 13» + 2)/2 

Theorem 11.28 The crossing number of the complete graph satisfies the 
inequality 

^m^¥M (11.20) 

Theorem 11.29 The crossing number of the complete bigraph satisfies the 
inequality 

««-•■>* HMf^l (11.21) 

T. Saaty showed that (11.20) is an equation for p < 10 while D. Kleitman 
proved equality in (11.21) for m < 6. These are the only known values of 
v(Kp) and y(KmJ. For the cubes, no one has even conjectured what is v. 

EXERCISES 

11.1 If a (p,, </,) graph and a (p2, qi) graph are homeomorphic, then 

Pi + <h = Pi + fli. 

11.2 Every plane eulerian graph contains an eulerian trail that never crosses itself. 

11.3 A 3-connected graph with p ^ 6 is nonplanar if and only if no subgraph is 
homeomorphic to K.M. (D. W. Hall [H6]) 

*11.4  Every 4-connected planar graph is hamiltonian. (Tutte [T6]) 

11.5 Every 5-connected planar graph has at least 12 points. Construct one. 

11.6 There is no 6-connected planar graph. 

*11.7   If G is a maximal plane graph in which every triangle bounds a region, then (i is 
hamiltonian. (Whitney [W12]) 

11.8 Not every maximal planar graph is hamiltonian. (Whitney [W12]) 

11.9 If, in a drawing of G in the plane, every pair of nonadjacent edges cross an even 
number of times, then G is planar. 

(R. L. Brooks. C. A. B. Smith. A. H. Stone, and W. T. Tutte) 

11.10  Prove or disprove: every connected nonplanar graph has K5 or K, , as a 
contraction. 
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IE. II   Prove or disprove: A graph is pianar if and only if every subgraph with at most 
six points of degree at least 3 is homeomorphic to a subgraph of K} + P4. 

11.12 Prove or disprove: The cycle basis of a plane graph consisting of the interior 
faces always comes from a tree (cf. Chapter 4). 

*11.13 Every triply connected planar graph; .^s a spanning tree with maximum degree 3. 

(Bamette [B3]) 

15.14 A plane graph is 2-connectcd if and only if its geometric dual is 2-connected. 

11. U Ail wheels are self-dual. 

11.16 The square of a connected graph 6 is outerplanar if and only if G is K3 or a path. 

11.17 The following statement"1 are equivalent: 

(1) The line graph L(G) is outerplanar. 
(2) The maximum degree A(G) < 3 and every point of degree 3 is a cutpoint. 
(3) The total graph T(G) is planar. 

(Chartrand, Geller, and Hedetniemi [CGH2], Behzad [B4J) 

11.18 A graph G has a planar square if and only if A(G) <, 3, every point of degree 3 
is a cutpoint, and all blocks of G wi:h more than 3 points are even cycles. 

(Harary, Karp, and Tutte [HKT1]) 

11.19 A graph G has a planar line graph if and only if i7 is planar, A(G) < 4, and every 
point of degree 4 is a cutpoint. (Sedläcek [S10]) 

11.20 Find the genus and crossing number of the Petersen graph. 

11.21 Prove or disprove: A nonplanar graph G has v = 1 if and only if / - x is 
planar for some line v. 

11.22 The arboricity of every planar graph is at most 3. Construct a planar graph with 
arboricity 3. 

11.23 Every graph is homeomorphic to a graph with arboricity 1 or 2, and hence of 
thickness 1 or 2. 

11.24 The skewness of G is the minimum number of lines whose removal results in a 
planar graph. Find the skewness of 

a) Kr       b) K„,       c) ft,. (A. Kotzig) 

11.25 If G is outerplanar without triangles, tton 

q < (3p - 4)/2. 

11.26 If G is a graph such that for any two points, there are at most two point-disjoint 
paths of length greater than 1 joining them, then 

a) G is planar. 
b) q<2p ~ 3. 
c) If G is nonseparable and p > 5, then there is a unique hamiltonian cycle. 

(Tang [T2]) 

11.27 Embed the cube Qt on the surface of a torus. 
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I 

r 

| 

11 28 The genus y of any graph G with girth g has the lower bound 

>*l$-i}-<>-*] 
♦n.» >iKn,^ = r 2

1J. 

(Beincke and Harary [BH2]) 

(G. Ringel) 

11.30 If G; and G2 are hoineomorphic, then i{Gt) - £(G2)and v(G,) = v(G2). 

11.31 The maximum number of line-disjoint KM subgraphs in KMi, is 

nun 

Thus for all n. *LilJwJJ/ 
«*M> 

R 

'   3 

r« « 
[3 3 

m 
3 

(Beineke and Guy [BG1]) 



CHAPTER 12 

COLORABILITY 

Suppose there's a brown calf and a big brown dog, and an artist 
is making a picture of them ... He has got to paint them so you can 

tell them apart the minute you look at them, hain't he? Of course. 

Weil, then, do you want him to go and paint both of them brown? 

Certainly you don't. He paints one of them blue, und then you can't 

make no mistake. It's just the same with maps. 

That's why they make every state a different color... 
SAMUEL CLEMENS (MARK TWAIN) 

The Four Color Conjecture (4CC) can truly be renamed the "Four Color 
Disease" for it exhibits so many properties of an infection. It is highly 
contagious. Some cases are benign and others malignant or chronic. There 
is no known vaccine, but men with a sufficiently strong constitution have 
achieved life-long immunity after a mild bout. It is recurrent and has been 
known to cause exquisite pain although there are no terminal cases on record. 
At least one case of the disease was transmitted from father to son, so it 
may be hereditary. 

It is this problem which has stimulated results on colorability of graphs, 
which have led in turn to the investigation of several other areas of graph 
theory. After describing the coloring of a graph and its chromatic number, 
the stage is set for a proof of the Five Color Theorem and a discussion of 
the Four Color Conjecture. We then introduce uniquely colorable graphs, 
which can only be colored in one way, and critical graphs, which are minimal 
with respect to coloring. The intimate relationship between homomorphisms 
and colorings is investigated. The chapter concludes with a development 
of the properties of the chromatic polynomial. 

THE CHROMATIC NUMBER 

A coloring of a graph is an assignment of colors to its points so that no two 
adjacent points have the same color. The set of all points with any one 
color is independent and is called a color class. An n-coloring of a graph G 
uses n colors; it thereby partitions V into n color classes. The chromatic 

126 

L 
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I*- 

♦ 2 

3 

•>2 

I 

<4 

*2 

(a) (b) (c) 

Fig. 12.1. Three colorings of a graph. 

number x(G) is defined as the minimum n for which G has an «-coloring. 
A graph G is n-colorable if x(G) ^ n and is n-chromatic i(/[G) = n. 

Since G obviously has a p-coloring and a /(G)-coloring, it must also 
have an «-coloring whenever x(G) < n < p. The graph of Fig. 12.1 is 
2-chromatic; «-colorings for« = 2, 3, 4 are displayed, with positive integers 
designating the colors. 

The chromatic numbers of some of the familiar graphs are easily 
determined, namely x(KP) - P, ÜKP - x) = p - 1, x(Kp) = 1, xiKm>ll) = 2, 
X(C2H) = 2, x(Ci*+1) = 3, and for any nontrivial tree T, x(T) = 2. 

Obviously, a graph is 1-chromatic if and only if it is totally disconnected. 
A characterization of bicolorable (2-colorable) graphs was given by König 
[K10, p. 170], as Theorem 2.4 already indicates. 

Theorem 12.1 A graph is bicolorable if and only if it has no odd cycles. 

It is likely to remain an unsolved problem to provide a characterization 
of n-colorable graphs for w ^ 3, since such a criterion even for« = 3 would 
help to settle the 4CC. No convenient method is known for determining the 
chromatic number of an arbitrary graph. However, there are several known 
bounds for x(G) in terms of various other invariants. One obvious lower 
bound is the number of points in a largest complete subgraph of G. We now 
consider upper bounds, the first of which is due to Szekeres and Wilf [SW1]. 

Theorem 12.2  For any graph G, 

X(G) £ 1 + max S(G'), (12.1) 

where the maximum is taken over all induced subgraphs G' of G. 

Proof. The result is obvious for totally disconnected graphs. Let G be an arbi- 
trary n-chromatic graph, n ^ 2. Let //be any smallest induced subgraph such 
that^(//) = n. The graph //therefore has the property that #(// — v) = n — 1 
for all its points v. It follows that deg i? ^ « - 1 so that S(H) ^ n - 1 and 
hence 

n - 1 < b\H) <, max d\H') < max S(G'\ 

the first maximum taken over all induced subgraphs //' of// and the second 

- 
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over all induced subgraphs G' of G. This implies that 

X(G) r= n < 1 + max <S(G'). 

Corollary 12.2(a) For any graph G, the chromatic number is at most one 
greater than the maximum degree, 

X £ I + A. (12.2) 

Brooks [B16] showed, however, that this bound can often be improved. 

Theorem 12.3 If A(G) = n, then G is n-colorable unless 

i) n = 2 and G has a component which is an odd cycle, or 

H) n > 2 and Kll+1 is a component of G. 

A lower bound, noted in Berge [B12, p. 34] and Ore [05, p. 225], and 
an upper bound, Harary and Hedetniemi [HH1], involve the point inde- 
pendence number ß0 of G. 

Theorem 12.4 For any graph G, 

plh <X^P-ßo+l- (12.3) 

Prcof. tfx(G) = n, then V can be partitioned into n color classes Vu V2, ■ • ■, 
V„, each of which, as noted above, is an independent set of points. If | V{\ = p„ 
then every pt < ß0 so that p = I p, < nß0. 

To verify the upper bound, let S be a maximal independent set containing 
ß0 points. It is clear that *(G - S) > x(G) - 1. Since G - S has p - ßQ 

points. v(G - S) < p - ß0. Therefore, x(G) <, x(G ~ $) + 1 ^ P - ßo + I- 

None of the bounds presented here is particularly good in the sense 
that for any bound and for every positive integer n, there exists a graph G 
such that x(G) differs from the bound by more than n. 

From the discussion thus far, one may very well be led to believe that 
all graphs with large chromatic number have large cliques and hence contain 
triangles. In fact, Dirac [D7] asked if there exists a graph with no triangles 
but arbitrarily high chromatic number. This was answered affirmatively 
and independently by Blanche Descartes* [D3], Mycielski [Ml9], and 
Zykov [21]. Their result was extended by Kelly and Kelly [KK1], who 
proved that for all n > 2, there exists an n-chromatic graph whose girth 
exceeds 5. In the same paper, they conjectured the following theorem, 
which was first proved by Erdös [E2] using a probabilistic argument and 
later by Loväsz [L5] constructively. 

* This so-called lady is actually a nonempty subset of JBrooks, Smith, Stone, Tutte|; in this 
case {Tutte}. 
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Theorem 12.5  For every two pt^sitive integers m and w, there exists an n- 
chromatic graph whose girth exceeds m. 

The number x - Jf(G) ~ X$) *s tnc minimum number of subsets which 
partition the point set of G so that each subset induces a complete subgraph 
of G. It is clear that jj(G) ^ ß0(G). Bounds on the sum and product of the 
chromatic numbers of a graph and its complement were developed by 
Nordhaus and Gaddum [NG1]. 

Theorem 12.6  For any graph G, the sum and product of x and X satisfy the 
inequalities: 

2Jp<y + x<p+ I 

p < XX < I -y- ) • 

(12.4) 

(12.5) 

Proof. Let G be «-chromatic and let Vx, K2, • • *, Vn be the color classes of G, 
where | V,| = p,. Then of course I p( = p and max p, 2: p/n. Since each V( 

induces a complete subgraph of G, x ^ max p, > p/w so that xx ^ P- Since 
the geometric mean of two positive numbers never exceeds their arithmetic 

mean, it follows that x + X ^ 2v/p. This establishes both lower bounds. 
To show that x + X ^ P + U we use induction on p, noting that 

equality holds when p = 1. We thus assume that x(G) + x(G) < P for all 
graphs G having p - 1 points. Let H and H be complementary graphs 
with p points, and let u be a point of H. Then G = H - v and G — H — v 
are complementary graphs with p - 1 points. Let the degree of v in H 
be J so that the degree of r in r7 is p - </ - 1. It is obvious that 

If either 
X(H) < x(G) + I       and       fttf) < *(G) f I. 

X(H) < x(G) + 1        or       x(H) < *(G) + I, 

then x(H) + ]t(H) < p + 1. Suppose then that #(H) = *(G) + I and 
X(/Y) - %G) + I. This implies that the removal of v from W, producing G, 
decreases the chromatic number so that d > #(G). Similarly 

p - d - 1 > jf(G); 

thus x(G) + x{G) < p — 1. Therefore, we always have 

X(H) + x(H) < p + I. 

Finally, applying the inequality 4xx ^ ix + X)1 wc see that 

xx < UP + my. 
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THE FIVE COLOR THEOREM 

Although it is not known whether all planar graphs are 4-colorable, they 
are certainly 5-colorable. In this section we present a proof of this famous 
result due to Heawood [H38]. 

Theorem 12.7 Every planar graph is 5-colorable. 

Proof. We proceed by induction on the number p of points. For any planar 
graph having p < 5 points, the result follows trivially since the graph is 
p-colorable. 

As the inductive hypothesis we assume that all planar graphs with p 
points, p > 5, are 5-colorable. Let G be a plane graph with p + 1 vertices. 
By Corollary 11.1(d), G contains a vertex v of degree 5 or less. By hypothesis, 
the plane graph G - v is 5-colorable. 

Consider an assignment of colors to the vertices of G - v so that a 
5-coloring results, where the colors are denoted by c„ 1 ^ i < 5. Certainly, 
if some color, say cjf is not used in the coloring of the vertices adjacent with 
v, then by assigning the color c, to v, a 5-coloring of G results. 

This leaves only the case to consider in which deg v = 5 and five colors 
are used for the vertices of G adjacent with v. Permute the colors, if necessary, 
so that the vertices colored c„ c2, c3, c4, and cs are arranged cyclically 
about v. Now label the vertex adjacent with v and colored c, by vt, 1 £ i £ 5 
(see Fig. 12.2). 

Ü,' »V, 

Fig. 12.2.  A step in the proof of the Five Color Theorem. 

Let G, j denote the subgraph of G - v induced by those vertices colored 
c, or c3. Ift», and v3 belong to different components of G,3, then a 5-coloring 
of G - v may be accomplished by interchanging the colors of the vertices 
in the component of G,3 containing vv In this 5-coloring, however, no 
vertex adjacent with v is colored c„ so by coloring v with the color cu a 
5-coloring of G results. 

If, on the other hand, i;, and v3 belong to the same component of G,3, 
then there exists in G a path between i>, and v3 all of whose vertices are 
colored c, or c3. This path together with the path vxw3 produces a cycle 
which necessarily encloses the vertex v2 or both the vertices i>4 and v5. In any 
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case, there exists no path joining v2 and v4, all of whose vertices are colored c2 

or c4. Hence, if we let G24 denote the subgraph of G - v induced by the 
vertices colored c2 or c4, then v2 and v4 belong to different components 
of Gu. Thus if we interchange colors of the vertices in the component of 
G2A containing t>2, a 5-coloring of G - v is produced in which no vertex 
adjacent with v is colored c2. We may then obtain a 5-coIoring of G by 
assigning to v the color c2. 

THE FOUR COLOR CONJECTURE 

In Chapter 1 we mentioned that the 4CC served as a catalyst for graph 
theory through attempts to settle it. We now present a graph-theoretic 
discussion of this infamous problem. A coloring of a plane map G is an 
assignment of colors to the regions of G so that no two adjacent regions are 
assigned the same color. The map G is said to be n-colorable if there is a 
coloring of G which uses n or fewer colors. The original conjecture as 
described in Chapter 1 asserts that every plane map is 4-colorable. 

Four Color Conjecture (4CC)  Every planar graph is 4-coiorablc. 

We emphasize that coloring a graph always refers to coloring its vertices 
while coloring a map indicates that it is the regions which are colored! 
Thus the conjecture that every plane map is 4-colorable is in fact equivalent 
to this statement of the Four Color Conjecture. To see this, assume the 
4CC holds and let G be any plane map. Let G* be the underlying graph of 
the geometric dual of G. Since two regions of G are adjacent if and only 
if the corresponding vertices of G* are adjacent, map G is 4-colorable 
because graph G* is 4-colorable. 

Conversely, assume that every plane map is 4-colorable and let H be 
any planar graph. Without loss of generality, we suppose H is a connected 
plane graph. Let //* be the dual of //, so drawn that each region of H* 
encloses precisely one vertex of H. The connected plane pseudograph H* 
can be converted into a plane graph //' by introducing two vertices into each 
loop of//* and adding a new vertex into each edge in a set of multiple edges. 
The 4-colorability of //' now implies that H is 4-colorable, completing the 
verification of the equivalence. 

If the 4CC is ever proved, the result will be best possible, for it is easy 
to give examples of planar graphs which are 4-chromatic, such as K4 and 
W6(see Fig. 12.3). 

Each of the graphs K4 and W„ has mure than 3 triangles, which is 
necessary according to a theorem of Grünbaum [G9]. 

Theorem 12.8 Every planar graph with fewer than << **"'   igles is 3-coIorable. 

From this the following corollary is immediate; i! was originally proved 
by Grötzsch [G8]. 
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W, 

Flg. 12.3.  Two 4-chromatic planar graphs. 

Corollary 12.8(a)  Every planar graph without triangles is 3-colorable. 

Any plane map which requires 5 colors will necessarily contain a large 
number of regions, for Ore and Stemple [OS1] showed that all plane maps 
with up to 39 regions are 4-colorable, increasing by 4 regions the earlier 
result of this kind.* All evidence indicates that the Four Color Conjecture 
is true. However, attempts to prove the 4CC using the plane map formulation 
can be directed at a special class of plane maps, as we shall now see. 

> 

Theorem 12.9 The Four Color Conjecture holds if and only if every cubic 
bridgeless plane map is 4-colorable. 

Proof. We have already seen that every plane map is 4-colorable if and 
only if the 4CC holds. This is also equivalent to the statement that every 
bridgeless plane map is 4-colorable since the elementary contraction of 
identifying the endvertices of a bridge affects neither the number of regions 
in the map nor the adjacency of any of the regions. 

Certainly, if every bridgeless plane map is 4-colorable, then every cubic 
bridgeless plane map is 4-colorable. In order to verify the converse, let G 
be a bridgeless plane map and assume all cubic bridgeless plane maps are 
4-colorable. Since G is bridgeless, it has no endvertices. If G contains a 
vertex v of degree 2 incident with edges y and z, we subdivide y and z, denoting 
the subdivision vertices by u and w, respectively. We now remove i\ identify u 
with one of the vertices of degree 2 in a copy of the graph K4 - x and identify 
w with the other vertex of degree 2 in K4 - x. Observe that each new 
vertex added has degree 3 (see Fig. 12.4). If G contains a vertex v0 of degree 
n > 4 incident with edges x,, x2, • • •, xm arranged cyclically about !'0, we 
subdivide each x, producing a new vertex vt. We then remove v0 and add 
the new edges r,r2, v2v3, • • •, rB_,cM, ty,. Again each ofthe vertices so added 
has degree 3. 

Denote the resulting bridgeless cubic plane map by G\ which, by 
hypothesis, is 4-colorable.   If for each vertex v of G with deg v ^ 3, we 

* Finck and Sachs[FSI] proved that every plane graph with at most 2! triangles is 4-colorable. 
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After 

deg r=2 

Before 

deg i!(i=«>4 

Fig. 12.4.  Conversion of a graph into a cubic graph. 

identify all the newly added vertices associated with r in the formation of 
G\ we arrive at G once again. Thus let there be given a 4-coloring of G', 
The aforementioned contraction of G' into G induces an m-coloring of G, 
m < 4, which completes the proof. 

Another interesting equivalence was proved by Whitney [W16]. 

Theorem 12.10 The Four Color Conjecture holds if and only if every 
hamiltonian planar graph is 4-colorabie. 

As there are equivalents of the Four Color Conjecture involving the 
coloring of regions, so too is there an equivalent of the 4CC concerned 
with the coloring of lines. 

A line-coloring of a graph G is an assignment of colors to its lines so that 
no two adjacent lines are assigned the same color. An n-line-coloring of G 
is a line-coloring of G which uses exactly n colors. The line-chromatic 
number* /(G) is the minimum n for which G has an «-line-coloring. It follows 
that for any graph G which is not totally disconnected, x'(G) = x(L(G)). 
Tight bounds on the line-chromatic number were obtained** by Vizing [V4]. 

Theorem 12.11 For any graph G, the line-chromatic number satisfies the 
inequalities: 

A < /' < A + 1. (12.6) 

* Sometimes called the chromatic index. 

** A proof in English can be found in Ore [07, p. 248]. 
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X'=A X'=A+! 

Fig. 12.5.  The two values for the line-chromatic number. 

The two possible values for x'(G) are illustrated in Fig. 12.5. It is not 
known in general for which graphs %' = A. 

Theorem 12.12 The Four Color Conjecture is true if and only if x'(G) = 3 
for every bridgeless cubic planar graph G. 

Proof. We have already shown in Theorem 12.9 that the 4CC is equivalent 
to the statement that every cubic bridgeless plane map is 4-colorable. We 
show now that a cubic bridgeless plane map G is 4-colorable if and only 
if*'(G) = 3. 

First we assume that G is a bridgeless, cubic plane map which is 4- 
colorable. Without loss of generality, we take G to be connected and therefore 
a plane map which, by hypothesis, is 4-colorable. For the set of colors we 
select the elements of the Klein four-group F, where addition in F is defined 
by kt + kt = k0 and kt + k2 - k3, with k0 the identity element. 

Let there be given a 4-coloring of the map G. We define the color of an 
edge to be the sum of the colors of the two distinct regions which are incident 
with the edge. It is now immediate that the edges are colored with elements 
of the set {ku k2, k3} and that no two adjacent edges are assigned the same 
color; thus x'{G) = 3. 

Conversely, let G be a bridgeless cubic plane graph with /(G) = 3, 
and color its edges with the three nonzero elements of F. Select some region 
R0 and assign to it the color k0. To any other region R of G, we assign a 
color in the following manner. Let C be any curve in the plane joining the 
interior of R0 with the interior of JR such that C does not pass through a 
point of G. We then define the color of R to be the sum of the colors of those 
edges which intersect C. 

That the colors of the regions are well-defined depends on the fact that 
the sum of the colors of the edges which intersect any simple closed curve 
not passing through a vertex of G is k0. Let S be such a curve, and let 
c,, c2, ■ • ■, c„ be the colors of the edges which intersect S. In addition, let 
du d2,--,dm be the colors of those edges interior to S. Observe that if 
c(v) denotes the sum of the colors of the 3 edges incident with a vertex v, 
then c(u) = k0. Hence for all vertices v interior to S, Z c{v) = k0. On the 
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other hand, we also have 

£ dv) m c, + c2 + • • • + c, + 2{dl + d2 + --- + dj 
= ct + c2 + • • • + cn 

since every element off is self-inverse. Thus c, + c2 + • • • + c„ = k0. It 
is now a routine matter to show that this constitutes a 4-coloring of the regions 
of G, completing the proof. 

Since each line color class resulting from an «-line coloring of a regular 
graph G of degree n is a 1-factor of G, the preceding result produces another 
equivalent of the Four Color Conjecture. 

Corollary 12.12(a) The Four Color Conjecture holds if and only if every 
bridgeless, cubic planar graph is 1-factorable. 

Theorem 12.12 has been generalized in terms of factorization (see Ore 
[07, p. 103]). 

Theorem 12.13 A necessary and sufficient condition that a connected planar 
map G be 4-colorable is that G be the sum of three subgraphs G „ G2, G3 such 
that for each point v, the number of lines of each Gt incident with v are all 
even or all odd. 

Although it is the 4CC which has received the preponderance of publicity, 
there are several other conjectures dealing with coloring. One of the most 
interesting of these involves contractions and is due to Hadwiger [HI]. 

Hadwiger's Conjecture. 
toK.. 

Every connected «-chromatic graph is contractible 

Not surprisingly, this conjecture is related to the 4CC. Hadwiger's 
Conjecture is known to be true for n <, 4, a result of Dirac [D5]. For n = 5, 
this conjecture states that every 5-chromatic graph G is contractible to K5. 
By Theorem 11.14, every such graph G is necessarily nonplanar. Thus 
Hadwiger's Conjecture for n = 5 implies the 4CC. The converse was 
established by Wagner [W3]. 

Theorem 12.14 Hadwiger's Conjecture for n = 5 is equivalent to the Four 
Color Conjecture. 

THE HEAWOOD MAP-COLORING THEOREM 

Let S„ be the orientable surface of genus n; thus, S„ is topologically equivalent 
to a sphere with n handles. The chromatic number ofSm denoted x(S„), is the 
maximum chromatic number among all graphs which can be embedded 
on S„. The surface S0 is simply the sphere and the determination of x(S0) 
is the problem we have already encountered on several occasions. The Four 
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Color Conjecture states that x(S0) = 4 although, of course, we know only 
(by Theorem 12.7) that x(S0) is 4 or 5. 

For the torus, Heawood [H38] was* able to prove that x(S\) = 7. The 
inequality #(S,) > 7 follows from the fact that it is possible to embed Kn 

on the torus. This is shown in Fig. 11.18. The equality x(Si) = 7 comes from 
the fact that Heawood was also able to prove (see the proof of Theorem 12.15 
below) that the chromatic number of the orientable surface of positive 
genus n has the upper bound 

^p + yiT^PJ    (n>0) (127) 

For « =s 1, we have x(S,) < 7, so that x(S\) = 7. 
Heawood, who found the error in Kempe's "proof of the Four Color 

Conjecture, was himself not infallible. He believed that he had proved 
equality in his formula, but just one year later, Heffter [H40] pointed out 
errors of omission in Heawood's arguments resulting in only the inequality 
(12.7). Heffter did prove equality for 0 < n < 6. Eventually, the statement 
that equality holds in Heawood's formula became known as the Heawood 
Map-Coloring Conjecture. We now show that when Ringel and Youngs 
proved that y{Kp) = {(p - 3Xp - 4)/12}, Theorem 11.18, they settled this 
conjecture. 

Theorem 12.15 (Heawood Map-Coloring Theorem). For every positive 
integer n, the chromatic number of the orientable surface of genus n is 
given by 

X(S,)-|W| + 48W1      1-0). U2.8) 
, .  p  +  y/l+48/ll 

Proof. We first prove inequality (12.7). Let G be a (p, q) graph embedded 
on S„. We may assume G is a triangulation, since any graph can be aug- 
mented to a triangulation of the same genus by adding edges, without 
reducing %. If d is the average degree of the vertices of G, then p, q, and r (the 
number of regions) are related by the equations 

dp = 2q = 3r. (12.9) 

Solving for q and r in terms of p and using Euler's equation (11.4), we obtain 

d= 12(n - l)/p + 6. (12.10) 

Since d < p - 1, this gives the inequality 

p - 1 > 12(n - l)/p + 6. (12.11) 

Solving for p and taking the positive root, we obtain 

P> 
r 7 + yr+ gwi 

(12.12) 
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Let H(n) be the right-hand side of (12.8). Then we must show that 
//(«) colors are sufficient to color the points of G. Clearly if p = H(n) we 
have enough colors. If, on the other hand, p > //(«), we substitute H(n) for 
p in (12.10), to obtain the inequality 

d < 12(« - 1 )/H(n) + 6 = H(n) - 1, (12.13) 

with the latter equality obtained by routine algebraic manipulation. Thus 
when p > Hin), there is a point v of degree at most H(n) - 2. Identify v 
and any adjacent point (by an elementary contraction) to obtain a new 
graph G'. If p' = p - 1 = H(n), then G' can be colored in H(n) colors. 
If p > H(n), repeat the argument. Eventually an ff(w)-colorable graph will 
be obtained. It is then easy to see that the coloring of this graph induces a 
coloring of the preceding one in H(n) colors, and so forth, so that G itself 
is //(«)-colorable. 

The other half of the theorem is the difficult part, but Ringel and Youngs 
have provided the means. If ihe complete graph Kp can be embedded in 
S„ then by equation (11.9), 

.ZW-fezM^M. (12.14) 

Since the quantity in braces increases by less than one for each unit increase 
in p, for each « there will be a greatest value of p which gives equality in 
(12.14). Then solving (12.14) for p in terms of « gives 

["7 + /l + 48«! 
(12.15) 

Since %{Kp) = p, we have found a graph with genus « and chromatic 
number equal to H(n). This shows that H(ri) is a lower bound for x(S„) and 
completes the proof. 

Note that (12.8) specialized to n = 0 is precisely the 4CC. 

UNIQUELY COLORABLE GRAPHS 

Let G be a labeled graph. Any x(G)-coloring of G induces a partition of the 
point set of G into %(G) color classes. If %{G) = n and every «-coloring of G 
induces the same partition of V, then G is called uniquely n-colorable or 
simply uniquely colorable. The graph G of Fig. 12.6 is uniquely 3-colorable 
since every 3-coloring of G has the partition {«,}, {u2, uA}, {u3, u5} while 
the pentagon is not uniquely 3-colorable; indeed, five different partitions 
of its point set are possible. 

We begin with a few elementary observations concerning uniquely 
colorable graphs. First, in any «-coloring of a uniquely «-colorable graph G, 
every point t; of G is adjacent with at least one point of every color different 
from that assigned to y; for otherwise a different «coloring of G could be 
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«4 «S 

Fig. 12.6. A uniquely colorable graph. 

obtained by recoloring v. This further implies that b\G) 2: n — 1. A 
necessary condition for a graph to be uniquely colorable was found by 
Cartwright and Harary [CH2]. 

Theorem 12.16 In the «-coloring of a uniquely «-colorable graph, the 
subgraph induced by the union of any two color classes is connected. 

Proof. Consider an «-coloring of a uniquely «-colorable graph G, and 
suppose there exist two color classes of G, say C, and C2, such that the 
subgraph S of G induced by C, u C2 is disconnected. Let S, and S2 be two 
components of S. From our earlier remarks, each of 5! and S2 must contain 
points of both C1 and C2. An «-coloring different from the given one can 
now be obtained if the color of the points in C1 n St is interchanged with 
the color of the points in C2 n S,. This implies that G is not uniquely 
«-colorable, which is a contradiction. 

The converse of Theorem 12.16 is not true, however. This can be seen 
with the aid of the 3-chromatic graph G of Fig. 12.7. It has the property 
that in any 3-coloring, the subgraph induced by the union of any 2 color 
classes is connected, but u is not uniquely 3-colorable. 

From Theorem 12.16, it now follows tint every uniquely «-colorable 
graph, « > 2, is connected. However, a stronger result can be given, due 
to Chartrand and Geller [CGI]. 

Theorem 12.17 Every uniquely «-colorable graph is (« - l)-connected. 

Proof. Let there be given an «-coloring of a uniquely «-colorable graph 
G. UG is complete, it is necessarily K„ and so is (« - l)-connected. Assume 

G. 

Fig. 12.7.  A counterexample to the converse of Theorem 12.16. 
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that G is neither complete nor (n - l)-connected so that there exists a set U 
of n - 2 points whose removal disconnects G. Thus, there are at least two 
distinct colors, say Ct and C2, not assigned to any point of U. By Theorem 
12.16, a point colored C, is connected to any point colored C2 by a path all 
of whose points are colored Ct or C2. Hence, the set of points of G colored 
C, or C2 lies within the same component of G - U, say Gt. Another n- 
coloring of G can therefore be obtained by taking any point of G - U which 
is not in G, and recoioring it either C, or C2. This contradicts the hypothesis 
that G is uniquely n-cc'arable; thus G is (n — l)-connected. 

Since the union of any k color classes of a uniquely n-colorable graph, 
2 < k < n, induces a uniquely fc-colorable graph, we arrive at the following 
consequence. 

Corollary 12.17(a) In any «-coloring of a uniquely n-colorable graph, the 
subgraph induced by the union of any k color classes, 2 < k < n, is 
{k - 1 Connected. 

It is easy to give examples of 3-chromatic graphs containing no triangles; 
indeed we have seen in Theorem 12.5 that for any n, there exist n-chromatic 
graphs with no triangles and hence no subgraphs isomorphic to K„. In this 
connection, a stronger result was obtained by Harary, Hedetniemi, and 
Robinson [HHR1]. 

Theorem 12.18 For all n > 3, there is a uniquely n-colorable graph which 
contains no subgraph isomorphic to K„. 

For n = 3, the graph G of Fig. 12.8 illustrates the theorem. 
Naturally, a graph is uniquely 1-colorable if and only if it is 1-colorable, 

that is, totally disconnected. It is also well known that a graph G is uniquely 
2-colorable if and only if G is 2-chromatic and connected. As might be 
expected, the information concerning uniquely n-colorable graphs, n > 3, is 

Fig. 12.8.  A uniquely 3-colorable graph having no triangles. 
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very sparse. In the case where the graphs are planar, however, more can be 
said, although in view of the Five Color Theorem, we need to consider only 
the values 3 < n <, 5. The results in this area are due to Chartrand and 
Geller [CGI]. 

Theorem 12.19 Let G be a 3-chromatic plane graph. If G contains a triangle 
T such that for each vertex v of G there is a sequence T, T,, T2, • • •, Tm of 
triangles with v in Tm such that consecutive triangles in the sequence have 
an edge in common, then G is uniquely 3-colorable. 

The next result is now immediate. 

Corollary 12.19(a) If a 2-connected 3-chromatic plane graph G has at most 
one region which is not a triangle, then G is uniquely 3-colorable. 

The con verse of Corollary 12.19(a) is not true, for a uniquely 3-colorable 
planar graph may have more than one region which is not a triangle; see 
Fig. 12.9. However, every uniquely 3-colorable planar graph must contain 
triangles. 

Fig. 12.9.  A uniquely 3-colorable planar graph. 

Theorem 12.20 If G is a uniquely 3-colorable planar graph with at least 4 
points, then G contains at least two triangles. 

In the case of uniquely 4-colorable planar graphs, the situation is 
particularly simple. 

Theorem 12.21  Every uniquely 4-colorable planar graph is maximal planar. 

Proof. Let there be given a 4-coloring of a uniquely 4-colorable planar graph 
G with the color classes denoted by V,, 1 < i < 4, where |K| = />,. Since the 
subgraph induced by Vf u Vj, i / y, is connected, G must have at least 
£(/>i + Pj - 1) nnes, 1 < i < j < 4. However, this sum is obviously 
3p - 6. Hence q > 3p - 6 and so by Corollary 11.1(b), G is maximal 
planar. 

Although the existence of a 5-colorable planar graph is still open, a 
result of Hedetniemi given in [CGI] settles the problem for unique 5-color- 
ability; its proof is similar to that of the preceding theorem. 

Theorem 12.22 No planar graph is uniquely 5-colorable. 
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CRITICAL GRAPHS 

If the Four Color Conjecture is not true, then there must exist a smallest 
5-chiomaf ic planar graph. Such a graph G has the property that for every 
point v, the subgraph G - v is 4-chromatic. Thus we have a natural approach 
to a possible proof of the 4CC >n its contrapof iiive formulation. This suggests 
the basic problem of investigating such 5-chromatic graphs G or, more 
generally, those «-chromatic graphs G with the property that x(G - v) = n - 1 
for all points v of G. 

Following Dirac [D5], a graph G is called critical* if x(G - v) < x(G) 
for all points v; if x(G) = n, then G is n-critical. Of course, if G is critical, then 
X(G - v) = x(G) - 1 for every point v. 

Obviously, no graph is 1 -critical. The only 2-critical graph is K2, while 
the only 3-critical graphs are the odd cycles. For « > 4, the «-critical 
graphs have not been characterized. 

Ordinarily, it is extremely difficult to determine whether a given graph 
is critical; however, every «-chromatic graph, n > 2, contains an «-critical 
subgraph. In fact, if H is any smallest induced subgraph of G such that 
X{H) = x{G\ then H is critical 

It is clear that every critical graph G is connected; furthermore, since 
X{G) = max x(B) over all blocks B of G, it follows that G must be a block. 
This is only one of several properties which critical graphs enjoy. 

The next statement has already been demonstrated within the proof 
of Theorem 12.2. 

Theorem 12.23 If G is an «-critical graph, then 6(G) > « - 1. 

We now make an observation on the removal of points. 

Theorem 12.24 No critical graph can be separated by a complete subgraph. 

Corollary 12.24(a) Every cutset of points of a critical graph contains two 
nonadjaceni points. 

Every complete graph is critical; indeed for U c V(Kp\ x(Kp - U) = 
p - \U\. For any other critical graph, however, it is always possible to 
remove more than one point without decreasing the chromatic number by 
more than one; in fact, if S is any independent set of points of an «-critical 
graph, then x(G - S) = n - 1. This further implies that if« and v are any 
two points of an «-critical graph G which is not complete, there exists an 
«-coloring of G such that u and v are in the same color class and an «-coloring 
of G such that u and v are in different color classes. 

* If other kinds of critical graphs are present, these should be called color-critical. 
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One area of research on critical graphs deals with cycle length, in partic- 
ular with circumference and girth. By Theorem 12.23 and Corollary 7.3(b), if 
6 is an «-critical graph with p points such that p ^ 2n - 1, then G is 
hamiltonian. More generally, Dirac [D6] proved the following result. 

Theorem 12.25 If G is an n-critical graph, n > 3, then either G is hamiltonian 
or the circumference of G is at least 2n - 2. 

Dirac [D6] once conjectured that every 4-critical graph is hamiltonian; 
however, Kelly and Kelly [KK1] showed this conjecture is not true. Dirac 
[D6] also conjectured that for all m and n, n £ 3, there exists a sufficiently 
large value of p such that all n-critical graphs with at least p points have 
circumference exceeding m. Kelly and Kelly proved this to be true. It is a 
consequence of Theorem 12.S that for all m and n, there exists an n-critical 
graph whose girth exceeds m. 

A critical graph G may have the added property that for any line x of G, 
X(G - x) = jf(G) - 1; in such a case, G is called line-critical, and if x{G) = n, 
G is n-line-critical. Although every line-critical graph is necessarily critical, 
the converse does not hold. For example, the graph G of Fig. 12.10 is 4- 
critical but is not line-critical since x(G - x) = 4. 

C: 

Fig. 12.10.  A critical graph which is not line-critical. 

Thus every property of critical graphs is also possessed by line-critical 
graphs; but in some instances more can be said about the latter. 

Theorem 12.26 If G is a connected n-chromatic graph containing exactly one 
point of degree exceeding n — 1, then G is n-line-critical. 

Proof. Let x be any line of G, and consider G — x. Certainly, S(G — x) ^ 
n - 2, and, moreover, for every induced subgraph G' of G - x,b\G') ^ n — 2. 
Thus by Theorem 12.2, x(G - x) <, n - 1, implying that x(G - x) - n - 1 
and that G is n-line-critical. 

According to Theorem 12.23, if G is an n-critical graph, then 2q > 
(n - l)p. For line-critical graphs, however, Dirac [D7] improved this 
result. 

Theorem 12.27 If G is an n-line-critical graph, n > 4, which is not complete, 
then 

2q^(n - l)p + n - 3. 
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HOMOMORPHISMS 

It is convenient to consider only connected graphs in this section. An 
elementary homomorphism of G is an identification of two nonadjacent 
points. A homomorphism of G is a sequence of elementary homomorphisms. 
If G' is the graph resulting from a homomorphism <f> of G we can consider <f> 
as a function from V onto V such that if u and v are adjacent in G, then <£u 
and <pv are adjacent in G'. Note that every line of G' must come from some 
line of G, that is, if u' and u' are adjacent in G', then there are two adjacent 
points u and v in G such that <pu = u' and ^v = v'. We say that <f> is a /iomo- 
morpfiismofGonroG',thatG'isa/tomomorpAici>mi9eofG,andwriteG' = 0G. 
Thus in particular every isomorphism is a homomorphism. The path 
P4 has just 4 homomorphic images, shown in Fig. 12.11. 

A 
Fig. 12.11. The homomorphic images of path P4 

A homomorphism <p of G is complete of order n if <f>G = K„. Note that 
any homomorphism <f> of G onto K„ corresponds to an «-coloring of G since 
the points of K„ can be regarded as colors and by definition of homomorphism 
no two points of G with the same color are adjacent. Each coloring defined by 
a complete homomorphism has the property that for any two colors, there 
are adjacent points u and v of G colored with these colors. In this case we have 
a complete coloring. Figure 12.12 shows a graph with complete colorings 
of order 3 and 4, where colors are indicated by positive integers. Obviously 
the smallest order of all complete homomorphisms of G must be x(G). 

The next theorem [HHP1] generalizes an earlier result due to Hajos 
[H3] which appears as its corollary. 

Theorem 12.28 For any graph G and any elementary homomorphism e of G, 

Z(G) <; x(eG) <; 1 + X(G). (12.16) 

j " 

3 2 4 4 

Fig. 12.12. Two complete colorings of a graph. 
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Proof. Let £ be the elementary homomorphism of G which identifies the 
nonadjacent points u and v. Then any coloring of eG yields a coloring of G 
when the same color is used for u and v, so x(G) <, #(eG). On the other hand, 
a coloring of eG is obtained from a coloring of G when the new point is given 
a color different from all those used in coloring G, so that jtfeG) < 1 + %(G). 

Corollary 12.28(a) For any homomorphism <j> of G, x(G) <, x(tj>G). 

It is now natural to consider the maximum order of all complete homo- 
morphisms of G. This invariant is called the achromatic number and is denoted 
\ji(G). Since G can be colored with pcoIors.it is obvious that %(G) <, \I?{G) < p. 
Neither of these inequalities is a particularly good bound for ij/. 

Theorem 12.29 For any graph G and any elementary homomorphism e of G, 

\j/(G) - 2 < <J/(eG) <, \ff(G). (12.17) 

The example in Fig. 12.13 shows that the lower bound can be attained, 
and hence is best possible. It is easy to verify that i//(G) = 5 while if/(eG) = 3. 

tG: 

Fig. 12.13.  A homomorphism which decreases \ji by 2. 

The next result, called the Homomorphism Interpolation Theorem in 
[HHP1] depends quite strongly on the bounds given in (12.16). 

Theorem 12.30 For any graph G and any integer n between % and $, there is a 
complete homomorphism (and hence a complete coloring) of G of order n. 

Proof. Let i//(G) = t and let 0 be a homomorphism of G onto Kt. If 0 is 
just an isomorphism, then G is K, and x(G) = if/(G). Otherwise, we can write 
0 - £m"' e2 ei where each e, is an elementary homomorphism. LetG, = etG, 
G2 = s2Gu • • •, K, = Gm - cmGm_,. We know from (12.16) that x(Gl +,) < 
X(Gi) + 1 for each i. Since x(GJ = i//(G), it follows that for each n with 
X{G) < n <: t = *J/(G), there exists one graph in the sequence (G,), say Gs, 
with chromatic number n. But then Gs has a complete homomorphism 4>' 
of order n, and so <f>'es ■ ■ ■ e2 £j is a homomorphism of G onto Kn. 

Many upper bounds for /(G) are also bounds for ^(G). As an example, 
we extend the upper bounds in (12.3) and (12.4), as in [HH1]. 
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Theorem 1131 For any graph G, 

i/> + x <■ P + 1- (12.18) 

The next result follows from (12.18) and the fast that % ^ ßo- 

Corollary 1231(a) For any graph G, 

+ Zp-ßo + l. (12.19) 

This inequality can also be proved directly using the proof of (12.3), 
which it sharpens. 

THE CHROMATIC POLYNOMIAL 

The chromatic polynomial of a graph was introduced by Birkhoff and Lewis 
[BL1] in their attack on the 4CC. Let G be a labeled graph. A coloring ofG 
from t colors is a coloring of G which uses t or fewer colors. Two colorings of 
G from t colors will be considered different if at least one of the labeled 
points is assigned different colors. 

Let us denote by f(G, t) the number of different colorings of a labeled 
graph G from t colors. Ofcourse/(G, t) = Oiff < %(G). Indeed the smallest 
t for which/(G, t) > 0 is the chromatic number of G. The 4CC therefore 
asserts that for every planar graph G,f(G, 4) > 0. 

For example, there are t ways of coloring any given point of K3. For a 
second point, any of t - 1 colors may be used, while there are t — 2 ways of 
coloring the remaining point. Thus 

f(K3, t) = t(t - m - 2). 

This can be generalized to any complete graph,* 

f(Kp, t) = t(t - W - 2) • • • (f - p + 1) - t{p). (12.20) 

The corresponding polynomial of the totally disconnected graph Kp is 
particularly easy to find since each of its p points may be colored independently 
in any of t ways: 

f(Kp, t) = t". (12.21) 

The central point v0 ofKlA in Fig. 12.14 may be colored in any oft ways 
while each endpoint may be colored in any of t - 1 ways. Therefore 
f{KlA, t) - t(t - l)4. In each of these examples,/(G, t) is a polynomial in t. 
This is always the case, as we are about to see. 

Theorem 12.32 If u and v are nonadjacent points in a graph G, and e is the 
elementary homomorphism which identifies them, then 

f(G,t)=f(G + uv,t)+f(eG,t). (12.22) 

* Following Riordan[Rl5], we denote the expression for the falling factorial by t(f). 



146 COLORABILITY 

Flg. 12.14. A labeled copy of KiA. 

Proof. The equation follows directly from two observations. First, the 
number of ways of coloring G from t colors where u and v are colored 
differently is precisely the number of ways of coloring G + uv from t colors. 
Second, the number of ways of coloring G from t colors where u and v are 
colored the same is exactly the number of ways of coloring the homomorphic 
image e,G from t colors, where £ identifies u and v. 

This theorem now implies that if G is any noncomplete (p, q) graph, then 
there are graphs G, with q + 1 lines and G2 with p - 1 points such that 
f(G, t) =/(G„ t) +f(G2, t). The equation (12.22) can then be applied to 
Gj and G2, and so on, until only complete graphs are present. Hence 
/(G, r) is the sum of expressions of the form f(Kp, t). However/(JLp, t) = t{p) 

is a polynomial in t. 

Corollary 12.32(a) For any graph G,f(G, t) is a polynomial in t. 

We thus refer to/(G, t) as the chromatic polynomial of G. To illustrate 
the theorem, we employ a device introduced by Zykov [Zl] where a diagram 
of the graph is used to denote its chromatic polynomial, with t understood. 
We indicate by u and v the nonadjacent points considered at each step, 
following the exposition of Read [R6]. 

Thus for the graph G of Fig. 12.15, 

f(G, t) = t(S) + 3tw + tm = t$ - It* + 18r3 20f2 + St. 

In particular, the number of ways of coloring G from 3 colors is/(G, 3) = 6. 
There are several properties of chromatic polynomials which now follow 

directly from Theorem 12.32. 

Theo m 12.33 Let G be a graph with p points, q lines, and k components 
G,, G2, •• •, Gk. Then 

1. f(G, t) has degree p. 

2. The coefficient of t" in/(G, t) is 1. 

3. The coefficient of t"'' in/(G, t) is -~g. 

4. The constant term in/(G, f) is 0. 

5./(G,r)-nf.,/(Cl.f). 
6. The smallest exponent off in/(G, t) with a nonzero coefficient is k. 
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/(CO 

+ 2 

+ 3 

-     /(tfa, 0+3/(*T4. »)+/(** t) 

Fig. 12.15. The determination of a chromatic polynomial. 

Not quite so obvious is the following result discovered by Whitney 
[W10] and generalized by Rota [R20] using his powerful methods involving 
Möbius inversion. 

Theorem 12.34 The coefficients of every chromatic polynomial alternate in 
sign. 

Certainly, every two isomorphic graphs have the same chromatic 
polynomial. However, there are often several nonisomorphic graphs with 
the same chromatic polynomial; in fact, all trees with p points have equal 
chromatic polynomials. 

Theorem 12.35 A graph G with p points is a tree if and only if 

f(G,t) = t(t- I)""1. 

Proof. First we show that every labeled tree T with p points has t{t — l)p~l 

as its chromatic polynomial. We proceed by induction on p, the result being 
obvious for p = landp = 2. Assume the chromatic polynomial of all trees 
with/)- 1 points is given by t(t - l)p~2. Let v be an endpoint of T and sup- 
pose x = uv is the line of T incident with v. By hypothesis, the tree T — T — v 
has t(t - l)p~2 for its chromatic polynomial. The point v can be assigned 
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any a 'or different from that assigned to u, so that v may be colored in any 
of t - . -vays. Thus/(7, t) = {t - l)f(T, t) = t(t - l)""1. 

Conversely, let G be a graph such that/(G, t) = t(t - l)p_1. Since the 
coefficient of t in/(G, t) is nonzero, G is connected by Theorem 12.33(6). 
Furthermore, the coefficient of tp~l is —(p — l)so that G has p - 1 lines by 
Theorem 12.33(3). Theorem 4.1 now guarantees that G is a tree. 

It remains an unsolved problem to characterize graphs which have the 
same chromatic polynomial. Of a more basic nature is the unsolved problem 
of determining what polynomials are chromatic. For example, the poly- 
nomial t* - 3t3 + 3r2 satisfies all the known properties of a chromatic 
polynomial, but is not chromatic. For if it were/(G, 0 for some graph G, then 
necessarily G would have 4 points, 3 lines, and 2 components so that 
G - Ky u Kv However, the chromatic polynomial of this graph is 

f(G, r) = ti3)t = t* - 3t3 + 2t2. 

It has been conjectured by Read [R6] that the absolute value of the 
coefficients of every chromatic polynomial are strictly increasing at first, 
then become strictly decreasing and remain so. 

EXERCISES 

12.1  Concerning the join of two graphs, 

a) X(G, + G2) = *(G,) + X(G2l 
b) G, and G2 are critical if and only if their join Gx + G2 is. 

112  If« > 3 is the length of the longest odd cycle of G, then *(G) < n + 1. 

(Erdös and Hajnal [EH1]) 

12.3 If the points of G are labeled r„ v2, ■ ■ ■, vp so that dx > d2> ■■■ t dp, then 
X(G) < max,min {/, dt +1}. (Welsh and Powell [WP1]) 

12.4 If not every line lies on a hamiltonian cycle, then % < 1 + p/2. 

12.5 The chromatic number of the conjunction G, A G2 of two graphs does not 
exceed that of either graph. (S. T. Hedetniemi) 

12.6 The only regular graph of degree n > 3 which is (n + 1 achromatic is Kn+,. 

117 The following regular graphs are all those for which the upper bounds in (12.4) 
and (12.5)are realized: 

a) X + X ~ P + 1 on|y f°r Kp, Kr and C5. 
b) Ü = [«/» + D/2)2] only for K{, K2, K2, and C5. (Finck [F4]) 

118 a) If p = p(G) is a prime, then XX - P 0I1'V f°r ^P an^ ^P- 
h) X2 + X2 - P2 + 1 *f an^ on'y if G = Xr or Kp; otherwise 

X2 + X2 £iP- I)2 + 4. (Finck [F4]) 
12.9 Every outerplanar map is 3-colorable. 

12.10 Every 4-connected plane map is 4-colorable. 
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12.11 In any coloring of a line-graph, each point is adjacent with at most two points 
of the same color. 

12.12 Consider a connected graph G which is not an odd cycle. If all cycles have the 
same parity, then x'(G) = A(G). (J. A. Bondy and D. J. A. Welsh) 

12.13 Find the line-chromatic numbers of Kf and of Km„. 

(Behzad, Chartrand, and Cooper [BCC1]) 

12.14 If H is the graph obtained from G by taking V(H) = X(G) and x, y are adjacent 
in H whenever they do not both lie in a complete subgraph of G, then *(//) is the minimum 
number of complete subgraphs whose union is V u X. (Havel [H37]) 

12.15 Every toroidal graph has 8 < 6. and hence has % < 7. 

12.16 There is a 5-critical graph with 9 points. 

12.17 What is the smallest uniquely 3-colorable graph which is not complete? 

12.18 What is the minimum number of lines in a uniquely n-colorable graph with 
p points? (Cartwright and Harary [CH2]) 

12.19 Obviously the chromatic number of any graph is at least as large as #0. For any 
odd cycle C2ll+t, n > 2, ß0 is 2 and x is 3. Construct a graph with no triangles, 
ß0 = 2, and x = 4. 

(This can be done with only 11 points.) 

1120 If x(G) = n > 5, then there are n points such that each pair are connected by at 
least four disjoint paths. (Dirac [D9]) 

1121 For any integers d and n such that 1 < d <, n, there exists an n-critical graph 
with ß0 - d. (House [H47]) 

12.22 a) Every 3-chromatic maximal planar graph is uniquely 3-colorable. 
b) An outerplanar graph G with at least 3 points is uniquely 3-colorable if and 

only if it is maximal outerplanar. (Chartrand and Geller [CGI]) 

1123 An n-critical graph cannot bf separated by the points of a uniquely (« - 1)- 
colorable subgraph. (Harary, Hedetniemi, and Robinson [HHR1]) 

12.24 For any independent set S of points of a critical graph G, /(G - S) = %{G) - 1. 

(Dirac [D12]) 

12.25 For any elementary contraction n of a graph G, \x(G) - x(wG)| < 1. 

(Harary, Hedetniemi, and Prins [HHP1]) 

12.26 Determine the achromatic number of PH, C„, WH, and Km„. 

12.27 The n-chromatic number x„(G) is the smallest number m of colors needed to color 
G such that not all points on any path of length n are colored the same. 

a) For any n the.e is an outerplanar graph G such that /„(G) = 3. 
b) For any n there is a planar graph G such that xJ.G) = 4. 

(Chartrand, Geller, and Hedetniemi [CGH!]) 

1128  If e is the length of a longest path in G then /(G) < e + 1. (Gallai [G4]) 

12.29 The chromatic number of any graph G satis'ies the lower bound 

XiG) £ p V " 2q). 



CHAPTER 13 

MATRICES 

In orderly disorder they 

Wait coldly columned, dead, prosaic. 

Poet, breathe on them and pray 

They burn with life in your mosaic. 
J. LUZZATO 

A graph is completely determined by either its adjacencies or its incidences. 
This information can be conveniently stated in matrix form. Indeed, with a 
given graph, adequately labeled, there are associated several matrices, 
including the adjacency matrix, incidence matrix, cycle matrix, and cocycle 
matrix. It is often possible to make use of these matrices in order to identify 
certain properties of a graph. The classic theorem on graphs and matrices 
is the Matrix-Tree Theorem, which gives the number of spanning trees in 
any labeled graph. The matroids associated with the cycle and cocycle 
matrices of a graph are discussed. 

THE ADJACENCY MATRIX 

The adjacency matrix A = [au] of a labeled graph G with p points is the 
p x p matrix in which axi = 1 if v, is adjacent with Vj and a(J = 0 otherwise. 
Thus there is a one-to-one correspondence between labeled graphs, with p 
points and pxp symmetric binary matrices with zero diagonal. 

Figure 13.1 shows a labeled graph G and its adjacency matrix A. One 
immediate observation is that the row sums of A are the degrees of the points 
of G. In general, because of the correspondence between graphs and matrices, 
any graph-theoretic concept is reflected in the adjacency matrix. For example, 
recall from Chapter 2 that a graph G is connected if and only if there is no 
partition V = Vt u V2 of the points of G such that no line joins a point of K, 
with a point of V2. In matrix terms we may say that G is connected if and only 
if there is no labeling of the points of G such that its adjacency matrix has the 
reduced form 

"/*..     0 Ui   o] 

150 
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G: A = 

0 1 1 0 f 
! 0 1 0 0 

1 1 0 1 1 

0 0 1 0 1 

1 0 1 ! 0_ 

Fig. 13.1.  A labeled graph and its adjacency matrix. 

where Au and A22 are square. If Ax and A2 are adjacency matrices which 
correspond to two different landings of the same graph G, then for some 
permutation matrix P, At = P~iA2P. Sometimes a labeling is irrelevant, 
as in the following results which interpret the entries of the powers of the 
adjacency matrix. 

Theorem 13.1 Let G be a labeled graph with adjacency matrix A. Then the 
i, j entry of A" is the number of walks of length n from v( to v}. 

Corollary 13.1(a) For i #;*, the i,j entry of A2 is the number of paths of 
length 2 from vt to v}. The i, i entry of A2 is the degree of vt and that of A3 

is twice the number of triangles containing v(. 

Corollary 13.1(b) If G is connected, the distance between v( and Vj for i ^ j 
is the least integer n for which the i,j entry of A" is nonzero. 

The adjacency matrix of a labeled digraph D is defined similarly: A - 
A(D) = [a(j] has aVj = 1 if arc vtVj is in D and is 0 otherwise. Thus A(D) 
is not necessarily symmetric. Some results for digraphs using A(D) will 
be given in Chapter 16. By definition of A(D), the adjacency matrix of a 
given graph can also be regarded as that of a symmetric digraph. We now 
apply this observation to investigate the determinant of the adjacency 
matrix of a graph, following [H27]. 

A linear subgraph of a digraph D is a spanning subgraph in which each 
point has indegree one and outdegree one. Thus it consists of a disjoint 
spanning collection of directed cycles. 

Theorem 13.2 If D is a digraph whose linear subgraphs are D„ i = 1, • • •, n, 
and D, has e{ even cycles, then 

det/MD) = £(-lf. 
i= i 

Every graph G is associated with that digraph D with arcs vpj and vp( 

whenever u, and Vj are adjacent in G. Under this correspondence, each linear 
subgraph of D yields a spanning subgraph of G consisting of a point disjoint 
collection of lines and cycles, which is called a linear subgraph of a graph. 
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Those components of a linear subgraph of G which are lines correspond to 
the 2-cycles in the linear subgraph of D in a one-to-one fashion, but those 
components which are cycles of G correspond to two directed cycles in D. 
Since A(G) = A(D) when G and D are related as above, the determinant of 
A(G) can be calculated. 

Corollary 13.2(a) If G is a graph whose linear subgraphs are G„ i 
where G, has et even components and cx cycles, then 

= I, ••,«, 

det,4(G) = X(- 1)*2C'. 

THE INCIDENCE MATRIX 

A second matrix, associated with a graph G in which the points and lines are 
labeled, is the incidence matrix B = [fey]. This p x q matrix has b(J = 1 
if vL and Xj are incident and bu = 0 otherwise. As with the adjacency matrix, 
the incidence matrix determines G up to isomorphism. In fact any p - 1 
rows of B dete. nine G since each row is the sum of all the others modulo 2. 

The next theorem relates the adjacency matrix of the line graph of G to 
the incidence matrix of G. We denote by BT the transpose of matrix B. 

Theorem 13.3 For any (p, q) graph G with incidence matrix B, 

A(L(G)) = BTB - 21q. 

Let M denote the matrix obtained from — A by replacing the ith diagonal 
entry by deg v{. The following theorem is contained in the pioneering work 
of Kirchhoff [K7]. 

Theorem 13.4 (Matrix-Tree Theorem) Let G be a connected labeled graph 
with adjacency matrix A. Then all cofactors of the matrix M are equal and 
their common value is the number of spanning trees of G. 

Proof. We begin the proof by changing either of the two l's in each column 
of the incidence matrix B of G to -1, thereby forming a new matrix E. (We 
will see in Chapter 16 that this amounts to arbitrarily orienting the lines of 
G and taking £ as the incidence matrix of this oriented graph.) 

The i,j entry of EET is enen + ei2ej2 +•■•• + eiqeM, which has the 
value deg vt if i - /, -1 if v{ and Vj are adjacent, and 0 otherwise. Hence 
EET = M. 

Consider any submatrix of E consisting of p — 1 of its columns. This 
p x (p - 1) matrix corresponds to a spanning subgraph H of G having 
p - 1 lines. Remove an arbitrary row, say the /cth, from this matrix to 
obtain a square matrix F of order p - 1. We will show that |det F\ is 1 or 
0 according as H is or is not a tree. First, if H is not a tree, then because 
H has p points and p - 1 lines, it is disconnected, implying that there is a 
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i?i      x,      vt 

G:       x 

I?I       Jf,      i>» 

•       f 

Fig. 13.2.   A'4 - .v and its spanning trees. 

component not containing vk. Since the rows corresponding to the points of 
this component are dependent, det F = 0. On the other hand, suppose His a 
tree. In this case, we can relabel its lines and points other than vk as follows: 
Let u, * vk be an endpoüit of// (whose existence is guaranteed by Corollary 
4.1(a)), and let >', be the line incident with it; let u2 ^ vk be any endpoint of 
H - U] and y2 its incident line, and so on. This relabeling of the points and 
lines of // determines a new matrix /•" which can be obtained by permuting 
the rows and columns off independently. Thus|detF'| = |det F\. However, 
F' is lower triangular with every diagonal entry +1 or -1 ;hence, |det F\ = 1. 

The following algebraic result, usually called the Binet-Cauchy Theorem, 
will now be very useful. 

Lemma 13.4(a) If P and Q are m x n and n x m matrices, respectively, with 
»K < n, then det PQ is the sum of the products of corresponding major 
determinants of P and Q. 

(A major determinant of P or Q has order m, and the phrase "corre- 
sponding major determinants" means that the columns of P in the one 
determinant are numbered like the rows of Q in the other.) 

We apply this lemma to calculate the first principal cofactor of M. 
Let £, be the (p - 1) x q submatrix obtained from E by striking out its 
first row. By letting P - E, and Q = £[, we find, from the lemma, that the 
first principal cofactor of M is the sum of the products of the corre- 
sponding major determinants of £, and Ej. Obviously, the corresponding 
major determinants have the same value. We have seen that their product is 
1 if the columns from Ex correspond to a spanning tree of G and is 0 otherwise. 
Thus the sum of these products is exactly the number of spanning trees. 

The equality of all the cofactors, both principal and otherwise, holds for 
every matrix whose row sums and column sums are all zero, completing the 
proof. 

To illustrate the Matrix-Tree Theorem, we consider a labeled graph G 
taken at random, say K4 - x. This graph, shown in Fig. 13.2, has eight 
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Flg. 13.3. Two graphs with the same cycle matrix, 

spanning trees, since the 2,3 cofactor, for example, 

of   M = 

3 -1    -1 -1" 
-1 2-1 0 
-1 -1       3 -1 
-1 0-1 2 

is    — 
3 -1 -1 

-1 -1 -1 
-1 0 2 

= 8. 

The number of labeled trees with p points is easily found by applying the 
Matrix-Tree Theorem to Kp. Each principal cofactor is the determinant 
of order p - 1: 

p - 1      -1     •   •   •      -1 
-1     p- I   •   ■   •      -1 

-1 -1 p-1 

Subtracting the first row from each of the others and adding the last p — 2 
columns to the first yields an upper triangular matrix whose determinant 
ispp"2. 

Corollary 13.4(a) The number of labeled trees with p points is p'~2. 

There appear to be as many different ways of proving this formula as 
there are independent discoveries thereof. An interesting compilation of 
such proofs is presented in Moon [Ml5]. 

THE CYCLE MATRIX 

Let G be a graph whose lines and cycles are labeled. The cycle matrix 
C = [cy] of G has a row for each cycle and a column for each line with 
c(J = 1 if the ith cycle contains line xs and c(j = 0 otherwise. In contrast to 
the adjacency and incidence matrices, the cycle matrix does not determine 
a graph up to isomorphism. Obviously the presence or absence of lines 
which lie on no cycle is not indicated. Even when such lines are excluded, 
however, C does not determine G, as is shown by the pair of graphs in Fig. 13.3, 
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1 1 1 0 0 0 0 0 zx 
0 1 0 1 1 1 0 0 Zi 
0 0 0 0 0 1 1 1 z. 
1 0 1 1 1 1 0 0 z< 
0 1 0 1 1 0 1 1 z* 
1 0 1 1 1 0 1 1 z. 

which both have cycles 

Z\ = {xj, x2, x3} Z2 = \X2, x4, x5, x6( 

Z$ — {x6, x7, Xg) Z4 = tX|, x3, x4, x5, x6} 

Zt, — {x2, x4, X5, x7, Xg}       Z6 = [Xfr x3, x4, x«i, x7, x8] 

and therefore share the cycle matrix 

Xi X2 X3 x4 x5 x6 x-, x8 

C = 

The next theorem provides a relationship between the cycle and incidence 
matrices. In combinatorial topology this result is described by saying that 
the boundary of the boundary of any chain is zero. 

Theorem 13.5 If G has incidence matrix B and cycle matrix C, then 

CBT = 0 (mod 2). 

Proof. Consider the ith row of C and ;'th column of BT, which is thejth row 
of B. The rth entries in these two rows are both nonzero if and only if xr is 
in the ith cycle Z, and is incident with Vj. If xr is in Z„ then Vj is also, but 
if Vj is in the cycle, then there are two lines of Z, incident with Vj so that the 
/',; entry of CBT is 1 + 1 = 0 (mod 2). 

Analogous to the cycle matrix, one can define the cocycle matrix C*(G). 
If G is 2-connected, then each poini of G corresponds to the cocycle (minimal 
cutset) consisting of the lines incident with it. Therefore, the incidence matrix 
of a block is contained in its cocycle matrix. 

Since every row of the incidence matrix B is the sum modulo 2 of the 
other rows, it is clear that the rank of B is at most p - 1. On the other hand, 
if the rank of B is less than p - 1, then there is some set of fewer than p rows 
whose sum, modulo 2, is zero. But then there can be no line joining a point 
in the set belonging to those rows and a point not in that set, so G cannot be 
connected. Thus we have one part of the next theorem. The other parts 
follow directly from the results in Chapter 4 which give the dimensions of the 
cycle and cocycle spaces of G. 

Theorem 13.6 For a connected graph G, the ranks of the cycle, incidence, 
and cocycle matrices are r{C) = q — p + 1 and r[B) - r(C*) = p - 1. 

In view of Theorem 13.6, an important submatrix of the cycle matrix C 
of a connected graph is given by any m = q - p + 1 rows representing a 
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G. *» 

-« 

*3 t« c» 

Fig. 13.4.  A graph and a spanning tree. 

*s v* 

cycle basis. Each such reduced matrix C0(G) is an m x qsubmatrixofC, and 
similarly a reduced cocyle matrix C${G) is m* x q, where m* = p - 1. 
Then by Theorem 13.5, we have immediately CC*T = 0 (mod 2) and hence 
also C0C$T = 0 (mod 2). A reduced incidence matrix B0 is obtained from B 
by deletion of the last row. By an earlier rema.k, no information is losi by 
so reducing B. 

If the cycles and cocycles are chosen in a special way, then the reduced 
incidence, cycle, an^ cocycle matrices of a graph have particularly nice 
forms. Recall from Chapter 4 that any spanning tree T determines a cycle 
basis and a cocycle basis for G. In particular, if X, = {xj, x2, • • •, xp_,} is 
the set of twigs (lines) of T, and X2 = {xp, xp+ „ • • •, x,} is the set of its 
chords, then there is a unique cycle Zi'mG~X2 + xh p <, i < q, and a 
unique cocycle Zj in G - Xx + xJy 1 < j < p - 1, and these collections of 
cycles and cocycles form bases for their respective spaces. For example, in the 
graph G of Fig. 13.4 the cycles and cocycles determined by the particular 
spanning tree T shown are 

Z4 = {Xp x2, X4J, i| = \X|, X4, X51, 

Z5 = {Xi, x2, x3, x5},      Z2 = \Xj, x4, x5), 

Zt = {x3, x5}. 

The reduced matrices, which are determined both by G and the choice of T, 
are: 

Xy X2 

v. 
B0{G. T) = v2 

•Vl *2 ^3 x4 *s 
ri 1 0 0 0] 

1 0 0 1 1 
0 1 1 1 0 

x* 

C(GT)-Z*\]    !    °!l    °1 
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and 

C$(G, T) = 

It is easy to see that this is a special case of the following equations (all 
modulo 2) which hold for any connected graph G and spanning tree T: 

^4   £i ^l 

B0 = B0(G,T) = [Bl   fl2],       C„ - Cb(G, T) = (cx 

X2 

and 
A 1      A 2 

CJ = CJ(G, T) = [T.   CJ], 
where C[ = flf1^ = CJ and CJ = B; lB0 = [/„,. C[]. It follows from 
these equations that, given G and 7, each of the partitioned matrices B0, 
C0, and CJ determines the other two. 

Excursion—Matrons Revisited 

The cycle and cocycle matrices are particular representations of the cycle 
matroid and cocycle matroid of a graph, introduced in Chapter 4. A matroid 
is called graphical if it is the cycle matroid of some graph, and cographical if it 
is a cocycle matroid. Tutte [Tl2] has determined which matroids are 
graphical or cographical, thereby inadvertently solving a previously open 
problem in electric network theory. 

The smallest example of a matroid which is not graphical or cographical is 
the self-dual matroid obtained by taking M = {l, 2, 3, 4} and the circuits 
all 3-element subsets of M. 

7'   M   I—II—I 
\    \   /        \ 

 * l II C 1| I! i 

Fig. 13.5. The new circuits in the whir) of Wt. 

Another example, Tutte [T19], of a matroid which is not graphical 
involves the wheel WnJrX = Kx + Cn. Its cycle matroid has n2 - n + 1 
circuits since there are that many cycles in a wheel. If in this matroid we 
remove from the collection of circuits the cycle C„ which forms the rim of the 
wheel, and add to it all of the "spoked rims" (the sets of lines in the subgraphs 
shown in Fig. 13.5), then it can be shown that the result is a new matroid 
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which is not graphical or cographical. This is called a whirl of order n and is 
generated by n2 circuits. 

Even if a matroid is graphical, it need not be cographical. For example, 
the cycle matroid of K5 is not cographical. In fact a matroid is both graphical 
and cographical if and only if it is the cycle matroid of some planar graph. 

EXERCISES 

13.1 a) Characterize the adjacency matrix of a bipartite graph. 
b) A graph G is bipartite if and only if for all odd n every diagonal entry of A" is 0. 

13.2 Let G be a connected graph with adjacency matrix A. What can be said about A if 

a) Vi is a cut point? 
b) v,Vj is a bridge? 

13.3 If c„(G) is the number of »-cycles of a graph G with adjacency matrix A, then 

a) c3(G) = ttr(A3). 
b) cA(G) = IMA*) - 2q - H^aWl 
c) c,(G) = MW) ~ 5 tr(/t3) - 5 If„, If,, (ay - 2H3']. 

(Harary and Manvel [HM1]) 

13.4 a) If G is a disconnected labeled graph, then every cofactor of M is 0. 
b) If G is connected, the number of spanning trees of G is the product of the 

number of spanning trees of the blocks of G. 

(Brooks, Smith, S^one, and Tutte [BSST1]) 

13.5 Let G be a labeled graph with lines xt, x2, • • •, xq. Define the p x p matrix 
Mx = [my] by 

if    Xk m V,Vj 

0 if   vf and vt are not adjacent 
my = I for   i ¥= h 

By the term of a spanning tree of G is meant the product of its lines. The tree polynomial 
of G is defined as the sum of the terms of its spanning trees. 

The Variable Matrix Tree Theorem asserts that the value of any cofactor of the 
matrix Mx is the tree polynomial of G. 

13.6 Do there exist two different graphs with the same cycle matrix which are smaller 
than those in Fig. 13.3? 

13.7 The "cycle-matroid" and "cocycle-matroid" of a graph do indeed satisfy the 
first definition of matroid given in Chapter 4. 

13.8 Two graphs G, and G2 are cospectral if the polynomials det(/4, - //) and 
det (A2 - tl) are equal. There are just two different cospectral graphs with 5 points. 

(F. Harary. C. King, and R. C. Read) 

13.9 If the eigenvalues of 4(G) are distinct, then every nonidentity automorphism of 
G has order 2. (Mowshowitz [M17]) 
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13.10 Let /(f) be a polynomial of minimum degree (if any) such that «very entry of 
f(A) is 1, where A is the adjacency matrix of G. Then a graph has such a polynomial ii 
and only if it is connected and regular. (Hoffman [H4S]) 

13.11 An eulerian matroid has a partUion of its set S of elements into circuits. 

a) A graphical matroid is eulerian if and only if it is the cycle matroid of an 
eulerian graph, 

b) Not every eulerian matroid is graphical. 

1112 In a binary matroid, the intersection of every circuit and cocircuit has even 
cardinality. Every cocircuit of a binary eulerian matroid has even cardinality. In other 
words, the dual of a binary eulerian matroid is a "bipartite matroid," defined as expected. 

(Welsh [W9]) 



CHAPTER 14 

GROUPS 

Tyger! Tyger! burning bright 

In the forests of the night, 

What immortal hand or eye 
Could frame thy fearful symmetry? 

WILLIAM BLAKE 

From its inception, the theory of groups has provided an interesting and 
powerful abstract approach to the study of the symmetries of various con- 
figurations. It is not surprising that there is a particularly fruitful interaction 
between groups and graphs. In order to place the topic in its proper setting, 
we recall some elementary but relevant facts about groups. In particular, we 
develop several operations on permutation groups. These operations play 
an important role in graph theory as they are closely related to operations on 
graphs and are fundamental in graphical enumeration. 

Any model of a given axiom system has an automorphism group, and 
graphs are no exception. It is observed that the group of a composite graph 
may be characterized in terms of the groups of its constituent graphs under 
suitable circumstances. Results are also presented on the existence of a 
graph with given group and given structural properties. The chapter is 
concluded with a study of graphs which are symmetric with respect to their 
points or lines. 

THE AUTOMORPHISM GROUP OF A GRAPH 

First we recall the usual definition of a group. The nonempty set A together 
with a binary operation, denoted by the juxtaposition a,a2 for a„ a2 in A, 
constitutes a group whenever the following four axioms are satisfied: 

Axiom 1 (closure) For all a,, a2 >n A ai<*2 >s a'so an element of A. 

Axiom 2 (associativity)  For all a,, a2, a, in A, 

160 
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Fig. 14.1. Two identity graphs. 

Axiom 3 (identity) There is an element i in A such that 

for all a in i. «a = ai = a 

Axiom 4 (inversion) If Axiom 3 holds, then for each a in A, there is an element 
denoted cc~' such that 

oca  ' = a  'a = i. 

A 1-1 mapping from a finite set onto itself is called a permutation. The 
usual composition of mappings provides a binary operation for permutations 
on the same set. Furthermore, whenever a collection of permutations is 
closed with respect to this composition, Axioms 2,3, and 4 are automatically 
satisfied and it is called a permutation group. If a permutation group A acts 
on object set X, then \A\ is the order of this group and \X\ is the degree. 

When A and B are permutation groups acting on the sets X and Y 
respectively, we will write A = B to mean that A and B are isomorphic 
groups. However A = B indicates not only isomorphism but that A and B 
are identical permutation groups. More specifically A = B if there is a 1-1 
map h: A++B between the permutations such that for all a„ a2 in A, 
M«i«2) — HPiVAfyY To define A = B precisely, we also require another 
1-1 map/: X *-* Y between the objects such that for all x in X and a in A, 
/(ax) = /i(a)/(x). 

An automorphism of a graph G is an isomorphism of G with itself. Thus 
each automorphism a of G is a permutation of the point set V which preserves 
adjacency. Of course, a sends any point onto another of the same degree. 
Obviously any automorphism followed by another is also an automorphism, 
hence the automorphisms of G form a permutation group, T(G), which acts 
on the points of G. It is known as the group of G, or sometimes as the point- 
group of G. The group T(D) of a digraph D is defined similarly. 

The identity map from V onto V is of course always an automorphism 
of G. For some graphs, it is the only automorphism; these are called identity 
graphs. The smallest nontrivial identity tree has seven points and is shown in 
Fig. 14.1, as is an identity graph with six points. 

The point-group of G induces another permutation group T,(G), called 
the line-group of G, which acts on the lines of G. To illustrate the difference 
between these two groups, consider KA - x shown in Fig. 14.2 with points 
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K4—x: 

Fig. 14.2. A graph with labeled points and 
lines. 

labeled vu v2, v3, v4 and lines x,, x2, x3, x* x5. The point-group T(K4 - x) 
consists of the four permutations: 

(fiXfiX'aXiU)»      (»IX^X»*»«*      (»2X»4X»i»3X      (fi^X^fJ- 

The identity permutation of the point-group induces the identity 
permutation on the lines, while (v^v^v^) induces a permutation on the 
lines which fixes x5, interchanges x, with x4 and x2 with x3. In this way, one 
sees that the line-group f,(K4 - x) consists of the following permutations, 
induced respectively by the above members of the poia group: 

(XiKXiix^X^Xt),     (X,X4XX2X3XX5),  (x,X2Xx3X4Xx5),  (XIX3XX2X4XX5). 

Of course the line-group and the point-group of K4 - x are isomorphic. 
But they are certainly not identical permutation groups since r,(X4 - x) 
has degree 5 and r(K4 - x) has degree 4. Note that the line x5 is fixed by 
every member of the line-group. Even the permutation group obtained from 
rv(KA - x) by restricting its object set to x„ x2, x3, x4 is not identical with 
r(K4 - x), since ihese two isomorphic permutation groups of the same 
degree have different cycle structure. Furthermore, it can be shown that 
even when two permutation groups have the same degree and the same cycle 
structure, they still need not be identical; see Pölya [P5, p. 176]. 

The next theorem [HP 15] answers the question: when are T(G) and 
r,(G) isomorphic? Sabidussi [SI] demonstrated the sufficiency using group 
theoretic methods. 

Theorem 14.1 The line-group and the point-group of a graph G are isomorphic 
if and only if G has at most one isolated point and K2 is not a component 
ofG. 

Proof. Let a' be the permutation in T,(G) which is induced by the permuta- 
tion a in T(G). By the definition of multiplication in T,(G), we have 

for all a, ß in r(G). Thus the mapping « -» a' is a group homomorphism 
from T(G) onto T^G). Hence T(G) £ r,(G) if and only if the kernel of this 
mapping is trivial. 

To prove the necessity, assume T(G) = r,(G). Then a ^ i (the identity 
permutation) implies a' / i. If G has distinct isolated points u, and v2, we 
can define a e T(G) by a(ij) = v2, <x(v2) = i>„ and <x{v) = v for all v # t',, v2. 
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Then x =* i but a' = i. If K2 is a component of G, take the line of K2 to be 
x = P1P2 and define a 6 T(G) exactly as above to obtain a # i but a' « i. 

To prove the suffice -icy, assume that G has at most one isolated point 
and that K2 is not a component of G. If T(G) is trivial, then obviously T^G) 
fixes every line and hence T,(G) is trivial. Therefore, suppose there exists 
a e r(G) with a(w) = v ¥= u. Then the degree of u is equal to the degree of v. 
Since u and » are not isolated, this degree is not zero. 

CASE 1. u is adjacent to v. Let x - uv. Since K2 is not a component, the 
degrees of both u and v are greater than one. Hence there is a line y # x 
which is incident with u and ot'(y) is incident with a Therefore ot'(y) 54 y 
and so a' # t. 

CASE 2. u is not adjacent to v. Let x be any line incident with u. Then 
a'(x) ^ x and so a' ^ i, completing the proof. 

! 

OPERATIONS ON PERMUTATION GROUPS 

There are several important operations on permutation groups which 
produce other permutation groups. We now develop four such binary 
operations: sum, product, composition, and power group. 

Let A be a permutation group of ordern» = Inland degreed acting on the 
set X = {x1? x2, ■ •, xd}, and let B be an Jther permutation group of order 
n = \B\ and degree e acting on the set Y ~ {yt, y2, • • •, y,}. For example, let 
A — C3, the cyclic group of degree 3, which acts on X = {1, 2, 3}. Then the 
three permutations of C3 may be written (1X2X3), (123), and (132). With 
B = S2, the symmetric group of degree 2, acting on Y = {a, b}, we have the 
permutations {uftb) and (ab). We will use these two permutation groups to 
illustrate the binary operations defined here. 

Their sum* A + B is a permutation group which acts on the disjoint 
union X u Y and whose elements are all the ordered pairs of permutations 
a in A and ß in B, written a + ß. Any element zofXu Y is permuted by 
a + ß according to the rule: 

(a + 0X2) \ßz, 
zeX 

ze Y 
(14.1) 

Thus C3 + S2 contains 6 permutations each of which can be written as the 
sum of permutations <xeC3 and ße S2 such as (123Xa/>) = (123) + {ab). 

The product** A x B of A and B is a permutation group which acts on 
the set X x Y and whose permutations are all the ordered pairs, written 
a x ß, of permutations a in 4 and /? in B. The element (x, y) of X x V is 

* Sometimes called product or direct product and denoted accordingly. 
** Also known as cartesian product; see[H18]. 
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Table 14.1 

OPERATIONS ON PERMUTATION GROUPS 

Sum Product Composition Power 

group A B A + B A x B A[g] B* 
objects X Y XuY X x Y X x Y Y* 
order m n rrn mn mrt4 mn' 
degree d e d + e de de e4 

permuted by a x ß as expected: 

(a x ß)(x, y) * (ax, ßy). (14.2) 

The product C3 x S2 also has order 6 but while the degree of the sum 
C3 + S2 is 5, that of the product is 6. The permutation in C3 x S2 corre- 
sponding to (123) + (ab) in the sum is (la 2b 3a 16 2a 3b\ where for brevity 
la denotes (1, a). 

The composition* A[B] of "A around B" also acts on X x Y. For each a 
in A and any sequence (ßlt ß2, • • •, ßa) of d (not necessarily distinct) permuta- 
tions in B, there is a unique permutation in A[B~\ written (a; /?,, /J2, ■ •, ßä) 
such that for (x„ yj in X x V: 

(a; /?„ ß2, • • •, ÄXxi. >-;) = («i, ß,yjl (14.3) 

The composition C3[S2] has degree 6 but its order is 24. Each permutation 
in C3[S2] may be written in the form in which it acts on X x Y. Using the 
same notation la for the ordered pair (1, a) and applying the definition (14.3), 
one can verify that ((123); (aXH (ab), (a)(b)) is expressible as (1 a 2a 3b 1 b 2b 3a). 
Note that S2[C3] has order 18 and so is not isomorphic to C3[S2]. 

The power group** denoted by BA acts on Yx, the set of all functions 
from X into Y. We will always assume that the power group acts on more than 
one function. For each pair of permutations a in A and ß in B there is a 
unique permutation, written ß" in BA. We specify the action of ß" on any 
function / in Yx by the following equation which gives the image of each 
\ e X under the function ß*f: 

(lff)(x) - /»/(«). (144) 

The power group S2
3 has order 6 and degree 8. It is easy to see by applying 

(14.4) that the permutation in this group obtained from a = (123) and 
ß = {ab) has one cycle of length 2 and one of length 6. 

Table 14.1 summarizes the information concerning the order and degree 
of each of these four operations. 

* Called "liruppenkranz" by P6lya[P6j and "wreath product" by Littlewood[L3] and others. 
** Not called by any other name as yet. 
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Symbol Order Definition 

' Symmetric s, />! 
i 
■- 

Alternating *, m 
. Cyclic c, p 

Dihedral o, 2p 
Identity E, 1 

v  —  "~-—    .  

All permutations on {1,2, • • •,/?} 
All even permutations on {1,2, • • • ,p\ 
Generated by (12 ■ • • p) 
Generated by (12 •••/>) and (ipM2 p-1) 
(1X2) • ■ • (/>) is the only permutation. 

Wc now see that three of these operations are not all that different. 

Theorem 14.2 The three groups A + B, A x B, and BA are isomorphic. 

it is easy to show that A + B ■* A x B. To see that A + B s BA, we 
define the map /: BA -♦ A + B by/(a; ß) = <x~lß, and verify that/ is an 
isomorphism. Note that these three operations are commutative; in fact, 
A + B u B + A, A x B s B x A, and BA s /4*. 

Table 14.2 introduces notation for five well-known permutation groups 
of degree p. In these terms, we can describe the groups of two familiar 
graphs with p points. 

KporG = Kp. Theorem 14.3 a) The group RG) is Sp if and only if 0 

b) If G is a cycle of length p. then HC) = Dp. 

Thus two particular permutation groups of degree p, namely Sp and Dp, 
belong to graphs with p points. For all p > 6, there exists an identity graph 
with p points and in fact whenever p > 7, there is an identity tree. 

THE GROUP OF A COMPOSITfc GRAPH 

Now we are ready to study the group associated with a graph formed from 
other graphs by various operations. Since every automorphism of a graph 
preserves both adjacency and nonadjacency, an obvious but important 
result immediately follows. 

Theorem 14.4 A graph and its complement have the same group, 

nC) = no. (14.5) 

A "composite graph" is the result of one or more operations on disjoint 
graphs The group of a composite graph may often be expressed in terms of 
the groups of the constituent graphs. Frucht [F10] described the group of 
a graph nG which consists of n disjoint copies of a connected graph G. 
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Theorem 14.5 If G is a connected graph, then 

r(nG) - S„[r(G)]. (14.6) 

To illustrate the theorem, consider the graph G = 5K3, whose group is 
S5[S3]. An automorphism of G can always be obtained by performing an 
arbitrary automorphism on each of the five triangles, ,ind then following this 
by any permutation of the triangles among themselves. 

Theorem 14.6 If G, and G2 are disjoint, connected, nonisomorphic graphs, 
then 

r(G, u G2) = no,) + r(ö2). (14.7) 
Any graph G can be written as G = f^G, u n2G2 u • • • u nrG„ where 

n( is the number of components of G homorphic to G,. Applying the last 
two theorems, v/e have the result, 

r(G) = s^CHG,)] + s„2[r(G2)] + • • • + sjnc,)].     (14.8) 
Corollary 14.6(a) The group of the union of two graphs is the sum of their 
groups, 

r(G, u G2) = r(G,) + T(G2X (14.9) 

if and only if no component of G, is isomorphic with a component of G2. 

The next corollary follows from Theorem 14.4, the preceding corollary, 
and the fact that the complement of the join of two graphs is the union of 
their complements, that is, 

GTT7t2 = G", u G2. (14.10) 

Corollary 14.6(b) The group of the join of two graphs is the sum of their 
groups, 

HG, + G2) = r(Gt) + T{G2\ (14.11) 

if and only if no component of G, is isomorphic with a component of G2. 

A nontrivial graph G is prime if G = Gt x G2 implies that G, or G2 is 
trivial; G is composite if it is not prime. Sabidussi [S5] observed that the 
cartesian product of graphs is commutative and associative. Ke also devel- 
oped a criterion for the group of the product of two graphs to be the product 
of their groups. Since he proved that every nontrivial graph is the unique 
product of prime graphs, the meaning of relatively prime graphs is clear. 

Theorem 14.7 The group of the product of two graphs is the product of their 
groups, 

HG, x G2) ü HG,) x r(G2\ (14.12) 

if and only if u, and G2 are relatively prime. 

Sabidussi [S4] settled the question raised in [H21] by providing a 
criterion for the group of the lexicographic product (composition) of two 

I 
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THE GROUPS OF THE LITTLE CONNECTED GRAPHS 

Graph Group 

• • 

£, +S2 

Graph Group 

V- 
y\ 

-M 

S2 + S2 

S2 + E2 

S2[E2] 

graphs to be the composition of their groups. The neighborhood of a point u is 
the set N(u) consisting of all points v which are adjacent with u. The closed 
neighborhood is N[u] = N(u) u {u}. 

Theorem 14.8 If G , is not totally disconnected, then the group of the composi- 
tion of two graphs G, and G2 is the composition of their groups, 

r(G,[G2]) si r(Gl)[T(G2)l (14.13) 

if and only if the following two conditions hold: 

1. If there are two points in G, with the same neighborhood, then G2 is 
connected. 

2. If there are two points in G, with the same closed neighborhood, then 
Gz is connected. 

With these results, the groups of all graphs with p < 4 points can be 
symbolized. The group of one of these graphs, namely K4 - x, has already 
been illustrated. The groups of the disconnected graphs are not given in 
Table 14.3 but can be obtained by using Theorem 14.4. 

The conditions for the group of the lexicographic products of two 
graphs to be identical to the composition of their groups are rather complex. 
This suggests that another operation on graphs be constructed for the purpose 
of realizing the composition of their groups only up to group isomorphism. 

The corona G, ° G2 of two graphs G, and G2 was defined by Frucht and 
Harary [FH1] as the graph G obtained by taking one copy of G, (which has 
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Ca: G,'G, G,'G 

Fig. 14.3.  Two graphs and their two coronas. 

p, points) and p, copies of G2, and then joining the ith point of G, to every 
point in the ith copy of G2. For the graphs G, = K2 and G2 = Ku2, the 
two different coronas G, ° G2 and G2 ° G, are shown in Fig. 14.3. It follows 
from the definition of the corona that G, <> G2 has />,(! + p2) points and 
«?i + P1Q2 + PtP2 'mes- 

Theorem 14.9 The group of the corona of two graphs G, and G2 can be 
written explicitly in terms of the composition of their groups, 

HG, 0 G2) = r(G,)[£, + T(G2)], (14.14) 

if and only if G, or G2 has no isolated points. The term £, in (14.14) when 
applied to Corollary 14.6(a) gives the next result. 

Corollary 14.9(a) The group of the corona G, ° G2 of two graphs is isomorphic 
to the composition r(G,)(T(G2)] of their groups if and only if G, or G2 has 
no isolated points. 

GRAPHS WITH A GIVEN GROUP 

König [K10, p. 5] asked: When is a given abstract group isomorphic with 
the group of some graph? An affirmative answer to this question was given 
constructively by Frucht [F8]. His proof that every group is the group of 
some graph makes use of the Cayley "color-graph of a group" [C4] which we 
now define. Let F = {/„, /„ • • •, f„„t} be a finite group of order n whose 
identity element is/0. Let each nonidentity element/, in F have associated 
with it a different color. The color-graph of F, denoted D(F), is a complete 
symmetric digraph whose points are the n elements of F. In addition, each 
arc of D(F), say from /, to /}, is labeled with the color associated with the 
element ff lfj of F. Of course, in practice we simply label both points and 
arcs of D(F) with the elements off. 

For example, consider the cyclic group of order 3, C\, = {0, I, 2}. The 
color-graph D(C3) is shown in Fig. 14.4. 

Frucht observed the next result, which is simple but very useful. 
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Fig. 14.4. The color graph 
cyclic group C3. 

of the       F(g. 14.5.  Doubly-rooted graph to replace arc f,f}. 

(a) " (b) 

Fig. 146.  Frucht's graph whose group is C3 and a smaller such graph. 

Lemma 14.10(a) Every finite group F is isomorphic with the group of those 
automorphisms of D(F) which preserve arc colors. 

To construct a graph G whose group T(G) is isomorphic with F, Frucht 
replaced each HTcfj) in D(F) by a doubly rooted graph. This is done in such a 
way that every arc of the same color is replaced by the same graph. We 
show in Fig. 14.4 the graph which replaces the arc ftfj. Let ff yfj = fk and 
introduce new points {um} and {t>m} so that in Fig. 14.5 the patns joining u( 

with Uj and v( with vJ+1 contain 2k - 2 and 2k - 1 points respectively. In 
effect, Frucht's construction assigns a colorful undirected arrow to each arc 
ftfj. Thus the resulting graph G has n\2n - 1) points and T(G) £ F. 

Theorem 14.10 For every finite abstract group F, there exists a graph G such 
that T(G) and F are isomorphic. 

The graph obtained by this method from the cyclic group C3 is shown in 
Fig. 14.6(a). It should be clear from this example that the number of points in 
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any graph so constructed is excessive. Graphs with a given group and fewer 
points can be obtained when the group is known to have m < n generators 
In that case the color-graph is modified to include only directed lines which 
correspond to the m generators. Thus a graph containing n(m + lX2m + 1) 
points can be obtained for the given group. Since C3 can be generated by 
one element, there is a graph with 18 points for C3. It is shown in Fig 14 6(b) 

FI3.14.7.  A  smallest  graph  whose group 
is C,. 

The inefficiency of even this improvement of the method of construction 
is shown by the graph of Fig. 14.7. This is one of the two smallest graphs 
whose automorphism group is cyclic of order three fHP3] and it has only 
9 points and 15 lines. 

Later Frucht [F9] showed that one could also specify that G be cubic 
It was becoming apparent that requiring G to have a given abstract group of 
automorphisms was not a severe restriction. In fact Sabidussi [S2] showed 
that there are many graphs with a given abstract group having one of several 
other specified properties such as connectivity, chromatic number, and 
degree of regularity. 

Theorem 14.11 Given any finite, abstract, nontrivial group F and an integer 
./ (I S j < 4), there are infinitely many nonhomeomorphic graphs G such 
that G is connected, has no point fixed by every automorphism, T(G) s F, 
and G also has the property Pj, defined by 

Px ■ K(G) = «,      n ;> 1 

P2-X(G) = n,      n^2 

Pi: G is regular of degree «,       n £ 3 

P*: G is spanned by a subgraph homeomorphic to a given graph. 

When Theorem 14.11 was published, Izbicki [I I] looked into the problem 
of constructing a graph with a given group which satisfies several of these 
conditions simultaneously. By exploiting the results of Sabidussi [S21 
on the product of two graphs and making some constructions, he was able 
to obtain a corresponding result involving regular graphs of arbitrary 
decree and chromatic number. 
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Corollary 14.11(a) Given any finite group F and integers n and m where 
n > 3 and 2 < m < n, there are an infinite number of graphs G such that 
T(G) s F, x(G) = m, and G is regular of degree n. 

SYMMETRIC GRAPHS 

The study of symmetry in graphs was initiated by Foster [F6], who made 
a tabulation of symmetric cubic graphs. Two points u and v of the graph G 
are similar if for some automorphism a of G, a(u) = ». A. fixed point is not 
similar to any other point. Two lines xt = ulvl and x2 = u2v2 are called 
similar if there is an automorphism a of G such that a({uu t?i}) = {u2, u2}. 
We consider only graphs with no isolated points. A graph is point-symmetric 
if every pair of points are similar; it is line-symmetric if every pair of lines are 
similar; and it is symmetric if it is both point-symmetric and line-symmetric. 
The smallest graphs that are point-symmetric but not line-symmetric 
(the triangular prism K3 x K2) and vice versa (the star Klt2) are shown in 
Fig. 14.8. 

Fig. 14.8. A point-symmetric and a line-symmetric graph. 

Note that if a is an automorphism of G, then it is clear that G - u and 
G - oc(u) are isomorphic. Therefore, if u and t; are similar, then G - u = 
G — v. Surprisingly, the converse of this stai ment is not true.* The graph 
in Fig. 14.9 provides a counterexample. It is the smallest graph which has 
dissimilar points u and v such that G - u s G - v, see [HPS]. 

Fig. 14.9.  A counterexample to a conjecture. 

The degree of a line x = uv is the unordered pair (d„ d2) with 
dl = degu, and d2 = deg v. A graph is line-regular if all lines have the 
same degree. In Fig. 14.10, the complete bipartite graph K2<3 is shown; it is 
line-symmetric but not point-symmetric and is line-regular of degree (2, 3). 

A purported proof of Ulam's conjecture depended heavily on this converse. 
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Fig. 14.10.  A line-regular line-symmetric 
graph. 

We next state a theorem due to Elayne Dauber whose corollaries describe 
properties of line-symmetric graphs. Note the obvious but important 
observation that every line-symmetric graph is line-regular. 

Theorem 14.12 Every line-symmetric graph with no isolated points is point- 
symmetric or bipartite. 

Proof. Consider a line-symmetric graph G with no isolated points, having 
q lines. Then for any line x, there are at least q automorphisms «„ a2, • • •, a, 
ofG which map x onto the lines of G. Letx = vxv2, Vx = {ai(fiX ' " * <*,(t> i)}» 
and V2 = {a,(i>2), • ■ •, <*q(v2)}. Since G has no isolated points, the union of 
K, and V2 is V. There are two possibilities: K, and V2 are disjoint or they 
are not. 

CASE 1.  If V, and V2 are disjoint, then G is bipartite. 

Consider any two points M, and w, in Vx. If they are adjacent, then 
there is a line y joining them. Hence for some automorphism a,-, we have 
<*i(x) = y. This implies that one of these two points is in Vx and the other is 
in V2, a contradiction. Hence Vx and V2 constitute a partition of V such that 
no line joins two points in the same subset. By definition, G is bipartite. 

CASE 2. If K, and V2 are not disjoint, then G is point-symmetric. 

Let u and w be any two points of G. We wish to show that u and w are 
similar. If u and w are both in Vx or both in V2, let a be an automorphism 
mapping x onto a line incident with u and let ß map x onto a line incident 
with w. Then /tor '(w) = w so that any two points u and w in the same subset 
are similar. If u is in V, and w is in V2, let v be a point in both Vx 

and V2. Since v is similar with u and with w, u and w are similar to each other. 

Corollary 14.12(a) If G is line-symmetric and the degree of every line is 
(dt, J2) with dy # d2, then G is bipartite. 

Corollary 14.12(b) If G is line-symmetric, has an odd number of points, and the 
degree of every line is (dx, d2) with dx = d2, then G is point-symmetric. 

Corollary 14.12(c) If G is line-symmetric, has an even number of points, and is 
regular of degree d > p/2, then G is point-symmetric. 

With these three corollaries, the only line-symmetric graphs not yet 
characterized are those having an even number of points which are regular 
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of degree d < p/2. The polygon with six points is an example of such a 
line-symmetric graph which is both point-symmetric and bipartite. The 
icosahedron, the dodecahedron, and the Petersen graph are examples of 
such line-symmetric graphs which are point-symmetric but not bipartite. 
But not all regular line-symmetric graphs are point-symmetric, as Folkman 
[F5] discovered. 

Theorem 14.13 Whenever p > 20 is divisible by 4, there exists a regular 
graph G with p points which is line-symmetric but not point-symmetric. 

HIGHLY SYMMETRIC GRAPHS 

Following Tutte [T20], an n-route is a walk of length n with specified initial 
point in which no line succeeds itself. A graph G is n-transitive, n > 1, if it 
has an n-route and if there is always an automorphism of G sending each 
n-route onto any other n-route. Obviously a cycle of any length is n-transitive 
for all n, and a path of length n is n-transitive. Note that not every line-sym- 
metric graph is 1-transitive. For example, in the line-symmetric graph 
X, 2 of Fig. 14.8, there is no automorphism sending the 1-route uv onto the 
1-route vw. 

If W is an n-route p0 vx• • • v„ and u is any point other than i?„_ j adjacent 
with vm then the n-route u, • • • vnu is called a successor of W. If W terminates 
in an endpoint of G, then obviously W has no successor. For this reason, it 
is specified in the next two theorems that G is a graph with no endpoints. We 
now have a sufficient condition [T20, p. 60] for n-transitivity. 

Theorem 14.14 Let G be a connected graph with no endpoints. If W is an 
n-route such that there is an automorphism of G from W onto each of its 
successors, then G is n-transitive. 

There is a straightforward relationship [T20, p. 61] between n-transitivity 
and the girth of a graph. 

Theorem 14.15 If G is connected, n-transitive, is not a cycle, has no endpoints 
and has girth g, then n ^ 1 4- g/2. 

Fig. 14.11.  The Heawood graph. 
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Using Theorem 14.14, it can be shown that the Heawood graph in 
Fig. 14.11 is 4-transitive. Furthermore, it is easily seen from Theorem 14.15 
that this graph is not 5-transitive. 

There are regular graphs called "cages" which are, in a sense, even more 
highly symmetric than »-transitive graphs. A graph G is n-tmitransitive* if it is 
connected, cubic, and n-transitive, and if for any two «-routes Wt and W2, 
there is exactly one automorphism a. of G such that a Wt - W2. Ann-cage, 
n > 3, is a cubic graph of girth n with the minimum possible number of 
points. Information about cages is presented in the next statement 
[T20, pp. 71-83]. 

13, t -»i:2 

"S« -•V, 

Oi*- IV» 

v7t IP, 

Fig. 14.12. The 7-cage is the union of the above subgraphs as labeled. 

Fig. 14.13.  The 8-cage is the union of the above subgraphs as labeled. 

* Called n-regular in [T20. p. 62]. 
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Table 14.4 

THE KNOWN CAGES 

n Then-cage n The «-cage 

3 
4 
5 

K4 (shown in Fig. 2.1) 
K3,3(Fig.2.5) 
Petersen graph (Fig. 9.6) 

6 
7 
8 

Heawood graph (Fig. 14.11) 
McGee graph (Fig. 14.12) 
Levi graph (Fig. 14.13) 

Theorem 14.16 There exists an n-cage for all n > 3. For n - 3 to 8 there is 
a unique n-cage. Each ot these n-cages is f-unitransitive for some r = t(n\ 
namely, f(3) = 2, f(4) = r(5) - 3, r(6) = t{l) « 4, and r(8) = 5. 

All the known cages are now specified. 
There are no n transitive cubic graphs for n > 5, hence no n-unitransitive 

ones; see Tutte [T8]. However, there are other n-unitransitive graphs, 
n < 5, in addition to the cages. In particular, Frucht [Fll] constructed 
a 1-unitransitive graph of girth 12 with 432 points, the cube Q3 and the 
dodecahedron (Fig. 1.5) are 2-unitransitive, and Coxeter [CIO] found 3- 
unitransitive graphs other than the 4-cage and 5-cage. One of these is 
shown in Fig. 14.14. 

This graph is a member of a class of graphs defined in [CH3]. For any 
permutation a in Sp, the a-permutation graph of a labeled graph G is the 
union of two disjoint copies Gx and G2 of G together with the lines joining 
point v( of G, with vx{i) of G2. Thus Fig. 14.14 shows a permutation graph 
of the cycle C10. The dust jacket of this book shows all four permutation 
graphs of C$. 

Fig. 14.14.  Another 3-unitrunsitivc graph. 
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EXERCISES 

14.1 Find the groups of the following graphs: (a) JK2, (b) K2 + CA, (c) Kmn, 
(d)X,,2[A'2],(e) K4uC, 

14.2 If G has a point which is not in a cycle of length four, then G is prime. 

(Sabidussi [S2]) 

14.3 Let G be connected with p > 3. Then L{G) is prime if and only if G is not KM 

for m, n > 2. (Palmer [PI j) 

14.4 Construct a graph of 9 points and 15 lines (different from Fig. 14.7) whose group 
is cyclic of order 3. (Harary and Palmer [HP3]) 

145 Construct a connected graph with 11 points whose group is cyclic of order 6. 

14J6 Construct a graph with 14 points whose group is cyclic of order 7. 

(Sabidussi [S3]) 

*147 Let c(m) be the smallest number of points in a graph whose group is isomorphic 
to Cm. Then the values of c{m) for m = tf and n prime are 

a) c(2) = 2, and c(2') = 2r + 6 when r > 1. 
b) c(«r) = nr + 2n for n = 3, 5. 
c) c{tf) = rf + n for n ;> 7. 

[Note: c(m) can be calculated when m is not a prime power, but the expression is 
complicated.] (R. L. Meriwether) 

14.8 There are no nontrivial identity graphs with less than 6 points. 

14.9 There are no cubic identity graphs with less than 12 points. 

14.10 Construct a cubic graph whose group is cyclic of order 3. 

14.11 The group of the Petersen graph is identical to the line-group of Ks. 

14.12 There exists a graph G whose group is the dihedral group Dp such that G is not 
a cycle or its complement. What is the smallest value of p for which this holds? 

14.13 For p ^ 3 there are no graphs G such that T(G) a Ap or Cp. And when p > 4 
there are no digraphs D with T(D) = Ap.   (Kagno [Kl], Harary and Palmer [HP10]) 

1414 The only connected graph with group isomorphic to Sn, n > 3, 

a) with n points is K„, 
b) with n + 1 points is KUn, 
c) with n + 2 points is X, + £,,„. (Gewirtz and Quintas [GQ1]) 

14.15 Given a finite group F, let G(F) be the graph obtained by Frucht's Theorem. 
Then every nonidentity automorphism of G(F) leaves no point fixed. 

14.16 What is the smallest tree T containing dissimilar points u and v such that 
T - u £ T - t»? (Harary and Palmer [HP2]) 

14.17 Every connected, point-symmetric graph G is a block. 

1418 A starred polygon is a graph G containing a spanning cycle r, v2 • • • vf r, such 
that whenever the line vtvn is in G, so are all lines vfit where) -is«— I (mod p). A 
connected graph with a prime number p of points is point-symmetric if and only if it is 
a starred polygon. (Turner [T4]) 
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14.19 Prove or disprove the following eight statements: If two graphs are point- 
symmetric (line-symmetric), then so are their join, product, composition, and corona. 

1420 Every symmetric, connected graph of odd degree is 1-transitive. 
(Tutte [T20, p. 59]) 

1421 Every symmeiric, connected, cubic graph is n-transitive for some n. 

(Tutte [T20, p. 63]) 

1422 Find necessary and sufficient conditions for the point-group and line-group of a 
graph to be identical. (Harary and Palmer [HP 15]) 

1423 If G is connected, then T(G) S r(L(G)) if and only if G # K2, K, 3 + x, K4 - x, 
orX4. (Whitney [W11]) 

1424 If G is point-symmetric, then T(G) is a group of the form S2 + S2 + • • • + S2. 
(McAndrew  [M8]) 

14.25 The only doubly transitive graphical permutation group of degree p is S„. 

1426 Let A and B be two permutation groups acting on the sets X = {x„ x2, • • ■, x„} 
and Y respectively. The exponentiation group, denoted [B]A, acts on the functions 
Yx. For each permutation a in A and each sequence of permutations /?„ ß2,-,ßj 
in 8 there is a unique permutation [a; JS„ ß2, • • ■, Ä*] in [B]A such that for x, in X 
and/in Yx 

[*;ßl,ß2,-",ßMixA-ßJ(axd. 
Then the group of the cube Q„ is [S2]

s" and the line-group of KM is [Sn]
Si. 

(Harary [H18]) 

*1427 There exists a unique, smallest graph of girth 5 which is regular of degree 4. It 
has 19 points and its group is isomorphic to the dihedral group D,2. 

(Robertson [R18]) 

1428 Let G be a triply connected planar (p, q) graph whose group has order s. Then 
4q/s is an integer and s = 4q if and only if G is one of the five platonic graphs. 

(Weinberg [W8], Harary and Tutte [HT4]) 

14.29 The group of any tree can be obtained from symmetric groups by the operations 
of sum and composition. (Pölya [P5, p. 209]) 

1430 A collection of p - ! transpositions («, «,), (u2 v2\ • ■ • on n objects generates 
the symmetric group Sf if and only if the graph with p points and the p - 1 lines U(f, is 
a tree. (Pölya [P5]) 

143) The 2-permutation graph of a labeled 2-connected graph G is planar if and only 
if G is outerplanar and can be drawn in the plane with a cyclic labeling of its points so 
that x is in the dihedral group Of (Chartrand and Harary [CH3]) 

*I432 An enJomorphism of G is a homomorphism from G into itself. The semigroup 
of a graph is the collection of all its endomorphisms. Every finite semigroup with unit 
is isomorphic with the semigroup of some graph. (Hedrlin and Pultr [HP23]) 

*I433 The smallest nontrivia! graph having only the identity endomorphism has 8 
points. (Hedrlin and Pultr (HP24J) 

1 



CHAPTER 15 

ENUMERATION 

How do I love thee? Let roe count the ways. 
ELIZABETH BARRETT BROWNING 

There is something to be said for regarding enumerative methods in com- 
binatorial analysis as more of an art than a science. With the discovery and 
development of more general and powerful viewpoints and techniques, it is 
to be hoped that this situation will become reversed. The pioneers in 
graphical enumeration theory were Cayley, Redfield, and Pölya. In fact, 
as noted in [HP11], all graphical enumeration methods in current use were 
anticipated in the unique paper by Redfield [R8] published in 1927 but 
unfortunately overlooked. 

We begin with the easiest enumeration problems, those for labeled graphs. 
We then present Pölya's classical enumeration theorem and use it to derive 
counting series for trees and various other kinds of graphs. Pölya's theorem 
has been generalized to the Power Group Enumeration Theorem which is 
useful for certain counting problems where the equivalence classes are 
determined by two permutation groups. For the sake of completeness, we 
conclude with lists of both solved and unsolved problems in graphical 
enumeration. 

LABELED GRAPHS 

All of the labeled graphs with three points are shown in Fig. 15.1. We 
see that the 4 different graphs with 3 points become 8 different labeled 
graphs. To obtain the number of labeled graphs with p points, we need 
only observe that each of the (p2) possible lines is either present or absent. 

Theorem 15.1 The number of labeled graphs with p points is 2 

178 

(!) 
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0|« 

Ug« «l)j V| • l)( 

Fig, 15.1.  The labeled graphs with three points. 

Corollary 15.1(a) The number of labeled (p, q) graphs is 

Cayley [C6] was the first to state the corresponding result for trees: 
The number of labeled trees with p points is pp~2. Since 1889, when Cayley's 
paper appeared, many different proofs have been found for obtaining his 
formula. Moon [M15] presents an outline of these various methods of 
proof, one of which was given in Corollary 13.3(a). 

In F g. 15.2 are all the 16 labeled trees with 4 points. The labels on these 
trees are understood to be as in the first and last trees shown. We note 
that among these 16 labeled trees, 12 are isomorphic to the path P4 and 4 
to K, 3. The order of T{P4) is 2 and that of r(KM) is 6. We observe that 
since p = <* here, we have  12 = 4\/\V(PJ and 4 = 4!/!r(Kli3)|.   The 

Fig. 15.2.  The labeled trees with four points. 
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expected generalization of these two observations holds not only for trees, 
but also for graphs, digraphs, relations, and so forth; see [HR1] and [HPR1]. 

Theorem 15.2 The number of ways in which a given graph G can be labeled 
M/inoi. 
Outline of proof. Le t A be a permutation group acting on the set X of objects. 
For any element x in X, the orbit of x, denoted 0(x\ is the subset of X which 
consists of all elements y in X such that for some permutation a in A, ax = y. 
The stabilizer of x, denoted A(x), is the subgroup of A which consists of all 
the permutations in A which leave x fixed. The result follows from an 
application of the well-known formula |0(x)j - \A(x)\ = \A\ and its inter- 
pretation in the present context. 

POLYA'S ENUMERATION THEOREM 

Many enumeration problems are formulated in such a way that the answer 
can be given by finding a formula for the number of orbits (transitivity 
systems) determined by a permutation group. Often, weights are assigned 
to the orbits and Pölya [P5] showed how to obtain a formula which enumer- 
ates the orbits according to weight and which depends on the cycle structure 
of the permutations in the given group. Pölya's theorem in turn depends on 
a generalization of a well-known counting formula due to Burnside 
[B20, p. 191]. 

Theorem 15.3 Let A be a permutation group ac'ing on set X with orbits 
0„ 62, ■ • ■, 6„, and let vv.be a function which assigns a weight to each orbit. 
Furthermore, w is defined on X so that w(x) — w^ö.) whenever .x e 0,. Then 
the sum of the weights of the orbits is given by 

«I  iMx). (15.1) 

Proof. We have already seen that the order \A\ of the group A is the product 
\A(x)\ • |0(x)| for any x in X, whore A(x) is the stabilizer of x. Also, since the 
weight function is constant on the elements in a given orbit, we see that 

10,1^0,.) = £w(x), 
xeßj 

for each orbit 0,. Combining these facts, we find that 

\A\Mßd = lM(x)|w(x). 

Summing over all orbits, we have 

HIVV(0() =  I    2>(X)|W(.Y), 
i = 1 xeOj ;= l 

from which (15.1) follows readily. 
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The conventional form of Burnside's Lemma can now be stated as a 
corollary to this theorem. For a permutation a, expressed as a product of 
disjoint cycles, let jk(ct) denote the number of cycles of length k. 

Corollary 15.3(a) (Burnside's Lemma) The number N(A) of orbits of the 
permutation group A is given by 

Let A be a permutation group of order m and degree d. The cycle 
index Z(A) is the polynomial in d variables at, a2, • • •, a4 given by the 
formula . d 

1*1 «€.4 *=1 

Since, for any permutation a, the numbers./* = ;t(a) satisfy 

Ui +% + •■• + ih = ä, 

they constitute a partition of the integer d. It is useful to employ the vector 
notation (j) = (J„ j2, • • •, jä) in describing a. We note that this method of 
expressing partitions differs from that used in Chapter 6; for example, the 
partition 5 = 3+1 + 1 corresponds to the vector (j) = (2,0, 1,0,0). 

The classical counting problems to which Polya's Theorem applies all 
have the same general form. Let there be given a domain D, a range R, and 
a weight function w defined on R. To illustrate with a particular weight 
function, let w assign to each r e JR an ordered pair w(r) = (wir, w2r) of 
nonnegative integers. The objects to be counted will then appear as functions 
from D to R. To complete the statement of the problem, we need to tipulate 
when two functions in RD are considered the same. This is done by specifying 
a group A which acts on D, so that two functions are equivalent wh^n they 
are in the same orbit of EA, where E is »he identity group of degree'  ,. 

We digress for a moment to illustrate these ideas with the "necklace 
problem." Consider necklaces which are to have say 4 beads, some red and 
some blue. Two such necklaces are regarded as equivalent if they can be 
made "congruent," with preservation of the colors of their beads Here the 
domain D is the set of locations where the beads are to be put, the range R is 
the set {red bead, blue bead}, and a function fe RD is an assignment of one 
bead to each place, giving a necklace. In this example, A is the dihedral 
group D4. and the weight function w can be taken as w(red bead) = (1,0) 
and w(blue bead = (0, 1). 

Following the intuitive terminology of Pölya, domain elements are 
places, range elements a^e figures, functions are configurations, and the 
permutation group A is the configuration group. We assign a weight W(f) 
to each/e RD by the equation 

W(f) = f] xw'fWywim. 
deD 

(15.3) 
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It is easy to see that each Function in a given orbit of RD under EA has the 
same weight, so that the weight of an orbit can be defined as the weight of 
any function in it. 

Suppose there are cmn figures of weight (m, n) in R and CmH orbits 
(equivalence classes of configurations) of weight x"y in RD. The figure 
counting series 

«tert-IvV 05.4) 
enumerates the elements of R by weight, and the configuration counting 
series _ 

C(x, y) - I C^f (15.5) 

is the generating function for equivalence classes of functions. Polya's 
Theorem [P5] expresses C(x, y) in terms of c(x, y). 

If in (15.2) we write Z(A) = Z(A; a„ a2, * • ■, ad\ then for any function 
h(x, yl we define 

Z(A, h(x, y)) = Z(A; Ä(x, y\ h(x2, y2X  • •, h(x", /)). (15.6) 

Theorem 15.4 (Polya's Enumeration Theorem) The configuration counting 
series is obtained by substituting the figure counting series into the cycle 
index of the configuration group, 

C(x, y) = Z(A, c(x, y)). (15.7) 

Proof. Let at be a permutation in A, and let ä be the corresponding permuta- 
tion in the power group EA. Assume first that /is a configuration fixed by 
a and that £ is a cycle of length k in the disjoint-cycle decomposition of a. 
Then/(</) = f(£d) for every element d in the representation of £, so that all 
elements permuted by £ must have the same image under/ Conversely, 
if the elements of each cycle of the permutation a have the same image under 
a configuration/ then a fixes/ Therefo.e, all configurations fixed by ä 
are obtained by independently selecting an element r in R for each cycle £ of 
a and setting f(d) = r for all d permuted by £. Then if the weight w(r) is 
(»j, n) where m — w,r and n = w2r and £ has length k, the cycle £ contributes 
a factor of I^j, (xmy")* to the sum X/=i/ W(f). Therefore, since 

we have, for each a in 

I (xmff = c(xk, /), 

v w(f) = n c(x\ /)*<■>. 

Summing both sides of this equation over all permutations a in A (or 
equivalently over 
obtain 

all * in EA) ai.d dividing both sides by \A\ - \E\ we 

51 

ie. / = !/ 1^1 xeA k= 1 
(15.8) 

i 
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The right hand side of this equation is Z(A, dx, y)). To see that the left 
hand side is C(x, y), we apply the version of Bumside's lemma given in 
Theorem 15.3. First note that for the power group E\ the sum of the weights 
of the orbits is given by 

I «Oo = I CM1,x"/ = C(x, y). (15.9) 
i=i 

But it follows at once from (15.!) that the left sides of (15.9) and (15.8) are 
equal, so that Z{A, c(x, y)) = C(x, y\ proving the theorem. 

Returning to the necklace problem with four beads mentioned above, 
we note that the cycle index of the dihedral group DA is 

Z(DA) = Ua\ + 2a\a2 + la\ + 2a4) (15.10) 

and the figure counting series is c(x, y) = xxy° + x°yl - x + y.   Sub- 
stituting x + y into (15.10) in accordance with (15.6), we obtain 

Z(D» x + y) - i((x + y)4 + 2(x + y)2(x2 + y2) 

+ 3(x2 + y2)2 + 2(x4 + y4)} 

= x4 + x^v + 2x2y2 + xy3 + y4. (15.11) 

The coefficient of x"y" in (15.11) is the number of different necklaces with 
four beads, m red and n blue.  The 6 different necklaces are shown in 

All red Al1 blue 

i 

I 

i 

i 

Ficure 15.3 

Incidentally, necklaces can also be counted by using 1 + x as the figure 
counting series instead of x + y. In this case a red bead has weight 1 and a 
blue bead weight 0. Then in Z(D4, 1 + x) = x4 + x3 + 2x2 + x + 1, the 
coefficient of xm is the number of necklaces with m red beads and hence 
4 - m blue ones; compare (15.11). As wc shall see in the next section, the 
figure counting series 1 + x plays an important role in enumeration problems, 
since x° indicates absence of a figure and x' presence. The reason is indicated 
in the following consequence [H31] of Polya's Theorem. An nsubset of a 
set X is a subset with exactly n elements. 

Corollary 15.4(a) If A is a permutation group acting on X, then the number of 
orbits of «-subsets of X induced by A is the coefficient of x" in Z(A, 1 + x). 
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In applications of Pölya's Enumeration Theorem, certain permutation 
groups occur frequently. The formulas for the cycle indexes of the five 
important permutation groups listed in Table 14.2 are now given. In (IS. 12) 
and (15.13), the sum is over all partitions (j) of p. In (15.14), <t>(k) is the 
"Euler (/»-function," the number of positive integers less than k and relatively 
prime to k, with 0(1) = 1. 

1 
Z

<
S

P) = 77E 
P! 

psftnf-i*^* 
-a>?a>j--a?> 

zu)- LyJÜJB±izJg!!^lfl(.fli L\AV> ~ „l L rip      Khi I °1  ** p!ft      nf.,fc*Ai 
a>> 

(15.12) 

(15.13) 

(15.14) 

(15.15) 

(15.16) 

There are several very useful formulas which give the cycle indexes of 
the binary operations of the sum, product, composition, and power group of 
A and B in terms of Z(A) and Z{B). They are given in equations (15.17H15.22) 
and appear in [H31]. By Z(.4)[Z(B)] we mean the polynomial obtained by 
replacing each variable ak in Z{A) by the polynomial which is the result of 
multiplying the subscripts of the variables in Z(B) by k. 

z(cp) = -i me 
Pk\p 

7(n\~l -7ir        faiti_1)/2'       Podd 
Z{DP) -~2Z(CP) + ^ß?/2 + fl2fl(/-2)/2)> 

Z(Ep) = a\ 

pevcn 

Z(A + B) = Z(A)Z(B). 

1    1 d.e 
,dlr>')M*)],(fi) Z{AxB) = \i\\R\^ n«w* 

where d(r, s) and m(r, s) are the g.c.d. and l.c.m. respectively. 

Z(A[B]) = Z(A)[Z(B)l 

1 

where (a; /?) = /F and 

and for k > 1 

/<(S) -14 • im &* 

W«;ft-n (I4HÄ) 
k=l\s\k ) 

Afr;Ä-jJ*(*)/i(*:f 
with /i the familiar number-theoretic möbius function.* 

* By definition /*(«) = 0 unless n is the product of distinct primes />,, 
kin) = (-D" 

(15.17) 

(15.18) 

(15.19) 

(15.20) 

(15.21) 

(15.22) 

, pm in which case 
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ENUMERATION OF GRAPHS 

We now describe how to obtain the polynomial gj(x) which enumerates 
graphs with a given number p of points. Let gM be the number of (p, q) 
graphs and let 

< 

By inspection of all graphs with 4 points, one easily verifies that 

gA(x) = 1 + x + 2x2 + 3x3 + 2x* + x5 + x6. (15.24) 

Let V = {1, 2, • • •, p} and let R = {0,1}. We denote by D = V{2) the 
collection of subsets {ij} of distinct elements of V, that is, of 2-subsets of V. 
Then each function / from D into R represents a graph whose p points 
are the elements of V, in which i is adjacent with ; whenever /{i, j} = 1. 
Thus the image of {i,j} under/is 1 or 0 in accordance with the presence or 
absence of a line joining i and j. The weight function w on R is defined by 
w(0) = 0 and w(l) = 1, so that it is the identity function. Hence the figure 
counting series is c(x) = 1 + x. Specializing (15.3) to one variable, the 
weight of a function/is given by 

mf) = xl"if{i,j}) (15.25) 

where the sum is taken over all pairs {i, j} in Vl2\ Thus the weight of function 
/is the number of lines in the graph corresponding to/ 

Now let £2 be the identity group acting on R and let Sp act on V. We 
denote by S^2) the pair group which acts on V{1) whose permutations are 
induced by Sp. That is, for each permutation a in Sp, there is a permutation 
a' in S<p

2) such that a!{i,j} = {xi, a/}. Applying Pölya's theorem to the 
configuration group Sp2), we have the next result, also due to Pölya; see 
[Ml]. 

Theorem 15.5 The counting polynomial for graphs with p points is 

where 
(15.26) 

(15.27) 

gp(x) = Z(Sp
2\ 1 + x), 

P- (J) 11f=! Jk- K    *=1 

KP-U/2] [p/2) 

n *+vn«8tf)  n <<#■• 
*=0 k=l l£r<ssp~l 

A derivation of (15.27) is also given in [H31, p. 38]. In Appendix I, the 
number of (p, q)-graphs is tabulated through p = 9. 

Similar counting formulas have been obtained which enumerate rooted 
graphs and connected graphs. Various classes of graphs have also beer, 
enumerated by modifications of this method. These include directed 
graphs, pseudographs, and multigraphs.   We illustrate some of these 

i 
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enumeration formulas by describing how they follow readily from the 
preceding theorem. First to enumerate rooted graphs, it is necessary to fix 
the root point and regard the remaining p - 1 points as interchangeable 
before forming the pair group. 

Corollary 15.5(a) The counting polynomial for rooted graphs with p points 
is 

rp{x) = Z((St + S„_1)<2>, 1 + x). (15.28) 

When there are at most two lines joining each pair of points, we need 
only replace the figure counting series for graphs by 1 + x + x2. 

Corollary 15.5(b) The counting polynomial for multigraphs with at most 
tv/o lines joining each pair of points is 

ftx) = Z{&*\ 1 + x + x2). (15.29) 

For arbitrary multigraphs, the figure counting series becomes 

1  + X + X2 + X3 + 
1 

1 -x 

Corollary 15.5(c) The counting polynomial for multigraphs with p points is 

mp(x) = z(sp
2\~^-). (15.30) 

The enumeration of digraphs [HI 1] is also accomplished, as for graphs, 
by finding a formula for the cycle index of the appropriate configuration 
group and applying Polya's theorem. For digraphs, we need to use the 
reduced ordered pair group, denoted Sl2]. As before Sp acts on 
V = {1, 2, •• •,/>}. By definition, Sl

p
] acts on V[2\ the ordered pairs jf 

distinct elements of V, as induced by Sp. Thus every permutation a in S 
induces a permutation a' in S{2] such that <x'{i, j) = (OH, a/) for (/', j) in V[2\ 
Applying Polya's theorem to the cycle index of Sl

p\ we obtain dp(x), the 
polynomial in which the coefficient of x* is the number of digraphs with q 
directed lines. 

Theorem 15.6 The counting polynomial for digraphs with p point? is 

dp(x) = Z(Sp
2\ 1 + x), (15.31) 

where 

V- (j) "*= 1 Jk- K    k= 1 1 S r < s S p - I 

Of course this theorem has corollaries analogous to those of Theorem 
15.5. 
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Appendix II includes a table for the number of digraphs with p < 8 
points. 

Although rooted trees and trees were counted much earlier than graphs, 
the enumeration of graphs was presented above because of the simplicity 
of the figure counting series, viz. 1 + x. We will see that for tree counting 
purposes, the most useful figure counting series is the generating (unction 
for rooted trees themselves. 

ENUMERATION OF TREES 

In order to find the number of trees it is necessary to start by counting 
rooted trees A rooted tree has one point, its root, distinguished from the 
others. Let Tp be the number of rooted trees with p points. From Fig. 15.4 in 
which the root of each tree is visibly distinguished from the other points, we 
see that T4 = 4. The counting series for rooted trees is denoted by 

We define tp and t(x) similarly for unrooted trees. 

(15.33) 

Fig.   15.4.  The   rooted   trees 
with four points. (S> 

A recursive type of expression for counting rooted trees was found by 
Cayley [C2]. 

Theorem 15.7 The counting series for rooted trees is given by 

T(x) = xl\0 - xr)~Tr. (15.34) 
r= 1 

It is possible to convert (15.34) into a form expressing T{x) in terms of 
itself by taking the logarithm of both sides and then manipulating power 
series appropriately. This leads to (15.35), a result first obtained by Pölya 
[P5] by exploiting his enumeration theorem. 

Theorem 15.8 The counting series for rooted trees satisfies the functional 
equation 

T(x) =-■ x exp £ - T(xr). (15.35) 
r= 1 
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Proof. Let ^"'(x) be the generating function for those rooted trees in which 
the root has degree n, so that 

T(x) = £ V\x). 
■-o 

(15.36) 

Thus for example, 7<0,(x) = x counts the rooted trivial graph, while the 
planted trees (rooted at an endpoint) are counted by T^fx) = xT{x). in 
general a rooted tree with root degree n can be regarded as a configuration 
whose figures are the n rooted trees obtained on removing the root. Figure 
1S.S illustrates this for n = 3. 

V 
0 © 

Fig. 15.5.  A given rooted tree T and its constituent rooted trees. 

Since these n rooted trees are mutually interchangeable without altering 
the isomorphism class of the given rooted tree, the figure counting series is 
T{x) and the configuration group is Sm giving 

T^x) = xZ(SH, T(x)). (15.37) 

The facto;  , accounts for the removal of the root of the given tree since the 
weight of a tree is the number of points. 

Fortunately, there is a well-known and easily derived identity which 
may now be invoked (where Z(SQ) is defined as 1): 

00 00      1 

XZ(S,,,Ä(x)) = exp2;-/j(x'}. 
n=0 r=l r 

(15.38) 

On combining the last three equations, we obtain (15.35). 
Cayley [C5] was the first to derive an expression for tp in terms of the 

numbers Tn with n < p. He did this by counting separately the number of 
centered and bicentered trees. Pölya [P5] obtained an alternate expression 
for tp by considering separately trees with 1 and 2 centroid points. Otter 
[08] discovered the neatest possible formula for the number of trees in 
terms of the number of rooted trees, entirely by means of generating functions. 
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Actually, Otter's equation (15.41) can be derived directly from the Cayley 
or Polya expressions for tp, as shown in [HI 2], by repeated application of the 
adage, "Whenever you see two consecutive summation signs, interchange 
the order of summation." Otter derived (15.41) from the next observation, 
which is of independent interest; it is sometimes called "the dissimilarity 
characteristic equation for trees." A symmetry line joins two similar points. 

Theorem 15.9 For any tree T, let p* and q* be the number of similarity 
classes of points and lines, respectively, and let s be the number of symmetry 
lines. Then s = 0 or 1 and 

p* - (q* - s) = 1. (15.39) 

Outline of proof. Whenever T has one central point or two dissimilar central 
points, there is no symmetry tine, so s = 0. In this case there is a subtree 
of T which contains exactly one point from each similarity class of points 
in T and exactly one line from each class of lines. Since th's subtree has p* 
points and q* lines, we have p* - q* = 1. 

The other possibility is that T has two similar central points and hence 
s « 1. In this case there is a subtree which contains exactly one point from 
each similarity class of points in T and, except for the symmetry line, one 
line from each class of lines. Therefore this subtree hasp* points and q* - 1 
lines and so p* - (q* - 1) = 1. Thus in both cases (15.39) holds. 

We also require a special theorem of Pölya [P5] which was designed for 
counting 1-1 functions. For convenience we use Z(AH - SJ as an abbrevia- 
tion for ZiAJ - ZiSj. 

Theorem 15.10 The configuration counting series C(x) for 1-1 functions 
from a set of n interchangeable elements into a set with figure counting 
series c(x) is obtained by substituting c(x) into Z(An - S„): 

C(x) = Z(AH-S„,c{x)). (15.40) 

Although we will only use (15.40) in the case n = 2, it provides a useful 
enumeration device in other contexts [HP20], and it enables us to present 
a very concise proof of Otter's formula for counting trees. 

Theorem 15.11 The counting series for trees in terms of rooted trees is given 
by the equation 

t(x) = T(x) - \[T2(x) - T(x2)l (15.41) 

Proof. For i = 1 to f„, let p*, qf, and ,v, be the numbers of similarity classes 
of points, lines, and symmetry lines for the ith tree with n points. Since 
^ - Pf " (</* ~ si) f°r eacn '* by (15.39), we sum over i to obtain 

tu- r.-Efof -s,). (15.42) 
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Furthermore X (qf - st) is the number of trees having n points which are 
rooted at a line, not a symmetry line. Consider a tree T and take any line 
y of T which is not a symmetry line Then T — y may be regarded as two 
rooted trees which must be nonisomorphic. Thus each nonsymmetry line 
of a tree corresponds to an unordered pair of different rooted trees. Counting 
these pairs of trees is equivalent to counting 1-1 functions from a set of two 
interchangeable elements into the collection of rooted trees. Therefore we 
apply Theorem 15.10 with T(x) as the figure counting series to obtain 

I T £ W ~ *<)*" 1 = AÄ2 - S2, 7(x)). (15.43) 

Since Z(A2) - a2 and Z(S2) = %a2 + a2X we have 

Z(A2 - S2, T(x)) = \[T2(x) - T(x2)]. (15.44) 

Now the formula in the theorem follows from (15.42M 15.44). 

Using (15.35) and (15.41) we obtain the explicit numbers of rooted and 
unrooted trees through p = 12, 

T(x) = x + x2 + 2.x3 + Ax* + 9xs + 20x6 + 48.v7 

+ 115x8 + 286x9 + 719.x10 + 1842xn + 4766x12 + 

t{x) = x + x2 + x3 + 2x4 + 3xs + 6x6 + 1 lx7 + 23x8 
(15.45) 

+ 47x9 + 106x10 + 235x" + 551x12 + (15.46) 

The diagrams for the trees counted in the first 10 terms of (15.46) may 
be found in Appendix III, along with a table displaying tp and Tp for p < 26. 

The methods used to derive Theorem 15.11 can be extended to count 
various species of trees. We illustrate with two species, homeomorphically 
irreducible trees and identity trees [HP20]; others can be handled similarly, 
(or example colored trees [R14], trees with a given partition [HP20], and 
so on. Let h(x), H(x% and r?(x) be the counting series for homeomorphically 
irreducible trees, rooted trees, and planted trees respectively. 

Theorem 15.12 Homeomorphically irreducible trees are counted by the 
three equations, 

x2 - fl(x') 
H(x) = ——- cxp £ — r 1 + x     ,=,   rx 

H{x) m L±± H(s) - 1 [R*(x) - H(x2)]. 
x 2x 

(15.47) 

(15.48) 

h(x) = H(x) - -2 [H2(x) - H(x2)]. (15.49) 
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The number of homeomcrpiically irreducible trees through 12 points is 
found to be: 

Hx) m x + x2 + x4 + xs + 2x6 + 2x7 t- 4x8 + 5x9 

+ 10x10 + 14xn + 26x12 + •   •   (15.50) 

Let u(x) and U(x) be the counting series for identity trees and rooted 
trees for which the automorphism group is the identity group. 

Theorem 15.13 Identity trees are counted by the equations 

l/(x) = xexp £(-!)" 
»=i 

u(x) = l/(x) - i[t/2(x) + t/(x2)]. 

The number of identity trees through 12 points is given by 

u(x) = x + x7 + x8 + 3x9 f 6x10 + 15xn + 29xu + • • • 

(15.51) 

(15.52) 

(15.53) 

POWER GROUP ENUMERATION THEOREM 

There is a class of enumeration problems which can be solved using a power 
group as the configuration group. Consider the power group BA acting on 
RD. The number of configurations (equivalence classes of functions deter- 
mined by BA) can be derived from Pölya's Theorem as shown in [HP8], 
and was discovered by deBruijn [B18] and [B19] in another formulation. 
The equation (15.54) given by the next theorem can be readily modified to 
count functions with respect to their weights. 

Theorem i5.14 (Power Group Enumeration Theorem) The number of 
equivalence classes of functions in RD determined by the power group BA is 

where 

N(ß") = rL Zz^- mM mM ■■■, m/ß)) (15.54) 

mM) = lsJM (15.55) 
»I* 

To illustrate, we consider once again the necklace problem illustrated in 
Fig. 15.3, but here we allow the two colors a, b of beads (say red and blue) 
to be interchangeable. Clearl; the number of necklaces with 4 beads of two 
interchangeable colors is NiS^*), the number of orbits of the power group 
Sj *■ For the identity permutation (a){b) of S2 we have from (15.55) 

mk((a%b\) = 2 

for all k. For the transposition (ab) in S2, mki(ab)) is 0 or 2 according as k is 
odd or even.  Applying (15.54) we see that the number of necklaces with 
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interchangeable color? is 

i[Z(Z>4; 2, * 2,2)+ Z(X>4;0,2,0,2)]. 

By substitution in formula (15.10) for Z(£>4) we find that the number of such 
necklaces is 4. This calculation is easily verified by observing that the last 
two necklaces of Fig. 1S.3 are equivalent to the first two, when red and blue 
are interchangeable. 

The self-complementary graphs with 4 and 5 points are shown in Fig. 2.13. 
The result of Read [R5] for the number sp of self-complementary graphs with 
p points is easily obtained from the Power Group Enumeration Theorem. 
For this purpose we define a new equivalence relation ~ for graphs with 
p points, namely G, ~ G2 if Gt £ G2 or Gt £ G2. Let cp be the number of 
such equivalence classes of graphs with p points. Since we are dealing with 
graphs on p points, we take A - Sj,2> acting on D{2\ Because a graph and its 
complement are equiva?snt we let B - S2 act on R = {0, 1}. Then under 
the power group BA. two functions/] and/2 from D(2> into R are equivalent 
whenever they represent the same graph or one represents the complement 
of the other. We have already seen the result of applying (15.55) to the 
permutations of S2. Hence we have 

c, - \\Z{&P
2); 2, 2, 2,2, • • •) + Z(Sj«; 0,2,0, 2, • • •)].      (15.56) 

But since sp = 2cp - gp, we have the following formula obtained by Read. 

Theorem 15.15 The number sp of self-complementary graphs on p points is 

sp= Z(#p
2>; 0,2,0, 2, •••). (15.57) 

Finite automata have also been counted using the Power Group 
Enumeration Theorem by Harrison [H34] and Harary and Palmer [HP12]. 
The groups for this problem are subgroups of the product of two power 
groups. 

SOLVED AND UNSOLVED GRAPHICAL ENUMERATION PROBLEMS 

There have now been three lists of unsolved graphical enumeration problem? 
in the literature, [H24], [H30], and most recently [H32, p. 30]. It is frequently 
necessary to bring these lists up to date. Because of the fact that new prob- 
lems arise as old ones are solved, the number of unsolved problems has 
remained constant at 27. It is worth noting that it is extremely unlikely that 
all of these enumeration problems will soon be settled. For included among 
such solutions there would be enough information to decide the validity of the 
Four Color Conjecture by comparing the number of planar graphs with the 
number of 4-colorable planar graphs. 

Table 15.1 presents the fourth list of unsolved graphical enumeration 
problems and is so titled. All of these problems can, of course, be proposed 

i 
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Category 

Table 111 
UNSOLVED GRAPHICAL ENUMERATION PROBLEMS IV 

Enumerate 

Digraph Streng digraphs 
Unilateral digraphs 
Digraphs with a source 
Transitive digraphs 
Digraphs which are both self-complementary and self- converse 

Traversability        Hamiltonian graphs 
Hamiltoniaa cycles in a given graph 
Eulerian trails in a given graph 

Topological Stmplicial complexes 
ifc-colorable graphs 
Planar ^-colorable graphs 
Rooted planar graphs 
Edge-rooted plane maps 

Symmetry Symmetric graphs 
Identity graphs 
Graphs with given automorphism 

Applications Even subgraphs of a labeled 3-lattice 
Even subgraphs of a labeled 2-latice with given area 
Even subgraphs of a given labeled graph 
Pavings of a 2-lattice 
Animals 

Miscellaneous        Line graphs 
Latin squares 
Graphs with given radius or diameter 
Graphs with given girth or circumference 
Graphs with given connectivity 
Graphs with given genus, thickness, chromatic number, etc. 

for labeled graphs as well, and several of them have been solved in the labeled 
case. A few additional definitions are needed for understanding these 
problems, each of which challenges the mathematician to determine the 
number of configurations named in terms of suitable parameters. Definitions 
needed for the digraph category may be found in the next chapter. 

Tutte [T1S] studied the enumeration of plane maps rooted in the 
following way to destroy any symmetry 'hat might be present. An edge 
rooted plane map is obtained from a plane map by orienting an arbitrary 

.   . . 
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edge and by then designating one of the two faces incident wkh this edge 
as the exterior face of the map. 

A 2'bttice is a graph whose points are ordered pairs of integers (/,;') 
where f = 0, 1, • •, »n and / = 0,1, ■ ••. r; two of these points are adjacent 
whenever their distance in the cartesian plane is 1. A 3-lattice is defined 
similarly. An even subgraph H of a jraph G is one in which every point has 
even degree. Thus every even subgraph of a 2-Ltftice has a certain area, 
the number of squares contained in its cycles. 

By a paving of a 2-laaic? is meant a covering of the squares of the lattice 
by a given number of single unit squares and double squares like dominoes. 
Of course larger and more complicated paving problems can be proposed. 

There are three kinds of celi growth problems, one each for the triangle, 
the square, and the hexagon, the only three regular polygons which can cover 
the plane. Then an animal is a simply connected configuration containing 
a given number of triangles, squares, or hexagons; see [H32, pp. 33-381 

We include here a comprehensive list of solved problems (which will 
inevitably be incomplete) in the hope that unnecessary duplication of 
combinatorial effort will be minimized. References are given to papers 
where solutions are reported; unpublished solutions are credited only by the 
name of the (eventual) author. These solved problems (Table 15.2) are 
divided into four categories: trees, graphs, digraphs, and miscellaneous. 

Table 15.2 
SOLVE;.) GRAPHICAL ENUMERATION PROBLEMS 

Trees 
Labeled trees 
Rooted trees 
Rooted trees with given height 
Endlessly labeled trees 
Plane trees 
Plane trees with given partition 
Homeomorphically irreducible trees 
Identity trees 
Trees with given partition 
Trees with given group 
Trees with given diameter 
Direct ;d trees 
Oriented trees 
Signed trees 
Trees of given strength 
Trees of given type 
Block -outpoint trees 
Colored »'rees 
Forests 

Trees 

Poly» (M |, Oil« | OK i 
Caytey JC6J, MoonfM^] 
Poly« f PI] 
RIonian | R if» j 
Harary. Mownhowit/, Riordan [HMRI 
Harary. Prins, Tulle [HPT! j 
Tulle fTI8],H«ntry. Tutle fHT21 
Harary, Prins [HP20 J 
Harary, Prins [HP20] 
Harary. Prins [HP20 j 
Prins [P8j 
Harary. Prins [HP20] 
Harary. Prins [HP20] 
Harary. Prins [HP20] 
Harary, Prins [HP20] 
Harary. Prins [HP20] 
Harary. Prins [HP2Ü] 
Harary. Prins [HP20] 
Riordan[RI4] 
Harary. Palmer [HP 16] 
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Graphs 

Graphs 
Rooted graphs 
Line rooted graphs 
Graphs rooted at an oriented line 
Connected graphs 
Multigraphs 
Graphs of given strength 
Graphs of given type 
Spanning subgraphs and supergraphs of G 
Self-complementary graphs 
Signed graphs 
Unicyclic graphs 
Eulerian graphs 
Graphs with given partition 
Pseudographs with given partition 
Superposed graphs 
Superp sed graphs with interchangeable 

colors 
Cubic graphs 
Nonseparable graphs 
k-colored graphs 
Bicolorable graphs 
Edge-rooted triangulated maps 
Cacti 

Graphs with given blocks 
Block graphs 

P61ya [HI 1], Davis [Dll 
Harary[Hll] 
Harary [H31] 
Harary, Palmer [HP1] 
Riddell, Uhlenbeck [RUi], Harary [Hll] 
Harary [Hll] 
Harary [Hll 
Harary [HI Is 

Harary[HI3],[H14].[H19] 
Read [RS] 
Harary [H1Ö], Haiary, Palmer [HP13] 
Austin, Fagen, Penney, Riordan [AFPR1 j 
(R. W. Robinson) 
ParthasarathY [P2] 
Read [R3] 
Read [R3] 

Palmer, Robinson [PR1] 
(R. W. Robinson) 
(R. W. Robinson) 
Robinson [R19] 
Harary, Prins[HP21] 
T' tte [T14] 
Harary, Norman [HN2], Harary, 

Uhlenbeck [HU1] 
Ford, Norman, Uhlenbeck [FNU1J 
Harary, Prins [HP22] 

Digraphs 

Digraphs 
Weakly connected digraphs 
Self-complementary digraphs 
Self-converse digraphs 
Oriented graphs 
Orientations of a given graph 
Tournaments 
Strong tournaments 
Libjled transitive digraphs 
Digraphs with given partition 
Digraphs with all points of outdegree 2 
Acyclic digraphs 
Functional digraphs 
Eulerian trails in a given digraph 

Hararv [H11], Davis [Dl] 
Harary [Hll] 
Read [R5] 
Harary, Palmer [HP9] 
Harary [HI6] 
Harary, Palmer [HP4] 
Davis [D2] 
Moon [Ml6] 
Evans, Harary, Lynn [EHL1] 
Harary, Palmer [HP7] 
(C. P, Lawes) 
(R, W, Robinson) 
Harary [H23], Read [R4] 
de Bruijn, Ehrenfest [BEI], Smith, Tutte 
[ST1] 

■■■ . i ■ 
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Table 15.2 (continued) 

Miscellaneous 

Automata 
Necklace problems 
Algebras of various kinds 
Boolean functions 
Labeled series-parallel networks 
Periodic sequences 
Acyclic simplicial complexes 

Harrison [H34], Harary, Palmer [HP12] 
Harary [H31] 
Harrison [H35] 
P6lya[P5],Slepian[S14] 
Carlitz, Riordan [CR1] 
Gilbert, Riordan[GRl] 
Harary, Palmer [HP17], Beineke, Moon 

[BM1], Beineke, Pippert [BP1] 

EXERCISES 

15.1 In how many ways can the graphs (a) K3 + K2, (b) K3 x Kt, (c) Kt 2[X2] 
be labeled? 

15.2 Write expressions for the cycle indexes of $3 + S2, S3 x S2, S3[S2], S32, and 

15.3 There is an integer k such that Z{C„ 2) = Z{Dm, 2) holds for all n £ k and fails 
whenever« > k. Find k. 

15.4 The number of partitions of n into at most m parts is the coefficient of x" in 

frb) 
15.5 Calculate ZfSjj") and g$(x). Verify this result using Appendix I. 

15.6 Find a counting series for unicyclic graphs. 

(Austin, Fagen, Penney, Riordan [AFPR1]) 

15.7 Let g(x, y) = ££., gjix)^ be the generating function for graphs and let c(x, y) 
be that for connected graphs. Then 

to    J 

g(x, y) = exp £ - c(xr, /). 
r-l r 

[Note the similarity to equation (15.38).] 

15.8 Find the number of trees with p points which are (a) planted and labeled, 
(b) rooted and labeled. 

15.9 Let G be a labeled graph obtained from Kp by deleting r independent lines. The 
number of spanning trees of G is (p - Tfp'~ 1~T. (Weinberg [W7]) 
15.10 The number of rooted trees satisfies the inequality TB+, <, Z"=l 7]7;_,+ 1. It 
follows that 

T.Z £-"') (Otter [08]) 
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15.11  Define the numbers Ä«,'» by the equation Jt» = *i°_, + T.+ I_,.  Then the 
number of rooted trees can be found using 

«r.+I=EiW. (Otter [08]) 
i»l 

K12 Determine the number s, of self-complementary graphs for p = 8 and S, both 
by formula (1S.S7) and by constructing them. 

15.13 Derive a counting formula for self-complementary digraphs. (Read [R5]) 

15.14 Let .sp and s„ be the numbers of self-complementary graphs and digraphs, 
respectively. Then s^ - Ij.. (Read [R5]) 

15.15 For any permutation group A with cycle index Z(A) as given in (15.2), the 
number of orbits of A h 

N(A)^^-Z(A) 

Therefore the number of similarity classes of points in a given graph G (whose permuta- 
tion group r(G) has the variables », in its cycle index) is 

p* = £-zmG)) 

15.16 Let G be a connected graph with n similarity classes of blocks. Ifp* is the number 
of dissimilar points of G and p? is the number of dissimilar points in blocks of the fcth 
similarity class, then 

P*-l = I(P*-1). 
*=i 

Prove Theorem 15.9 as a corollary. (Harary and Norman [HN3]) 



CHAPTER 16 

DIGRAPHS 

I shot an arrow in the air, 
It fell to earth I know not where. 

ROBERT LOUIS STEVENSON 

There is so much to digraph theory that it is possible to write an entire book 
on the subject.* For the most part we shall emphasize in this chapter those 
properties of digraphs which set them apart from graphs. Thus we begin 
by developing three different kinds of connectedness: strong, unilateral, and 
weak. After presenting the Directional Duality Principle, we study matrices 
related to digraphs and the analogue of the Matrix Tree Theorem for graphs. 
We close with a brief description of tournaments. 

DIGRAPHS AND CONNECTEDNESS 

We h*»ve already seen all the digraphs with 3 points and 3 arcs in Fig. 2.4. 
For completeness, we begin with definitions, including a few from Chapter 2. 
A digraph D consists of a finite set V of points and a collection of ordered 
pairs of distinct points. Any such pair (u, v) is called an arc or directed line 
and will usually be denoted uv. The arc uv goes from u to v and is incident 
with u and v. We also say that u is adjacent to v and v is adjacent from u. 
The outdegree od(r) of a point v is the number of points adjacent from it, and 
the indegree id(t') is the number adjacent to it. 

A (directed) walk in a digraph is an alternating sequence of points and 
arcs, VQ, .Y,, r,, • • •, x„, v„ in which each arc x, is r,_ ,t,. The length of such 
a walk is n, the number of occurrences of arcs in it. A closed walk has the 
same first and last points, and a spanning walk contains all the points. A 
path is a walk in which all points are distinct; a cycle is a nontrivial closed 
walk with all points distinct (except the first and last). If there is a path from 

* In fact this hits been done,[HNCl]. Most of the theorems in this chapter are proved in that 
book. Also Moon[Ml6] has written a monograph on tournaments. 

198 
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M to v. then v is said to be reachable from u, ano the distance, d{u, r), from u to 
v is the length of any shortest such path. 

Each walk is directed from the first point p0 to the last v„. We also need a 
concept which does not have this property of direction and is analogous to a 
walk in a graph. A semiwalk is again an alternating sequence r0, x„ r,. • • •, 
xm v„ of points and arcs, but each arc x, may be either Oj_1»i or r,t', _,. A 
semipath, semicycle, and so forth, are defined as expected. 

Whereas a graph is either connected or it is not, there are three different 
ways in which a digraph may be connected, and each has its own idio- 
syncrasies. A digraph is strongly connected, or strong, if every two points 
are mutually reachable; it is unila'erally connected, or unilateral, if for any 
two points at least one is reachable from the other; and it is weakly connected, 
or weak, if every two points are joined by a semipath. Clearly, every strong 
digraph is unilateral and every unilateral digraph is weak, but the converse 
statements are not true. A digraph is disconnected if it is not even weak. We 
note that the trivial digraph, consisting of exactly one point, is (vacuously) 
strong since it does not contain two distinct points. 

We may now state necessary and sufficient conditions for a digraph to 
satisfy each of the three kinds of connectedness. 

Theorem 16.1 A digraph is strong if and only if it has a spanning closed walk, 
it is unilateral if and only if it has a spanning walk, and it is weak if and only 
if it has a spanning semiwalk. 

Corresponding to connected components of a graph, there are three 
different kinds of components of a digraph. A strong component of a digraph 
is a maximal strong subgraph; a unilateral component is a maximal unilateral 
subgraph; and a weak component is a maximal weak subgraph. It is very 
easy to verify that every point and every arc of a digraph D is in just one weak 
component and in at least one unilateral component. Furthermore each 
point is in exac.ly one strong component, and an arc lies in one strong com- 
ponent or nom, depending on whether or not it is in some cycle. 

The strong components of a digraph are the most important among 
these.   One reason is the way in which they yield a new digraph which, 

s, 

Fig. 16.1.   A digraph and its condensation. 
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although simpler, retains some structural properties of the original. Let 
Si, S2, ■ ■ ■, S„ be the strong components of D. The condensation D* of D 
has the strong components of D as its points, with an arc from S{ to S} 

whenever there is at least one arc in D from a point of 5, to a point in Sj. 
(See Fig. 16.1.) 

It follows from the maximaiity of strong components that the con- 
densation D* of any digraph D has no cycles. Obviously the condensation of 
any strong digraph is the trivial digraph. It can be shown that a digraph is 
unilateral if and only if its condensation has a unique spanning path. 

DIRECTIONAL DUALITY AND ACYCLIC DIGRAPHS 

The converse digraph D' of D has the same points as D and the arc uv is in D' 
if and only if the arc vu is in D. Thus the converse of D is obtained by reversing 
the direction of every arc of/). We have already encountered other converse 
concepts, such as indegree and outdegree, and these concepts concerned 
with direction are related by a rather powerful principle. This is a classical 
result in the theory of binary relations. 

Principle of Directional Duality   For each theorem about digraphs, there is a 
corresponding theorem obtained by replacing every concept by its converse. 

We now illustrate how this principle generates new results. An acyclic 
digraph contains no directed cycles. 

Theorem 16.2 An acyclic digraph has at least one point of outdegree zero. 

Proof. Consider the last point of any maximal path in the digraph. This 
point can have no points adjacent from it since otherwise there would be a 
cycle or the path would not be maximal. 

The dual theorem follows immediately by applying the Principle of 
Directional Duality. In keeping with the use of/)' to denote the converse of 
digraph D, we shall use primes to denote dual results. 

Theorem 16.2' An acyclic digraph D has at least one point of indegree zero. 

It was noted that the condensation of any digraph is acyclic, and the 
preceding results give some information about acyclic digraphs. We now 
provide several characterizations. 

Theorem 16.3 The following properties of a digraph D are equivalent. 

1. D is acyclic. 

2. D* is isomorphic to D. 
3. Every walk of D is a path. 
4. It is possible to order the points of D so that the adjacency matrix A{D) 

is upper triangular. 
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—Ü 

Fig. 16.2. An out-tree and the converse in-tree. 

Two dual types of acyclic digraphs are of particular interest. A source 
in D is a point which can reach all others; a sink is the dual concept. An 
out-tree* is a digraph with a source having no semicycles; an in-tree is its 
dual, see Fig. 16.2. 

Theorem 16.4 A weak digraph is an out-tree if and only if exactly one point 
has indegree 0 and all others have indegree 1. 

Theorem 16.4' A weak digraph is an in-tree if and only if exactly one point has 
outdegree 0 and all others have outdegree 1. 

We next consider some digraphs which are closely related to the above. 
A functional digraph is one in which every point has outdegree 1; a contra- 
functional digraph is dual, see Fig. 16.3. The next theorem and its dual 
provide structural characterizations. 

Theorem 16.S The following are equivalent for a weak digraph D. 

1. D is functional. 

2. D has exactly one cycle, the removal of whose arcs results in a digraph 
in which each weak component is an in-tree. 

3. D has exactly one cycle Z, and the removal of any arc of Z results in an 
in-tree. 

A point basis of D is a minimal collection of points from which all points 
are reachable. Thus, a set 5 of points of a digraph D is a point basis if and only 
if every point of D is reachable from a point of S and no point of S is reachable 
from any other. 

Theorem 16.6 Every acyclic digraph has a unique point basis consisting of 
all points of indegree 0. 

* This is called an "arborescence" by Berge[BI2, p. 13]. 
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Fig. 16.3.  A weak functional digraph. 

Corollary 16.6(a) Every point basis of a digraph D consists of exactly one 
point from each of those strong components in D which form the point 
basis of D*. 

A 1-basis is a minimal collection 5 of mutually nonadjacent points such 
that every point of D is either in S or adjacent from a point of S. Every 
digraph has a point basis, but not every digraph has a 1-basis. For example, 
no odd cycle has one. A criterion for an arbitrary digraph to have a 1-basis 
has not yet been found. The theorem by Richardson [R9] generalizes its 
corollary, due to von Neumann and Morgenstern [NM1], and discovered 
in their study of game theory. 

Theorem 16.7 Every digraph with no odd cycles has a 1-basis. 

Corollary 16.7(a) Every acyclic digraph has a 1-basis. 

DIGRAPHS AND MATRICES 

The adjacency matrix A(D) of a digraph D is the p x p matrix [ay] with 
atj = 1 if vtVj is an arc of D, and 0 otherwise. As the example in Fig. 16.4 
shows, the row sums of A(D) give the outdegrees of the points of D and the 
column sums are the indegrees. 

As in the case of graphs, the powers of the adjacency matrix A of a digraph 
give information about the number of walks from one point to another. 

I'l    <~2    ''.1    ''4    '.I Row sum 

»0« 

A(D): r. 

L; Column sum 

Fig. 16.4.  A digraph and its adjacency matrix. 

I'l 0 0 0 0 0 0 

Vl 1 0 I l 0 .1 

I'j 1 0 0 0 0 1 

I« 0 0 I 0 0 1 

t's _0 0 0 0 0_ 0 

1 0 2 I 0 
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Theorem 16.8 The i, j entry aj"1 of A" is the number of walks of length n from 
Pj tO Vj. 

We mention briefly three other matrices associated with D, namely the 
reachability matrix, the distance matrix, and the detour matrix. In R, the 
reachability matrix, ru is 1 if Vj is reachable from i>„ and 0 otherwise. The 
i, j entry in the distance matrix gives the distance from the point v( to the 
point Vj, and is infinity if there is no path from vs to Vj. In the detour matrix, 
the i, j entry is the length of any longest path from v( to vfi and again is 
infinity if there is no such path. These three matrices for the digraph D 
of Fig. 16.4 are: 

Reachability 
Matrix 

Distance 
Matrix 

Detour 
Matrix 

10   0   0   0 
11110 
10   10   0 
10   110 
0   0   0   0   1 

0 
1 
1 
2 

00 

X      X      00 

0     1      1 
oo     0    oo 
oo     1      0 
00     OO     oo 

00 

00 

00 

oo 
0 

0 
3 
1 
2 

00 

JO      00      00 

0     2     1 
oo    0    oo 
oo     1     0 
00      00      00 

X 

00 

00 

00 

0 

Corollary 16.8(a) The entries of the reachability and distance matrices can 
be obtained from the powers of A as follows: 

(1) for all J, r,, = 1 and du = 0. 
(2) ru = 1 if and only if for some n, atf > 0. 
(3) d{vt, Vj) is the least n (if any) such that aj"' > 0, and is oo otherwise. 

There is no efficient method for finding the entries of the detour matrix. 
This problem is closely related to several other long-standing algorithmic 
questions of graph theory, such as finding spanning cycles and solving the 
traveling salesnun problem.* 

The element wise product** B x C of two matrices B - [b(j] and C = 
(Y0] has btjc(j as its i, j entry. The reachability matrix can be useful in finding 
strong components. 

Corollary 16.8(b) Let r, be a point of a digraph D. The strong component of 
D containing r, is determined by the en*ries of 1 in the i"th row (or column) 
of the matrix R x RT. 

The number of spanning in-trees in a given digraph was found by Bolt 
and Maybcrry [BM2] and proved by Tutte [T9]. To give this result, called 

* Consider ;i network N obtained from a strong digraph /) by assigning a positive integer 
(cost) W> every are of />. The traveling salesman problem asks for an algorithm for finding a 
walk in V whereby the salesman can visit each point am return to the starling point while 
traversing ares with a minimum total cost. 
** Sometimes called the "Hadamard product." 
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MJD) = 

1 -1 0 0" 

1 

0 

.3 

-1 

-1 

2 

-1 

-1 
MJD) = 

0 0 0 0„ 

1-10      0 

-1       2    -1    -1 

0-1       1-1 

,0002. 

ÜJ -• 

»t »4 

Fig. 16.5. Spanning in-trees and out-trees. 

the matrix tree theorem for digraphs, we need some other matrices related 
to D. Let Mod denote the matrix obtained irom -A by replacing the ith 
diagonal entry by od(v,). The matrix M,d is defined dually. 

Theorem 16.9 For any labeled digraph D, the value of the cofactor of any 
entry in the t'th row of Mod is the number of spanning in-trees with v( as 
sink. 

Theorem 16.9' The value of the cofactor of any entry in the y'th column of 
Mjd is the number of spanning out-trees with Vj as source. 

In accordance with Theorem 16.9, the matrix M^ of the digraph of 
Fig. 16.S has all cofactors of its entries in the fourth row equal to 3 and the 
three spanning in-trees of D with v4 as sink are displayed; the directional 
dual, Theorem 16.9', is also illustrated by the second column of Afid and the 
two spanning out-trees with v2 as source. 

An eulerian trail in a digraph D is a closed spanning walk in which each 
arc of D occurs exactly once. A digraph is eulerian if it has such a trail. Just 
as in Theorem 7.1 for graphs, one can easily show that a weak digraph D is 
eulerian if and only if every point of D has equal indegree and outdegree. 
We will now state a theorem giving the number of eulerian trails in an eulerian 
digraph. It is sometimes referred to as the BEST theorem after the initials 
of de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte; the first two 
[BEI] and the last two [ST1] discovered the theorem independently. It 
can be elegantly proved using the matrix tree theorem for digraphs, see 
Kasteleyn [K4, p. 76]. 

Corollary 16.9(a) In an eulerian digraph, the number of eulerian trails is 

cf\(d{- 1)! 

where dt = id(^) and c is the common value of all the cofactors of M^. 

_ 
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MUD) = 

3    -1    -1 -1 

-'.       2-1 0 

-10      2 --1 

-1    -1       0 2 

Fig. 16.6.  Counting eulerian trails. 

Note that for an eulerian digraph D, we have M^ = Mid and all row sums 
as well as column sums are zero, so that all cofactors are equal. For the 
digraph in Fig. 16.6, c = 1 and there are 14 eulerian trails. Two of them are 
v1v2v3v4.v2vlv3viv4vl and vlv2ViV4v2v3v4ViV3vl. 

We have just given some indication of how matrices are used in the study 
of digraphs. On the other hand digraphs can be used to give information 
about matrices. Any square matrix M = [m(j] gives rise to a digraph D, 
and also possibly to loops if arc vtVj is in D whenever mtj # 0. The following 
algorithm [H2S] sometimes simplifies the determination of the eigenvalues 
and the inverse (if it exists) of a matrix M. 

1. Form the digraph D associated with M. 
2. Determine the strong components of D. 
3. Form the condensation D*. 

4. Order the strong components so that the adjacency matrix of D* is 
upper triangular. 

5. Reorder the points of D by strong components so that its adjacency 
matrix A is upper block triangular. 

6. Replace each unit entry of A by the entry of M to which it corresponds. 

The eigenvalues of M are the eigenvalues of the diagonal blocks of the new 
matrix, and the inverse of M can be found from the inverses of these diagonal 
blocks. 

When M is a sparse matrix,1* (or rather has zero entries strategically 
located so that there are several strong components), this method can be 
quite effective. A generalization to a sometimes more powerful but also more 
involved algorithm using bipartite graphs is given by Dulmage and 
Mendelsohn [DM2]. 

TOURNAMENTS 

A tournament is an oriented complete graph. All tournaments with two, 
three, and four points are shown in Fig. 16.7. The first with three points is 
called a transitive triple, the second a cyclic triple. 

* In the literature, a sparse matrix has been denned as one with many zeros. 
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Fig. 16.7.  Small tournaments. 

In a round-robin tournament, a given collection of players or teams 
play a game in which the rules of the game do not allow for a draw. Every 
pair of players encounter each other and exactly one from each pair emerges 
victorious. The players are represented by points and for each pair of 
points an arc is drawn from the winner to the loser, resulting in a tournament. 

The first theorem on tournaments ever found is due to Redei [R7]; 
for small tournaments, it can be verified using Fig. 16.7. 

Theorem 16.10 Every tournament has a spanning path. 

Proof. The proof is by induction on the number of points. Every tournament 
with 2, 3, or 4 points has a spanning path, by inspection. Assume the result 
is true for all tournaments with n points, and consider a tournament T 
with n + 1 points. Let v0 be any point of T. Then T — v0 is a tournament 
with n points, so it has a spanning path P, say vx v2 ■ • ■ v„. Either arc v0vt 

or arc vtv0 is in T. Uv0Vi is in T, then v0 i>, v2 • • • v„ is a spanning path of T. 
If ViV0 is in T, let vt be the first point of P for which the arc vQvt is in 
7', if any. Then vt-iV0 is in T, so that t^ v2 ■ • ■ i',_ i v0 

vt "' v„is& spanning 
path. If no such point vt exists, then t>, v2 ■ • ■ v„ v0 is a spanning path. In 
any case, we have shown that T has a spanning path, completing the proof. 

Szele [S16] extended this result by proving that every tournament has 
an odd number of spanning paths. Another type of extension of R<idei's 
theorem was provided by Gallai and Milgram [GMI] who showed that 
every oriented graph D contains a collection of at most ß0(D) point-disjoint 
paths which cover V{D). 

The next theorem is due to Moser [HM2]; its corollary was discovered 
by Foulkes [F7] and Camion [Cl] and is the analogue for strong tourna- 
ments of the preceding theorem for arbitrary tournaments. 

Theorem 16.11 Every strong tournament with p points has a cycle of length n, 
for n = 3,4, • • •, p. 

Proof. This proof is also by induction, but on the length of cycles. If a 
tournament T is strong, then it must have a cyclic tripic.  Assume that T 
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has a cycle Z = vxv2- ■ ■ vnvtof length n < p. We will show that it has a 
cycle of length n + \. There are two cases: either there is a point u not 
in Z both adjacent to and adjacent from points of Z, or there is no such 
point. 

CASE 1. Assume there is a point u not in Z and points v and w in Z such 
that arcs uv and wu are in T. Without loss of generality, we assume that arc 
p, u is in T. Let vt be the first point, going around Z from vu for which arc w( 

is in T. Then u,-_ ,u is in T, ana ut t?2 ■ ■ • t'i- iM vi " ' v« "i is a cvcle of length 
M + 1. 

CASE 2. There is no such point u as in Case 1. Hence, all points of T which 
are not in Z are partitioned into the two subsets U and W, where U is the 
set of all points adjacent to enry point of Z and W is the set adjacent from 
every point of Z. Clearly these sets are disjoint, and neither set is empty 
since otherwise T would not be strong. Furthermore, theie are points u in 
U and w in W such that arc wu is in T. Therefore uv} v2 • • • t)„_ ,WM is a 
cycle of length n + 1 in T. 

Hence, there is a cycle of length « + 1, completing the proof. 

Corollary 16.11(a) A tournament is strong if and only if it has a spanning 
cycle. 

Using terminology from round-robin tournaments, we say that the 
score of a point in a tournament is its outdegree. The next theorem due to 
Landau [LI] was actually discovered during an empirical study of tourna- 
ments (so-called "pecking orders") in which the points were hens and the 
arcs indicated pecking. 

Theorem 16.12 The distance from a point with maximum score to any other 
point is I or 2. 

The number of transitive triples can be given in terms of the scores 
of the points; see Harary and Moser [HM2]. As a corollary, one can 
readily obtain the well-known formula of Kendall and Smith [KS1], which 
has proved useful in statistical analysis. It was generalized from cyclic 
triples to larger strong subtournaments by Beineke and Harary [BH4]. 

Theorem 16.13 The number of transitive triples in a tournament with score 
sequence (s,, s2, • ■ ■, sp) is I sfa ~ l)/2. 

Corollary 16.13(a) The maximum number of cyclic triples among all tourna- 
ments with p points is 

t(p, 3) 
24 

P3 -_4p 
24 

if   p is odd. 

if   p is even. 
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(a) (b) (c) (d) 

fig. 16.8. Two pairs of nonreconstructable strong tournaments. 

Excursion on Reconstruction of Tournaments 

The special case of Ulam's Conjecture for tournaments has been partially 
solved. Just as for graphs, each tournament T with p points determines p 
subtournaments 7] = T - vt. We proved* that any nonstrong tournament 
with at least five points can be reconstructed. However, the conjecture does 
not hold for strong tournaments with p = 5 and 6. This was established 
by L. W. Beineke and E. M. Parker, who found that the two pairs of tourna- 
ments, Fig. 16.8(a, b) and Fig. 16.8(c, d), are counterexamples. 

No larger such examples are yet known, and we conjecture that there 
are none! 

EXERCISES 

16.1 A digraph is strictly weak if it is weak but not unilateral; it is strictly unilateral 
if it is unilateral but not strong. Let C0 contain all disconnected digraphs, C, the 
strictly weak ones, C2 strictly unilateral, and C3 those which are strong. Then the 
maximum and minimum possible number q of arcs among all p point digraphs in 
connectedness category Ch i = 0 to 3 is given in the following table: 

Category 

0 
1 
2 
3 

Minimum Number 
of Arcs 

0 
p- 1 
p-\ 

P 

Maximum Number 
of Arcs 

(p - 1XP - 2) 
(P - 1XP ~ 2) 

(P - l)2 

P(P-D 

(Cartwright and Harary [CHI] 

* F. Harary and E. M. Palmer, On the problem of reconstructing a tournament from sub- 
tournaments, Monatshefte fir Math. 71,14-23 (1967). 
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16.2 The cartesian product D, x D2 of two digraphs has K, x V2 as its point set, 
and («,, u2) is adjacent to (i>„ v2) whenever [u, = t>t and u2 adj t>2] or [u2 - t>2 and 
u, adj»,]. (This is defined just as for graphs in Chapter 2, except that adjacency is 
directed.) When D is in connectedness category C„, we write c(0) = n. Then 
c(D( x D2) = min {c(D,X c(D2)} unless c(Di) = c(D2) = 2 in which case c(D, x D2 = 1. 

(Harary and Trauth [HT1]) 

16.3 No strictly weak digraph contains a point whose removal results in a strong 
digraph. (Harary and Ross [HR2]) 

*16.4 There exists a digraph with outdegree sequence (s„ s2, • • •, s,X where p - 1 £ 
sx £ s2 2: • • • £ sp, and indegree sequence (rt, f2, • • •, tp) where every tj ^ p - 1 
if and only if I s, = 11„ and for each integer k < p, 

t i P 

j«, £ £min {ft - 1, I,} +  £ min {fc, r,}. 
(-1 <«1 i=k+J 

(Ryser [R21], Fulkerson [F12J) 

*16.5 There exists a strong digraph with outdegree and indegree sequences as in the 
preceding exercise if and only if I s, = 11„ each s, > 0, each t, > 0, and for each 
integer k < p, the following strict inequality holds: 

* * p 

X s, < V t( +   X min {k, t,}. 
(=1 i»l f = *+l 

(Beineke and Harary [BH1]) 

16.6 The line digraph UP) has the arcs of the given digraph D az its points, and x is 
adjacent to v in L(D) whenever arcs x, y induce a walk in D. Calculate the number of 
points and arcs of UP) in terms of D. (Harary and Norman [HN4]) 

16.7 The line digraph UP) of a weak digraph D is isomorphic to D if and only if D or 
D' is functional. (Harary and Norman [HN4]) 

16.8 If D is disconnected the assertion in the preceding exercise does not hold. 

♦16.9 Let S and T be disjoint sets of points of D and let X{S, T) be the set of all arcs 
from S to T. Then D is a line digraph if and only if there are no two-point sets S and 
T such that \X(S, 71 - 3. (Geller and Harary [GH1], Heuchenne [H42]) 

16.10 The number of eulerian trails of a digraph D equals the number of hamiltonian 
cycles of UD). (Kasteleyn [K3]) 

16.11 Let T, consist of one point with 2 directed loops. Let T2 = L(Tj) be the line 
digraph (more precisely pseudodigraph) of T, defined as expected, and recursively let 
T9 = !Li7'B_,). The structures Tn have been called "teleprinter diagrams." Then the 
number of eulerian trails in T„ is 

22"" "'. (deBruijn and Ehrenfest [BEI]) 

*16.12 Every digraph in which id v, od v > p/2 for all points i; is hamiltonian. 

(Ghouila-Houri [G7]) 

16.13 Consider those digraphs in which for every point u, the sum £ d(u, v) of the 
distances from u is constant. Construct such a digraph which is not point-symmetric. 

(Harary [H20]) 
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16.14 The complement D and the converse D' both have the same group as D. 

16.15 Let A be the adjacency matrix of the line digraph of a complete symmetric digraph. 
Then A2 + A has all entries 1. (Hoffman [H45]) 

16.16 Two digraphs are cospectral if their adjacency matrices have the same character- 
istic polynomial. There exist just three different cospectral strong digraphs with 4 point s. 

(F. Harary, C. King and R. C. Read) 

16.17 The conjunction D = D, A D2 of two digraphs D, and D2 has V = Vt x V2 

as its point set, and u = (u,, u2) is adjacent to v = (r,. v2) in D whenever u, adj r, in 
D, and u2 adj r2 in D2. The adjacency matrix A of the conjunction D = D, A ö2 '

S 

the tensor product of the adjacency matrices of D, and D2. 
' (Harary and Trauth[HTl]) 

16.18 Let D, and D2 be digraphs and let dt be tht greatest common divisor of the 
lengths of all the cycles in Dt, i = 1, 2. Then the conjunction D, A D2 IS strong if and 
only if D, and D2 are strong and </, and d2 are relatively prime.      (McAndrew [M7]| 
16.19 A digraph is called primitive if some power of its adjacency matrix A has all its 
entries positive. A digraph is primitive if and only if it is strong and the lengths of its 
cycles have greatest common divisor 1. (see Dulmage and Mendelsohn [DM3, p. 204]) 

* 16.20  Let D be a primitive digraph. 

a) If« is the smallest integer such that A" > 0, then n < (p - l)2 + 1. 

(Wielandt [W17]) 

b) Ifn has the maximum possible value (p - l)2 + l.thenthereexistsapermuta- 
tion matrix P such that PAP'' has the form [u,-J where atj = 1 whenever 
/ a« i + 1 and apA = 1, but a(j = 0 otherwise. 

(Dulmage and Mendelsohn [DM3, p. 209]) 

16.21 An orientation of a graph G is an assignment of a direction to each line of G. 
A graph has a strongly connected orientation if and only if it is connected and bridgeless. 

(Robbins[R17]) 

16.22 Let B be the p x q incidence matrix of an arbitrary orientation D of a given 
labeled graph G, so that the entry b{j of B is +1 if oriented line .x, is incident to point 
«•;, - 1 if x, is incident from ry, and 0 otherwise. Then det BBT is the number of spanning 
trees of G. (Compare the matrix BBT with Af of Chapter 13.) (Kirchhof!" [K7]) 

1623 Recall from Chapter 5 that in a graph G, /.(u, r) is the minimum number of lines 
whose removal separates u and v. Similarly, when u and v are points of a digraph D. 
let /.(u. r) be the minimum number of arcs whose removal leaves no path from u to r. 

For any orientation D of an eulerian graph G, A(u, r) = /.(r, u) = U(u, i) for every 
pair of points. 

[Note: The generalization to an arbitrary graph G is much more difficult to prove: A 
graph G has an orientation D such that 1(G) > n if and only if/(G) > 2«.] 

(Nash-Williamr, [Nl]) 

16.24 Even orientation of an «-chromatic graph G contains a path of length n - 1. 

(Gallai [G4]) 

16.25 The scores s( of a tournament satisfy I s2 = S (/> - s()
2. 
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16.26 All but two tournaments have a spanning path i», t>2 • * • vp with a shortcut, the 
arc r,ty The two exceptions are the cyclic triple and tournament of Fig. 16.8(a). 

(B. Grünbaum) 

16.27 a) The number of cycles of length 4 in any p point tournament is equal to the 
number of strong subtournaments with 4 points, 

b) The maximum number of strong subtournaments with 4 points in any p 
point tournament is t{p, 4) = %p - 3)f(p. 3). See Corollary 16.13(a). 

(Beineke and Harary [BH4]) 

16.28 A group is isomorphic to the point-group of some tournament if and only if it 
has odd order. (Moon [M14]) 

16.29 Let T be the point-group and T, the arc-group of a tournament T. Then F, is 
transitive if and only if the pair-group of T is transitive. (Jean [Jl j) 

16.30 Let t(x) and s(x) be the generating functions for tournaments and strong tourna- 
ments, respectively. Then 

(Moon[M16,p.88]) 

16.31 Consider a sequence of nonnegative integers s. < s2 <,■■■< sp. 

a) This is the score sequence of some tournament T if and only if 
p * 

£ s, = p(p - n/2      and for all k < p,      £ s, > k(k - l)/2. 

(Landau [LI]) 

b) Further, T is strong if and only if for all k < p, 

5>,>fc(fc- l)/2. 

(Harary and Moser [HM2]) 
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APPENDIX  1 

GRAPH DIAGRAMS 

One picture is worth more 
than ten thousand words. 

ANONYMOUS 

It is very useful to have diagrams of graphs available for the accumulation 
of data leading to conjectures. Graphs with fewer than 6 points are easily 
drawn. The diagrams of 6 point graphs which are presented here were 
produced by D. W. Crowe, who also was apparently the first to draw all 
7 point graphs. In listing the diagrams, no attempt was made to settle the 
problem of assigning a canonical ordering to the various graphs with p 
points and q lines. However an index n is assigned to each graph G, with the 
same index going to the complementary graph (7. Thus the graph Gpqn is 
the nth {p, q) graph, and is identified to the right of its diagram by the 
number n; furthermore Gpqn = Gp^yqn. The (4, 3) and (5, 5) graphs 
are of course exceptions to this rule. 

As a supplement to tables of this kind, B. R. Heap developed a program 
on the computer at the National Physical Laboratory in Middlesex which 
has produced one card for each graph with 7 points and is in the process 
of producing graphical cards for p = 8. It was found most convenient to 
code the graphs in adjacency matrix form. The existence of such lists has 
already proved valuable to investigators using computer methods. 

For convenience we present here a table displaying the number of 
graphs with a given number of points and lines, up through 9 points (cf. 
Riordan [R15, p. 146]). The entries were obtained using Pölya's formula 
(15.47). 
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Table Al 

THE NUMBER OF GRAPHS WITH p £ 9 POINTS AND q LINES 

1   2   3 4 5 6 7 8 9 

0 1   I   1 1 1 1 1 1 1 
I 1   1 1 1 1 1 1 1 
2 1 2 2 2 2 2 2 
3 1 3 4 5 5 5 5 
4 2 6 9 10 11 11 
5 1 6 15 21 24 25 
6 1 6 21 41 56 63 
7 4 24 65 115 148 
8 2 24 97 221 34.'* 
9 1 21 131 402 771 
10 1 15 148 663 1637 
li 9 148 980 3252 
12 5 131 1312 5995 
13 2 97 1557 10120 
14 1 65 1646 15615 
15 1 41 1557 21933 
16 21 1312 27987 
17 10 980 32403 
18 5 663 34040 

0p II 34  156  1044  12344  308168 
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DIGRAPH DIAGRAMS 

The hero jumped on his horse 

and rode off in all directions. 
S. LEACOCK 

The digraphs with at most 4 points are listed here according to the number 
of points and arcs. Indices are assigned to each one in such a way that 
complements receive the same index, except of course within the (3, 3) and 
(4, 6) digraphs. The diagrams only go though p = 4 because to include 
those for p = 5 would require another book almost the size of the present 
volume. The following table due to Oberschelp [01] gives the number of 
digraphs with p points, p < 8. The entries may be computed using 
equation (15.30). 

Table A2 

THE NUMBER 
OF DIGRAPHS 

WITH p £ 8 POINTS 

p *, 

1 1 
2 3 
3 16 
4 218 
5 9 608 
6 1 540 944 
7 882 033 440 
8 1 793 359 192 848 
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APPENDIX 3 

TREE DIAGRAMS 

You can't see the forest for the trees. 
ANONYMOUS 

The diagrams of all the trees with p <; 12 points were developed by Prins 
and appear as an appendix in his doctoral dissertation [P8]. We present 
here only those diagrams for p <; 10, which are also given in [HP21]. The 
ordering of trees with a given number of points is somewhat arbitrary, but in 
general they are listed by increasing number of points of degree greater than 
2. The following table presents the number of trees and rooted trees with p 
points for p <, 26 (cf. Riordan [R15, p. 138]) and the number of identity 
trees and homeomorphically irreducible trees for p ^ 12 (cf. [HP20]). 
These numbers were obtained using formulas (15.41), (15.35), (15.51 and 
15.52), and (15.47, 15.48, and 15.49) respectively. 
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Talk A3 

THE NUMBER OF TREES, ROOTED TREES. IDENTITY TREES, 
AND HOMEOMORPHICALLV IRREDUCIBLE TREES WITH p POINTS 

p ', T, '# A, P ', T, 

1 1 1 1 1 13 1 301 12 486 
2 1 1 0 1 14 3 159 32 973 
3 1 2 0 0 15 7 741 87 811 
4 2 4 0 1 16 19 320 235 381 
5 3 9 0 1 17 48 629 634 847 
6 6 20 0 2 18 123 867 1 721 159 
7 11 48 1 2 19 317 955 4 688 676 
8 23 115 1 4 20 823 065 12 826 228 
9 47 286 3 5 21 2 144 505 35 221 832 
10 106 719 6 10 22 5 623 756 97 055 181 
11 235 1842 15 14 23 14 828 074 268 282 855 
12 551 4766 29 26 24 

25 
26 

39 299 897 
104 636 890 
279 793 450 

743 724 984 
2 067 174 645 
5 759 636 510 



TREE DIAGRAMS 233 

p-l      • 

/>«4     -*- 

i»-» — X + 

^■7      »■■»»»«       »»«»«("        » » » ^      •"•"'C      * * * T *     * * T 

-£'# >X X'H- 
p-8 ^    » » » » ^      » > > ^       »-«^ » » ■ » I 

{"•"• "I" ~"~> *T\    *v w /~"~\ ^""\   ^ 

V >/>+ H-V^ H4f ^ 
n.9 »»»»»»»««        ««■■»»   <^        ■   »   «   »   »  ^      »   i   .  »  <^~      »  »  «   *  <(" 

>—< >x* x( VC x^ x 
xf V/\<>~f H-Vf H~ 
vL    ,1.1.  &V   4V     «iV    *>UV   ..!/    \-U /-r   ~VT 7P* <r\ <r\  <r%     *\ /i 

/f 4-ttVVY ^ H< 



234 APPENDIX 3 

P'iO -»-> . . . «_ 

► L 

-f ~i—j * ~4 

y 



BIBLIOGRAPHY 



BIBLIOGRAPHY 

And thick and fast 

They came at last, 

And more and more and more. 

L. CARROLL 
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cited in the text. It should be noted, however, that this list is considerably more selective 
than the exceedingly comprehensive bibliography of graph theory and its applications 
compiled by Turner [T3]. For the convenience of the reader, each item in this bibliog- 
raphy is followed by one or more numbers in square brackets which indicate the pages 
where the item is mentioned, following the useful innovation of Grünbaum [G10]. In 
accordance with the procedure in Mathematical Reviews, all books are starred.f 

Anderson, S. S. 
[AH1]        (with F. Harary), Trees and unicyclk graphs. Math. Teacher 60 (1967), 

345-348. [42] 

Austin, T. L. 
[AFPR1]    'with R. E. Fagen, *v. F. Penney, and J. Riordan), The number of com- 

ponents in ranüv i linear graphs.   Ann. Math. Statist. 30 (1959), 
747-754. [195, 196] 

Bäbler, F. 
[Bl] Über eine spezielle Klasse Euler'scher Graphen. Comment. Math. Heb. 

27(1953), 81-100. [69] 

Balaban, A. T. 
[B2] Valence-isomerism of cyclopolyenes. Rev. Roumaine Chim. II (1966), 

1097 1116. [62] 

Ball, W. W R. 
* [BCI] (with  H.  S.   M.  Coxeter),  Mathematical Recreations and Essays. 

Macmillan, New York, 1947. [4] 

Barnette, D. 
[B3] Trees in polyhedral graphs. Canad. J. Math. 18(1966), 731-736.   [124] 

See also p. 68. 

t One publisher advertised a trigonometry text saying, "This book was starred in Math. Reviews." 

237 

. 



238 BIBLIOGRAPHY 

Battle, J. 
[BHK1] (with F. Harary and Y. Kodama), Every planar graph with nine points 

has a nonplanar complement. Bull. Amer. Math. Soc. 68 (1962), 
569-571. [108] 

[BHKY1] (with F. Harary, Y. Kodama, J. W. T. Youngs). Additivity of the genus of 
a graph, Bull. Amer. Math. Soc. 68 (1962), 565-568. [119] 

BehzadLM. 
[B4] 

[BC2] 

[BC3] 

[BCC1] 

[BCN1] 

[BR1] 

Beineke, L. W. 
[B5] 

A criterion for the planarity of a total graph. Proc. Cambridge Philos. 
Soc. 63 (1967), 679-681. [71, 82, 124] 
(with G. Chartrand), Total graphs and traversability. Proc. Edinburgh 
Math. Soc. 15 (1966), 117-120. [83] 
(with G. Chartrand), No graph is perfect.  Amer. Math. Monthly 74 
(1967X 962-963. [62] 
(with G. Chartrand and J. Cooper), The colour numbers of complete 
graphs. J. London Math. Soc. 42 (1967), 226-228. [149] 
(with G. Chartrand and E. A. Nordhaus), Triangles in line-graphs and 
total graphs. Indian J. Math, (to appear). [83] 
(with H. Radjavi), The line analog of Ramsey numbers. Israel J. Math. 
5(1967X93-96. [82] 

Decompositions of complete graphs into forests. Magyar Tud. Akad. 
Mat. Kutato Int. Kozl. 9 (1964), 589-594. [91] 

[B6] The decomposition of complete graphs into planar subgraphs. Chapter 4 
in Graph Theory and Theoretical Physics (F. Harary, ed.) Academic 
Press, London, 1967, pp. 139-154. [120] 

[B7] Complete bipartite graphs:   decomposition into planar subgraphs. 
Chapter 7 in A Seminar in Graph Theory (F. Harary, ed.) Holt, Rinehart 
and Winston, New York, 1967, pp. 42-53. [120] 

[B8] Derived graphs and digraphs. Beiträge zur Graphentheorie (H. Sachs, 
H. Voss, and H. Walther, eds.) Teubner, Leipzig 1968, pp. 17-33. 

[71,74] 
[BG1]        (with R. K. Guy), The coarseness of Km„. Canad. J. Math, (to appear). 

[121, 125J 
[BH1]        (with F. Harary), Local restrictions for various classes of directed 

graphs. J.London Math. Soc. 40 (1965), 87-95. [209] 
[BH2]        (with F. Harary), Inequalities involving the genus of a graph and its 

thickness. Proc. Glasgow Math. Assoc. 7 (1965), 19-21. [118, 125] 
[6H1]        (with F. Harary), The genus of the n-cube. Canad. J. Math. 17 (1965), 

494^96. [1)9] 
[BH4]        (with F. Harary), The maximum number of strongly connected sub- 

tournaments. Canad. Math. Bull. 8 (1965), 491-498. [207,211] 
[BH5]         (with F. Harary), The thickness of the complete graph. Canad. J. Math. 

17(1965), 850-859. [120] 
[BH6]        (with F. Harary), The connectivity function of a graph. Mathematika 

14(1967), 197-202. [45,51] 
[BHM1]     (with F. Harary and J. W. Moon), On the thickness of the <:omplete 

bipartite graph. Proc. Cambridge Philos. Soc. 60 (1964), 1-5.        [120] 



BIBLIOGRAPHY 239 

[BHP1] 

[BMI] 

[BPi] 

[BP2] 

Benzer, S. 
[B9] 

Berge, C. 
[BIO] 

(with F. Harary and M. D. Plummer), On the critical lines or a graph. 
Pacific J. Math. 22 (1967), 205-212. [98] 
(with J. W. Moon), The number of labelled it-trees. Proof Techniques 
in Graph Theory (F. Harary, ed.) Academic Press, New York, 1969. 

[195] 
(with R. E. Pippert), The enumeration of labelled fc-dimensional trees. 
J. Combinatorial Theory (to appear). [195] 
(with M. D. Plummer), On the 1-factors of a nonseparable graph. 
J. Combinatorial Theory 2 (1967), 285 289. [85,92] 
See also [GB1]. 

On the topology of the genetic fine structure. Proc. Nat. Acad. Sei. USA 
45(1959), 1607-1620. [20] 

* [Bill 
* [B12] 

* [BG2] 

Two theorems in graph theory. Proc. Nat. Acad. Sei. USA 43 (1957), 
842-844. [96] 
Theorie des Uraphes et ses Applications. Dunod, Paris, 1958. [44] 
The Theory of Graphs and its Applications. Methuen, London, 1962. 

[21.97,100,128,201] 
(with A. Ghouila-Houri), Programming, Games, and Transportation 
Networks. Methuen, London, 1965. [7] 

Binet, J. P. M. Seep. 153. 

Birkhoff, G. 
* [B13] Lattice Theory. Amer. Math. Soc. Colloq. Publ., Vol. 25, Third Edition, 

Providence, 1967. [54] 

Birkhoff, G. D. 
[BL1] (with D. Lewis), Chromatic polynomials.  Trans. Amer. Math. Soc. 60 

(1946), 355^51. [145] 

Boland, J. 
[BL2] 

Bollobäs, B. 
[B14] 

Bondv, J. A. 
[BIS] 

(with C. Lekkerkerkcr), Representation of a finite graph by a set of 
intervals on the real line. Fund. Math. 51 (1962), 45 -64. [2P 

On graphs with at most three independent paths connecting any two 
vertices. Studia Sei. Math. Hungar. 1 (1966), 137 140. [55, 56] 

On Kelly's congruence theorem for trees. Proc. Cambridge Philos. Soc. 
65(1969), I  11. [41] 
See also p. 149. 

Bosuk, J. See p. 68. 

Bott, R. 
[BM2]        (with J. P, Mayberry), Matrices and trees.  Economic activity analysis. 

(O. Morgenstern, ed.) New York, Wiley. 391 400. [203] 

Brooks, R. L 
[B16] On colouring the nodes of a network. Proc. Cambridge Philos. Soc. 37 

(1941)194 197. [128] 



240 BIBLIOGRAPHY 

[BSST1]     (with C. A. B. Smith, A. H. Stone, and W. T. Tutte), The dissection of 
rectangles into squares. Duke Math. J. 7(1940), 312-340. [158] 
See also p. 123. 

Brualdi, R. A. 
[BIT] Kronecker products of fully indecomposable matrices and of ultrastrong 

digraphs, J. Combinatorial Theory 2 (1967), 135-139. [21] 

deBmijn, N. G. 
[B18] 

[B19] 

[BEI] 

Burnside, W. 
* [B20] 

Cameron, J. 

Camion, P. 
[Cl] 

Carlitz, L. 
[CM] 

Generalization of Pölya's fundamental theorem in enumeration com- 
binatorial analysis. Indagationes Math. 21 (1959), 59-69. [191] 
Pölya's theory of counting. Applied Combinatorial Mathematics 
(E. F. Beckenbach, ed.) Wiley, New York, 1964, pp. 144-184. [191] 
(with T. van Aardenne-Ehrenfest), Circuits and trees in oriented graphs. 
Simon Stevin 28 (1951X 203-217.                                 [195, 204,209] 

Theory of Groups of Finite Order (second edition) Cambridge Univ. 
Press, Cambridge, 1911. [180] 

See p. 25. 

Chenie et circuits hamiltoniens des graphes complets. C.R. Acad. Sei. 
Paris 249 (1959X2151-2152. [206] 

(with J. Riordan), The number of labelled two-terminal series-parallel 
networks. Duke Math. J. 23 (1955), 435-445. [195] 

Cartwright D. 
[CHI] 

[CH2] 

Cauchy, A. L. 

Cayley, A. 

[C2] 

[C3] 

[C4] 

[C5] 

[C6] 

Chang L. C. 
[C7] 

(with F. Harary), The number of lines in a digraph of each connectedness 
category. SI AM Review 3 (1961), 309-314. [208] 
(with F. Harary), On colorings of signed graphs. Elem. Math. 23 
(1968), 85-89. [138,149] 
See also [HNC1]. 

Seep. 153. 

On the theory of the analytical forms called trees. Philos. Mag. 13 (1857), 
19-30. Mathematical Papers, Cambridge 3 (1891), 242-246. [3,187] 
On the mathematical theory of isomers. Philos. Mag. 67 (1874), 444-446. 
Mathematical Papers, Cambridge 9 (1895), 202-204. [3] 
The theory of groups, graphical representation. Mathematical Papers, 
Cambridge 10 (1895), 26-28. [168] 
On the analytical forms called trees. Amer. Math. J. 4 (1881), 266-268. 
Mathematical Papers, Cambridge 11(1896), 365-367. [ 188] 
A theorem on trees. Quart. J. Math. 23 (1889), 376-378. Mathematical 
Papers, Cambridge 13(1897), 26-28. [ 179, 195] 

The uniqueness and nonuniqueness of the triangular association scheme. 
Sri. Record 3 (1959), 604-613. [78] 



tamum 

BIBLIOGRAPHY 241 

Chartrand, G. 
[C8] A graph-theoretic approach to a communications problem. J. SI AM 

AppLMatk 14 (1966), 778-781. [44] 
[C9] On Hamiltonian line graphs. Trans. Amer. Math. Soc. (to appear). 

[81] 
[CGIj        (with D. Geller), Uniquely colorable planar graphs. J. Combinatorial 

Theory (to appear). [138,140,149] 
[CGH1]     (with D. Geller and S. Hedetniemi), A generalization of the chromatic 

number. Proc. Cambridge Philos. Soc. 64 (1968), 265-271. [149] 
[CGH2]     (with D. Geller and S. Hedetniemi), Graphs with forbidden subgraphs. 

J. Combinatorial Theory (to appear). [25,100,124] 
[CH3]        (with F. Harary), Planar permutation graphs. Ann. Inst. Henri Poincare 

Sec. B 3 (1967), 433-438. [107,175,177] 
[CH4]        (with F. Harary), Graphs with prescribed connectivities.   Theory of 

Graphs (P. Erdös and G. Katona, eds.) Akademiai Kiadö, Budapest, 
1968,61-63. [44] 

[CKK1]     (with S. F. Kapoor and H. V. Kronk), The Hamiltonian hierarchy. 
(to appear). [70] 

[CKL1]      (with A. Kaugars and D. R. Lick), Critically «-connected graphs. 
Proc Amer. Math. Soc. (submitted). [56] 

[CK1]        (with H. V. Kronk), Randomly traceable graphs. J. SI AM Appl. Math. 
(to appear). [70] 

[CS1] (with M. J. Stewart), The connectivity of line-graphs.   Math. Ann. 
(submitted). [83] 
See also [BC2], [BC3], [BCC1], [BCN1], [KC1], and p. 77. 

Cooper, J. SeefBCCl]. 

Courant, R. 
* [CR1]        (with H. E. Robbins) What is Mathematics? Oxford U. Press, London, 

1941. [117] 

Coxeter, H. S. M. 
[C10] Self-dual configurations and regular graphs.  Bull. Amer. Math. Soc. 

56 (1950), 413-455. [175] 
See also [BC1]. 

Crowe, D. W. See p. 213. 

Danzer, L. 
[DK1] (with V. Klee), Lengths of snakes in boxes. J. Combinatorial Theory 

2(1967), 258-265. [25] 

Dauber, E. Seep. 172. 

Davis, R. L. 
[Dl] 

[D2] 

The number of structures of finite relations. Proc. Amer. Math. Soc. 4 
(1953), 486-495. [195] 
Structures of dominance relations.   Bull. Math. Biophys. 16 (1954), 
131-140. [195] 

• «■-■■■. 



242 BIBLIOGRAPHY 

Descartes, B. 
[D3] 

Dilworth. R. 
[D4] 

Dirac, G. A. 
[D5] 

[D6] 

[D7] 

[D8] 

[D9] 

[D10] 

[DU] 

[D12] 

[DS1] 

Dulmage, A. 
[DM1] 

[DM2] 

[DM3] 

Solution to advanced problem no. 4526.  Amer. Math. Monthly 61 
(1954), 352. [128] 

Edmonds, J. 
[El] 

Ehrenfest, T. 

Elias, P. 
[EFS1] 

Erdös. P. 
[E2] 

[E3] 

P. 
A decomposition theorem for partially ordered sets. Ann. Math. 51 
(1950). 161-166. [54] 

A property of 4-chromatic graphs and some remarks on critical graphs. 
J. London Math. Soc. 21 (1952X 85-92. [135, 141] 
Some theorems on abstract graphs. Proc. London Math. Soc^ Ser. 3, 2 
(1952), 69-81. [68,142] 
The structure of fc-chromatic graphs. Fund. Math. 40 (1953), 42-55. 

[128,142] 
4-chrome Graphen und vollständige 4-Graphen. Math. Nachr. 22 
(I960), 51-60. [45] 
In abstrakten Graphen verhandene vollständige 4-Graphen und ihre 
Unterteilungen. Math. Nachr. 22 (I960), 61-85. [149] 
Generalisations du theoreme de Menger. C.R. Acad. Sei. Paris 250 
(I960), 4252^253. [50] 
Short proof of Menger's graph theorem. Mathematika 13 (1966), 
42^4. [47] 
On the structure of ^-chromatic graphs. Proc. Cambridge Philos. Soc. 
63 (1967), 683-691. [149] 
(with S. Schuster), A theorem of Kuratowski. Nederl Akad. Wetensch. 
Proc. Ser. A 57 (1954), 343-348. [108] 

L. 
(with N. S. Mendelsohn), Coverings of bipartite graphs. Canad. J. Math. 
10(1958X517-534.    • [98,99] 
(with N. S. Mendelsohn^ On the inversion of sparse matrices. Math. 
Comp. 16 (1962), 494-496. [205] 
(with N. S. Mendelsohn), Graphs and matrices. Chapter 6 in Graph 
Theory and Theoretical Physics (F. Harary, ed.) Academic Press, London, 
1967, pp. 167-229. [210] 

Existence of A-edgc connected ord*nary graphs with prescribed degrees. 
J. Res. Nat. Bur. Stand., Sect. B 68 (1964), 73-74. [63] 

van Aardenne-, See [BEI]. 

(with A. Feinstein and C. E. Shannon), A note on the maximum flow 
through a network. IRE Trans. Inform. Theory, IT-2, (1956), 117-119. 

[49] 

Graph theory and probability II. Canad. J. Math. 13 (1961), 346-352. 
[128] 

Extremal problems in graph theory. Chapter 8 of A Seminar on Graph 



BIBLIOGRAPHY 243 

Theory (F. Harary. ed.) Holt, Rinehart and Winston, New York, 1967, 
pp. 54-59. [17,18, 25] 

[E4] Applications of probabilistic methods to graph theory. Chapter 9 in 
A Seminar on Graph Theory (F. Harary, ed.) Hoit, Rinehart and Winston, 
New York, 1967, pp. 6T>44. [24] 

[EG1]        (with T. GallaiX Graphs with prescribed degrees of vertices (Hungarian). 
Mat. Lapok 11 (I960), 264-274. [58,59] 

[EGP1]      (with A. Goodman and L. Pösad The representation of a graph by set 
intersections. Canad.J.Math. 18(1966), !06-l 12. [20] 

[EH1]        (with A. HajnalX On chromatic numbers of graphs and set-systems. 
Ada Math. Acad. Sei. Hungar. 17 (1966), 61-99. [148] 

[ERl]        (with A. RenyiX Asymmetric graphs. Acta Math. Acad. Sei. Hungar. 14 
(1963), 295-315. [17] 

[ESI] (with G. Szekeres), A combinatorial problem in geometry. Compositio 
Math. 2 (1935X463-470. [16] 
Ssealsop. 121. 

Euler, L. 
[E5] Solutio problematis ad geometriam situs pertinentis. Comment. Acade- 

miae Sei. I. Petropolitanae 8 (1736), 128-140. Opera Omnia Series 1-7 
(1766), 1-10. [2] 
The Königsberg bridges. Sei. Amer. 189 (1953), 66-70. [14] 
See also p. 64 and 103. 

(with F. Harary and M. S. Lynn), On the computer enumeration of finite 
topologies. Comm. Assoc. Comp. Mach. 10 (1967), 295-298. [195] 

See [AFPR1]. 

[E6] 

Evans, J. W. 
[EHL1] 

Fagen, R. E. 

Far}', I. 
[Fl] 

Feinstein, A. 

Feller, W. 
*[F2] 

Feynmann, R 
[F3] 

Finck, H. J. 
[F4] 

[FS1] 

Folkman, J. 
[F5] 

On straight line representation of planar graphs. 
Szeged. 11 (1948), 229-233. 

See [EFS1]. 

Acta Sei. Math. 
[106] 

An Introduction to Probability Theory and its Applications, Vol. 1, 
(2nd ed.) Wiley, New York, 1957. [6] 

P. 
Space-time approaches to quantum electrodynamics. Physical Review 
76(1949),769-789. [6] 

Über die chromatischen Zahlen eines Graphen und Seines Komplements, 
land II. Wiss.Z.T.H. Ilmenau 12 (1966X243-251. [148] 
(with H. Sachs), Über eine von H. S. Wilf angegebene Schranke für 
die chromatische Zahl endlicher Graphen. Math. Nachr. 39 (1969), 
373-386. [132] 

Regular line-symmetric graphs. J. Combinatorial Theory (to appear). 
[173] 



244 BIBLIOGRAPHY 

Ford, G. W. 
[FNU1] 

Ford, L. R. 
[FFIJ 

* [FF2] 

Foster, R. M. 
[F6] 

Foulkes, J. D. 
[F7J 

Frucht, R 
[F8] 

(with R. Z. Norman and G. E Uhlenbcck* Combinatoriai problems in 
the theory of graphs, II. Proc. Nat. Acad. Sei. USA 42 (1956X 529-535. 

[195] 

(with O. R. Fulkerson* Maximal flow through a network, Canad. J. 
Math. 8 (1956* 399-404. [49] 
(with D. R. Fulkerson* Flows in Networks. Princeton University Press, 
Princeton, 1962. [7, 52] 

Geometrical circuits of electrical networks.  Trans. Amer. Inst. Elec. 
Engrs. 51 (1932), 309-317. [171] 

Directed graphs and assembly schedules.  Proc. Symp. Appl. Math., 
Amer. Math. Soc. 10 (i960* 281-289. [206] 

Herstellung von  Graphen  mit  vorgegebener abstrakten Gruppe. 
Compositio Math. 6 (1938* 239-250. [168] 

[F9] Graphs of degree three with a given abstract group. Canad. J. Math. I 
(1949), 365-378. [170] 

[F10] On the groups of repeated graphs. Bull. Amer. Math. Soc. 55 (1949* 
418-420. [165] 

[Fl 1] A one-regular graph of degree three. Canad. J. Math. 4 (1952* 240-247. 
[175] 

[FH1]        (with F. Harary* On the corona of two graphs. Aequationes Math. 
(to appear). [167] 
See also p. 168. 

Fulkerson, D. R. 
[F12] Zero-one matrices with zero trace. Pacific J. Math. 10 (1960* 831-836. 

[209] 
[F13] Networks, frames, and blocking systems. Mathematics of the Decision 

Sciences. Vol. II, Lectures in Applied Mathematics, (G. B. Dantzig 
and A. F. Scott, eds.) 303-334. [52] 
See also [FF1], and [FF2]. 

Gaddum, J. W. See [NGI]. 

Gallai, T. 
[Gl] On factorisation of graphs.  Acta Math. Acad. Sei. Hangar. I (1950* 

133-153. [85] 
[G2] Über extreme Punkt- und Kantenmengen, Ann. Univ. Sei. Budapest, 

Eötvös Sect. Math. 2 (1959* 133-138. [95] 
[G3] Elementare relationen bezüglich der glieder und trennenden punkte von 

graphen. Magyar Tud. Akad. Mat. Kutato Im. Ko:l. 9 (1964), 235-236. 
[31, 36] 

[G4] On directed paths and circuits.  Theory of Graphs (P. Erdös and G. 
Katona, eds.) Akademiai Kiadö, Budapest, 1968. Also Academic Press, 
New York, 1968, pp. 115-119. [149, 210] 



ga 

BIBLIOGRAPHY 245 

[GM1]       (with A. N. Milgram), Verallgemeinerung eines graphen theoretischen 
Satzes von Redei, Ada Scient. Math. 21 (I960), 181-186. [206] 
See also [F.G1]. 

Gaudin. T. 
[GHR I]     (with J. C. Herz and P. Rossi), Solution du probleme no. 29. Rev. Franc. 

Rech. Oper. 8 (1964X214-218. [70] 

Geller. D. P. 
[GS] Outerplanar graphs, (to appear). [108] 
[CHI]       (with F. Harary), Arrow diagrams are line digraphs. J. SI AM Appl. 

Math. 16 (1968). 1141-1145. [209] 
See also [CGI], [CGH1], [CGH2], and p. 83. 

Gerencser, L. 
[G6] On coloring problems (Hungarian). Mat. Lapok 16 (1965), 274-277. 

[101] 
Gewirtz, A. 

[GQ1]       (with L. V. Quint as). Connected extremal edge graphs having symmetric 
automorphism group. Recent Progress in Combinatorics (W. T. Tutte, 
ed.) Academic Press, New York, 1969. [176] 

Ghouila-Houri, A. 
[G7] Un resultat relatif ä la notion de diametrc. C. R. Acad. Sei. Paris 250 

(1960),4254-4256. [209] 
See also [BG2]. 

Gilbert, E. N. 
[GR1]        (with J. Riordan), Symmetry types of periodic sequences. Illinois J. Math. 

5(19611,657 665. [195] 

Gilmore, P. 
[GH2]       (with A. J. Hoffman), A characterization of comparability graphs and 

interval graphs. Canad. J. Math. 16 (1964), 539 548. [21] 

Goodman, A. See[EGPl], 

Graver, J. E. 
[GY1]        (with J. Yackel). Some graph theoretic results associated with Ramsey's 

theorem. J. Combinatorial Theory 3 (1968), 151. [16] 

Grossman. J. W. See[HGI]. 

Grötzsch. H. 
[G8] Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel.   Wiss. Z. 

Martin-Luther Univ. Halle-Wittenberg. Math. Naturwiss. Reihe $(195S\ 
109 120. [131] 

Grünbaum. B. 
[G9] Grötzsch's theorem on 3-colorings.   Michigan Math. ./.  10 (1963), 

303 310. [131] 
[GI0] Convex Polytopes, Wiley (Intcrscience). New York. I%7. 

[68. 117,235] 
See also p. 211. 

i-*Ste£jI^„ .:,r»3?j5:TfcW*M    i 



246 BIBLIOGRAPHY 

Gupta, R. P. 
[Gil] 

Guy, R. K. 
* [G12] 

[GB1] 

Hadwiger, H 
[HI] 

Independence and covering numbers of line graphs and total graphs. 
Proof Techniques in Graph Theory (F. Harary, ed.) Academic Press, 
New York, 1969. [97] 

The decline and fall of Zarankiewicz's theorem. Proof Techniques in 
Graph Theory (F. Harary, ed.) Academic Press, New York, 1969. [122] 
(with L. W. Beineke), The coarseness of the complete graph. Canad. J. 
Math. 20 (19661, 888-894. [121] 
See also [BG1]. 

Über eine Klassifikation der Streckenkomplexe.   Vierteljsch,  Natur- 
forsch. Ges. Zürich 88(1943), 133-142. [135] 

Hajnal, A. See [EH1]. 

Hajos, G. 
[H2] Über eine Art von Graphen. Internat. Math. Nachr. 2 (1957), 65.   [20] 
[H3] Über eine Konstruktion nicht n-färbbarer Graphen.  Wiss, Z. Martin 

Luther Univ. Halle-Wittenberg Math-Natur. Reihe. 10 (1961), 116-117. 
[143] 

Hakimi, S. 
[H4] 

Haiin, R. 
[H5] 

Hall, D. W. 
[H6] 

Hall, M. 
•[H7] 

Hall, P. 
[H8] 

On the realizability of a set of integers as degrees of the vertices of a 
graph. J. SI AM Appl. Math. 10 (1962), 496-506. [58, 62, 63] 

A theorem on n-connected graphs. J. Combinatorial Theory (to appear). 
[56] 

A note on primative skew curves. Bull. Amer. Math. Soc. 49 (1943), 
935-937. [123] 

Combinatorial Theory, Blaisdell, Waltham, 1967. [16, 56] 

On representations of subsets. J. London Math. Soc. 10 (1935), 26-30. 

Hamelink, R. C. t53J 
[H9] A partial characterization of clique graphs. J. Combinatorial Theory 

Harary, F. 
[H10] 

[Hit] 

[H!2] 

[HI 3] 

(to appear). [20] 

On the notion of balance of a signed graph. Mich. Math. J. 2 (1953), 
143-146. [195] 
The number of linear, directed, rooted, and connected graphs. Trans. 
Amer. Math. Soc. 78 (1955), 445-463. [ 185, 186, 195] 
Note on the Polya and Otter formulas for enumerating trees. Mich. 
Math.J. 3 (1956), 109-112. [189] 
On the number of dissimilar line-subgraphs of a given graph. Pacific J. 
Math. 6 (1956), 57-64. ' [195] 



mmcum 

BIBLIOGRAPHY 247 

[H14] The number of dissimilar supergraphs of a linear graph. Pacific J. Math. 
7 (1957), 903-911. [195] 

[HI5]        Structural duality. Behavioral Sei. 2 (1957), 255-265. [30] 
[H16]        The number of oriented graphs. Mich. Math. J. 4 (1957), 221-224. 

[195] 
[HI7] On arbitrarily traceable graphs and directed graphs. Scripta Math. 23 

(1957), 37-41. [69] 
[H18]        On the number of bicolored graphs. Pacific J. Math. 8 (1958), 743-755. 

[163, 177] 
[HI9] On the number of dissimilar graphs between a given graph-subgraph 

pair. Canad. J.Math. 10(1958), 513-516. [195] 
[H20]        Status and contrastatus. Sociometry 22 (1959), 23-43. [209] 
[H21] On the group of the composition of two graphs. Duke Math. J. 26 

(1959X29-34. [21,166] 
[H22] An elementary theorem on graphs. Amer. Math. Monthly 66 (1959), 

405-407. [31] 
[H23]        The number of functional digraphs. Math. Ann. 138 (1959), 203-210. 

[195] 
[H24] Unsolved problems in the enumeration of graphs. Publ. Math. Inst. 

Hung. Acad. Sei. 5 (I960), 63-95. [192] 
[H25] A graph theoretic approach to matrix inversion by partitioning. Numer. 

Math. 4 (1962X128-135. [205] 
[H26] The maximum connectivity of a graph. Proc. Nat. Acad. Sei. USA 48 

(1962X1142-1146. [44] 
[H27] The determinant of the adjacency matrix of a graph. SI AM Review 4 

(1962X202-210. [151] 
[H28] A characterization of block-graphs. Canad. Math. Bull. 6 (1963X 1-6. 

[30] 
[H29] On the reconstruction of a graph from a collection of subgraphs. Theory 

of Graphs and its Applications (M. Fiedler, ed.). Prague, 1964, 47-52; 
reprinted, Academic Press, New York, 1964. [12,41] 

[H30] Combinatorial problems in graphical enumeration. Applied Combina- 
torial Mathematics (E. F. Beckenbach, ed.) Wiley, New York, 1964, 
pp. 185-2;:0. [192] 

[H31] Applications of Pölya's theorem to permutation groups. Chapter 5 in 
A Seminar on Graph Theory (F. Harary, ed.) Holt, Rinehart and Winston, 
New York, 1967, pp. 25-33. [183, 184, 185, 195] 

[H32] Graphical enumeration problems.  Chapter 1 in Graph Theory and 
Theoretical Physics (F. Harary, ed.) Academic Press, London, 1967, 
pp. 1-41. [192, 194] 

[H33] Variations on a theorem by Menger. J. SI AM Appl. Math, (to appear). 
[55] 

[HH1] (with S. HedetniemiX The achromatic number of a graph. J. Combina- 
torial Theory (to appear). [ 128, 144] 

[HHP1] (with S. Hedetniemi and G. PrinsX An interpolation theorem for graphical 
homomorphisms. ''Port. Math, (to appear). [143, 144, 149] 

- ' rt»*«*«._v .*»   .  ...   -tv. -■■'JWrtBie*»«« 



248 BIBLIOGRAPHY 

[HHR1]     (with S. T. Hedetniemi and R. W. Robinson), Uniquely colorable graphs. 
J. Combinatorial Theory (to appear). [l?9, 149] 

[HKT1]     (with R. M. Karp and W. T. TutteX A criterion for planarity of the 
square of a graph. J. Combinatorial Theory 2 (1967), 395-405. [ 124] 

[HK1]        (with Y. KodamaX On the genus of an n-connected graph. Fund. Math. 
54(196417-13. [47,119] 

[HM1]       (with B. Manvel), On the number of cycles in a graph. Math, casopis 
(to appear). [25,158] 

[HM2]       (with L. Moser), The theory of round robin tournaments. Amer. Math. 
Monthly 73 (1966), 231-246. [206,207,211] 

[HMR1]     (with A. Mowshowitz and J. RiordanX Labeled trees with unlabeled 
endpoint. J. Combinatorial Theory 6 (1969), 60-64. [195] 

[HN1]        (with C. St. J. A. Nash-WilliamsX On E slerian and Hamiitonian graphs 
and line-graphs. Canad. Math. Bull. 8(1965X701-709. [81,83] 

[HN2]        (with R. Z. Norman), The dissimilarity characteristic of Husimi trees. 
Ann. o/Mar/i. 58 (1953), 134-141. [42 195] 

[HN3]       (with R. Z. Norman), Dissimilarity characteristic theorems for graphs. 
Proc. Amer. Math. Soc. 11 (I960), 332-334. [197] 

[HN4]        (with R. Z. Norman), Some properties of line digraphs. Rend. Circ. 
Mat. Palermo 9 (1961), 161-168. [209] 

* [HNC1] (with R. Z. Norman and D. Cartwright), Structural Models: an introduc- 
tion to the theory of directed graphs. Wiley, New York, 1965. [6, 198] 

[HP1]        (with E. M. Palmer), The number of graphs rooted at an oriented line. 
ICC Bull. 4 (1965X91-98. [195] 

[HP2]        (with E. M. PalmerX A note on similar points and similar lines of a 
graph. Rev. Roum. Math. Pures et Appl. 10 (1965X 1489-1492. [176] 

[HP3]        (with E. M. PalmerX The smallest graph whose group is cyclic. Czech. 
Math.J. 16(1966), 70-71. [170,176] 

[HP4]        (with E. M. PalmerX On the number of orientations of a given graph. 
Bull. Acad. Polon. Sei. Ser. Sei. Math. Astronom. Phys. 14 (1966), 
125-128. [195] 

[HP5]        (with E. M. PalmerX On similar points of a graph. J. Math. Mech. 15 
(1966X623-630. [171] 

[HP6]        (with E. M. PalmerX The reconstruction of a tree from its maximal 
proper subtrees. Canad. J. Math. 18 (1966), 803-810. [41] 

[HP7]        (with E. M. PalmerX Enumeration of locally restricted digraphs. Canad. 
J.Math. 18(1966),853-860. [195] 

[HP8]        (with E. M. Palmer), The power group enumeration theorem.   J. 
Combinatorial Theory 1 (1966X 157-173. [191] 

[HP9]        (with E. M. PalmerX Enumeration of self-converse digraphs.  Mathe- 
matika 13(1966), 151-157. [195] 

[HP10]       (with E. M. Palmer), The groups of the small digraphs. J. Indian Statist. 
Assoc. 4 (1966), 155-169. [176] 

[HP11]       (with E. M. PalmerX The enumeration methods of Redfield. Amer. J. 
Math. 89 (1967), 373-384. [178] 

[HP12]       (with E. M. Palmer), Enumeration of finite automata. Information and 
Control 10 (1967), 499-508. [192,195] 



BIBLIOGRAPHY 249 

[HP 13]      (with E. M. Palmer), On the number of balanced signed graphs. Bull. 
Math. Biorhr°>rs 29 <l967), 759-765. [195] 

[HP14]      (with E. M. Palmer), On the group of a composite graph. Siudia Sei. 
Math. Hungar. 3 (to appear). [21 ] 

[HP15]      (with E. M. Palmer), On the point-group and line-group of a graph. 
Acta Math. Acad. Sei. Hung. 19 (1968), 263-269. [162,177] 

[HP16]       (with E. M. Palmer), Note on the number of forests.   Mat. casopis 
(to appear). [195] 

[HP17]       (with E. M. Palmer), On acyclic simplicial complexes. Mathematika 
15(1968), 119-122. [195] 

[HPR1]      (with E. M. Palmer and R. C. Read), The number of ways to label a 
structure. Psychometrika 32 (1967), 155-156. [180] 

[HP18]       (with M. D. Plummer), On the point-core of a graph. Math. Z. 94 
(1966), i>82-386. [101] 

[HP19]       (with M. D. Plummer), On the core of a graph. Proc. London Math. 
Soc. 17 (1967), 305-314. [98,99,101] 

[HP20]       (with G. Prins), The number of homeomorphically irreducible trees, 
and other species. Acta Math. 101(1959), 141 162. [189,231] 

[HP21]       (with G. Prins), Enumeration of bicolourable graphs. Canad. J. Math. 
15 (1963), 237-248. [195] 

[HP22]       (with G. Prins), The block-cutpoint-tree of a graph.   Publ. Math. 
Debrecen 13(19661 103-107. [36,195] 

[HPT1]      (with G. Prins and W. T. Tutte), The number of plane trees. Indagationes 
Math. 26 (1964), 319-329. [195] 

[HR1] (with R. C. Read), The probability of a given 1-choice structure. Psycho- 
metrika 31 (1966), 271-278. [180] 

[HR2]        (with I. C. Ross), A description of strengthening and weakening group 
members. Sociometry 22 (1959), 139-147. [209] 

[HT1]        (with C. A. Trauth, Jr.), Connectedness of products of two directed 
graphs. J. SI AM Appl. Math. 14 (1966), 250-.'. 34 [21, 209, 210] 

[HT2]        (with W. T. Tutte), The number of plane trees with a given partition. 
Mathematika 11 (1964), 99-101. [195] 

[HT3]        (with W. T. Tutte), A dual form of Kuratowski's theorem. Canad. Math. 
Bull. 8 (1965), 17-20, 373. [113] 

[HT4] (with W. T. Tutte), On the order of the group of a planar map. J. Com- 
binatorial Theo, >y 1 (1966), 394-395. [177] 

[HUI]        (with G. E. Uhienbeck), On the number of Husimi trees, I. Proc. Nat. 
Acad. Sei., USA 39 (1953), 315-322. [ 195] 

[HW11       (with G. Wilcox), Boolean operations on graphs.   Math. Stand. 20 
(1967), 41-51. [21] 
See also [AHI], [BHK1], [BHKY1], [BH1], [BH2], [BH3], [BH4], 
[BH5], [BH6], [BHM1], [BHP1], [CHI], [CH2], [CH3], [CH4], 
[EHL1], [FHlj. [GHI], and pp. 158 and 208. 

Harrison, M. A. 
[H34] A census of finite automata. Canad. J. Math. 17 (1965), 100 113. 

[192, 195] 



250 BIBLIOGRAPHY 

[H35J 

Havel, V. 
[H36] 

Note on the number of finite algebras. J. Combinatorial Theory 1 
(1966), 394. [195] 

A remark on the existence of finite graphs (Hungarian). Casopis Pest. 
Mat. 80 (1955), 477-480. [58] 

[H37] On the completeness-number of a finite graph. Beitrage zur Graphen- 
theorie (H. Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig, 
1968, pp. 71-74. [149] 

Heawood, P. J. 
[H38] Map colour theorems. Quart. J. Math. 24 (1890), 332-338. 

[5,118,130,136] 
Hedetniemi, S. 

[H39] On hereditary properties of graphs.  Studia Sei. Math. Hungar. (to 
appear). [96,100] 
See also [CGH1], [CGH2], [HH1], [HHP1], [HHR1], and pp. 140 
and 148. 

Hedrlin, Z. 
[HP23] 

[HP24] 

Heffter, L. 
[H40] 

(with A. Pultr), Symmetric relations (undirected graphs) with given 
semigroup. Monatsh. Math. 69 (1965), 318-322. [177] 
(with A. Pultr), On rigid undirected graphs  Canad. J. Math. 18 (1966), 
1237-1242. [177] 

Über das Problem der Nachbargebiete. Ann. Math. 38 (1891), 477-508. 

Hemminger, R. L. 
[H41 ] On reconstructing a graph. Proc. Amer. Math. Soc. 20 (1969), 185-187. 

[83] 

Herz, F.C. See[GHRl]. 

Heuchenne, C. 
[H42] Sur une certaine correspondance entre graphes.  Bull. Soc. Roy. Sei. 

Liege 33 (1964), 743-753. [209] 

Hobbs, A. M. 
[HGI]       (with J. W. Grossman), Thickness and connectivity in graphs. J. Res. 

Nat. Bur. Stand. Sect. B (to appear). [120] 

Hoffman, A. J. 
[H43] On the uniqueness of the triangular association scheme. Ann. Math. 

Statist. 31 (1960), 492-497. [ 17, 78] 
[H44] On the exceptional case in a characterization of the arcs of complete 

graphs. IBM J. Res. Develop. 4 (I960), 487-496. [78] 
[H45] On ;he polynomial of a graph. Amer. Math. Monthly 70 (1963), 30^36. 

[159,210] 
[H46] On the line-graph of the complete bipartite graph. Ann. Math. Statist. 

35(1964), 883-885. [71,79] 
[HSI] (with R. R. Singleton), On Moore graphs with diameters 2 and 3. IBM 

J. Res. Develop. 4 (I960), 497-504. [25] 
See also [GH2]. 



m* 

BIBLIOGRAPHY 251 

House, L. C. 
[H47] 

Izbicki, H. 

["] 

Jean, M. 

[J!l 

Jordan, C. 
[J2] 

Jung, H. A. 
[J3] 

Kagr.o, I. N. 
[Kl] 

A it-critical graph of given density.  Amer. Math. Monthly 74 (1967), 
829-831. [149] 

Unendliche Graphen endlichen Grades mit vorgegebenen Eigenschaften. 
Monatsh. Math. 63 (1959), 298-301. [170] 

Edge-similar tournaments.  Recent Progress in Combinatorics (W. T. 
Tutte, ed.). Academic Press, New York, 1969. [211] 

Sur les assemblages de lignes. J. Reine Angew. Math. 70 (1869), 185-190. 
[36] 

See also p. 35. 

Zu einem Isomorphiesatz von Whitney für Graphen.   Math. Ann. 
164(1966), 270-271. [72] 

Linear graphs of degree ^6 and their groups. Amer. J. Math. 68 (1946), 
505-520;69(1947), 872; 77 (1955), 392. [176] 

Kapoor,S.F. SeefCKKl]. 

Karaganis, J. J. 
[K2] On the cube of a graph. Canad. Math. Bull, (to appear). [69] 

KarpR.M. See[KKTl]. 

Kasteleyn, P. W. 
[K3] A soluble self-avoiding walk problem. Physica 29 (1963), 1329-1337. 

[209] 
[K4] Graph theory and crystal physics.  Chapter 2 in Graph Theory and 

Theoretical Physics (F. Harary, ed.) Academic Press, London, 1967, 
pp 44-110. [71,204] 

Kaugars, A. See [CKLI] and p. 31. 

Kay, D. C. 
[KC1]        (with G. Chartrand). A characterization of certain ptolemaic graphs. 

Canad. J.Math. 17(1 %5), 342-346. [24] 

Kelly, J. B. 
[KKl]        (with L. M. Kelly), Paths and circuits in critical graphs. Amer. J. Math. 

76(1954), 786-792. [128,142] 

Kelly. L. M. SeefKK!]. 

Kelly, P. J. 
[K5] A congruence theorem for trees. Pacific J. Math. 7 (1957), 961 968. 

[41] 
[KM1]        (with D. Merriell), A class of graphs. Trans. Amer. Math. Soc. % (I960), 

488-492 [25] 



252 BIBLIOGRAPHY 

Kempe, A. B. 
[K6] On the geographical problem of four colors. A>*er. J. Math. 2 (1879), 

193-204. [5] 

Kendall, M. G. 
[KS1]        (with B. B. Smith), On the method of paired comparisons. Biometrika 31 

(1940X324-345. [207] 
King,C. See pp. 158and2J0. 

Kirchhoff, G. 
[K7] Über die Auflösung der Gleichungen, auf welche man bei der Unter- 

suchung der linearen Verteilung galvanischer Ströme geführt wird. 
Ann. Phys. Chem. 72 (1847), 497-508. [2, 152,210] 

Klee,V. See [DK 1]. 

Kleinen, M. 
[K8] Die Dicke des n-dimensionalen Würfel-Graphen.   J. Combinatorial 

Theory 3 (1967), 10-15. [121] 

Kleitman, D. See p. 123. 

Kodama, Y. See [BHK1], [BHKY1], and [HK1]. 
König, D. 

Graphen und Matrizen. Mat. Fiz. Lapok 38 (1931), 116-119. [53, 96] 
Theorie der endlichen und unendlichen Graphen. Leipzig. 1936, Reprinted 
Chelsea, New York, 1950. [3, 7. 18, 35, 84, 127,168] 
See also p. 116. 

[K9] 
* [K10] 

Kotzig, A. 
[Kll] 

Krausz, J. 
[K12] 

On certain decompositions of a graph (in Slovakian).   Mat.-Fyz. 
Casopis 5 (1955), 144-151. [55] 
See also pp. 49 and 124. 

Demonstration nouvelle d'une theoreme de Whitney sur les reseaux. 
Mat. Fiz. Lapok 50 (1943), 75-89. [74] 

Kronk. H. V. 
[K13] Generalization of a theo "em of Pösa. Proc. Amer. Math. Soc. 

[701 
See also [CKK1] and [CK1], 

Kuratowski, K. 
[K14] Sur !e probleme des courbes gauches en topologie.  Fund. Math. 15 

(1930), 271-283. [108] 

Landau. H. G. 
[LI] On dominance relations and the structure of animal societies. III; the 

condition for a score structure. Bull. Math. Biophys. 15(1955). 143-148. 
[207.211] 

Lawes, P. Seep. 195. 

Lederberg, J. See p. 68. 



BIBLIOGRAPHY 253 

Lee, T. D. 
[LY1]        (with C. N. Yang), Many-body problems in quantum statistical mechan- 

ics. Phys. Rev. 113(1959), 1165-1177. [6] 

Lekkerkerker, C. See [BL2]. 

Lewis, D. See[BLl]. 

Lewin, K. 
* [L2] Principles ofTopological Psychology, McGraw-Hill, New York, 1936. 

[5] 
Lick,D.R. See[CKLl]. 

Littlewood, J. E. 
* [L3] The Theory of Group Characters. Clarendon, Oxford, 1940. [164] 

Loväsz, L. 
[L4] On decomposition of graphs.   Studia Sei. Math. Hungar. 1 (1966), 

237-238. [63] 
[L5] On chromatic number of finite set-systems.  Ada Math. Acad. Sei. 

Hungar. 19(1968), 59-67. [128] 

Lynn, M. S. See [EHL1]. 

MacLane, S. 
[Ml] A structural characterization of planar combinatorial graphs.  Duke 

MatkJ. 3 (1937), 340-472. .    .[115] 

Manvel, B. 
[M2] Reconstruction of trees. Canad.J. Math, (to appear). [41] 

[M3] Reconstruction of unicyclic graphs. Proof Techniques in Graph Theory 
(F. Harary, ed.) Academic Press, New York, 1969. [41] 
See also [HM1]. 

Marczewski, E. 
[M4] Sur deux proprietes des classes d'ensembles.  Fund. Math. 33 (1945), 

303-307. [19] 

May, K. O. 
[M5] The origin of the four-color c ..jecture. /sis 56 (1965), 346-34».       [5] 

Mayberry, J. P. See [BM2]. 
Mayer, J. 

[M6] Le problcme des regions voisines sur les surfaces closes orientables. 
J. Combinatorial Theory (to appear). Q119] 
See also p. 120. 

McAndrew, M. H. 
[M7] On the product of directed graphs. Proc. Amer. Math. Soc. 14 (1963), 

600-606. [21,210] 
[M8] The polynomial of a directed graph. Proc. Amer. Mat1 Soc. 16 (1965), 

303-309. [177] 

Meetham, A. R. See p. 25. 

Mendelsohn, N. S. See [DM1], [DM2], and [DM3]. 



254 BIBLIOGRAPHY 

Menger, K. 
[M9] Zur allgemeinen Kurventheorie. Fund. Math. 10 (1927), 96-115.    [47] 

Menon, V. 
[MIO]        On repeated interchange graphs.   Amer. Math. Monthly 13 (1966), 

986-989. [71] 

Mcriwether. R. L. See p. 176. 

Merrieü, D. See [KMl]. 

Milgram, A.N. See[GMl]. 

Miller, D. J. 
[Mil]        The categorical product of graphs. Canad. J. Math. 20 (1968). 1511- 

1521. [25] 
Minty. G. 

[M12]        On the axiomatic foundations of the theories of directed linear graphs. 
electrical networks and network-programming.  J. Math. Mech. 15 
(1966), 485-520. [41] 

(with H. Perfect), Systems of representatives. J. Math. Anal. Applic. 
15(1966), 520-568. [54.55] 

On the line-graph of the complete bigraph. Ann. Math. Statist. 34 (19631 
664-667. [79] 
An extension of Landau's theorem on tournaments. Pacific J. Math. 
13(1963). 1343-1345. [211] 
Various proofs of Cayley's formula for counting trees. Chapter 11 in 
A Seminar on Graph Theory (F. Harary, ed.) Holt, Rinehart and Winston. 
New York. 1967, pp. 70-78. [154, 179. 195] 
Topics on Tournaments. Holt, Rinehart and Winston, New York. 1968. 

[195. 198.211] 
(with L. Moser), On cliques in graphs. Israel J. Math. 3 (1%5), 23 28. 

[25] 
See also [BHM1], [BM1], and p. 83. 

Mirsky. L, 
[MPI] 

Moon. J. 
[Ml 3] 

[M14] 

[Ml 5] 

* [MI6] 

[MM I] 

Morgenstern, O. See[NMl]. 

Moser. L. See [HM2] and [MM1]. 

Motzkin.T. S. 
[MSI]        (with E. G. Straus), Maxima for graphs and a new proof of a theorem of 

Turan   Canad. J. Math. 17(1965), 533-540. [ 19] 

Mowshowitz, A. 
[M17]        The group of a graph whose adjacency matrix has all distinct eigenvalues. 

Proof Techniques in Graph Theory (F. Harary. ed.) Academic Press, 
New York. 1969. [158] 
See also [HMRlj 

Mukhopadhy&y. A. 
[M IK] The square root of a graph. J. Combinatorial Theory 2 (1967), 290 295. 

[24] 



■a—im 

BIBLIOGRAPHY 255 

Mycielski, J. 
[M19]        Sur le coloriage des graphes. Colhq, Math. 3 (1955), 161-162.      [128] 

Nash-Williams, C. St. J. A. 
[Nl] On orientations, connectivity and odd-vertex pairings in finite graphs. 

Canad. J.Math. 12(I960), 555-567. [210] 
[N2] Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 

36 (1961), 445-450. [90] 
|N3] Infinite graphs—a survey. J. Combinatorial Theory 3 (1967), 286-301. 

[16] 
See also [HN1]. 

von Neumann, J. 
* [NM1]       (with O. Morgenstern),  Theory of Games and Economic Behavior. 

Princeton University Press, Princeton, 1944. [202] 

Nordhaus, E. A. 
[NG1]       (with J. W. Gaddum), On complementary graphs. Amer. Math. Monthly 

63(1956), 175-177. [129] 
See also [BCN1]. 

Norman, R. Z. 
[NR1]        (with M. Rabin), Algorithm for a minimal cover of a graph.  Proc. 

Amer. Math. Soc. 10(1959), 315-319. [96,97] 
See also [FNU1], [HN2], [HN3], [HN4], and [HNC1]. 

Oberschelp, W. 
[Ol] Kombinatorische Anzahlbestimmungen in Relationen. Math. Ann. 174 

(1967U3-78. [225] 

Ore, O. 
[02] 

[03] 
[04] 

*[05] 

[06] 

*[07] 

[OS1] 

Otter, R 
[08] 

A problem regarding the tracing ol graphs.   Elemente der Math. 6 
(1951), 49-53. [69] 
Note on Hamilton circuits. Amer. Math. Monthly 67 (I960), 55.     [68] 
Arc coverings of graphs   Ann. Mat. Pura Appl. 55 (1961), 315-322. 

[70] 
Theory of Graphs. Amer. Math. Soc. Colloq. Publ. 38, Providence, 
1962. [21,62,71,128] 
Hamilton connected graphs. ./. Math. Pures Appl. 42 (1963), 21-27. 

[70] 
The Four Color Problem. Academic Press, New York, 1967. 

[133, 135] 
(with G. J. Stemple), Numerical methods in the four color problem. 
Recent Progress in Combinatorics (W. T. Tutte, ed.) Academic Press, 
New York, 1969. [5,132] 

The number of trees. Ann. of Math. 49 (1948), 583-599. 
[188, 195, 196] 

Palmer, E. M. 
[PI] Prime line-graphs. Elem. Math, (to appear). [176] 
[PRI] (with R. W. Robinson), The matrix group of two permutation groups. 

Bull. Amer. Math. Soc. 73 (1967), 204 207. [195] 



256 BIBLIOGRAPHY 

See also [HP1], [HP2], [HP3], [HP4], [HP5], [HP6], [HP7], [HP8], 
[HP9], [HP10], [HP11], [HP12], [HP13], [HP14J, [HP15J [HP16], 
[HP17],[HPRl],andp.208. 

Parthasarathy. K. R. 
[P2] Enumeration of ordinary graphs with given partition. Canad. J. Math. 

20(1968), 4(M7. [195] 

Penney, W. F. See[AFPRl]. 

Perfect, H. See [MP1]. 

Petersen, J. 
[P3] Die Theorie der regulären Graphen. Acta Math. 15 (1891), 193-220. 

[89, 90] 
Pippert, R. E. See [BP1]. 

Plummer, M. D. 
[P4] On line-critical blocks. Trans Amer. Math. Soc. [31] 

See also [BHP1], [BP2], [HP181, [HP19], and pp. 55, 69. and 100. 

Pölya, G. 
[P5] Kombinatorische Anzahlbestimmungen für Gruppen, Graphen u; d 

chemische Verbindungen. Acta Math. 68 (1937), 145-254. 
[162, 177, 180, 182, 187, 188. 189, 195] 

[P6] Sur les types des propositions composees.  J. Symb. Logic 5 (1940), 
98-103. [164] 
See also p. 195. 

Pösa, L. 
[P7] A theorem concerning hamilton lines. Magyar Tud. Alad. Mat. Kutato 

Int. Ko'll (1962), 225-226. [66] 
See also [EGP1]. 

Powell, M. G. See[WPl]. 

Prins, G. 
[P8] The automorphism group of a tree. Doctoral dissertation. University 

of Michigan, 1957. [195,231] 
See also [HHPI], [HP20], [HP21], [HP22], and [HPT1]. 

Pul'r. A. See [HP23] and [HP24]. 

Quintas, L. V. See [GQlJ. 

Rabin, M. See[NRl]. 

Rademacher, H. See [SR2]. 

Radjavi, H. SeefBRl]. 

Rado, R. 
[Rl] Note on the transfinite case of Hall's theorem on representatives. J. 

London Math. Soc. 42 (1967), 321-324. [53] 

Ramsey. F. P. 
[R2] On a problem of formal logic.   Proc. London Math. Soc. 30 (1930), 

264 286. [16] 



BIBLIOGRAPHY 257 

Read, R. C. 
[R3] The enumeration of locally restricted graphs. I and II. J. London Math 

Soc. 34 (1959), 417-436; 35 (I960), 344-351. [195] 
[R4] A note on the number of functional digraphs. Math. Ann. 143 (1961), 

109-110. [195] 
[R5] On the number of self-complementary graphs and digraphs. J. London 

Math. Soc. 38 (1963), 99-104. [192,195,196] 
[R6] An introduction to chromatic polynomials. J. Combinatorial Theory 

4(1968), 52-71. [146,148] 
See also [HPR1], [HR1], and pp. 158 and 210. 

Rcdei, L. 
[R7] Ein kombinatorischer Satz. Ada Litt. Szeged 7 (1934), 39-43.      [206] 

Redfield, J. H. 
[R8] The theory of group-reduced distributions. Amer. J. Math. 49 (1927), 

433-455. [178] 

Reed, M. See [SRI]. 
Renyi, A. See[ERl]. 

Richardson, M. 
[R9] 

Riddell. R. I. 
[RU1] 

Ringel, G. 
* [RIO] 

[Rllj 
[R12] 

[RI3] 

[RY1J 

[RY2] 

Riordan, J. 
[R14] 

* [MS] 

[RI6] 

On weakly ordered systems. Bull. Amer. Math. Soc. 52 (1946), 113-116. 
[202] 

(with G. E. Uhlenbeck), On the theory of the virial development of the 
equation of state of monoatomic gases. J. Chem. Physics 21 (1953), 
2056-2064. [195] 

Färbungsprohleme auf Flachen und Graphen. Deutscher Verlag der 
Wissenschaften. Berlin, 1962. [119] 
Selbstkomplementäre Graphen. Anh. Math. 14 (1963), 354 358 [24] 
Das Geschlecht des vollständiger paaren Graphen. Ahh. Math. Sem. 
Univ. Hamburg 28 (1965), 139-150. [119] 
Über drei kombinatorische Probleme am n-dimensionalen Würfel und 
Würfelgitter. Ahh. Math. Sem. Univ. Hamburg 20 (1955). 10 19. [119] 
(with J. W. T. Youngs), Solution of the Heawood map-coloring problem. 
Proc. Nat. Acad, Sei. USA 60 (1968), 438 445. [119] 
(with J. W. T. Youngs), Remarks on the Heawood conjecture. Proof 
Techniques in Graph Theory (F. Harary, ed.) Academic Press. New York, 
1969. [119] 
See also p. 125. 

The number of labelled colored and chromatic trees. Ada Math. 97 
(1957). 211 225. [190.195] 
An Introduction to Combinatorial Analysis. Wiley, New York. 1958. 

[145.213.231] 
The enumeration of trees by height and diameter. IBM J. Res. Develop. 
4(1960). 473 478. [195] 
See also [AFPRI]. [CRI]. [GR1], and [HMR1]. 



258 BIBLIOGRAPHY 

Robbins, H. E. 
[R17] A theorem on graphs with an application to a problem of traffic control. 

Amer. Math. Monthly 46 (1939), 281-283. [210] 
Sec also [CM]. 

Robertson, N. 
[R18] The smallest graph of girth 5 and valency 4. Bull. Amer. Math. Soc. 

70 (1964), 824-825. [177] 
See also p. 74. 

Robinson, R. W. 
[R19] Enumeration of colored graphs. J. Combinatorial Theory 4 (1968), 

181-190. [195] 
See also [HHR1 ], [PR1], and p. 70. 

van Rooij, A. 
[RW1]       (with H. Wilf), The interchange graphs of a finite graph. Acta Math. 

Acad. Sei. Hungar. 16 (1965), 263-269. [74] 

Ross, I. C. See [HR2]. 

Rossi. P. See[GHRl]. 

Rota, G.-C. 
[R20] On the foundations of combinatorial theory, I: Theory of Möbius 

functions.  Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 
340-368. [147] 

Ryser, H. J. 
[R21] Matrices of zeros and ones. Bull. Amer. Math. Soc. 66 (I960), 442-464. 

[209] 
Saaty, T. See p. 123. 

Sabidussi, G. 
[SI] Loewy-groupoids related to linear graphs. Amer. J. Math. 76 (1954), 

447^87. [162] 
[S2] Graphs with given group and given graph-theoretical properties. 

Canad. J.Math.9(1957), 515-525. [170,176] 
[S3] On the minimum order of graphs with given automorphism group. 

Monatsh. Math. 63 (1959), 124-127. [176] 
[S4] The composition of graphs. Duke Math. J. 26 (1959X693-696.     [166] 
[S5] Graph multiplication. Math. Z 72 (1960), 446-457. [21, 166] 
[S6] The lexicographic product of graphs. Duke Math. J. 28 (1961), 573-578. 

[21] 
Graph derivatives. Math. Z. 76 (1961), 385^01 [71] [S7] 

Sachs. H. 
[SS] 

[S9] 

Schuster. S. 

über selbstkornplementäre Graphen. Publ. Math. Debrecen 9 (1962), 
270-288. [24] 
Regular graphs with given girth and restricted circuits. J. London Math. 
Soc. 38 (1963), 423-429. [93] 
See also [FS1]. 

See [DS1]. 



BIBLIOGRAPHY 259 

Sedläcek, J. 
[S10] Some properties of interchange graphs.   Theory of Graphs and its 

Applications (M. Fiedler, ed.) Prague, 1962; Reprinted, Academic Press, 
New Yoik, 1962, pp. 145-150. [124] 

Senior, J. K. 
[SI 1] Partitions and their representative graphs. Amer. J. Math. 73 (1951), 

663-689. [63] 

Seshu, S. 
* [SR1] (with M. Reed), Linear Graphs and Electrical Networks. Addison-Wesley, 

Reading, 1961. [71] 

Shannon, C. E. See [EFS1]. 

Shrikhande, S. S. 
[SI2] On a characterization of the triangular association scheme.   Ann. 

Math. Statist. 30(1959), 39-47. [79] 

Singleton, R. R. 
[SI3] There is no irregular Moore graph. Amer. Math. Monthly 75 (1968), 

42-43. [24] 
See also [HSI]. 

Slepian, D. 
[SI4] On the number of symmetry types of Boolean functions of n variables. 

Canad. J.Math. 5 (1953), 185-193. [195] 

Smith, B. B. See [KS1]. 

Smith, C. A. B. 
[ST1] ^with W. T. Tutte), On unicursal paths in a network of degree 4. Amer. 

Math. Monthly 48 (1941), 233-237. ['95,204] 
See [BSSTTJ and pp. 68 and 123. 

Stein, S. K. 
[SI5] Convex maps. Proc. Amer. Math. Soc. 2 (1951), 464-466. [106] 

Steinitz, E. 
* [SR2] (with H. Rademacher),  Vorlesungen über die Theorie der Polyeder. 

Springer, Berlin, 1934. [106] 

Stemple, G. J. See[OSl]. 

Stewart. M. J. See[CSl]. 

Stone, A. H. See [BSST1] and p. 123. 

Straus, E.G. See [MSI]. 

Sylvester, I. J. See pp. 1, 3, and 35. 

Szekeres, G. 
[SW1]        (with H. S. Will), An inequality for the chromatic number of a graph. 

J. Combinatorial Theory 4 (1968), 1-3. [127] 
See also [ESI]. 

Szele, T. 
[SI6] Kombinatorische Untersuchungen über den gerichteten vollständigen 

graphen. Mal. Fiz. Lapok 50(1 (>43), 223 256. [206] 



! 
I, 

260 BIBLIOGRAPHY 

Tait, P. G. 
[Tl] 

Tang, D. T. 
[T2] 

Teh. H, H. 
[TY1] 

Remarks on the colouring or maps».  Proc. Royal Soc. Edinburgh 10 
(1880). 729. [68] 

Bi-pafh networks and multicommodity flows.   IEEE Trans. Circuit 
Theory 11(1964), 468-474. [ 124] 

(with H. D. Yap), Some construction problems of homogeneous graphs. 
Bull. Math. Soc. Nanyang Univ. (1964), 164-196. [21] 

Trauth, C. A., Jr. See [HT1] and [HT2]. 

Turän, P. 
[T3] Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 

(1941), 43^452. [17,18,25] 

Turner, J. 
[T4] Point-symmetric graphs with a prime number of points. J. Combinatorial 

Theory 3 (1967X136-145. [176] 
[T5] A bibliography of graph theory.  Proof. Techniques in Graph Theory 

(F. Harary, ed.) Academic Press, New York, 1969. [235] 

Tutte, W. T. 
[T6] On Hamilton circuits. J. London Math. Soc. 21 (1946), 98-1ÖI. 

[68, 123] 
[T7] The factorizations of linear graphs. J. London Math. Soc. 22 (1947), 

107-111. [85,92] 
[T8] A family of cubical graphs.  Proc. Cambridge Philos. Soc. 43 (1947), 

459-474. [175] 
[T9] The dissection of equilateral triangles into equilateral triangles. Proc. 

Cambridge Philos. Soc. 44 (1948). 463-482. [203] 
[T10] The factors of graphs. Canud. J. Math. 4 (1952% 314. [88] 
[Til] A short proof of the factor theorem for finite graphs. Canud. J. Math. 

6(1954), 347-352. [88] 
[T12] An algorithm for determining whether a given binary matroid is graphic. 

Proc. Amer. Math. Soc. 11(1960), 905-917. [157] 
[TI3] A theory of 3-connected graphs. Indag.Math. 23 (1961), 441-455.   [46] 
[T14] A census of planar triangulations. Canad. J. Math. 14 (1962), 21-38. 

[195] 
[T15] A new branch of enumerative graph theory.  Bull. Amer. Math. Soc. 

68(1962), 500-504. [193] 
[T16] On the non-biplanar character of the complete 9-graph. Canad. Math. 

Bull. 6 (1963). 319-330. [108] 
[T17] How to draw a graph. Proc. London Math. Soc. 13(1963), 743 767. 

[112] 
[TI8] The number of planted plane trees with a given partition. Amer. Math. 

Monthly 71(1 %4). 272 277. [ 195] 
[TI9] Lectures on matroids.  J. Res. Nat. Bur. Stand Sect. B 69 (1965). 

147. [41,156] 

it 

4 
J 



BIBLIOGRAPHY 261 

* [T20] The Connectivity of Graphs, Toronto Univ. Press. Toronto, 1967. 
[173. 174. 177] 

See also [BSST1], [HKT1], [HPTll [HT3], [HT4J. [STI], and pp. 123 
and 128. 

Uhlenbeck. G. E. 
| HI | Successive approximation methods in classical statistical mechanics. 

Physics 26(1960), 17 27. [6] 
See also [FNU1], [HUI].and [RUI]. 

Ulam, S. M. 
•[U2] 

Vajda. S 
*[VI] 
Varga, R. S. 
* [V2] 
Veblen, O. 

[V3] 

A Collection of Mathematical Problems. Wiley (Intersciencc), New York, 
I960. [12] 

Mathematical Programming. Addison- Wesley, Reading, 1961. [7] 

Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, 1962    [6] 

Analysis Situs. Amer. Miath. Soc. Colloq. Publ. Vol. 5, Cambridge, 1922. 
Second edition, New York, 1931. [7] 

Vizing, V. G. 
[V4] On an estimate of the chromatic class of a p-graph (Russian) Diskret. 

Analiz. 3 (1964), 25-30. [133] 
[VS] On the number of edges in a graph with given radius (Russian) Dokl. 

Akad. Nauk. SSSR 173 (1967), 1245-1246. [42] 

Vollmerhaus, H. 
[V6] Über die Einbettung von Graphen in zweidimensionale orientierbare 

Mannigfaltigkeiten kleinsten Geschlechts. Beitrage zur Graphentheorie 
(H, Sachs, H. Voss, and H. Walther, eds.) Teubner, Leipzig, 1968, 
pp. 163 168. [117] 

Wagner, K. 
[Wl] 

[W2] 

[W3] 

Walther, H. 
[W4] 

Bemerkungen zum Vierfarbenproblem.  Jber. Deutsch. Math.-Verein. 
46(1936), 26 32. [106] 
Über eine Eigenschaft der ebenen Komplexe.  Math. Ann. 114 (1937), 
570 590. [113] 
Beweis einer Abschwächung der Hadwigcr-Vermutung.   Math. Ann. 
153(1964), 139 141. [135] 

On intersections of paths in a graph. J. Combinatorial Theory (to appear). 
[24] 

Watkins, M. E. 
[W5] A lower bound for the number of vertices of a graph.  Amer. Math. 

Monthly 74 (1967), 297. [56] 

Weichsel, P. M. 
[W6| The Kronecker product of graphs.  Proc. Amer. Math. St*c. 13 (1963), 

47 52. 1211 



- -    -  - / 

262 BIBLIOGRAPHY 

Weinberg. L. 
[W7] Number of trees in a graph. Proc. IRE 46(1958X1954-1955.       [196] 
[W8] On the maximum order of the automorphism group of a planar triply 

connected graph. S1AMJ. 14(1966), 729-738. [177] 

Welsh. D. J. A. 
[W9] Euler and bipartite matroids. J. Combinatorial Theory (to appear). 

[159] 
[WPI]       (with M. B. Powell), An upper bound for the chromatic number of a 

graph and its application to timetabling problems.  Computer J. 10 
(1967), 85-87. [148] 
See also p. 149. 

Whitney, H. 
[W10] 
[Wll] 

[W12] 

[W13] 

[W14] 
[W15] 

[W16] 
Wieland!, H. 

[W17] 

The coloring of graphs. Ann. Math. (2) 33 (1932), 688-718. [147] 
Congruent graphs and the connectivity of graphs. Amer. J. Math. 54 
(3932), 150-168. [43,48,71,72,177] 
Non-separable and planar graphs. Trans Amer. Math. Soc. 34 (1932), 
339-362. [104,113,123] 
A set of topological invariants for graphs.  Amer. J. Math. 55 (1933), 
231-235. [105] 
Planar graphs. Fund. Math. 21 (1933), 73-84. [113] 
On the abstract properties of linear dependence. Amer. J. Math. 57 
(1935), 509-533. [40] 
A theorem on graphs. Annals Math. 32 (1931), 378-390. [ 133] 

Unzerlegbare, nichtnegative Matrizen. Math. Z. 52 (1950), 642-648. 
[210] 

WilcojcG. See[HWl]. 

Wilf, H. S. See [RW1] and [SW1]. 

YackelJ, See[GYl]. 
Yang,C. N. See[LYl]. 

Yap, H. D. See[TYl]. 

Youngs, J. W. T. 
[Yl] 

Zykov, A. A. 
[ZI] 

The Heawood map colouring conjecture. Chapter 12 in Graph Theory 
and Theoretical Physics (F. Harary, ed.) Academic Press, London, 1967, 
pp. 313-354. [119] 
See also [BHKY1], [RY1], and [RY2]. 

On some properties of linear complexes. (Russian) Mai. Shornik 24 
(1949), 163-188. Amer. Math. Soc. Transtation N. 79, 1952. 

[21, 128, 146] 



■ xwiMXtniiiium ** 

INDEX OF SYMBOLS 



» »1   II       I 

I 

INDEX OF SYMBOLS 

The Greeks had a word for it... 

Z. AKINS 

Most of the letters in the Roman and Greek alphabets have been used as symbols in 
this book. Those symbols which occur most often are listed here, separated into three 
categories: Roman letters, Greek letters, and operations on graphs and groups. 

A adjacency matrix    150,151 Qn n-cube   23 

A, alternating group   165 S(G) subdivision graph of G   81 
B incidence matrix    152 s symmetric group    165 

B{G) block graph of G   29 SJ» pair group   185 
C cycle matrix    154 sy> reduced ordered pair group 

C* cocycle matrix   155 186 
cn cycle of length n   13 T tree   32 

Cp cyclic group   165 T tournament   205 
QG) cutpoint graph of G   30 T* cotreeofT   39 

D digraph    198 T(G) total graph of G   84 
D* condensation of D   200 V set of points of G   9 
D converse of D   200 wn wheel   46 
DP dihedral group   165 X set of lines   9 

E, identity group   165 Z(A) cycle index of A   181 
G graph   9 

G -u removal of a point    11 bc(G) block-cutpoint tree of G   36 
G - x removal of a line    11 c(G) circumference    13 
G + x addition of a line    11 a, degree oft*,    14 

G1 square of G    14 d(G) diameter    14 
G* dual of G    113 d{u, v) distance    14, 199 
K„ complete graph    16 Hv) eccentricity   35 

Km.n complete higraph    17 (KG) girth    13 
UD) line digraph of D   209 id(t') indegree    198 
/.((.') line graph of G   71 kW number of fc-cycles    181 

P. path    13 kiG) number of components   40 
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m(G) cycle rank   39 <s> 
m*{G) cocycle rank   39 G, u G2 

od(r) out degree   !98 G, + G2 

P number of points   9 A + B 
(A q) p points, q lines   9 G, x G2 

9 number of lines   9 A x B 
r(C) radius   35 Gl[G2] 

w, r, w points   9 A[B] 
v. y, r lines   9 G, A G2 

BA 

*0 point covering number   94 G, °G2 

«i line covering number   94 
A, point independence number 

95 
0, line   independence   number 

95 
r genus   117 

no group of G   161 
rt(G) line group of G   161 

s minimum degree   14 
A maximum degree   14 
0 thickness   120 
K connectivity   43 

MM, V) local connectivity   49 
k line-connectivity   43 
V crossing number   122 
i, coarseness   121 

m partition of a graph   57 
r(o arboricity   90 

X chromatic number   127 
x' line-chromatic   number   133 
<A achromatic number   144 
0) intersection number   19 

fi(F) intersection graph   19 

induced subgraph   11 
union of graphs   21 
join of graphs   21 
sum of groups   163 
product of graphs   21 
product of groups   163 
composition of graphs   22 
composition of groups   164 
conjunction of graphs   25 
power group   164 
corona of graphs   167 
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INDEX OF DEFINITIONS 

in words, as fashions, the same rule will hold. 

Alike fantastic if too new or old; 
Be not the first by whom the new are tried. 

Nor yet the last to lay the old aside. 

A. POPE, Essay on Criticism 

achromatic number, 144 
acyclic, digraph, 200 

graph, 32 
addition of a line, II 
adjacency matrix, of a digraph, 151,202 

of a graph, 150 
adjacent lines, 9 
adjacent points, in a digraph, 198 

in a graph, 9 
animal, 194 
arbitrarily traversable graph, 69 
arboricity, 90 
arc, 10 
automorphism, 161 

I-basis, 202 
bigraph, 17 

complete, 17 
bipartite graph, 17 
block, 26 
block graph, 29 
block-cutpoint graph, 36 

tree, 37 
boundary, 37 
branch, 35 
bridge, 26 

«-cage. 174 
center, 35 
central point, 35 

centroid, 36 
centroid point, 36 
0-chain, 37 
1-chain, 37 
chord, 38 
«-chromatic graph, 127 
chromatic number, of a graph, 127 

of a manifold, 135 
w-chromatic number, 149 
chromatic polynomial, 146 
circuits, 40,41 
circumference, 13 
clique, 20 
clique graph, 20 
coarseness, 121 
coboundary, 38 
cocircuit,4l 
cocycle, 38 
cocycle basis, 38 

matrix, 155 
rank, 39 
space, 38 

color class, 126 
color-graph, 168 
n-coloräble graph, 127 

map, 131 
coloring, 126 

complete, 143 
of a graph from / colors, 145 
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of a plane map. 131 
«-coloring, 126 
complete bigraph, 17 
complete graph 16 
complete «-partite graph, 23 
complement, 15 
complex, simplicial, 7 
component, 13 
«-component, 46 
composite graph, 166 
composition, of graphs, 22 

of permutation groups. 164 
condensation, 200 
configuration, 181 

counting series, 182 
group, 181 

conjunction, of digraphs, 210 
of graphs, 25 

connected graph, 13 
connected, strongly, 199 

unilaterally, 199 
weakly, 199 

«-connected graph, 45 
connectivity, 43 

function, 45 
local, 49 
pair, 45 

contractible, 113 
contraction, elementary, 112 
contrafunctional digraph, 201 
converse, 200 
corona, 167 
cospectral digraphs, 210 

graphs, 158 
cotree, 39 
cover, minimum, 94 
covering, in a graph, 94 

in a matrix, 53 
critical graph (color), 141 

(cover), 98 
«-critical graph (color). 141 
critical line (cover), 97 
critical point (cover), 97 
crossing number, 422 
«-cube, 23 
cubic graph, 15 
cutpoint, 26 

graph, 30 
cutset, 38 
cycle, in e digraph. 198 

in a graph, 13 
cycle basis, 38 

matrix, i54 
rank, 39 
space, 38 
vector, 38 

cycle index, 181 
cyclic triple, 205 

degree, of a line, 171 
of a permutation group, 161 
of a point, 14 

detour matrix, 203 
diameter, 14 
digraph, 198 

acyclic, 200 
adjacency matrix of, 151, 202 
contrafunctional, 201 
disconnected, 199 
eulerian, 204 
functional, 201 
line, 209 
primitive, 210 
strong. 199 
trivial. 199 
unilateral, 199 
weak, !99 

dimension of a simplex, 7 
directed graph, 10 
directed line, 10, 198 
disjoint paths, 47 
distance, in a digraph, 199 

in a graph, 14 
matrix, 206 

dual, combinatorial, 114 
geometric, 113 

eccentricity, 35 
elementwise product, 203 
embedding, 102 
endomorphism, 177 
endpoint, 15 
eulerian digraph, 204 

graph, 64 
matroid, 159 
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trail, in a digraph, 204 
trail, in a graph, 64 

exponentiation group, 177 

face, 103 
exterior, 103 

factor, 84 
«-factor, 84 
«-factorable graph, 84 
«-factorization, 84 
figure, 181 

counting series, 182 
fixed point, 171 
forest, 32 
functional digraph, 201 

genus, 117 
geodesic, 14 
girth, 13 
graph, 7,9 

acyclic, 32 
arbitrarily traversable, 69 
bipartite, 17 
block, 29 
block-cutpoint, 36 
«-chromatic, 127 
clique, 20 
color-, 168 
«-colorable, 127 
complement of, 15 
complete, 16 
complete «-partite, 23 
composite, 166 
connected, 13 
«-connected, 45 
critical, 98,141 
«-critical (color), 141 
cubic, 15 
cutpoint, 30 
directed, 10 
eulerian, 64 
«-factorable, 84 
hamiltonian, 65 
identity, 161 
infinite, 16 
intersection, 19 
interval. 20 

irreducible, 99 
labeled, 10 
line, 70 
«-line connected, 45 
line-critical, 98, 142 
«-line critical (color), 142 
line-regular, 171 
line-symmetric, 171 
nonseparable, 26 
oriented, 10 
outerplanar, 106 
planar, 102 
plane, 102 
point critical (cover), 98 
point-symmetric, 371 
prime, 166 
reducible, 99 
regular, 14 
«-regular, 174 
self-complementary, 15 
semi-irreducible, 99 
subdivision, 81 
symmetric, 171 
theta, 66 
toroidal, 117 
total, 82 
totally disconnected, 16 
«-transitive, 173 
trivial, 9 
unicyclic, 41 
uniquely colorable, 137 
n-unitransitive. 174 

graphoid, 41 
group, 160 

color graph of, 168 
configuration, 181 
exponentiation, 177 
pair, 185 
permutation, 161 
power, 164 

group of a graph, 161 

hamiltonian cycle, 65 
graph, 65 

hereditary property, 96 
homeomorphic graphs, 107 
homomorphism, 143 
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complete of order n, 143 
elementary. 143 

identical permutation groups. 161 
identity graph. 161 
in-tree, 201 
incidence, in a digraph, 198 

in a graph. 9 
matrix, 152 

indegree, 198 
independent points, 95 

lines, 86 
set, 40 
set of lines, 95 
unit entries, 53 

induced subgraph, 11 
infinite graph, 16 
intersection graph, 19 
intersection number, 19 
interval graph, 20 
invariant, 11 
irreducible graph, 99 
isolated point, 15 
isomorphic, graphs, 10 

groups, 161 

join, 21 
joins, 9 

labeled graph, 10 
2-Iattice, 194 
3-lattice, 194 
length, in a digraph, 199 

in a graph, 13 
line, of a graph, 9 

of a matrix, 53 
addition of, 11 
cover, 94 
covering number, 94 
critical (cover), 97 
directed, 198 
independence number, 95 
ramsey number. 82 
removal of, 11 
symmetry, 189 

line digraph. 2(W 
line graph. 71. 73 

iterated, 133 
line-chromatic number, 133 

line-coloring. 133 
«-line coloring, 133 
«-line connected graph. 45 
line-connectivity, 43 
line-core, 98 
line-covering number, 94 
"cine-critical graph (color), 142 

(CON er), 98 
/»-line critical graph (color), 142 
line disjoint paths, 47 
line-group, 161 
line-regular graph. 171 
line-symmetric graph, 171 
linear subgraph, 151 
lines, multiple, 10 
loop, 10 

map, edge-rooted plane, 193 
plane, 103 

matching, maximum, 96 
unaugmentable, 96 

matrix, adjacency, of a digraph, 151,202 
adjacency, of a graph, 150 
cocycle, 155 
cycle, 154 
degree, le2 
detour, 203 
distance, 206 
incidence, "52 
reachability, 203 

matroid,40, 157 
binary, 159 
cocycle, 40 
cographical, 157 
cycle, 40 
eulerian, 159 
graphical, 157 

multigraph, 10 

neighborhood, 167 
closed, 167 

network, 52 
nonseparable graph. 26 

orbit, 180 
order of a permutation group, 161 
orientation, 210 
oriented graph, 10 
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out-tree. 201 
outdcgrce. 198 
uuterplanar graph, 106 

maximal, 106 

pair group, 185 
reduced ordered, 186 

partition, graphical. 57 
of a graph, 57 
of a non-negative integer. 57 
simple. 61 

path, in a digraph. 198 
in a graph, 13 

paving of a 2-lattice. 194 
peripheral point, 41 
permutation, 161 

graph, 175 
group, 161 

Petersen graph, 89 
place, 181 
planar graph. 102 

maximal, 104 
plane graph, 102 
planted tree, 188 
point, of a digraph, 198 

of a graph. 9 
central, 35 
centroid. 36 
cover. 94 
covering number, 94 
critical (cover), 98 
end-, 15 
fixed.171 
inder endence number, 95 
isolated, 15 
peripheral. 41 
removal of, 11 
weight at, 35 

polyhedron, convex, 106 
power group. 164 
primative digraph. 210 
prime graph. 166 
product, of graphs. 21 

of permutation groups. 163 
pseudograph. 10 

radius. 35 
ramscv number. 16 

line form. 82 
reachability, 199 

matrix, 203 
reducible graph. 99 
regular graph, 14 
«-regular graph. 174 
removal, of a point, 11 

of a line, 11 
rooted tree, 187 
«-route, 173 

score, 207 
self-complementary graph, 15 
semi-irreducible graph, 09 
semicycle, 199 
semigroup of a graph, 177 
semipath, 199 
semi walk, 199 
separates, 47 
similar points, 171 

lines, 171 
sink, 201 
1-skeleton, 103 
source, 201 
spanning subgraph, 11 
square of a graph, 14 
square root of a graph, 24 
stabilizer. 180 
star. 17 
strong component, ''*9 

digraph. 199 
subdivision graph, 81 
subgraph, 11 

even, 194 
induced. 11 
linear, 151 
spanning, 11 

successor walk. 173 
sum, of factors, 84 

of permutation groups. 163 
supergraph. 11 
symmetric graph. 171 
symmetry line. 1S9 

theta graph. 66 
thickness, 120 
toroidal graph. 117 
total graph. 82 
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totally disconnected graph, 16 
tournament, 205 
trail, 13 

eulerian, 64,204 
«-transitive graph, 173 
transitive triple, 205 
tree, 32 

block-cutpoint, 37 
planted, 188 
rooted, 187 

triangle, 13 
trivial digraph, 199 

graph, 9 
twig, 39 

unicyclic graph, 41 
unilateral component, 199 

digraph, 199 

unilaterally connected, 199 
union, 21 
uniquely colorable graph, 137 
«-unitransitive graph, 174 

walk, in a digraph, 198 
in a graph, 13 
closed, in a digraph, 198 
closed, in a graph, 13 
open, 13 
spanning, 198 

weak component, 199 
digraph, 199 

weakly connected, 199 
weight at a point, 35 
weight function, 180 
wheel, 46 
whirl, 158 
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