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CHAPTER 1 

INTRODUCTION 

1.1 Abstract 

In this thesis* we develop single stage  (fixed sample size) asympto- 

tically optimal  (minimax) procedures for ranking populations in the presence 

of nuisance parameters, when the populations are ranked according to a 

parameter of the distribution and the so-called indifference-zone approach 

to ranking and selection problems is employed.    We adapt methods proposed 

by Weiss and Wolfowitz in developing asymptotically optimal   (minimax) pro- 

cedures for a certain class of 2-decision tests of composite hypotheses 

problems in the prssence of nuisance parameters to multiple decision ranking 

and selection problems in the presence of nuisance parameters. 

For the problem of selecting the "best" population, asymptotically 

optimal procedures are developed for situations in which the joint density 

function of the observations satisfies certain mild regularity conditions 

(similar to those imposed by Weiss and Wolfowitz).    The method of analysis 

and basic theory is developed in detail for this case.    The basic results 

are extended to develop asymptotically optimal procedures for certain 

other ranking goals considered in the literature.    Some examples are 

included to illustrate the applicability of the results to specific 

distributions. 

For ranking and selection problems with joint density function of 

observations not satisfying the regularity conditions,  i.e.,  non-regular 

cases, we illustrate the applicability of the basic method by developing 

asymptotically optimal  procedures   for  ranking non-regular exponential  and 

*/r thesis submitted in partial  fulfillment of the requirements  for the degree 
of Doctor of Philosophy in the Field of Operations  Research,  Cornell 
University, June    1970. 
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uniform distributions. 

The results in this thesis can be thought of as generalizing the 

basic method of Weiss and Wolfowitz for 2-decision hypothesis testing 

problem to multiple decision ranking and selection problems. As a con- 

sequence of our results, we show the asymptotically optimal character of 

certain so-called natural selection procedures which already have been 

proposed in the literature. We also develop single-stage asymptotically 

optimal procedures for certain problems for which heretofore no single- 

stage procedures had been proposed. 

1.2 Outline of the Thesis 

In Section 1.1, we have given an overview of the problem considered 

below and of the results obtained. In the present section we outline the 

contents of the various chapters. 

In Section 1.3 we give a brief introduction to ranking and selection 

problems. In Section 1.4, we introduce the basic method proposed by Weiss 

end Wolfowitz [55] in developing asymptotically minimax tests of composite 

hypothese:  In Section 1.5, we point out that by treating Ranking and 

Selection problem» in the framework of statistical decision theory, the 

basic method of Weiss and Wolfowitz can be extended to develop asympto- 

tically optimal ranking procedures. 

In Chapter 2, we consider the problem of selecting the "best" popula- 

tion. The notation used throughout the thesis is defined. Mild regularity 

conditions imposed on the density functions are specified. Some preliminary 

results of statistical decision theory are included. Tho ranking problem 
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is structured as a decision theory problem and an asymptotically optimal pro- 

cedure for a particular zero-one loss function is obtained.    The rate 

of convergence of the decision variables to the asymptotically normally 

distributed variables is studied.    The general results are applied to 

certain specific distributions, and asymptotically optimal procedures 

noted in each case.    Large sample applications of our results are 

illustrated by indicating how the procedure would be used in ranking 

means of normal population with common unknown variance. 

In Chapter 3, we extend our basic method to develop asymptotically 

optimal procedures for certain other ranking goals.    Asymptotically optimal 

procedures are developed for the problem of selecting a fixed-size subset 

to contain the best population and for the problem of selecting one of 

the    t   best populations.    We discuss certain other general ranking goals 

which have been considered in the literature and develop asymptotically 

optimal procedures for two additional ones. 

In Chapter 4, we note some density functions not satisfying the 

regularity conditions, and develop for non-regular exponential and uniform 

distributions, asymptotically optimal procedures for selecting the best 

population and for certain other ranking goals. 

1.3    Ranking and Selection Problems 

Bechhofer [4]  in his pioneering paper pointed out the inappropriate- 

ness of the traditional practice of testing null hypotheses and proposed 

for a certain class of problems, termed ranking problems, the basic con- 

cepts of his multiple decision ranking approach.    These methods for ranking. 
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or partially ranking, a group of populations on the basis of an experi- 

ment are of great practical importance, especially in connection with 

the problem of selecting the best populations from a set of competing 

ones. 

Since the paper by Bechhofer, a considerable number of papers have 

been written on ranking and selection problems. Although there are many 

ways in which such problems can be  formulated, the two most commom formu- 

lations in the literature are the "Indifference Zone" approach, as pro- 

posed by Bechhofer [4], and the "Su! .et" approach, credited to Gupta [20], 

In this thesis, we concentrate on the indifference-zone approach to rank- 

ing and selection problems. Unless otherwise stated, in all references 

to ranking and selection problems in this thesis, it is understood that 

we refer to the indifference-zone approach to the problem. 

The general nature of investigations in ranking and selection problems 

may be summarized as follows: 

Let n.,n2,,..,n.    denote k populations (k >^ 2) being ranked, 

with F(.;e ) denoting the distribution function of n  (t ■ l,2,...,k). 

Here 6  is a vector of population parameters. The populations are 

ranked on the basis of a well defined scalar ty    *  *(8 ), t ■ 1,2,....k. 

Each 6  may be completely or partly unknown, but the functional form 

<li    is known.  (In most problems, ^ is one of the parameters of the 

distribution.) The ordered i>      are denoted by ♦rji ^ ^^i 1 ••• i ^rv]  • 

It is assumed that the pairing of the n  (t > l,2,...,k) with the 

^ri  (j ■ l#2,...,k) is completely unknown. Let IK , denote the 

population associated with ^r*]* 

M^jMM^i^MM^i—^a—a f• ~ iAaa«a« 



It is assumed that the larger the value of ^,    the better the 

associated population; n,^,    the population associated with iiti.it    is 

denoted the "best" population. In general, iKk t .N (t ■ lf2(...Ik] 

is denoted the "t  best" population.  (Analogously, in appropriate 

situations, we may consider smaller values of ^ as more desirable and 

denote 11/,% as the "best" population.) 

Selection Procedures (SP) are set up in such a way as to guarantee 

certain requirements on the probability of "Correct Selection," where the 

definition of correct selection depends on the ranking "Goal" being con- 

sidered. Some of the goals considered in the literature are 

i) Select the t best populations (1 ^ t < k) 

a) with regard to order 

b) without regard to order 

ii) Select s of the t best populations  U 1 s l t < k)« 

iii) Select a subset of s populations to contain the t best 

populations  (1 < t < s < kj. 

iv] Select a subset of s populations to contain at least d of 

t best populations. 

For a given goal, with associated definition of correct selection, 

we are interested in any Selection Procedure (SP) which guarantees the 

probability requirement 

(1.1) inf P(CS|SP) >  P* 
fU6*) 

where u = (6, ,62» •. • .6. ), Q    is the set of all possible w, and nd*) 

called the preference zone, is a certain subspace of the parameter space 
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fl,    defined according to the goal being considered and a certain distance 

function   6(•,•)•    The function   6(b,a)    measures the "distance" between 

two populations with values of parameter of interest   i>   being   b   and 

a   respectively,    with    a <^ b.    It is assumed to be    i) non-negative 

ii) equal to zero if and only if   a « b, and iii)  increasing in   b   for 

fixed    a   and decreasing in   a    for fixed   b. 

For example, for Goal i),    *♦ 3 fi^rk t 11» ^ric-tP    measures the 

distance between the set of   t    best populations    (nn{
,i»,**'nfk t 11^ 

and the remaining    (k-t)    worst populations; and   ft(6*)    may be defined 

as 

(1.2) 0(6*)    «    {u e n|6t >_ 6*} 

If   ii     is the location parameter cf   n      (t = l,2t...,k)t    then one 

may choose   6    » ij/r.       n - tr«. *i    as a natural distance function for the t [K-t+lJ lX"tJ 

problem; but for other cases 6(*,*} may be defined using practical and/or 

theoretical considerations. 

Here 1(6», P*) } with 6* > 0, A(k) < P* < 1 are constants, 

specified prior to start of experimentation. A(k) is a lower bound on 

the specified probability P*, which depends on the number of populations 

(k) and the goal being considered. It is the probability which could be 

achieved by selecting at random and not carrying out any experimentation. 

Then for a given goal and distance function, and specified constants 

(6*,P*), a selection procedure SP(6*,P*) satisfying (1.1) is defined. 

li_B-_^^teM^^dUdM=. 
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A selection procedure comprises a terminal decision rule and a sampling 

rule (and associated stopping rule if sequential sampling is used). 

The sampling rule may be single stage (fixed sample size), two or more 

stages or fully sequential. 

In the field of ranking and selection problems, selection procedures 

have been proposed for the particular problem at hand. In view of the 

above, a particular ranking problem is characterized by: i) the form 

of distribution function F(»,»)» ü) the scalar ^(O by which 

populations are ranked iii) the ranking goal and iv) the distance 

function 6(•,•)• 

Thus, for example, Bechhofer [4 ] proposed a single stage procedure 

for selecting the best normal population, when populations are ranked 

according to their means (with known variances), and the difference 

between the largest and second largest mean is the distance function. 

In [4], Bechhofer also proposed single stage selection procedures for 

certain other goals for ranking means of normal populations with known 

variances. Tables of sample sizes required to meet the basic probability 

requirement (1.1) were provided. These tables would also be useful in 

obtaining a large sample approximation to sample size in using single 

stage selection procedures for ranking parameters of certain other distri- 

butions. It is also useful as an approximation for ranking variances 

of normal populations, a problem for which tables of exact sample size 

for a single stage selection procedure were provided by Bechhofer and 

Sobel [8]. 

Mltak 
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Bechhofer, Dunnett and Sobel [5 ] proposed a two stage procedure 

for ranking means of normal populations with a common unknown variance. 

In the proposed procedure, the unknown variance is estimated from 

observations obtained in the first stage, and an additional random num- 

ber of observations are taken at the second stage, the number depending 

on the outcome of the first stage are determined so as to guarantee the 

basic probability requirement. 

Paulson [36] proposed f\ class of sequential procedures for selecting 

the normal population with the largest mean, the populations having a 

common variance; when the common variance is known,  the sequential pro- 

cedure is closed.    Paulson [37] also proposed a sequential procedure for 

selecting the best binomial population.    Hoel and Mazumdar [26] have 

extended Paulson's open sequential procedure to solve the problem of 

selecting the best from the class of Koopman-Darmois family of distributions. 

Bechhofer, Kiefer and Sobel  [ 7] have proposed sequential procedures 

(including generalizations of Paulson's [36] procedure) for ranking problems 

associated with the Koopman-Darmois family of distributions.    Perng [38] 

has recently compared the asymptotic expected sample sizes of the two 

sequential procedures of Paulson [36] and Bechhofer,  Kiefer and Sobel  [ 7 ] 

for problem of ranking normal means with common known variance.    In the 

literature,  there are no other sequential procedures proposed for the 

ranking problems which satisfy the basic probability requirement.    Robbins, 

Sobel and Starr [41], Srivastava [46] and Srivastava and Oglivie [47] 

have proposed sequential procedures, for the problem of ranking means of 

populations with common unknown variance, which satisfy the probability 

requirement only asymptotically (as    6* -^ 0). 

,---;—: 
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Since this discussion is not intended to be an extensive review 

of the literature, we refer the reader to the monograph by Bechhofer, 

Kiefer and Sobel   [7]  for a comprehensive bibliography on Ranking and 

Selection problems  (for the indifference  zone approach and other 

approaches considered in the literature).    Also see Ramberg [39]  for 

some recent work on certain ranking problems associated with multivariate 

normal populations. 

In this thesis, we are only concerned with single stage procedures 

and the following discussion refers only to such procedures for ranking 

and selection problems.    In most of the work done in this field,  the 

selection procedures which have been proposed initially were developed 

more or less on an "intuitive'* basis  (so-called natural selection proce- 

dures) to satisfy the basic probability requirement imposed on the proce- 

dures.    Bahadur and Goodman [ 1 ] considered a class of multiple-decision 

rules which they called impartial  (invariant under permutations of the 

populations).    Their results are applicable to the problem of selecting 

the best population and imply that Bechhofer's  ([ 4 ]) and Sechhofer and 

Sobel's  ([8]) natural selection procedures are minimax rules   (in fact, 

uniformly minimum risk rules) among the class of impartial decision rules. 

Hall  [25] removed the restriction of impartiality and proved the 

optimality of the natural selection procedures by proving their minimax 

character  (by introducing a suitable zero-one type loss function).    Hall's 

results are applicable not only for the problem of selecting the best 

population, but also for the problem of ranking a specified number of 

populations, with or without regard to order.    Hall's results apply to 
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problems wherein the ranking parameter is a location or scale parameter 

and for which there is a sufficient statistic  (for each sample size) with 

a monotone likelihood ratio.     In situations where the ranking parameter 

is not a location or scale parameter. Hall showed the "most economical" 

character of natural selection procedures for a specified location of the 

ranking parameter.    Since for many problems, a least favorable location 

(of the ranking parameter) can be determined. Hall concluded that the 

optimal character of the natural selection procedure can be shown to 

hold irrespective of the location of the ranking parameter.    Thus, Hall's 

result applies    to the problem   of selecting the best population when- 

ever there is a sufficient statistic with a monotone likelihood ratio, 

and therefore,  in particular,  if its distribution is  in the exponential 

family. 

Lehminn  [31] extended the results of Bahadur and Goodman [ 1 ] 

to show the optimality of natural selection procedures, among the class 

of impartial decision rules,  for problems of ranking  (with or without 

regard to order) populations, when the ranking parameter has a sufficient 

statistic with a monotone likelihood ratio.    Lehmann  [31] also showed 

certain other optimum properties of the natural selection procedures and 

provided an alternate proof to results of Hall   [25].     Eaton [17] has shown 

the optimality of natural selection procedures,  among the class of impartial 

decision rules, when the ranking parameter has a sufficient statistic 

which has a certain monotonicity property  (defined in  [17] and similar 

to the rankability condition in [7]).    Eaton's results thus extend the 

optimality of selection procedures to a larger class of density functions. 

Fabian  [19] has shown certain other optimum properties of natural selection 
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procedures for ranking problems. 

As a consequence of the results  in [1],  [25],   [31] and [17], we 

note that the natural selection procedures proposed for the following 

problems are indeed optimal among the class of all single-stage procedures. 

(The references noted in brackets indicate the papers in which the proce- 

dures were proposed). 

(i)    Ranking means of univariate normal population with common known 
variance (Bechhofer [4]). 

(ii)    Ranking variances of univariate normal populations  (Bechhofer 
and Sobel [ *]). 

(iii)    Selecting the best of several binomial populations  (Sobel 
and K-yett [44]). 

(iv)    Selecting the multinomial event which has the highest proba- 
bility  (Bechhofer, Elmaghraby and Morse [6]). 

(v)    Selecting the bivariate normal population with largest correla- 
tion coefficient  (Ramberg [39]; also given as an example in 
iiaton  [17])  . 

(vi)    Selecting the component with the largest mean in ranking from 
a sin.le multivariate normal population with common known 
varia M.S and covariance of the components.     (Given as an example 
in Eaton [17] and Milton [34]). 

In most of the work done in ranking problems, populations  are ranked 

according to values of a certain parameter in the distribution of the 

populations.    Other  uiknown parameters  in the distribution,  if any, would 

constitute "nuisance" parameters for the ranking problem.     In the work 

cited above on optimality of single stage ranking procedures,  not much 

explicit consideration is given to the nuisance parameters.    For example, 

in [17],  it  is assumed that a sufficient statistic exists for any unknown 

nuisance parameters, and the nuisance parameters are such that the basic 
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probability requirement is guaranteed for all possible values of unknown 

nuisance parameters by a finite sample size single stage procedure.    For 

problems, where due to unknown nuisance parameters, no finite sample 

size single-stage procedure satisfying the basic probability requirement 

exists, one may  like to develop single-stage procedures which satisfy the 

probability requirement asymptotically  (as    6* •* 0).    No previous work 

seems to have been done for such problems.    The procedures developed in 

this thesis are applicable for such problems.    These procedures which 

satisfy the probability requirement asymptotically, are also asymptotically 

optimal among the class of all decision rules. 

In most of the work on ranking problems,   large sample approximations 

to the single-stage sample size  (needed to guarantee the probability require- 

ment) are suggested.    It would be interesting to study the asymptotic 

properties of the large sample approximations to the natural selection 

procedures.    Asymptotically optimal procedures developed in this  thesis 

answer this question and we show the asymptotically optimal character of 

certain natural  selection procedures which already have been proposed in 

the literature. 

Finally,  in the field of ranking and selection problems,  there are 

certain problems  for which no single stage procedures have been proposed 

(for example ranking scale parameters of Weibull distributions with known 

location parameter and common (known or unknown) shape parameter). 

Asymptotically optimal procedures developed in this thesis are applicable 

to such problems too,  thus indicating the wide applicability of our 

results. 

-•«•—- 
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1.4 Asymptotically mininax tests of coaposite hypotheses 

For testing a simple hypothesis versus a simple alternative, the 

Neyman-Pearson Lemma provides an optimal test. That is among the class 

of all fixed sample size tests with level of significance <_ a (0 < a < 1), 

the optimal test maximizes the power. For a certain class of composite 

hypotheses testing problems, Neyman [35] obtained asymptotically optimal 

tests in a certain class of asymptotically similar tests. Lecam [29] 

extended Neyman*s results to obtain asymptotically optimal tests among 

a larger class of asymptotically similar tests. Bartoo and Purl [3] 

and Buhler and Puri [n] have extended Neyman's result to slightly more 

general setups. 

Very recently, Weiss and Wolfowitz (S5l have obtained asymptotically 

minimax (optimal) procedures for a certain class of composite hypotheses 

testing problems. Using the basic method developed by the authors 

([52] and [53]) in the general theory of asymptotically efficient esti- 

mators, Weiss and Wolfowitz obtained asymptotically optimal tests of 

hypotheses in the presence of nuisance parameters. There are no arbitrary 

restrictions on the class of tests among which optimal tests are being 

developed; hence the tests are asymptotically optimal tests among the 

class of all tests. The general theory is developed in [55] for the 

class of density functions satisfying some mild regularity conditions; 

but the basic idea can be used for the non-regular cases as well, each 

such non-regular case requiring special analysis. 

The basic method of analysis and the problem considered by Weiss 

and Wolfowitz may be summarized as follows: 



iwwg . '----—^a—^T—,.   mm 

-14- 

Let X X.,...,X  be independent, identically distributed random 

variables with the common density function f(*;d). The density function 

is characterized by the vector parameter e » (61,62,...,e ,6  ), p ^ 1. 

(e)»e?.«...
e ) are the unknown nuisance parameters, and 6 .  is the 

parameter being tested. Let H  be the (null) hypothesis that e . a A" 

and H, be the (alternative) hypothesis that 6 , ■ 6" , ♦ — , where 1 '     'v p*l   p*l   ^^JJ- 

6*   is a given constant and c is a given positive constant. 

Weiss and Wolfowitz [SS] consider the problem of testing the null 

hypothesis H. versus the alternative hypothesis H.. They obtain an 

asymptotically optimal test. That is, among the class of all tests (of 

HQ versus H.) which (is the limit as n ■* <») have level of significance 

less than or equal to a (0 < a < 1), the optimal test maximizes (in 

the limit as n > •), the power function. 

In order to develop an asymptotically optimal test, Weiss and 

Wolfowitz first solve the following sequence of artificial problems 

(one for each n): 

H. and H. are the two hypotheses as given above. The statistician 

does not know (e.,...,6 ) but does know that 

M (6) 
(1.3)   je. - e | <^ —  i « 1,2,...,p  and 

e . « ? .  or  e" , ♦ — 
P*i   p*i       p*i ^ 

and wishes to test H- versus H.. Here M (6) is a positive functi 

M (6) 
of n such that M (9) ■♦ »,   •♦ 0. The above problem is an n        G 

on 



-15- 

artificial problem since it is assumed that the statistician knows 

An asymptotically optimal (minimax) procedure is developed by 

constructing a Bayes decision rule for the problem of testing hypothesis 

H. versus H.  (when the loss function is zero-one:  the loss if zero 

or one according as the correct or incorrect decision is made) relative 

to the following apriori distribution: a total mass of b is spread 
M (9) _  M (6) 

uniformly over the set 6.    < e.  < 6. ♦   1 » l,2,...,p 
1   ^  " l -  1   ^ 

and 6 . = 6 , and a total lass of (l-b) is spread uniformly over 
p*l   p*l v  /     r 

M fö) M fe) 
the set ?. - ——- < e.  < "e. ♦ -^    i ■ l,2,...,p  and 1   ^T  "  i "  '   ^T 

6  , - ?   ♦ -1  . 

W«jiss and Wolfowitz  [55] obtained a Bayes decision rule for the 

above problem and studied the asymptotic properties of the decision rule 

for a class of density function satisfying certain mild regularity condi- 

tions  (stated in  [55]  and very similar to the regularity conditions 

imposed for our problem in Section 2.1).    Since they are interested in 

asymptotic behavior of the decision rule,  the apriori mass   b    (0 < b <  1) 

is adjusted in such a way that the level of significance for the artificial 

hypothesis testing problem is equal to a specified level    a    (0 < a <   1). 

Then,  the Bayes decision rule for this specially selected prior is, 

by the very nature of being a Bayes decision rule, an asymptotically 

optimal procedure for the sequence of artificial problems.    It is shown 

in  [55] that the asymptotically minimax  (optimal) procedure is a function 

MM 
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of    (F. ,B2, ...,F ),    which was assumed to be known for the sequence of 

artificial problems. 

To obtain an asymptotically minimax procedure for the real problem, 

Weii,s and Wolfowitz  [55] propose using the asymptotically minimax procedure 

for the artificial problem, with    (^.(^»•••»O    in the decision variable 

replaced by estimators     (6. (n),6-00,...,6  (n)) of the unknown nuisance 

parameter.    These estimators of    (o-.e»,,..^ ),    based on   X.jX.,...^ 

satisfy the following consistency condition; for any    c > 0,    there exists 

D(c)  < »    such that 

(1.4) 
fl    fl     P    fl {/n|e.(n) - 6.)    <    D(e)      i » 1.2.....p)    > 1 - e 

1* 2'**      o 
H-    or   H.  is true 

Because of the above consistency condition, the proposed decision 

rule has the same asymptotic properties as the asymptotically optimal 

rule for the artificial problem, and is hence asymptotically optimal for 

the real problem. 

The basic method  (outlined above without going into any mathematical 

analysis) proposed by Weiss and Wolfowitz is very powerful, yet very simple, 

and is adopted in this thesis to develop asymptotically optimal ranking 

procedures. 

suss^ass imaMfc3BMMiaga! '»■!».-* 
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1.5 Ranking problems in the franework of statistical decision theory and 
some additional remarks: 

In the field of ranking and selection problems, Sommervi1le [45] 

was the first author explicitly to consider the ranking problem in the 

framework of statistical decision theory. By introducing a loss structure 

into the ranking problem, Sommerville obtained a mmimax decision rule 

which balanced the cost of experimentation against the expected loss 

associated with a wrong decision. However, Sommerville considered only 

prespecified selection procedures, whereas we are concerned with develop- 

ing selection procedures which are in some sense optimal in the class of 

all decision rules. Bechhofer, Kiefer and Sobel (p. 46 of [7]) also 

point out how the ranking problem could be reduced to a decision theory 

problem by introducing a suitable loss function. 

In täo work cited in Section 1.3 on showing the optimality of 

natural selection prccilures, the ranking problem is treated in the 

framework of statictiv :1 decision theory. The optimality of natural 

selection fcocec^rss i:; proved by treatir^ the problcn as a rultiple- 

decision problem ond shewing the minimax character of the procedure, 

by introducing a suit?Lle loss function into the problem. In this 

thesis too, we t.-'cr.t V:.c  ranking problem in the framni'-irk of »'aid's [48] 

statistic.il decision theory as a multiple decision problem, wherein the 

number of decisions depend on the number of populations being ranked 

and on the ranking goal being considered. A zero-one type loss function, 

suitable for the ranking goal being considered, is introduced and adopt- 

ing the basic method proposed by Weiss and Wolfowitz [55] for 2-decision 

problems in the presence of unknown nuisance parameters, we proceed to 

«a 
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develop an asymptotically minimax procedure for the multiple-decision 

ranking problem in the presence of unknown nuisance parameters.    As 

in [55], we first develop an asymptotically minimax procedure for a 

sequence of artificial problems, which in turn gives an asymptotically 

minimax procedure for the ranking problem. 

In our analysis, we make no assumption about the form of the distri- 

butions  (except    that they satisfy certain mild regularity conditions, 

given later on in Section 2.1) or the existence of any sufficient statistic 

(for each sample size) for the ranking parameter.    The problem is solved 

for an arbitrary, but fixed,  location of the ranking parameter.    If the 

ranking parameter is a location or scale parameter admitting a sufficient 

statistic, then the results hold irrespective of the specified location 

of the parameter and hence the procedure developed is an asymptotically 

optimal ranking procedure.    In other situations one may be able to find 

"least favorable location*' of the ranking parameter and thus the solution 

to the ranking problem at such a location gives an asymptotically optimal 

procedure.    If in the worst case, one cannot find such a least favorable 

location, the procedure developed by our method gives an asymptotically 

optimal identification procedure, for any arbitrary, but fixed,  location 

of ranking parameter. 

Since the problem of selecting the best population seems to be of 

most practical interest,  and also because the main ideas in the theoretical 

development of asymptotically optimal  (minimax) ranking procedures are 

illustrated in this case, we treat in detail,  the development of an 

asymptotically  .ptimal procedure    for the problem of selecting the best 

population.    For certain additional ranking goals, we develop asymptotically 

optimal procedures by reducing the analysis to one very similar to the 

problem of selecting the best population. 

BiMflMaaM ' - ■• • • —~~-~*— ** —■■'•■■ r.r--,y». .~,.,.^,-..«.r-»~»?.- .^ 



CHAPTER 2 

ASYMPTOTICALLY OPTIMAL PROCEDURE FOR SELECTING THE BEST POPULATION 

2.1   Notation, Assumptions and Regularity Conditions 

Let    X  . (i = 1,2,...,n)   denote observations from population 

nt  (t = 1,2,...,k),    and write    Xi =   (X^X^,...^^).    In this thesis, 

we assume that    X1,X-,....X      are independent and identically distributed 
i    4 n 

random vectors. 

Let    Q^e,,...^     denote unknown nuisance parameters,  common to 

each of the    k   populations.    ^ ,    (t = l,2,...,k)   denotes a scalar 

valued parameter of population   n .    The populations are ranked according 

to the values of the parameter   ^    (the large*  ehe value of    ^,    the better 

the population is considered to be).    For convenience in notation,  let 

(2.1) ^t    '   &0 ' Vt t ' 1'2""»k 

Thus, 0- may be regarded as the common value of the ranking 

parameters ^ and 6 +.  (t = l,2,,,.,k) may be viewed as shifts of 

the parameter from the common value e0. 

The density function of the random vector X is represented by 

f(x; eo'el'92»•••'ep'9p+l',**'ep+k)• Denoting (e0.91,...,e +k) by 

9, the density function will be commonly represented as f(x;e). 

The basic theory is developed for a class of density functions 

satisfying certain mild regularity conditions, which we state in the form 

of the following assumptions: 

-19- 
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33 
Assumption 1:   - . .. f(x;e) exists and is continuous for all x 

a B Y 

all ö and all a, ß, y  (oi,ß#Y 
x 1,2,.. .,p+k). 

Assumption 2:  The (p*k)x(p+k) matrix whose (i,j)  element is 

VfiT l08 W'V JÖT  loß f(x;e)}   CiJ = l,2,...,p+k) 

is assumed to exist and is positive definite for all 6. 

Fix a positive quantity L which will remain fixed throughout the 

analysis. For any positive quantity M, and any F= (9n»9\»....9 ,.)» 

let KiO*)    denote the following region in 9-space. 

'ei " ei' - "P    i s i'2"-"? 
(2.2) ^ 

'9i " eil - "P    i = P+1»P*2»'"»P+k 
»^n 

Assumption 3:  For any 6, there exists a sequence of positive 

values (M (?)} with 

lim M (e) = « 

(2 5) n^oo n 

1 ' ' Mn(e) 
lim —YJJ   = 0 

n-^o n 

and such that,  if    {ü)(n)}    and    {ii(n)}    are any two sequences in e-space 

with    w(n)  £ R5I  (Tr^iQ)    and    y (n)  e R/J  r^iQ)    for each    n,    then 
nl J n^ 

■■■ 
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M3(e)  n 

n    i=l a ß  Y 

converges stochastically to zero as n increases, when ^(n) is the 

true parameter point for X. Also this convergence is uniform in 

w(n) an.' (D(n) over R^ (e")^)« 

Assumption 4: 

3e03e 
ß Y 

f(x;e) 

P(n) 

3 log f(x;6) 

a 

dx 

is uniformly bounded for all p(n) t  R^ ^(ö) for all a, ß, Y 

(a.ß.Y = l,2,...,p*k). 

For a,ß = l,2,...,p*k, let 

(2.4) Bn(a,ß;F) » i y  a2 

n  ^ 36 36, ^f^i-'V 
i«l  a Ü 

and 

(2.5) 

/ 

3(a,ß;e)  « -E 
a-we 36, 
6   a  6 

log f(X;e) 

Assumption 5:  If üj(n) is the true parameter point for X, 

w(n) e R!! ^(^). then B (a,6;6") converges stochastically to BCb.a;?) 

and B(a,6; 0)    is a continuous function of 6, for all a,ß (a,ß = l,2,..,p*k^ 
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In our analysis, we consider only those procedures which take 

equal size samples from each population. We do not assume the existence 

of a sufficient statistic for the ranking parameter or the nuisance 

parameters; and the decision rule is given in terms of the density 

function f(x;e). 

Apart from the regularity conditions stated above, we make no other 

assumptions about the form of the density functions. Thus, the results 

obtained in this chapter (and also in Chapter 3) are applicable to the 

problem of ranking several univariate populations according to the 

values of a certain parameter, each population having common unknown 

nuisance parameters. The results also apply to problems of ranking 

several multivariate populations, the populations being ranked according 

to values of a scalar valued parameter and each population having common 

unknown nuisance parameters. The results are also applicable to certain 

ranking problems associated with a single multivariate population. The 

results are applicable in situations where, apart from the regularity 

conditions stated above, certain symmetry conditions (on the density 

function f(x;8)) hold. These symmetry conditions are needed in showing 

that a symmetric prior distribution gives a minimax decision rule. Thus, 

our results apply to the problem of ranking from a multinomial distribu- 

tion as well as ranking means or variances of a single multivariate normal 

population with common (known or unknown) correlation coefficient. 

2.2 Some Preliminary Results of Statistical Decision Theory 

In order to put the ranking problems considered in this thesis into 

the decision theoretic framework, and present a general theoretical 
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development of an optimal procedure for different types of ranking 

problems, we define some notation and present some preliminary decision 

theoretic results which will be used later on. The notation is similar 

to that used by Weiss [49]. 

Let X ,...,X  be the observable random variables, on the values 

of which the decision is to be based. Let x be an index for the possible 

sets of values of (X-.X-,...^ ).  Let f(x;e) denote the joint pdf 

of (X ,...,X ), where e is an index for the possible joint distribu- 

tions. 

Let D be an index for the possible decisions; that is, a particular 

value of D indicates a particular decision. In the case where there 

is only a finite number of decisions, say h, we can list the decisions 

in a particular order and let D.  (i = 1,2,... ,h) indicate the i 

decision.  Since for ranking problems, the number of decisions is finite 

(this total number depending upon the number of populations and the specific 

goal being considered), this notation will be used. 

In the decision theory formulation, different ranking problems would 

be analyzed in the same way, differing only in the total number of possible 

decisions h, and interpretation of each decision (depending on the rank- 

ing goal).  For example, for selecting the best population, the total 

number of possible decisions h is equal to the number of populations 

k; and I),  may refer to selecting n.  as the best population.  For 

the problem of selecting a fixed size subset of size s  (s < k)  to con- 

tain the best population, the total number of possible decisions  h  is 

K 
( )  and each D  may refer to selectinp. a pnvrimlar subset of size s 

as the best subset. 
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Let W(8,D,x) denote the loss incurred when x is the observed 

value of (X.,...,X ), D is the decision made and 6 is the true 

parameter value. For a large class of problems, W( ) may be indepen- 

dent of X. 

Definition:  A decision rule s is defined by nonnegative numbers 

s(D;x), where s(D;x)  is the probability assigned by decision rule s 

to choosing a decision D when x is observed. 

When the total number of possible decisions is finite, say h, then 

we have for each x. 

h 
(2.6) I    s(D.;x) « 1 

i-1   1 

Definition:      The expected loss, incurred when using decision rule    s, 

and the true joint probability distribution is given by   6,    is denoted 

by    r(e;s),    and often called the risk function. 

For a problem with a finite number    h    of possible decisions and 

joint pdf    f(x;e)     (for random variables     (X.»X-,...,X )) 

» JO   h 

(2.7)       r(e;s)     »    /  •••   /    I W^jD^x)  f(x;e)   sCD^x)    dx1....,dxn 
_a> —ao    i'l 

Let 

(2.8) M(s)    «    max r(6;s) 
e 
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Definition:  The expected risk for a decision rule s, with respect to 

a cdf B(e)  for chance variable 6, is denoted R(s; ß(e)) and given 

by 

(2.9) R(s;B(9)) » E  (r(e;s)} 
B(e) 

Definition:  A decision rule s is a "Bayes decision rule relative to 

B(e)" if for every decision rule t, 

(2.10) R(s;B(e)) <_ R(t;B(e)) 

Definition:  A decision rule s is called a minimax decision rule, if 

for every decision rule t, 

M(s)  <_ M(t) 

B{B),    used for constructing a Bayes decision rule is often called 

an "apriori  distribution."    Ke would  like to point out that    6    is an 

unknown vector and not a chance variable.    The  introduction of the cdf 

8(6)    is just a technical device to enable one to define a Cayes decision 

rule for the case of an infinite number of possible distributions  (indexed 

by    e). 

From a  Bayesian viewpoint, one may specify some particular cdf 

B*(0)    and construct a Bayes decision rule relative to the specific 

apriori distribution.     In this thesis, however,  we are only  interested 

in minimax decision rules,  and Bayes decision rules are only used as a 
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technical device to construct such minimax decision rules. 

If B(e) has a pdf b(9), then 

(2.11) R(s;B(e)) » / r(e;s)b(9)de 
6 

For a problem with a finite number h of possible decisions, and 

B(e) having  a pdf b(e}, we obtain using (2.7) and (2.11) 

dD      00 

R(s;B(e)) = / { /••../ I   s(D.;x) W(e;Di;x) f (x^dXj.. .dxn}b(e)de 

(2.12) 
OD        OD 

*    /••••/ [}    s(Di;x) k(D.;x)]dx1...dxn 
-jD   sos^ml 

where 

(2,13) k(D.;x) « / W(e;D.;x) f(x:e)b(e)d0 
e 

Using the above representation, we easily see that "s is a Bayes 

decision rule relative to B(e), if for each x, s(D;x)  is set equal to 

zero for every D.  for which k(D.;x) is greater than min {k(l).,x)}." 
1 ^l* 

We end this section by stating, without proof, two well-known 

theorems which enable one to recognize a decision rule as a minimax 

decision rule. 

Theorem 2.1.  If s is a Bayes decision rule relative to B(e),  and 

if r(^;s) = M(s)  for every e" which is a point of increase of B(e), 

then s is a minimax decision rule. 
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If the number of possible distribution functions is finite, and if 

we let b(6,),.,.,b(e ) denote the apriori distribution for the possible 

values  (e,,,..,9 ) of 9, then we obtain the following special form 
1    n 

of Theorem 2.1 

Theorem 2.2.  If s is a Bayes decision rule relative to b(e.),b(92),..., 

b(9 ) and if r(9;s) = m(s) for every 8 for which b(8) is positive, m 

then    s    is a minimax decision rule. 

2.3    Selecting the best population 

In this chapter, we derive,  in detail,  the basic results needed to 

develop an asymptotically optimal procedure for the problem of selecting 

the best population, when the density function of observations satisfies 

the regularity conditions given in Section 2.1.    Since we are dealing 

with the indifference zone approach to the ranking problem, we need to 

define the preference zone for the problem at hand.    As we are interested 

in developing a procedure  (really a sequence of procedures) which is 

asymptotically optimal, we defi..; the following sequence of preference 

zones   (one for each    n). 

(2.14) fi(6*(n))    =«    U c  nl^kj  - ^JJ     >_   ~S-] 

where c > 0, i*    is the parameter being ranked, and iK., ^^r7l < ... I'Ki.i 

denote the ordered parameters. 
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Also,  for any sequence of procedures    {T(n)},  let 

(2.15) P(T)    =    lim      inf      P{CS|T(n)} 
n-»-» fi(6*(n)) 

Then, throughout this thesis,  an asymptotically optimal selection procedure 

is defined as a procedure   T    (really a sequence of procedures   (one for 

each    n)) such that among the class of all procedures    T', 

(2.16> P(T)    >_   P(T') 

In order to develop an asymptotically optimal procedure  (that is 

a procedure for which (2.16) holds), we formulate the problem as a 

decision theory problem with a particular zero-one type   loss   function, 

and obtain an asymptotically minimax decision rule for the associated 

multiple decision problem.    This is done in detail in the next section. 

We would like to point out here that in developing selection pro- 

cedures  (for ranking problems) which are asymptotically optimal, the 

problem of defining a suitable preference zone is solved in a nice way. 

We are interested in defining a sequence of preference zones in such a 

way that the distance between the best and the second best population 

approaches zero as   n -^ ».    That we require such a sequence for the 

asymptotic theory is clear by the fact that if, for example, the distance 

between best and second best population were some constant, then for any 

procedure using a consistent estimator of the ranking parameter,    P(T) 

(as given by  (2.15)) would be equal to one  (that is, one is able to 

select the best population with probability approaching one as    n -^ »). 

.: ■-..:»• ■ ",■!-       ~ -     ~—.-,„--...-.y-    - — - ,.- .^^.-.~, .^^«-.^^ 
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Thus, the preference zone as defined in (2.15) is appropriate for the 

ranking problem. The distance function used in defining the preference 

zone is a "natural" distance function for the problem of ranking popula- 

tions according to values of the location parameters. For asymptotic 

theory, this is an appropriate distance function for ranking any para- 

meters of a distribution, a result not too surprising in view of the 

fact (as we shall see in the next section) that the problem (at least 

asymptotically) reduces to one of ranking means of normal populations 

for which the distance function used is a natural distance function. 

For asymptotic theory, in the sequence of preference zones (as defined 

by (2.14)) the rate of convergence of the distance function to zero 

(consequently the rate of convergence of preference zones to the whole 

parameter space) is l//n. This is directly related to the normalizing 

constant (/n for the class of problems being considered), for which 

the decision variables have a limiting distribution. If the rate of 

convergence is too slow, the problem reduces to a degenerate case 

while if the rate of convergence is too fast, the decision rules will 

not be able to distinguish the best population among the set of competing 

ones. 

For i = 1,2,...,k let 

(2.17)     H.: f  1 

e   = e . - c/Zn 
p+i    p+i 

where c > 0 and 9  . = 9  . all i,j  (i,j = l,2,...,k) are known values. 

9    may be taken to be zero, with no loss in generality. 
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In view of (2.1),   (2.17) represents a restricted parameter configura- 

tion,  in which if   H.    is the true state of nature, then   n.    is the best 

population. 

We now discribe the basic method used in developing asymptotically 

optimal ranking procedures.    In order to develop an asymptotically 

optimal procedure for the ranking problem, we develop an asymptotically 

optimal procedure for an associated identification problem, with    e0, 

the conunon location of the ranking parameter,  as the least favorable 

location of the ranking parameter.    We first solve the problem for a 

restricted parameter configuration, given by (2.17),  and then show that 

the procedure developed is minimax overall parameter configurations. 

As in [55], we first solve a sequence of artificial problems, the solu- 

tion to which suggests an optimal procedure for the real ranking problem. 

2.4    Asymptotically Optimal Procedure for Zero-one Type Loss Functions 

For the problem of selecting the best population,  let    D.    denote 

selecting    H.     (as given by  (2,17)) as the true hypothesis  (equivalently 

selecting    n.    as the best population).    The loss function is given, for 

i = 1,2,...,k, by 

(2.18) W(e,Di;x) = W(9;D.)  = 

0 if H.  is the true hypothesis 

1 otherwise 

2.4.1    Preliminary Sequence of Artificial Problems 

For the  loss function  (2.18),  and with the joint density functions 

of the populations satisfying the regularity conditions  (of Section 2.1), 

  . !■-.— IT MMB—a 
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we would like to develop an asymptotically optimal procedure for the 

problem of selecting the best population. Before proceeding to the real 

problem, we first solve a sequence of artificial k-decision problems 

(one for each n). 

Suppose it is known that for i = 1,2,.,.,pf we have 

M  (e) _       M  (9) 
6. -     <    e.    <    9. ♦ ~      and    (0    ,,6    „,.,.,6    .)    satisfy one 
i       ^-     -     i    -     i       ^- P+l    P*2 P+k 

of the    k   hypotheses given by (2,17).   (6",,...,6" )    are known constants 

and   0 < c <^ L.    We wish to test which one of the k hypotheses    H.,H-,...,H. 

is the true one. 

For the above problem, which is an artificial one because we assume 

Q.t...,W     are known, we construct a Bayes Decision Rule relative to 

the following apriori distribution:      For    j  = l,2,,..,k    a total mass 

of   b.    is spread uniformly over the set 

_        M   (9) _        M  (9) 
9^ <    9.    <    9.  + —        i = 1,2,...,p     and     H.    is true 

/n /n J 

where   b. ^ 0    for   j = 1,2,...,k,    and 

I   b     =    1 
j=l   ] 

The prior distribution    (b.,    j  =  l,2,...,k)    is arbitrary,  but 

fixed.    Later we select the prior in such a way as to obtain a minimax 

decision rule for the problem at hand. 

mm 
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If we  let    I),     denote the decision to select    H.     as  the true 
i i 

hypothesis  and compute    k(l).;x)    for each    i,  then it can be seen that 

a Bayes decision rule relative to the above apriori distribution is given 

as follows: 

Select    H     as  the true hypothesis if 

(2.19) V£lj) - b^"   £'j ' l'2 k 

where  for    j ,i    ■  1,2,...,k 

(2.20)      Jn(th) 

V" 
M   (e) 

^ 

M   (6) 

K  {5") 
—     n 

11    ^ 

«1~ /n 

M  (8) 
8  ♦-" 
rP    /ü 

M  (6) 
e ..n 

n f(Xi;e,Hll)de1.....dü 
i«l ' ■ 

^ P   /W 

fP     C '     »n 

Mn{e) 
e     n 

n 
n 

i = i 
n   fCX^e.Hjde ,...,de 

P   /Ü 

Merc f(X ;'J,H ) denotes the joint pdf of the observations when 6 is 

the parameter value and (n .,...,e .) are as given by hypothesis H 

For notational convenierce, we   let 

jnum ■ 

r      n 
n   f(x.;«,H.)do     ...de 

i-1 * ' ' 

n     f(X.;ü,H.)d61,...,de 
1«1 

i'  ''j'- i 
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where the integration is over the region as given by (2.20).    Throughout 

the thesis, unless otherwise specified,    /•*•/    indicates integration 

over a region as given by the last expression for the integral where 

the limits are specified. 

We investigate the asymptotic properties of   J (i|j).    We now 

define certain notation used frequently later on.    Let    6    denote 

(^.^.....e" .e"    j,..,^    k).    Also for    a    = l,2,...,p*k,    let 

(2.21) An(a;e)     =    -1      I    ^- log  fCX^B) 
/n    i=l      a 

Denote by F (a,ß;e"), a,ß = l,2,.,.,p,  the (a,S)  element of 

the inverse of the (p*p) matrix whose (a,0)  element is B (a,6;9), 

where B (a,ß;F)  is as given by (2.4). This inverse exists with proba- 

bility approaching one as n increases. 

For a,ß = 1,2,..,,p, let F(a,ß;e') denote the (a,ß)  element 

of the inverse of the (p*p) matrix whose (a,6)  element is B(a,ß;e'). 

By our assumptions, this inverse exists. Also by our assumptions, if 

the true parameter point for X is a)(n) e R., ,T--.(6), then F (a,^;?) M
nv.öj n 

converges stochastically to   F(a,B;e)    as    n    increases. 

Using the above notation, we get by expanding around    9",    for 

£=12 k 

n n p-»k 
I   log f(Xi;e,H)l)    =     I log f(X ;e) *   I    ^(e^A (a;8) 

i=l i=l a=l 

(2.22) +k       +k 

-'/I    [l   ^(ea.^)^(eß^Bn(a,ß;^ * Qn(e1 e U) 
a=l     6=1 r 
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where. 

(2.23) 

,   p*k    p+k    p*k 
Mil 

a»l    6=1     Y=1 
Qn(ei'--'epl£)     =    6    I    J,       I   (ea-V(V ^eY-eY) 

n 3 

1=1 a     ß     Y u(n) 

and in   (2.22) and  (2.23),  we have set 

e.-e.=~ j/i 
P+3 P4J ^ j   -  1.2 k 

e      - e   0    = --^ 

and    ii(n) e RJJ  ^ (?)  . 

We now prove a lemma which will be useful   in studying asymptotic 

properties of    J   U|j). 

Lemm 2.1        For    i- « l,?,.,.,k,      0^(6,»...,6   |t)    ccr-vergcs stochastically 

to zero as    n -► ^    for all    p(n)   e R."  ,-r.(Ö)   . ■Mn(0) 

Proof:       From (2,23), we see that 

M^e)   p*k   p*k   p*k 

Qn(9l'-'9
PI^      1   ^-V?      I      J,       I K n oi=l    6=1    YC1 

n a3 

.L.   36   36   36 
1=1       a     ß    Y 

log f(Xi;e) 

M(n) 

■*   0    as    n -► ™   by our assumption. 

■ 
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Thus    Q (8.,,..,8   \t)    converges stochastically to zero as    n -► * for 

all    u{n)  e  ^^(e). 
Q.E.D. 

Using   (2,22), we obtain,  for    £  =  l,2,...,k. 

n n 
n fCX^e.H^)    =   exp{ I   log fCx^e.H^} 

i=l 1=1 

(2.24) 
n p+k _ 

exp{ [   log f(xi;o) ♦    I   ^(eQi-ea)An(c.;e) 
i=l 01=1 H. 

)*k 

H 

Substituting from   (2,24)  in  (2.20),  we obtain,  for    j,e    =  1,2,,..,k. 

Jn(i|j) 

n p*k 
exp{     I    log  f(X   -Q)  ♦    [    '^n(ea-ea)A   (a;9) 

i=l aal 

- j   I I ^(ea-ea)^(Veb)Bn(a,H;B) 
a,6=1 

♦ yn(ö1,...8p|£))de1,..,dep 

1      i 

n p*k 
exp{    I    log f(xi;e) ♦   I   /n(ea-ej)A (a;9") 

i=l ' a=l 

7   Tl^a-^(%'^*n^.*'>V 
a,6=1 

"i 
' V9i ''piJ"dt'i'--d-p 

where    i1|l(H.)     inside the bracket  is used to indicat     ^hat hypothesis 

HAH.)    is true. 
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Simplifying the above expression, we obtain,  for    i,j *  l,2,...tkt 

(2.25) 

JnUlj)      - 

r 
exp    -2cA  (p*i;F) 

.    p*k      p*k 
j    I        I   ^(ea-ea)/ir(e -e )Bn(a,ß;9) 

a»p*l  6=p*l H. 

exp -2cAn(p*j;e) 
.     p*k      p*k 
7    I       l   ^(ea-ea)^(eB-eß)Bn(a,ß;e) 

a=p*l  6ap*l H.. 

r      r 
exp I /jr(e -6 )A (a;F) -if     I /^{e -F )^(e -F )B (a,ß;e) 

.1 a    <*    n 2 atl  gti a    a ß    ß    T 

P _        P*k 

c   I /JTce .8rt)[   ^     Bn(a,Y;P). , a    a' *    ^ ,    n 
•Bn((i.p**;e)]*Qn(eli...ep|4) 

tv*i 

de....de 1        P 

}     ) 

exp I ^(e -e )A (a;e) - ~   f     I /n(e -e )/S(e -e )B (a,8;e) 
a-1 a    o    " 2 a-1  ß-1 a    a ß    ß    n 

P _       p*k 
-c   I «^(e^)!   I Bn(a,Y;e)-BnKp*j;e)]*Qn(81>..,e  h) 

Y«p*l 
^P*j 

de....de 
*        P 

If we denote by   J'(J.|j),    the above expression  ^or   J  (fc|j)    with 

C)  (9.,...,e   |i)  and    0  (6.,..,,e   |j)    being removed from numerator and 

denominator respectively,   then we obtain the  following useful  lemma. 

Lemma 2.2. For    l,j  =  1,2,...,k 

JnU|j)    stochastically 
TJUU)     " '    1      as    n . - , 

• • T • • 
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for all true parameter points u(n) e R. /^(e) 
M/Ö) 

Proof:   Using the law of the mean for Integrals, we can write 

J'dlj) = t j (£|j) 
T(j)  

n 

e 

where Q (i)  (i = j.i) is betw.^i. the mininium and iraximun values 

taken by Q (e.,...,e ;i) in the region of intenration. Using le.ma.  2.1, 

it follows immediately that if U{T\)     is the true parameter point for X 

n   -        Jl(    i) 
and u(n) e It /-■)(9), then  -s-   ^  convenes stochastically to one 

as n -» ">. 

Q.E.D. 

As a direct consequence of K::..na 2.2, to study the asymptotic 

properties of J (fc|j), we reed only stud/ the asymptotic properties of 

J'Cilj).  If we let w = /n v -e" 1,  a = 1,2,...,p,  we cct for 
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(2.26) 

J;(MJ) 

exp •2cAn(p+£;6) v-kl 
A 

7   L )      ^(e -e )^(e -e )B fafß;c) 

exp | -2cAn(p*j;e) j\l      ^n(ea-ea)^(e -e )Bn(a.e;6) 
a,Bap*l H._ 

J 

M 
n 

[9)    Mn [6)      1 

exp 

Mn [e) -Mn ;e) 

p p*k 
I     w  fAn(a;9)   -  c(     I       Bn(3,Y;e)  - 

a«l a* n Y«p*l 

k  fl  * W
Ü
B (a.8;0) 2     L

a
L.    a b n     ' a.ß«l 

Bn(a,p*l;9))] 

dw        dw 
1 P 

Mte)    M   (9)       [" 
n n i r r 

exp 

■HJT)  .Mn(5") 

P _ p*K 
I    w (A (a;F)  -  c(     [       B   (a.Y;e) 

a»l a' n Y-p*l 
Bn(a,p*j;9)]] 

I    0,   WaWa'6'e) 
a,e«i 

dwi...dwp 

Since    M  (^)  -► ^    as    n -» •,    it would be tempting to set  in the  limits of 

integration    M   (S")   « «    and conclude that  the resulting value of the expres- 

sion  (2.26) would have the same asymptotic behavior as    J'Ujj).    However, 

since the integrand  is also a function of    n,    through    B  (a,ß;9),     a care- 

ful analysis  is required. 

Before proceeding to that,  denote by    J"(«|j)    the value of    J'ii) 

if in the   limits  of  integration  in the expression for    J'^jj)   ((2.26)), 
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M (9)  are replaced by ».  By treating w (a = 1,2,.. .,p) formally 

as having a multivariate normal distribution with mean vector 0 and 

covariance matrix given by Fn(a,e;9) 1, we get for t,j = 1,2,....k. 

(2.27) 

j';i*-\j) 

exp | -2cA (p*fc;6) 7 I l   ^{eci-ea)^(eß-96)Bn(a.ß;e) 
a,ß=p*l 

exp !-2cAn(p*j;e) - i- H    ^(9a-ea)^(ee-9ß)Bn(a,B;e) 
j    "' a,ß»p-»l H. 

J 

exp 

exp 

,   P        _      P*k      _ 
J    I 1      <An(a;9) - c(  [ ^ Bn(a.Y;e) - BnCa.p4£;6))) Fn{a,8;9)- 

a,6=1 Y*p*l 
/p*£ 
p>k 

(An(B;9) - c( [  Bn(f>Y;e) - Bn{ß,p>t;e))) 
Y=p*l 
ig*  

1  p     _    p*11     _        _       1 
- I  I      'A (c.;6) - c( I       B (a.>;6) - B (a.p* j ;9)) }F (a.ß;e). 
'  a,S=l   n        Y»p*l n n n 

^P*j 

p*k 
•(An(ß;F) - c( l       Bn(ö,Y;A) - Bn(ß.p*j;9)) 

Y'P*1 
^P*j 

Aftcr some simplification, we get 
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(2.28) 

J"(*lj) 

exp 2cAn(p*j;6) - 2cA  (p**;e)   ♦ 2c    f[    A  (a;e)F   (a,ß;e) 
n n a,6=1 

Bn(ß.p*£;?) - Bn(ß,p*j;e)| 

exptc^Ce^lj)] 

where 

c2vn(e;t|j)   «   i    f I ^(ea-ea)/^(e -e )Bn{n,e;e) 
a,6"P*l 

(2.29) 

I    I l ^(ea-ea)^(eß-e )Bn(a,ß;6r) 
a,8"p*l 

H, 

H„ 

a,6-1 
•r .0.   F^a.B:?) 

p*k _ p*k 
{    I      B  (a,Y:e).2B  (a,p*j;e)}{    l    Bn(ß,Y;e)-2Bn(ß.p*j;fl)} 
Y»p*l Y»P*1 

p*k p*li 
■i    I      B  fafY:e).2Bn(a,p*e;e)H    I    B  (6.Y;e)-2B (6.p*£;e)} 

Y«p*l     " Y«P*1 

After sone simplification, we get,  for    l,j =  1,2,...(kt 
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p+k p+k p+k _ 
I I B   (a.ß;e)   -  2      [      B  (ß,p*j;e)  ♦  B  (p*j;p*j;e) 

a=p+l ß=p+l    n ß=p+l    " 

/P+J ^P+J ^P+J 

p+k p+k p+k _ 
•   I       l B

n(a,ß;e) + 2    I    B (ß.p+i^e) - e {p+£;p+2;e) 
a=p+l ß=p+l " ß=p+l     " ' 

^p+ü ^p+il ^p+K, 

+2 I I    F  (a,ß;e) 
a,ß=l 

p+k 
{    I   B (a,Y;e,}-{Bn(ß,p+£;e) - B (ß.p+jje)) 

Y=p+l n n 

.Bn(i,p+£;e)Bn(ß,p+£;8)   +  Bn(a,p+j;e)Bn(ß,p+j;e) 

We now proceed to examine the asymptotic properties of   J'(£|j).    A lemma, 

which will be useful  in determining the asymptotic distribution of 

J,(£lj)    is first proved. 

For    a =  1,2,....p+k,    let 

Ptk 

(2.31) A   fa;e)     =    A   (a;e) -    [    /n(u.ß(n)-6 )B(a,ß;e) 
n n ß.l e e 

Lemma 2.3      If the true parameter point  for    X    is    uj(n),    u)(n)  e  R..   ,^{1), 

then    A  (1;P),A  (2,9),....A   (p+k;^)      \ave asymptotically a joint  normal 

distribution, with zero means and covanance between    A  (i;6)      and 
' n 

A  (b;e)      given by    B(a,e;e), 
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Proof:      If   u)(n),    ü)(n)  E 1^   fi'^9^»    ^s the true parameter point for 
n 

X,    then for   a = l,2,.,.,p+k. 

E   ,  JA  (a;e)] 
(ij(n)1 nv  '   J1 

=    E 7 .ihr^^h'V /n    i=l      a 

(2.32) 

u(n) 

^   / f(x,a)(n)) ^- log f(x;e) 

e J 

dx 

=    ^   / f(x;e ♦  (u)(n)  -  9)) ~ log f(x;e) dx 

Expanding    f(x;u(n))    around    9    and denoting,   for notational convenience. 

ae log   r(x;e) by      TTT—    log f(x;e),      we obtain for    a = 1,2,... ,p+k., 
9 a 

E   ,  .[A   (a;9)] 
u)(n)1 nv  '     J •n    / f(x;9) ~- log f(x;e)dx 

(2.33) 

♦ [    /Mu.ß(n)-96)  /   1^- f(x;9) ^ log f(x;e)dx 
6*1 -•*        ß a 

• 4   rl    K(n)4)Un)-e ) J a2">^<"" 2- log f(x;e)dx 
ß.Y'l y        Y aea 39       ae 

ßY a 

where    u(n)  e R|[J  ^(e) . 

Thus, 

p*k 
r,   3 E   ^^l^f^«))     3      I     ^(wrt(n).ea)  / ^- log  f(x;9)  ^- log  f(x;^f(x;t.)dx 

ß»l 
'^(n)1  n ' „i,      •—H-'   -0'  J   jf,      -o  -—•-'  3e 

ß,Y-l -• BY a 
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E
u{n)tAn(a'e)J 

(2.34) 

p+k    _ _ 
l    ^(a)ft(n)-eft)B(a,ß;e) 

8=1 
W' "&' 

j+k 
+ ^eOi (uß(n)-?«)(^(n)-?v) /- L(x;^(n)) Irr K* 

f(x^)dx 
'6^ Y' 3e„  36 

e    Y 

where    u(n)  E  R^J  ^(e)   . 

From  (2.34)  and the assumptions made in Section 2.1,  it follows 

that 

(2.35) 

p+k 

'tü(n) 
An(a;9)  -    £    /nCuj   (n)-e  )B(a.ß;e) 

3=1 J 

<   K(e) -- 
M   (6) 

IT? 

where   K(e)    is a fixed positive constant.    Thus from (2.35), it follows 

that for    a =  1,2,.. .,p*-k,    E  , .A  (ct:9")    converges to zero. winj  n 

Also note that,  for   a,ß = l,2,,..,p+k. 

C0Vw(n)[An(^e),An(ß;6)]    =    Covar^(n)[An(a:e),An(ß;e)] 

-    E.(n)tAn^'9)An^'^l  "  Kin)^^Kin)^&'^ 

TO 

=     / ^T- log f(x;e) ^- log  f(x;6")   f(x;<l)(n))dx 
"»a ß 

"  WAn^^Ou(n)(An(S;e)) 
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l>»ing  AlgrbrdU   »lti|il 11 teat lun a%   for    1. |A   (a;?)),     and  fulluwtng 

Ihp «»»uMpllon« ««de  in Section 2.1.   it   can bo  »hown that   the covarlancc 

bctwron    Ä  (a.'M     and    Ä  (n;»)     convirgo«  to    B(<J,J<;Ö)     for  all 

w{nj   .   kj  (5)(J). 
n 

Th«  atyaptotic   joint  nor»ality of    A (1;5"),A  (2;o),...,A  (p^k;o) 

is a standard result  used frequently  in the  literature   (See,   for example*, 

p.  SOO ol  Craser  (13)).    Using that,  the proof of the  le«aia is hence 

coaploto. O.t.U. 

Substituting fro«  (.    >1)   in   (2.26), wc obtain,   for    i,j  •   1,2.....k. 

(2.36) 

j;(i|j)       • 

exp /-2cA   (p.» J)  - i      11      ^(*  -? ^^(^.ö )B  (a.f;F) ) 
\n »ai o    a pnn n   f 1 a,e«p«l Hj ( 

^T f l     ? -      - 1 
exp    -2cAn(pM;«J  - y     H      ^n(VV^OJTOJB^a.e;*)        ? 

V^ " «,B»p*l * H.I 

Mn(^)     Hit) n n 
P P#h 

cxpl  ) »'a(Än(a;^)  •    I    ^»C- (n)-ö  )B(a,>;öj 

•M   (tT)   -M   (^ p^k p _ 
.c(     /       Bn(<I.Y;^.2Bni...p.l;e))).  i    JJ    V^n^*^^' 

>"P»1 " a,H«l 
dWj dw 

M   («)     H   (5") 

exp<   J    wi(^n(,,;..)   .     [    /^(w  (n).ö )8(...,;.') 

•►I (6)  -M  («♦) n n P!> .P. 
-c(    T        B  (t.,>;e)-2B (o.p.j;^))). i    11    «wBfa.e^)) 

yp«l     n n 2 a.b-1    a " n 

dw , dw 
1» p 
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Kcarranging terms, we get 

J;(HJ) 

exp 
)*k 

■2cAn(p^ff) ill      ^(6^)^(9 -6  )B  (a,ß;9) 
a,ßap-»l H. 

exp n(p*j;0) - ^     fl     ^(ea.ea)^(0ß-o )Bn(a,8;ö)|    1 
a,Ö"p*l H.J 

XP[" ^  /^l   (Vt-.^n))(Vtß.e(n))ünfa'ß:?)] dwl' 

/ r 

, dw 

exp '  ■?•    H     ("-t-. ^niHw^t     .(n))Dn(a,ß;6)      dw  dw 

where,  for    J «   l,2,...,k,    «t ■ l,2,...,k, 

\.i^ 

(2.58) 

p*k 
.(^e)  ♦    [    /^(w  (n)-ft )B(3,Y;Ö) 

-c[    l      Bn(ß,Y;'-')  -   B  (a,p^;e)] 

and 

(2.39) 

If we  let    u    » w -t       (n)    and    v    ■ w -t       (n),       then after some 

simplification,  wc obtain,   for    i,j   ■   1,2,...,k, 
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(2.40) 

J;U!,J) 

J^CMj) 

"nW-h.iM    Mn^-V(n) 

1  rP exp[- j I I u u B (a,ß;e)]du    ,du 
^ a,6=1 a b "        1      p 

M (6).:. .(:i) M (ö')-t  .(n) 

exp[- i I  I    vav r. (a,e;ü)]dv    ,dv 
a,B-l h 

-M (e)-t, .(n) -M (oV-t  . fn) 

In order to show that J'Uh) is arbitrarily close to J"U|j), 

it is sufficient to show that the im^grals in the nuir.erator and denomina- 

tor of (2.4) are, for sufficiently large n, with any probability less 

than one, within an irbitrary positive constant e of their common 

limit  (2n)p/  IB]    . wfu re  |B|  is the dctcrmimr.t of the matrix 

B, whose  (a,e)  element is  B(a,ö;«).  For that it suffices to show 

that the limits of integration converge stochastically to (-'',J,) as 

n -» ». 

This will be sufficient, because then by replacing the limits of 

integntion by (-%•),  the t.Tect on the numerator of J^ilj)  is to 

multiply it by  q (i) where q (i) converges stochastically to one. 

Similarly, tl>e efi'cct in the denominator is to multiply it by q (j), 

where 9n(j) converges stochastically to one. 



vnvowMi'Hi'j   unai 

• 47- 

From (2.38), we obtain for a = 1,2,... ,p,    I  = 1,2,...,k. 

ta.lM 

or. 

e=i 
Hn(a,ß;0) 

_   p+k 
A (ß;e) + I   /^(u) (n)-e )B(ß,Y;e) 

Y=I 

p+k       _ 
-cf I      B (6,Y;0) - B (ß,p+£;e)] 

111 il 

P+k       _  E 
ta a    *   l   ^(Oü (n)-9 ) I  [F (a,3;e)B(ß,Y;e)] 
a'    Y=1    Y    Y  6=1 

(2.41) \,i^    *    'a.Z    + 1 ^Y(n)-\)
6
n(^Y) 

Y = l 

where, 

(2.42) «n(a,Y) 
0 = 1 

Fn(a,ß;e)ß(B,Y:e) 

and t*   remains bounded with probability approaching one as n -► •>. 

Since F (a,b;e) converges stochastically to F(a,ß;e)  (a,ß » 1,2,.,,p) 

as n increases, it follows that 

r 

(2.43) V-.r) 
stoch. 

n-»^ 

0 a / Y 

1 a « Y 

Y s 1.2,...,p. 

It  also follows that    6   (u,  p*t),     t   =   1.2,...^    remains bounded 

with probability approaching one as    n -•   *. 
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Thus,  if    wCn)  c  W.   (•—-.(o),    we obtain from (2.41),  for    a = 1,2,..^, 

i  -  l,^,>aa,k. 

k _  p 
(2.44)  |ta>i(n)|<|t^J * L- ^ |6{a,pn)| * Ln(e) I   |6n(cx.Y)| 

P 
where  [ j* (O(,Y)| converges stochastically to one as n -* ^, for 

Y=l " 

a = 1,2,...,p. This implies that there exists a sequence {en}. 

E > 0 lim f. =0, such that, 
n->cu 

(2 .45)     lim P{ I   |6 (a,Y)| < 1 ♦ e   a = 1,2,...,p} = 1 . 
n-t-^  Y s i 

From (2.44) and (2.45), we thus get that for any given  * > 0, there 

exists K((t)) < D, such that 

(2.46)    ^(n)*!1«,*^01 < ^^  *  Ln(8)(1*cn)} * 1 " * 

for any ^(n) c R" ,QA*)   • 

Choose the sequence    (L  (&))    to satisfy the  following properties, 

lim L  (6)   = - 

tn(<r) 
< 1 for all    n      a 

Mn(6) 

(2.47) 

L   (9) 
(2.48) " _     <     1      for all    n      and      lim -—7-   =    1 

n-* M^(e) n 

and 

(2.49) lim[Mn(e)  -   (l*cn)Ln(0)) 
n-*» 
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That it is not difficult to find such a sequence is illustrated by 

—       -1   —   1/2 — 
the simple example L (6) = (l*e )  [M (e) - M ' (e)]. Using (2.46) 

and the sequence {L (e-)} as selected above, we get that with probability 

greater than 1 - *, 

"M5") - *„ . W < -Mn(S-) ♦ K(*) + Ln(e)(l+en) n^ '   a,£ 

(2.50) [Mn(e) - (i+en)Ln(e)] + K^) 

as n -> "i 

and. 

(2.51)     M (6) - t 0 (n) >  M (6) - KOM - L (e)(l+€ ) 
n     a,£v/     n n     n 

-*■    =»      as n ->■ ^ . 

Using the above result and lemma 2.2, we have thus proved the 

following. 

Lemma 2.4   For I,j  = 1,2,...,k. 

(2.52) log Jn(Ä|j) - log J^(Mj) * \il\j) 

where Z (fc|j)  converges stochastically to zero as n -* * for all 

parameter points u(n),    a)(n) e R. ,-T^(Q). 
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As  a consequence of the above  lemma,   in order to study asymptotic 

behavior of    J   («.|j),    we need only study the asymptotic behavior of 

Using  (2,28)  and lemma 2.4,  the Bayes decision rule for the problem 

reduces to the following: 

For        £ =  1,2,...,k,   select    H      if 

2c(An(p+j;e)   - An(p+£;9))  + 2c    [[    A (oj^F  Ca.ßjÖ) 
a,ß=l 

(2.53) 

Bn(ß,p+£;0) -  Bn(ß,p+j;6) 

+c    Vn(9;£|j)  + Zn(£|j)     lloggi     j  =  l,2,...,k 

where    vn(e;£|j)    is given by (2.30). 

The Bayes decision rule divides the sample space into    k    mutually 

exclusive and exhaustive regions, each of which a particular hypothesis 

is selected.    This is so irrespective of whether    f(";*)    represents a 

joint density, function or a joint probability mass function.    Using the 

regularity conditions imposed on    f(•;•).    we do not have to worry about 

the ties introduced into the problem due to equalities in relation 

(2.53).    Thus the results obtained in this section are not restricted 

to assuming the existence of a joint probability density function for 

the joint distribution of the random variables. 

For    £,j  =  l,2,...,k,    let 
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Wn(i|j)  = An(p+j;e) - An(p*£;e) ♦ I l    An(a;?)Fn(a,ß;e) • 
a,ß=l 

(2.54) 

.B (S,p+£;?)-B (e.p+j;?) 
\n n       1 

Rearranging terms in (2,53) and using (2.54), the Bayes decision rule 

reduces to the following: 

For £ = 1,2,...,k, select H  if 

i     b   2 
(2.55) Wn(£|j) 1 ^- dog gi- c^V^^lJ) +Z;(£|j)}  j = l,2,...,kf 

i 

where, Zl(£|j) converges stochastically to zero as n -»• «>, if the true 

parameter point u)(n) e R? f-r^(Q)  . Also V(?;£|j) is a non random 
Ln(e) 

continuous function of (T for all £,j  (£,j = 1,2,...,k). V(e;£|j) is 

obtained from (2.30) with the random variables in (2.30) replaced by 

the constants to which they converge. Because of the symmetry introduced 

in the problem by redefining the parameters i|/ by (2.1), we may conclude 

for the problem of ranking from several univariate or multivariate popu- 

lations, when the observations between populations are independent, that 

(2.56) VOTJäIJ) = 0  for all £,j (£,j = 1,2,...,k) 

In obtaining the above result, we have used the following realtions 

BGi^e")  =  B(a,Y;e")   a = 1,2,...,p 

(2.57) 
B(ß,ß;e)  =  B(Y,Y;9")   ß.Y = p*l,p+2,...,p+k 
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and 

(2„58) B(ß,Y;e)     =0 e  / Y,       ß.Y  = p*l,p+2,...,p+k 

If for the probloT of ranking from a single muitivariate problem 

(for whicli   (2.57) holcb but not   (2,L8)), we assurae tliat 

(2.59) B(ß,Y;e)    =    B(6,n;e*)      ß ^ Y,    M n,   ß,Y,6,n = p+l,p+2,..,p*k 

then (2.56) still holds. Fron now on we assume that this is so and hence 

the results are applicrble in ranking fiom a single multivariate popula- 

tion for cases for which (2,r.')) holds. 

Thus the Br-es docisici rule ir.uy be rewritten r.s follows: 

For i  = 1,2,...,k, select H^ if 

i     b- 
(2.60)    Wn(Jt|j) >_ -i- (log J-1+ Z^(£|j))   j = l,2,...,k. 

To study the asymptotic behavior of the Bayes decision rule, we proceed 

to study the asymptotic joint distribution of the random variables W (<l|j). 

The asymptotic distribution is given by the following theorem. 

Theo-'-n 2.5   If w(n) is the true parameter point for X, u)(n) e R, r--,(e). 

then for fixed 2 (H = 1,2,...J;), iW (ijj); j = 1,2,...,k, j  t Z]  have 

asymptotically a joint normal distribution with mean and covariance matrix 

given by 

[_Ü.T.Ü Hit. 
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EWn(£|j) 
Ptk 

I     /n(w (n)-e )[g(p*j;Y;?) - g(p*n;Y;e)]     j / s. 
Y=P*1 

and 

Cov(Wna|j),Wn{£|i))    =    s(9;)l,i,j) ij  / I 

where    g( )    and    s( )    are continuous known functions of   6    (gO)    and 

s(*)    defined later on in the proof). 

Proof;        For each fixed    £,    W (£|j)    are  linear combinations of 

A  (a;0),    a = l,2,,..,p+k;    it fellows from Lemma 2,3 and a standard 

result in literature on linear combination of random variables with 

asymptotic joint multivariate normal distribution    (see for example 

Rao  [40]) that for fixed    «., 

joint normal distribution.    It only remains to determine the mean and 

covariance matrix. 

W  (Mj);    j  / *} have an asymptotic 

Rewriting    W  (il|j)   in   terms of    A  (a;6),    we get from (2.::)  and 

(2.54), 

wn(*|j) 

p+k 
"N 

A (p+j;e) +   I   /^(oj (n)-e )B(p+j;Y;e) 
Y=1 

p+k 
.(A  (a;0)  +    I    /^(co   (n)-e  )B(a,Y;e)) 

V.     n Y = 1 

r_ p+k 
A  (p+£;0)  +    I    /n(u)  (n)-e  )B(p+£,Y;e) 

I l    Fn(a,8;e)Bn(ß,p+j;8) 
a,ß=l 

s 

*\ 

- 
Y = l 

p+k 

I  I     F   (a,8;e)B  (ß,p+ü;e) 
a,ß=l     " " 

.(A (a;e) +   I /Mu, (n)-ev)B(a,Y;e)) 
^        " v=l ^ Y 
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(2.61) WnUtJ) ll)rdu,   . .(2) Wn(£|j)   ♦ W^^ilj)   *  W^J(ÄJj) 

where. 

wn(Mj)   =   iA (p>j;e) -   II     Fn(a.ti;e)An(a;e)Bn(ß.r*j;e)) 
j a,6=1 

(2.62) 

■ {A  (p>Ä;e)  -     f[      An(a;e)Fn(a,ß;e)Bn(e,p*£;e)} 
** a,ß=l 

(2.63) 

w^^^lj) 

p+k 
I    ^n(u)  (n)-e  j{B(p*j;Y;e) 

Y=p*l        Y Y 

p+k 
I     /n(a)   (n)-9   ){B(p+£,Y;<n 

Y=P*1 Y Y 

["I    B(a,Y;e)Fn(a.ß;e)Bn(ß,p*j;e)} 
a,ß=l 

ri   B(a,Y;e)Fn(a,ß;e')Bn(ß.p*£;e)) 
a,ß=l 

and 

(2.64) 

r = l        T 

f[B(p+j,Y;e) -   fl   B(a,Y;e)Fn(a,ß;e)Bn(ß,p+j;e)]> 

)-e ) 
a,8=1 

n^   ' n 

(B(p^,Y;e) -   I'l   B(a,Y;e)Fn(a,6;e)Bn(ß,p+Ä;e)] 
a,ß=l 
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From (2.42)  and  (2.43), we see that if    u)(n)    is the true parameter 

point for    X,    w(n)  E R.,  ^(ö).    then  for all    S.,y  {i.,y    = l,2,...,k), 
n1 J 

k 
(B(p+fc,Y;e) '11      B(a,Y;9)F  (a,e;e)B  (ß,p+)l;e))    converges stochastically 

a,ß=l n n 

to zero as    n    increases. 

Clearly,  if we choose a sequence    {M (6)}    converging to infinity 

P ^  P 
suchthat  I    M (9)|{B(p4£,Y;e) - H     B(a,Y;e)F (a,3;e)B (S,p+£;e)}| 

Y=l a,6=1 

converges stochastically to zero as n increases, when u)(n) is the 

.n 
1 n 

true parameter point for    X    and    u.(n)   e  K,  J-ö"^
6
)!    then 

(2.65) W^Ulj)    ^toch    0 

n -+ °o 

From now on we asrume that the sequence (M (6)}  (on which we had 

placed no restriction except as given by (2.3)) is so chosen. 

For i  = 1,2,,..,k, let 

_    P 
(2.66)  g(p+«.,Y;e) = b.:p+*,Y;0) - I l   B(a,Y;e)F(o,e;ö)B(s,p+ii;o) 

a,6=1 

Y = p+l,p+2,...,p+k . 

Then from (2.61), (2.65)-(2.66),  it follows th't when the true 

.n 

n 
parrmeter point for X, (A)(n) e R fa"-i(e)» t^e asymptotic joint distri- 

bution of W («,|j) is normal with mean of W (£|j) as required. 
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For   l,i • l,2,.,.,k,    j t i,    let 

(2.67) ffn(*h)  ■ Rn(n - KnU) 

where,  for   i ■ lt2t,,,,k. 

p 
(2.68)      Rn(l)    ■   £ (p*Ä;e) -    I I   X" fa;?)Pn(a,ß;e)Bn(ß,k**;9) 

n n a,6-1   n n n 

Then, in view of results obtained above, asymptotically, we get 

Cov(Wn(t|j),Wn(£|i)) -    Cov(WnU|j),Wn(iL|i)) 

-    E[R^(£)] * E[Rn(i)Rn(j)] 

-E[RnU)Rn(i)]  - F[Rn(£)Rn(j)] 

Because of the symmetry in the problem, we get 

(2.70)       cov(w c£|j):v; a|i))   •=  mlw] - E[* m:P (i)]   . 
n ii n n u 

For   I * l,2,...,k,   let 

(2.71) Pn(a,p+Jl)    =      I    F  (a,ß;C)B  (ß,p+Ä;e) 
n 0=1    " n 

and, 

(2.72) F(a,p+ll)    =      l    F(a,ß;ejl?(ß,p+£;e)     . 
3=1 

gataaafcataaaaa  :■ ■ ..r^ r,^,^-:■-...,.-.^-v ■ .n-.»..^-.-«-  muaBlumiemaigliigmm 
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Then, using  (2.67),  (2.68),   (2.71) and lemma 2.3, we get for    i t j, 

(2.73) 

Cov(WnU|J),Wna|i))    -    B(p*t,p*£;9) - B(pn,p*i;e} 

■    B(p*4,p*4;e) - B{p+£,p+j);e 

Denoting the right hand side of (2.73) by s(e;£,i,j) completes the 

proof of the theorem. 
Q.E.D, 

Because of the inherent symmetry in the structure of the ranking 

problem and because of the way in which we have redefined our parameter 

(Eq.  (2.1)), we note that the decision variables have asymptotically a 

normal distribution with a common correlation coefficient.    This makes 

it easier to compute certain probability integrals needed in computing 

the Probability of Correct Selection and thus the Bayes risk for the 

problem.    Tables of integrals for equicorrelated multivariate normal 

variables by Milton [34] and Gupta [21]  can be used to obtain the Bayes 

risk for any particular prior distribution. 

In order to determine an asymptotically miniiuax decision rule for 

the problem it follows immediately from Theorem 2.1, Theorem 2.3 and 

(2.60) that because of the symmetry in the problem, the Bayes decision 

rule given by  (2.60)  is an asymptotically minimax decision rule if we 

set,  for    j  *  l,2,...,k,   b. « r-   .      Thus, an asymptotically minimax 

decision rule for the sequeucc of artificial  k-dccision problems is  as 

given below: 

«Uii 
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For   II ■  l,2,,..tk»    select    H     if 

(2.73a) wnu|j)   >   0 

where W (£|j)   is  given by (2.54). The decision variables have a 

limiting equicorrelated multivariate normal distribution with mean and 
L (9) 

covariance matrix as given by Theorem 2.3. Recalling that n 

Mn(e) 
i 

as   n -* -,    the decision rule given by  (2.73a) is an asymptotically 

minimax decision rule for the sequence of artificial k-decision problems. 

2.4.2   Asymptotically Optima] Procodure for the "Real" ProMnm 

The above sequence of problems was artificial because we assumed 

Öi»6^»««»»^.     to be known.    We now proceed to the real problem, where 

nothing is known about the values of the nuisance parameters    (6.,...,6 ); 

and with the loss function as given by  (2.18), we want to develop an 

optimal procedure to select the best population. 

We first define some additional notation.    Let    9.(n),e2(n),..,,6  (n) 

be estimators based on    X   of   e-,,.,,8 ,    such that for any    e > 0, 

there exists    D(e) < »,    such that 

(2.74) P0 a    {^le.ao-e. |  < Ü(E)        i = 1,2,...,p} > 1 - e 
1'    ' p' 

(H is true} 

where {H is true) implies that one of the p hypotheses given by 

(2.17) is true. 

^^mmim ■ ;--^-»--' 
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It is worth noting hero that the above condition on the estimators, 

is only a consistency condition, certainly desirable for any estimator. 

Maximum Probability Estimators of (©......e ) could be used, although 

any set of consistent estimators satisfying (2,74) would suffice. 

For notational convenience, let 

A A 

(2.75)        0(n)   -   (e0,e1(n),e2(n),...,ep(n),ep+1,...,ep+k) 

Also define for   i. ■ l,2,...,k. 

(2.76)      TUH)    =   -{An(p+*;e(n)) -    I l   F(ci,ß;S(n))B(ß,p**;§(n)) 

• An(a;e(n))} 

and, 

(2.77) in(£)    =    -An(p*^e(n)) 

Also define for    l t j    (e,j = 1,2,....k) 

(2.78) Äna|j)    =    Tn0O - Tn(j)    =    r (£) - r (j) 

Then, an asymptotically optimal decision rule for the problem of 

selecting the best population is given by tho following theorem: 
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Theorem 2.4  An asymptotically optimal decision rule for selecting 

the best population is given as 

Select H  (n  as the best population) if 

(2.79) y*) > Tn(j)   j + I 
Äf^J   a   if^|»«*|K 

Proof;  It suffices to show that the decision rule defined above has the 

same asymptotic probability of correct decision as the Bayes decision for 

the artificial problem, which was also shown to be asymptotically miniroax. 

It will be sufficient because then the decision rule has, asymptotically, 

the same "risk" as a Bayes and minimax decision rule and hence is an 

asymptotically minimax (optimal) decision rule. 

In order to do that, we obtain the asymptotic distribution of 

ft,(Älj). From C2«78)» we get 

(2.80) 

& (*lj) 

At,(p+j;e+e(n)-e) - I I      A (a;e+e(n)-9)F(a,ß;e(n))B(ß,p+:;e(n)) 
" a,3=1  " 

- {AT>(p+£;e+e(n)-e) -    H     A (a;e+e(n)-e)F(a,e;e(n))B(ß,p+fc;e(n)} 
n a.ß=l 

Expanding around 9, we obtain for a = l,2,...,p+k. 

-^*»-*—«-«M TiiniTrnn . 
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(2.81)     A raje(n)) - A (a;e) ♦   I   ^n(ev(n)-e )(-Bn(a.Y;e)) ♦ R (a) 
ii ii i T T i* n Y«l ' ' 

where    R-Ca)    converges stochastically to zero as    n -»■ » .    Substituting 

from  (2.81) in  (2,80), we get 

(2.82) 

P+k 
An(p+j;e) +   I   ^(e -e (n))B(p+j,Y;e) 

Y=I 

p+k 
{An(a;e) +   I   ^(e -6  (n))B(a,Y;e)} 

I l   F(a,e;e)B(ß.p+j;e) . 
o,6«l 

Y=l 

p+k 

Y    Y 

An(p+Ä;e) +    I    /n(e -9   (n))B(p+£,Y;6) 
Y = l 

{An(a;e)  +    I    /^(e -9   (n))B(a,Y;6)} 
Y = l 

fl    F(a,e;e)B(ß,p+£;e). 
a,ß=l 

+   Qn(Mj) 

where    (L(Mj)    converges  stochastically to zero as    n    increases, 

Rearranging terms, we get 
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(2.83) 

n 

(An(p*3;e) 

(An(p+Jl;e) 

I l F(a,ß;e)B(ß,p+j;e)A (a;e)) 
a,ß=l n 

I I F(a,0;e)B(0,p+A;e)A (a;6)) 
a,0=1 " 

p+k 
*    I   ^(e -e (n)) 

Y=P+I      
y   y 

(BnCp*j,Yje)  -     I l    F(c.,0;e)B(ß,p+j;e)B  (a,Y;9)) 
a,0=1 

C^CP+Ä.YJO)  -     I I    F(a,0;e)B(0,p+Jl;e)Bn(a,Y;e)) 
a, 0=1 

+    !     »^(6  -6   f")) 
Y=l Y     Y 

(Bn(P+J»Y;e)  -     I I    F(a,0;9)B(0,p+j;e)Bn(a,Y;6)) 
a,0=1 

(B  (p+i.,Y;e)  -     I l    F(aje;9)B(ß,p+Ä;G)R  (a.Yje)) 
a,0=1 '  y 

* %^\j) 

Since in (2.33),    VJ  (£|j)    is of tlie same form as    W (ijj)    in 

(2.60)  and because of the properties of estimators    (O.fn),...,?  (n)) 

(i.e.   (2.74))  it follows that    W (2.|j)    has the same asyn^)totic normal 

distribution with mean and covariance matrix as r^iven by Theorem 2.3. 

Since the decision rule given by  (2.79)  is equivalent to selecting 

H     if   W («.|j)    >   0,    as in (2.73),  it follows immediately that the 

decision rule given by  (2.79)  has the same asymptotic Boyes risk and 

is hence an asymptoticc-lly miniinax procedure for the ranking problem. 

Q.E.D. 

mis-; . :-r  -— ■~..,-~--.«—^.»     -   . 
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In the development of an asymptotically optimal procedure for the 

problem of selecting the best population, we considered a restricted 

parameter configuration  (as given by (2,17)).    The general parameter 

configuration may be represented as follows: 

For    i = 1,2,...,k, 

r 
e   „ =   e"   „- c/^n 

(2.84) H^:   / 

6     .  =   9    . + z.lfR i  = 1,2.....k 1    p+j p+j        / J        .  .      » 

where,    c. > c > 0, 
J - 

A word of explanation is in order here.    In  (2.84), hypothesis    H 

implies that    IT      is the best population; and the distance between the best 
c+c. 

population    and      the other populations are     i- ,     (j = l,2,...,k,j t ä). 
/n 

For the case where c. are all equal, we get the restricted configuration 

given by (2.17) and the case where one or all of c. are different, we 

get a general parameter configuration. 

Now, we must show that the procedure given by Theorem 2.4 is indeed 

asymptotically minimax over the parameter space. This follows very easily 

since for a general parameter configuration given by (2.80), the proba- 

bility of correct selection increase, whenever for any j, c. > c. This 

implies hence that the configuration given by (2.17) is the least 

favorable configuration and hence the procedure given by Theorem 2.4 is 

indeed asymptotically minimax. 



mmmmm 

-64- 

2.S   The Rate of Convergence of Decision Variables to an Asymptotic 
Normal Distribution 

In our analysis, we have shown that our decision rule (procedure) 

is asymptotically optimal.    In order to completely specify the test, 

asymptotic normality of the decision variables is used.    It would be, 

both from a theoretical and practical viewpoint, very useful to determine 

the rate of convergence to the asymptotic normal distribution.    From a 

practical viewpoint, to an experimenter, who for large sample size   n, 

would act as if the asymptotic distribution is the actual distribution 

(which it is, to a close approximation) it would be helpful to know how 

fast the asymptotic results take over.   The results on the rate of con- 

vergence would supply that information. 

In this section, we present the main results on the rate of con- 

vergence in Central Limit Theorems for a set of independent random 

variables  (one dimensional or multidimensional).    The results on rate 

of convergence for one dimensional random variables are useful for the 

problem of ranking two populations, which can be easily shown to be a 

one parameter problem.    The results for the one dimensional case would 

equally well apply to the paper by Weiss and Wolfowitz [55]. 

Rate of Co:.vergerce in .^o !^.:n.'nsional Ce-,; ral ^ nit-Theorem 

Let   X.,X2,..  .«     be ii dependent and identically distributed 

random variables with    EX = 0,    Var X = 1    and    E|x|    < ".    Denote 
n x    i        t^/o 
I    X.    by   S     and   / — e     '    dt   by   *(x).    Let .   ,     1 n J    r.rr ' 1=1 -» /:n 

•.T.»r—■-,-■>■»--■..  - ■...——.-. -...■■   -.■^,- — ,—_—«»» 
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S 
P{~ < x} - «(x) 

We state, without proof, the following theorems (on the rate of con- 

vergence in a central limit theorem) of Berry [10], Esseen [18] and Katz [28] 

in 

Theorem 2.5  (Berry-Esseen) 

3 
(2.86) A  < C E'X' 

n *   /n 

where   C    is an absolute constant. 

Theorem 2.6      (Katz) 

(2.87) A     <    C,  E{x2g(x)} 

"   '     1    g(^) 

where C. is an absolute constant and g(x) is defined on the real line 

and satisfies 

i) g(x) >_0, even, non-decreasing in [0,») and 

ii) x/g(x) is defined for all x and non-decreasing on [O,»). 

Theorem 2.6 is useful if one cannot make the assumption about 

E|x| < °O, but would be much harder to apply, since the function g(x) 

has to be specified. In case one can assume that E|x| < », Theorem 

2.5 would be very convenient to use. 

We note that by the Central Limit Theorem, A -»• 0 and from (2.86), 

-1/2 
A  converges at a rate of n   . The constant C in Theorem 2,5 is 

given by the following result due to Zolotarev [56]. 

^Mta 
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Theorem 2«7  (Zolotarev)    In Theorem 2.5, 

(2.88) C <  1.301 

In our analysis, the random variables {X., x = l,2f...,n} would 

be replaced by a suitable function of the original observations, at  defined 

by the decision variables T (a)  (see (2.78)), If besides the regularity 

conditions, we also assume the existence of the 3rd absolute moments, 

we can use Theorem 2.5 and 1>.jorem 2,7 directly,  'he rate of cr/nvergsrice 

-1/2 
is of the order of n    and it the 3rd absolute moment of the normalized 

decision variables is small (it depends on the exact parametric fonc t? 

the probability density function of the population«-' bein^ ranke'') tn- 

large sample results will be effective quite rApiuiy. 

fa«:^0' ^^n^oigence in Multidimensional Central Limit Theorem 

For the general ranking problem for k populations (k >_ 3), 

we need multidimensional analogues of the Berry-Esseen Theorem, 

Let X-.X-,,,,^  be i,i.d. random variables (X. = (X,. »X«. ,..,X. .)) 

each with distribution function F. Let 

Exti = ^t 

E(Xti  - ut)2 2 
=    0t 

E Xti - vt  3 
-    \ 

ßt 
at   "      S/2 

0t 

(2.89) . for t = 1,2,...,k 

and 

■jzn 
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i'.lso  let A be Che detein «nant of the covariance matrix and A   the 

corresponding principal n» ^ors oi A (t = 1,2,...,k). Let 

S  --  )" X.  and iet 
n     , J- 

S 
(i,90J F^l'X;  = P{-2. < x} 

n       ^ " 

where S  and x are k dir,' ,!Sionai vecttrs. Let G(x) denote the 
n 

cdf of normal random variable«' ii.ii same first and second moments as 

that 5f i (-). nv ' 

Using the above notation, we have the following theorem by Sazanov 

[42] (stated without proof) on the rate of convergence. 

Theorem 2.9  (Sazanov) 

k A tt „ .   -1/2 
(2.91)     sup |Fn(x) - G(x)| < C2(k) ( I -^a^n* 

xcRk tsl 

As before, we note that the rate of converoence is of the order 

-1/2 
n   ,  and if the constant terms in (2.91) are small enough, asymptotic 

results would be effective quite rapidly. It may be noted, that for 

our analysis, since the decision variables W (i|j)  (rlose rate of 

convergence is being dctcrminod) have the same correlation coefficient 

and the same variances, in (2.91) we would get 

A 4  = X 
tt 

(2.92) t - 1,2,...,k 
a   = a 
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and hence a certain simplification would be achieved in determining the 

right hand side of (2.91). 

2.6    Examples 

In this chapter, we have developed asymptotically optimal procedures 

for selecting the best population, when the density function of the 

observations satisfies certain mild regularity conditions (as given in 

Section 2.1). It is interesting to note that for a large class of density 

functions (satisfying the above mentioned regularity conditions), an 

asymptotically optimal procedure for selecting the best population (as 

given by Theorem 2.4) takes such a simple form. The populations are 

ranked according to the value of the statistic T.  (as given by (2„77), 

the population associated with the largest value of T  being selected 

as the best population. 

We now give some examples to illustrate the applicability of the 

results to specific distributions. The first set of examples indicates 

the asymptotic optimality of selection procedures already proposed in the 

literature. In the second example we give an asymptotically optimal 

procedure for selecting the normal population with the largest mean, the 

populations having common unknown variance. We also indicate how the 

asymptotically optimal procedure would be used in practice for large 

sample sizes. In the third example, we develop an asymptotically optimal 

procedure for the problem of ranking Weibull distributions according to 

the value of the scale parameter, when the populations have known location 

parameters and common (known or unknown) shape parameter. 
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1.   Asymptotic Optimality of Certain Selection Procedures already Proposed 
in the Literature     "~~ "      " "' 

As a consequence of the results in this chapter, the selection pro» 

cedures already proposed in the literature for the following problems 

are asymptotically optimal (the references in brackets indicate the 

papers in which the procedures were proposed): 

(i)    Ranking variances of normal populations with known or unknown 

means  (Bechhofer and Sobel  [8]). 

(ii)    Selecting the best of several binomial populations  (Sobel 
and Huyett [44]). 

(iii)    Selecting the multinomial event with the highest probability 
(Bechhofer, Elmaghraby and Morse [6]). 

(iv)    Selecting the bivariate normal population with the largest 

correlation coefficient  (Ramberg [39]; also given as an 
example in Eaton [17]). 

(v)    Selecting the component with the largest mean in ranking from 
a single multivariate population with common known variance 
and covariance of the components.    (Given as an example in 
Eaton [17] and Milton [34]). 

2.    Ranking Means of Normal Populations with Common Unknown Variance 

An asymptotically optimal procedure for selecting the normal 

population with the largest mean, populations having a common unknown 

variance, is to select the population associated with the largest sample 

mean. 

The procedure is the same, as one may expect, as one proposed by 

Bechhofer [4] for ranking means of normal populations with common known 

am 
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variance. However, there is a difference in the probability statements 

one can make, depending on whether the common variance is known or 

unknown. In case the common variance is known, the experimenter 

specifies, prior to experimentation, two constants (6*, P*), with 

6* > 0, T- < P* < 1. The sample size (n) needed to guarantee the 

probability requirement is given as a solution to 

(2.93) Wn a    H?il) 
o 

2 
where,   o     is the common known variance and   X(P*)    is, as given in 

[4], the solution to 

OS 

(2.94) / F      (X ♦ X(P*))f(x)dx    =    P* 
• 00 

with 

1    2 
1      "2 X 

f (x)    =   -i- e ^ 
/2ff 

and 

x 
F(x)    =      / f(y)dy 

A(P*)    is tabled in Bechhofer [4]   (also in Milton [34] and Gupta  [21]) 

and thus one determines the required sample size    n(6*,P*)    for any 

prespecified constants    (6*,P*). 
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In case the common variance    (o  )    is unknown, for a sample of 

size   n,    the experimenter computes a consistent estimate    a  in),    say 
2 

the sample variance, of the unknown variance   a     and acts as if 

o (n)    were the actual variance    o .    Fcr any sample size   n    and the 

computed   o  (n),    one determines the pair   X(6*,P*)    satisfying (2.93), 

Then,  for a specified   6*    one finds the probability    (P*)    that is 

guaranteed,     (or for a given   P*    one can find the    6*    for which    P* 

is guaranteed.) 

3.    Ranking Scale Parameters of Weibull Distribution with Known Location 
Parameter and Common (known or unknown) Shape Parameter    ^ 

For a random variable   X   having a Weibull distribution, the cdf 

G(x;e)    is given as 

(2.95) G(x;e)    =/ 

where 6-  is the location parameter, 6- is the scale parameter and 

9  is the shape parameter, e = (Q-.e-.e-) and the parameter space 

n =   {e|.cc < ej < «,   e2 > o,   e3 > o}. 

In case the location parameter    6      is known, we may take    6.    to 

be zero with no loss in generality and get 

r 

(2.96) G(x;e)     = ; 

1 . exp -(i-) 
I/63 

x < 0 

x > 0 
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where   e =  (e2»e3)    and the parametv^r space   ü 3{e|e2 > 0 ,      e_ > 0}. 

Defining the random variable    Y    as    log X,    denoting    e2   by 

e     and denoting    (B, e3)    hy   e   we find that the cdf   F(y;0)    of the 

random variable    Y    is given as 

(2.97) F(y;0)    =    1 - exp / - exp(^) 
3 

For the random variable    i   having cdf as given by (2,97),    B    is the 

location parameter and   6.   is the scale parameter.   Thus the problem 

of ranking scale parameters of Weibull distributions reduces to the 

problem of ranking location parameters of a distribution as given by 

(2.97). 

The density function   f(y;8)    of observations, with cdf as given 

by (2.97),    is given as 

(2.98) f(y;e)    »    *    exp&Ä exp(-exp(£Ä) 
ö3 3 3 

For the ranking problem at hand, with density function of obser - 

tions given by  (2.98), the regularity conditions of Section 2.1 are 

satisfied.    Thus the results obtained earlier in this chapter hold and 

an asymptotically optimal procedure is as given by Theorem 2.4. 

Let    X  .     (i = 1,2,...,n)    denote independent observations from 

population    n      (t « 1,2,...,k)    each with cdf given by (2.96).    Let 
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(2.99) Y   = log X..   i = 1,2,...,n 
t a 1 2     k 

and, for I -  l,2,...,k 

1/63 
(2.100) T  =  I    (X ) 

Let the ranked value of T  be denoted by 

(2.101) !(„ <. T(2] <....•<. T[k] 

For selecting the Weibull population with largest scale parameter, 

when the location parameters are known and the populations have a common 

known shape parameter (6..), as asymptotically optimal procedure (as 

given by Theorem 2.4) is to select the population associated with Tr. ,, 

Let Z, < Z_ < •••• < Z ,  denote the ordered values of 1 - 2 —    — nk 

{Vt,i, i = 1,2,...,n, t = l,2,...,k}. Then, as given by Weiss [50], 

(2.102)  93 = -2^. I    {(l-j/nk)log(l-j/nk)}(Z   - Z ) 
j = l J     J 

is a consistent estimate of 0.. 

For I  = 1,2,...,k,  let 

n       3 
(2.103) Tl    =  I    (Xti) 

i«l 
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where    9      is as given by  (2.102).    Let the ordered values of    t     be 

denoted by 

(2.104) ^DlT^i—iT^ 

For selecting the Weibuxl distribution with largest scale parameter, 

when the location parameters are known and the populations have a common 

unknown shape parameter (6.), an asymptotically optimal procedure (as 
A 

given by Theorem 2.4) is to select the population associated with   Tf. ,. 

.~—m^m 
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CHAPTER 3 

ASYMPTOTICALLy OPTIMAL PROCEDURES FOR CERTAIN ADDITIONAL RANKING GOALS 

In the last chapter, we have developed asymptotically optimal pro- 

cedures for selecting the best population,  for situations in which the 

joint density function of the observations satisfies certain mild regularity 

conditions.    In this chapter, we extend the basic results to develop 

asymptotically optimal procedures for certain other ranking goals. 

The following two general ranking goals have been considered in the 

literature: 

(i)    Selecting a subset of size   s    to contain at least   d   of the 

t   best populations, with   max (l,s*t*l-k) < d ^ min (s,t) 

(which implies    max(s,t) <^k-l)). 

d,s,t    are integers specified prior to experimentation. 

(ii)    Select the    k      "best" populations, the    k "second best" 

populations, the    k _-   "third best" populations, etc.,  and 

finally the    k,    "worst" populations. 
s 

't1»lc2»,,,»'c      ^s 1 k)    are integers si'.ch that      ^    k.   « k 
and    (k.,k_,...,k ,s)    are specified prior to experimentation. 

Bechhofer [4]  in his paper alluded to the ranking goal  (i), but it 

was formulated and formally considered by Mahamunulu [33] and Desu and 

Sobel  [14].    It has been called Goal I by Mahamunulu [33] and we too 

shall use that de..ignavion.    Two particular cases of Goal I are of 

special interest:     (a) Selection of a subset of size    s  (>t)    which 

contains the    t    best populations, and    (b) Selection of a subset of 

size    s    (<t)    which contains any    s    of the    t    best populations.     In 

Section 3.1, we consider a special case of (a), with    t « 1.    Ke develop 

-75- 
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an asymptotically optimal procedure for this special case of Goal I. This 

case is treated in detail, since it brings out the main steps needed in 

extending the basic results in Chapter 2 to develop asymptotically optimal 

procedures for more general ranking goals. In Section 3.2, we treat a 

special case of (b) with s ■ 1. We develop an asymptotically optimal 

procedure for this special case of Goal I. In Section 3.3, we give, 

without proof, an asymptotically optimal procedure for Goal I. Bechhofer 

[4] formulated goal (ii) and considered two cases in detail, namely, 

s = 2, k. « k-t, kj B t and s « t*l, k, ■ k-t, k2 = k_ = ... = kt+1 = 

For the second case, we are interested in selecting the t best popula- 

tions with regard to order. Bechhofer [4] considered this special case 

and provided tables (to be used to determine the sample size needed for the 

proposed single-stage procedure) for the case k » t » 3. This special 

case of goal (ii) has been formulated as Goal II in Bechhofer, Kiefer and 

Sobel [7] and we refer to it as Goal II too. In Section 3.4, we obtain 

an asymptotically optimal procedure for Goal II. In Section 3.5, we point 

out certain other possible goals in ranking and selection problems. The 

method developed in this thesis could be adapted to these cases. 

3.1 Selecting a Fixed-Size Subset to Contain the Best Population 

In order to develop an asymptotically optimal procedure for selecting 

a fixed-size subset to contain the best population, we formulate the 

problem in decision theoretic structure. For i « l,2,...,k( let 



-77- 

ö   .   =   e 
P+J p 

.  ♦ c/^T        j  = 1,2,...,1 
J t i 

(3.1) H.: 

e        =   e A. - c//n p+i p+i 

where    c > 0 and    8     . = 6 all    i,j     (i,j  = 1,2,....k) are known values. p+3        p+i »J     v .^ *   * 

J        may be taken to be zero with no loss in generality. 

In view of (2.1),  (3.1) represents a restricted parameter configura- 

tion, in which if   H.    is the true state of nature, then   n.    is the best 

population. 

We now describe the basic method used in developing an asymptotically 

optimal ranking procedure for this problem.    Tn order to develop such a 

procedure for the ranking problem, we develop an asymptotically optimal 

procedure for an associated identification problem, with    i" ,    the common 

location of the ranking parameter, as the least favorable location of the 

ranking parameter.    We first solve the problem for a restricted parameter 

configuration,  given by  (3.1), and then show that the procedure developed 

is minimax over all parameter configurations. 

Let    D(I)    denote the decision to select   n.,n.   ,...,n.      as the 
\   x2 x% 

subset  (of size    s) containing the best populations, where    I =  {(i  ,i2,..,i ); 

it i it,.    t.t'   = 1,2,...,s,    it,it, = l,2,...,k}.    I,    the index set, 

is a s-tuple whose components inidcate the   s    populations included in 

the selected subset. 

The loss  function for the multiple decision problem is given as 

Ilk 
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r 

(3.2) W(e;D(I)) 
■\ 

L 

0 if   H.      or   H.      or    ....H.      is the true hypothesis 

1 otherwise 

where I = (i1,i2,...,is) 

There are ( ) pos 

problem with simple loss function given by (3.2). 

k k 
There are ( ) possible decisions, and we thus have a ( )-decision 

Preliminary Sequence of Artificial Problems 

We now develop an asymptotically optimal procedure for a sequence of 

artificial ( )-dccision problems (one for each n). 
M (?) M (e) 

Suppose it is known that    6. <    6.  <    6.   + —  
1        /n       "     ' -     '        /J7 

i = 1,2,...,p    and    (e0+i»e +2»,,,»e +k^    satisfy one of the hypotheses 

given by (3.1).   F ,?_,...,?     are known constants and    0 < c <^ L.    We 

wish to select a subset of size    s,    and the loss function is given by 

(3.2). 

For the above problem, we construct a Bayes decision rule relative 

to the following prior distribution: 

For    j  = l,2,...,k,    a total mass of   b.    is spread uniformly over 

the set 

M (9) M  ce) 
(3.3) e. - —— < e. < e. + -2— 

/n /n 
(i  = 1,2,...,p) 

and H. is true whore; for j = 1,2,...,k, we have b. >^ 0, and 

~ ■"•* 
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^ ' '  • 

The prior distribution    (b  ,    j =  l,2,...,k)    is arbitrary, but fixed. 

Later we select the prior in such a way as to obtain a minimax decision 

rule for the problem at hand. 

Before we develop a Bayes decision rule, we define some notation 

used later on.    For    j  = l,2,...,k,    let 

M  (6) M   (6) 
V-2    F-O  

1    /H P      «^ 

(3.4)        b..(n) 

M re) 
6,-0     6-2- 

1 ^    p /^ 

n 
n     f(X.;9,H JdSj 

Nl  (6)     i'1 

.de 

Also let. 

(3.5) ■»    -   bjn)/ I    ^(n) 
J J tsl 

Then, we may view    b. (n)    as the posterior probability for the 

hypothesis    H.,     if we consider    b.    as the prior probability. 

In terms of notation of Chapter 2,   for    I,}  »  l,2,...,kt 

(3.6) 
b      b   (n) 

Let the ranked values of b. (n)  be denoted by 
3 
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(3.7)        b[l](n^ 1 b[2l^ -   -   b[k](n^ 

In order to develop a Bayes decision rule for this problem, we compute 

k(D(I);x) for each I and (in view of the results in Section 2.2) use 

that to construct a Bayes decision rule. 

For I » (i1,i2,...,is). 

(3.8) 

l);x) - I    b (n) - b (n) 
j«l J     ll 

k(D(I);x) - I    b,(n) - b. (n) - b. (n) - b. (n) - ... - b. (n) 
'2      3 3 

K 
s I    b.(n) - I   b. (n) 

j-1 J     ittl 
1t 

From (3.8), it follows directly that a Bayes decision rule is to 

select the s populations associated with the s largest values of 

b.(n).  In view of (3.7), a Bayes decision rule is to select populations 

associated with (^rvieli !»•••• »briti ("))• 

Using (3.6), the Bayes decision rule can be seen to reduce to the 

following: 

Select n, ,n. ,,..,n.  as the subset containing the best population 

if 

ll 
h. 

(3.9)      Jn(l2,j) i b1"     for J ^ (ij.i^....!^ 
l2 j « 1,2,...,k 

i s 
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The decision rule, as defined by (3.9), divides the sample space 

into    ( )    mutually exclusive and collectively exhaustive regions,  on 

each of which a distinct set of   s    populations will be selected as the 

best subset.    Note,  as a check, that when    s = 1,    (3.9)  reduces to the 

decision rule given in Chapter 2 for the problem of selecting the best 

population. 

We now obtain asymptotic properties of the Bayes decision rule 

given by (3.9).    Since the assumptions and regularity conditions of 

Section 2.1 hold,  the asymptotic properties of   J (t|j),    Ä,j  ■ 1,2,...,k, 

M j,    obtained in Section 2.4 hold.    Thus Lemmas 2.1-2.4 and Theorem 2.3 

could be used to reduce the Bayes decision rule to the following: 

Select    n.   ,n.   ,...,n.      as the subset containing the best population 
ll    12 1s 

if 

Wn(illj)    -   fc(l08 j"* Zn(il|j)) 
1
l 

i b 

W,(iJj)    >    ^.-(log r-i- ♦ Z'(iJj)) 

(3.10) 
W  (i nv s 

l2 

1 b^ j)    i   Irdog^-* Z^ijj)) 
i s 

j  /   (i1,i2,...,is) 

where,  as before,     Z'U   Ij),     (t  »  l,2,...,s)    converges  stochastically 

to zero as    n    increases,  if the true parameter point    w(n)   E  R    r5"^^9^' 
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Also   W  (iJj)    are as defined by  (2,54) and their asymptotic distribution 

is as given by Theorem 2.3.    Thus, the decision variables have,  asymptoti- 

cally, a multi-variate normal distribution with mean and variance given 

by Theorem 2.3. 

Using Theorem 2.1 and the natural symmetry in the multi-decision 

problem, it follows directly that the Bayes decision rule given by  (3.10) 

is an asymptotically minimax decision rule if we set   b. * r-     for 
J K 

j * 1,2,...^.    Thus, an asymptotically minimax decision rule is given 

as: 

Select    n.   ,n.   ,...,n.      as the subset containing the best population 
II    x2 ls 

if 

Wn(i1lj)   ^0 it  Ci1.i2,...,i5) 

Wn(i2lj)    i   0 j - 1,2,...,k 

(3.11) 
W (i   Ij)    >   0 

n    s — 

L   (6) 
Recalling that as n—7=T * i. the decision rule given by (3.11) 

Mn(e) 
is an asymptotically minimax decision rule for the sequence of artificial 

( )-decision problems. 

Optimal Procedure for the "Real" Problem 

The above sequence of problems was artificial because we assumed 

^.,6 , ...,F     to be known.    Ke now proceed to the real problem, where 

nothing is known about the values of the nuisance pniaiuctcis     (R.,".*•■• «e ^ 

•i^*m 
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As before, let    6.(n),82(11),....6  (n)    denote estimators of 

ejfe2,...,8      respectively, based on the observations    (X  ,,..,X ).    We 

assume that these estimators s'isfy the consistency condition, as given 

by  (2.74); one may use Maximum Probability Estimators  (MPE)  of    (e,,...,e ) 

as the estimators    (6,(11),...,e(n)). 

For notational convenience,  let 

(3.12)        e(n)   »   (e0,e1(n).e2(n),...,e (n),ep+1,...,9p^k) 

For    l » 1,2,...,k,    let 

(3.13) TJn)     »    - An(p*t;e(n)) 

Denote the ranked values of T (n) by 

(3.14) T[i](n) 1 T(2l(n) -T[kl(n) 

Then, an asymptotically optimal decision rule for the problem of selecting 

a subset of sire s to contain the best population is given by the 

following theorem: 

Theorem 3.1.  An asynntotically optimal decision rule for selecting a 

subset of size s to contain the best population is to select the s 

populations associated with T..,(n),T..(!j^,...,T,. (n)  . 
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Proof;  It suffices to show that the decision rule given by Theorem 3.1 

has the same asymptotic properties as the minimax decision rule (given 

by (3.11)) for the sequence of artificial problems. That follows directly 

from the proof of Theorem 2.4, completing the proof of the present theorem. 

Q.E.D. 

In the development of an asymptotically optimal procedure for the 

ranking problem, we considered a restricted parameter configuration given 

by (3.1).    The general parameter configuration may be represented as 

(2.84).    As  in Chapter 2,  it follows very easily that the parameter 

configuration given by (3.1) is the  least favorable configuration and hence 

the procedure given by Theorem 3.1  is indeed asymptotically minimax over 

all parameter configurations. 

In order to compute the probability of correct selection for the 

selection procedure given by Theorem 3.1, one may use tables given in 

Desu and Sobel  [14] and Mahamunulu [32]  for some special cases. 

3.2    Selecting One of the    t    Best Populations 

In order to develop an asymptotically optimal procedure for this new 

goal, we formulate the problem in decision theoretic structure. 

Let    I  ■ ((i. ,i.,...,i. );    i.   ■ 0    or    1,    exactly    t    i.    equal 
1        £ K J J 

y 
to    1,    j  ■  l,2,...,k).    There are     ( )    possible    I    and for any particular 

I,    let 

f- je .  - —     if    i.  « 1 

(3.14)                        11(1):    e          .( " 

!  e . ♦ —    if   i. = o 
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where    c > 0    and    e        =6 all    i,i     (i,j  =  1,2,,..,k)    are known 

values.    Here    9 may be taken to be zero with no loss in generality. 

In view of (2,1),   (3.14)  represents a restricted parameter configura- 

tion,  in which if    H(I)     is the true state of nature,  then the t populations 

for which    i.  = 1 in    I      are the    t   best populations.    For the problem 

at hand, this is the  least favorable configuration. 

In order to develop an asymptotically optimal procedure for the 

ranking problem, we develop an asymptotically optimal procedure for an 

associated identification problem, with    ¥ ,    the common location of the 

ranking parameter,  as the least favorable location of the ranking parameter. 

We solve the problem for a restricted parameter configuration given by 

(3.14),    Since  (3.14)   represents the least favorable  location,  the procedure 

developed is asymptotically minimax over all parameter configuration. 

For    1 » l,2,,..,k,   let    D.    denote the decision to select    n. 

as one of the    t    best populations.    There are    k    possible decisions and 

(  )    states of nature;   the simple loss  function for the problem is given 

as 

fü    if    i=l    in    I 
(3.15) K(e,U.)     ='' 

1      otherwise 

Preliminary Sequence of Artificial Problerr.s 

We now develop an asymptotically optimal procedure  for a sequence 

of artificial k-decision problems   (one for each    n). 



■ 86- 

M (e)       _  M (e) 
Suppose it is known that 6. 1 e  <^ 6. ♦   , 

>/n i/ri 
v 

i ■ l«2(...,p, and (6 +.,.,,,6 .) satisfy one of the ( ) hypotheois 

given by (3.14). Here (6^, »^»•••»^ ) are known constants and 0 < c ^ L, 

We wish to select one of the t best populations, with loss function 

given by (3.15). 

For the above problem, we construct a Bayes decision rule relative 

to the following prior distribution: 

For   j  « 1,2,..., (),    a total mass of   b.    is spread ui.^forraly over 

the set 

M  (6) M  (6) 
(3.16) e". - -£—   <   e.    <   e. ♦ -^—    i « i,2,...,p 

•n ^n 

and    H.     is true;w'.^re    b. ^0    for    j » 1,2,..,,(), 

I     b.    =    1 , 

and H.  is one of the ( ) hypothesis given by (3,14), 

The prior distribution is arbitrary, but fixed. Later we select 

the prior in such a way as to obtain a miniirax decision rule for the 

problem at hand. 

Before developing a Bayer: decision rule, we define some notation 

used later on. For I = 1,2,..., (),  let 
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Mn(6) 

(3.17)    bjCn)     *    bj 

h\ (e) 

1   ^ 

Mn(e) 
e    n 

Pf G n 
n   f(x.;e,H(i))de11 

Mfe) ^ 
e--2— 

P   ^ 

.de 

Let the ranked values of   b  (n)    be denoted by 

(3.18) b,   ^(n)    <    bm(n)    <      <    b    .     (n) [1] -      [2] - -      J^J 

Also for   j  = l,2,...,(t),    let 

b 
(3.19) b,(n)    «   b.(n)/ I     b8(n) 

£«1 

Then we may view   F. (n)    as the aposteriori probability for hypo- 

thesis    H.,    if we consider   b.    as the apriori probability. 

Using the above notation,    for   j  -  l,2,...,k,    we obtain 

(3.20) k(D.;x) 
all I 

Vn) I bjOO 
(I  =  (i1,i2,.,.,ik)|i    = 1) 

Thus a Bayes decision rule is to select population n. (decision D.) 

as a best population if    I bT(n) is maximized. 

{I|i.=l} 

Note that for each 
k-1. 

population n., j -  ].,2f...,k there are  ( .) 

terms in the summation    5"   bT(n). Also there are many common terms 
{I|i.=l} I 

occurring in each sunmation being compared. We rewrite the Bayes decision 

rule (for convenience in analysis) as follows: 

mm* 
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Select n. if 

(3.21)     I       hAn)    >    I       b (n)   j / £ 
Ulit-U        {I|^"l       t.j » 1.2,...,k 

Eliminating the common terms fron the above, the Bayes decision rule 

reduces to 

Select n. if 
l 

(3.22)      I bjOO  >   I bjOO   j i« I 

i »0 i.-O 

k-2 Now there are exactly Li) terms in each summation above. Because 

of the symmetry in the two summations, there is for every term in the 

summation at the left, exactly one term in the summation at the 

right which has the same I except for the obvious change from 

(i. « 1, i.«0) to (i=0, i.»l). Thus we may rewrite the 

Bayes decision rule as: 

Select n  as one of the t best populations if 

bI(i .l,(n1..0;FP) 
(3.23) g -rrf  i 1     }  t I 

bI(i. = lJn1^0;FP) ltj  . 1,2. 

where   FP   is a fixed permutation of the remaining    (k-2)  terms of    I. 

 aaa 
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IVe now study the asymptotic properties of the Bayes decision rule 

given by (3.23). The basic results obtained in Section 2,4 apply in this 

case toe. The method of analysis parallels that used in Section 2.4 and 

hence will not be repeated here. An asymptotically minimax decision rule 

reduces to the following: 

For I "  l,2,...,k select n£ as one of the t best population 

if 

(3.24) Wn(£|j) > 0 

where   W  (i|j)    is as defined by  (2.S4). 

The decision rule given by  (3.24) is Bayes decision rule for the 

artificial k-decision problem for the symmetric prior distribution, 

1 k {b.  =-r—,    j  ■ 1,2,,,.,( }},    As in Chapter 2, the symmetric prior gives j      ^ t 

a minimax decision rule because of the natural symmetry in the ranking 

problem being considered. 

Optimal Procedure for the "Real" Problem 

The alove sequence of problems was artificial because we assumed 

^l'^"***^D    were *cnown'    We now proceed to the real problem where nothing 

is known about the nuisance parameters     (6.,9-,,..,6 ). 

Let    91(n),e2(n),.,.,e  (n)    be estimators of   Q ,&.,,,,,e      respectively, 

based on the observations    (X ,...,X ).    We assume, as in Chapter 2,  that 

these estimators satisfy the consistency condition (2.74),    MPE could be 
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used, although any set of consistent estimators would suffice. 

For notational convenience, let 

(3.2S)   e(n) = ^o^l(n),52(n)","5p(n),Vl,V2',,*,Vk) 

Using (3.13) and (3.14), an asymptotically optimal procedure for the 

real problem is given by the following theorem. 

Theorem 3.2.  An asymptotically optimal decision rule for selecting one 

of the t best populations is to select the population associated with 

T[k](n). 

The proof of the theorem parallels the proof of Theorem 2.4. 

3.3 Asymptotically Optimal Procedure for Goal I 

In Sections 3.1 and 3.2, we have considered special cases of Goal 

I and developed asymptotically optimal procedures for the special cases. 

In this section, we obtain an asymptotically optimal procedure for the 

more general Goal I. 

The analysis for this problem is very similar to the one outlined 

in Section 3.2 and will not be repeated. The least favorable configuration 

for this problem is given by (3,14). 

Let I be as defined earlier in Section 3.2 and let J denote 

(.il,i2"m"iv}'  where f0r t s  1»2»*"»k» ^t is equal to one or zero 

and exactly s of the j  are equal to one. Also let D(J) denote 

the decision to select the s populations for which j1. = 1 in J« 

MMMJü       1  
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For the ranking problem being considered, there are ( ) states 

of nature and ( ) possible decisions. The loss function for the 

()-decision problem is given as 

r k 
f
 0 if  ^ i^jj >_d 

(3.26) W(e;D(J))  =/       l'1 

1 otherwise 

when I = (i1,i2i...ii.) is the state of nature and D(J) is the decision 

made. 

The loss function, given by (3.26), implies that the loss is zero 

if the selected subset of size s contains at least d of the t best 

populations; otherwise the loss is equal to one. 

For the ranking problem being considered, with the loss function 

defined by (3.26), using (3.11) and (3.12), an asymptotically optimal 

procedure is given by the following theorem. 

Theorem 3.3.  An asymptotically optimal procedure for selecting a subset 

of size s to contain at least d of the t best populations is to 

select the s populations associated with T...(n),T.. .i(n),...,Tf.   ii(n) 

The proof of the theorem parallels that of Theorem 2.4 (with added 

notational complexities) and will not be repeated. 

3.4 Asymptotically Optimal Procedure for Goal II 

In order to develop an asymptotically optimal procedure for the rank- 

ing problem, we formulate the problem in a decision theoretic structure. 
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Let I = (i.,i2,...,i ), where for j -  1,2,...(k( i. is equal to 

an integer between 0 and t. Exactly (k-t) i. are zero and of the 

remaining exactly one i. is equal to integer m (m = 1,2,...(t). Thus 

each I identifies a particular partition of the k population into t 

ordered "best set" of populations and a set of unordered (k-t) "worst" 

populations, ("best set" here implies the set of populations in which 

the best, second best, third best, etc., and finally t   best population 

kl 
are identified). Thus there are « \.    distinct possible I, each 

corresponding to a particular state of nature. (We are excluding from 

our consideration any ties which may occur for the set of t best popula- 

kl 
tions). For any one of the  .. 'i. I, let 

"e , ♦ c/^n       if i. = 0 

(3.27)  H(I): ep+. 

' e . - (2i. - 1) ~ if  i. > 0   j « 1,2,...,k 

where c > 0 and ? . ■ e   (i,j « 1,2,...,k) are known values. ¥ 
p*j   p*i   J p*j 

may be taken to be zero with no loss in generality. Here, (3.27) represents 

a parameter configuration in which the best population has a value of the 

2c 
parameter of interest ii/, — units greater than the second best population, 

/n 
2c which in turn is — units greater than the third best population, etc., 

and finally the t*" best population has a value of the parameter ^ 

2c 
— units greater than the remaining (k-t) worst populations. It follows 

directly that this type of parameter configuration is the LFC for the 

problem at hand under the indifference zone approach that we are considering. 
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(See Bechhofer [4]  for definition of the indifference zone for such a 

problem).    However the indifference zone approach to this problem does 

not restrict itself to considering least favorable configurations   (LFC's) 

in which the i      best and (i*l)st best populations    (i «> l,2,...,t)    have 

2c the sane distance between them    (* —   in our notation).    The more general 
/n c. 

setup with *fi, • i - ^ii.      ii " ~ (* " 0,l,2,...,t-l) could be con- 
/n 

sidered too; but since that only introduces more notational complexities 

in the problem without adding anything new, we will only consider the 

LFC as given by (3.27) (with the understanding that suitable changes 

would be made in computing the probability of correct selection when 

using the procedure for a more general setup. The procedure given below 

is optimal even for the more general setup.) 

Let J » (Jl,J2,...,Jk), where for a » 1,2,...,k, ja is equal 

to an integer between 0 and t. Exactly (k-t) j  are zero and of 

the remaining, exactly one j  is equal to the integer m (m * l(2,...,t) 

Let D(J) denote the decision to select n.  (a « l,2,...,k) as 
a st 

the (t-j ♦I)  best population (for j > 0). The remaining (k-t) 
tt m 

populations are identified as the set of worst populations. Since there 

kl kl 
are (Li\\    distinct J's, we get it   '»i distinct possible decisions. 

With the above notation, the loss function for this problem is 

given as follows: 

For any particular decision D(J) and state of nature I, 

(3.28) W(e;D(J)) 
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The simple loss function (3.28) implies that the loss is zero when 

the right set of t populations are identified as the best set; and 

the loss is one otherwise-. 

kl 
Thus we have a multiple decision problem with M    K.    possible 

kl 
decisions and y.  >. possible states of nature (exactly one decision 

is correct for each state of nature). This problem is very similar to 

the problem of selecting the best population (k possible decisions and 

k states of nature) considered in Chapter 2. The analysis involved 

in developing an asymptotically optimal procedure for this problem is 

a complete repetition of the analysis presented in Section 2.4, with 

obvious modifications introduced by using (3.27) instead of (2.17) for 

the least favorable configuration for the ranking problem. We thus do 

not repeat the analysis and simply given an asymptotically optimal pro- 

cedure for the problem. 

Using (3.11) and (3.12), an asymptotically optimal procedure is given 

by the following theorem. 

Theorem 3.4   An asymptotically optimal procedure for selecting the t 

best populations with regard to order is to select the populations associated 

with Tfvi (n)»Tfil_nfrO»,,,»TriJtln as the best» the second best, etc., 

and the t  best population respectively. 

3.5 Certain Other Possib1e_Goa1s in Ranking and Selection Problems 

The ranking goals considered thus far include almost all the goals 

considered in the literature on ranking and selection problems (using the 

indifference lone approach). As pointed out earlier, it is assumed that 
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the common functional form of the density function of observations from 

each of the populations is known. The populations are ranked according 

to values of a parameter of interest i^. There may or may not be other 

unknown parameters in the distribution, which, when present, would be 

classified as nuisance parameters for the ranking problem. 

In actual practical applications, there may be situations where the 

criterion for "goodness" of populations is more complicated and must be 

properly interpreted before a ranking procedure is developed. For 

example, in many engineering applications, the quality of manufactured 

goods is character!ted by the product meeting some fixed specifications. 

Thus, for example, one may be interested in selecting a manufacturing 

process which has the highest probability of coverage of the specification 

interval. For this problem "Converge Probability" is the criterion for 

"goodness" of populations. Guttman [22] and Guttman and Milton [23] 

consider this problem and have developed procedures for selecting a 

(random) subset to contain the best population for normal and exponential 

density functions, when a one sided fixed tolerance region is the 

criterion for "goodness". 

In the example cited above and other related ranking problems, the 

criterion for "goodness" of populations may be specified, but ranking 

procedures can be developed only after the criterion is translated into 

a goal involving the parameters of the population. Two special cases 

of interest may arise. First, it may be possible to redefine the 

parameters of the populations in such a way that the "criterion" is 

translated into a parameter of interest t   and there may or may not be any 
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nuisance parameters. If the redefined parameters satisfy the assumptions 

and regularity conditions of Section 2.1, then the entire analysis carried 

out earlier in this thesis would be applicable. If the regularity condi- 

tions are not satisfied, one may proceed to develop asymptotically optimal 

procedure as outlined in Chapter 4 for non-regular cases. Secondly, if 

after redefining the parameters, the nuisance parameters are functions 

of the parameter being ranked, then special analysis would be needed for 

each particular case. To our knowledge, the only paper in the literature 

dealing with such a case is by Chanbers and Jarratt [12], which deals 

with the problem of ranking means of populations when the variances are 

a known function of the means being ranked. 

We do not propose to consider problems falling into this second 

category in this thesis. However, it should be pointed out that the 

general method developed would be applicable to this class of problems, 

separate analysis being required for each specific case (each specific 

case being characterized by a known functional relation between the 

nuisance parameters and the parameter being ranked). 

In our analysis we have assumed that the correct pairing of the 

populations and the ranked parameters are unknown, but the values of the 

parameters of interest are assumed to be unknown. Ounnett [16] and 

Guttman and Tiao [24] deal with the normal means problem when prior informa- 

tion is available about the possible values of parameters t,  (i ■ 1,2,...k) 

and/or the correct pairings of the populations and ranked parameters. The 

ranking goals considered are the sane as the ones considered by us. 
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Although we do not concern ourselves with such Bayesian analyses of the 

ranking problem, we should mention that the procedures that we have 

developed are also asymptotically optimal from a Bayesian viewpoint; 

that is* when the apriori information is available about the possible 

pairings of populations and the ranked parameters. This is so since 

asymptotically minimax (optimal) ranking procedures were constructed 

from Bayes decision rules for suitably defined multiple decision problems 

by suitable choice of prior distribution. 

Lastly we would like to point out that, in our analysis, we have 

assumed that we know the functional form of the joint density function 

of observations from the set of populations. This was used explicitly 

in constructing asymptotically optimal decision rule. Hence, we are 

not concerned with a class of nonparametric ranking problems, in which 

the form of the joint density function is not known. Different type 

of analysis would be needed for such ranking problems. 
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CHAPTER 4 

RANKING PROBLEMS IN NON-REGULAR FAMILIES, OF DISTRIBUTIONS 

To this point, we have developed asymptotically optimal procedures 

for certain ranking goals, for situations in which the joint density 

function of the observations satisfies certain mild regularity conditions 

imposed in Section 2.1. There are many functions which do not satisfy 

these regularity conditions, but which occur frequently in practice. 

The general method developed in previous chapters to obtain an 

asymptotically optimal procedure for certain ranking goals, using the 

regularity conditions, can often be used for the non-regular cases too. 

However each non-regular case must be treated separately. The ba^c idea 

of using local Bayes rules to develop asymptotically optimal procedures 

in the presence of several nuisance parameters would be useful in all such 

cases, the actual analysis being different in each case (due to say, 

different normalizing constants and the actual functional forms of the 

distributions). 

In order to illustrate the applicability of our method to non- 

regular cases, we consider some particular non-regular density functions 

and develop asymptotically optimal procedures for the ranking goals 

considered earlier in this thesis for regular cases. 

Before we consider such problems, we list certain non-regular 

density functions which may occur frequently in practical situations. 

The list contains most of the interesting known cases.  Most of these 

are taken from Weiss and ',Volfowitz C[SlJ and [54]). 
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mimiaimt^m 
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4.1 Some Non-Regular Density Functions 

Let f(x|e) denote the density function of a random variable X, 

characterized by parameter 6 (= (9 ,e_,..,,e )), which in general may 

be multidimensional. Let 0 denote the parameter space, a suitably 

defined subspace of ro dimensional Euclidean space (m being the dimension 

of 9). Whenever m = 1, the parameter is denoted by 9 and for m > 1, 

9 denotes the vector of parameters, each component being denoted as 

9-, i s 1,2,...,m. 

The following constitute some interesting "non-regular" univariate 

density functions, 

I        f(x|9) = 0    for x < 9 

fCQj+h) = h(9) > 0 

where, 0 = {(e.,e_)|-" < 9 < «, 0 < 9 < »} 

Example (x-9 ) 

■(x|9)  = ( 

f> e   e2    for x > 9, 
92 - l 

(4.1) 

0 otherwise 

L 

and 0 = {(g^pl-« < Sj < «, o < e2 < »}. 

II f(x|9) =0      ifx<9orx> B(9) 

f(9+|e)     =    g(9)  > 0 

f(B(e)-|e)   =   h(9) > o   . 
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g, h    and    B'  s :nr     are continuous functions of    e.    Also    B(e) > e. 

(Note that    I    is a special case of II with    3(9)  = •),    o    is suitably 

defined for each particular case. 

Examples (i)    B'  < 0 

(4.2) f(x|e)    =  / 

6 

i-e: 

o 

for       6 < x < 1/6 

otherwise 

where, 

e   =   {e|o < e < D 

(ii)    B«  > 0 

(4.3) f(x|e)    =  / 

l ♦ y (x-e)      for      e < x < e ♦ 2/3 

otherwise 

where, 

o   =   {el-» < e < »} 

(iii)    One of the end points is a constant;    i.e.,    B'  = 0, 

This case can be represented by the following: 

(4.4) 

r 1/9 for   0 < x < 9 

f(x|e)     =   / 

I- otherwise 

**-^*'      • •'  ->> ■ i '~ -^ nmV iTiTTT 
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where,    0={e|O<e<"} 

III 

(4.5) f(x|e)   = 

1-Bx 

^    o 

for    0 < x < 6 

for   6 < x < 1 

otherwise 

where    B   is a known constant and 

G   =   {e|o < e < i} 

IV x < 6.      or   x > 0- f(x|e)   =   o 

feeble)   =   g((e1,e2)) > o 

f(e2-|e)   =   h((elt62)) > o 

g,h    are continuous functions of    (^»eO, 

Example 

(4.6) f(x|(e1,92)) 
[ V6! for    Q* tx 1Q2 

otherwise 

where. 

e   =   ((6^62)162 > e^ 
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V    Double Exponential Density     (Laplace distribution) 

~ i-lx-e. 
(4.7) 

where i 

f(x|e)    «   ^L-   e    e2        1       for   -» < x < 

o   »   {(e^epl- < Sj < -,     o < 62 < »} 

VI    Weibull Distribution 

r> fn-r-       v    <:     A 0 for    x <  6 

(4.8) F(x|e)    «   ( x-Öj 3 
K   ^ ^ i - e        2 for    x >^ ei 

where, 

x 
F(x|e)     »    / f(y|e)dy,    is the cdf of the Weibull distribution. 

Also, 

o   .    ((6^62,63)1— < flj < •,    0 < e2 < »,   0 < e3 < -} 

For this class of distributions,    e      is the "location" parameter, 

«-    is the "scale" parameter and    6^    is the "shape" parameter.    If    ö    =  1 

we obtain the exponential density function (as given by (4,1)) a special 

case of the class of Weibull  distribution.     If    6      is known,   (4.8)  reduces 

to the regular case. 

Before proceeding to develop optimal procedures  for some of the 

density functions  listed above, we review the literature in ranking and 

selection procedures for non-regular cases. 
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4.2   Brief Review of Literature on Ranking Problems in Non-Regular Cases 

Sobel [43]  developed sequential procedures  for ranking scale 

parameters of exponential populations,   (as given by (4.1)  in Section 4,1 

and   9      is the scale parameter) with known location parameters  (same or 

different for each population) or a common unknown location parameter. 

In the case of a common unknown location parameter, Sobel assumed that 

if the unknown location parameter was greater than or equal to zero, 

zero is taken to be the value of the unknown location (nuisance) parameter 

and a procedure satisfying the basic probability requirement was developed, 

Bechhofer,  Kiefer and Sobel  [7] developed sequential    procedures 

for ranking problems associated with the Koopman-Darmois family of 

distributions; these would be applicable to ranking scale parameters of 

exponential populations when the location parameters are known. 

Barr and Rizvi  [2]  developed a simple-stage procedure for ranking 

uniform distributions  (density function as given by (4.4)  in Section 4.1). 

Using a zero-one type loss function (as we have done throughout),   Barr 

and Rizvi showed that the procedure they developed is minimax and is a 

most-economical decision rule (in the sense of Hall [25]).    They also 

showed that the selection procedure may easily be extended to a larger 

class of non-regular distributions, given in Hogg and Craig [27],    This 

class of distributions corresponds to Case II in Section 4.1. 

Dudewicz [15] in determining the efficiency of a non-parametric 

selection procedure given by Bechhofer and Sobel  [9]  (for the location 

parameter case) against parametric alternatives, proposed single stage 

procedures for ranking from uniform distributions  (uniform between 
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(e-1/2,  e*l/2)),     (The nonparametric selection procedure of Bechhofer 

and Sobel  [9]  is also given as a selection procedure in Bechhofer, 

Elmaghraby and Morse  [6]).    Dudewicz [15] proposed a midrange procedure 

(i.e., populations are ranked according to the values of 

(max. of obsWmin. of obs). . J        / i  *• , -i ' «ya -)    and a means procedure (i.e., populations 

are ranked according to the values of the sample means)  for ranking from 

uniform distributions. 

Mahamunulu ([32],   [33]) proposed a single-stage procedure for 

ranking    k   populations     {II.,    i * 1,2,...#k),    the selection procedure 

based on suitable statistics    T ,T2,...,T. .    T.     is computed fron a random 

sample of size    n    from    n.     (i  • l,2,...,k).    The proposed procedure 

is applicable to ranking populations according to Goal   I   (defined earlier 

in Chapter 3) and for situations in which   T.     is an absolutely continuous 

random variable and its distribution function is stochastically increasing 

in the parameter being ranked  (see Lehmann [30]  for definition of stochastic 

increasing family of distributions). 

The procedure developed by Mahamunulu is applicable to ranking 

problems associated sith the following non-regular families of distributions; 

(i)    uniform distribution  (Case II in Section 4.1)    (ii)    exponential 

distribution (Case I in Section 4.1)    and    (lii) double exponential 

distribution (Case V in Section 4.1).    The proposed procedures are 

applicable when no nuisance parameters are present  (or they are arbitrarily 

removed from explicit consideration).    Mahamunulu also indicated how the 

tables developed for the case of ranking means of normal distribution with 
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coounon known variances could be used as an approximation for ranking from 

other distributions, whenever the statistics used for ranking the popula- 

tions    (T.)    converged asymptotically to a normal distribution. 

Mahamunulu ([33], p.  1082) pointed out that if a sufficient statistic 

of fixed dimension for all    n,    exists  (for the parameter being ranked), 

then   T.     is some appropriate function of the sufficient statistic.    The 

choice of    T.    becomes a problem only when such a sufficient statistic 

does not exist.    In the latter case,  the author advocates using a statistic 

such that the induced family of distributions is a stochastically increasing 

family of distributions. 

4.3   Asymptotically Optimal Procedures for Ranking Non-Regular Exponential 
Distributions 

We now proceed to develop asymptotically optimal procedures for 

certain ranking problems associated with populations having non-regular 

exponential distributions.    We develop,  in detail, asymptotically optimal 

procedures for selecting the best population  (defined appropriately).    We 

then develop an asymptotically optimal procedure for other ranking goals 

considered earlier in this thesis.    Later, we consider non-regular uniforir 

density functions and develop asymptotically optinal procedures for the 

above mentioned rar.king goals.    The method of analysis used in this  section 

carries over to most of the non-regular cases. 

Formu^Ftion of the Problem 

We formulate the problem in decision theoretic structure using the 

notation defined in Chapter 2. 
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Let    X  .     i =  l,2,,,,,n   denote    n    independent observations  from 

n  ,    t = 1,2,....k,    each with pdf    f  (•!•)    given as 

(4.9) ft(x|e)     »    f(x|Lt,St)     =' 

otherwise 1        0 

where    L ,S     denote the two unknown parameters of the distribution 

characterizing population    Fl .    Here    L      denotes the location parameter 

and   S ,    the scale parameter. 

Two cases of interest arise here, 

(i)    L      is the parameter being ranked;    S      is the nuisance parameter. 

(ii) 1/S      is the parameter being ranked;     L     is the nuisance parameter. 

Each case is treated separately below.    We first define some 

additional notation. 

Case (i)      S      is the common unknown nuisance parameter 

For    t ■ l,2,...,k,    let 

(4.10) ^    »    Lt 

(4.11) st    *    Sj 

and 

(4.12) S    a    e0 "  ei*t * 

U^mmm 
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Also for    i  =  1,2,...,k,    let 

r 
(4.13) 

c/n 

el*j    =    el*j  * c/n        ^  =  1»2»"*»k 

L ^ i 

where    c > 0    and    6..   =6..,     all    i,j    (i,j=lf2,...,k)    are known 

values,    6.   .     is taken to be  zero, with no loss in generality. 

The above relations  imply that we are ranking  location parameters, 

with the common unknown scale parameter being the nuisance parameter. 

In the parameter configuration given by (4.13), selecting   H.    as 

the true hypothesis is equivalent to selecting    n.     as  the best population 

(i  =  l,2,...,k).    The above hypotheses also imply that  the best population 

2c has a ^-value which is    -^   units greater than that of the regaining 

(k-1) populations.    This corresponds to the least favorable configuration 

(LFC)   for the ranking problem under consideration under the indifference 

zone approach. 

For    i  ■ 1,2,....k,     let    D.    denote the decision to select    n. 

as the best population.    The  loss  function for the k-decision problem 

is given as 

[0      if     H.     is the true hypothesis 

(4.14) W(e;D.)    =   ^ 

1 otherwise 
L 
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Asynptotically optimal decision rules (procedures) will be developed 

for the above problem. 

Case (ii)  L  is the common unknown nuisance parameter 

For t = 1,2,...,k, let 

(4.15) 1/S. 

(4.16) 

and, 

(4.17) 

Lt " el 

9o " ein 

Also for i = l,2,,.,,k,  let 

(4.ro 
Vi = 0IM ■c/^ 

ei.j    =    ?H3  * C//" 
j -  l,2.....k 

* i 

' e,   .     all    i,j     (i,j =  1,2,...,k)    ar where c > 0, 6. 
i 

6. .  is talvcn to be zero, with no loss of {;eneiülity. 

In this case 6 , the ccnmon unknown loc;:t;on parametei, is the 

nuisance parameter for tliC problem of ran'.-ing scale parameters. Here, 

(4.18) represents the least favorable configuratiun for the ranking 

problem under consideration. 

•n^BK . 
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For i = 1,2,...,k, let D. denote the decision to select n. 

as the best population. The loss function for the k-decision problem 

is given by (4.14). 

Preliminary Sequence of Artificial Problems: St is the nuisance parameter 

Before proceeding to the real problem, we solve a sequence of 

artificial k-decision problems (one for each n)  for case (i). 

Suppose it is known that e. = 6. and {62,e.,.,.,e. .) satisfy 

one of the k hypotheses given by (4.13).  6  is a known constant and 

0 < c ^ L. We wish to test which one of the k hypotheses H ,H , ...,K 

(given by (4.13)) is the true hypothesis. The loss function is of the 

zero-one type, given by (4.14). 

For the above probleu, we construct a Bayes decision rule relative 

to the following apriori distribution: 

For j ■ 1,2,...,k, b.  is the apriori probability that H. is 
) k   J 

true hypothesis, where for j « 1,2,...,k, b. ^0 and  [ b. = 1. 

In order to obtain a Bayes decision rule, we must compute for 

i - l,2,...,k, k(D.;x), and it can be easily seen that relative to the 

above apriori distribution, and the loss function given by (4.14), a 

Bayes decision rule reduces to the following: 

For t « l,2,...,k,  select H^ as the true hypothesis (equivalently 

n  as the best population) if 

b. 
(4.19) J

n(
£lj)  * h1    J " 1.2..-..k 
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where,   for    it,j  =  1,2,...fk. 
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(4.20) JnU|J) 

n 
n fCx.je-.H ) 

i=l      !    ^    l 

n fCx.je^Hj 
i = l i'vr j' 

Here    fCX.;?.^.)    denotes  the  joint pdf of    (X.. ,X2.,.. .,X. .),    when 

(6.,e2,...,6.   .)    is the true parameter value for    X    and    (e2»e3»,,,>9k*l^ 

satisfy    H.,    as given by  (4.13), 

Since we assume that the observations are independent, 

(4.21) f(X.;e.H ) n   f (x   ;e,H ) 
i = l    x    "        J 

where ft(X .;e,H.) is given by  (4.9). 

Using (4.9)-(4.l2) and (4.21), for j - 1,2,...,K 

(4.22) 
n 
n f(X ;9,H ) 

i»l       J 

k  n 
-  n ( n ft(x ;9,H )] 

t«l i«l l i 

where, for t j' j 

(4.23j  n ft(xti;e.n ) 
i«l 

= / 

if  min [X    ) < »y - c/n 
1 < i < n 

1 
H1 exp(- — I     (X^-My-^c/n))  otherwise 

1 i = 1 

and  for t = j 
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(4.24)  n ft(xti;e,Ht) =/ 

i=l 

if   min  (X .) < 60 ♦ c/n 
l<i<n 

n 

^ 
9"n exp(- i- I  (Xti-e0-c/n)) otherwise 

1 i=l 

For t = 1,2,..,,k, let 

(4.25) Vt =  min (X ) 
1   l<i<n v 

and denote the ranked values of Y  by 

(4.26) Y[l] iYl2] - ••••  lY[k] 

Using  (4.21)-(4.25),    we obtain,    for    j  =  1,2,...,k, 

e-nk 
k     n 

(4.27)     n     f(x.;e ,n ) 
i=i        1    *   J 

r^ exp(- i-      I      I     (X   -6 ))exp[. 4- (k-2)] 
1 e.   t=i i*i       . ne. 1 k 1 

if    (Y. > e0 ♦ c/n)   n   (Y.  > e0 - c/n) 
J irl 

^3 

otherwise 

If we denote,     for    j   =  l,2,...,k| 

(4.2S) b.(n) b,      i   f(N..ei,::j 
i=l i' r j 

then T>e Baves decision ule m^v be rewritten as   follows 
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For    £ = 1,2,..,,k,   select    n      as best population if 

(4.29) b   (n)    1   b,(n) j / £ 
•' i  =  12 k 

From (4.27), we note that for any given set of observations, the 

joint density function under each    H.    is the sane, whenever the joint 

density function is positive under each    H..    For certain sets of observa- 

tions,  the joint density function is equal to zero under each    H.     (such 

cases represent regions of probability zero and may be ignored from 

consideration in constructing Bayes decision rules).    For the remaining 

sets of possible observations, the joint density function may be ^ero 

under some hypotheses and equal to the same positive value under the 

remaining hypotheses  (as  is clear from (4.27)). 

Since we are interested in an optimal  (minimax) decision rule for 

the artificial sequence of problems, we need not rewrite  (4.29) to 

develop simplified expressions for a Bayes decision rule for any general 

apriori distribution.    We note, by the inherent symmetry in the problem 

that a minimax decision rule will be given by the Bayes decision rule 

with the prior given by 

(4.50) bj    '    f j ' l'2' 

For this prior,  the Bayes decision rule, which is a minimax decision 

rule too,  is not unique because of ties in the    b.(n)     (as defined by 
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(4,28)).    A minimax decision rule is given by the following: 

Select    n      as the best population if 

(4.31) Vo    >    Yi j = 1,2,...,k 

For the minimax decision rule given by (4,31), one is interested 

in computing the probability of correct selection. This will be needed 

in showing that the decision rule for the real problem is asymptotically 

minimax. 

Note that if X   (i = l,2,..,,n) have a distribution given by 

(4.9), then 

P{nY ^y) = P{ min X .  <^ y/n} 
l<i<n tl 

1 - P{ min X . > y/n) 
l<i<n tl ~ 

- 1- n (e-^n-V/st) 
i=l 

or, 
-y/s      m/s 

(4.32) P{nYt <^y} = 1 - e   ^ e ^ t 

From the above, it follows that 

-y/s. 
(4.33) P{n,Yt - ^ ) < y)  s 1 - e   Z 
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thus fron (4.12), (4.13) und (4.31) and denoting the common known 

S  by e,, we obtain 

P(LS) ■ P(Vi <_ V(kJ   i - l,2,...,k) 

where    Y.. .     is the observation from the population with  largest    iju 

Rearranging, we obtain 

P(CS)     -    P(n(Yi  -   (ö0 - c/n)      1   n(Y(k)  -  (e0 ♦ ^)    ♦ 2c      i  «  1,2,....k 

P(ZilZ(K)  *2c      a11     i 

where the distribution of Z  is given by (4.33), 

Thus, 

,  k-1 

-\     -i/e 
P(CS) . / ( 1 - e  el      i- e   1 dz 

_ 2c     k-1 

/ ll - e ®1 e*1 \   e"1 dt 

Denoting e   by u. 

1        k 1 
(4.34) P(CS) » /  (1 - c*u)   du 
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where. 

(4.35) c* = e 

2c 

Evaluating the right hand side of (4.34), one can determine the 

P(CS) achieved for the optimal procedure for any given sample size n. 

Asymptotically Optimal Procedure for the Real Problem 

The above sequence of problems was artificial because we assumed 

6.  v as known. We now develop an asymptotically optimal procedure for 

the real problem, where nothing is known about the value of 6,. 

Since the minimax procedure for the artificial problem did not 

use the inforr.ation about 9 , it follows immediately that an asymptotically 

optimal i  ouure for the problem is given by the following theorem. 

Theorem 4.1   An asymptotically minimax procedure for selecting the best 

population is given by the following: 

Select IIÄ as best population if 

Yk >_ Y.   i,)  » 1.2,...,k 

where V  is as defined by (4.25). 

Proof:  The decision variables have the same asymptotic distribution as 

the decision variables of the minimax (and Bayes) decision rule for the 
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the artificial problem. Thus the above procedure has the same asymptotic 

Bayes risk and is hence an asymptotically minimax decision rule, 

Q,E,D. 

It is interesting to note here that unlike the regular case, where 

local Bayes rules were used to construct an asymptotically opr.imal proce- 

dure, in the non-regular case being considered use of a simple Bayes rule 

for the artificial problem (where the nuisance parameter is known with 

certainty) enables one to construct an asymptotically optimal ranking 

procedure. 

Preliminary Sequence of Artificial Problems: L^ is the Nuisance Parameter 

We first solv? a sequence of artificial problems (.one for each n), 

before proceeding to the real problem for case (ii)  (:  ., (4.15) - (4.18) 

hold). 

Suppose it is known that e =• e, and (02,8-,.,. ,e. .) satisfy 

one of the k hy^othe^es given by (4.18). 0. is a known constant and 

0 < c ^ L. Ke wi-.h to test which one of the k hypotheses, ^.iven by 

(4.18), is the true hypothesis; and the loss function is of the zero-one 

type, given by (4.14), 

for tue above problem, we construct a Bayes decision rule relative 

to the following apriori distiibution: 

For j * l,2,,,,,k, b. is the apriori probability that H. is the 

true hypothesis, where for j = l,2,...,k, b. > 0 and  [ b. « 1. 
J "      j=l J 

h. i 
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It can be seen that for the above problem, a Bayes decision rule 

relative to the above prior,  reduces to the following: 

For    i = l,2,...,k    select    H      as the true hypothesis  (equivalently 

n      as best population)  if 

(4.36) V^J) >- B- j  =  1,2, 

where,  for    Ä,,j  =  l,2,...,k 

(4.37) Vi|j) 

n   fCx.^j.H) 
i = l        ___ 

n 
n   fCx.jej.H ) 

ial J 

Here    f(X.;el,H.)    denotes the joint pdf of    (X..,X .,....X. .)    when 

(6. ,e2,...,e.+.)    is the true parameter point and    iQ2,Qi,"'tQk*l^ 

satisfy    H.,    as given by  (4.18), 

From (4.9),  it follows that 

(4.38) r (en*c/^)(en-c//^)k"1    exp 

n f(xi;e1,ii )   =   / 
i = l 

-(9n*c/^)    I (X-.-e ) 
u             i=l      J1    l 

n k 
-(0o-c//iÖ   J I     (X^-Bj) 

i=l t»l 

if    Y >  6 

otherwise 

1 
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(4.39) Y    =     min    {X  .} 
l<t<k 
l<i<n 

From  (4.38), we get 

(4.40) JnU|j)     =    o        if    Y <  öj 

which occurs with probability zero and can be ignored;and 

(4.41) J  (fc|j)    =    exp{2c(Z.-Z )}      otherwise n*   '•" -r.-.v-j     v 

where,  for    I - 1,2,...,k. 

(4.42) z* = .1 ^i - V//Ir 
i«l 

Thus the Bayes decision rule reduces to the  following: 

For    i- * 1,2,...,k    select    Fl      as the best population if 

(4.43) 
b. 

z«    *    z-  - ^- log r^ «    -     J      2c     6 bt 

In order to develop a minimax procedure for the problem, due to the 

inherent synunetry in the problem, the prior (b. - r- j = 1.?,...,k} gives 

a minimax decision rule. Thus, a minimax decision rule for the artificial 
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problem,  is given by the following: 

Select    n     as the best population if 

(4.44) Z      < 
I    - 

ij  = 1,2,...,k 

The minimax decision rule is completely specified by  (4.44); but we 

need to study the asymptotic behavior of the decision variables  in order 

to develop an asymptotically optimal procedure for the real problem. 

For    £ = 1,2,...,n    and when    (T.    is the common location parameter, 

we have 

(4.45) E(Xn.   -  6.)     =    S0 v «,1 1 I 

(4.46) VarX,.     =    S, 

and by a central limit theorem. 

f      n 

I.   ^i - V 
(4.47) 

i = l 

lim p(/n 
n-^>o 

-•» /2n 
J   e     dz 

>v 

1 y 

Thus   (4.47)  could be used for the asymptotic distribution of the 

decision variables. 
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Optimal Procedure for the Real Problem 

The above sequence of problems was artificial because we assumed 

that 6. was known. We now develop asymptotically optimal procedure 

for the problem, where nothing is known about e.. 

Let e^Cn) a consistent estimator of 6, be defined as 

(4.48) ^(n) min (X   .} 
l<t<k    ^ 
l<"i<n 

where    e^n)    satisfies 

(4.49) P    (nje^n)  - ej   < D(E)}  >  1 - e 

(H is true} 

where {H is true} implies one of the p hypotheses given by (4,18) are 

true. 

For i  = 1,2,...,k, let 

(4.50) 
/n i«l 

Then, an asymptotically optimal decision rule is given by the following 

theorem. 

Theorem 4.2      An asymptotically optimal decision rule for the problem of 

selecting the best population  (largest scale parameter)   is given by: 

For    e,j  »  1,2,...,k,    select    II      as  the best population if 

■ '  • •        -.■.-. 
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(4.51) Z£    1    Zj j  ^  ^ 

Proof:       It is easy to see that 

n n 
(4.52) Z-Z.     =    Z-Z.     =— (TX.-y    X..) 

Thus the decision variables given by  (4.51)  have the same asymptotic 

distribution as the minimax  (and Bayes) decision rule for the artificial 

problem.    Thus the decision rule given by  (4.51)  is an asymptotically 

minimax decision rule for the problem. 

Q.E.D. 

It may be noted that we could easily have defined Z  by 

1  n 

—  I Xo- • However the above definition (i.e., Z  given by (4.SO)) 
/n i=l 

was  intentional since it allows us to observe what the optimal decision 

rule would look like when the populations have different unknown location 

parameters as the nuisance parameters for the problem.     In such a situation, 

if we  let,    for    t = 1,2,...,k 

(4.53) L      =      min    X 
l<i<n 

and 

(4.54) £      =    JL{   £    (Xti -  Lt)} 
/n    i=l 
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then an asymptotically optimal procedure is given by Theorem 4,2 with 

Z  as defined by (4.54) (instead of (4.50)), We again note ir this 

case that by using a simple Bayes rule one is able to construct an 

asymptotically optimal ranking procedure. 

Optimal Procedures for Other Ranking Goals 

In Chapter 3, we considered two general ranking goals which have 

been considered in the literature, and developed asymptotically optimal 

procedures for situations in which certain regularity conditions hold. 

We now develop an optimal procedure for the two general ranking goals 

considered in Chapter 3, for the case of the non-regular exponential 

density functions. 

Instead of repeating the detailed analysis of Chapter 3, we will 

state the optimal ranking procedures for each goal in terms of the 

following theorems (using the notation defined earlier in the chapter). 

Case (i)  L  is the rcnking pp.rametor; S  is the conmon unknown nuisance 

pan : ter 

Asymptotically optimal procedures for Goal I and Goal II are given 

by the following theorem: 

Theorem 4,3  (i) An asymptotically optimal procedure for Goal I, (to 

select s populations to contain at least d of the t best populations) 

is to select the s populations associated with ^r^-it^fi.  ii,,**»^ric  il* 
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(ii)    An asymptotically optimal procedure for Goal II  (selecting 

t    best ordered populations,    ^ 1 t 1 *c)    is to select the    t    populations 

associated with    Yrti»Yri   ,i»»«».yri   . n    as the best, the second best, [k]'   [k-lj*      '   [k-t*lj 

etc., the   t       best population respectively. 

Case  (ii)    1/S      is the ranking parameter;    L     is the common unknown 

nuisance parameter 

Asymptotically optimal procedures for Goal  I  and Goal II are given 

by the following theorem: 

Theorem 4.4        (i)    An asymptotically optimal procedure for Goal I  is 

to select populations associated with    Zr.,,Zr,   ii>"«»Zrk      ,1    as the 

best set of populations. 

(ii)    An asymptotically optimal procedure for Goal II is to select 

populations associated with    ZrupZ,.   ii»«**»zric ♦  11    as t^e ^est»  t^e 

second best, etc., the    t       best populations, respectively. 

In this case    Z      is as defined by  (4,50) and the ordered values 

are denoted by 

(4.55) Z^     <    Z[2]  <  ....   <  Z[kl 

One may note here that Theorem 4.4 could be generalized to the case 

of different (unknown) location parameters L  (by replacing Z  as 

defined by (4.50), by Z  as defined by  (4.54)). 
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4.4 Asymptotically Optimal Procedure for Ranking Non-Regular Unitorm 
Distributions 

We now develop asymptotically optimal procedure for a non-regular 

uniform distribution. 

Let X ., i = 1,2,...,n denote n independent observations from 

n , t = l,2,,..,k, each with pdf f (•(•) given as 

C 
if e,^ < x < 

(4.56)   ft(x|0)  =  f(x|9lt.e2t
)  3\ 

92t-eit       lt "  * 2t 

0       otherwise 

where 9it.»
e-)t. denote the two unknown parameters characterizing population 

V 
Two cases of interest arise here: 

(i) 6.  is the parameter being ranked; 9,  is the nuisance 

parameter, 

(ii) 0   is the parameter being ranked;  6-  is the nuisance 

parameter. 

The two cases are in a sense very similar and a solution to one 

would suggest a solution to the other. It may also be noted that the 

analysis for each of the two cases of interest is very similar to the 

analysis in Section 4,3 for ranking location parameters  (L ) of 

non-regular exponential populations, when S  is the nuisance parameter. 

To avoid repetition, we omit the detailed analysis and the asymptotically 

optimal procedures are given in terms of the following theorems, which 

we state without proof. 
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We first define notation to be used in the statement of the theorems. 

For t = 1,2,...,k, let 

(4.57) U  =  min  (X .) 
*    l<i<n 

C4.S8) Vt =  max  (Xt.) 
l<i<n 

and let the ranked values of U  and V  be denoted by 

(4.59) U^j < U[2j <    < U(kj 

and 

(4.60) V[1]     <    V[2]    <     ....    <V[k] 

An asymptotically optimax procedure for selecting the best popula- 

tion is given by the following theorem. 

Theorem 4.5 (i)    An asymptotically optimal procedure for selecting the 

population associated with the largest    6        is to select the population 

associated with    Vr.,. 

(ii) An asymptotically optimal procedure to select the population 

associated with the largest 0. is to select the population associated 

with    U[k]. 
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For the two general goals considered in Chapter 3 (Goal I and Goal 

II), asymptotically optimal procedures for the problem at hand are as 

given by the following theorems: 

Case (i) e,  is the ranking parameter 

Theorem 4.6 (i) An asymptotically optimal procedure for Goal I (to 

select s populations to contain d of the t best populations) is 

to select the s populations associated with vfic_s+n»Vfit.si»
,,,»vrkr 

(ii) An asymptotically optimal procedure for Goal II (selecting 

t best ordered populations, 1 1 * 1 *) is to select the populations 

associated with VftitV,. ii»»'»»vr|c.t*ll 
as the best» secon<i best,..., 

t   best population respectively. 

Case (ii) 6.  is the ranking parameter 

Theorem 4.7 (i) An asymptotically optimal procedure for Goal I is to 

select s populations associated with Ur. ,,U,..,,...,U,.., as the 

best set of populations. 

(ii) An asymptotically optimal procedure for Goal II is to select 

the populations associated with Urvi^fv..^»»»«»^*.^!] as the best, 

second bestt,..,t  best population respectively. 

Since the purpose of this chapter was only to indicate how the method 

used for developing asymptotically optimal procedures for regular cases 

could be used for the non-regular cases as well, we do not indicate the 

optimal procesures for the Laplace and Weibull distributions (the two 

,,...,  -„_,„ ^- .■mr-!-~m 
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remaining non-regular density functions  listed in Section 4.1).    The 

method used in Sections 4.3 and 4.4 would be used for these cases too 

and the analysis is very similar to the one outlined in Section 4.3. 

^M^^H^ttfe 
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ing populations  in the presence of nuisance parameters, when the populations are 
ranked according to a parameter of the distribution and the so-called indifference- 
zone approach to ranking and selection problems is employed.    This is accomplished 
by adapting methods used by Weiss and Wolfowitz  (for 2-decision tests of composite 
hypotheses problems in the presence of nuisance parameters)  to multiple-decision 
ranking and selection problems in the presence of nuisance parameters. 

For the problem of selecting the "best" population  (and for certain other rank- 
ing and selection goals), asymptotically optimal procedures are developed for situations 
in which the joint density function of the observations satisfies certain mild 
regularity conditions.    In addition, the applicability of the basic method is 
demonstrated by developing asymptotically optimal procedures for ranking non-regular 
exponential and uniform distributions.    The asymptotically optimal character of 
certain so-called natural selection procedures which already have been proposed in 
the literature is proved.    Single-stage asymptotically optimal procedures are derived 
for certain problems for which heretofore no single-stage procedures had been 
proposed. 
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