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CHAPTER 1
INTRODUCTION

1.1 Abstract

In this thesis’} we develop single stage (fixed sample size) asympto-
tically optimal (minimax) procedures for ranking populations in the presence
of nuisance parameters, when the populations are ranked according to a
parameter of the distribution and the so-called indifference-zone approach
to ranking and selection problems is employed., We adapt methods proposed
by Weiss and Wolfowitz in developing asymptotically optimal (minimax) pro-
cedures for a certain class of 2-decision tests of composite hypotheses
problems in the presence of nuisance parameters to multiple decision ranking
and selection problems in the presence of nuisance parameters.

For the problem of selecting the 'best'" population, asymptotically
optimal procedures are developed for situations in which the joint density
function of the observations satisfies certain mild regularity conditions
(similar to those imposed by Weiss and Wolfowitz). The method of analysis
and basic theory is developed in detail for this case. The basic results
are extended to develop asymptotically optimal procedures for certain
other ranking goals considered in the literature, Some examples are
included to illustrate the applicability of the results to specific
distributions.

For ranking and selection problems with joint density function of
observations not satisfying the regularity conditions, i.e., non-regular
cases, we illustrate the applicability of the basic method by developing

asvmptotically optimal procedures for ranking non-regular exponential and

“A thesis submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in the Field of Operations Research, Cornell
University, June 1970,
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uniform distributions,

The results in this thesis can be thought of as generalizing the
basic method of Weiss and Wolfowitz for 2-decision hypothesis testing ‘
problem to multiple decision ranking and selection problems. As a con-
sequence of our results, we show the asymptotically optimal character of
certain so-called natural selection procedures which already have been
proposed in the literature. We also develop single-stage asymptotically
optimal procedures for certain problems for which heretofore no single-

stage procedures had been proposed,

1,2 Outline of the Thesis

In Section 1.1, we have given an overview of the problem considered
below and of the results obtained. In the present section we outline the
contents of the various chapters.

In Section 1.3 we give a brief introduction to ranking and selection
problems., In Section 1.4, we introduce the basic method proposed by Weiss
end Wolfowitz [55) in developing asymptotically minimax tests of composite
hypothese: In Section 1.5, we point out that by treating Ranking and
Selection problems in the framework of statistical decision theory, the
basic method of Weiss and Wolfowitz can be extended to develop asympto-
tically optimal ranking procedures.

In Chapter 2, we consider the problem of selecting the "best' popula-
tion. The notation used throughout the thesis is defined. Mild regularity
conditions imposed on the density functions are specified. Some preliminary

results of statistical decision theory are included. Tho ranking problem
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is structured as a decision theory problem and an asymptotically optimal pro-
cedure for a particular zero-one loss function is obtained. The rate

of convergence of the decision variables to the asymptoticallv normally
distributed variables is studied. The general results are applied to

certain specific distributions, and asymptotically optimal procedures

noted in each case. Large sample applications of our results are

illustrated by indicating how the procedure would be used in ranking

means of normal population with common unknown variance.

In Chapter 3, we extend our basic method to develop asymptotically
optimal procedures for certain other ranking goals. Asymptotically optimal
procedures are developed for the problem of selecting a fixed-size subset
to contain the best population and for the problem of selecting one of
the t best populations. We discuss certain other general ranking goals
which have been considered in the literature and develop asymptotically
optimal procedures for two additional ones.

In Chapter 4, we note some density functions not satisfying the
regularity conditions, and develop for non-regular exponential and uniform
distributions, asymptotically optimal procedures for selecting the best

population and for certain other ranking goals,

1.3 Ranking and Selection Problems

Bechhofer [4] in his pioneering paper pointed out the inappropriate-
ness of the traditional practice of testing null hypotheses and proposed
for a certain class of problems, termed ranking problems, the basic con-

cepts of his multiple decision ranking approach. These methods for ranking,
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or partially ranking, a group of populations on the basis of an experi-
ment are of great practical importance, especially in connection with
the problem of selecting the best populations from a set of competing
ones,

Since the paper by Bechhofer, a considerable number of papers have
been written on ranking and selection problems. Although there are many
ways in which such problems can be formulated, the two most commom formu-
lations in the litcrature are the "Indifference Zone' approach, as pro-
posed by Bechhofer [4], and the "Su.!-.et" approach, credited to Gupta [20],
In this thesis, we concentrate on the indifference-zone approach to rank-
ing and selection problems. Unless otherwise stated, in all references
to ranking and selection problems in this thesis, it is understood that
we refer to the indifference-zone approach to the problem,

The general nature of investigations in ranking and selection problems
may be summarized as follows:

Let nl,nz....,nk denote k populations (k > 2) being ranked,
with F(';et) denoting the distribution function of nt (t =1,2,...,k).
Here et is a vector of population parameters. The populations are
ranked on the basis of a well defined scalar wt = w(et), t=1,2,...,k.
Each 6t may be completely or partly unknown, but the functional form
v 1is known., (In most problems, ¢ is one of the parameters of the

distribution.) The ordered v, are denoted by wlll'i wlzl € eee & w[k] .

It is assumed that the pairing of the nt (t =1,2,e0.,k) with the

w[j] (G =1,2,...,k) 1is completely unknown, Let n(t) denote the

population associated with *[t]'
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It is assumed that the larger the value of , the better the
associated population; n(k), the population associated with *[k]' is
denoted the ''best' population. In general, "(k-t+l) (t=1,2,...,k)
is denoted the "tth best'" population, (Analogously, in appropriate
situations, we may consider smaller values of ¢ as more desirable and
denote n(l) as the "best'" population.)

Selection Procedures (SP) are set up in such a way as to guarantee
certain requirements on the probability of 'Correct Selection,' where the
definition of correct selection depends on the ranking "Goal' being con-
sidered. Some of the goals considered in the literature are

i) Select the t best populations (1 < t < k)

a) with regard to order
b) without regard to order

ii) Select s of the t best populations (1 <s <t < k).

iii) Select a subset of s populations to contain the t best

populations (1 <t < s < k).
iv) Select a subset of s populations to contai~ at least d of
t best populations,
For a given goal, with associated definition of correct selection,
we are interested in any Selection Procedure (SP) which guarantees the

probability requirement

(1.1) inf P(CS|SP) > Pe
Q(6*)

where o = (91.62,....6k). Q 1is the set of all possible , and n(s*),

called the preference zone, is a certain subspace of the parameter space




N, defined according to the goal being considered and a certain distance
function §(*,*). The function 6(b,a) measures the "distance'" between
two populations with values of parameter of interest ¢ being b and
a respectively, with a < b, It is assumed to be i) non-negative
ii) equal to zero if and only if a = b, and iii) increasing in b for
fixed a and decreasing in a for fixed b.

For example, for Goal i), Gt = G(w[k-t+1]’ w[k-t]) measures the

distance between the set of t best populations (n(k)""’n(k-t+1))

and tae remaining (k-t) worst populations; and 0Q(§*) may be defined

as
(1.2) a*) = {(we Qldt > 6%}

If y, is the location parameter ¢f 1 (t = 1,2,...,k), then one
t P t

may choose Gt = w[k-t+1] - w[k-t] as a natural distance function for the

problem; but for other cases 6(°*,*) may be defined using practical and/or
theoretical considerations.
Here 11(8*, P*)} with 6* >0, A(k) < P* <1 are constants,
specified prior to start of experimentation. A(k) is a lower bound on
the specified probability P*, which depends on the number of populations
(k) and the goal being considered., It is the probability which could be
achieved by selecting at random and not carrying out any experimentation,
Then for a given goal and distance function, and specified constants

(6*,P*), a selection procedure SP(6*,P*) satisfying (1.1) is defined.
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A selection procedure comprises a terminal decision rule and a sampling
rule (and associated stopping rule if sequential sampling is used).

The sampling rule may be single stage (fixed sample size), two or more
stages or fully sequential.

In the field of ranking and selection problems, selection procedures
have been proposed for the particular problem at hand. In view of the
above, a particular ranking problem is characterized by: i) the form
of distribution function F(¢,*), 1i) the scalar ¢(°*) by which
populations are ranked iii) the ranking goal and iv) the distance
function &8(-,°).

Thus, for example, Bechhofer [ 4 ] proposed a single stage procedure
for selecting the best normal population, whe: populations are ranked
according to their means (with known variances), and the difference
between the largest and second largest mean is the distance function,

In [4], Bechhofer also proposed single stage selection procedures for
certain other goals for ranking means of normal populations with known
variances. Tables of sample sizes required to meet the basic probability
requirement (l.1) were provided. These tables would also be useful in
obtaining a large sample approximation to sample size in using single
stage selection procedures for ranking parameters of certain other distri-
butions. It is also useful as an approximation for ranking variances

of normal populations, a problem for which tables of exact sample size

for a single stage selection procedure were provided by Bechhofer and

Sobel {8].




Bechhofer, Dunnett and Sobel [5 ] proposed a two stage procedure
for ranking means of normal populations with a common unknown variance.
In the proposed procedure, the unknown variance is estimated from
observations obtained in the first stage, and an additional random num-
ber of observations are taken at the second stage, the number depending
on the outcome of the first stage are determined so as to guarantee the
basic probability requirement,

Paulson [36]) proposed 2 class of sequential procedures for selecting
the normal population with the largest mean, the populations having a
common variance; when the common variance is known, the sequential pro-
cedure is closed, Paulson [37] also proposed a sequential procedure for
selecting the best binomial population, Hoel and Mazumdar {[26] have
extended Paulson's open sequential procedure to solve the problem of
selecting the best from the class of Koopman-Darmois family of distributions,

Bechhofer, Kiefer and Sobel [ 7] have proposed sequential procedures
(including generalizations of Paulson's (36] procedure) for ranking problems
associated with the Koopman-Darmois family of distributions. Perng [38]
has recently compared the asymptotic expected sample sizes of the two
sequential procedures of Paulson [36] and Bechhofer, Kiefer and Sobel { 7]
for problem of ranking normal means with common known variance. In the
literature, there are no other sequential procedures proposed for the
ranking problems which satisfy the basic probability requirement, Robbins,
Sobel and Starr [41], Srivastava [46] and Srivastava and Oglivie [47]
have proposed sequential procedures, for the problem of ranking means of
populations with common unknown variance, which satisfy the probability

requirement only asymptotically (as 6* + 0),
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Since this discussion is not intended to be an extensive review
of the literature, we refer the reader to the monograph by Bechhofer,
Kiefer and Sobel [ 7] for a comprehensive bibliography on Ranking and
Selection problems (for the indifference zone approach and other
approaches considered in the literature). Also see Ramberg [39] for
some recent work on certain ranking problems associated with multivariate
normal populations.,

In this thesis, we are only concerned with single stage procedures
and the following discussion refers only to such procedures for ranking
and selection problems. In most of the work done in this field, the
selection procedures which have been proposed initially were developed
more or less on an "intuitive'" basis (so-called natural selection proce-
dures) to satisfy the basic probability requirement imposed on the proce-
dures. Bahadur and Goodman [ 1] considered a class of multiple-decision
rules which they called impartial (invariant under permutations of the
populations). Their results are applicable to the problem of selecting
the best population and imply that Bechhofer's ([ 4]) and BSechhofer and
Sobel's ([ 8]) natural selection procedures are minimax rules (in fact,
uniformly minimum risk rules) among the class of impartial decision rules.

Hall [25] removed the restriction of impartiality and proved the
optimality of the natural selection procedures by proving their minimax
character (by introducing a suitable zero-one type loss function). Hall's
results are applicable not only for the problem of selecting the best
population, but also for the problem of ranking a specified number of

populations, with or without regard to order. Hall's results apply to
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problems wherein the ranking parameter is a location or scale parameter
and for which there is a sufficient statisvic (for each sample size) with
a monotone likelihood ratio. In situations where the ranking parameter
is not a location or scale parameter, Hall showed the "most economical
character of natural selection procedures for a specified location of the

ranking parameter. Since for many problems, a least favorable location

(of the ranking parameter) can be determined, Hall concluded that the
optimal character of the natural selection procedure can be shown to
hold irrespective of the location of the ranking parameter. Thus, Hall's
result applies to the problem of selecting the best population when-
ever there is a sufficient statistic with a monotone likelihood ratio,
and therefore, in particular, if its distribution is in the exponential
family.

Lehmann [31] extended the results of Bahadur and Goodman [ 1)
to show the optimality of natural selection procedures, among the class
of impartial decision rules, for problems of ranking (with cr without
regard to order) populations, when the ranking parameter has a sufficient
statistic with a wonotone likelihood ratio. Lehmann [31] also showed
certain other optimum properties of the natural selection procedures and
provided an alternate proof to results of Hall [25]). Eaton [17] has shown
the optimality of natural selection procedures, among the class of impartial
decision rules, when the ranking parameter has a sufficient statistic
which has a cestain monotonicity property (defined in [17] and similar
to the rankability condition in [ 7)). Eaton's results thus extend the
optimality of selection procedures to a larger class of density functions.

Fabian [19] has shown certain other optimum properties of natural selection

. g - r - . T Ui ol e
p
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procedures for ranking problems.

As a consequence of the results in [ 1], [25), [31]) and [17], we
note that the natural selection procedures proposed for the following
problems are indeed optimal among the class of all single-stage procedures.

(The references noted in brackets indicate the papers in which the proce-

dures were proposed).

(i) Ranking means of univariate normal population with common known
variance (Bechhofer [ 4]).

(ii) Ranking variances of univariate normal populations (Bechhofer
and Sobel [8]).

(1ii) Selecting the best of several binomial populations (Sobel
and Huyett [44)).

(iv) Selecting the multinomial event which has the highest proba-
bility (Bechhofer, Elmaghraby and Morse [ 6]).

(v) Selecting the bivariate normal population with largest correla-
tion coofficient (Ramberg [39]; also given as an example in
taton [17]) .

(vi) Sele-ting the component with the largest mezn in ranking from
a sin.le multivariate normal population with common known

varia .2 and covariance of the components, (Given as an example
in Eaton [17) and Milton {[34]).

In most of the work done in ranking problems, populations are ranked
according to values of a certain parameter in the distribution of the
populations, Other wknown parameters in the distribution, if any, would
constitute ''nuisance’ parameters for the ranking problem. In the work
cited above on optimality of single stage ranking procedures, not much
explicit consideration is given to the nuisance parameters. For example,
in (17], it is assumed that a sufficient statistic exists for any unknown

nuisance parameters, and the nuisance parameters are such that the basic
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probability requirement is guaranteed for all possible values of unknown
nuisance parameters by a finite sample size single stage procedure. For
problems, where due to unknown nuisance parameters, no finite sample

size single-stage procedure satisfying the basic probability requirement
exists, one may like to develop single-stage procedures which satisfy the
probability requirement asymptotically (as 4* - 0). No previous work
seems to have been done for such problems. The procedures developed in
this thesis are applicable for such problems. These procedures which
satisfy the probability requirement asymptotically, are also asymptotically
optimal among the class of all decision rules.

In most of the work on ranking problems, large sample approximations
to the single-stage sample size (needed to guarantee the probability require-
ment) are suggested, It would be interesting to study the asymptotic
properties of the large sample approximations to the natural selection
procedures. Asymptotically optimal procedures developed in this thesis
answer this question and we show the asymptotically optimal character of
certain natural selection procedures which already have been proposed in
the literature.

Finally, in the field of ranking and selection problems, there are
certain problems for which no single stage procedures have been proposed
(for example ranking scale parameters of Weibull distributions with known
location parameter and common (known or unknown) shape parameter).
Asymptotically optimal procedures developed in this thesis are applicable
to such problems too, thus indicating the wide applicability of our

results.
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1.4 Asymptotically minimax tests of composite hypotheses

For testing a simple hypothesis versus a simple alternative, the
Neyman-Pearson Lemma provides an optimal test. That is among the class
of all fixed sample size tests with level of significance < a (0 <a <),
the optimal test maximizes the power. For a certain class of composite
hypotheses testing problems, Neyman [35] obtained asymptotically optimal
tests in a certain class of asymptotically similar tests, Lecan (29]
extended Neyman's results to obtain asymptotically optimal tests among
a larger class of asymptotically similar tests. Bartoo and Puri (3]
and Buhler and Puri [11) have extended Neyman's result to slightly more
general setups,

Very recently, Weiss and Wolfowitz [55] have obtained asymptotically
minimax (optimal) procedures for a certain class of composite hypotheses
testing problems. Using the basic method developed by the authors
([S2) and [S3]) in the general theory of asymptotically efficient esti-
mators, Weiss and Wolfowitz obtained asymptotically optimal tests of
hypotheses in the presence of nuisance parameters. There are no arbitrary
restrictions on the class of tests among which optimal tests are being
developed; hence the tests are asymptotically optimal tests among the
class of all tests. The general theory is developed in [S55] for the
class of density functions satisfying some mild regularity conditions;
but the basic idea can be used for the non-regular cases as well, each
such non-regular case requiring special analysis.

The basic method of analysis and the problem considered by Weiss

and Wolfowitz may be summarized as follows:
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Let xl,xz,....xn be independent, identically distributed random

variables with the common density function f£(*;6). The density function

is characterized by the vector parameter 6 = (61,62,...,6 'ep¢l)' p> 1l

P

(01’92""’9p) are the unknown nuisance parameters, and eP’l is the

parameter being tested, Let Ho be the (null) hypothesis that ep+l 2 eP’l
: : - c

and H1 be the (alternative) hypothesis that epol = ep*l + 75 , where

55’1 is a given constant and ¢ is a given positive constant.

Weiss and Wolfowitz [55]) consider the problem of testing the null
hypothesis HO versus the alternative hypothesis Hl‘ They obtain an
asymptotically optimal test, That is, among the class of all tests (of
H0 versus Hl) which (is the limit as n -+ ») have level of significance
less than or equal to a (0 < a < 1), the optimal test maximizes (in
the limit as n + =), the power function.

In order to develop an asymptotically optimal test, Weiss and
Wolfowitz first solve the following sequence of artificial problems
{(one for each n):

H. and H

0 1
does not know (el,....ep) but does know that

are the two hypotheses as given above. The statistician

1.3) | E il 2 d

. e. - 6 < i x l, ,-...p ﬂn
i i - /o

8. * ) .l or F’l o £

P P p /n

and wishes to test Ho versus Hl' Here Mn(g) is a positive function

+ 0. The above problem is an

of n such that Mn(E) + @
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artificial problem since it is assumed that the statistician knows

6’,5 ’.tl’.e— .

An asymptotically optimal (minimax) procedure is developed by
constructing a Bayes deci:ion rule for the problem of testing hypothesis
Ho versus Hl (when the loss function is zero-one: the loss if zero

or one according as the correct or incorrect decision is made) relative

to the following apriori distribution: a total mass of b is spread

_ M® _ MG
uniformly over the set 6. - < ei < 8. ¢ i=1,2,...,p
1 /;" = 1 '/'T
and ep’l = ep*l and a total lass of (l-b) is spread uniformly over
M, (8) _oM®
the set ?& - < 8 < § ¢ i=1,2,...,p and
/n vy
c
6 = ¢ —_
pel el &

Weiss and Wolfowitz [SS] obtained a Bayes decision rule for the
above problem and studied the asymptotic properties of the decision rule
for a class of density function satisfying certain mild regularity condi-
tions (stated in [SS5] and very similar to the regularity conditions
imposed for our problem in Section 2.1). Since they are interested in
asymptotic behavior of the decision rule, the apriori mass b (0 < b < 1)
is adjusted in such a way that the level of significance for the artificial
hypothesis testing problem is equal to a specified level a (0 < a < 1),
Then, the Bayes decision rule for this specially selected prior is,
by the very nature of being a Bayes decision rule, an asymptotically
optimal procedure for the sequence of artificial problems. It is shown

in [55] that the asymptotically minimax (optimal) procedure is a function
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of (5},92,...,5§), which was assumed to be known for the sequence of
artificial problems.

To obtain an asymptotically minimax procedure for the real problem,
Weivs and Wolfowitz (55] propose using the asymptotically minimax procedure
for the artificial problem, with (5},5},...,§i) in the decision variable
replaced by estimators (él(n),§ (n),...,gp(n)) of the unknown nuisance
parameter. These estimators of (el,ez,...,ep), based on xl,xz,...,xn

satisfy the following consistency condition; for any € > 0, there exists

D(e) < = such that

(1.4) P o (/RIS () - 0) < D) i=1,2,u..,p) >1-c

91062D°°°l P
H or H, is true

0 1

Because of the above consistency condition, the proposed decision
rule has the same asymptotic properties as the asymptotically optimal
rule for the artificial problem, and is hence asymptotically optimal for
the real problem,

The basic method (outlined above without going into any mathematical
analysis) proposed by Weiss and Wolfowitz is very powerful, yet very simple,
and is adopted in this thesis to develop asymptotically optimal ranking

procedures,
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1.5 Ranking problems in the framework of statistical decision theory and

some additional remarks:

In the field of ranking and selection problems, Sommerville [45]
was the first author explicitly to consider the ranking problem in the
framework of statistical decision theory. By introducing a loss structure
into the ranking problem, Sommerville obtained a minimax decision rule
which balanced the cost of experimentation against the expected loss
associated with a wrong decision. However, Sommerville considered only
prespecified selection procedures, whereas we are concerned with develop-
ing selection procedures which are in some sense optimal in the class of
all decision rules, Bechhofer, Kiefer and Snbel (p. 46 of [7]) also
point out how the ranking problem could be reduced to a decision theory
problem by introlucing a suitable loss function,

In tiic work cited in Section 1.3 on showing the optimality of
natural sclcction precoclures, the ranking problem is treated in the
framevork of staticti.:i decision theory. The optimality of natural
seloction rvoced.r:s is proved by treatire the problem as a rvitiple-
decision nrovlem snd shoving the minimax character of the prccedure,
by introducing a suit2lle loss function into the problem, In this
thesis too, we t.-oct the rank‘ng problem in the {ramevork of Wald's [48])
statistical decision theory as a multiple decision piosiem, wherein the
numter of decisions depend on the number of populations being ranked
and on the ranking goal being considered. A zero-one type loss function,
suitable for the ranking goal being considered, is introduced and adopt-
ing the basic method proposed by Weiss and Wolfowitz [55]) for 2-decision

problems in the presence of unknown nuisance parameters, we proceed to




-18-

develop an asymptotically minimax procedure for the multiple-decision
ranking problem in the presence of unknown nuisance parameters. As

in [55], we first develop an asymptotically minimax procedure for a
sequence of artificial problems, which in turn gives an asymptotically
minimax procedure for the ranking problem.

In our analysis, we make no assumption about the form of the distri-
butions (except that they satisfy certain mild regularity conditions,
given later on in Section 2.1) or the existence of any sufficient statistic
(for each sample size) for the ranking parameter, The problem is solved
for an arbitrary, but fixed, location of the ranking parameter. If the
ranking parameter is a location or scale parameter admitting a sufficient
statistic, then the results hold irrespective of the specified location
of the parameter and hence the procedure developed is an asymptotically
optimal ranking procedure. In other situations one may be able to find
"least favorable location" of the ranking parameter and thus the solution
to the ranking problem at such a location gives an asymptotically optimal
procedure. If in the worst case, one cannot find such a least favorable
location, the procedure developed by our method gives an asymptotically
optimal identification procedure, for any arbitrary, but fixed, location
of ranking parameter,

Since the problem of selecting the best population seems to be of
most practical interest, and also because the main ideas in the theoretical
development of asymptotically optimal (minimax) ranking procedures are
illustrated in this case, we treat in detail, the development of an
asymptotically .ptimal procedure for the problem of selecting the best
population. For certain additional ranking goals, we develop asymptotically
optimal procedures by reducing the analysis to one very similar to the

problem of selecting the best population.
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CHAPTER 2

ASYMPTOTICALLY OPTIMAL PROCEDUKE FOR SELECTING THE BEST POPULATION

2.1 Notation, Assumptions and Regularity Conditions

Let xti(i =1,2,...,n) denote observations from population

IIt (t=1,2,...,k), and write xi = (xli,xzi,...,xki). In this thesis,
we assume that Xl,xz,...,Xn are independent and identically distributed
random vectors.

Let el,ez,...,ep denote unknown nuisance parameters, common to
each of the k populations, Voo (t =1,2,...,k) denotes a scalar
valued parameter of population Mye The populations are ranked according
to the values of the parameter ¢ (the large. che value of ¢, the better

the population is considered to be). For convenience in notation, let

(2.1) wt = 00 - 6p+t t = I’Z’OIO’k

Thus, 60 may be regarded as the common value of the ranking
parameters  and ep*l (t=1,2,...,k) may be viewed as shifts of
the parameter from the common value 6o°

The density function of the random vector X 1is represented by
f(x; 90'61’62""’9p’9p+1'""°p+k)' Denoting (90’91""’ep+k) by
9, the density function will be commonly represented as f(x;6).

The basic theory is developed for a class of density functions

satisfying certain mild regularity conditions, which we state in the form

of the following assumptions:

-19-
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3

SO f(x;8) exists and is continuous for all x
30039838Y

Assumption 1:

all ¢ and all a, B, v (o,8,y =1,2,...,p+k).

Assumption 2: The (p+k)x(p+k) matrix whose (i,j)th element is

9 9
56{56; log f(X;0) 53;-log f(X;e)} (153 = 1,25 8a,pFk)

is assumed to exist and is positive definite for all 6.

Fix a positive quantity L which will r2main fixed throughout the

analysis. For any positive quantity M, and any 6 = (56,5&,...,§£+k),

let R;(E) denote the following region in 6-space.

i=1,2,...,p
(2.2)

[
)

= p+1,p*+2,...,p*k

Sl =

Assumption 3: For any 6, there exists a sequence of positive

values {Mn(E)} with

n
8

lim Mn ®)

nN->co

(2.3) M @
lim

_n172

H
o

and such that, if {w(n)} and {u(n)} are any two sequences in 8-space

with w(n) ¢ Ra (3)(3) and u(n) ¢ R; (53(5) for each n, then
n n
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Mr:: ©)) rzl 33
[57—=g—=7— log f(X,;6)]
n372 ity aeuaeeaeY i u(n)

converges stochastically to zero as n increases, when w(n) 1is the

true parameter point for X, Also this convergence is uniform in

u(n) an) w(n) over R;: @) ®).
n

Assumption 4:

®

) . 9 log f(x;6)
B 38 98 [ (*:6) §§° o
L u(n) 8

is uniformly bounded for all u(n) ¢ 'S?I ®) () for all a, B, Y
(alBlY = l’Z,QQ.'p’k). n

For a,8 =1,2,...,p*k, let

1 n 32
(2.4) B (a,8;8) = == ] = log f(X;;0)
i=] a B )
and
_ ) |
(2.5) 8(018;6) = -E- W lOg f(X;e) \
8 a 8 3(

/

Assumption S: If w(n) is the true parameter point for X,

w(n) e R;; @) (), then Bn(a.s;g) converges stochastically to B(f,a;0)
n

and B(a,B; 6) is a continuous function of ©, for all a,8 (a,8 = 1,2,..,p*k,
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In our analysis, we consider only those procedures which take
equal size samples from each population, We do not assume the existence
of a sufficicnt statistic for the ranking parameter or the nuisance
parameters; and the decision rule is given in terms of the density
function f£(x;8).

Apart from the regularity conditions stated above, we make no other
assumptions about the form of the density functions. Thus, the results
obtained in this chapter (and also in Chapter 3) are applicable to the
problem of ranking several univariate populations according to the
values of a certain parameter, each population having common unknown
nuisance parameters. The results also apply to problems of ranking
several multivariate populations, the populations being ranked according
to values of a scalar valued parameter and each population having common
unknown nuisance parameters, The results are also applicable to certain
ranking problems associated with a single multivariate population. The
results are applicable in situations where, apart from the regularity
conditions stated above, certain symmetry conditions (on the density
function f(x;8)) hold. These symmetry conditions are needed in showing
that a symmetric prior distribution gives a minimax decision rule. Thus,
our results apply to the problem of ranking from a multinomial distribu-
tion as well as ranking means or variances of a single multivariate normal

populaticn with common (known or unknown) correlation coefficient,

2.2 Some Preliminary Results of Statistical Decision Theory

In order to put the ranking problems considered in this thesis into

the decision theoretic framework, and present a general theoretical
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development of an optimal procedure for different types ot ranking
problems, we cefine some notation and present some preliminary decision
theoretic results which will be used later on, The notation is similar
to that used by Weiss [49],

Let xl....,xn be the observable random variables, on the values
of which the decision is to be based. Let x be an index for the possible
sets of values of (xl,xz,....xn). Let f(x;6) denote the joint pdf
of (Xl,...,xn), where 6 is an index for the possible joint distribu-
tions,

Let D be an index for the possible decisions; that is, a particular
value of D indicates a particular decision. In the case where there
1s only a finite number of decisions, say h, we can list the decisions
in a particular order and let Di (i=1,2,...,h) indicate the ith
decision. Since for ranking problems, the number of decisions is finite
(this total number depending upon the numver of populations and the specific
goal being considered), this notation will be used.

In the decision theory formulation, different ranking problems would
be analyzed in the same way, differing only in the total number of possible
decisions h, and interpretation of each decision (depending on the rank-
ing goal). For example, for selecting the best population, the total
number of possible decisions h 1is equal to the number of populations
k; and l)i may refer to selecting ni as the best population. For
the problem of selecting a fixed size subset of size s (s < k) to con-
tain the best population, the total number of possible decisions h s
(k) and each Di may refer to selecting a pavticular subset of si1ze s

S

as the best subset,
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Let W(8,D,x) denote the loss incurred when x 1is the observed
value of (xl,...,xn), D 1is the decision made and 6 is the true
parameter value, For a large class of problems, W( ) may be indepen-

dent of X,

Definition: A decision rule s is defined by nonnegative numbers
s(D;x), where s(D;x) is the probability assigned by decision rule s

to choosing a decision D when X is observed.

When the total number of possible decisions is finite, say h, then

we have for each x,

h
(2.6) I s@ix) = 1
i=]
Definition: The expected loss, incurred when using decision rule s,

and the true joint probability distribution is given by 6, is denoted

by r(e;s), and often called the risk function,

For a problem with a finite number h of possible decisions and

joint pdf f(x;8) (for random variables (xl’XZ""’xn))

" = h

(2.7) r(8;s) = -i ...-i izlwe;ni;x) f(x;8) s(Di;x) Xy a0, dx
Let

(2.8) M(s) = max r(6;s)

8

e e a0 PR P = o S




Definition: The expected risk for a decision rule s, with respect to

a cdf B(6) for chance variable 8, is denoted R(s; B(6)) and given

by
(2.9) R(s;B(8)) = E ({r(6;s)}
B(8)
Definition: A dJdecision rule s is a '"Bayes decision rule relative to

B(8)" 1if for every decision rule t,

(2.10) R(s;B(8)) < R(t;B(6))
Definition: A decision rule s is called a minimax decision rule, if

for every decision rule t,

M(s) < M(t)

B(6), used for constructing a Bayes decision rule is often called
an "apriori distribution,'" We would like to point out that 6 1is an
unknown vector and not a chance variable. The introduction of the cdf
B(6) 1is just a technical device to enable one to define a Bayes decision
rule for the case of an infinite number of possible distributions (indexed
by 8).

From a Bayesian viewpoint, one may specify some particular cdf
B*(6) and construct a Bayes decision rule relative to the specific
apriori distribution., In this thesis, however, we are only interested

in minimax decision rules, and Bayes decision rules are only used as a
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technical device to construct such minimax decision rules,

If B(8) has a pdf b(8), then

(2.11) R(s;B(8)) = [ r(e;s)b(e)de
6

For a problem with a finite number h of possible decisions, and

B(6) having a pdf b(6), we obtain using (2.7) and (2.11)

L ® h
R(s;B(8)) = [ { [eeeef ] s(D.;x) W(8;D,;x) £(x;8)dx,...dx }b(6)do
8 -= -=is] 1 . "
(2.12)
® ® h
= -i...:i [izl s(D;5x) k(D ;x)]dx)...dx
where
(2,13) k(D;;x) = [ W(e;D,;x) £(x;8)b(6)de
e

Using the above representation, we easily see that 's 1is a Bayes
decision rule relative to B(8), if for each x, s(D;x) 1s set equal to

tero for every Di for which k(Di;x) is greater than min (k(Di,x)}."
l<i<h

We end this section by stating, without proof, two well-known
theorems which enable one to recognize a decision rule as a minimax

decision rule.

Theorem 2.1. If s is a Bayes decision rule relative to B(8), and
if r(®;s) = M(s) for every 8 which is a point of increase of B(%),

then s is a minimax decision rule,




-27-

If the number of possible distribution functions is finite, and if
we let b(el),...,b(em) denote the apriori distribution for the possible
values (el,...,em) of 6, then we obtain the following special form

of Theorem 2.1

Theorem 2.2, If s 1is a Bayes decision rule relative to b(el),b(ez),...,
b(em) and if r(8;s) = m(s) for every 6 for which b(e) is positive,

then s 1is a minimax decision rule,

2.3 Selecting the best population

In this chapter, we derive, in detail, the basic results needed to
develop an asymptotically optimal procedure for the problem of selecting
the best population, when the density function of observations satisfies
the regularity conditions given in Section 2,1, Since we are dealing
with the indifference zone approach to the ranking problem, we need to
define the preference zone for the problem at hand, As we are interested
in developing a procedure (really a sequence of procedures) which is
asymptotically optimal, we defi..> the following sequence of preference

zones (one for each n).

(2.14) BETEY = e By S Ve -/é}
n

where ¢ > 0, ¢ 1is the parameter being ranked, and wll] < wlz] S vee < w[k]

denote the ordered parameters.
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Also, for any sequence of procedures ({T(n)}, let

(2.15) P(T) = 1lim inf P{CS|T(n)}
e Q(6*(n))

Then, throughout this thesis, an asymptotically optimal selection procedure

is defined as a procedure T (really a sequence of procedures (one for

each n)) such that among the class of all procedures T',

(2.16) P(T) > P(T')

In order to develop an asymptotically optimal procedure (that is
a procedure for which (2.16) holds), we formulate the problem as a
decision theory problem with a particular zero-one type loss function,
and obtain an asymptotically minimax decision rule for the associated
multiple decision problem. This is done in detail in the next section.

We would like to point out here that in developing selection pro-
cedures (for ranking problems) which are asymptotically optimal, the
problem of defining a suitable preference zone is solved in a nice way,
We are interested in defining a sequence of preference zones in such a
way that the distance between the best and the second best population
approaches zero as n + =, That we require such a sequence for the
asymptotic theory is clear by the fact that if, for example, the distance
between best and secend best population were some constant, then for any
procedure using a consistent estimator of the ranking parameter, P(T)
(as given by (2.15)) would be equal to one (that is, one is able to

select the best population with probability approaching one as n + =),

p gp g s ta e - ee o Soemmomn st - ot pT ecimm gme pemesgeervw o o
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Thus, the preference zone as defined in (2.15) is appropriate for the
ranking problem. The distance function used in defining the preference
zone is a '"natural' distance function for the problem of ranking popula-
tions according to values of the location parameters. For asymptotic
theory, this is an appropriate distance function for ranking any para-
meters of a distribution, a result not too surprising in view of the
fact (as we shall see in the next section) that the problem (at least
asymptotically) reduces to one of ranking means of normal populations
for which the distance function used is a natural distance function.

For asymptotic theory, in the sequence of preference zones (as defined
by (2.14)) the rate of convergence of the distance function to zero
(consequently the rate of convergence of preference zones to the whole
parameter space) is 1/v/n. This is directly related to the normalizing
constant (/n for the class of problems being considered), for which
the decision variables have a limiting distribution. If the rate of
convergence is too slow, the problem reduces to a degenerate case
while if the rate of convergence is too fast, the decision rules will
not be able to distinguish the best population among the set of competing
ones,

For 1i=1,2,...,k let

9.=—.+C/IT '=1,2.ook

p*J pej * ¢/ e R0
(2.17) Hi:

ep+i = ep+i - c//ﬁ
where ¢ > 0 and 6b+j = Eb+i all i,j (i,j = 1,2,...,k) are known values,
8 .. may be taken to be zero, with no loss in generality.

P+]
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In view of (2.1), (2.17) represents a restricted parameter configura-
tion, in which if Hi is the true state of nature, then ﬂi is the best
populiation,

We now discribe the basic method used in developing asymptotically
optimal ranking procedures. In order to develop an asymptotically
optimal procedure for the ranking problem, we develop an asymptotically
optimal procedure for an associated identification problem, with —b,
the common location of the ranking parameter, as the least favorable
location of the ranking parameter, We first solve the problem for a
restricted parameter configuration, given by (2.17), and then show that
the procedure developed is minimax overall parameter configurations.

As in [55], we first solve a sequence of artificial problems, the solu-

tion to which suggests an optimal procedure for the real ranking problem,

2.4 Asymptotically Optimal Procedure for Zero-one Type Loss Functions

For the problem of selecting the best population, let Di denote
selecting Hi (as given by (2.17)) as the true hypothesis (equivalently
selecting ni as the best population), The loss function is given, for

i=1,2,...,k5 by

0 if H, is the true hypothesis

(2.18) W(6,D.;x) = W(§;D.) =
1 1 0
1 otherwise

2.4.1 Preliminary Sequence of Artificial Problems

For the loss function (2.18), and with the joint density functions

of the populations satisfying the regularity conditions (of Section 2.1},

P TR T AN SR aRe T % e st tee % wemaome sty veest  ieme. S e amiyem Sy g bcayteewessh . ..
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we would like to develop an asymptotically optimal procedure for the
problem of selecting the best population, Before proceeding to the real
problem, we first solve a sequence of artificial k-decision problems

(one for each n),

Suppose it is known that for i = 1,2,...,p, we have

g -
i & i

of the k hypotheses given by (2,17), (51,...,55) are known constants

M () _ M(®)
S PO ei + = and (ep”,ep+
n

2""’ep+k) satisfy one

and 0 < c < L. We wish to test which one of the k hypotheses Hl’HZ""’Hk
is the true one,

For the above problem, which is an artificial one because we assume

-—

61,...,§£ are known, we construct a Bayes Decision Rule relative to
the following apriori distribution: For j = 1,2,...,k a total mass

of bj is spread uniformly over the set

M (8
L < 8, < 9. +

1 /!—{ 1

—

=
~
~—

i=12,...,p and Hj is true

where bj >0 for j=1,2,...,k, and

The prior distribution (bj’ i =1,2,...,k) 1is arbitrary, but
fixed. Later we select the prior in such a way as to obtain a minimax

decision rule for the problem at hand.




If we let Di denote the decision to select Hi as the true

hypothesis and compute k(Ui;x) for each i, then it can be seen that

a Bayes decision rule relative to the above apriori distribution is given

as follows:

Sclect H as the true hypothesis if

b,
(2.19) J @l 2 gl 2,j = 1,2,...,k
2

where for j,i = 1,2,...,k

M_(8) M_(8)
[P L
V' 4 P &
n
izlf(xi;e’ui)del""’dep
TM@E L M (E)
ul- /_ Sp- /_
(2.20)  J (c]y) = . —
M (®) M_(8)
e 7 el
' & P A
n
EEET S T n f(X.;9,H.)do,,...,d®
IR s U P
‘ _Mnm . -Mn(e)
V' & P /A

Here f(xi;o,iu) denotes the joint pdf of the observations when 6 is

the parameter valuc and ( are as given by hypothesis

”p.lo-‘-oep’k)

For notational convenience, we let

‘ﬂ f(xi;”'nl)dol""'dep

1 n
OOOQJ ln f(xi;",H).)d”l.no"dep

H..
J
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where the integration is over the region as given by (2.20). Throughout

the thesis, unless otherwise specified, f‘f indicates integration
over a region as given by the last expression for the integral where
the limits are specified,

We investigate the asymptotic properties of J (2]j). We ncw

define certain notation used frequently later on. Let & denote

0 1,...,§p,5p*1,.-'6p+k)‘ Also for a =1,2,...,p*tk, let

(2.21) An(a;é')

S

log f(xi;e)

e~
|
@

: §

Denote by Fn(u,B;E), a,8 =1,2,...,p, the (e:,ﬁ)th element of
the inverse of the (pxp) matrix whose (01,8)th element is Bn(a,8;§),
where Bn(a,s;g) is as given by (2.4). This inverse exists with proba-
bility approaching one as n increases,

For o,8 =1,2,...,p, let F(a,B;6) denote the (cx,B)th element
of the inverse of the (pxp) matrix whose (c:n,B)th element is B(a,B;8).
By our assumptions, this inverse exists, Also by our assumptions, if
the true parameter point for X is w(n) € Rﬁn(g) (6), then Fn(a,8;5')
converges stochastically to F(a,B;6) as n increases.

Using the above notation, we get by expanding arcund 6, for |

R =12, 5o 5K

’

n = _ p.’k ) i
L log £(X;;0,H) = ] log £(X;;8) + ] 4n(s,-F A (e;B)
i=1 izl s
(2.22) ok pek ] ] )
- 5 qgl BZI /0,5, )/n (0,8, (o, 858) + Q(0),0.0,6 1)
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where,
k p+k pek
) BEEP P - - -
e ®sey = Vel e -9 9 - 9 -9 *
Q(8)senen8p) = g OZI BZI YZI (6,-3,) (65-8) (8 -8)
(2.23)

3
36 3030 108 £(X;i%)
a B vy

"ne-19

1=1 u(n)
and in (2.22) and (2.23), we have set
8 . -8 . = = j AL
P*) P*J /n ) 3 1,2,.0.,k
r} ¥ =
ep+l - ep¢l B -/E

and u(n) ¢ R; (3)(5) .
n

We now prove a lemma which will be useful in studying asymptotic

properties of J_(2]j).

Lemna 2.1 For & =1,2,...,k, Qn(el,...,ep|i) cenverges stochastically

to zero as n -+ « for all u(n) ¢ Ra (6)(6) x
n

Proot: From (2.23), we see that
.
| 1 Mn(e) pﬁk pik ptk [ n a3
Q (e ’000)9 R') i a0 Ao An log f(x;ﬁ)
nl P Okl ge) vl |1kl Va0 !

u(n)

+ 0 as n »+ ~ by our assumption,
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Thus Qn(el,...,eplz) converges stochastically to zero as n » = for

all u(n) ¢ Y — (8).
R“n(e) Q.E.D.

Using (2.22), we obtain, for & = 1,2,...,k,

n
lf(xi;e,Hi) exp{izl log £(x;6,H.)}

n =99

i
p*k

n +
exp{igl log f(xi;O) + GZI /E(eu-ea)An(a;e)

(2.24)

Hy

-

a,B

[N ko

-7 L1 /me - )A,F ) B (a,8:8) RN
L

1

Substituting from (2.24) in (2.20), we obtain, for j,t = 1,2,...,k,
J e}y =

n _ p+k _ _
o] expt ) log £(X;8) + ) /E(e“-eJ)An(a;e)l
1

1=1 a=zl
llﬂ
1 g’k - - .
- 3 X Bgl/ﬁ(ea-ea)/ﬁ(ee-eb)Bn(a,u;e)l + Qn(bl,..,Gplﬁ)}dﬁl,..,dbp
-— HQ —
n _ pok _ _
...| exp{ ) log £(x:8) + ) /E(eo-eu)An(a;e)|
i=1 a=l "
)
] f’k E _
23 321/3(60-65)/5(68-68)Bn(a.s;e)j N CHRPRT R FRTETAe T

“j

where HQ(Hj) inside the bracket is used to indicat that hypothesis

HR(Hj) 1s true,
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Simplifying the above expression, we obtain, for £, = 1,2,...,k,

(2.25)
I i) =

r 1 p+k  p+k _ _ y
exp =2cA_(p+2;8) - 5 Z { /‘(e -8 )/‘(eB-eB)Bn(o,e;e)l

| n azpe]l Bzpel H!
_— °

5 - ptk  pek - _ _
exp [;ZcAn(p+j;e) - %. ) ) /E(eu-ea)lﬁ(ee-es)Bn(a,e;e)IH

a=p+l Bap+l =
eesl exp E /ne -8 )A (a;8) - f E (e -6') n(e -Eé)aq(a,s;ﬁ)
TS 7 451 g1
de. ...ds
pek i
-c § /n(e -8 )( Z B, (3,v;)=B (a,p+2;8)]+Q (8,,..,0,|2)
azl y=p+l
- #Pol -
. — 3
[--- exp § /_(e -8 )A (a;8) - % E E (e -8 )/_(e -8 )B (a,8;8)
a=1 a=]l g=]
de,...dé
1 P
-c f-"(e -8,)1 2 B (,7:8) =B, (a,p*3;8)14Q, (8,250, |5)
a=] y=p+l .
o)

If we denote by J;(1|j), the above expression for Jn(2|j) with
Qn(el.....epll) and Qn(el,...,eplj) being removed from numerator and

denominator respectively, then we obtain the following useful lemma.

Lemma 2.2. For 2,j =1,2,...,k

Jn(ﬂlj) stochastically
Jn(lTj) + 1 as n -+ oo,




for all true parameter points (n) e R; (3)(53 .
-

Pronf: Using the law of thc mean for integrils, w2 can write

q(x)
A

Ji|3) = = —— J (2}))
)

e

where 6;(i) (: = j,2) 1is betw.an the minimum and maximum values

taken by Qn(el,...,ep;i) in the region of intcecration, Using Lemma 2.1,

it foilows immediately that if u/n) 1is the tiue pararmeter point for X

SR

and u(n) ¢ RS (;)(6), then j}' 5] conveies stoachastically to one
- n\'nJ

as n -+ =,

Q'E-D-
As a direct conscquence of luina 2.2, to study the asymptotic
prcperties of Jn(nlj), we reed cniy study the asymptotic properties of

Ja(ilj). If we let WoE n{ua-ea), a=12,...,p, we get for




—

(2.26)

Nl s

exp -2cAn(p*i;§) -

[

+
\ & ) 3 €
5 § ! v.,(ea-e))/E(eﬁ-eB)Bn(a.B.C)‘H
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1
1

a,. ¢+l L

—
—

exp | -2cA_(p+j;®) -
-

.\1n(§) M (®)

=
% SZ fn'(ea-Eo)/E(eﬁ-ﬁﬁ)sn(a,e;ﬁ)IH

a,p=p+l j

prk
seecer] exp § w A (0;8) - c[ ] B (a,;8) - B (a,p+2;8)]]
ac] @ n yopsl n n
-M (8) -M_(8) 1 #pet dw)...dv
=7 azzgl waHBBn(a'B;e)
= — —S-
M (B) M () |
prk _ _
[ exp E w (A (a;8) -¢[ ] B (0,y;8) - B (a,p+j;8)]]
) axl a n Y'P’l n n
M @) M () 1 #p* ] dv). .. dv

Since Mn(5) + > as n+ =, it would be tempting to set in the limits of

integration Mn(G) = » and conclude that the resulting value of the expres-

sion (2.26) would have the same asymptotic behavior as JA(QIj). However,

since the integrand is also a function of n, through Bn(a.e;g), a care-

ful analysis is required.

Before proceeding to that, denote by JH(llj) the value of J&(i,‘)

if in the limits of integration in tho expression for J;(ilj) ((2.26)),
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Mn(E) are replaced by =, By treating w (a = 1,2,...,p) formally
as having a multivariate normal distribution with mean vector 0 and

covariance matrix given by ((Fn(a,e;e)’), we gev for 2,j =1,2,...,k,

(2.27)

VNI DI

s -

+k
exp | -2cA_(p+1;8) - % ) g_g’l/ﬁtea-E;)/E(es-ﬁé)an(o,s;ﬁ)|H
F 3 21

— .
=

- k
c.n l * /— —-— =
exp 2cAn(p¢J,6) -3 . §=g¢1/n(e°-e°) n(ee-es)Bn(a,B,e)|H

. -~
IR _ pek - _ -
5 11 (A (a;8) - c( ] B (a,i8) - B (a,p*2;6))} F (a,8;0)
a,B=1 y=p+l
exp fp;l
P .
c( I B (e,v;E) - B (8,p+1;8)))
Y=p*l

S S #pet S =
-

_ prk _ _ -

LI A (a8) -c( ] B (a,7;8) - B (a,p+j;8))IF (a,8;8):
a,h=1 y=p+l n n n
exp #p+)

prk _ -
&l } B (8,v;%) - B (8,p*);8))

y*p+l a

#p+)

'(An(B;G)

LS TR

-(An(a;F)

After some simplification, we get




(2,28)

J;;(zljl

—

=40~

- B - —
exp | 2cA_(p+j;®) - ZcAn(p+2;e) +2c ) Z An(a;G)Fn(a.B;Q)

a,B=1

B, (8,p+4;5) - Bn(s.w;‘e')’

exple?V_(&;2]5)]

where.

+k
! czvn(€;z|j) = % f i /E(ea-Eg)/F(ee-ﬁé)sn(a,s;ﬁ)

a,B=pe] H

+k
1 - = ;
- 5;,3§p§1/n(e°-e°)/n(ee-es)B"(a'e'e) .

2
P
psk _ _ . btk - -
{ I B (a,v;8)-28 (a,p*j;8)H ] B_(8,7;8)-2B (8,p+j;0))
n n n
y:p#l Y*p*l
Fn(a,eﬁﬂ
pek pek

L y=p+l ysp+l

After some simplification, we get, for t,j = 1,2,...,k,

T

H ] B (a,vi®)-2B_(o,pet; )M ] B (8,7;8)-28_(5,pei;5) )

-—

-




(2.30)
UNCHIE
0 p+tk  p+k - p+k - _
Y@ B (o,B58) -2 ] B (B,p+j;6) + B (p*i;p+j;8)
a=p+1 B=p+1 g=p+1
i) pti  #p+i #P+j
2
p+k  p+k _ p*k - _
-] ) B (a,8:8) + 2 ) B_(8,p+2;8) - B_(p+2;p+L;8)
a=p+1 B=p+] B=p+l
#p+e  #p+L #p+L
p*k _ _ _
{ ] B_(a,v;8;}*{B_(8,p+2;8) - B_(8,p+j;8)}
n n n
Y:p#l

P —
277 F (a,8;8)

a,B=1 _ _ - _
=B (3,p+1;8)B_(8,p+2;8) + B (a,p+j;68)B (8,p+;0)

J

We now proceed to examine the asymptotic properties of JA(ilj). A lemma,
which will be useful in determining the asymptotic distribution of
J;(llj) is first proved.

For a =1,2,...,p*k, let

- _ Ptk - .
(2.31) A (a;8) = A (a;8) - 821 /n(w, (n)-8,)B(a,8;8)

Lemma 2,3 If the true parameter point for X 1is w(n), w(n) ¢ R; (E)(g),
n

then K;(l;a),xh(z,g),...,x;(pOk;;) tave asymptotically a joint normal
distribution, with zero means and covariance between KF(J;F) and

Kh(d;g) given by B(a,8;8).
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Proof: If w(m), w(n) e R; (53(5), is the true parameter point for
n

X, then for o = 1,2,...,p*k,

d
| 35 log f(xi,e)'
=] Q g

Ew(n) [An(a;g)] & Ew(n)'

1

3 |-

@™

/m [ £(x,u(n) 35— log f(x;e)' dx

- G0 a e

(2.32)

= /n f f(x;6 + (w(n) - 8)) %5— log f(x;e)l dx
- Qa —
<]

Expanding f(x;w(n)) around 6 and denoting, for notational convenience,

%3— log “(x;9) - by %3' log f(x;8), we obtain for a = 1,2,...,p+k,

a ) a

20

— — 1 -
E, (A (28] = /A _o{ £(x;8) T log f(x;8)dx
. pfk /i (w, (n)-7,) }o 2 _ f(x;8) 21— log f(x;8)dx
e Nwgin)=9g 36, 1X:0) 35— 1o Blx;
= - 8 a
/n g"‘ _ — % a%f(x;u(n)) o —
(2.33) ¢+ = )T (w(MF)wm-s) [ : log f(x;8)dx
7 b Ly eI L Tae ee 38
where u(n) ¢ R: (g)(g).
n
Thus,
_ p’k '/_ - K 3 _ a '— _ d
Eu(n)[An(u;u)] = Bgl n(wﬁ(n)-ee)-{ 3;: log f(x;8) 35; log f(x;2)f(x;v)dx

+k . 2 . )
. ig . §.§ (ue(n)-gé)(uy(n)-g;)-i J f;:.géSQ) ;5: logf (x;9)dx

. gt g
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or,
= prk - -
E ) [An(ai®)] = 321 /n(w, (n)-8,)B(a,8;6)
(2.34)
+ fg: §+§ (w(n)=6,) (w_(n)-6_) ?azgéx;;én)) ge log £(x;8)dx
B,y=1 B B Ty el LRI i

where u(n) ¢ R; (g)(E) .
n

From (2.34) and the assumptions made in Section 2,1, it follows

that
. _ p+k _ 5
Ew(n)lAn(a;e) - BZI /E(ws(“)'ee)3(°’3;el!
{2.35) - _
M _(8)

« k(o) =
n‘n

where K(8) 1is a fixed positive constant, Thus from (2.35), it follows

that for a = 1,2,...,p*k, Ew(n)xg(a;§) converges to zero.

Also note that, for a,8 = 1,2,...,p+k,

COVw(n) [Kn (u;g) ’Kn(Big)] = Covaru(n) [An (Q;E) ’An(s;a)]

Ew(n)[An(a;e)An(s;E)] - Ew(n)[An(a;a)]Ew(n)[An(e;E)]

Rl

[ S 1o E(GF) 35— 1og £0T) £(x;u(n))dx
o) a 8

= E () a5 0)E, () (A (858))




-4d4.

Using algobraic simplification as for L (n)lkn(u;F)], and following

-
the assusptions made in Soction 2,1, 1t can be shown that tho covariance
betweon X“(u;v) and ;"(u;") COnvVergos to B(a,8;0) for all

win) « u“ (z).

Nn(ﬁ)
The asysptotic joint normality of An(l;ﬁ),An(Z;E),...,An(pok;E)
1S a standard rosult used frequently in the literature (See, for example,

pP. S00 of Crasor (13)). Using that, the proof of the lomma 1s hence

coaploto, Q.L.b,

Substituting from (..531) 1n (2.26), we obtain, for ¢&,) = 1,2,...,k,

(2.30)
ety

/’ 5oL B s FmeD 5
exp /-2cA_(poti) - 7 1] /(e T )A(e,-5,08 (a5 )]

u a,Bupe] H,

ok
7 — == N
exp ,=2CA_(pe);v) - g Z /;(v -9 )/n(o -0 )B (0,8;6)! }
L n 7 a,Bepel a a g en H.

Mn(?}') un(t)
pek

[J exp( S-Q(T\'ﬂ(g;e‘) ) /E(J‘(n)-u")s(u,»;ﬁ)

J as) ro)
M (F) -u (F) pek - p _
n n - ) Bn(u,y;K)-ZBn(u,poi;o)])- % »Z ¥ w B (0,050) )
\'P'l u,ﬁ'l
dw,, .o, ,dw
LN SR N . — R R
M".g”) M ) ) ok
i o0 e s 00 Q‘P( i 'g(xn(xl;;) * z /E(U (n)"j )8(1l.|;t—‘)
Jj ] pe] yel ' '
-M_(8) -M_(®) peh p
- - | R -
o sl D B @28 (apeiBID - 3 [ w B (a,E:F))
vyepel a,psl

dw,,...,dw
! p




B
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Rearranging terms, we get
' a
J @1y

+k
" /n(6_-0 )/n(0,-8.)B (a,e;§)| 1
a,§=%01 @ a I HQ_

O o=

cxp[ -2cA (pee,f) -

= ~
cxp[;-ZcAn(poj;C) - % . Z-EOl /F(BG-EA)/R(OB-EE)Bn(G.BZE)’“.}

ro]—

' P .
J exp[- L (wa-ttl,g(n))(wa-zs.ﬂ(n))un(u.e;e)]dwl....,dwp

—

...r . 1 sz (W -t .(n))(w.-t. .(n))B_(a,r:;8) | dw dw
. | cxpl -5 o n a~te, n))B (a,f; (roeerdv,

a,gs]

where, for a = 1,2,,..,k, t =1,2,...,k,

-

v N R - _
oM o F s )R (8) . ) /K(wy(n)-OY)B(a.v;G)
pal ysl
-c[ ) B (B,v;®) - B (a,pee;9)]
el n n "’
/VOE

and

P, ‘ -
"z.“gl €, (M, ()8 (a,859)

"o -

(2.39) At(n) .

If we let u s w -t (n) and v = w -t (n), then after some
1 (U u a  a,)

simplification, we obtuin, for i,) = 1,2,...,k,
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(2.40)
JrGl,i) =
M (e)-tl’l(n) Mn(—)—tp,g(n)
P -
LN N N A" ER AN -J exp[- %QZBZI ual‘BBn(a’B;e)]dul,...’dup
- Tl -MHEE]-tI,EEnJ —MH{E]-tPJE{n}
n Mn(gy-tl,j(n) Mn(U)-cp.j(n)
1 P -
[.............. exp[- 5 ] ] V V. (a,8;0)]dv ,...,dV
J [ & GE:B:I Sy 1 P

N _(8)-t, . M (N-t .
.n(e) tl’)(n) Mn(" tp’J(q)
In order to show that J;(llj) is arbitrarily close to J:(zlj),
it is sufficient to show that the integrals in the numerator and denomina-
tor of (2.4) are, for cufficicntly large n, with any probability less
than one, within an arbitrary positive constant ¢ of their common

timic (2n)P/? |71/

, whiere |B| is the determinart of the matrix
B, whose (a,e)th element is B(a,8;8). For that it suffices to show
that the limits of integration converge stochastically to (-=,») as
n- =,
This will be sufficient, becausc then by replacing the limits of
integration by (-+,2), the ¢ {ect on the numerator of JB(‘I)) is to
multiply it by qn(a) where qn(z) converges stochastically to one.

Similarly, the eflcct in the denominator is to multiply it by qn(j),

where qn(j) corverges stochastically to onc.
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From (2.38), we obtain for a =1,2,.,..,p, 2 =1,2,...,k,

-~ i)
ty, M = I F 80 K (858) + ] /n(e ()-8 )B(8,Y;8)
B=1 y=1
Pk _ -
-cl ] B (8,y;0) - B (8,p+1;8)]
Y=p+l
) #p+L J
prk _ - _
= !, o+ ] e (n)-8) E[Fn(a,S;B)B(B.Y;B)]
’ y=1 Y Y g=1
or,
prk _
= ¢ -
(2.41) ta.l(n) T YZI /rT(wy(n) 6y)6n(a,y)
where,
k — —
(2.42) § (a,y) = ] F (a,8;8)B(z,y;6)
n n
B=1
and t; 2 remains bounded with probability approaching one as n -+ -,

Since Fn(a,ﬁ;g) converges stochastically to F(a,8;8) (a,s8 = 1,2,..,p)

as n 1ncreases, it follows that

f
stoch, Y 2y
(2.43) 8, 0y) — y = 1,2,...,p.
n-+»xo
1 a = y L

It also follows that én(u, pst), ¢ =1,2,...,k remains boundcd

with probability approaching one as n - «,




L
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Thus, if 4 (n) ¢ RE (5)(6)' we obtain from (2.41), for 4 =1,2,..,p,
n

Qs 1,2'llt’k'

k _ P
(2.44) |tM(n)| < |t;’i| + L Ezllé(a,pﬂlﬂ + L (@ Yzl|én(a.y)|

p
where z Ién(a,y)| converges stochastically to one as n » », for
y=1

a = 1,2,...,p. This implies that there exists a sequence {gn},

B 0 lim €n = 0, such that,
o

(2.45) lim P{ E lén(a,y)l <lee o= 1,2; seempds =l o
n+w Y=l

From (2.44) and (2.45), we thus get that for any given ¢ > 0, there

exists K(¢) < », such that

(2.46) (It ;] < K@) + L @) (1ec )} > 1 -

Po(n)

for any w(n) ¢ R?

7 (8) .
NO)
Choose the sequence (Ln(y)) to satisfy the following properties.

(2.47) lim L_(8) = »
pex N
L, ® L ()
(2.48) B _ < 1 forall n and lim Le— = 1
Mn(e) n+o Mn(e)
and
(2.49) ,l,i.T,[M"(g) s (mn)Ln(a)] & a
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That it is not difficult to find such a sequence is illustrated by
the simple example L (8) = (1+¢ )™ [M_(8) - Mrl‘/Z(E)]. Using (2.46)

and the sequence {Ln(g)} as selected above, we get that with probability

greater than 1 - ¢,

MO -t ) < M @)+ K@) v L () (1ve)

(2.50) = -[Mn(e_) - (1+en)Ln(é’)] + K(¢)
-+ - as n -+ o,

and,

(2.51) Mn(g) - ta,z(n) > Mnﬁii - K@) - Ln(5)(1+en)

Using the above result and lemma 2,2, we have thus proved the

following,

Lemma 2.4 For &3y = 1,25 me, K
T wroliy . .
(2.52) log J_(2]5) log Jn(efj) « z (2])

where Zn(ﬂlj) converges stochastically to zero as n -+ « for all

. n -
parameter points w(r), w(n) € RLn(E)(e)'




~
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As a consequence of the above lemma, in order to study asymptotic
behavior of Jn(Qlj), we need only study the asymptotic behavior of
11" T
Ineli).
Using (2.28) and lemma 2,4, the Bayes decision rule for the problem

reduces to the following:

For £ =1,2,...,k select H2 if

14

) = B = =
2c(A (p+3;8) - A_(p+2;8)) + 2¢ GZBEI A (;8)F (a,8;8)B (B,p+2;8) - B (8,p+];6)
(2.53) ’

b
2 - . . j .
+C Vn(G;EIJ) +Z (¢]3) > log Fl 31 5250 e ke
. )

where vn(g;ﬁlj) is given by (2.30).

The Bayes decision rule divides the sample space into k mutually
exclusive and exhaustive regions, each of which a particular hypothesis
is selected. This is so irrespective of whether f(-;*) represents a
joint density, fun~tion or a joint probability mass function. Using the
regularity conditions imposed on f£(-;-), we do not have to worry about
the ties introduced into the problem due to equalities in relation
(2.53). Thus the results obtained in this section are not restricted
to assuming the existence of a joint probability density function for
the joint distribution of the random variables.

For £,j = 1,2,...,k, let
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! o P . -
A (p+3;B) - A (p+2;8) + uzegl A, (@;T)F (a,8;8) -
8=

Wo(215)

(2.54)

[ =, =
< \‘Bn(s,p*ﬂ;GJ-Bn(B,pﬂ;6_'

Rearranging terms in (Z2.53) and using (2.54), the Bayes decision rule

reduces to the following:

For 2 =1,2,...,k, select H2 if

b.
. 1 2, — . - .
(2.55) W @) > oz (log gi‘ V@l §) 4213} § = 1,200k,

where, Zﬁ(llj) converges stochastically to zero as n + «, if the true

n

Ln(57(e) . Also V(8;%£]j) is a non random

parameter point w(n) ¢ R

continuous function of & for all £, (1,5 = 1,2,...,k). v(§;2|j) is
obtained from (2.30) with the random variables in (2.30) replaced by

the constants to which they converge. Because of the symmetry introduced
in the problem by redefining the parameters ¢ by (2.1), we may conclude
for the problem of ranking from several univariate or multivariate popu-

lations, when the observations between populations are independent, that
(2.56) V(3;2}j) = 0 for all 2,j (2,j =1,2,...,K)
In obtaining the above rcsult, we have used the following realtions

B(Q’B;e—) B(QDY;-O-) a=1,2,.00,p

(2.57)

B(8,8;8) B(v,v;8) B,y = p+l,p+2,...,p+k




=N

and

(2.58) B(B,y;8) = O B #Y, B,y =p+l,p+2,...,p*k

If for the problon of raorking from a single muitivariate protlem

(for which (2.57) holds but not (2.98)), we assuue that

(2.59) B(8,v;8) = B(§,n;8) B £y, 6#n, B,v,86,n = psl,pe2,..,p+k

then (2.56) still holds. From now on we assume that this is so and hence
the results are appliccble in ranking fiom a single multivariate popula-
tion for ccses for which (2,79) holds,

Thus the Bares decisicn rule muy be wewritten ac follows:

For R =1,2,...,k, select “t if

*)ir—-
~
[ 2]
2
03
C‘LJU‘
+
(3]

(2,60) wn(zlj) > @33 hRC I e JENEY 8
To study the asymptotic behavicr of the Buves decision rule, we proceed
to study the asymptotic joint distribution of the random variables wn(llj).
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