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THE GAS FLOW IN GAS~-OPERATED WEAPONS

£ ABSTRACT

In gas-operated weapons, the time-varying pressure in the barrel is
fed through a duct into a cylinder. The piston in the cylinder is
digplaced by the pressure and operates on a mechanism which extracts
4 . the spent cartridge and completes the next loading cycle. .

"" The theory presented herr: predicts the pressure history in the
cylinder and the motion of the pilston for a given pressure and

temperature history in the barrel.
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NOTE: 1. Dimensional quantities are indicated by bars; non-dimension-
alizing factors are given in Equations (16).

2. TFunctions p, p, h, and u first denote solution toc Equations
(17), (18), and {19); then dencte solution to Equations (21)
with the subscript "1" dropped {(outer solution).

cross~secticnal areas of cavity, cavity entrance, and

vent, respectively [m2}
areas at throat and exit of port, respectively [m2]
cross-sectional dimmeter of gas tube [m]
friction force in gas tube flow (Bq. (10)) [N /ke]

(= h) enthalpy per unit mass in inner problem [Nm/kg]

i

(1/2) £ & 5 @ [/ (n sec deg K)]

Oi’orx.‘!3<va-rv

o (yr1)/laly-1)] .. -
[FI] . for Xy > Xp = T,

0 for ;{B < ;er - 'f-v

oL Gyl ly-1)]
b for g > ¥gy = Ty
resistance coefficients due to friction and bends,
respectively (Eq. (39)).

Mach number (= u/a)
= Us/Al

mass of bolt carrier [kg]

g

N
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LIST OF SYMBOLS (CONT'D)

| P (= p) pressure in inner problem [N /ma]

% 5 Re Reynolds number (based on cross-sectional dismeter of gas tube)
2R = ﬁ3 ) ¥ [2/{y-1}] K3 , =~ Riemann invariant [m/sec]

,) -gas effective gas constant for powder gas [Nm/(kg deg K)]
T = %/8{(c)--time variable for immer problem [sec]

'_ i} (= u) gas velocity in inner problem [m/sec]

ﬁs velocity of initial shock wave in gas tube (inner problem){m/sec]
-c volume of cavity [m3}

; vci = vc (¥ = 0)

h X (= x) distance varisble for inner problem [m]

a speed of sound [m/sec] (= {Yf)/ﬁ} 1/2)

Ep specific heat at constant pressure [Nm/(kg deg K)]

Ev specific heat at constant volume [Nm/(kg deg K)]

e (= Ev ) internal energy per unit mass [Nm/kg)

p f friction factor (= F D/f2u 2}). (Bgs. (13) and (39))

- g gain factor (Equation (46))

h enthalpy per unit mass [Mm/kg]

f- k thermal conductivity of powder gas [(kg m)/ (sec3 °k)3
) length of gas tube [m]

; i =A_ 5, G [ke/sec]

P pressure [N/m2]
Perit = Pg [2/(y+1)) v/ (y-1)
qQ heat transferred in duct flow [Mm/(kg sec)] (Eq. (1k))
": ;v radius of vent cross-section [m]
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LIST OF SYMBOLS (CONT'D)
time {sec] :

gas velocity [m/sec]

velocity of bolt carrier with respect to bolt [m/sec] ;

distance from port in gas tube [m]. (coordinate in Equations
(17), (18), and (19)

displacement of bolt carrier [m] ‘
maximum displacement of bolt carrier [m]

location of center of vent [m]

comtraction coefficient--backward flow from cavity into duct
centraction coefficient-~backward flow from duct into port
contraction coefficient--forward flow from gun barrel into port

& UX,T), . /U(X,T)

visc invisc

average value of B in interval 0 < % < £/T, vise
effective ratio of specific heats of gas
exponent in 1 IO relation (Eq. (57))

ratio of specific heats for gas initially present in gas tube
(> 1.4 for air)

gage function for inner problem time variable
= 3flr Eg(o) --asymptotic expansion parameter
relative roughness of duct (Table 3)
temperature [deg K]

total temperature in gas tube [deg K]

(= a) velocity of sound in inner problem [m/sec]
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LIST OF SYMBOLS (CONT'D)

: % . m viscosity coefficient of powder gas [kg/(m sec)] ;
i p density [kg/m3} {
I b entropy per unit mass [NV m/(kg deg K)]

: f T characteristic time of pressure variation at port [sec)

% , Z -w wall shearing stress in gas tube [N/m2] (= % fpu 2)

i 3 forces on bolt carrier [N]

? é a (= p) density in inner problem [kg/m3]

? % ® = Ap/ﬁmin

é Subscripts

§ c bolt chamber

; comp,e composite solution at entrance to cavity

% e entrance to cavity

g g gun barrel at port station (stegnation conditions)

E i initial value (£ < 0)

i o P port exit (entrance to gas tube)

; s sheck wave

E tot total

zé v vent

ii W wall of gas tube

1,2 first and second spproximation to flow variables in gas tube,
Equation (20)

& 1,2,3,3’ regions of flow in X,T diagram (Figure 5)

E 1,11 supersonic and subsonic values of flow variables gt shock
wave (when present) in gas tube
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I. INTRODUCTION

In gas operated weapons or in control systems a high pressure, high
temperature supply of gas is used to operate certain mechan,sms. The
crucial problem presents itself in the following form: At a given point,
A, in the system, pressure and temperature are prescribed as a function
of time due to the inherent operation characteristics of the system.

This pressure 1s communicated through a duct to another point, B, in the
system where the gas 1s used to operate a mechanism; for example, extract
a spent cartridge and impart enough momentum to the bolt so that the next
round may be positioned in the chamber. It is desired to predict the
pressure and other variables at point B as a function of time. The mag-
nitude and time history of this pressure can be crucial to the whole
operation cycle. In the example clted above, the pressure pulse rust

not cause extraction at tco early a stage, when the cartridge is atill
pressed to the wall of the chamber by the pressure in the chamber; on the
other hand the pressure history must be such that sufficient momentum is
transferred to the bolt to operate the weapon. The pressure history is
coupled to the rate at which work is extracted at B from the gas and also
to the nature of the flow of gas between A and B. In this report an
analysis is developed which‘describés the time history of pressure and
temperature at point B for prescribed condition at A in the practically
important case wl re the characteristic time of the pressure pulse at B
is large compared to the time an acoustic signal needs to travel from

A to B.

The'analysis is developed on the specific example of the M-16 rifle
where time varying pressure is fed from a port in the barrel (point A) to
the bolt cavity (point B) wherethe pressure is used to unlock the bolt,
extract the cartridge and supply sufficient momentum to the tolt carrier
so that the next loading cycle can be completed. The analysis applies,
however, equally well to other gas operated weapons and should find
application in rocket control systems where high pressure gas is used to

operate jet or surface controls.

Preceding Page Blank
15



I1. METHOD OF APPROACH

For purposes of orientation, Figure 1 may be consulted. This ghows
a deaign drawing of the ges system of the M~1& rifie. As mentioned
befcore, hot, high pressure powder gases are extracted from the barrel and
fed intc the bolt chamber by a duct. The pressure varistion with time at
the port is determined by the gas flow in the barrel. The mass flow
through the port is small coumpered to the mass flow in the barrel itself,
and the effect of mass removal is negligible on the pressure history at
the port. Thus, the pressure and temperature way be considered prescribed
and known, say from an interior ballistics analysis of the weapon. The
hot gases expand in the bolt cavity, thereby sccelerating the bolt carrier,
C. Unlocking of the bolt, D, is accomplished after the carrier has
traveled a certain distance, at which distance vent holes are laid free
g.ad the gas in the bolt caerrier expands to atmosphere. A% this distance
the bolt carrier engages the bolt and certridge, and extraction is
accomplished by transferral of energy and momentum of the carrier to the
bolt and certridge. The residual momentum and energy of the bolt carrier
is sufficient to complete the cycle of cocking the weapon and positioring
a new certridge in the chamber. It is the object here to predict for a
given pressure and temperature at the port the motion of the bolt carrier
referenced in time to the rise of pressure at the port. The motion of
the bolt carrier is governed by the pressure and temperature in the bolt

carrier cavity.

It is natural to divide the analysis into twc parts. The first is
the determination of the "space averaged" pressure and temperature in
the bolt carrier cavity for given flow conditions at the entrance of the
cavity. In general, these depend on the conditions in the cavity. It
will be shown in Section III.A that conservation of energy and mass
together with the equation of motion cf the carrier, which here takes the
place of conservetion of momentum, uniquely determine the conditions in
the cavity and the motion of the carrier. The second part considers the
flow from the port to cavity. The unsteady flow in the pipe is quite

complex and is indeed not even amenable to numerical computations without

16




STITH 9T-W JO UD3dYs uBTIssg 1 2mBid

(440d) ¥

(A41aD3 1314400 Yj08) 8
(3I0H -:m>uu
(wog)a

W\\\\\\\\\

(4214400 }i0G) D

17



Ll R M Y M MRS Sy Fen

TRy

k>
-
E:

A L S b b

considerable simplifications. Such a simplification is offered by consid-
ering the flow to be one-dimensional; i.e., flow variables are assumed
constant over the cross section of the duct,; so that the flow variables
depend only cn x, the distance along the axis, and on times Implicitly,
this assumes that conversion of frictional work to heat and conduction

of heat occur instantaneously and uniformly over the entire cross section.

It is usuel to introduce friction (and heat transfer) even in time
dependent compressible flow according to the practice in hydraulics by
means of & friction coefficient f defined by F = 2 £ w2/D where T is the
friotion force per unit mass. The friction coefficient £, however, is
not known in unsteady turbulent flow and its prediction would indeed
require the solution of the full problem since the coefficient of friction
will depend on the entire flow history. Customarily, the friction co-
efficient for steady flow is, therefore, used and the few experiments
done indicate this to be a good approximation* as long as no separation
occurs. However, it is well to keep in mind that this assumption is

satisfactory only for nearly steady flow.

It will be shown in Section III.C that the flow here can be reduced
to a quasisteady flow except for the very early phases when the flow is
being established. For the quasisteady regime, the frictional effects
mey be justifiably included by using the steady friction coefficient.

For this phase of the flow, pressure and momentum losses due to sudden
enlargements or constrictions are included in the analysis within the
fremework of one-dimensional quasisteady flow. Iosses due to the various
bends in the duet can, for large'z/ﬁ of the duct, be included by loss
coefficients. These losses will be treated as a distributed resistance

and acccunted for in an overall friction coefficient.

For the very early stages, the flow is truly unsteady and it is not
possible to include the frictional effects using a steady friction
coefficient, nor is it possible to consider the bends in the tube as
distributed resistances. This early stage involves a strong shock,
which actually starts the flow; this shock will be reflected and dif-

fracted and also influenced by friction and heat transfer in a complex

18



way not accessible to analysis at this time. The first stage will,
therefore, be treated entirely without friction and discarding all
possible reflections, the only justification being that this first stage
is of very short duration compared to the totel flow time. As will be
shown in Section III.p , the first stage essentially introduces a delsy
time between the pressure rise at the port and the pressure rise in the
cavity. The net effect of neglecting friction and shock reflections in
the first stage will be to predict a delay time somewhat too small.
However, this deley time has been observed experimentally in numerous
testsQ and a correction to the theoretical value is possible, thus
accounting for the observeble effect of friction and shork reflections
in the first stage. The gas will be considered a celorically and
thermally perfect gas; thus, the ratio of specific heats and the gss
constant will be considered constant and given, say from the interior
ballistic analysis of the weapon. Because of the high pressure and
density the assumption of equilibrium for the gas phase of the propel-
lant can be safely made; however, there is nonequilibrium between the
solid and the gas phase of the propellant in the barrel itself and also
in the duct. Within certain temperature and density ranges it is always
possible to approximate the real gas behavior by en ideal gas behavior
as long as the gas phase is in thermodynamic equilibrium. This approxi-
mation is commonly made in the standard interior ballistic treatment,
and performence predictions based on this assumption are apparently in
good agreement with experiment. Therefore, assumption of equilibrium and
indeed perfect gas behavior is expected to be adequate also, since the
primary purpose here is to clear up the fluid dynemic aspects. Correc-
tion factors accounting for real gas effects may be applied to the re-
sults found on the basis of perfect gas behavior as shown, for example,
in reference 3. It should be mentioned that a rigorous nonequilibrium
treatment of the gas flow is not possible because the kinetics of

powder gas reactions are not sufficiently understood.

According to the assumption made above, the analysis will be based

on the simplified geometry shown in Figure 2. The area restriction at

19
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the port will be treated as a supersonic nozzle of zero length when the
flow into the duct is supersonic,as is indicated on Figure 2.* The duct

is considered a straight tube of constant inner cross section, with all
losses resulting from bends and sudden area changes taken into account

as discussed above.

Heat transfer from the gas to the wall is assumed to leave the wall
temperature unchanged; this essumption allows uncoupling of the fluid
dynamic prcblem from the heat conduction problem in the duct, znd is &

good one for the small Fourier-numbers of interest here.

ITI. ANALYSIS

A. The Flow in the Cavity

The average properties in the cavity are determined by the conserva-
tion equations of mass and energy and by the equation of motion of the
bolt carrier.

Let B=A, P, T, (1)

be the mass flow into the cavity, where A is an area*# p the gas density
and the 2 the gas velocity, and where the subscript designates the loce-
tion of these quantities in accordance with Figure 2. C(Conservation of
mess gives

- - - - 1
ﬁ)=(VCi+AC§B)%‘%n-*ACaC?,B‘*KlA.V(YBCi)C)Z (2)

The first term on the right side is due to the change of density in time
in the cavity; the second term is due to the change in cavity size; and

the third term is the term due to venting.

fwl)/?(v-l)
for 2 > ti - “v, where ti and iv are the center location and radius,

respectively, of the circular vent.

¥The case where the port is treated as an area discontinuity is dic-
cussed in the Addendum.

¥*¥Dimensional quantities are indicated by bar.

Accordingly, Ky = O for Xg < ¥g,, -Ty, and K, =[2/(y+1)

21
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Here, it has been assumed that P, is always much larger than the
ambient pressure, so that venting occurs with sonic velocity. Mass

losses due to leakage msy be included in this equation by an obvious
extension,

Heat transfer to the wall of the cavity may be neglected, since the
average gas velocity in the cavity is smell so vhat convection is
negligible.

Conservation of energy may then be written as

sh =% oz galzos2p.g [Fa s
mhe tob = = [pc e, Vc+2pc Vg Vc+Acf P det]+
ét 0
i MRk B (v3/5 02 (3)
Kl ¢V cré 2 vpc ¢ ¢

= g o= =y 1/2
KA N2, (P /0,)
The terms in the square btracket are the thermal energy of the gas in the
cavity, the kinetic energy of gas in the cavity and the work done by the

gas in the cavity. The three other terms are the energy losses due to

venting. For the constant K2 we have

](3*(-1)/2(\(—1) for ;{B N ti- 3

By - Tys Ko = [2/(y41)

For the circular vent

- _ gy = - 2 - = y2,1/2 -2 .1 =Ly - -
Av = (xB_ va) [rv - (xB - va) ] +r [2 + sin ((XB - xBV)/rV}]
for Xpgy ~ Ty SXp SXp, t r,

A =nr 2 for X _+r_ <X

v v Bv. v—'B

The volume V of the cavity is given by:

vc= Vci + Ac xB

22
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The term m Ee 4ot 18» of course, the flux of enthalpy into the cavity,
where

- - - -
= + .
e tot 7 Pe/pe * ee ue /2

(=2 ]

The equation of motion for the bolt carrier is given by:

av, _ _ _-1 1
=7

CACHB +¢EB- (h)

m'i

de/dt = vy
¢ signifies external forces on the bolt carrier, such as friction on the
bolt. At the end of the bolt carrier travel ;B and dﬁbldf are set equal
to zero.
The conservation equations and the equation of motion of the bolt

are three equations for the five unknowns, Xp» pc’ Pe? ec and e, -

The problem is rendered complete by the addition of a thermal and

a caloric equation of state, thus:

(5)

ot
n

hed

@l

e=2c.0 and
v 2as

B. The Flow in the Duct

The flow in the duct is a mixed initial and boundary value problem.
Using the usual notation for pressure, velocity and sound velocity, Ps

u, &, respectively, the initial conditions are

Py

E = 0; i >0 : f’ (;C,O) 5 a (J-C.,O) = é-i H a (;(’0) =0 (6)

Xx<0:p (x,0) Bg (0); a (x,0) Eg (0); u (x,0) =0
For ﬁp > Ep the boundary x = O is spacelike and three input data at x = 0
determine the solution for nonisentropic flow. Thus,

t>0,x=0:Dp(0,%) = 5p (£); a (0,8) = EP(E) s u (0,F) = ﬁp (€) (1)

23
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For u_ < a_ the line X = 0 is timelike corresponding to the fact that only

two characteristics enter the region of interest. Thus,two data along
X = 0 are required:

t >0, x = 0: p(0,t) = p_(t), u(0,t) = u (%) (8)

By virtue of the fact that the nozzle length iz very small, the
conditions at the exit of the nozzle (subscript p) follow the conditions in

the barrel (subscript g) instentaneously.

At X = %-no boundary condition can be prescribed for ﬁe > Ee

corresponding to the fact that no characteristic reaches the space X <3

for at > 0. For ﬁe < Ee the characteristic given by dx/at = u - a

reaches into the region X < % and one condition at x =  must be prescribed.

Thus,
t>0,x=

!

 B(E.E) = B, (%) (82)

Subject to the above initial and boundary values the following set of

equations describes the one-~dimensional flow in the duct.

Continuity:

3,3 (pv) _

® L ek O . (9)
Momentum: - _

Du 13 = _

Dt+33-§+p-o (10)
Energy: _ -2

28,3 '2: (2—~+0), or , (11)

P ot bt 2

iF+g=2.2 2 (112)

Dt p° Dt

P2 -5F+3 (12)
Dt
Here, D/Dt = 3/0% + u 3/%x is the material derivative.
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These equations are ccmplemented by the equation of state (5). The
hydrodynaemic friction force F is introduced as

Drnt dx b T -2
f‘:_ Y2 ~=_-w=2£‘u (13)
p m (D°/b) ax p D D
-~ _ 1, ==2
with T, = E-f p , the wall shearing stress.
The amount of heat transferred per unit time per unit mass is:
J(® -8 )Dwmax -4J (6 -86)
q:.'— -g2 w—' — = —g‘. L (1}‘;)
(D “/4) = p ax p D
Reynolds analogy for turbulent flow gives:
fe pu
RS .
2 (15)

This relation is not strictly fulfilled for turbulent flow in a pipe
because of the effect of the laminar sublayer. Here, it is assumed that
this relation holds strictly; this smounts to setting the recovery factor
equal to unity.

The above system of equations is hyperbolic and hes the character-
igtic directions

dx/at =u+a end ax/at =1 ,
the latter being the differential equation for the particle path and the
former the differential equations for the other two characteristic
directions. The competibility conditions msy be found by standard
techniques and are given in many textbooks, see for example reference k.
Thus the flow in the duct may be computed by the method of charscter-
istics. However, such a computation for the present case is very time-
consuming at best. Since the acoustic transit time 2/a is very short
compared to the total duration T of the flow, the computation has to be
extended to large times and this will lead to an appreciable error unless
the grid size is very small. It should be pointed out that character-~

istic computation for nonisentropic flow is considerably more complex

25




since the particle path has tc be computed together with the two other
characteristics. A further complication arises from the fact that the
boundary conditions are such that the solution will not be continuous
throughout, but shocks will appear imbedded in the flow field. The
method of characteristics 1s not capable of handling the appesrance of

shocks without sppreciable complications.

The analysis proposed here specifically exploits the fact that the
acoustic transit time is small acompared to the operation time T. This
is the situation in gas operated systems discussed so far; and the
analysis is eppliceble for situations where the numerical computation by

the method of characteristics becomes impractical.

With the 2 the characleristic length dimension, T the character-
istic time and Eg(o) the characteristic velocity the following non-~

dimensional varisbles are introduced. ¥

1) %=t 9) F =3 (0)F/3

2) X=x3 10) g =12,(0)e/

3) §=3 0

b) & =3, (0)a

5) B = 5,(0)a “(0)p

6) =22 (0) e/ﬁgas (16)

-3
S
hed

It
1
18]
Pamn}
o
e
©

*The sound velocity at t = O may indeed serve as reference velocity
since the sound velocity a_ () is not a strong function of time

- =y (y1)/e s
ag ~'(Pg) Y Y with (y-1)/2y « 1, where y =~ 1.25,

”
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The differential equations then become

% , 3w _
€3 Tox 0 (17)
du du 123p =
€ 3t * 9x * p X +F 0 (18)
2 2
13 9_ u_ 3 By _ o=
- Sa tegg (h + 5 ) +u ™ (h + 5 ) -a=0 (19)
where € = —-FEL——-
Ta (0)
g
is the ratio of acoustic transit time teo the flow duration time. We

note here that the flow duretion time 7 is of the seme order as the

average checacteristic time ﬁé/(%ﬁg/ag), impressed on the flow in the duct

by the time variation of the pressure in the barrel. Thus, we have

T~o (53/[&58/35]) with T >>E/Eg(0)

C. The Outer Problem

Since € is a small number, we assume asymptotic expansions for the

dependent variebles of the form

D (x9t§€) = Pl (x’t) + 62 (€) P2 (X,t) +
p (x,t5¢) = p) (x,t) + 6, (e) p, (x,8) + .
h (x,t;e) = hy (x,t) + 62 (e) h2 (x,t) + . (20)
u (x,t;e) = 0 (x,t) + 62 (¢) u, (x,t) + . .
6n+1(e)
here E;_TES~.+ 0 in the limit ¢ + 0 and 8 (e) = 1 since the leading

term for all expansions is of order unity.
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Substituting these expensions into the full equations (17), (18),
end (19) gives in the limit ¢ + 0 the following set for the first order

solution

3_(plul) “
ax
ou
1 1 1
e —— o+ =
w5 o F=0 (21)
0.2
3 1 _
U oy t3)-a=0

These equations are the equations describing the quasisteady flow;
i.e., time sppears in these equations only as a parameter. Consequently,
the initiel condition specified by (6) cannot be fulfilled by the
so;ution to the above equations (21). This is a result of loss of the
terms involving time derivative by Lhe expansion process. The solution
to (21) with the boundary condition (8) and (8a) cannot ve uniformly
valid in t beceuse the initial conditions are violated. In order to
obteinr a uniformly velid solution another expansion for small t will be

needed. This expansion will be given in Section 171.D.

In the terminology of the method of matched asymptotic expansions
the solution to (21) is called the outer solution, while the expansion
for small t to be developed in Section III. D is called the inner
gsolution. It will be shown later that both solutions can be matched
and a composite solution cen be found which is then s single expansion
uniformly valid in t.

Customarily, the variables pertaining to the outer solution are
designated by small letters and those pertaining to the inner solution
by capital letters. The subseript "1", designating the first approxi-

mation in the outer problem, will now be dropped.

28



The outer problem is that of & viscoue heat conducting flow in a pipe
of constant dlameter. This is a problem of eminent practical importance
and has been treated as -eerly as 1875 (reference 5). Extensive
discussions mey be found in references 3, 6, and 7. Here, the treatment
given ir reference 6 will be followed, and only the main resulis quoted.
For more detailed analysis the reader is referred to reference 6.

Using the notation

2
o = u
cp etot htot ho+ 2
the energy equation may be written &s
a8
tot - = -
T Ve =R/
with -
% 1
q = -2f . g(etot -8,)u
gas
we have
dse =
tot _ 2 f %
ax D (etot - ev) (22)

Since ew is assumed constant in x and t, this equation may be integrated

with the boundary condition etot = Og at x = 0:

o-2f2x/D

9 =6 + (98-%) (23)

tot

Using (21) and the equation of state (5) one obtains with M = u/a the
following ordinary differential equation (see reference 6):

\ =1 2 =
af (1) 1+ ) detot+YM2(l+I_'2—M2)hfgdx(2h)

e (1 - 1) O ot (1 - M) )
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Together with equation (22), this determines the Mach number distribution
in the duct. This equation cannot be integrated in closed form and a
numericel solution must be found. Once the Mach number, M, and the total

temperature, 0 , &re determined the other dependent varisbles can be

tot
found quite easily. The pertinent relations are provided later on.
First, the special case etot >> ew mey be considered. In this case
geparation of wvariables is possible if ew is neglected in comparison with
8,4 One then obtains from (24) and (22) the differential equation:

el ez GHF) G-
M2 D 1M
This equation is readily integrated in closed form, though the solution
is omitted here.

(25)

From the differentiel equation one notes the following condition for

the sign of dM? for supersonic flow:
M > 1, aff <o

This means the Mach number always decreases if the initial Mach number
at x = 0 is supersonic. Mach number one is the limiting Mech number
that can be reached on the supersonic branch and this Mach number is

reached for a distance x = Emax which is determined by the friction

coefficient £, but which is quite small. If the duct length is larger
than Emax’ then a shock occurs somewhere in the duct reducing the Mach
number to subsonic values and the subsequent flow stays subsonic. For

the subsonic flow:

%-< M2 < 1, dM2 >0

This means the Mach number increases in the direction of the flow. How=.
ever, M = 1 cannot be surpassed and is reached only at the exit if P,

Pos since dM2/dx + o ggs M 4 1 so that the inlet conditions are adjusted
to allow M =1 to occur only at the ‘exit. For P, = Py the flow is
subsonic at the exit also. The lower limit at 1/y is a consequence of
the special assumption of ew = 0. For M2 = 1/y at x = 0, the Mach
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number stays constant in the duct since sz/dx = 0, Below this value

af < 0, i.e.: the Mach number decreases. As equation (23) shows, the
condition 6 t ot is not a velid assumptiorn for the specific case of
the M-16 rifle, but could be a good assumption for a different application.
For the general case 0 is finite, then tae Mach number in the subsonic

brench first decreases and then incresses reaching the condition dM2/dx

0 only for one value of x, which, of course, gives the minimm vaiue of M.
M = 1 is here reached only &t the exit for %; > pc; for P = Pc only
subsonic flow can occur at the exit. The supersonic branch has the same

qualitaetive behavior as above. The phenomenon discussed shove is termed

SaaGis s LAy S

"choking" because it gives a limitation on the maximum mass flow. The

conditions for choking in the general case are difficult to state but a
lucid physical interpretation is given by Prandtl7 for the case of zero

heat transfer.

T R (R

Figure 3 shows the Mach number distribution along x from numerical
computations for the genersl cese of Ow finite. Shown alsc is the
3 location of the shock. For a given Mach number distribution in the super-
sonic branch, say MI = f(x), and a given Mach number distribution for the
subsonic branch, say MII = g(x), the location of the shock Xg is uniquely

determined by the condition:

2 2. 2. [y . 2
n? = g+ ) [B e 2 - ) (26)

For increasing shock strength, the shock moves closer to the nozzle and
eventually vanishes in the nozzle, i.e., Xg + 03 this occurs when no
pair of Mach numbers can be found to fulfill the relation (26). 1In this

cage, to be discussed later, a shock may still occur in the nozzle.

For the supersonic branch MI f(x) results from integrating
equation (24) with the boundary condition: = Mp at x = 0, where Mp
é (> 1) is given from the area ratio of the nozzle by:
E
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- +1
A
oz B ;lfi- (2 (1 + X2y 2yy A1) {27)
-~ 4! Y+1 2 p
Amin P

The subsonic branch M.. = g(x) is obtained by integrating equation (24)
with the boundery condition

x=1l: M= Me 1 for P, > P

c

For P, = Dy» neither Me nor MII is knowa beforehand, but must be deter~
mined by an iterative process. First, equation (2h) is integrated for
various values of Me < 1, thus giving a set of value pairs MII = F(Me).
Another relation between MII and Me is readily found from the continuity
equation and the thermal equation of state

pe = pc = MII ee /2
(xg) (xg) M,

(28)

P11 P11 Or1

Here, the index II designates the quantity on the subsonic side of the
shock at the location x_. For the "no shock" condition xg = 0 and
pII(O) = Py In any case, pII(xs) cen be uniquely related to 1 and,
thus, to pg as will be shown below. The ratio of static temperatures

follows from the energy equation:

Ly 2
% % tot 1T Mg (29)
81 OIT tot 1 + Y—;l Me2

This relation 1s valid for eny station x, i.e., for any index, whether
a shock occurs or not. Since P, and pg are given for each step in the
parameter t, equa.ion (28) is another relation of the form M = G(Me).
The two relations Mi, = F(Me) and My, = G(Me) can be solved
numerically for MII and Me'

With Me known the other variebles with the subscript e are readily
found. These variables are used in obtaining the inhomogeneous terms
in the differential equations for the cavity flow in Section III.A and

are functions of the parameter t.
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The state with the index e relates to the state on the subsonic side
of the shock by:

Pe MII ee ] /2
M

prp Mg [Op(xg)

u M oo 1/2

€. = .8 5 f(f ) ] (30)
upy  Hpp |Orplxg

Pe = pe eII(xs)

°11  Prr %

The normal shock relations connect state I with state II and are given
here for completeness:
2
pII 2Y MI - (Y"l)

Py y+1
, (31)
P (v-1) M2 + 2

The state I is connected to state p by equations analogous to equation
(30).

pi(x) M [oedx) Jare
P, MI(xB) ' op
(x.) (x.) fotx) l1r2
qu ] - MIM 8 I0 s (32)
P P |
po(xg) i} p(x.) o,
Py Py OI(xs)

GI(xs)/Op is given by

3k




¥, 2
Orlxg) Oy 1M, (33)
g % 1 B

If no shock occurs in the duct the state e or any other state x is

related to state p immediately by equations of the form (30). These

equations provide sll the variables at the entrance of the cavity for
all times except for very early times where the quasisteady aprroximation

is invalid.

Keeping in mind that the very short nozzle is considered frictionless,

the variables with the index g and p are related by the following if Mp > 1:

= 1,2
9 /0, =1+ =
= =1 2yv/{y-1)
pg/pp 1+ M, )
pgloy = (14 gk By L) (3h)
og = pp/pp
u = /2

M
o = My (YPp/Dp

If no shock can be found in the duct then Mp< 1, btut a shock may
& still occur in the nozzle. This is the case where Mp is too large to give

a purely subsonic flow in the nozzle. The limiting MD may be computed

p lim
; from equation (27) which also allows & subsonic solution. For any Mach number
1>M >M .. there occurs a shock in the nozzle. The density p_ may

ho) P lim P
be computed from

) -1/2
-1 2 - 2
o, =0, () (att ) [z——m (1 + S )] (35)
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and the temperature Gp is
-1

_ 2
op -es 1+ (y-1) Mp /2]

Together with the equation of state (5) these relations determine the

conditions at state p for this case.

If Mp < Mp 1im the flow in the nozzle is purely subsonic. Experi-

ments suggest that then the pressure loss due to the sudden aree increase
between port end duct must be included. The three conservation equations
of mass, energy, and momentum applied between the station p and the throat

(#quantities) lead to the relation (Appendix A)

-1
=1 [-1 +2y 6o+ V1 - b (y-55L m)] (1%1- - Gye) (36)
-2
=y 2 XLy 2 2
with G Mp (1 + 5 Mp ) (ymp + 1)

#
This equation gives M, and the other variables fellow from

* [ o]
y-1 ¥2.- y/y-1
Pg (1+ 3 M)

p

# R
A Yoz i2yd
e eg(1+ 3 )

©
u
Lo
©

(37)
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The condition P, > p8 may occur and in this case there is back flow
from the cavity to the berrel. This back flow occurs with B, - pg << p,
so that the effect of pressure on the density msy be neglected, i.e.,

p # fn (p). Hovever, the effect of temperature on the density msy have to

be considered.

From equation (21) and conservation of mass and momentum applied across
the discontinuities, there follows for the backward flow in accordance with
Figure 4*

2 _ e(pc - pg)

u
e

2 2 -
1 2
%P—-1>+w[1+&—-n1+ﬂ2] (38)
a a =
e P D

Here @, and ap are contraction coefficients. These are a strong function
of the Mach number with a = 0.62 for incompressible flow (M = 0) and

a = 1.0 for M= 1. ap is also a function of w. For the compressible flow

e
the contraction coefficients have seen set equal to 1. %%

The coefficient f includes losses due to bends as well as the friction

in the duct end is given by
£ = [B/(40)] (K * &) (39)

The pressure at station e" is related to the pressure in the cavity by

P
_ e 2 1 _ 2
Po = P =27 Y [(ae 1)+ l] (40)

with Qd’= Gc,g%”= Pos and where Pen -+ pe, ete., in equations (1), (2), (3).

The later phases of the forward flow maey also be computed using
p # fn (p) but p = fa (g).

= - Lo
u, =20, 44 /0,) (p, - ) e, (olg w) + (1)

0 1 -1
e tot , Lfe de]

2 2 -1 [ 2

* Derivation in Appendix B
**¥For p # fn (g), the assumption p # fn (p) gives incompressible flow.
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1
0 7.t 0 - 2£3/D
L ogax=-ts(eed) (@-2X) a-e” 290 (k2)
6 0 = (0]
g g D g

0

The coefficients ap, o ag, and KF and KB are listed in Table 3.

D. The Inner Problem

As mentioned earlier the solution given in Section III.C is not
uniformly valid in t and fails for smell t. This singular behavior is
a result of loss of the time derivative in the differentisl equation by
the expansion procedure. The nonuniformity occurs near the line ¢t = 0
and in order to investigate this region a megnified variasble T is
introduced. The variable x remains unchanged since the quasisteady
solution behaves regularly here. The dependent variables in the
earlier times are of the same order as for the later times and also re-

main unaltered. Thus,

T =1t/6(¢c) U=u Q=p
X=x P=0p H=nh
A=a

Introducing these variables into the differential equations (17), (18),
and (19) gives

e 30, alay) _

E ey s ex - O

€ ﬂ..,.u_a_ll.’..]_‘. 8_P_=0 \h3)

s(e) oT X @ oX

v 3 e e 8P

€ 3 u_ 9 u 3P _
ey 37 H*rF)+Ugp (H+S5) -y 22=0

where we have dropped the friction and heat transfer terms in accordance

with the discussion in Section II. In the limit € + 0, e¢/6(e) + 0O
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results again in the loss of the highest derivative, while e/8(e) +
when ¢ + 0 leads to a gsolution which cannot be matched with the outer

solution. Thus, we must have

€
+ const. as € - 0 .
6!55

Without loss of generality the constant is taken equal to 1; thus, ve
heve 6(¢) = ¢, and we get the differentisl equations

3 3q _ alau)
3T+ 3K = 0
y U . L 3P _ (Lk)
3 % " Usx P awTo°
3 P 3 v, 9p
ﬁ‘“*g’*"ax (H+2 -5 =0

with the initial conditions
T=0, X>» O0: P = Pi; A= Ai; U=20

, . X <0 P=Pg; A=Ag; U=0 .

f The boundary conditions for T > O are those existing at the edge
.% of the region of nonuniformity.

Xx=0, T>0:  P(0,T) = p(0,t), A(0,T) = a(0,t),

’f: t+0 t+0

u(o,T) = u{0,t)

P t+0

For X = 1 no boundary condition is applied as loung =s Ue > Ae; and for
Ue < Ae the condition is
T>0, X=1: P(1,T) = pc(t) =,
t+0
Lo
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There is no continuous solution satisf) ‘ng these initial and boundary
conditions and the actual solution contains surfaces of discontinuities.
A sclution is readily constructed using shock wave, contact front,
uniform region of flow, unsteady expansion and steady expansion. The
problem is that of a shock tube having an area change at the diaphragm

station.a*g’lo

Figure 5 shows an X,T diagram of the flew in the customery shock

tube notation. Since one is interested in the influx of powder gas

into the cavity one may neglect the gas between shock and contact front,
which iz, of course, the gas (air) contained in the tube at time t < 0,

and is not powder gas.

With U2 = U3 across the contact front we set Ue =0 for T < Ua_l.
In the region 3 we have constant flow properties. Thus,
=10 =1 = -1 e ST -1
U, = Uy = U, = const. for U, " <72 [, 5= - (v-1) R]
where 2R = U + —2— A= Const. (= U,. + == A_.) is the
P Y-l 'p 3 y-1 73

Riemann invariant. The pressure across the contact front is equal so

+ =
that P2 P3.

Pe follows from the shock relation (31). For MS >> 1 we have
2 2

= :i =
Pe/Pi P2/P1 ;+l Ms i (MS' Us/Al)

and rewriting this expression in terms of U2:

U2 8
. 2 y {y +1)
Py/P) = N ) (45)

U2 may be found by numerically solving 8

k1
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& .2y xflyx1) |, 2 y-1 oy |7 y-1
P, {Al) 2g . Ag(o) 2 & (46)

Here, v = 1.4 and the gain factor g is

) 1/2 2+ (y-1) M3, 2y/{y~1)
o8 Frrerred B ’
2 + (y-1) M3,

vhere M,. = Mp from equation (27). Flow varisbles at state 3° are found

from equation (3k4).

ol U, \2 1/y
- re) (2

It is emphasized that counstant flow properties in this region are a
result of neglecting heat transfer and friction and also shock
reflections; actually, these variables depend on Reynolds number, geometry

and time.

The flow properties in the expansion fan depend on T for X = 1.

Thus, for:

-1 -1
[U2 1;—1 - (y-1) R] <T < [U3, 3‘?—- (y-1) R]

we have
_ y-l 2 1
u(1,17) = 1 R* ytl T
2y
=1
- S o} L
P(1,T) = Py [A3’ vy (2R T)] (48)

[ ”
bR D, B



For time

oo, -1 o
[U3, 5 (yl)R] <T <

the flow properties are constant

{]
[+
L]
(=]

A
3
~
H

-
3
~—
1]
=
f
b=
>

u(1,T)
(h9)

]

g
I

Y

P(1,T)

E. The Composite Solution for the Flow in the Duct

The enelysis described so far has yielded the first terms of two
complementary asymptotic expansions. In general the two asymptotic
expensions velid for small and large times respectively have a domain
of overiap, in which both are velid. This is the case whenever Van
Dyite 's"asymptotic matching principle" is valid. This principle applied
here amounts to setting the first term inner expansion of the first
term outer expansion (the outer expansion rewritten in inner variables
and expanded for smell € truncated to the first term) equal to the
first term outer expansion of the first term inner expansion. This
principle leads, for the velocity, to the condition

U(X,») = u(x,0) (50)
with corresponding expressions for the other dependent variables. We

note that from equastion (49)

U(1,») = Ue(w) = Ug. = Up

For inviscid and nonheat-conducting flow the solution to equation

(21) is trivial and gives

u(x; t)invisc = up(t)invisc = ue(t)invisc = const.

where the constant is a function of the parameter t.
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For t = 0 we have

u(x,0) (0) zU(L,w)

invise up invisc

go that the matching condition is fulfilled for inviscid flow. In this
case the two solutions may be combined to yield one composite solution,
vhich then is uniformly valid over the whole range of t.

Using the multiplicative composition of reference 11, one finds the
composite expansion as the outer expansion multiplied by a correction
factor consisting of the ratio of the inner expansion to its outer
expansion.

1,T)

- U
ucomp. - u(l’t) U l,°° (Sl)

Since in the present case the outer solution has been computed on
the basis of viscous heat-conducting flow, matching of the inner and
outer solutions is not immediately possible for x > 0. For x = 0 and
supersonic flow at the entrance of the duct, matching of the inner and
outer solution according to equation (50) is effected; for subsonic flow
matching is not possible, reflecting the fact that the disturbances due
to friction now affect the entrance condition in the duct. Failure to
match according to (50) of course s;mply represents the fact that the

inner and outer solutions are different approximations in the parameter 1/Re.

Formally the composite sclution of the form (51) may be used here
also. The effect of friction and heat transfer on the velocity may be
assumed accounted for in the following way:

u(1,7) ., = 8 U(1,T) (52)
vhere the factor B will depend on Reynolds number, geometry, Mach Number

and pressure ratio and on time. The composite solution will be

Soomp. , o = B(L:t) Uﬁ%if£§) Béfi§) (53)

For t/e < (Uzs)—l , U = 0 because Ue = 0. This time

comp.

t=¢7 (ﬁge)-l =1 (528)_1 is of course the delay time between rise of
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pressure at the port and rise of pressure in the cavity. This time has
been observed experimentslly; it determines é, the average value of 8
in the range 0 < ¥ < ¢ (ﬁaé)-l . The experimental values of B scatter
between 1 and 0.5.

For t = » one can find from the matching condition, when applied to
viscous flow, B (=) as

8 (°°) = u(l,O)/ U(l,‘”),

end this leads to & numerical value of R = 0.35. Since B(%t) is

expected to vary quite rapidly near t = 0, it is assumed that at the end
of the first intervel, i.e., at € = 2 (ﬁeé)—l, B has essentially reached
the value for t + =; thus we set the ratio B (t/e) [ 8 (=) = 1.

The ratio B (t/e) /8 (=) can also be considered an adjustable pa-
rameter with which the computation could be adjusted so as to give best
agreement with experiment. This is not done here siﬁce this procadure
could disguise other phenomena. It is not possible to correctly account
for the friction and heat transfer at the very early times, as has been
pointed out before, and some sort of plausible assumption has to be
made. The basic difficulty is that the equations (13) and (1k4) with
the quasisteady friction and heat trensfer coefficients are not appli-
cable in this early phase; and the treatment of this problem, say, by
the method of characteristies would of course not remove this difficulty.

With the assumption that the viscous correction factor for velocity
B(t/e) / B(») =1 for t > 2 (Ueé)"l and that the corresponding
correction factors for the other veriables are also approximately unity,
che effect of friction appears only in the delay time ©t = 2 (ﬁeé)"l s
where it can be observed experimentally, and in the other interval

boundaries, where it cannot be directly observed.

The composite solution in the appropriate intervals is then

L6
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for & (0,8) T < <k /[0, (BY - (v-1) Rl

2
= s Ty (XL om w2 By s -l (54)
Ueomp, e u {23%) (Y“"l 2R + -ty E) U3,

ror T/ (5,5 - (v-DR1B<t<E/ (0.5 - (1R B

-

u =
comp, e

=1
——
ol
o

o+
S

tor 1 /(0. (X-Zl) ~(y-1) RIB<E <o .

It has been assumed here for simplicity that 8 for the Riemann in-
variant is the same as B for the velocity. This assumption is quite
acceptable within the assumptions made already and can only result in a
slight shift in the interval boundaries. It should be remembered that
the time after which the effect of the first phase has completely died out
ist=12/ [ﬁ3,(3%5)- (y-1) R] B, end that this time is still smell

compared to T.

The composite solution for the pressure in the corresponding intervals

is:

Pcomp, e pe(z;t) Pl/P3‘

pcomp, e pe(lgt) P2/P3' (55)
55

= q 2y/{y-1)
- cs D) [ ool
Poomp, e pe(z’t) [ 5 Y (2 R T ]
3
pcomp,e = pe<2’t)
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Similarly for the sound speed

acomp., e = B (2;%) Al/nt.
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Boompe s € = 3 (55E) [if-i (2 & -

-

8'cc>mp., e =a {2;t)

The composite solutions given by equations (5h4), (55), and (56)
provide ﬁe’ ie’ and Ee for equations (1), (2), and (3). The other
dependent variables at the cavity entrance (location e¢) may be computed

from these quantities.

IV. COMPARISON WITH EXPERIMENT

A comparison between theory and experiment was made on the M-16
Rifle. Input data for the theoreticel computation consist of the
measured time variable pressure in the barrel at the port location, the
physical properties of the powder gas, and the dimensions of the gas
system. The physical properties of the powder gas are listed in Table

1. They represent estimates based on the interior ballisties*

Table 1. Properties of Powder Gas

Ep = 1.7h x lO3 (m/sec)2/°K

Ev =1.38 x 103 (m/sec)2/°K

B =0.831 x 10" (kg m)/(sec> °K)
- _ 3 210

Rgas = 0.400 x 10” (m/sec)“/°K

Y =1.26

Y = 1.2k

" = 1.80 x 10°° kg/(m sec)

¥Supplied by Mr. R. Geene, of Interior Ballistics Laboratory
48
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computation of the composition of the powder gas. The dimensions of

the gas system are summarized in Table 2.%

Table 2. Dimensions of Gas System

Iy = 1.269 x 107" w2
Ke = 0.6605 x 107° n°
R, =0.4363 x 107 n°
Ep = 0.6605 x 1072 n°
. =0.6533 %107 n°
b = 0.2900 x 10 2 m
2 = 0.3600 m

ﬂé = 0.4366 kg

f; = 0.1442 x 10°
ﬁéi = 0.T600 x 1070 n3

2

iBE = 0.7600 x 10 " m

0.6158 x 1072 n

*By
(e/D)

®

0.015

Since it is necessary to specify another variable of state at the

port, the temperature at the port was computed according to:

o(s)/0(0) =[ pe)/pl0)] (V177 G
Here ; is not the ratio of specific heats, but an exponent determined by
fitting the temperature variation, known from the standard interior
ballistic treatment of the weapon, to the pressure variation according
to equation (57). The standard interior ballistics treatment breaks
down after the bullet has left the barrel; the temperature distribution,
however, is needed for the computation after this time, and is extra-

polated according to equation (57).

*Supplied by Mr. M. Werner of Interior Ballistics Laboratory.
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Probably the largest uncertainties lie in the various loss factors.
For the friction factor the value for clean commercisl steel pipe has
been used.lz Compressibility effects on the friction are apparently
quite small, at least for hydraulically smooth pipes where Frossel? did
not find any dependence on the Mach number of the flow. For rough pipes
such as the commercially clean pipe used as duct in the M-16 rifle,
(relative roughness €/D = 0.015) the dependence of the friction factor
on Mach number is probably more pronounced, and will result in a slightly
smeller friction factor. Since during the time T the flow in the duct
ranges from supersonic to subsonic and incompressible flow, the frietion
factor could be introduced as depending on the Mach number. This has,
however, not been done; the friction factor is assumed to be constent
at the value for incompressible flow. It mey be mentioned that the
experimental work2 was conducted with a used rifle showing evidence of
deposits in the interior of the duct. X-ray pictures of duets in the
M-16 rifle show indeed substantial amounts of deposits depending on

13 The deposits are so located as to

powder type and usage of the rifle,
cause little additional resistance in forward flow where stagnation
pressure is high, but in the backward flow they may cause a considerable

increase in losses,

The losses due to bends are taken into account by loss coefficients
as 1S done in incompressible flows. The lcss coefficients are taken
fram reference 12, The losses apply to miter bends, which are most
rgpresentative of the bends in the gas duct system. Again, compress-
ibility effects probably tend to decrease the losses slightly.

The ares reduction at the port has been treated as a frictionless
nozzle for supercritical pressure ratios and as an abrupt area change
for suberitical pressure ratios as is explained in Section III. 1In the
Addendum the analysis has been extended to include treatment of the area
reduction as an abrupt area change even for the case of supercritical
pressure ratios. In this case supersonic flow cannot be reached in the
duct. It is not possible to decide which of the two types of flows is
actually established, because, as will be shown, the effect is easily

obscured by changes in the friction factor.
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For incompressible flow the area reduction as well as the sharp
edge entrance causes g decrease in mass flow which is accounted for by

contraction coefficients. 12,1k

Table 3 gives a summary of all ithe loss coefficients used In the

computations,

Table 3., Loss and Flow Coefficients

a, = 0.62 KB = 5,04
ap = 0.6k KF = 6,95
ag = 0,62 f = 0,02h1

Figure 6 shows a comparison between computed and experimental2
pressure variations with time in the bolt cavity. It is seen that
agreement tretween experiment and theory is quite satisfactory. The
theoretical pressure is rising somewhat more slowly than the experi-
mental value. This could be due to a friction coefficient somewhat
too large in the early cumpressivle phases of the flow. However, the
fast experimental rise could more plausibly be explained by the fact
that there is a component of dynamic pressure, resulting from the gas
motion in the barrel itself, acting on the port, thus effectively in-
creasing pg; this would result in a larger influx in the bolt cavity,
giving a correspondingly faster pressure rise. Indeed, this is sug-
gested by the fact that barrel material is "washed out" downstream of
the bore hole comprising the port. This same mechenism would also re-
duce the backward flow since the effective pg is larger than indicated
by the static pressure measurement. This is also borne out by the
comparison, It is seen that the predicted pressure decreases faster
than the experimental pressure; this is caused by too large a back flow.
(See marker on Figure 6.) As has been pointed out above, the resistance
due to deposits is also expected to be larger in the tack flow than in

the forward flow, and this has not been accounted for in the model.
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2.0 NOZZLE AT PORT
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- \* FLOW
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Figure 6. Comparison of Experimental and Theoretical Bolt Carrier

Pressures for M-16 Rifle (Round 52)--Nozzle at Port
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Th. measurements were made on a recoiling gun. This means that the
piston displacement EB is measured from an acceleratezd reference system.
As a result there is an apparent force on the bolt carrier which opposes
the bolt carrier motion. The measurement of gun motion indicates that
the gun accelerstion has dropped to nearly zero when the pressure starts
to rise in the bolt cavity, so that only the early part of pressure
history could be affected. It is worth noting that the net effect of
the acceleration would result in a faster pressure rise than without the
acceleration. The fast experimental pressure rise could indicate that
the gun is still accelerating when the pressure starts rising in the

cavity.

In this connection it should be mentioned that in the numerical
computation the friction forces & on the bolt carrier were assumed zero.

These are indeed expected to be small compared with the inertia force.

The venting area has been assumed to be the nominal area of the
venting holes. Inspection of a number of guns indicates that this area
may not be "cleared" completely by the bolt due to manufacturing toler-
ances, This would affect the tail of the pressure curve only and will

not affect the motion of the bolt ~arrier.

Figure 7 shows the comparison of the experimental pressure trace
with the computstion where the area change is treated as a discontinuity.
The computation based on the friction factor f = 0.0241 (same as in
Figure 6) gives a somewhat lower pressure, but decreasing this friction
factor by 25% gives essentially the same curve as shown on Figure 6.
Since the friction factor is not believed to be known to better than
25%, it is not really possible to make a chcice between the two modeis.

V. CONCLUSION

The analysis presented here gives the first term of an expansion
in the paremeter ¢, which is the ratio of acoustical transit time to
the characteristic time of pressure veriation impressed on the flow in

the actuation mechanism of the automatic weapons. Automatic weapons, by
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204 AREA DISCONTINUITY AT PORT
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Figure 7. Comparison of Experimental and Theoretical Bolt Carrier
Pressures for M-16 Rifle (Round 52)--Area
Discontinuity at Port
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necessity, are designed so that this parameter is smeil in order to
assure qQuick responsive operation of the extracting and loading mechanism,
Thus, although this analysis has only been tested for the M-16 rifle, it

is expected to apply to other weapons and weapon systems also.

Most of the automatic weapons actually have considerebly smaller
values of e because the length of the duct is very much shorter than it
is the M-16 rifle and many weapons have no duct at all.15 For these
weapons the present anslysis is also applicable, if the inner solution

is completely discarded and the flow is treated as frictionless.

An spproximate treatment for the M-16 rifle is obtained when the
volume of the duet is added to initial volume and the inner solution is
discarded. The heat lcsses due to heat transfer in the pipe have to be
considered and may be accounted for glcbally in equation (3). This is
the epproach used in reference 2, 1In this treatment the initial
condition is not fulfilled and the solution is not valid for smell times;
however, bolt velocity and bolt trajectory, which depend on integrals

of the pressure distritutions, are well predicted.

Most interesting would be the extension of this analysis to include
second order terms. The characteristic time T does not appear explicitly
in the first order solution; however, it should not te concluded that T
is an "ertificial" time. Actually, T will explicitly occur in the second

approximation.
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ADDENDUM

TREATMENT OF PORT AS AREA DISCONTINUITY

The assumption used in the body of the report treating the ares
constriction at the port as a frictionless supersonic nczzle is an
artifice, especially since conditions ere encountered which require a

standing shock in the nozzle.

It may be more appropriate to treat the area constriction sg an
area discontinuity. In this case supersonic flow cannot be reached in
the duct., Instead Mp is known from the integration of equation (24).
Then the quantities at the throat (¥ quantities) may be computed from

*
equations (36) and (37). Equation (36) is only appliceble if p < Parits
M

*
vhile for p 3 Porit we have M = 1. It may be shown that the latter

condition 48 equivalent to the condition

rY*ri

Yt \ e S

where G is given as G(Mp) with equation (36). This inequality is
always fulfilled for Mp = ). Consideration of momentum
* ¥ # 0 # P
All+yM + A ~-4)= A [1+yM
PA[L+yMT]+p( o ) P, Ay [1+y . ]
#
thez shows that p+ 0 for M = M,‘J =1; i.e., the pressure on the surface
#
Ap - A is zero. (The control volume for application of the momentum

equation is shown in Figure 8.)

The inner solution also has to be modified to account for the
discontinuous aree change. If the flow between throat and station p
is considered steady, then Mp = 1 and the shock velocity follows from

solving numerically

-2
2 .2 i 1 He , M e 07T
= oy L Y=y | s s i
p,(0)/p; = w [§+l M, ?+1] [( 2 | R ag(O)]
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CONTROL VOLUME

Figure 8. Sketch for Compressible Flow Treatment
of Area Discontinuity at Port
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The inner solution is shown in the X,T diagram of Figure 9. The
relstions (45), (47) and (48) are valid here also. The conditions at p
now follow from (37) consistent with the assumption of steady flow
between throat and station p. It is noted that the expansion fan now
"reaches back" to station p and the inner solution affects the flow in

the duct even for T + «,

Ehe condition ﬁ = Mp = 1 also mgkes the pressure on the ares
Ap - A equal ‘o zero, as has been noted before. It is worth pointing
out that this steady flow condition is reached as the limit of the
unsteady flow. The unsteady flow would result from the reflection of
the expansion fan from the surface Ap - K; and for X < Ap the
reflection will be similar to the reflection of an expansion from e
solid well. I% is well known that vacuum mey result on the wall for a

sufficiently large pressure ratio through the expansion fan.
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APPENDIX A

DERIVATION OF EQUATION (36)

From the conservation of mass

% ¥ ¥ % 1/2
AM= A M (8/6)
P Py Ay My (878,

and momentum

* % * * ¥
pA(L+y¥)+phle-d) =5 A (1+y Mpe)

there follows
* 3* #*
e,/ (85 )12 (w+ v 1) =1+ ¥  ?

*

Replacing e/ep by the energy equation (37) and solving a resulting
*

quadratic equation for M lead to equation (36).
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APPENDIX B
DERIVATION OF APPROXIMATE FLCW RELATICNS

The relation (38) for the flow velocity u at stetion " (Figure 4),
where the fiuid again fills the total cross—secticnel ares of the duet,
mey be derived by first considering that the flow obeys Bernouiili's
equetion from staticn ¢ to station e'. Thus

= ous. /
c - Pe; - pue,lz (B l)

Between station e' and e" the spreading out of the jet cccurs under
losses, andé application of conservation laws for mass and momentum
leads to

Per =Py = P uin (1 - (fe)] (B-2)

where 8y i3 the contraction coefficient at station e. Combining (B-1)

and {B-2) and applying conservation of mass gives:

Po Lo 1 2
P = Pw = T (a;- - l) + 1 (B-3)

Between stations e" and p integration of the momentum equetion (21)

yields
7
( i p2 u2 f 1 (
u (v -u,)+ - + = dx =0 B-4)
pP p ‘Up e Pp Peu .5 0
0.
Combining {B-3) and (B-4), noting that Pp = P =00 = const., leads to
2
P,y 2 ry
_ "o e 1 Lo
pc - pp = = (“e l) + 1 + -5 (B-5)

The pressure difference between stations p and g follows again by

applying Bernouilli's equation between stations p and p' and the con-
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servation laws between »' and g. Thus:

- S
o_ U 24

o = BB .48 S ¥ , £).

B, - 7, . 1-u [1+ (a 1,) ] 1 (-6)

Combining equations {B-5) and (B-6), noting that u = ué;bébéﬁsé Py, =
p,» 8lves equation (38). } )
Equation (k1) cen be derived in an analogous manner. First, the

pressure difference between stations g end g" (Figure k) is

2 2

P, G n
- = BB i, _ _A
e > “ “g 1) +1 ] (B-7)

The pressure difference between stations g" and p is

-3 2, -1
-p =0 u w o -1 B~8
Pg" Pp o g 8" ) ) ( )

so thet the presswre difference between stations g and p is

2 2
p_u
-y = B_D. f (EL, —w) _ 112 "
g
For the pressure difference between stations p and e
’ L ue2 °e2 £ L L -
Pp " Be T B Yy (1 - (pe/pp)] + o —— = ax (B-10)
2D
0

From (B~9) snd (B-10} one obtains equation (41), noting that for
p # fn (p)
1/p = 8

tot/(pg 98)-
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