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THE GAS FLOW IN GAS-OPERATED WEAPONS

ABSTRACT

In gas-operated weapons, the time-varying pressure in the barrel is

fed through a duct into a cylinder. The piston in the cylinder is

displaced by the pressure and operates on a mechanism which extracts

the spent cartridge and completes the next loading cycle.

The theory presented here predicts the pressure history in the

cylinder and the motion of the piston for a given pressure and

temperature history in the barrel.
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LIST OF SYMBOLS

NOTE: 1. Dimensional quantities are indicated by bars; non-dimension-

alizing factors are given in Equations (16).

2. Functions p, p, h, and u first denote solution to Equations

(17), (18), and (19); then denote solution to Equations (21)

with the subscript "" dropped (outer solution).

Ac' Xe' cross-sectional areas of cavity, cavity entrance, and

vent, respectively [m2]

Amn' A areas at throat and exit of port, respectively m 2

S([4Ae/~e /2) cross-sectional diameter of gas tube Em]

friction force in gas tube flow (Eq. (10)) [N /kg]

H (= h) enthalpy per unit mass in inner problem [Nm/kg]

a (1/2) f p p u [Nm/(m 2 sec deg K)]
p

Yl 0 =forxB <x'B, 'rv

2 (y+l)/[2(y-l)]
= E1I forxB>xB -rv

K2  0 for -r

(3y-l)/[2(y-l)]

= El for xB > 'xBv - rv

, KB resistance coefficients due to friction and bends,

respectively (Eq. (39)).

M Mach number (= u/a)

M s rUs

Mmass of bolt carrier [kg]
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LIST OF SYMBOLS (CON'D)

(= p) pressure in inner problem [N /m 2

Re Reynolds number (based on cross-sectional diameter of gas tube)

A w-U3 + [2/(y-1)] A3 "" Riemann invariant [i/sec]

Ras effective gas constant for powder gas [Nm/(kg deg K)]

T -t/6(e)--time variable for inner problem [see)

iU (= ui) gas velocity in inner problem [m/sec]

Us velocity of initial shock wave in gas tube (inner problem)[m/sec]

53
Vc volume of cavity [m3 ]

Vci c 0)

(= i) distance variable for inner problem [m]

speed of sound [m/sec) (= 1yP/ 2)

; specific heat at constant pressure [Nm/(kg deg K))P

v specific heat at constant volume [Nm/(kg deg K)]v

e (- v 5) internal energy per unit mass [Nm/kg]

f friction factor (= f/f2u 2). (Eqs. (13) and (39))

g gain factor (Equation (46))

henthalpy per unit mass [Nm/kg]

thermal conductivity of powder gas [(kg m)/(sec3 OK)]

length of gas tube [m]

mAe pe a e [kg/sec]

pressure [N/m 2 ]

pci =Pg [2/(-y+l)] -Y/(.y-l)
Pcrit -P

q heat transferred in duct flow [Nm/(kg sec)) (Eq. (I4))

r radius of vent cross-section [m]

V
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LIST OF SYMOLS (CONTID)

t time tsec]

u gas velocity rm/sec]

VB velocity of bolt carrier with respect to bolt [im/sec]

X distance from port in gas tube tm]. (coordinate in Equations
(17), (18), and (19)

XB displacement of bolt carri-r [m]

x maximum displacement of bolt carrier [Im]

Rv location of center of vent [m]

ae contraction coefficient--backward flow from cavity into duct

p contraction coefficient--backward flow from duct into port

a g contraction coefficient--forward flow from gun barrel into port

v U(XT)v.sc/U(XT)invisc

average value of 0 in interval 0 < t < '/U 2 visc

y effective ratio of specific heats of gas

Y exponent in pg, 9g relation (Eq. (57))

A
Y ratio of specific heats for gas initially present in gas tube

( 1.4 for air)

8(c) gage function for inner problem time variable

a/ a (O) --asymptotic expansion parameter

C/D relative roughness of duct (Table 3)

temperature [deg K]

htot total temperature in gas tube [deg K]

(= a) velocity of sound in inner problem [m/sec]
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LIST OF SYMBOLS (CONVD)

viscosity coefficient of powder gas [kg/(m sec)]

p density [kg/m3 ]

2. entropy per unit mass [N rn/(kg deg K)]

characteristic time of pressure variation at port [sec]

2 1 2
wall shearing stress in gas tube [N/rIm (= 7 f p u

I forces on bolt carrier [N]

(= ) density in inner problem [kg/m 3]

Subscripts

c bolt chamber

comp,e composite solution at entrance to cavity

e entrance to cavity

g gun barrel at port station (stagnation conditions)

i initial value (t < 0)

p port exit (entrance to gas tube)

s shcck wave

tot total

v vent

w wall of gas tube

1,2 first and second approximation to flow variables in gas tube,
Equation (20)

1,2,3,31 regions of flow in X,T diagram (Figure 5)

1,II supersonic and subsonic values of flow variables at shock
wave (when present) in gas tube
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Superscripts

- dimensional quantity
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I. INrRUDUCTION

In gas operated weapons or in control systems a high pressure, high

temperature supply of gas is used to operate certain mechanisms. The

crucial problem presents itself in the following form: At a given point,

A, in the system, pressure and temperature are prescribed as a function

of time due to the inherent operation characteristics of the system.

This pressure is comunicated through a duct to another point, B, in the

system where the gas Is used to operate a mechanism; for example, extract

a spent cartridge and impart enough momentum to the bolt so that the next

round may be positioned in the chamber. It is desired to predict the

pressure an d other variables at point B as a function of time. The mag-

nitude and time history of this pressure can be crucial to the whole

operation cycle. In the example cited above, the pressure pulse rust

not cause extraction at too early a stage, when the cartridge is still

pressed to the wall of the chamber by the pressure in the chamber; on the

other hand the pressure history must be such that sufficient momentum is

transferred to the bolt to operate the weapon. The pressure history is

coupled to the rate at which work is extracted at B from the gas and also

to the nature of the flow of gas between A and B. In this report an

analysis is developed which describes the time history of pressure and

temperature at point B for prescribed condition at A in the practically

important case wl re the characteristic time of the pressure pulse at B

is large compared to the time an acoustic signal needs to travel from

A to B.

The analysis is developed on the specific example of the M-16 rifle

where time varying pressure is fed from a port in the barrel (point A) to

the bolt cavity (point B) wherethe pressure is used to unlock the bolt,

extract the cartridge and supply sufficient momentum to the bolt carrier

so that the next loading cycle can be completed. The analysis applies,

however, equally well to other gas operated weapons and should find

application in rocket control systems where high pressure gas is used to

operate jet or surface controls.

Preceding Page Blank
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11. MI THOD OF APPROACH

For purposes of orientation, Figure I may be consulted. This shows

a design drawing of the gas system of the M-16 rifle. As mentioned

before, hot, high pressure powder gases are extracted from the barrel and

fed into the bolt chamber by a duct. The pressure variation with time at

the port is determined by the gas flow in the barrel. The mass flow

through the port is small cumpared to the mass flow in the barrel itself,

and the effect of mass removal is negligible on the pressure history at

the port. Thus, the pressure and temperature may be considered prescribed

and known, say from an interior ballistics analysis of the weapon. The

hot gases expand in the bolt cavity, thereby accelerating the bolt carrier,

C. Unlocking of the bolt, D, is accomplished after the carrier has

traveled a certain distance, at which distance vent holes are laid free

sad the gas in the bolt carrier expands to atmosphere. At this distance

the bolt carrier engages the bolt and cartridge, and extraction is

accomplished by transferral of energy and momentum of the carrier to the

bolt and cartridge. The residual momentum and energy of the bolt carrier

is sufficient to complete the cycle of cocking the weapon and positioning

a new cartridge in the chamber. It is the object here to predict for a

given pressure and temperature at the port the motion of the bolt carrier

referenced in time to the rise of pressure at the port. The motion of

the bolt carrier is governee by the pressure and temperature in the bolt

carrier cavity.

It is natural to divide the analysis into twc parts. The first is

the determination of the "space averaged" pressure and temperature in

the bolt carrier cavity for given flow conditions at the entrance of the

cavity. In general, these depend on the conditions in the cavity. It

will be shown in Section III.A that conservation of energy and mass

together with the equation of motion of the carrier, which here takes the

place of conservation of momentum, uniquely determine the conditions in

the cavity and the motion of the carrier. The second part considers the

flow from the port to cavity. The unsteady flow in the pipe is quite

complex and is indeed not even amenable to numerical computations without

16
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considerable simplifications. Such a simplification is offered by consid-

ering the flow to be one-dimensional; i.e., flow variables are assumed

constant over the cross section of the duct, so that the flow variables

depend only on x, the distance along the axis, and on time. Implicitly,

this assumes that conversion of frictional work to heat and conduction

of heat occur instantaneously and uniformly over the entire cross section.

It is usual to introduce friction (and heat transfer) even in time

dependent compressible flow according to the practice in hydraulics by

means of a friction coefficient f defined by F = 2 f a2/ where T is the

friftion force per unit mass. The friction coefficient f, however, is

not known in unsteady turbulent flow and its prediction would indeed

require the solution of the full problem since the coefficient of friction

will depend on the entire flow history. Customarily, the friction co-

efficient for steady flow is, therefore, used and the few experiments

done indicate this to be a good approximationi as long as no separation

occurs. However, it is well to keep in mind that this assumption is

satisfactory only for nearly steady flow.

It will be shown in Section III.C that the flow here can be reduced

to a quasisteady flow except for the very early phases when the flow is

being established. For the quasisteady regime, the frictional effects

may be justifiably included by using the steady friction coefficient.

For this phase of the flow, pressure and momentum losses due to sudden

enlargements or constrictions are included in the analysis within the

framework of one-dimensional quasisteady flow. Losses due to the various

bends in the duct can, for large T of the duct, be included by loss

coefficients. These losses will be treated as a distributed resistance

and accounted for in an overall friction coefficient.

For the very early stages, the flow is truly unsteady and it is not

possible to include the frictional effects using a steady friction

coefficient, nor is it possible to consider the bends in the tube as

distributed resistances. This early stage involves a strong shock,

which actually starts the flow; this shock will be reflected and dif-

fracted and also influenced by friction and heat transfer in a complex

18



way not accessible to analysis at this time. The first stage will,

therefore, be treated entirely without friction and discarding all

possible reflections, the only justificntion being that this first stage

is of very short duration compared to the total flow time. As will be

shown in Section III.D , the first stage essentially introduces a delay

time between the pressure rise at the port and the pressure rise in the

cavity. The net effect of neglecting friction and shock reflections in

the first stage will be to predict a delay time somewhat too small.

However, this delay time has been observed experimentally in numerous
2

tests and a correction to the theoretical value is possible, thus

accounting for the observable effect of friction and shork reflections

in the first stage. The gas wil 1 be considered a calorically and

thermally perfect gas; thus, the ratio of specific heats and the gas

constant will be considered constant and given, say from the interior

ballistic analysis of the weapon. Because of the high pressure and

density the assumption of equilibrium for the gas phase of the propel-

lant can be safely made; however, there is nonequilibrium between the

solid and the gas phase of the propellant in the barrel itself and also

in the duct. Within certain temperature and density ranges it is always

possible to approximate the real gas behavior by an ideal gas behavior

as long as the gas phase is in thermodynamic equilibrium. This approxi-

mation is commonly made in the standard interior ballistic treatment,

and performance predictions based on this assumption are apparently in

good agreement with experiment. Therefore, assumption of equilibrium and

indeed perfect gas behavior is expected to be adequate also, since the

primary purpose here is to clear up the fluid dynamic aspects. Correc-

tion factors accounting for real gas effects may be applied to the re-

sults found on the basis of perfect gas behavior as shown, for example,

in reference 3. It should be mentioned that a rigorous nonequilibrium

treatment of the gas flow is not possible because the kinetics of

powder gas reactions are not sufficiently understood.

According to the assumption made above, the analysis will be based

on the simplified geometry shown in Figure 2. The area restriction at

19
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the port will be treated as a supersonic nozzle of zero length when the

flow into the duct is supersonic,as is indicated on Figure 2.* The duct

is considered a straight tube of constant inner cross section, with all

losses resulting from bends and sudden area changes taken into account

as discussed above.

Heat transfer from the gas to the wall is assumed to leave the wall

temperature unchanged; this assumption allows uncoupling of the fluid

dynamic problem from the heat conduction problem in the duct, 1nd is a

good one for the small Fourier-numbers of interest here.

III. ANALYSIS

A. The Flow in the Cavity

The average properties in the cavity are determined by the conserva-

tion equations of mass and energy and by the equation of motion of the

bolt carrier.

Let m -e P e ()

be the mass flow into the cavity, where A is an area* -, the gas density

and the a the gas velocity, and where the subscript designates the loca-

tion of these quantities in accordance with Figure 2. Conservation of

mass gives

-- (V i+A Y) + Pc vB + (Y k )2 (2)

The first term on the right side is due to the change of density in time

in the cavity; the second term is due to the change in cavity size; and

the third term is the term due to venting.

Accordingly, K, = 0 for B < Xv -Y., and K, =[2/(y+l)IV + l ) / 2 (y - 1 )

for R - yv , where cBv and *V are the center location and radius,

respectively, of the circular vent.

*The case where the port is treated as an area discontinuity is dic-

cussed in the Addendum.

X-*Dimensional quantities are indicated by bar.
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Here, it has been assumed that Pc is always much larger than the

ambient pressure, so that venting occurs with sonic velocity. Mass

losses due to leakage may be included in this equation by an obvious

extension.

Heat transfer to the wall of the cavity may be neglected, since the

average gas velocity in the cavity is small so that convection is

negligible.

Conservation of energy may then be written as

=-- +1- -2 2 -

e tot d c c 2 P h + c P Bdt
Kec R v (15 c-PCll + K 2 Vc (Y Pc/ l I 1 +  )

2 c Ic )

The terms in the square bracket are the thermal energy of the gas in the

cavity, the kinetic energy of gas in the cavity and the work done by the

gas in the cavity. The three other terms are the energy losses due to

venting. For the constant K2 we have

K2 = 0 for XB < XB - =v 2 (/(y+I)](ZY-)/2(Y-) for B > XBv- r

For the circular vent

Av -(xB xB.) [r. (xB xBv)1 +v sin [XB y- 2 Bx <xv +

for XBv -rv <xB -x v

S -2 for xAv = v By v-B

The volume V of the cavity is given by:

c Vci B

22



The term m Rt is, of course, the flux of enthalpy into the cavity,
e tot

where

h +e + . 2/2

e tot e e e e

The equation of motion for the bolt carrier is given by:

d B -1 -1B =pc Ac MB + MB 
(4

dt

dxB /dt VB

(D signifies external forces on the bolt carrier, such as friction on the

bolt. At the end of the bolt carrier travel vB and dvB/dt are set equal
B B

to zero.

The conservation equations and the equation of motion of the bolt

are three equations for the five unknowns, xB, PC' Pce 6c and ec

The problem is rendered complete by the addition of a thermal and

a caloric equation of state, thus:

ec v and RgsP6(5)
v gas

B. The Flow in the Duct

The flow in the duct is a mixed initial and boundary value problem.

Using the usual notation for pressure, velocity and sound velocity, p,

u, a, respectively, the initial conditions are

0; x > 0 :p(x,O)P ; . ; (,) = 0 (6)

<0 : 0 (Ro) :g(0); a (Ro) =a (o); U (,0) = 0
g g

For u > a the boundary x = 0 is spacelike and three input data at x = 0
p P

determine the solution for nonisentropic flow. Thus,

E > 0, R = 0 i) = Po ) E)p pi = ) = p u , = (E) (7)

23

*



For %< the line R = 0 is timelike corresponding to the fact that only
p p

two characteristics enter the region of interest. Thus ,two data along

= 0 are required:
> 0, R = 0: p(O,i) = ppD(t), u(O,E) = Up( M (8)

p p

By virtue of the fact that the nozzle length is very small, the

conditions at the exit of the nozzle (subscript p) follow the conditions in

the barrel (subscript g) instantaneously.

At x = !-no boundary condition can be prescribed for u > ae

corresponding to the fact that no characteristic reaches the space x <
for d7t > 0. For ue < a the characteristic given by dx/dt = u - a

e

reaches into the region x < 9 and one condition at R = 9 must be prescribed.

Thus,

' >0, i ~ (M,) = P_ a M (8a)

Subject to the above initial and boundary values the following set of

equations describes the one-dimensional flow in the duct.

Continuity:

+ ) 0  (9)

Momentum: D = o (90• ' D 1 = (lO
D + 2Zx (10)

Energy: - 2

1_+ q = u_+ i), or (11)

+ : (na)-2
Dp

Instead of the energy equation the entropy equation may be used:

-DE
- = u F + q (.12)
Dt

Here, D/Dt E 3/At + u a/zX is the material derivative.

24



These equations are complemented by the equation of state (5). The

hydrodynamic friction force F is introduced as

S ,W _ w  2 (1
F = -(13)

P id (2 /4) di 5D Bwith - 1 -2

-- T w f p u , the wall shearing stress.
w2

The amount of heat transferred per unit time per unit mass is:

Reynolds analogy for turbulent flow gives:

fc Pu

2 (15)

This relation is not strictly fulfilled for turbulent flow in a pipe

because of the effect of the laminar sublayer. Here, it is assumed that

this relation holds strictly; this amounts to setting the recovery factor

equal to unity.

The above system of equations is hyperbolic and has the character-

istic directions

d/dt + -a and dx/d .U

the latter being the differential equation for the particle path and the

former the differential equations for the other two characteristic

directions. The compatibility conditions may be found by standard

techniques and are given in many textbooks, see for example reference 4.

Thus the flow in the duct may be computed by the method of character-

istics. However, such a computation for the present case is very time-

consuming at best. Since the acoustic transit time !/a is very short

compared to the total duration T of the flow, the computation has to be

extended to large times and this will lead to an appreciable error unless

the grid size is very small. It should be pointed out that character-

istic computation for nonisentropic flow is considerably more complex

25



since the particle path has to be computed together with the two other

characteristics. A further complication arises from the fact that the

boundary conditions are such that the solution will not be continuous

throughout, but shocks will appear imbedded in the flow field. The

method of characteristics is not capable of handling the appearance of

shocks without appreciable complications.

The analysis proposed here specifically exploits the fact that the

acoustic transit time is small acompared to the operation time r. This

is the situation in gas operated systems discussed so far; and the

analysis is applicable for situations where the numerical computation by

the method of characteristics becomes impractical.

With the . the characteristic length dimension, T the character-

istic time and a (0) the characteristic velocity the following non-

dimensional variables are introduced.*

1) E = t 9) F = ag2(O)F/j

2) R = xi 10) = -a3 (O)q/j
3) u = -ag9(O)u

4) - = - (0 )ag

5) P = _g(O)ag2(O)P

6) =a 92 (0) O/R gas

7) P = Pg (O)p
-2

a) = (O)hg

*The sound velocity at t = 0 may indeed serve as reference velocity
since the sound velocity ag (t) is not a strong function of time

a (pg) (y-l)/2y with (y-1)/2y < 1, where y 1.25.
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The differential equations then become

C ap + =0 (17)ax a

u + u u 1 p+F_0 (18)
at ax P ax

2 2Is S!  + a (h + u  + L (h + qu0(19

Pat a)+u (hx -)q 0 (19)

where E

~g

is the ratio of acoustic transit time to the flow duration time. We

note here that the flow duration time T is of the same order as the

average chaeacteristic time f/(aPg/i3), impressed on the flow in the duct

by the time variation of the pressure in the barrel. Thus, we have

- 0 ( g /g ]) with T >>!/a (0)g gg

C. The Outer Problem

Since e is a small nunber, we assume asymptotic expansions for the

dependent variables of the form

p (x,t;c) = p1 (x,t) + 6 2 (C) p2 (x,t) + .

p (x,t;e) = p1 (x,t) + 62 (C) P2 (x,t) !..

h (x,t;e) = h (x,t) + 62 (E) h2 (x,t) + . . (20)

u (x,t;e) : u1 (x,t) + 62 (E) u2 (x,t) + .

6 (e)
here n+l 0 in the limit c - 0 and 61 (c) = 1 since the leading

term for all expansions is of order unity.

27
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Substituting these expansions into the full equations (17), (18),

and (19) gives in the limit e -- 0 the following set for the first order

solution

( ( l =l 0

.J. L F=0 (21)
al x

'iax Pi ax

2a h+Ul0

These equations are the equations describing the quasisteady flow;

i.e., time appears in these equations only as a parameter. Consequently,

the initial condition specified by (6) cannot be fulfilled by the

solution to the above equations (21). This is a result of loss of the

terms involving time derivative by the expansion process. The solution

to (21) with the boundary condition (8) and (8a) cannot be uniformly

valid in t because the initial conditions are violated. In order to

obtain a uniformly valid solution another expansion for small t will be

needed. This expansion will be given in Section III.D.

In the terminology of the method of matched asymptotic expansions

the solution to (21) is called the outer solution, while the expansion

for small Z to be developed in Section III. D is called the inner

solution. It will be shown later that both solutions can be matched

and a composite solution can be found which is then a single expansion

uniformly valid in t.

Customarily, the variables pertaining to the outer solution are

designated by small letters and those pertaining to the inner solution

by capital letters. The subscript "", designating the first approxi-

mation in the outer problem. will now be dropped.
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The outer problem is that of a viscous heat conducting flow in a pipe

of constant diameter. This is a problem of eminent practical importance

and has been treated as early as 1875 (reference 5). Extensive

discussions may be found in references 3, 6, and 7. Here, the treatment

given in reference 6 will be followed, and only the main results quoted.

For more detailed analysis the reader is referred to reference 6.

Using the notation

2
c~ % ht h + Rp eto t 

= tot = 2

the energy equation may be written as

detot

d /p gas p

with
c

q -2fL t a w  u

gas

we have
dOt (
tot 2 f k() (22)
dx B tot w

Since 0 is assumed constant in x and t, this equation may be integratedw

with the boundary condition e tot  0 at x = 0:

0tot = 0w + (6g e) 'e-2f'x/ 5  (23)

Using (21) and the equation of state (5) one obtains with M = u/a the

following ordinary differential equation (see reference 6):

dM2 (1+y ) (+ +Y .M2 ) (1 + M.1 M21M 2 )
__ 2 tot 2f dx (24)

142 (- M2 ) 0tot (i - M2 )
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Together with equation (22), this determines the Mach number distribution

in the duct. This equation cannot be integrated in closed form and a

numerical solution must be found. Once the Mach number, M, and the total

temperature, 0 tot, are determined the other dependent variables can be

found quite easily. The pertinent relations are provided later on.

First, the special case tot >> ew may be considered. In this case

separation of variables is possible if 6w is neglected in comparison with

e tot  One then obtains from (24) and (22) the differential equation:

- -2 D (- 1 _ M 2  (25)
2  1 -M

This equation is readily integrated in closed form, though the solution

is omitted here.

From the differential equation one notes the following condition for

the sign of dM2 for supersonic flow:
M2 > 1 , dM2 < 0

This means the Mach number always decreases if the initial Mach number

at x = 0 is supersonic. Mach number one is the limiting Mach number

that can be reached on the supersonic branch and this Mach number is

reached for a distance x = m which is determined by the frictionmax

coefficient f, but which is quite small. If the duct length is larger

than Z max, then a shock occurs somewhere in the duct reducing the Mach

number to subsonic values and the subsequent flow stays subsonic. For

the subsonic flow:

11, <142>0

Y

This means the Mach number increases in the direction of the flow. How-.

ever, M = 1 cannot be surpassed and is reached only at the exit if pe >

PC since dM2/dx + - as M * 1 so that the inlet conditions are adjusted

to allow M = 1 to occur only at the'exit. For Pc = pe the flow is

subsonic at the exit also. The lower limit at 1/y is a consequence of

the special assumption of 6w  0. For M2 = 1/y at x = 0, the Mach
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number stays constant in the duct since dM2/dx 0. Below this value

dM2 < 0, i.e.: the Mach number decreases. As equation (23) shows, the

condition ew << etot is not a valid assumption for the specific case of

the M-16 rifle, but could be a good assumption for a different application.

For the general case 0 is finite, then tne Mach number in the subsonicw

branch first decreases and then increases reaching the condition dM2 /dx =

0 only for one value of x, which, of course, gives the minimum value of M.

M = 1 is here reached only at the exit for P > p.; for Pe P only

subsonic flow can occur at the exit. The supersonic branch has the same

qualitative behavior as above. The phenomenon discussed above is termed

"choking" because it gives a limitation on the maximum mass flow. The

conditions for choking in the general case are difficult to state but a

7lucid physical interpretation is given by Prandtl for the case of zero

heat transfer.

Figure 3 shows the Mach number distribution along x from numerical

computations for the general case of 0w finite. Shown also is the

location of the shock. For a given Mach number distribution in the super-

sonic branch, say MI = f(x), and a given Mach number distribution for the

subsonic branch, say MI = g(x), the location of the shock xs is uniquely

determined by the condition:

M2=I~ Y-1 /Y-1 1I2~) (26)

For increasing shock strength, the shock moves closer to the nozzle and

eventually vanishes in the nozzle, i.e., x + 0; this occurs when nos
pair of Mach numbers can be found to fulfill the relation (26). In this

case, to be discussed later, a shock may still occur in the nozzle.

For the supersonic branch M, = f(x) results from integrating

equation (24) with the boundary condition: M = M at x = 0, where MP P
(> 1) is given from the area ratio of the nozzle by:
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= M )](2t)y+l 2 p
- -Ami n  MP +12 p

The subsonic branch M, = g(x) is obtained by integrating equation (24)

with the boundary condition

x = 1: M = M 1 for p > P

For p = PC' neither Me nor MI, is knoan beforehand, but must be deter-

mined by an iterative process. First, equation (24) is integrated for

various values of Me < 1, thus giving a set of value pairs MI, = F(Me).

Another relation between MII and Me is readily found from the continuity

equation and the thermal equation of state

e C (28)

PI-r(x 5 ) Pl1 (xs) Me

Here, the index II designates the quantity on the subsonic side of the

shock at the location x . For the 'no shock" condition x = 0 and

P1i(0) = pp* In any case, PIl(xs) can be uniquely related to pp and,

thus, to p as will be shown below. The ratio of static temperatures

follows from the energy equation:

Oe Oe tot 2 + Y 22 9MII2
II2 ell tot 1 + y-1 M 2

2 e

This relation is valid for any station x, i.e., for any index, whether

a shock occurs or not. Since pc and p are given for each step in the

parameter t, equation (28) is another relation of the form MII= G(Me)'

The two relations MII = F(Me) and MII = G(Me ) can be solved

numerically for MI and Me.

With M known the other variables with the subscript e are readilye

found. These variables are used in obtaining the inhomogeneous terms

in the differential equations for the cavity flow in Section III.A and

are functions of the parameter t.
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The state with the index e relates to the state on the subsonic side

of the shock by:

Le !L ] 1/2
P11  Me rI I

iU Me  Ee  1/2I -i [ _(Xs) ]  (30)

SPe e Ce I(xs)

P1 1  Pli e

The normal shock relations connect state I with state II and are given

here for completeness:

p! 2y M1 2 - (y-1)

P1  y +

(31)

PII = (Y+l) MI
PI (Y-1) M,2 + 2

The state I is connected to state p by equations analogous to equation

(30).

_(Sp = [iX) 1/2

P1(x5  M~s 0 3
uI(xs ) M.(xs) (xs) ] 1/2

= M e I (32)
Up p

S(xs )  Pi(xs) 0

1(x s )/0 is given by
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0 1(x s) 8 o + -I M 2P (33)

0p Og 21 + -2 MI2

If no shock occurs in the duct the state e or any other state x is

related to state p immediately by equations of the form (30). These

equations provide all the variables at the entrance of the cavity for

all times except for very early times where the quasisteady approximation

is invalid.

Keeping in mind that the very short nozzle is considered frictionless,

the variables with the index g and p are related by the following if M > 1:
p

e l p =1 + Y--2 M p2

g p 2 p

pg/pp = (i + 3 2  Mp2)Y/1Y-I)

/ Ipr = (1 + YIM 2) lI(y-l) (34)
gp 2 p

o = pp/p

u =M (p/P )l1/2
p p pp

If no shock can be found in the duct then M < 1, but a shock may
p

still occur in the nozzle. This is the case where M is too large to giveP
a purely subsonic flow in the nozzle. The limiting Mp lim may be computed

from equation (27) which also allows a subsonic solution. For any Mach number

1 > Mp > Mp lim there occurs a shock in the nozzle. The density pp may

be computed from

= P (y (Y-l) (WMp) - l (1 + y-l Mp2 )  (35)

p =Pg ~ () [-Y) + " I-1/2

35



and the temperature 0 isP

P =09 [1 + (Y-1) M2 12]-1

Together with the equation of state (5) these relations determine the

conditions at state p for this case.

If M < Mp lim the flow in the nozzle is purely subsonic. Experi-

ments suggest that then the pressure loss due to the sudden area increase

between port and duct must be included. The three conservation equations

of mass, energy, and momentum applied between the station p and the throat

(quantities) lead to the relation (Appendix A)

14 1 __ Gy2J- (36)_ 1 - + 2y Gw +T _ w ( _ _ G2 (w6

withG?-2 2 
2l~ 2 2 -

with G = M2 (1 + 11M2) (Y 2 + 1)p 2 p p

This equation gives M, and the other variables follow from
* yj*O5- yh-1

g 2p pg (1i+ Y72/-

0 0 (1 +g 2

P. .) p

* * *1/2 (37)
u M (yO)

and further

* * 0 1/2

R L. (-Z)pP M

0 ( 1 4 2) (1 + y-. M 25-1

P2 2 p

u =M (. a 1/2
p -



The condition PC > p may occur and in this case there is back flow

from the cavity to the barrel. This back flow occurs with pc - Pg << Pc

so that the effect of pressure on the density may be neglected, i.e.,

p / fn (p). However, the effect of temperature on the density may have to

be considered.

From equation (21) and conservation of mass and momentum applied across

the discontinuities, there follows for the backward flow in accordance with

Figure 4*
2 = 2(pc - p )

ue 22
-(, 1) + w2 + (L- + 4) 6 _ (38)c ge p b

Here a and a are contraction coefficients. These are a strong functione p

of the Mach number with ae = 0.62 for incompressible flow (M = 0) and

a = 1.0 for M = 1. a is also a function of w. For the compressible flowe p

the contraction coefficients have seen set equal to 1.**

The coefficient f includes losses due to bends as well as the friction

in the duct and is given by

f -[/(h)] (KF + KB) (39)

The pressure at station e" is related to the pressure in the cavity by

PL 2 2IPC = Ue [ 1 ) + I] (ho)

e

with e, = Oc, Pe , Pc, and where Pe" el etc., in equations (1), (2), (3).

The later phases of the forward flow may also be computed using

p f fn (p) but p = fn (e).

2e 2 _rg _ 2

u2 = 2 (0 /) (p - pc )  (- W) 2 +ee tot g g 1 ~ ag (4l)
2 e to f oi -

(W-l) - 1 + 2 0etot + / dx

* Derivation in Appendix B
+*For p fn (S), the assumption p fn (p) gives incompressible flow.
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1

f edx 0 K (2f- (1- e ) (42)

0

The coefficients ap, ae, ag, and KF and KB are listed in Table 3.

D. The Inner Problem

As mentioned earlier the solution given in Section III.C is not

uniformly valid in t and fails for small t. This singular behavior is

a result of loss of the time derivative in the differential equation by

the expansion procedure. The nonuniformity occurs near the line t = 0

and in order to investigate this region a magnified variable T is

introduced. The variable x remains unchanged since the quasisteady

solution behaves regularly here. The dependent variables in the

earlier times are of the same order as for the later times and also re-

main unaltered. Thus,

T-t/6() U u S =

X x P p H=h

A=a

Introducing these variables into the differential equations (17), (18),

and (19) gives
ap (SU) 0

+ 0

6(e) aT 3 X

aU + 8U 1 0 (43)

a () ) BT +  f

a- (H +- + U a (H +-- U2 C-V a- 0

where we have dropped the friction and heat transfer terms in accordance

with the discussion in Section II. In the limit c + 0, /6() -* 0
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results again in the loss of the highest derivative, while e/6(c) +

when e -) 0 leads to a solution which cannot be matched with the outer

solution. Thus, we must have

6M -* const. as c - 0

Without loss of generality the constant is taken equal to I; thus, we

have 6(c) = e, and we get the differential equations

an + aou) 0
T ax

a + au + 1 a =0
"i.+Uax n ax

a (H-U 2 ) + o (H+ U0

- ax T 0

with the initial conditions

T = 0, X > 0: P = Pi; A = Ai; U = 0

X < 0: P = P; A A ; U = 0

The boundary conditions for T > 0 are those existing at the edge

of the region of nonuniformity.

X = 0, T > 0: P(O,T) = p(O,t), A(O,T) = a(O,t),

t -0 t 0

U(O,T) = u(O,t)

t 0

For X = 1 no boundary condition is applied as long as Ue > Ae ; and for

U < A the condition is
e e

T >0, X = 1: P(I,T) = pc(t) = P.

t - 0
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There is no continuous solution satisfjrng these initial and boundary

conditions and the actual solution contains surfaces of discontinuities.

A solution is readily constructed using shock wave, contact front,

uniform region of flow, unsteady expansion and steady expansion. The

problem is that of a shock tube having an area change at the diaphragm

station.8 ,9,10

Figure 5 shows an X,T diagram of the flow in the customary shock

tube notation. Since one is interested in the influx of powder gas

into the cavity one may neglect the gas between shock and contact front,

which il, of course, the gas (air) contained in the tube at time t < 0,

and is not powder gas.

With U = U across the contact front we set U = 0 for T < U -1.2 3 e2

In the region 3 we have constant flow properties. Thus,

U = U = U = const. for U -l < T< [U2  
1 - (y-l) R]- 1e 3 2 2- 2 2

where 2R U + - - A = Const. (= U + A ) is the

p Y-1 p 3' Y-U 3

Riemann invariant. The pressure across the contact front is equal so

that P2 = P3"

P follows from the shock relation (31). For M >> 1 we havee s

pe/pi = p2/ I  - M 2 (Ms = Us/A1)

y+1

and rewriting this expression in terms of U2:

U 2 ^ )
P - A/ (45)

1

U2 may be found by numerically 
solving 8
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Au 2 (^ [ 2y
....j) -2) 2X g+y (46)P! 2g T 2

Here, y = 1.4 and the gain factor g is

g1= 2 + (y-)) M 2y/(y-1)

where M3  = Mp from equation (27). Flow variables at state 3' are found

from equation (34).

~U )2+' PlA l/y
e p 3 A~3 2 (3)2 ±

It is emphasized that constant flow properties in this region are a

result of neglecting heat transfer and friction and also shock

reflections; actually, these variables depend on Reynolds number, geometry

and time.

The flow properties in the expansion fan depend on T for X = 1.

Thus, for:

Y+l (y-l) R- < T < [ 3  +l- (y-1) R] -1

U 2 2 -- - 21

we have

U(1,T) = -12R + 2 1y+l y+l T
2y

P(lT) = P (2R - i) (48)

+ 1 (2R -
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For time

[u Y~ - (y-1) R] _1< l <c

the flow properties are constant

U(l) = U =U 3" A(lT) A p= A3"

(49)
P(,T) = Pp = P3"

E. The Composite Solution for the Flow in the Duct

The analysis described so far has yielded the first terms of two

complementary asymptotic expansions. In general the two asymptotic

expansions velid for small and large times respectively have a domain

of overlap, in which both are valid. This is the cade whenever Van

Dyke's"asymptotic matching principle" is valid. This principle applied

here amounts to setting the first term inner expansion of the first

term outer expansion (the outer expansion rewritten in inner variables

and expanded for small e truncated to the first term) equal to the

first term outer expansion of the first term inner expansion. This

principle leads, for the velocity, to the condition

U(X,-) = u(x,0) (50)

with corresponding expressions for the other dependent variables. We

note that from equation (49)

U(l,-) Ue= U 3 U

For inviscid and nonheat-conducting flow the solution to equation

(21) is trivial and gives

u(x; t)invisc = u p(t)invisc = u e(t)invisc m const.

where the constant is a function of the parameter t.



For t = 0 we have

u(X,O) = Up inisc() U(1)

so that the matching condition is fulfilled for inviscid flow. In this

case the two solutions may be combined to yield one composite solution,

which then is uniformly valid over the whole range of t.

Using the multiplicative composition of reference 11, one finds the

composite expansion as the outer expansion multiplied by a correction

factor consisting of the ratio of the inner expansion to its outer

expansion.

u u(lt) (51)Ucomp. UiC

Since in the present case the outer solution has been computed on

the basis of viscous heat-conducting flow, matching of the inner and

outer solutions is not immediately possible for x > 0. For x = 0 and

supersonic flow at the entrance of the duct, matching of the inner and

outer solution according to equation (50) is effected; for subsonic flow

matching is not possible, reflecting the fact that the disturbances due

to friction now affect the entrance condition in the duct. Failure to

match according to (50) of course simply represents the fact that the

inner and outer solutions are different approximations in the parameter l/Re.

Formally the composite solution of the form (51) may be used here

also. The effect of friction and heat transfer on the velocity may be

assumed accounted for in the following way:

U(lT)visc = 8 U(l,T) (52)

where the factor 8 will depend on Reynolds number, geometry, Mach Number

and pressure ratio and on time. The composite solution will be

u e = u(l,t) U(l t/) (53)cm., e (513) S

For t/c < (U28)
-  , ucomp. = 0 because Ue = 0. This time

t= C T (U2 8)
-1 = 1 (U2 )' is of course the delay time between rise of
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pressure at the port and rise of pressure in the cavity. This time has

been observed experimentally; it determines 8, the average value of 8

in the range 0 < < (U2 8) l . The experimental values of 8 scatter

between 1 and 0.5.

For t = one can find from the matching condition, when applied to

viscous flow, (-) as

a() - ul,0) / U(l,Co),

and this leads to a numerical value of 8 0.35. Since 8(t) is

expected to vary quite rapidly near 0 0, it is assumed that at the end

of the first interval, i.e., at 2 = , (28) - , 8 has essentially reached

the value for t ; thus we set the ratio 8 (t/) /8 (co) = 1.

The ratio 8 (t/)/ 8 (H) can also be considered an adjustable pa-

rameter with which the computation could be adjusted so as to give best

agreement with experiment. This is not done here since this procedure

could disguise other phenomena. It is not possible to correctly account

for the friction and heat transfer at the very early times, as has been

pointed out before, and some sort of plausible assumption has to be

made. The basic difficulty is that the equations (13) and (14) with

the quasisteady friction and heat transfer coefficients are not appli-

cable in this early phase; and the treatment of this problem, say, by

the method of characteristics would of course not remove this difficulty.

With the assumption that the viscous correction factor for velocity

(t/e) / 0(o) =1 for Z > (U 8) 0 and that the corresponding
correction factors for the other variables are also approximately unity,

che effect of friction appears only in the delay time = U

where it can be observed experimentally, and in the other interval

boundaries, where it cannot be directly observed.

The composite solution in the appropriate intervals is then
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comp, e

for 0 -< < (2

U omp,e 2 30

y~i +i
fo " (U / (U-l) ]

for 2 23 [2 Y+'  (yz 8 < t < I [u3R

comp, e

for 1 /AU (Y+l) (') ] <

It has been assumed here for simplicity that f for the Riemann in-

variant is the same as 8 for the velocity. This assumption is quite

acceptable within the assumptions made already and can only result in a

slight shift in the interval boundaries. It should be remembered that

the time after which the effect of the fir3t phase has completely died out

is t = £ / [U3(X )-_ (y-l) R] 8, and that this time is still small
3' 2

compared to i.

The composite solution for the pressure in the corresponding intervals

is:

Pcomp, e Pe 13

Pcomp, e = Pe( ' P2/P3'" y( )(5

- 2yl(y-l) (55)
mp e 3" y+l I

Pcomp,e e
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Similarly for the sound speed

a =aB EE #13,(-)~
comp., e e 15-

acomp-, e = a (9,;:E) (f 2/]F3 ) (y-1)/2y (56)

acomp-, e = a(;E) [Y-i+l (2 R )]/ 3

comp., e = a e

The composite solutions given by equations (54), (55), and (56)

provide Ue, Pe , and ae for equations (1), (2), and (3). The other

dependent variables at the cavity entrance (location e) may be computed

from these quantities.

IV. COMPARISON WITH EXPERIMENT

A comparison between theory and experiment was made on the M-16

Rifle. Input data for the theoretical computation consist of the

measured time variable pressure in the barrel at the port location, the

physical properties of the powder gas, and the dimensions of the gas

system. The physical properties of the powder gas are listed in Table

1. They represent estimates based on the interior ballistics*

Table 1. Properties of Powder Gas

p = 1.74 x 103 (m/sec)
2 /K

c = 1.38 x 103 (m/sec)2 /Kv

= 0.831 x 10-1 (kg m)/(sec3 OK)

Rgas = O.O x l03 (m/sec)2 /OK

y = 1.26

= h.80 x 1o- 5 kg/(m sec)

*Supplied by Mr. R. Geene, of Interior Ballistics Laboratory
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computation of the composition of the powder gas. The dimensions of

the gas system are summarized in Table 2.*

Table 2. Dimensions of Gas System

-4 2A 1.269 x 10 m

A = 0.6605 x 1O- 5 m 2
e

Amln = 0.4383 x 10
- 5 m2

A 0.6605 x 10 - 5 m2

A = 0.6533 x 10- 5 m2

~V

= 0.2900 x 10 - 2 m

= 0.3600 m

MB = 0.4366 kg

:F = 0.1442 x 10- 2 mv

. = 0.7600x 10 6  3

XE = 0.7600 x lo2 M

v 0.6158 x 102 M

o5 0.015

Since it is necessary to specify another variable of state at the

port, the temperature at the port was computed according to:

. 0O(t)10(0) = [p(t)IpC0)] (?II 57)

Here y is not the ratio of specific heats, but an exponent determined by

fitting the temperature variation, known from the standard interior

ballistic treatment of the weapon, to the pressure variation according

to equation (57). The standard interior ballistics treatment breaks

down after the bullet has left the barrel; the temperature distribution,

however, is needed for the computation after this time, and is extra-

polated according to equation (57).

*Supplied by Mr. M. Werner of Interior Ballistics Laboratory.
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Probably the largest uncertainties lie in the various loss factors.

For the friction factor the value for clean commercial steel pipe has

been used.12  Compressibility effects on the friction are apparently

quite small, at least for hydraulically smooth pipes where Frossel7 did

not find any dependence on the Mach number of the flow. For rough pipes

such as the commercially clean pipe used as duct in the M-16 rifle,

(relative roughness i/D- 0.015) the dependence of the friction factor

on Mach number is probably more pronounced, and will result in a slightly

smaller friction factor. Since during the time 7 the flow in the duct

ranges from supersonic to subsonic and incompressible flow, the friction

factor could be introduced as depending on the Mach number. This has,

however, not been done; the friction factor is assumed to be constant

at the value for incompressible flow. It may be mentioned that the

experimental work 2 was conducted with a used rifle showing evidence of

deposits in the interior of the duct. X-ray pictures of ducts in the

M-16 rifle show indeed substantial amounts of deposits depending on

powder type and usage of the rifle. 1 3 The deposits are so located as to

cause little additional resistance in forward flow where stagnation

pressure is high, but in the backward flow they may cause a considerable

increase in losses.

The losses due to bends are taken into account by loss coefficients

as is done in incompressible flows. The loss coefficients are taken

from reference 12. The losses apply to miter bends, which are most

representative of the bends in the gas duct system. Again, compress-

ibility effects probably tend to decrease the losses slightly.

The area reduction at the port has been treated as a frictionless

nozzle for supercritical pressure ratios and as an abrupt area change

for suberiitical pressure ratios as is explained in Section III. In the

Addendum the analysis has been extended to include treatment of the area

reduction as an abrupt area change even for the case of supercritical

pressure ratios. In this case supersonic flow cannot be reached in the

duct. It is not possible to decide which of the two types of flows is

actually established, because, as will be shown, the effect is easily

obscured by changes in the friction factor.
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For incompressible flow the area reduction as well as the sharp

edge entrance causes a decrease in mass flow which is accounted for by

contraction coefficients.l2,14

Table 3 gives a summary of all Lhe loss coefficients useC In the

computations.

Table 3. Loss and Flow Coefficients

"e = o.62 KB = 5.o4

" p =0.64K= 6.95

a = 0.62 f = 0.0241g

Figure 6 shows a comparison between computed and experimental
2

pressure variations with time in the bolt cavity. It is seen that

agreement between experiment and theory is quite satisfactory. The

theoretical pressure is rising somewhat more slowly than the experi-

mental value. This could be due to a friction coefficient somewhat

too large in the early c.mpressible phases of the flow. However, the

fast experimental rise could more plausibly be explained by the fact

that there is a component of dynamic pressure, resulting from the gas

motion in the barrel itself, acting on the port, thus effectively in-

creasing p ; this would result in a larger influx in the bolt cavity,

giving a correspondingly faster pressure rise. Indeed, this is sug-

gested by the fact that barrel material is "washed out" downstream of

the bore hole comprising the port. This same mechanism would also re-

duce the backward flow since the effective p is larger than indicated

by the static pressure measurement. This is also borne out by the

comparison. It is seen that the predicted pressure decreases faster

than the experimental pressure; this is caused by too large a back flow.

(See marker on Figure 6.) As has been pointed out above, the resistance

due to deposits is also expected to be larger in the back flow than in

the forward flow, and this has not been accounted for in the model.
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Figure 6. Comparison of Experimenta] and Theoretical Bolt Carrier
Pressures for M-16 Rifle (Round 5W)--Nozzle at Port
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Th. measurements were made on a recoiling gun. This means that the

piston displacement x is measured from an accelerated reference system.

As a result there is an apparent force on the bolt carrier which opposes

the bolt carrier motion. The measurement of gun motion indicates that

the gun acceleration has dropped to nearly zero when the pressure starts

to rise in the bolt cavity, so that only the early part of pressure

history could be affected. It is worth noting that the net effect of

the acceleration would result in a faster pressure rise than without the

acceleration. The fast experimental pressure rise could indicate that

the gun is still accelerating when the pressure starts rising in the

cavity.

In this connection it should be mentioned that in the numerical

computation the friction forces 0 on the bolt carrier were assumed zero.

These are indeed expected to be small compared with the inertia force.

The venting area has been assumed to be the nominal area of the

venting holes. Inspection of a number of guns indicates that this area

may not be "cleared" completely by the bolt due to manufacturing toler-

ances. This would affect the tail of the pressure curve only and will

not affect the motion of the bolt iarrier.

Figure 7 shows the comparison of the experimental pressure trace

with the computation where the area change is treated as a discontinuity.

The computation based on the friction factor f = 0.02111 (same as in

Figure 6) gives a somewhat lower pressure, but decreasing this friction

factor by 25% gives essentially the same curve as shown on Figure 6.

Since the friction factor is not believed to be known to better than

25%, it is not really possible to make a chcice between the two models.

V. CONCLUSION

The analysis presented here gives the first term of an expansion

in the parameter e, which is the ratio of acoustical transit time to

the characteristic time of pressure variation impressed on the flow in

the actuation mechanism of the automatic weapons. Automatic weapons, by
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2.0 AREA DISCONTINUITY AT PORT
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Figure 7. Comparison of Experimental and Theoretical Bolt Carrier

Pressures for M-16 Rifle (Round 52)--Area
Discontinuity at Port
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necessity, are designed so that this parameter is small in order to

assure quick responsive operation of the extracting and loading mechanism,

Thus, although this analysis has only been tested for the M-16 rifle, it

is expected to apply to other weapons and weapon systems also.

Most of the automatic weapons actually have considerably smaller

values of e because the length of the duct is very much shorter than it

is the M-16 rifle and many weapons have no duct at all.1 5 For these

weapons the present analysis is also applicable, if the inner solution

is completely discarded and the flow is treated as frictionless.

An approximate treatment for the M-16 rifle is obtained when the

volume of the duct is added to initial volume and the inner solution is

discarded. The heat losses due to heat transfer in the pipe have to be

considered and may be accounted for glcbally in equation (3). This is

the approach used in reference 2. In this treatment the initial

condition is not fulfilled and the solution is not valid for small times;

however, bolt velocity and bolt trajectory, which depend on integrals

of the pressure distributions, are well predicted.

Most interesting would be the extension of this analysis to include

second order terms. The characteristic time T does not appear explicitly

in the first order solution; however, it should not be concluded that T

is an "artificial" time. Actually, 7 will explicitly occur in the second

approximation.
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ADDENDUM

TREATIET OF PORT AS AREA DISCONTINUITY

The assumption used in the body of the report treating the area

constriction at the port as a frictionless supersonic nozzle is an

artifice, especially since conditions are encountered which require a

standing shock in the nozzle.

It may be more appropriate to treat the area constriction as an

area discontinuity. In this case supersonic flow cannot be reached in

the duct. Instead M is known from the integration of equation (24).

Then the quantities at the throat (* quantities) may be computed from

equations (36) and (37). Equation (36) is only applicable if p < Pcrit;

while for p 3 Perit. we have M = 1. It may be shown that the latter

condition is equivalent to the condition

V2G' <w

where G is given as G(M ) with equation (36). This inequality is

always fulfilled for M = 1. Consideration of momentum
p

* + *2 p .) A [lY 2 2
p A [l M + p (A- A*) ppAp +

then shows that p 0 for M = M = 1; i.e., the pressure on the surface
* P

A - A is zero. (The control volume for application of the momentump
equation is shown in Figure 8.)

The inner solution also has to be modified to account for the

discontinuous area change. If the flow between throat and station p

is considered steady, then M = 1 and the shock velocity follows fromp
solving numerically

pgM/pi = w e_ M2  =_l T/ M_

g+l 1+1 (+l s g
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The inner solution is shown in the X,T diagram of Figure 9. The

relations (45), (47) and (48) are valid here also. The conditions at p

now follow from (37) consistent with the assumption of steady flow

between throat and station p. It is noted that the expansion fan now

"reaches back" to station p and the inner solution affects the flow in

the duct even for T .

The condition M = M = 1 also makes the pressure on the area
* p

A - A equal to zero, as has been noted before. It is worth pointingp
out that this steady flow condition is reached as the limit of the

unsteady flow. The unsteady flow would result from the reflection of

the expansion fan from the surface Ap- ; and for A 4 Ap the

reflection will be similar to the reflection of an expansion from a

solid wall. It is well known that vacuum may result on the wall for a

sufficiently large pressure ratio through the expansion fan.
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APPENDIX A

DERIVATION OF EQUATION (36)

From the conservation of mass

* * * */p1/2
p A M= pp Ap Mp (/

and momentum

(l Mi ) + pA (w-1) = A (1 + y M)
pp p

there follows

1/2 *2 2(M ) (46(9 + Y M} 1 + -Y M p

Replacing e/0 by the energy equation (37) and solving a resulting
p *2

quadratic equation for M lead to equation (36).
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APPENDIX B

DERIVATION OF APPROXMJATE FW RELATIONS

The relation (38) for the flow velocity u at station e" (Figure 4),

where the fluid again fills the total cross-sectional area of the duct,

may be derived by first considering that the flow obeys Bernouilli's

equation from station c to station e'. Thus
2

P Pe '= PUe'/ (B-1)
e e

Between station el and e" the spreading out of the Jet occurs under

losses, and application of conservation laws for mass and momentum

leads to

2Pe t , = Pe Ue" [ - (/ce)] (B-2)

e

where ce is the contraction coefficient at station e. Combining (B-1)

and (B-2) and applying conservation of mass gives:

Pe U' 2 .

PC -e" =  c e - I + I (B-3)

Between stations e" and p integration of the momentum equation (21)

yields

4 2 2 ff
ppup (U -u,,) +P -Pit+ -/-1_ d=0 (B-4)

Combining (B-3) and (B-4), noting that Pp P P = const., leads to

P Ue it 2 2
c Pcel 1 ) + 1+ (B-5)Pc-Pp 2 -1 e1 T

The pressure difference between stations p and g follows again by

applying Bernouilli's equation between stations p and p' and the con-

62



servation laws between p' and g. Thus:

2I
Pp 2 i- B6

p

Combining equations (B-5) and (B-6), noting that u. = u be-cause p

pe gives equation 
(38).

Equation (41) can be derived in an analogous manner. First, the

pressure difference between stations g and g" (Figure 4) is

2 2
Pg p - 2 , (B-T)

The pressure difference between stations g" and p is

-i 2 -
Pg -Pp = W pgu i -1) (B-8)

so that the pressure difference between stations g and p is

u2  2

p - + - )2 + 1] (B-9)
Pg - w + 2 g

For the pressure difference between stations p and e

ff d (B-i0)24 u e2 p e2 fi

Pp - Pe P e Ue - 2

From (B-9) and (B-10) one obtains equation (4l),'noting that for

P #J fn (p)

1/p = tot/(Pg ).

g
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