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BACKGROUND AND SCOPE

In 1958 the General Engineering Laboratory made a studyof propeller shaft
thrust bearing operation and reported its findings in Reference 1, Following this
study a comprehensive analytical and experimental program was undertaken, for
the purpose of extending present understanding of these bearings and in order to
provide a body of design information for use in bearing design and selection, This
program, like the preceding introductory study, is being performed under a
contract awarded by the Bureau of Ships to General Electric Company's Medium
Steam Turbine, Generator and Gear Department,

The program is divided into three phases as follows:

Phase I: Investigate analytically the performance of propeller shaft thrust
bearings using the existing Reynolds-Energy Method of solution
to provide data necessary in design and selection of these bearings.

Phase II: Extend existing analytical techniques for propeller shaft thrust
bearings by including a numerical method of soluticn of the Elasticity
Equation, Review, and where necessary, modify the design data
obtained in Phase I, 80 as to include the effects of pad distortion
caused by pressure distribution and thermal gradients.

Phase III: Instrument thrust bearings on two U, S, Navy ships and obtain
experimental data on the performance of these bearings. This data
is to be obtained in tests carried out at the time of scheduled sea
trials, The thrust bearing performance measurements obtained in
these sea trials is to be used for correlation with the design data
obtained analytically in Phases I and II,

A fourth phase which included the building of a thrust bearing test stand was con-
templated but was not included in the present program, since the findings of the

program could be used to determine the features of the stand.

The following is our final report on Phase I,
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I INTRODUCTION

Virtually all ships in this country, both merchant and combat, use Kingsbury
type tilting pad bearings to transmit the propeller thrust to the hull of the vessel.
The geometry of these bearings and the principles on which they operate are well
known and are described in most texts on lubrication as well as in the catalogues
of Kingsbury Machine Works,

Generally, the bearing pads are centrally pivoted, i.e., the spherical
pivot back of each pad is located mid-way between the leading and the trailing edges.
Central pivot location is required for reversibility, i.e., for operation under either
direction of shaft rotation.

Conventional bearing calculations in which temperature variations in the
oil film are neglected and in which a converging wedge is formed by the tilting
of a flat pad fail to predict the load carrying capacity of centrally pivoted bearings.
The reason for this is illustrated in Figure 1 (a) which shows the hydrodynamic
pressure profile that is generated between flat surfaces separated by fluid film that
converges slightly in the direction of motion. Under these conditions, calculations
show that the resultant of the hydrodynamic pressures lies downstream of the radial
centerline of the pad. Since the reaction to these pressures must pass through
the pivot, a moment exists which tends to eliminate the convergence and hence
load carrying capacity. However, when the temperature variations in the oil film
and the deformation of the pad under load are considered in the analysis, the
somewhat paradoxical result obtained above is eliminated. Calculations then show
that there is a value of pad inclination (generally other than zero) for which the
resultant of the hydrodynamic pressures passes through the central pivot as shown
in Figure 1l (b).

As the oil flows through the bearing gap, its temperature rises due to the
shearing of the film. This rise in temperature produces a "thermal wedge" action
which accounts for part of the load carrying capacity of the bearing (provided that
the viscosity and mass density of the lubricant decrease with temperature rise,which
is the case for all known oils). Early in the program, calculations were made to
determine the magnitude of the thermal wedge effect in a centrally pivoted finite pad.
A sector shaped pad of a 31" 8-shoe bearing was analyzed, first with the pivot in
optimum position and then with the pivot centrally located. In both cases, the pad
was assumed to remain flat and the other operating conditions were:

Speed - 320 RPM

Minimum Film Thickness - 0.00)*
Oil - 2190T

Oil Temperature at Pad Inlet - 130%
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The results are shown in Figures 2 (a) and 2 (b), It is seen that the thermal wedge
effect allows the flat centrally pivoted pad to carry approximately 56% of the load
carried by the pad with optimum pivot., At the same time, the maximum temperature
reached with the flat centrally pivoted pads is 25°F higher than that reached in the
pad with optimum pivot, Experience, however, suggests that the difference in
performance between central and optimum pivot locations is not so severe, It was,
therefore, decided at that time that, in order to make a more realistic analysis in
Phase I, it should be extended to incorporate a simplified elasticity approach which
allows pad deformation to be approximated and included in the calculation, Figure

2 (c) shows the load and maximum temperature d the 31" 8-shoe centrally

pivoted bearing pad under the same operating conditions but with pad deformation
included. Comparison of Figures 2 (a) and 2 (c) now show that the centrally

pivoted pad is capable of carrying approximately 92% o the load carried by the flat pad
with optimum pivot, Its maximum temperature is 6CF higher than that of the flat

pad with optimum pivot, These results are in better agreemcnt with experimental
evidence and the method of analysis which includes a simplified elasticity solution
has been used in all succeeding calculations.

{To the extent that pad deformation was included in the Phase I calculations
the results presented in this report have anticipated those to be obtained in Phace
O, In the latter phase, the Elasticity Equation is more rigorously sdved and
includes, in addition, thermal deformation of the pad. However, it requires a
considerably more elaborate digital computer program. It may be expected that
comparison between the two sets of results will suggest modifications of the Phase I
approach to yield a simple yet suffic.ently rigorous method o solution, )

The conflict between the iscthermal, flat pad method of sdution and
experience with .entrally pivoted pads has been realized, since the time that Albert
Kingsbury accomplished his pioneering work on slider bearing performance (Ref. 2).
More recently, interest in the effects of thermal wedge and of pad deformation has
resulted in analytical studies of infinitely wide bearings, some of which are
reported in References 3, 4 and 5. For the case of the finite bearings, the
importance of including the effects of temperature variations in the oil film has
been studied by one of the authors of this report and it is explained in Reference 6,
To the best knowledge of the authors, the present report is the first published study
of finite centrally pivaed pad bearings in which the effects of radial and tangential
inclinations, temperature variations in the oil film, and pad deformation are all
considered. The results obtained have shown good agreement with experience,
They have indicated that pad deformations are of the order of the minimum film
thicknesses and they have explained such test results as:

1, bearing failures caused by high pad temperatures.



2. occurrence of bearing failures in the vicinity of the pivot.
3. insensitivity of trailing edge film thicknesses at high loads.

In order to make the Phase | study as complete as possible, approximately
70% more cases were analyzed than were called for in the cantract for this phase.
In all, 262 operating points were calculated. At each operating point, the valucs
of radial and tangential pad inclination which satisfied equilibrium of moments were
obtained using a trial and error procedure. This procedure required an average
of 5 solutions of the Reynolds and Energy Equations for each operating point. so that
the total number of solutions exceeded 1300,

The studies were conducted as follows:

1. Eight standard bearings were analyzed which scanned the range of prescnt
day propeller shaft bearing sizes (19" O, D, to 50" O.D.) and propeller
speeds (100 R. P, M, to 320 R. P, M. ). Each bearing was analyzed at two
speeds and wath 6, 8 and 10 pad geometries. Calculations were made at
three values of minimum film thicknesses, at each speed and geometry.
These calculations have yielded the value and location of the minimum film
thickness, the temperature and pressure distributions, the oil flow and
horsepower loss as functions of bearing size, number of pads, unit load
and speed. In particular, they have shown the optimum number of pads
as a function of bearing size, unit load and speed.

2. The ahead bearing of DD933 (U.S.S. Barry) was analyzed at the full speed
ahead conditions. Its astern bearing was similarly analyzed at full speed
astern condition. (The U.S.S, Barry was earlier selected by the Bureau of
Ships to be the first ship for sea trial thrust bearing tests under Phase IlI
of the program. The thrust bearings of the starboard shaft of this ship were
instrumented and the tests at sea have just been completed.)

3. The ahead bearing of DL] (U.S.S. Norfolk) was analyzed under full specd
ahead operation. This bearing was selected for analysis because of the
past history of several successive failures.

4. A 31" O.D. x 15-1/2" I.D. bearing was extensively analyzed in order to
investigate the effects of pad thickness and radial pivot location on beariny
performance.

5. A31" O.D. x 15-1/2" 1.D, and the 39" O.D. x 19-1/2" [, D. bearing were
further analyzed to determine the effect of pad inlet oil temperature on
bearing performance. In particular the effect of pad inlet temperature on
load carrying capacity and maximum temperature were investigated.
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Additional bearing sizes ranging up to 100" O, D. were analyzed 10 investigite
the relationship between bearing size, pad thickness and unit loading.

A 51-1/2" 0.D. x 32" I.D, bearing with 10 and 12 shoe geometries was
analyzed at 200 R, P, M, and at 400 R. P. M. These analyses were made
under separate contract with General Electric Company's Medium Steam
Turbine, Generator and Gear Department who authorized their inclusion

ir wne present report. They are of interest because the upper speed 18 quite
high and the results illustrate some of the thrust bearing operating
characteristics that will be encountered as propeller speeds are raised.
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u ANALYSIS AND METHOD OF CALCULA TION

The important considerations in thrust bearing analysis are:

1. Pressure distribution and hence load carrying capacity
2. Temperature distribution

3. Location of the center of pressure

4. o‘l ﬁﬂw

5, Horsepower loss

all as functions of the bearing geometry, film shape and speed,

In this section, the equations from which these quantities can be calculated
are given, The film shape which includes the effects of pad inclinations and
deformation is discussed, as are the groove mixing temperature and the viscosity-
temperature relatinn, Before proceeding to these, however, it is necessary to
point out here the p.incipal limitations of the analysis.

1, The analysis applies only to steady state conditions. It does not supply
any information on the transient conditions that occur during start up and shut
down, It also does not apply to dynamic load conditions (such as crash ahead
and crash astern) when relative axial motion between the runner and the bearing
introduces squeeze film effects,

2. Laminar conditions prevail in the oil film, Actually the Reynolds Number
in present day propeller shaft thrust bearings is small enough for this condition to
be satisfied under steady state operation. This is illustrated by the following
calculation for an extreme case:

D = 50"

N = 320 RPM

h = 0.002"

u« = 1x10°61b, -gac /in. 2

© = 0,803 x 104 1b. -sec. 2/in.4
Umax = 840 in,/sec,

W Unmax b

Reynolds Number (Maximum) = = 135

3, Oil inertia effects are negligible, At the relatively low surface speeds of
propeller shaft thrust bearings, this assumption too is quite valid,

4, The fluid is incompressible,

5. Variation of the specific heat of the oil with temperature are neglected,



A, Reynolds and Energy Equations and Their Boundary Conditions

The Reynolds Equation describes the hydrodynamic pressures generated in
the oil film of a bearing., These pressures separate the bearing and runner surfaces
when there is a relative motion between them, For a finite pad, the Reynolds
Equation in polar coordinates is (Ref, 7):

3 [rh3 ig> ) (h3 ap) R ah
_aT(T ar )t~ \ar 38/ T °“T e 1)

The boundary conditions that are needed for the solutim of this equation arise
from the fact that the pressure falls to zero at the pad perimeter.

With the coordinate system shown in Figure 3, the baindary conditions are
then:

P =P =P = p =0 (2)
(r, 0) (R'L' e) (r!eT) (R.. 9)

Because the oil film may break down in diverging regions in the bearing, it is
necessary to impose an additional condition which states that the pad pressures
never fall below atmospheric.

In order to include in the analysis the effects of temperature (and hence
viscosity) variations in the oil film, the Energy Equation has to be solved together
with the Reynolds Equation, The Energy Equation can be written (Ref. 7):

Ajgrz, B (o 2 ap¥l o glfren b3 ap)aT B3 ap 31|, o3
h 12u [To0 '\ ar pl 2 "lzu ra6/Tad 12a or or

In Equation (3} it is assumed that the oil flow through the clearance space is
adiabatic, All the heat generated within the fluid due to fluid shear is considered
to be carried away by the mass transfer of the fluid and no heat is gained, or lost
through the bearing surfaces, This is a comparatively good assumption, for the
heat transfer coefficient at the fluid boundaries is very small, (Reference 8)

The boundary conditions used for the solution of Equation 3 are that

a) the pad inlet oil is at the groove temperature and

b} the radial temperature gradient is zero along the inner and
outer circumferences to the pad because of the cooling effect of the
surrounding oil,



T(rno) = GR (4)
2T (s
dr = dr = 0

(R-L ) ‘U /R, 8)

With the introduction of the proper film shape, the solutions of Equations (1) and
(3) yield the pressure and temperature distributions on the bearing pads.

B. Load Carrying Capacity

The total reaction of each bearing pad and hence the load it carries is
given by the integral of the hydrodynamic pressures over the pad area. Thus:

R er
W = /R_L jo prdrde (5)

C. Oil Flow

Qil is introduced into each pad through the clearance space at its leading
edge, by the motion of the runner. Part of this o1l leaves the clearance space
in the same manner from the trailing edge. The remaining part of the oil is forced
out from all edges by the pressure gradients that are built up over the bearing
surface. Referring to Figure 3, the oil flow (in G. P, M, ) through the four edges
is:

Flow into the pad:

R R 3
231 o . | (@r_h) ar - /| B .12) dr (6)
60 R-1 V2 Jozg 'R-l(/“' 99 Jos0

Flow out of the pad:

0
231 . = /T h35 ap
-5 2 A = de

60 M e RL (7



R R 5
231 Wwrh / h? 5p
oes / (T") dr s (ﬁ ae) ar @
R-L & oy R-L 86
0T 3
2l qg,. /(hx_2p
g0 4* / (/4 ar) a8
0 r=R

It is seen that the flow through the leading and trailing edges is made of two
components, The first of these is independent of the pressure gradients and it

is referred to as the "Shear Flow'", The second component depends = the pressure
gradients and it is referred to as the "Pressure Gradient Flow',

Since there is no relative radial motion between the runner and the bearing
pads, there is only "Pressure Gradient Flow" out of the inner and outer circum-

ferential boundaries of the bearing pads.

D. Horsepower Loss

It is assumed that all of the heat generated :n the oil film goes into temperature
rise of the oil, Thus, the horsepower loss can be computed fran the oil flow
through the bearing pads and its temperature rise, Thus:

o
Crg T[.3
P h°r 3p
P & —— -
HP2 * <707/ [,u 5r (T Tar) de
0 r= R-L
R R
Cce p
. P wrh hd 3
HP; = _P / wrh . / h” 9p .
3 0707 [2 (T TGRJ dr+ iy (T TGR) dr )
R-L" =61 R-L 0:0 1
B
1
C_fg 3
P h”’r op _
HP, = 57767 [,u 3r T TGR)J dé
0 r=R

1 the total horsepower loss per pad is

HP = HP, + HP; HP,4 (%)
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E. Center of Pressure

The point on the pad surface through which the resultant of the hydrodynamc
pPressures acts is called the center of pressure, Its coordinates are given by:

TR e 2R, oeor 2)1/2
f f p rl cos 6dr de| + / / prZ sin 6 dr d©
- (LR-L 0O R-L 0

cp w

[l} o (10)

I prZ sin @ dr d6

e
_/" / p r2 cos 0 dr de
R-L G

F. Film Shape

Under the hydrodynamic pressures and the pivot reaction, cach pad
bends so that the bearing surface becomes slightly convex, as shown in Figure
1 (b). The shape that the pad assumes under load can be calculated from a
solution of the Elasticity Equation and this is done in Phase II. For the present,
however, it is assumed that the bearing surface becomes very slightly spherical.
In accordance with plate theory, the bending deflections are taken to be prop:.rticaal
to load and inversely proportional to the pad thickness cubed. Since the pads are
ball seated, they also tilt in both radial and tangential directions, till moment
equilibrium is satisfied.

The film shape is then (see Appendix):

6 (] ] 6 .
h = ha* me[ra sin (6, - -ZI)-r sin (0 -YI)J- mr[ra cos (ea -7'-1‘) -rcos (0 - .,_!)

1 2 2 .
+ ZRC [r -, - 2r rp cos (6 - 8p)+2 r, rp cos (8a - OP)J

(i
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For cases where loads are light and the bending deflections are small, it is
convenient to use as reference, the point at the inside radius and trailing edge
of the pad. Equation (11) then becomes (for a centrally pivoted pad):

OT 1) [} L] . |
h = hl*me[(R-L) sin 5 - r sin (0 - ﬂ mr[(R-LI O T - ) |
B (12)

1 O Uy
+ Z_Rc re . (R-L)Z+Z(R-L) rp cos 3= - 2r rp cos (0 -I—!

For cases where the loads are large and the bending deflections are of the same
order as the minimum film th.ckness, the point of minimum film thickness may
fall within the pad boundary. It is then more convenient to use this point as reference.
Its coordinates can be obtained by differentiating Equation (11) and setting:

3h 3h

—_ . —_— 0
ar ~ 0 &nd 36

The coordinates of the point of minimum film thickness are then found to be:
r ) r i ¥ J.'lui'
Fm ® FLELm. ‘I".nt;' = mtlll

(13)

f |

e = if-l'-tlll : |( m_" |
m p |
) u-E = I ;

VR, r/

Substituting Equation (13) into Equation (11), the film thickness profile becomes
(for a centrally pivoted pad):

Rc 2 r \ OT r OT
_’“e’(ngc"“r) +r mosin(e--z-)O(-REc-mr)cos ‘9'2_"2';{;] (14)

s hmix? 2
In Equations 11 through 14 above, R_ is the radius of curvature of the bent pa:i.
In the present analysis, it is calculated {rom the load and pad thickness (see
Appendix) using the relation:

h

: 0,75 x 10-8 — = (15)
t“avg

|
2R,
where W is the load per pad

tavg is the mean thickness of the pad
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G. 0Oil Groove Temperature

The temperature at which the oil enters the clearance space between the
runner and the pads has an important effect on the load carrying capacity of the
bearing. Itis introduced in the analysis as one of the boundary conditions of
Equation (3).

In general, the temperature of the oil in the feed grooves between the pads
is several degrees higher than at the housing inlet ports. This difference is
largely due to the mixing in each groove with hot oil discharged from the trailing
edge of the downstream pad. It is, therefore, significantly affected by such
factors as:

a) quantity of oil admitted to the housing (this is generally several
times the amount that flows through the clearance spaces.)

b) extent of the grooves
c) pad discharge temperature

In the Phase I calculations, the pad groove temperatures are obtained from
the experimental data of several investigators. The experimental points are
plotted in Figure 4 and a representative curve is drawn through them. This curve
shows the feed groove temperature as a function of the unit load carried by the
bearing, when the oil temperature at housing inlet is 115 F.

Figure 4 is, of course, an average curve. In the experimental work on
which it is based, the oil flow through the bearing housing was four to five times
the clearance flow and the total area of the grooves was 15% of the effective
runner area.

Different values of these quantities or the location of major heat sources or
sinks near the bearing housing would be expected to affect the groove temperature.

H. Viscosity- Temperature Relation

The viscosity-temperature relation of the lubricant is required in the
simultaneous solution of Equations (1) and (3). In all the Phase I calculations,
the lubricant properties used were those of 2190T oil.

The absolute viscosity versus temperature plot for 2190T oil is shown in
Figure 5,
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1. Numerical Solution of the Reynolds and Energy Equations

A finite difference procedure was used to solve the Reynolds and Energy
Equations. These, however, were first put in dimensionless form (Equations A-2
and A-5 of the Appendix) in order to facilitate comparison between geometrically
similar bearings.

The finite difference form of the dimensionless Reynolds and Energy
Equations are given by Equations A-4 and A-7 of the Appendix. These are two
sots of algebraic equations that can be solved on a digital computer using an
iterative procedure. Their solutions yleld the pressure and temperature profiles
over the pad surface.

Figure 6 is a typical thrust bearing sector pad, divided into a mesh of
m x n sections., Referring to Equation. A-4 and Figure 6, it {s seen that the
dimensionless pressure ;1._1 at any point is expressed in terms of the corresponding
dimensionless pressures, viscosities and film thicknesses. The boundary
condition states that the pressure is gero around the periphery of the sector.
In order to meet this condition, the pressures at fictitious image points outside
the boundary are set equal in magnitude but opposite in sign to the pressures at
the corresponding points inside the boundary. By employing a process of iteration
the m x n equations represented by Equation A-4 are solved on the computer
and the pressures ;1, j are determined at each mesh centerpoint. The process
of iteration is contiriued until the difference between successive values of the
sum of the pressures’caonverges to within a prescribed error. In this analysis,
the error is specified to be less than 0,1%, i,e,

e n
. 2 Zl IEPi.j)k - (phj)kd:l
rror « lml‘n L < 0.001 . (16)
PEEDIN YHPY
j=1 i=1

The load carrying capacity of a bearing is greatly influenced by the oil
viscosity. The temperature (hence the viscosities) at each maesh point are
obtained from the solution of Equation A-7 . The boundary conditions for this
equation are introduced by setting: a) the temperature, along the inlet edge
equal to the groove temperature and b) the temperatures at fictitious image
points outside the inner and outer circumferential boundaries equal in magnitude
and sign to those at the carresponding points inside the boundaries.

The steps for the simultaneous solution of the Reynolds and Energy Equatior «
are then performed in the following manner:
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(1)  The value of the film thickness at every point is determined.

(2) p; ;is assumed equal to zero and the known value of inlet temperature
is'iuigned to T

(3)  The values of _Ti,. are then determined at every point from equation A-7

(4) The values of ¥,  are calculated from values of Tj ;

(5) Having the values of/"i , h, ,and ;i ., the first approximation of the
pressure field is deterﬂ&neé'!‘rom eq{x&ﬁon A-4 and improved several
times by iteration.

(6) The value of the pressure fleld thus obtained is used to recalculate the
temperature distribution from which a new set off; ; values is determined.

(7) A second approximation of the pressure field is now obtained. This cycle
of pressure and temperature iterations is continued until the error, which
is the difference between successive values of the pressure field, falls
within the limit prescribed in equation 16,

(8) The final value of the pressure field is then used to compute the final
value of the temperature field.

(9) The total pad load, oil flow, horsepower loss and the coordinates of the
center of pressure are calculated by means of Equations A-8, A-10,
A-15 and A-16,

J. Trial and Error Procedure for Pivoted Pad Bearings

At each operating point, the pad deformation has to be related to the pad
load in accordance with Equation 15, The film shape which deperids on this
deformation and on the inclinations of the pad has to be such that the resulting
center of pressure passes through the pivot. Finally, the groove temperature
used has to be related to the unit loading in accordance with Figure 4, In order
to meet these requirements, the following trial and error procedure was used:

(1) For the bearing geometry being studied, select a value of minimum film
thickness.

(2) Estimate the corresponding unit load and hence the groove temperature
(Tgg) and the bending coefficient (K = 1/2R ).

(3) Select values of radial and tangential inclinations (m, and my, respectively).

(4) Introduce the above as input data and obtain the correegponding computer
solution.

(5) From the computer output data determine the coordinates of the center
of pressure and the actual unit load (and hence the actual groove temperature
and bending coefficient). Check whether these agree with the estimated
ones within the following error limits:

2°F

(T

a) I(TGR)a.ctua.l - GR)eltimate( l
2 %106 in, "1

- <
b) |(K)&Ct\1&1 (K)e stimated l (17)
) [rep® - Tp% | S 0.5%

Q) lop% - ap % | < 0.5%
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If any of the conditions, a through d of Equation 17, are not satisfied, steps 2
through 5 are repeated until all errors are within the specified limits,

This procedure was found to require an average of 5 trial computer
solutions for each operating point obtained.

K. Estimate of Errors

A 7 x 7 mesh was used in the numerical solution of the Reynolds and
Energy Equations. This was the finest mesh rize that could be accommodated
with an IBM 650 computer for the present program. Previous experience of the
authors has indicated that satisfactory accuracy can be achieved with the 7 x 7
mesh, provided there are no sharp inflexion points in the film thickness profile.
As an additional check, the calculations for one case were repeated on a larger
computing machine, using a 13 x 13 mesh, The results agreed with those
obtained using the 7 x 7 mesh within 1%.

The error limits defined in Equation 17 were set up in order to limit the
number of iteratioas required for each solution, On the basis of calculations
carried out with smaller allowable errors, the effects of the limits set in
Equation 17 are estimated to be:

Error in calculated maximum temperature < 59F

Error in calculated minimum film thickness < 0, 0001"

In the calculation of the hydrodynamic oil flow and the horsepower loss,
additional errors are introduced in the numerical calculation of the pressure
gradients at the pad edges (see equations A-13 and A-15), Particularly at high
loads, where the pad bending“deflections are correspondingly large, errors in the
calculated values of hydrodynamic oil flow and horsepower loss may be as high
as 20%.
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I RESULTS

1, Eight bearings ranging in sise from 19" to 50" diameter were analysed,
each at two speeds in the range 100 to 320 RPM. These were:

BEARING SIZE SPEEDS

(O0.D," x L. D, ") (RPM)
19 9-1/2 160 and 310
25 x 12-1/2 120 and 240
31 x 15-1/2 180 and 320
37x 18-1/2 180 and 320
39x19-1/2 150 and 200
41 x 20-1/2 100 and 200
45 x 22-1/2 100 and 170
50 x 25 100 and 170

These bearings were all geometrically similar, with the following properties:

B - 3 k = Q85

r% 0. % - 50
t P P
—:—“1- 0. 154

In all cases, 6, 8, and 10 pad geometries were analysed. The results are given
in Tables ] through 8 and plotted in Figures 7 through 46,

2. The ahead and astern bearings of the USS Barry (DD933) and the ahead
bearing of the USS Norfolk (DL1) were studied at their full speed condition,

These are:
812K NUMBER SPELD
(O.D."xLD.") OF PADS (RPM)
Astern Bearing USS Barry® 26 x17-1/2 8 160
Ahead Bearing USS Barry 31 x16-1/2 8 320
Ahead Bearing USS Norfolk 35 x 18-1/2 8 170

The results are given in Tables 9 through 11 and plotted in Figures 48 through 56,

* In the case of the astern bearing of DD933, Figure 47 was used to determine TGR*
This is because the grooves between the pads of the bearing amounted to
approximately 35% of the effective runner area, as compared with about 15% in the
other bearings, In.the absence of data for this sise groove, Figure 47 was obtained
from Figure 4, considering the groove temperature rise tobe inversely proportiona!l
to the extent of the grooves
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In order to estimate the effects of pad thickness, radial pivot location,
groove temperature and bearing size, several additional calculations
were made varying these parameters one at a time. The calculations
were made for the following:

t

Bearing Size Speeds av

(O.D! x LD.) No. of Pads  (RPM) R Tp% TGR
31x15-1/2 6, 8and10 180and 320 0.130 50 Per Figure 4
31 x15-1/2 6, 8and10 180 and 320 0.193 50 Per Figure 4
31 x15-1/2 6, 8and 10 180 and 320 0.154 53  Per Figure 4
31x15-1/2 6, 8and10 180 and 320 0.154 47 Per Figure 4
31 x 15-1/2 8 180 and 320 0.154 50 130°F
39 x 19-1/2 8 150 and 200 0,154 50 130°F
19x 9-1/2 6, 8and 10 100 0.154 50 Per Figure 4
75 x 37-1/2 6, 8 and 10 100 0.154 50  Per Figure 4

100 x 50 6, 8and 10 100 0.154 50 Per Figure 4
19%x 9-1/2 6 100 0.130 50  Per Figure 4
45 x 27-1/2 6 100 0.130 50  Per Figure 4
75 x 37-1/2 6 100 0.130 50 Per Figure 4

100 x 50 6 100 0.130 50  Per Figure 4

The results are given in Tables 12 through 21 and plotted in Figures 57
through 81,

A 51-1/2" O.D, x 32" L D, bearing that was analysed under separate
contract with M. S, T. G, &G. Dept. has also been included in this report,
The geometry and operating conditions were:

Bearing Size Speeds tavg
(0.D. xL.D.) No. of Pads  (RPM) R_ Tp% TGR

51-1/2 x 32 10and 12 200and 400 0.117 52.6 Per Figure 4

The results are given in Table 22 and plotted in Figures g2
through 8¢,
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v DESICN CHARTS

In order to facilitate design and selection of thrust bearings, where the
outer diameter is roughly twice the inner diameter, the data in Tables 1 through
4 was used to arrive at a set of design charts. These are given in Figures 87
through 98. Note that in these charts (as in the other figures in this report)
solid lines represent data within the range of calculations and dashed lines
indicate extrapolated values,

When the oil film temperatures in Tables 1 through 8 are plotted, it is seen
that both the maximum and the average temperatures. are, with good accuracy,
functions only of the unit load, number of shoes and pad inlet temperature, This
allows the maximum and average temperature to be represented on a single chart,
Figure 87. The accuracy of this chart, up to Tyna, ® 235°F, is © 50F, Above
T = 2359F, the accuracy is © 10°F,

max

The minimum film thickness is a function of bearing size and speed as
well as unit loading, number of shoes and pad inlet temperature. It is
represented here as a function of these variables, in the set of nine charts,
Figures 88 through 96, The accuracy of these charts is * 0.0001" within the
calculated regions. In the extrapolated regions, ‘errors may be somewhat larger.

The hydrodynamic oil flow per pad is plotted in Figure 97, as a function of

/ U

the dimensionless parameter/ /fgm-—m) As was pointed out earlier, the oil
KP avg B

flow calculations are subject tu sigi.ticant error (in some cases as high as 20%),

in part because of the numerical approximation of the pressure gradient at the

pad edges, It is also necessary to keep in mind that the oil flow given by'Figure 97

is only that which flows through the clearance spaces between the runner and the

bearing pads. The total flow furnished to the bearing should he several times

this quantity.

The friction horsevower loss per oad is plotted in Figure 63, alsoas a

u
function of the dimensionless para.meter(ﬂ“' av ) This hors=power loss
P lVSB
is dependent on the calculated oil flow aud is thus subject to (b~ same errors, In
addition, it should be noted that Figure 98 shows only the horsepower loss due to
fluid shear in tbhe oil film. There are additional losses in the bearing, such as
those due to turhulence in the oil grooves,



The example below illustrates the use of the charts.

Example: Compare the performance of 6 8 and 10 pad geometries far a 35" O, D.
x 17-1/2" 1, D. bearing at a speed of 280 RPM and a unit load o 650 psi.
(Oil 2190T, k = 0, 85 in all cases)

6 Pad | 8 Pad 10 Pad
P ath = 0,0010" (Per Figures 88, 91 and 94)| 528 520 453
avg min
Pavg ath . = 0.0008" (Per Figures 89, 92 and 95)H 623 663 620
Pavg 2 Pmin * 0- 0006" (Per Figures 90, 93 and 96)| 745 832 815
‘ hmin at pavg = 650 psi (by inte?'f_?}_at—ior_x_.) 0. 0075' |0, 0082'" |0, 0077"
T ax 2t 650 ;f‘_si*(?ez—' Fﬁigure 87) - °F 237 215 207
T, g 650 psi (Per Figure 87) = °F 185 185 | 184
Mayg (Per Figure 5) 1.8x1076[1. 8x1076 |1, 8x10-6
Upyg ® 2TR - L/2)N - in/sec 385 385 385
B:(R-L/2)6, =(R-L/2) 2kT . n, 11.7 | 8.76 7. 01
. :
" U !
lnth 2R\ 4 10¥ 0.091 | Q122 | 0,152
Pavg B s
/ l
:

Q 6 : |
—_—1x 10 (Per Figure 97) 24.9 24, 7 24, 6
BLU,_,

g
Q GPM 0.98 0.73 Q58
Q,,, GPM (= nxQ) ' 5.9 . 58 | 58
fx 103 (Per Figure 98) ' 0.97 1 1.01 1.12
{BLp, - "

HP = { 8 3.77 2.9 | 2

6600 v o
HP, (= nx HP) 22.6 23.5 | 26.1

L
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DISCUSSION AND CONCLUSIONS

The two principal criteria of thrust bearing perforn.a‘ice are the
minimum film thickness and the maximum temperature, The present
analysis, which was limited to 6, 8 and 10 pad bearings, showed that:

a) For each condition of operation (bearing size, load and speed),
there is an optimum number of pads, from the standpoint of minimum
film thickness. This can be seen by comparing the design charts,
Figures 88 through 96.

b} The maximum temperature can be decreased by increasing the
number of pads in the bearing, This gain is greatest in the critical
high load regions as shown in Figure 87,

Note also from Figure 87 that the maximum temperature is a
very sensitive indicator of bearing load. This is in contrast to the
oil temperature which is little influenced by load changes.

At low loads, the minimum film thickness occurs at the inside radius
of the trailing edge. However, as the bearing load (and hence the pad
deformation) increases, the point of minimum film thickness moves
toward the pivot, as shown in Figure 99. This figure shows that the
radial location of the point of minimum film thickness moves quite
rapidly towards the center region of the pad. It can be concluded
from this that failures which result from small dirt particles in the
oil film are most likely to occur near the pivot, This is borne out
by experience,

Figure 99 also shows that the location of the point of minimum film
thickness is dependent on the pad subtended angle. Thus, it moves
inward from the trailing edge most rapidly in the case of the 6 pad
bearing.

The marked divergence, at high loads, between the minimum film
thickness and the film thickness at the inside radius of the trailing
edge is also shown in Figure 100, In fact this figure shows that at
high loads, the film thickness at the inside radius of the trailing
edge becomes almost insensitive to load changes.
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The effect of pad thickness is illustrated in Figures 10l. Note that
there is an optimum pad thickness at each specific load, from both the
standpoints of minimum film thickness and maximum temperature.

At low loads, thinner pads are preferable for the deformation there
allows a more favorable film shape, At high loads, on the other
hand, deformations become excessive and reduce load carrying
capacity,

Since propeller shaft bearings are required to operate under either
direction of rotation, the pivot location can be varied only radially.
Figure 102 shows the effect of radial pivot location on minimum film
thickness and maximum temperature, for several values of unit
loading, Both these sets of curves indicate that there is an optimum
pivot location, that varies with unit loading, The optimum locations
obtained from the two sets of curves are, however, different.

Thus, from the standpoint of minimum film thickness, the optimum
pivot location approaches the mean radius from the outer circum-
ference, as the unit loading increases. From the standpoint of
maximum temperature on the other hand, the optimum pivot location
approaches the mean radius from the inner circumference, also

as the unit load increases.

The groove mixing temperature plays a very important role in
bearing performance. Figure 103 shows the reduction in load
carrying capacity that accompanies a rise in the groove temperature.
This reduction is a major one, as indicated in the following table
{obtained from Figure 103):

t [+] o
hmin TGR F P avg pel Tmax F
0.0006 130 1030 220
0.0006 158 800 235

Thus, for i constant minimum film thickness, a reduction of 28°F
in groove temperature achieves an increase of 28% in unit load,
together with a reduction of 159F in the maximum temperature.



_22-

For a geometrically similar series of bearings, the unit loading

will increase with bearing size (at a given angular speed and minimum
film thickness) as shown, for example, in Figure 81, This is of
course due to the higher surface speed of the larger bearings. Note
however, that the slope of the curve decreases quite rapidly due to
the rise in groove mixing temperature and bending deflections. This
points up again the importance of these two factors on bearing per-
formance,

Early in this report, it was pointed out that the inclusim of thermal
wedge and pad bending in the analysis explains the load carrying capacity
of centrally pivoted pads. The load carrying capacities of a flat pad
bearing with optimum pivot location and of a centrally pivoted pad were
then compared in Figure 2, for a particular pad geometry. It should

be noted, howe.er, that the hydrodynamic pressure profiles differ
markedly in the two cases, as shown in Figure 104,

In the present analysis, heat conduction was neglected, Thus, the
calculated maximum film temperatures are somewhat higher than
those which occur in practice. (The calculated values are therefore
conservative,) Furthermore, whereas the calculated maximum
temperatures are at the trailing edge, in practice they will occur at
a small distance inward, also because of conduction,
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RECOMMENDATIONS

The simplified analysis that was used here has shown that several
aspects of bearing geometry, such as number of pads, pad thickness
and radial pivot location, have a significant effect on load carrying
capacity, The effect of number of pads was studied for a large range
o bearing .izes. The effects of the other factors were studied for
all" O.D, x 15-1/2" 1. D, bearing, It is desirable to:

a) Verify the results using a more rigorous elasticity analysis (as
is being done in Phase II),

b) Extend the results obtained to bearings with different L/R ratios.

<) Obtain experimental verification (Phaselll and contemplated thrust
bearing test machine.)

Groove mixing temperature plays a very important role in determining

the load carrying capacity of thrust bearings. Gains in load capacity

on the order of 25% can be achieved if mixing in the grooves can be
inhibited, thus iowering the pad inlet temperature of the oil, This
suggests an investigation aimed at developing suitable baffles in the oil
grooves which would reduce the carry over of hot oil from the downstream
pad. (A reduction in the dl temperature at housing inlets also serves to
improve performance. )

The major importance of pad geometry and groove mixing temperature on
bearing performance indicate that design modifications can be made to
greatlv increase the load carrying capacity of tilting pad bearings, In
such designs, consideration should be given to multi-point supports and

to shaped pad surfaces as well as to the other aspects of bearing geometry
studied in this report. Advantage should also be taken of the elasticity

of the pads in optimizing the bearing design,

The present analysis was limited to steady state conditions, Analytical
and experimental investigations are necessary in order to arrive at
means of predicting bearing performance under transient conditions,
such as acceleration, crash maneuvers, start .p under load (as in a
submerged submarine) and others,

Metallurgical work is badly needed to-day to set up operating temperature

limits of the various babbitts in use as well as to develq alternative materials,
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In future analytical work, the effect of thermal conduction should be
studied,

The extent of misalignment present in thrust bearing installations on
board ship needs to be investigated, In parallel with this, the degree of
load equalization between pads and the load carrying capacity of the
bearings under misalignment should be analyzed.
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APPENDIX

1. Finite Difference Equations

The numerical solution of the Reynolds and Energy Equations by means of
finite differences is described in Reference 11, Here a brief outline of the
procedure is given,

For convenience of comparison between geometrically similar pads, the
Reynolds and Energy Equations are first put in dimensionless form,

Let r=R.;__ . . - .. R 2
h”_‘_ah p-lZ‘\TN/AGRp[vhereN r. NJ
6= 127N (A-1)
M HGr " T=- GR T
,OgJCp

Introducing Equation (A-1) into Equation (1) of the text, we obtain the Reynolds
Equation in dimensionless form:

b (F5) &(F 8- ¥ -

gSE=!' By 4p1/0 " Ry o

And, introducing Equation (A-3) into Equation {A-2) and solving for 51 f we obtain
T

P .= t%'m/z.jp'%j'\) (;p 1-1/2, j-p-—l'glii) ( )1,j+1/2 _1"'1;'1')
= 3
iy (%'14'1/293 |i 1/2,j) (ﬂT'i,j'H/Z f#lig.‘l 1/2 —é-z )
(B3] o e oy, (Bt Frass
+ BT 11,3~ 1/2 Ti4

(rr‘ Ii+1/2,j li 1/2).5)2}'_2 +( ‘MJ"’]-/Z rp!i,j-l/Z)Z%-F
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Similarly, from Equations (A-1) and Equation (2) of the text, we obtain the Energy
Equation in dimensionless form:

SRR AL

(A-3)

Referring to Figure 6, the above equation can be reduced to a difference equation:
— - 3 =] /b -p *
r? h’l ( 144 T4 -1) ( 14159 1-1..1) ]
g '1,1 i 280 + 25
_L\.:L_L_h.l_l_
[y - By o] ;

(A-6)
E| ("m,j P14 )( T Tl )
LYY 24F 24r

Now solving for T we obtain

i, j+1’

ol Bl (e (Gaggad)]
e [-I 1,3 urli,a(&tﬁmﬂ a-7)

Im (%\(W) + {le
[“l:,a |1,J ('MJUJ"LL)]

B (%;u i)} B |
[ s By (Ptthgriat) |
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The pressure and temperature profiles are obtained by the numerical solution
of the two sets of E uations(A-4)and(A- 7)using the iterative procedure described
on Page 13,

The load carried by each bearing pad (Equation 5 of the text) {s obtained
by a numerical integration of the pressure field over the pad surface,
m n
WEaBar ) ) Ry kT (A-8)
Js i 1zl ! '

The oil {low out of each pad is given in Equations 7 of the text, In order
to generalize the solutions, a dimensionless factor is used;

Q = —"3_10— (A-9)
60T NRL h.

Equations (A-): and(A-9)are introduced into Equation 7 and four point approximations
are used for the pressure gradients at the pad edges (Reference 12). Noting that
the pressure i> zero along the edges, the numerical form of the flow equations
becomes:

- M -

Q, : % _/A_\_, Z, (/“%J 12,4 (3. 000 'El'j - 1.500:’»‘_”2_j + 0,333 Fz'j)
= F n -
Q; = or ,}-._‘1 (Fh) a2 (A-10)

JRo_oar i (F:_)_ (3.000P, - 1,507 v 0,333P )

L A8 ST mel/2 i,m i,m-1/2 1, m-1
m

3, : % T: JZJ‘E;)MHZ. J (3.000P ;- 1.500%, ) ,+Q 5333‘1_1').)

The total flow out of the bearing is given by

Q=0Q, +0; +Q, (A-11)
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The horsepower loss by fluid shear in each bearing pad was written in
Eqation 8 of the text in the form

C ps
Hp = 231, P ,qar (A-12)
60 0. 707
In dimensionless form this is:
HP = Q oT (A-13)

where, from Equations (A-1). (A-9) and {A-12);

Jh
* et W, 14
R4 L
In numerical form the horsepower loss is then given by:
— _R g 2 ¢ =
: = == — 3. 000 -1,500p +0,333p )
HP, L ooy o5 (/: )/2.1‘ R Pla1/2, P .J" 1/2j
R 2 F - —
HPy = For Z ER) 12 (T m+1/2"Tgr!

R /F o 1.'3 -
R _4r 2 .000p, _-1,5 0.33 NT - T
*T i 2 e imers2 300005 o 07, m-1/2"0 P i T me1/z TGR)

(A-15)
— R 6 m . 2 — _?
HP, =T~ Z = hay1/2,5 3. 0005 FRRELLL FRYPR: 0.33% 51, M Tny1/2,5" Tar)

and the total horsepower loss in each bearing pad is:

HP : HP,+ HP; : AP,
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The equations for the center of pressure (Ecuations 10 of the text) are
numerical form:

- m n “
peor 7 i sine (B )
: SRRl
W
(A-16)
ol -
484 8 .
(-] rZri,jcos " p”-‘)k
w
]
rie: r % : oK (1 R, ;‘,;2_fi:".\]t
3 533 l'p o PR L :—.A IE oy
100 ran~! /Y (A-17)
} H
[§ ep% 5

T
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2. Film Shage

A Y
BN
|
~
Re
AN \\ Ya
\ % - —_—

L

mg

= \/F FIGURE A-1

/
Rc

\\ /

We consider that the convex shape to which the pad bends under load may be
represented by part of a spherical surface whose radius of curvature is R., as shown
in Figure A-1, In all cases considered here, R_ is very large, greater than 104
inches. In addition, the pad inclines, so that its tangent plane directly above the
pivot point has slopes m (circumferentially) and mﬂ (radially), with respect to

the plane of the runner, as shown in Figure A-1, e pad inclinations are small
so that

sin mg tan mg = mg

1

cos me

(A-18)
linmr = tanm_ * m

cos m, = 1
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Let the {ilm thickness at a reference point (x,, Ya) on the pad surface be h‘.
The film thickness at any other point (x, y) can ther he wrilten:

xzfi'yZ 1 2 2\ 1
h=h, - x - x,) ( )+ R .2 22 X +y |2
a - My X0+ mo(y - va)+ R (2 —-RT'— =\1 = (A-19)
c c

Since R, is very large, powers of the ratio (%)are neglected. Equation (A-19)

then becomes: Rc
(x%+ Yz)-(Xi+ v2)
h = h‘-m9 (x -x‘)+mr (y-yl)+ 2R (A-20)
c

This equation can be converted from the x, y co-ordinate system to the r, ¢
coordinate system of Figure A-1 by means of the relations:

Or OT
x = reoin(@ - =<<)-r_sin (0_-~_1)
- P P2 (A-21)
(¢} (]
I T,
y-rcos(e-z)-rp¢°'(°‘, T)

The general equation for the film shape in polar coordinates is then:

h=h + mg ¢, sin (Oi-T)-rlln’O -'z—') -m_|r cos Ie‘-—z—)

{A-2¢

]
T 2 2 ]
- - —_— 1 - - i -
r cos (6 3 J.,, [r r‘ erp cos (8 op)+ Zr"x'P cos (9:= OP)

2 Rc 4

(note that Equation A-22 can also be used to describe the film shape for flat
pads. In such cases, R, is infinite, thus eliminating the fourth term on the right
hand side of the equation, )
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3, Bending Coefficient

Equation A-20 and Figure A-1 show that (with the simplified elasticity
approach used here), the bending deflection along a point on the pad surface is
proportional to the square of its distance from the pivot, i.e.

= K x2+y? (A-23)
where K * 1/2R) (A-24)

The value of the bending coefficient K was obtained by calculating the
deflection at the rim of an equivalent circular plate point supported at the center
of its lower face and carrying a conically distributed load on its upper face.

A circular plate was used because a closed solution for its bending deflections

is available (Reference 11). A conical load distribution was selected because the
ratio of peak to average pressure (3:1) is similar to that in an actual bearing
pad.

Integrating Equation 57 of Reference 11, for a steel circular plate (radius
"a'' and thickness "tav ") under the loading and sypport described above, the
deflection at the rim if found to be:
s W lz
3
tavg

§:= 075x10

(A-25)

From equations A-23 and A-25, the relation between the bending coefficient and
the pad load is:
K= 0.75x 10'8—‘”—3- (A-26)
tavg

This relation was used in all the Phase I solutions,
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Figure 6
MESH NOTATION
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FIGURE 7

MINIMUM FILM THICKNESS VS. UNIT LOADING
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FIGURE 9

MAXIMUM TEMPERATURE VS, UNIT LOADING
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FIGURE 10

MAXIMUM TEMPERATURE VS, UNIT LOADING
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FIGURE 11
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FIGURE 14
MAXIMUM TEMPERATURE VS. UNIT LOADING
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FIGURE 25
MAXIMUM TEMPERATURE VS, UNIT LOADING
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Speed - 320 RPM

.- -Data per Table 4

I U SR oy | 2
A ) . 10 pm%:_ i P

- '""I""'"~~ AR
!

S,

260 o oi-

-~ 2"

by

)

1

m

[

)
o B . . :
§ 220} e

m

B

i i

|

i T=r |

e | ‘
o8 1
i | |

i i |

— - —_—

60

40

20

200 400 600 800 1000 1200

UMIT LOADING PSI

[ . - B X N . N — .. . 2 - ) . \
—— e e e



"Ny

23/ 64 i

160 x 220

"FIGURE 26

HYDRODYNAMIC OIL FLOW VERSUS UNIT LOADING

37" Q. D, x18-1/2" 1. D, Bearing

ane and Data por Tible 4

.8 phda

t

|
T e e - 4 —

T lsonPM

Looo 1rpa




FIGURE 27
MINIMUM FILM THICKNESS VS. UNIT LOADING
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FIGURE 33

MINIMUM FILM THICKNESS VS, UNIT LOADING
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FIGURE 35

MAXIMUM TEMPERATURE VS. UNIT LOADING
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FIGURE 36
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FIGURE 38

MINIMUM FILM THICKNESS VS. UNIT LOADING

45" O,D, x 22-1/2" 1, D. Bearing
Speed— 170 RPM
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FIGURE 48
MINIMUM FILM THICKNESS VS. UNIT LOADING
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FIGURE 49
MAXIMUM TEMPERATURE VS, UNIT LOADING
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FIGURE 54
MINIMUM FILM THICKNESS VS. UNIT LOADING

35110.3 x18-1/21 L B, Bearing
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FIGURE 55
MAXIMUM TEMPERATURE VS, UNIT LOADING
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FIGURE 59
MAXIMUM TEMPERATURE VS. UNIT LOADING

31 O, D. x 15-1/2" 1, D. Bearing
Speed - 180 RPM
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FIGURE 60
MAXIMUM TEMPERATURE VS. UNIT LOADING
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Speed - 320 RPM
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FIGURE 63
MAXIMUM TEMPERATURE V8. UNIT LOADING
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Speed - 180 RPM

Data per Table 13

200 400 2] L] ) I 000

'THIT LOADIND PSI

1200



FIGURE 64
MAXIMUM TEMPERATURE VS8, UNIT LOADING
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FIGURE 65
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FIGURE 66
MINIMUM FILM THICKNESS VS. UNIT LOADING

31" O.D. u 15-1/3" LD, Bearing
Speed - 180 RPM
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MINIMUM FILM THICKNESS VS, UNIT LOADING
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FIGURE- 76
MAXIMUM TEMPERATURE V5. UNIT LOADING
31" O. D, x15-1/2" I, D. Bearing
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FIGURE 80
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FIGURE 82
MINIMUM FILM THICKNESS V5. UNIT LOADING
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