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PREFAGE 

This study is a part of a continuing Project RAND 

effort exploring the use of mathematical models to investi- 

gate the chemical aspects of physiological systems.  Such 

synthesis of the chemistry of human physiological function 

is expected to aid in the design of artificial life-support 

systems and assist in monitoring the state of man in extra- 

terrestrial and other stressful, antagonistic environments 

related to Air Force missions.  Additionally, these models 

have been applied to the solution of associated problems 

of rocket propulsion systems, planetary atmospheres, re- 

entry body design, etc. 

The present Memorandum deals with theoretical and 

computational questions which have arisen in connection with 

this RAND research.  In particular, the work described here 

enhances the application of electronic computer techniques 

for the solution of complex chemical problems which, until 

recently, were far too complicated for any quantitative 

analysis—e.g. models of complex physiological systems. 

As the capability to use computers in such applications 

becomes better understood, certain hitherto unresolved 

questions of mathematics and chemistry become apparent. 

This Memorandum considers the resolution of several of 

these problems, and should be of interest to both mathe- 

maticians and chemists. 
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SUMMARY 

A chemical equilibrium problem may be thought of as 

the problem of minimizing a certain function of composition, 

subject to linear constraints.  When the problem is that 

of finding a solution to what the chemist classically 

denotes as a chemical equilibrium problem the constraint 

set (the set of compositions satisfying the linear con- 

straints) is always bounded.  In this case, of course, 

there is always a solution. 

It has been discovered, however, that problems of 

exactly the same mathematical form arise in some nonchemi- 

cal situations, as in geometric programming problems. 

Geometric programming is a recent technique whose main 

application seems to be in the field o£ engineering design. 

There is no reason why such problems must have bounded 

constraint sets.  In addition, the steady-state behavior 

of certain "open" chemical systems—systems which mass 

may enter or leave--can most economically be determined 

by solving a chemical "equilibrium" problem whose constraint 

set is unbounded. 

We relate the existence of solutions of a chemical 

equilibrium problem whose constraint set is unbounded to 

an auxiliary chemical equilibrium problem with a bounded 

constraint set.  A solution to the auxiliary problem will 

yield a value of the objective function which is greater 

than, equal to, or less than, zero.  Based on this trichotomy, 
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we show whether the solution set of the original problem 

is bounded and nonempty, either empty or unbounded, or 

certainly empty. 

Finally, we demonstrate with an example that problems 

with unbounded constraint sets are useful in chemical appli- 

cations.  The example system consists of a liquid phase and 

a gaseous phase, in which the partial pressure of COo in the 

gaseous phase is maintained at a constant value from an 

outside source. We find the steady-state composition of 

this system by solving a chemical equilibrium problem 

whose constraint set is unbounded. 



-vii- 

ACKMOWLEDGMENTS 

The authors arc indebted to Mordecai Avriel for 

calling their attention to the possible importance of 

chemical equilibrium problems whose constraint sets are 

unbounded, and they also appreciate the processing of 

the illustrative unbounded problem by Leola Cutler. 



IX- 

CONTENTS 

PREFACE iii 

SUMMARY     v 

ACKNOWLEDGMENTS   vil 

Section 
1. INTRODUCTION      1 

2. EXISTENCE OF SOLUTIONS TO A CHEMICAL EQUILIBRIUM 
PROBLEM WHOSE CONSTRAINT SET IS UNBOUNDED    3 

3. USE OF AN UNBOUNDED CONSTRAINT SET TO SOLVE A 
STEADY STATE PROBLEM    8 

REFERENCES 16 



-1- 

CHEM1CAL EQUILIBRIUM PROBLEMS 

WITH UNBOUNDED CONSTRAINT SETS 

1.  Introduction.  A single- or multi-phase chemical 

equilibrium" problem may be thought of as the problem of 

minimizing a certain function (the free energy) of composi- 

tion subject to the constraints that the composition vector 

have all its components nonnegative and satisfy a system 

of linear equations (the mass balance laws).  The free 

energy is continuous.  It is therefore obvious that a 

chemical equilibrium problem has a solution if its constraint 

set (the set of composition vectors whose components are 

nonnegative and which satisfy the mass balance laws) is 

bounded and nonempty.  In a previous article one of us 

stated that chemical equilibrium problems in which the 

constraint set is unbounded are of no practical interest 

(ll], page 371).  Since then we have discovered that 

chemical equilibrium problems with unbounded constraint 

sets do arise in practical situations (although not in the 

solution of problems which are classically denoted as 

chemical equilibrium problems by the chemist). 

-XT 

"We use the phrase "chemical equilibrium problem" to 
denote the kind of mathematical problem discussed in ll] 
and elsewhere in the mathematical literature, without in- 
tending to confine ourselves to the narrower but included 
class of problems subsumed under that title in the chemical 
literature.  See [5] for a partial bibliography of work on 
theoretical and computational aspects of chemical equilibrium 
problems. 



-2. 

First, one technique for solving "geometric program- 

ming" problems involves the solution of derived chemical 

equilibrium problems in which the constraint set may be 

unbounded (see [2, 3, 4j).  Second, we have recently 

observed that the steady-state behavior of certain "open" 

chemical systems can be determined by solving chemical 

equilibrium problems in which the constraint set is 

unbounded.  An open chemical system is one which mass may 

enter or leave.  A chemist would not say that such a system 

is in equilibrium even when it is in a steady (stationary) 

state. We give a simple example in Section 3 below of the 

determination of the steady state composition of an open 

chemical system by the solution of a chemical equilibrium 

problem with an unbounded constraint set. 

It was noted (p. 371, [l]) that all the results of 

[l], except Theorem 9.9 on page 371, were applicable to 

chemical equilibrium problems with unbounded constraint 

sets. We are thus left with the question of the existence 

of solutions to problems having unbounded constraint sets. 

Such problems need not have solutions. 

In Section 2 we study the existence of solutions to 

chemical equilibrium problems whose constraint sets are 

unbounded.  We relate the existence (or nonexistence) of 

a solution to such a problem to an auxiliary chemical 

Theorem 9.9 as stated in [l] is incorrect.  It should 
read "If H " Q is bounded and nonempty then D is nonempty." 
(The word "nonempty" was inadvertently omitted in [l].) 
That is, chemical equilibrium problems in which the constraint 
set is bounded and nonempty, possess solutions. 
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equilibriuni problem whose constraint set Is bounded.  We 

incidentally obtain some information about the boundedness 

of the set of solutions to a problem whose constraint set 

Is unbounded. 

Historical note. Before his death E. Eisenberg told 

us of his plans to publish conditions for the existence of 

solutions to one-phase chemical equilibrium problems whose 

constraint sets are unbounded. We have never seen these 

results and Elsenberg's work has not affected ours. However 

we posthumously acknowledge his priority for the one-phase 

case. 

2.  Existence of solutions to a chemical equilibrium 

problem whose constraint set is unbounded.  Let Q be the 

nonnegative orthant of E , Euclidean n-space.  Let F be a 

continuous, convex, real valued function on Q.  We will 

assume that F is homogeneous of degree 1 (that is, 

F(tx) = tF(x) for all x " Q and t _ 0).  F will be the 

free energy. 

Remark.  For the class of functions considered in [l], 

namely, the free energy of "ideal systems," the continuity 

of F is Theorem 8.3, page 365 Llj; the convexity of F is 

Theorem 8.13, page 368, Llj; the homogeneity of F is con- 

tained in Lemma 8.14, page 368, [l].  For more general (non- 

ideal) free energies, the homogeneity of F is closely related 

to the First Law of thermodynamics and the convexity of F is 

closely related to the Second Law. We intend to explore 
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the relationship of various properties of F to the thermo- 

dynamic laws In a subsequent publication. 

Let A be a real m by n matrix and b e Em.  Define H, 

the constraint space by 

H-[x«:QlAx-b}. 

The system Ax = b thus represents the mass balance laws. 

Let D be the set of points in H at which F achieves its 

minimum on F.  More precisely, let 

D = ix f.  H I F(x) _ F(y) for all y c H]; 

that is, D is the set of solutions to the problem.  We are 

primarily interested in obtaining conditions for D to be 

nonempty; and secondarily in conditions for D to be bounded. 

For the sake of completeness we repeat Theorem 9.9 of 

111. 
PROPOSITION I.  If H is bounded and nonempty then so 

is D. 

Proof.  H, as the intersection of a linear manifold 

and Q, is closed and F is continuous.  Hence D is nonempty. 

Since D _ H, D is bounded.  Q.E.D. 

We will hereafter assume that H is unbounded.  It is 

then well known that there are x f: Q - (Ol such that Ax = 0. 

(See, for example, Lemma 3 below.)  Thus if we define H0 by 

H0 = U c A | Ax = 0), 
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where A is the set of elements of Q the sum of whose co- 

ordinates is one, H^ will be a bounded nonempty subset of 

E .  The problem of minimizing F(x) relative to the constraint 

that x c H« is itself a chemical equilibrium problem, but 

one with a bounded constraint set 1U.  By Proposition 1 this 

problem has a solution.  That is, F takes on a minimum value, 

F0, on D. 

Our results (Theorems 2, 4 and 5) are based on the 

trichotomy FQ • 0, FQ = 0, FQ • 0.  No<;e that (using the 

homogeneity of F): 

(1) F0  0 means F(x) ■ 0 for all x " Q - '0' with Ax » 0. 

(2) F0 = 0 means F(x) _ 0 for all x ^ Q with Ax = 0 

but F(x) = 0 for some x ' Q -  0. with Ax = 0. 

(3) Fn '' 0 means F(x) •' 0 for some x r Q with Ax = 0. 

THEOREM 2.  If H is unbounded and FQ ^ Q,  then D is non- 

empty and bounded. 

To prove Theurem 2 we will need the following well- 

known lemma. 

LEMMA 3.  Let C be a closed, unbounded, convex sublet of 

En.  There is ay-: Fn - '0  such that x + ty ^ C for all 

x s C, t > 0. 

Proof.  Since C is unbounded, there are a " C and an 

unbounded sequence fz.  of elements of C - 'ra'.  The set 
z. - a 

of —^  is an infinite, bounded subset of E which posseses 
lzi- a| 
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a limit point, y.  By forming a subsequence of z.' we may, 

without loss of generality, assume that 

z, - a 
(4)      y = lim 

i— Iz^ a| 

and 

(5)      lim Iz. - al = -. 
I-1  1 

Let x ' C and t  0.  For all * ^ 0 and all positive 

integers r, define 

tzi           t w(e, i) = (1 - c)x + i— + (e - -—^ r)a. 
Iz.-al       |z.- a I 

It follows from the convexity of C that w(r, i) ^ C for 

all c with 0 < c ^ 1 and for all i so large that (using (5)) 

\z.   - al > —.  Hence, since C is closed, and using (4): 

x + ty = lim  ((1 - c)x + ea + ty) 
0    / tCz. - a)\ 

■ lim lim ((1 - G)X + ca + ——i  ) 
e.0+ i-V Iz. -. al/ 

- lim lim w(e, i) e C. 

By (4), lyl - 1; hence y + 0. Q.E.D. 

Proof of Theorem 2.  Since H is unbounded it is certainly 

nonempty.  Let z c H.  Define 

W » (x e H 1 F(x) <  F(z)}. 

Since F is continuous and convex, W is closed and convex. 
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Suppose that W is unbounded.  By the Lemma there is a 

y ^ En - fO] such that z + ty e W for all t > 0.  But W 5 H. 

Hence A(z + ty) = b for all t > 0.  Hence Ay = 0.  If y ^ Q, 

then we would have z + ty ^ Q for some t > 0.  Hence y ^ Q. 

By the definition of W we have F(z -I- ty) <  F(z) for all 

t >  0.  Hence, by the homogeneity of F, Fl- + y| ^-^ F(z) 

for all t > 0.  Hence, by the continuity of F, F(y) <  0, 

but Ay = 0 and y'e Q - ^0), contradicting (1).  We have 

shown that W is bounded. 

Since z ►■ W, W is nonempty.  Hence, since F is con- 

tinuous, it achieves its minimum on W at some x ' W. 

Clearly, for any u r H - W, we have F(x) < F(z) < F(u). 

Thus x minimizes F on H, and u does not.  That is, x c D 

(which is therefore nonempty), and D ^ W so that {since 

W is bounded) D is bounded.  Q.E.D. 

THEOREM 4.  If FQ = 0, then D is either empty or unbounded. 

Proof.  Suppose D is nonempty.  Let x c D.  By (2) 

there is a y e Q - ^0: with F(y) « 0 and Ay = 0.  Since 

x G D 5 H, Ax = b.  Hence A(x + ty) = b for all t > 0. 

But x, y ~ Q; hence x + ty ^ H for all t > 0.  Using the 

convexity and homogeneity of F, we have for all t > 0 
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F(x + ty) - (t + 1)F 

^ (t + 1)F 

= F(x) + tF(y) 

= F(x) + t ' 0 

- F(x). 

Since x ^ D, x + ty ^ D for all t _ 0.  Thus D is unbounded. 

Q.F.D. 

Remark. We are unable to obtain any chemically relevant 

results which distinguish between the two cases of Theorem 4. 

If F is linear, then D is unbounded when FQ = 0.  Chemically, 

F is linear if each phase contains only one species.  In 

the more general nonlinear case, D may be empty, 

THEOREM 5.  If FQ < 0, then D is empty. 

Proof.  The argument is close to that of the proof of 

Theorem 4.  Suppose D is nonempty.  Let x ' D.  By (3) 

there is a y e Q with F(y) < 0 and Ay = 0.  As before 

we have that for all t > 0, x + ty ^ H and F(x + ty) < 

F(x) + tF(y).  But now F(y) < 0.  Hence F(x + y) < F(x) + t • F(y) 

F(x) for t ^ 0.  So x j: D, a contradiction.  Q.E.D. 

3.  Use of an unbounded constraint set to solve a 

steady state problem. We select a relatively simple chemical 

system to illustrate the practical utility of the concept of 

unbounded constraint sets.  The system consists of gases in 
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contact with an aqueous buffer solution at a uniform total 

hydrostatic pressure of one atmosphere and a uniform temper- 

ature of 37*C.  Energy may exchange with the environment 

to maintain this constant temperature, the volume of the 

gas phase may vary to maintain one atmosphere pressure, 

and chemical substance may exchange with the environment 

in a manner to be described. 

More specifically, the aqueous phase consists of one 

kilogram of water containing a buffer system made up of 0.04 

mole of sodium hydroxide, NaOH, and 0.06 mole of an acid, 

HA, and its conjugate base, A-.  The pK (negative logiQ of 

the dissociation constant) of the weak acid is approximately 

8.  The gas phase consists of .647 mole of O2, 3.614 moles 

of N2, .304 mole of ^0, and an unknown amount of CO2.  When 

this gas phase is placed in contact with the buffered aqueous 

phase, the gasems substances dissolve, and the aqueous 

phase contains these species in solution, plus the reaction 

products of COj and water, and the buffer-system species. 

A tableau representing this system is shown in Fig. 1. 

Note that the column sum CO2 and the row *C02 are an 

accounting device for keeping track of the total CO2 in 

the system.  (See 15] for a fuller explanation of this 

device, as well as other background information.) The 

reactions which occur in this system between the gas and 

aqueous phases and within the aqueous phase are shown in 

more conventional chemical notation in Table 1.  The asso- 

ciated free energy parameters, c., are also listed in this 
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Table 1 

CHEMICAL REACTIONS IN BUFFERED SODA WATER SYSTEM AND 
ASSOCIATED FREE ENERGY PARAMETERS 

3" 

Reactions 
Free Energy Parameter 
In K. = c. 
 JL   a 

02(gas) - 02(aq) 

C02(gas) r-  C02(aq) 

N2(gas) ^ N2(aq) 

H20(gas) *  H+(aq) + OH~(aq) 

H20(aq) n  H+(aq) + OH~(aq) 

HA(aq) ^ H+(aq) + A~(aq) 

HCO^Caq) s C02(aq) + OH~(aq) 

H2C03(aq) ;• C02(aq) + OH~(aq) + H
+(aq) 

CO^Caq) + H+(aq) .- C02(aq) + OH~(aq) 

cl= -10.85 

c2 Ä -7.69 

c3 ' -11.52 

c4 = -36.61 

10 = -39.39 

13 " -22.44519 

14 ' -20.86 

15 = -33.61 

-it ~ 6.73 

aTbese free energy parameters are on the mole-fraction 
scale and are dimensionless.  Methods for deriving these 
constants from the equilibrium constants contained in the 
literature, which are often on other scales, are given in 
[5], 
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table.  The viilues oC the b. Cor the system are given in 

Table 2. 

As an example of the practical use of tbe unbounded- 

ness concept, wo choose to simulate the operation of a 

C02-stat operating with the buffered soda-water system 

described above.  That is, a chemical goal is set for the 

system in terms of, say, a specific partial pressure of 

CO2 in the gas phase thu.t is to be established and maintained 

in the system by adding an appropriate amount of CO2 to be 

obtained from the environment; the amount of CO^ to be 

added depends in a complex way on the values of the param- 

eters. 

The numerical problem of determining the amount of 

CO2 to be added, and the composition of the system after it 

has been added, could be solved in a variety of ways.  For 

example, the linear and nonlinear equations describing the 

problem could be written down and numerically solved by 

some special purpose method peculiar to this particular 

problem. Alternatively, one could guess at the amount of 

COo to be added, solve the resulting chemical equilibrium 

problem with a standard chemical equilibrium program, sys- 

tematically varying the amount of COo to be added to obtain 

the desired partial pressure of CO2 in the gas phase, and 

hopefully converge to the correct answer. 

However, by using a procedure suggested by the concept 

of unbounded constraint sets, this problem can be solved by 
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Table 2 

VALUES OF CONSTRAINTS FOR BUFFERED SODA-WATER SYSTEM 

Component From Gas Moles From Water Moles Total,b^Moles 

02 0.647104 0.0 b1  =    0.647104 

N2 3.613650 0.0 b2 «    3.613650 

H+ .304375 55.5660 b3 - 55.870375 

OH" .30437 5 55.5460 b4  = 55.85037 5 

A~ 0.0 0.060 b5  =    0.060 

Na+ 0.0 0.040 b6 =    0.040 

^002 0.0 0.0 b7 =   0.0 

co2 ? • 0.0 b8=    ? 
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solving a single "chemical equilibrium problem." Using 

the device described below and a general-purpose chemical 

equilibrium program (written er: irely in Fortran IV), we 

solved the problem in 2.8 seconds of execution time on the 

IBM 7044. 

To accomplish the partial pressure goal set for CC^, 

we subtracted C2 + In g (where g is the goal mole fraction, .9, 

of CO., in the gas phase) from c^, c^, c-,,, c^r, and Cw, 

removed the last constraint (the C0? constraint), and solved 

the resulting "chemical equilibrium" problem.  Note the pecu- 

liarity of the resulting problem: For example, the number of 

moles of CO- in the gas phase is effectively unconstrained; 

thus the mass balance space is unbounded.  The computed com- 

position of the buffered soda-water system is shown in Table 3. 

In accomplishing the partial pressure goal set for 

CO2, the volume of the gas phase became 2823 liters as 

about 100 moles (approximately 2540 liters) of CO2 were 

added to the system from the environment. The size of the 

gas phase was also influenced by evaporation (approximately 

.119 kg) of liquid lUO from the aqueous phase, and its 

movement into the gas phase to maintain water saturation 

as dry CO^ was added to the system.  The pH of the aqueous 

phase became about 6.58 as a result of the acidifying 

influence of the added CO2. 

The interested reader may verify the validity of this 

procedure. 

We do not claim that the device illustrated will solve 
any chemical steady state problem, although it is applicable 
to a wide variety of such problems. 
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Table 3 

COMPUTED COMPOSITION OF A BUFFERED SODA-WATER SYSTEM 

Species Composition (Molest Concentration 

Gas Phase 

Total 111.650 

0.647 

(2823.182 O 

o2 4.405 mm Hg. 

co2 100.485 684.000 " 

N2 3.614 24.598 " 

H20 6.904 (0.12438 kg) 46.997 " 

Aqueous Phase 

Total 

pH 

o2 
co2 
N2 
H?0 

H+ 

OH" 

Na+ 

A 

HA 

HCO" 

ii2co3 
CO3 

Sum CO, 

49.066 

5.518 x 10 

2.020 x 10 

1.580 x 10 

-6 
-2 

-5 

48.908 (0.88113 kg) 
2.342 x 10"7 

8.013 x 10"8 

4.000 x 10'2 

2.166 x 10"3 

5.783 x 10"2 

3.782 x 10"2 

6.218 x 10'5 

8.256  x 10"6 

100.543 

6.577 
6.268 x 10"6 Moles/kg H20 

2.292 x 10"2     " 

1.790 x 10 -5 

2.658 

9.094 
4.540 

2.458 

6.564 

4.292 

7.057 
9.370 

10 

10 
10 

10 

10 

10 

10 
10 

-7 

-8 
-2 

-3 
-2 

-2 

-5 
-6 

11 

11 

it 

11 

ti 

it 

11 

it 

Note: The actual calculations from which these 
values were derived were made using mole fractions 
throughout.  In converting to the more familiar con- 
centration scales shown here, the following conversion 
factors were used;  55.506 moles H20 equals 1 kg H20, 

1 atm pressure equals 760 mm Hg. At 370C and 1 atm 
pressure the volume of a mole of 02, N2 or H20 is 
assumed to be that of a perfect gas, 25.43-1; and the 
volume of a mole of C02 is assumed to be 15.111, 
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