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PREFACE

This study is a part of a continuing Project RAND
effort exploring the use of mathematical models to investi-
gate the chemical aspects of physiological systems. Such
synthesis of the chemistry of human physiological function
is expected to aid in the design of artificial life-support
systems and assist in monitoring the state of man in extra-
terrestrial and other stressful, antagonistic environments
related to Air Force missions. Additionally, these models
have been applied to the solution of associated problems
of rocket propulsion systems, planetary atmospheres, re-
entry body design, etc.

The present Memorandum deals with theoretical and
computational questions which have arisen in connection with
this RAND research. In particular, the work described here
enhances the application of electronic computer techniques
for the solution of complex chemical problems which, until
recently, were far too complicated for any quantitative
analysis--e.g. models of complex physiological systems.

As the capability to use computers in such applications
becomes better understood, certain hitherto unresolved
questions of mathematics and chemistry become apparent.
This Memorandum considers the resolution of several of
these problems, and should be of interest to both mathe-

maticians and chemists.



SUMMARY

A chemical equilibrium problem may be thought of as
the problem of minimizing a certain function of composition,
subject to linear constraints. When the problem is that
of finding a solution to what the chemist classically
denotes as a chemical equilibrium problem the constraint
set (the set of compositions satisfying the linear con-
straints) is always bounded. In this case, of course,
there is always a solution.

It has been discovered, however, that problems of
exactly the same mathematical form arise in some nonchemi-
cal situations, as in geometric programming problems.
Geometric programming is a recent technique whose main
application seems to be in the field of engineering design.
There is no reason why such problems must have bounded
constraint sets. In additior, the steady-statce behavior
of certain "open' chemical systems--systems which mass
may enter or leave--can most economically be determined

"equilibrium' problem whose constraint

by solving a chemical
set is unbounded.

We relate the existence of solutions of a chemical
equilibrium problem whose constraint set is unbounded to
an auxiliary chemical equilibrium problem with a bounded
constraint set. A solution to the auxiliary problem will

yield a value of the objective function which is greater

than, equal to, or less than, zero. Based on this trichotomy,
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we show whether the solution set of the original problem
is bounded and nonempty, either empty or unbounded, or
certainly empty.

Finally, we demonstrate with an example that problems
with unbounded constraint sets are useful in chemical appli-
cations. The example system consists of a liquid phase and
a gaseous phase, in which the partial pressure of €O, in the
gaseous phase is maintained at a constant value from an
outside source. We find the steady-state composition of
this system by solving a chemical equilibrium problem

whose constraint set is unbounded.
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CHEMICAL EQUILIBRIUM PRCBLEMS
WITH UNBOUNDED CONSTRAINT SETS

1. Introduction. A single- or multi-phase chemical

equilibrium® problem may be thought of as the problem of

minimizing a certain function (the free energy) of composi-

tion subject to the constraints that the composition vector
have all its components nonnegative and satisfy a system

of linear equations (the mass balance laws). The free

energy is continuous, It is therefore obvious that a
chemical equilibrium problem has a solution if its constraint

sct (the set of composition vectors whose components are

nonmegative and which satisfy the mass balance laws) is
bounded and nonempty. In a previous article one of us
stated that chemical equilibrium problems in which the
constraint set is unbounded are cf no practical interest
(1], page 371). Since then we have discovered that
chemical equilibrium problems with unbounded constraint
sets do arise in practical situations (although not in the
solution of problems which are classically denoted as

chemical equilibrium problems by the chemist).

ova

"We use the phrase ''chemical equilibrium problem" to
denote the kind of mathematical problem discussed in [1]
and elsewhere in the mathematical literature, without in-
tending to confine ourselves to the narrower but included
class of problems subsumed under that title in the chemical
literature. See [5] for a partial bibliography of work on
theoretical and computational aspects of chemical equilibrium
problems.
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First, one technique for solving ''geometric program-
ming" problems involves the solution of derived chemical
equilibrium problems in which the constraint set may be
unbounded (see (2, 3, 4]). Second, we have recently
observed that the steady-state behavior of certain ''open"
chemical systems can be determined by solving chemical
equilibrium problems in which the constraint set is
unbounded. An open chemical system is one which mass may
enter or leave. A chemist would not say that such a system
is in equilibrium even when it is in a steady (stationary)
state. We give a simple example in Section 3 below of the
determination of the steady state composition of an open
chemical system by the solution of a chemical equilibrium
problem with an unbounded constraint set,

It was noted (p. 371, [1]) that all the results of
[1], except Theorem 9.9* on page 371, were applicable to
chemical equilibrium problems with unbounded constraint
sets, We are thus left with the question of the existence
of solutions to problems having unbounded constraint sets.
Such problems need not have solutions.

In Section 2 we study the existence of solutions to
chemical equilibrium problems whose constraint sets are
unbounded. We relate the existence (or nonexistence) of

a solution to such a problem to an auxiliary chemical

“Theorem 9.9 as stated in [1] is incorrect. It should
read "If H 7 Q is bounded and nonempty then D is nonempty."
(The word "nonempty' was inadvertently omitted in [1].§
That is, chemical equilibrium problems in which the constraint
set is bounded and nonempty, possess solutions.
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equilibrium problem whose constraint set is bounded. We
incidentally obtain some information about the boundedness
of the set of solutions to a problem whose constraint set
is unbounded.

Historical note. Before his death E, Eisenberg told

us of his plans to publish conditions for the existence of
solutions to one-phase chemical equilibrium problems whose
constraint sets are unbounded. We have never secen these
results and Eisenberg's work has not affected ours. However
we posthumously acknowledge his priority for the one-phase
case,

2, Existence of solutions to a chemical equilibrium

problem whose constraint set is unbounded. let Q be the

nonnegative orthant of En, Euclidean n-space. Let F be a
continuous, convex, real valued function on Q. We will
assume that F is homogencous of degree 1 (that is,
F(tx) = tF(x) for all x # Qand t ~ 0). F will be the
free energy.

Remark. For the class of functions considered in [1],

namely, the free energy of '"ideal systems,"

the continuity

of F is Theorem 8.3, page 365 [1]; the convexity of F is
Theorem 8.13, page 368, [1]; the homogeneity of F is con-
tained in Lemma 8.14, page 368, [1]. For more general (non-
ideal) free energies, the homogeneity of F is closely related

to the First Law of thermodynamics and the convexity of F is

closely related to the Second Law. We intend to explore
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the relationship of various properties of F to the thermo-
dynamic laws in a subsequent publication.

Let A be a real m by n matrix and b ¢ E", Define H,

the constraint space by

H=({x ¢Qq | Ax = bl.

The system Ax = b thus represents the mass balance laws.
Let D be the set of points in H at which F achieves its

minimum on F. More precisely, let
D={x ¢ H/| F(x)  F(y) for all y = H};

that is, D is the set of solutions to the problem. We are
primarily interested in obtaining conditions for D to be
nonempty; and secondarily in conditions for D to be bounded.
For the sake of completeness we repeat Theorem 9.9 of
(1].
PROPOSITION I. If H is bounded and nonempty then so

is D.

Proof. H, as the intersection of a linear manifold
and Q, is closed and F is continuous. Hence D is nonempty.
Since D = H, D is bounded. Q.E.D.

We will hereafter assume that H is unbounded. It is
then well known that there are x ¢ Q - {0} such that Ax = 0.

(See, for example, Lemma 3 below.) Thus if we define HO by
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where & is the set of elements of Q the sum of whose co-
ordinates is one, Hg will be a bounded nonempty subset of

E".  The problem of minimizing F(x) relative to the constraint
that x ¢ ”0 is itself a chemical equilibrium problem, but

one with a bounded constraint set ”O' By Proposition 1 this
problem has a solution. That is, F takes on a minimum value,
F

, on D,

0
Our results (Theorems 2, 4 and 5) are based on the

trichotomy Fg ~ 0, Fo 0, F, © 0. Note that (using the

N
homogeneity of F):
(1) FO - 0 means F(x) ~ 0 for all x = Q - ‘0’ with Ax = 0.

(2) FO = 0 means F(x) - 0 for all x = Q with Ax = 0
0 for some x <= Q - ‘0: with Ax = 0,

but F(x)
(3) FO < 0 means F(x) ~ 0 for some x ¢ Q with Ax = 0,

THEOREM 2. 1f H is unbounded and Fy ™ Q then D is non-

empty and bounded.

To prove Theuvrem 2 we will need the following well-

known lemma.

LEMMA 3. Let C be a closed, unbounded, convex subset of

E". There is ay ¢ E" - 0" such that x + ty ¢ C for all

x €C, t 20,

Proof. Since C is unbounded, there are a <= C and an

unbounded sequence fzi3 of elements of C - fa’. The set
z, - a
. 9o pB n :
of —2—— is an infinite, bounded subset of E which posseses

|z.- a
1
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a limit point, y. By forming a subsequence of z, ' we may,
without loss of generality, assume that
z, - a

(4) y = lim e————
i-.r‘ |zi- al

and

(5) lim lz, - al = =
i_.‘ 1.

Let x = Cand t > 0. For all = > 0 and all positive
integers i, define

c2 t
w(e, 1) = (1L - e)x + —+— + (¢ - —E )a.
Zi' aI |Zi- al

It follows from the convexity of C that w(s, i) = C for

all ¢ with 0 < ¢ <1 and for all i so large that (using (5))

lzi - al > %. Hence, since C is closed, and using (4):

Xx + ty = lim 61 - €)x + ea + ty)

-nt
=0 t(z; - a)
= Ldm 1im<(1 S e)x +ea 4+ —tb °

e~0+ i z; -,a|

= lim 1lim w(€, i) € C.
e*0+ =

By (4), |yl 1; hence y # 0. Q.E.D.

Proof of Theorem 2. Since H is unbounded it is certainly

nonempty., Let z € H. Define

™

W= {xeH| F(x) <F(z)}.

Since F is continuous and convex, W is closed and convex.
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Suppose that W is unbounded. By the Lemma there is a
y EM - {0} such that z + ty ¢ W for all t > 0. But W S H.
Hence A(z + ty) = b for all t > 0. Hence Ay = 0. If y ¢t Q,
then we would have z + ty ¢t Q for some t > 0. Hence y € Q.

By the definition of W we have F(z + ty) F(z) for all

t > 0. Hence, by the homogeneity of F, F % + vy} - % F(z)
for all t > 0. Hence, by the continuity of F, F(y) < 0,
but Ay = 0 and y'¢ Q - {0}, contradicting (1). We have
shown that W is bounded.
Since z = W, W is nonempty. Hence, since F is con-
tinuous, it achieves its minimum on W at some x 7 W.
Clearly, for any u = H - W, we have F(x) < F(z) < F(u).
Thus x minimizes F on H, and u does not. That is, x € D

(which is therefore nonempty), and D € W so that (since

W is bounded) D is bounded. Q.E.D.
THEOREM 4. If Fo = 0, then D is either empty or unbounded.

Proof. Suppose D is nonempty. Let x ¢ D. By (2)
there is ay ¢ Q - (0} with F(y) = 0 and Ay = 0. Since
x € D - H, Ax = b. Hence A(x + ty) = b for all t > 0,
But x, y @ Q; hence x + ty ¢ H for all t > 0. Using the

convexity and homogeneity of F, we have for all t > 0
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‘ = X ty
F(x + ty) =(¢ + l)F(t Tt T F 1)

< (t + 1)F(t—-ff-1-) + (¢t + 1)F<t—t_£'1-)

F(x) + tF(y)

F(x) +t -0

F(x).

Since x ¢ D, x + ty « D for all t ~ 0. Thus D is unbounded.
Q.E.D.

Remark. We are unable to obtain any chemically relevant
results which distinguish between the two cases of Theorem 4.
If F is linear, then D is unbounded when F, = 0. Chemically,
F is linear if each phase contains only one species. In

the more general nonlinear case, D may be empty.

THEOREM 5. 1If Fo < 0, then D is empty.

Proof. The argument is close to that of the proof of
Theorem 4. Suppose D is nonempty. Let x © D. By (3)
there is a y € Q with F(y) < 0 and Ay = 0. As before
we have that for all t > 0, x + ty ¢ H and F(x + ty) ~
F(x) + tF(y). But now F(y) < 0. Hence F(x +y) Z F(x) +t - F(y) ~
F(x) for t ~ 0. So x ¢ D, a contradiction. Q.E.D.

3. Use of an unbounded constraint set to solve a

steady state problem. We select a relatively simple chemical

system to illustrate the practical utility of the concept of

unbounded constraint sets. The system consists of gases in
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contact with an aqueous buffer solution at a uniform total
hydrostatic pressure of one atmosphere and a uniform temper-
ature of 37°C. Energy may exchange with the environment

to maintain this constant temperature, the volume of the

gas phase may vary to maintain one atmosphere pressure,

and chemical substance may exchange with the environment

in a manner to be described.

More specifically, the aqueous phase consists of one
kilogram of water containing a buffer system made up of 0.04
mole of sodium hydroxide, NaOH, and 0.06 mole of an acid,
HA, and its conjugate base, A" . The pK (negative 1og10 of
the dissociation constant) of the weak acid is approximately
8. The gas phase consists of .647 mole of 0,, 3.614 moles
of Ny .304 mole of H20, and an unknown amount of Co, . When
this gas phase is placed in contact with the buffered aqueous
phase, the gasecns substances dissolve, and the aqueous
phase contains these species in solution, plus the reaction
products of co, and water, and the buffer-system species.

A tableau representing this system is shown in Fig. 1.
Note that the column sum CO, and the row *C0, are an
accounting device for keeping track of the total CO2 in
the system. (See [5] for a fuller explanation of this
device, as well as other background information.) The
reactions which occur in this system between the gas and
aqueous phases and within the aqueous phase are shown in
more conventional chemical notation in Table 1. The asso-

ciated free energy parameters, c are also listed in this

j’
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Table 1

CHEMICAL REACTIONS IN BUFFERED SODA WATER SYSTEM AND
ASSOCIATED FREE ENERGY PARAMETERS

Reactions ﬁﬁf%;ngggy TG i
i 3
Oz(gas) = Oz(aq) ¢y = -10.85
C02(gas) c C02(aq) Cy = = 7.69
Nz(gas) = N2(aq) Cq = -11.52
H,0(gas) = H'(aq) + OH (aq) c, = =36.61
H,0(aq) = H'(aq) + OH (aq) cip = —39.39
HA(aq) = HT(aq) + A (aq) cy3 = —22.44519
Hcog(aq) = CO,(aq) + OH (aq) cy, = —20.86
H,C04(aq) = CO,(aq) + OH (aq) + H'(aq) cys = =33.61
C03(aq) + H'(aq) = CO,(aq) + OH (aq) ¢1p = 6.73

8These free energy parameters are on the mole-fraction

scale and are dimensionless.

Methods for deriving these

constants from the equilibrium constants contained in the
literature, which are often on other scales, are given in

[5].
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table. The values of the bi for the system are given in
Table 2.

As an example of the practical use of the unbounded-
ness concept, we choose to simulate the operation of a
CO,-stat operating with the buffered soda-water system
described above. That is, a chemical goal is set for the
system in terms of, say, a specific partial pressure of
CO2 in the gas phase th«t is to be established and maintained
in the system by adding an appropriate amount of CO, to be
obtained from the environment; the amount of C02 to be
added depends in a complex way on the values of the param-
eters,

The numerical problem of determining the amount of
€0, to be added, and the composition of the system after it
has been added, could be solved in a variety of ways. For
example, the linear and nonlinear equations describing the
problem could be written down and numerically solved by
some special purpose method peculiar to this particular
problem. Alternatively, one could guess at the amount of
€O, to be added, solve the resulting chemical equilibrium
problem with a standard chemical equilibrium program, sys-
tematically varying the amount of CO, to be added to obtain
the desired partial pressure of CO, in the gas phase, and
hopefully converge to the correct answer.

However, by using a procedure suggested by the concept

of unbounded constraint sets, this problem can be solved by
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Table 2
VALUES OF CONSTRAINTS FOR BUFFERED SODA-WATER SYSTEM

Component From Gas Moles From Water Moles Total,bi,Moles
0, 0.647104 0.0 b, = 0.647104
N, 3.613650 0.0 b, = 3.613650
yt . 304375 55.5660 by = 55.870375
OH . 304375 55.5460 b, = 55.850375
A 0.0 0.060 bs = 0.060
NaT 0.0 0.040 bg = 0.040

*C0, 0.0 0.0 b, = 0.0
co, ? 0.0 bg = ?
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solving a single "chemical equilibrium problem.' Using
the device described below and a general-purpose chemical
equilibrium program (written cvr:irely in Fortran IV), we
solved the problem in 2.8 seconds of execution time on the
IBM 7044,
To accomplish the partial pressure goal set for €o,,
we subtracted cy + In g (where g is the goal mole fraction, .9,
of co, in the gas phase) from Cys Cgs Cqy4s C15o and C1g6s
removed the last constraint (the o, constraint), and solved
the resulting ''chemical equilibrium' problem. Note the pecu-
liarity of the resulting problem: For example, the number of
moles of CO2 in the gas phase is effectively unconstrained;
thus the mass balance space is unbounded. The computed com-
position of the buffered soda-water system is shown in Table 3.
In accomplishing the partial pressure goal set for
C02, the volume of the gas phase became 2823 liters as
about 100 moles (approximately 2540 liters) of €0, were
added to the system from the enviromment. The size of the
gas phase was also influenced by evaporation (approximately
.119 kg) of liquid H,0 from the aqueous phase, and its
movement into the gas phase to maintain water saturation
as dry CO, was added to the system. The pH of the aqueous
phase became about 6.58 as a result of the acidifying
influence of the added CO,.

The interested reader may verify the validity of this

%
procedure.

"We do not claim that the device illustrated will solve
any chemical steady state problem, although it is applicable
to a wide variety of such problems,
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Table 3
COMPUTED COMPOSITION OF A BUFFERED SODA-WATER SYSTEM

Species | Composition (Moles) Concentration
Gas Phase
Total 111.650 (2823.182 2. . ''eerneennennnnsnnans
O2 0.647 4,405 mm Hg.
CO2 100.485 684.000 "
N2 3.614 24,598 "
HZO 6.904 (0.12438 kg) 46,997 "

Aqueous Phase

Total 49 . 066
S IR 6.577
0, 5.518 X 10‘2 6.268 X 10'2 Moles/kg H,0
co, 2.020 x 10~ 2,292 x 10° "
N, 1.580 x 1072 790 x 107> "
0 48.908 (0.88113 kg) |.......... FTRTRRRIRRIRS
H 2.342 X 10 2.658 x 10 1
OH™ 8.013 x 10”8 9.094 x 10”3 "
Nat 4.000 x 1072 4.540 x 1072 "
A 2.166 x 1073 2.458 x 1073 "
HA 5.783 x 1072 6.564 x 1072 z
HCO} 3.782 x 1072 4.292 x 1072 "
11,0, 6.218 x 10:5 7.057 X 10'2 "
c03 8.256 x 10 9.370 x 10 "
Sium! g0 1| P00 57 R 0 ot e R el

Note: The actual calculations from which these
values were derived were made using mole fractions
throughout. In converting to the more familiar con-
centration scales shown here, the following conversion
factors were used; 55.506 moles Hy0 equals 1 kg H,0,

1 atm pressure equals 760 mm Hg. At 37°C and 1 atm
pressure the volume of a mole of 0y, Ny or Hy0 is

assumed to be that of a perfect gas, 25.434; and the
volume of a mole of Co, 1is assumed to be 25,272,
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