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ABSTRACT 

The laser planogram technique is a new method for the study of 

turbulent mixing.    It utilizes a pulsed laser and a particulate tracer to 

determine the spatial mixing field of tagged and untagged fluids.    The 

laser planogram technique is described along with design considerations. 

As an example of its implementation,  laser planogram measurements have 

been obtained and analyzed to provide turbulent mixing statistics in the 

wake of a cone at a Mach number of 2. 5    and a Reynolds number of 3 X 10 . 

The mean radial concentration profile of tagged material is shown to be a 

-5/3 Gaussian in agreement with theory.    A k    '     spectral dependence on wave 

number is observed which is characteristic of high turbulent Reynolds 

number flows.    Experimental limitations prevent the resolution of the 

turbulent scale lengths in the present experiment although the integral 

scale should be easily resolved with increased data length. 
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I.    INTRODUCTION 

Two classes of measurements of turbulent flow statistics have 

been made to date.    The first (e. g. ,  hot-wire anemometry,  electron 

beams,  crossed optical beams) involves observation of the temporal 

1-3 fluctuations at one or more discrete points in a turbulent    field. 

The second (e. g. ,   schlieren or shadowgraphs) involves a spatial,  two- 

4-5 dimensional projection of a three-dimensional field,      "   The first 

method is limited by its point nature and/or frequency response, while 

the second method requires critical statistical assumptions to unfold 

meaningful information from \ measurement that integrates over a 

large and perhaps inhomogeneous optical path. 

The laser planogram technique represents a new method for the 

measurement of turbulent statistics in that its direct output is a two- 

dimensional spatial cut from a three-dimensional turbulent concentra- 

tion field.    This technique, as applied to the near wake of a supersonic 

cone,  is shown schematically in Fig.   1.    A passive scalar particulate 

tracer is introduced into the model boundary layer where it becomes 

uniformly mixed,  thus tagging each fluid element.    The concentration 

of tracer at some downstream position is, therefore,  a measure of the 

turbulent mixing field of the two fluid fields.    To detect the tracer 
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Fig.   1        Schematic representation of the laser planogram technique 
applied to a supersonic wake. 
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distribution,  a pulsed planar laser sheet is passed through the axis of 

the wake in the meridian plane, and the light scattered at 90    by the 

tracer particles is recorded photographically.    The resulting film 

density bears a direct relation to the instantaneous tracer concentra- 

tion distribution in the plane illuminated by the laser sheet. 

The choice of a tracer is determined by the following requirements: 

1. The particles must be of sufficiently small diameter so that the 

Stokes1 drag on them overcomes the inertial loading of the turbulent 

motion.    This is necessary if the tracer is to effectively tag the 

original fluid elements of the wake. 

2. The particles' number density must be high enough so that they act 

as a continuum in the resolution volume to prevent particle "shot noise. " 

3. The particles must be stable with respect to coagulation and 

evaporation. 

4. The presence of particulate matter should not disturb the turbulent 

wake parameters either by enhancing the turbulent dissipation rate or 

by grossly modifying integral properties such as momentum or mass 

defects. 

5. The particles must scatter sufficient light for recording purposes 

yet be optically thin to prevent multiple scattering.    The latter require- 

ment minimizes the possibility of light reaching a point in the laser 

planogram after being scattered from two distinct wake locations. 

These considerations when applied to a given turbulent flow field 
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wmmmm-0i: 



and a desired spatial fre juency response usually yield an optimum 

number density and particle diameter.     This results from the 

competition between the requirements that the particles be small 

enough to follow the fluctuations (1),   yet large in order to be efficient 

light scatterers(5). Similarly, their number density must be large 

enough to prevent "shot noise" (2) yet small to minimize gross effects 

on the flow field (4) and prevent multiple scattering (5).    The smoke 

employed in the present experiments is formed by combustion of tobacco 

leaf and generally satisfies the above criteria,   see below. 

II.    TURBULENT WAKE EXPERIMENT 

The laser planogram technique has been applied to the turbulent 

wake shed by a 10° half angle,   1 in.   base diam cone mounted in a short 

duration wind tunnel.    This tunnel is a modified Ludwieg tube    which 

operates at a Mach number of 2. 5 and a Reynolds number of 3 X 10    per 

inch using room stagnation temperature air.    Smoke is injected with 

azimuthal uniformity into the cone boundary layer and a laser planogram 

is made of the turbulent mixing field in the near wake at an X/D =12.    At 

/ 0 7 this position,  a 1 50 kW,  1/2 mm by 35 mm pulsed laser (3317 A)    sheet 

is passed through the wake axis.     The   light scattered at 90    by the smoke 

particles is then collected by an F/l6 optical system, multipled in a high 

resolution two-stage image intensifier and recorded on high speed 

photographic film.    The laser pulse width of 10 X 10      sec provides 

shuttering for the system.    The combined flow of particulate matter and 
_3 

carrier gas represents less than 10      of the intercepted free stream mass 

flow and therefore has a negligible effect on the flow field. 
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where N/C—A is the model drag diameter,   Z-Z    is the axial distance from 

virtual wake origin,  and R-p is a constant. 

For a transferable scalar quantity,   such as the concentration of 
o 

a passive species, the same relations can be shown co apply   except 

that the scale length must be replaced by L    = L/N/TC where Sc is the 

turbulent Schmidt number for the gas. 

To determine the e::pected value of L    for the present experiment, 

the drag coefficient,  C^, was determined from a Taylor-Maccoll cone 

solution and R— was taken as 1?.. 8.        The wake origin was chosen 

as the model base (i. e. ,  Z    = 0) and a turbulent Schmidt number of unity 

was assumed.    A value of L    = 6. 4 mm was computed. 

The measured mean profile is shown in Fig.   3.    It is in excellent 

agreement with a Gaussian (max difference =   10% within Za oi the center 
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Figure 2 is ai. ensemble of typical laser planograms obtained 

under the above conditions.    A distinct surprise to us is the   large scale 

structure of the turbulence together with its estuaries and peninsulas.    In 

ordei to check whether typical turbulent wake flow was, in fact, achieved, 

the time average smoke profile was measured experimentally by obtaining 

a long exposure planogram using a xenon flash lamp in place of the laser 

light source. 

The theoretical mean velocity distribution in a self-preserving 
g 

axisymmetric wake is a Gaussian   where the standard deviation or 

"transverse scale length, " L,  can be written 

3        .      .       ,iZ 
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line) and has a standard deviation of 6. 2 mm which compares favorably 

with the transverse scale length of 6. 4 mm computed above. 

Having satisfied ourselves that the mean smoke profiles were 

representative of turbulent wake  flows,  the laser planograms were 

processed statistically to obtain autocorrelation coefficients and power 

spectral density.     The negative was scanned with a microdensitometer 

and a film calibration was then applied to yield concentration as a 

function of position along a radial or axial line.     These data were then 

processed by standard digital techniques. In order to extract the 

mean concentration,  a least mean square linear fit was made with the 

axial scans while a least mean square Gaussian was fit through the 

radial profile.    The measured transverse scale length was used in 

making the least mean square Gaussian fit.     Theoretical considerations 

-2/3 also show that the mean concentration decreases as (Z-Z   )    '     which o 

justified the use of a linear fit over short axial scans. 

Figures 4 and 5 are the autocorrelation coefficient and power 

spectral density estimates obtained from radial scans and axial scans 

on-axis and at a radius equal to the measured transverse scale length 

L   .    The variance of the estimates was reduced by ensemble averaging 

the results obtained from the six wake laser planograms of Fig.   2. 

As can be seen from Fig.   5, the data are in good agreement with the 

-5/3 k    '     dependence of the universal equilibrium subrange of the turbulent 

energy spectrum.    The RMS concentration fluctuation referenced to 

the mean value was determined for each scan.    Averaged over the six 

wake laser planograms they took on values of I. 13,   0. 84,  0. 54 for the 

I 
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Fig.   4        Ensemble averaged autocorrelation coefficient for three scans 
of the laser planograms shown in Fig.   2 
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radial,  on-axis and off-axis cases respectively. 

III.    CONCLUSIONS 

The spectral results,  along with the measured Gaussian mean 

profile,   suggest that the rather crude smoke source used in this 

experiment satisfied the five requirements described above, although 

no direct measurements of particle size or number density have been 

made. 

Insufficient data length in the present experiment has prevented 

-5/3 determination of the turbulent macroscale which bounds the k    ' 

spectrum at low wave number and which one would expect to be of the 

order of 2 TT divided by the cone base diameter.    Also, the finite 

laser sheet thickness makes the data to the right of the vertical dashed 

line questionable.    This prevents resolution of the Kolmogoroff wave 

9 -1 number   which is approximately 500 mm      (with an assumed Isotropie 

dissipation rate). 

The first of these limitations is easily overcome by increasing 

the length of the wake recorded by the laser planogram.    The 

experimental limitations on high wave number response seem at present 

more stringent.    In addition to the thickness of the laser sheet, which 

in principle can be made a small fraction of a millimeter, particle "shot noise" 

can only be eliminated with molecular rather than particulate scattering 

techniques.    It is expected that the laser planogram technique will provide 

detailed information in the low wave number portion of the spectrum and 

may provide useful information with regard to possible anomalies in the 

vicinity of the Kolmogoroff wave number. 

•11- 
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