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PREFACE 

Combinatorial mathematics la concerned with arrange- 

ments,  configurations,  relations, and constructions  In 

finite or discrete systems.    Combinatorial problems there- 

fore abound In all branches of science and mathematics. 

Combinatorial approaches—linear and Integer programming, 

network flows,  graph theory,  and so on—are used much more 

than they once were,  partly because of the availability 

of high-speed computers.    For Instance,   the practical 

value of network programming and scheduling algorithms, 

developed at Rand to deal with Air Force problems over the 

past decade and now extensively applied to calculating 

flows through transportation networks, minimum time re- 

quired to complete projects,  and optimal assignments of 

machines to tasks.   Is enhanced by the computer's ability 

to produce numerical answers to very large problems. 

Another aspect of modern military technology that has 

focused attention on combinatorics Is digital communica- 

tions, which has necessitated work In error-correcting 

codes. 

Combinatorics Is very much problem-oriented but,  like 

all mathematics.  It must be carried out at a certain level 

of abstraction to be worthwhile.    For example,   there Is no 

permanent value In calculating the capacity of a single, 

given network, no matter how great the short—run value of 

the calculation; however,   there Is permanent value In 
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devlslng a good method for calculating the capacity of 

any network. This process of abstraction occasionally 

makes the connection between mathematical research and 

the "real world" somewhat remote, but is absolutely 

essential if the research is to achieve its maximum 

utility. 

Other Rand publications in combinatorial mathematics 

will be found In a bibliography of Rand studies on Research 

In Combinatorics (SB-1030) available on request from the 

Reports Department, The Rand Corporation, 1700 Main Street, 

Santa Monica, California 90406. 
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SUMMARY 

A theory parallel to that for blocking pairs of 

polyhedra Is developed for anti-blocking pairs of polyhedra, 

and certain combinatorial results and problems are discussed 

in this framework. 

Blocking pairs of polyhedra are Intimately related to 

maximum packing problems, anti-blocking pairs to minimum 

covering problems. 

Let B  ■ fxcR. |Ax< 1}, where A is a nonnegative 

matrix and 1 « (1, ..., 1). The anti-blocker of the convex 

polyhedron 19 is defined to be the convex polyhedron 

9 « fx c R"|X '^ < 1}.  It is shown that Is * 19 and a method 

is described for finding a nonnegative matrix B such that 

9"fxeR"|Bx<l}. In particular, if A is the Incidence 

matrix of a family of subsets of (1, ..., n} having the 

property that each subset of a member of the family is 

again a member of the family, a method is described for 

finding the facets of the convex hull of the rows of A. 

It is shown that anti-blocking pairs are characterized 

by a min-max equality, the analogue of the max—flow min-cut 

equality for blocking pairs, or by a max-max inequality, 

the analogue of the length-width inequality for blocking 

pairs. 

Finally, the theory of anti-blocking pairs is applied 

to certain problems in extremal combinatorics. A main 



-vl- 

result Is the following. If A and B are an and—blocking 

pair of (0,l)-matrlceSj then the min-max equality holds 

strongly for both ordered pairs A, B and B, A, I.e., both 

covering problems y A > w, y > 0, mln I'y, and y B > w, y > Oj 

mln l*y# have Integer solutions y for all Integer vectors 

w. This theorem bears on a well—known conjecture In graph 

theory, called the perfect graph conjecture, and In fact 

establishes what one might call the pluperfect graph theorem. 
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ANTI-BLOCKING POLYHEDRA 

1.    INTRODUCTION 

In [10] the notion of a blocking pair of polyhedra 

was introduced, and some applications of the resulting 

theory to extremal combinatorics were described.    In this 

paper we develop a parallel theory for anti-blocking pairs 

of polyhedra, and discuss certain combinatorial results and 

problems from this viewpoint. 

Blocking pairs of polyhedra have relevance for maximum 

packing problems, anti-blocking pairs for minimum covering 

problems.    Here by a maximum packing problem we mean the 

following.    Let A be an m by n nonnegative matrix, and 

let w be a nonnegative n-vector.    A solution m-vector y 

to the linear program 

(1.1) yA<w 

y >0 

max 1 • y, 

where 0 - (0, ..., 0) and 1 - (1, ..., 1), is a maximum 

packing in w of the rows of A. Similarly a solution 

m-vector y to the linear program 

(1.2) yA>w 

y >0 

min 1 * y, 
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is a minimum covering of w by the rows of A. Normally 

the words "packing" and "covering" refer to combinatorial 

situations In which A Is a (0,1)-matrix, thought of as 

the Incidence matrix of a family of subsets of {1,2, ..., nl, 

w Is an Integer vector (usually w « 1), and the solution 

vector y Is required to have Integer components, I.e., the 

maximum In (1.1), or the minimum In (1.2), Is taken over 

all Integer vectors y that satisfy the constraints. It Is 

generally an enormous simplification In this situation to 

drop the Integer requirement on y, as we are doing, and to 

consider merely the real (or rational) packing and covering 

problems (1.1) and (1.2). 

Dual to (1.1) Is the linear program 

(1.3) A x > 1 

x > 0 

mln w • x . 

Similarly the dual of (1.2) Is 

(1.4) A x < 1 

x > 0 

max w • x . 

The constraints In (1.3) define an unbounded, n-dlmenslonal, 

convex polyhedron 

(1.5) Ö - {x€Rj|Ax> 1} 
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situated In the nonnegative orthant RJ of Rn. The 

constraints In (1.4) define an n—dimensional polyhedron 

(1.6) 9  - {x€R"|Ax< 1}, 

also situated In the nonnegative orthant R?. The class 

of polyhedra of type (1.6) Is the primary object of study 

In this paper. We shall assume throughout that 9 is bounded. 

I.e., that no column of A consists entirely of zeros. This 

Is not an actual restriction, since (1.2) Is Infeaslble 

unless components of w corresponding to zero columns of A 

are also zero, In which case such columns of A can be 

Ignored. 

In [10] we Investigated the blocking relation for 

polyhedra of type (1.5), and found that it pairs members 

of this class. The appropriate analogue for polyhedra of 

type (1.6) Is the antl-blocklng relation; It also pairs 

members of this class (Theorem 2.1). Antl-blocklng pairs 

of polyhedra can be characterized by a mln-max equality 

(Theorem 3.1), the analogue of the max—flow mln-cut equality 

for blocking pairs of polyhedra, or by a max-max Inequality 

(Theorem 3.2), the analogue of the length-width Inequality 

for blocking pairs of polyhedra. 

An Important class of problems In extremal combinatorics 

Is the following. Let a , ..., am be (0,1)-vectors, thought 

of as the Incidence vectors of a family of m subsets of an 

n-set.  (For example, the vectors a , ..., am might represent 



the family of all simple paths joining two terminals of a 

graph G on n edges, the family of all tours in G, the family 

of all matchings in G, and so on.)  How does one characterize 

the vectors a , ..., am as the extreme solutions of a system 
1       m 

of linear inequalities? If a , ..., a are the incidence 

vectors of a clutter (no member of the family contains 

another member), it is shown in [10] that the nontrivial 

facets of the unbounded polyhedron 

(1.7) t - conv. hull  ({a1, ..., am}) + R* 

are given precisely by the extreme solutions of the system 

Ax> 1, x > 0, where A has rows a , ..., am. That is, the 

pair of polyhedra 3 defined by (1.5) and (*,  defined by (1.7) 

are a blocking pair. Similarly, we find here (Theorem 2.3) 

that if a ,   .,., am  are the incidence vectors of a family 

having the property that each subset of a member of the 

family is again a member of the family, then the facets of 

(1.8) 5 - conv. hull ({a1, ..., am}) 

can be determined from the extreme points of its anti-blocking 

polyhedron 9  ■ {x€Rj|Ax< 1).  It is no longer true for 

anti-blocking pairs that each extreme point of one represents 

a facet of the other, as is the case for blocking pairs 

(for example, the origin is an extreme point of 9), 
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From Che combinatorial point of view, one interesting 

result of the paper is contained in Sec. 4, where we discuss 

anti-blocking pairs of (0,l)-matrices, and prove (Theorem 

4.1) that if A and B are such an anti-blocking pair, then 

the min-max equality holds for both ordered pairs A, B 

and B, A in a strong, integer form.  The connection between 

Theorem 4.1 and certain well—known combinatorial theorems 

is discussed in Sec. 5, where we note also the connection 

between Theorem 4.1 and the perfect graph conjecture. 



2.     THE ANTI-BLOCKING RELATION 

Let A be an m by n nonnegative matrix. We assume 

that m > 1 and that no column of A consists entirely of 

zeros. Let 

(2.1) 9 - Cb€R"|Ab< 1) . 

Thus 9 Is bounded and hence can be written as the convex 
1      r hull of Its extreme points b , ..., b : 

(2.2) &  - conv. hull ({b1, ..., br}). 

It Is a consequence of the Parkas lemma on systems of linear 

Inequalities that a row vector a of the matrix A Is Inessential 

in defining 8 if  and only if a is dominated by a convex combi- 

nation of other rows of A, i.e., if and only if the inequality 

<   ra    A 
(2.3) a1 < 2 a4a

J 

-j-1 J 

m 
holds for some a, > 0, ..., a > 0 satisfying a,   * 0, Z a.  « 1. 

Let 

(2.4) 5 - {a€R"|a.5< 1} 

We call 9 the anti-blocker of 9. 
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THEOREM 2.1. Let A be a nonnegative 

matrix having no zero columns and suppose 

S  - {b€R"|Ab< 1} has extreme points 
1       r b , ..., b . Let matrix B have rows 

1      r b , ..., b . Then B Is nonnegative, has no 

zero columns, and 

(2.5) 8 - {aeR"|Ba< 1}, 

(2.6) £ - Ä. 

Proof.  Clearly B Is nonnegative. If the largest 

element in the 1-th column of A Is ui > 0, then B has as 

one of Its rows the vector (0, ..., 0, l/uj, 0, ..., 0), 

the number l/u^  occurring In the 1-th position. In particular, 

B has no zero columns. 

Suppose ae£ - facRjla» 19 <  1}. Then a »b^ < 1, 

j »1, ..., r, and hence äC {aeRj|Ba< 1}.  Conversely, 

suppose a e R" and a • b-J < 1 for j ■ 1, ..., r.  Let b e Ä. 
r   . r 

- 2 a.bJ where a. > 0, 2 a. - 1, 
j-I J        J -  j.i J 

1 
Thus b - 2 a.bJ where a, > 0, 2 a. - 1, and hence 

a • b - 2 a.U-b^) < 1. 
i-l J 

Hence a €.15,  and (2.5) holds. 



Clearly Ä c 3.  Suppose x e T, x^ &,    Thus for some 
11 n 

row of A, say a , we have a • x > Ij since x c i^, x ^ 8. 
In 1 1 

But a € Rv and satisfies Ba < 1, and so a e S « 

{aeR?|Ba < 1}.  Since x e 9 and a e 9, we must have 

a • x < 1, a contradiction. Thus 5 ■ Ä. 

It follows from Theorem 2.1 that if we are given the 

matrix A defining B,  then a matrix B defining 8  can be 

determined as follows. Append the n by n identity matrix 

to A, and then find an n by n nonsingular submatrix Ä of 

the matrix thus obtained. Next solve the linear system 

of equations having Ä as coefficient matrix and having 

right hand side 1 or 0 according as the corresponding row 

of X belongs to A or to the appended Identity. If the 

resulting solution b satisfies b > 0, Ab < 1, then b is 

an extreme point of S.    All extreme points of 8 can be 

obtained in this way. 
3 

An example illustrating Theorem 2.1 in R is shown 

in Fig. 1 below. 

In the example, if we start with the matrix A, all 

of whose rows are essential for 8  (define facets of 8), 

we obtain B by the process outlined above. All rows of 

B except the first are essential for 9. On the other hand, 

if we start with B (or just the essential rows of B) and 

compute the extreme points of 8,  we obtain, in addition to 

the rows of A, the four vectors (0,0,0), (1,0,0), (0,1,0), (0,0,1) 

all of which are of course inessential for 8.    Note in 
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(0,1,1 

(1,1,0) 

(1,0,0) 

B 

"0 1  l" 
-      1 0 1 

1  1 0 

0 0 0 
1 0 0 
0 10 
0 0 1 

(0,0,1) (1,0,1) 

Fig.   1 
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either case that an Inessential extreme point (say an 

extreme point of 9 that does not represent a facet of 9) 

is a projection of some other essential extreme point (an 

extreme point of 15  that does represent a facet of S).    We 

now prove that this is true in general. 

THEOREM 2.2.  Let A be a nonnegative matrix 

defining the polyhedron /»-{be Rj|Ab< 1) and 

1       s 
let b, b , ..., b be points of 9  such that b 

is an extreme point of 9  and is dominated by a 
1       s convex combination of b , ..., b . Then b is a 

projection of some b . 

Proof.  We may suppose 

k   i (2.7) b< 2 a.b1 - c, 
"i-l 1 

k 
where a4 > 0, i ■ 1, ..., k, and 2 a. ■ 1.  If equality 

l iml    l 

holds in (2.7), then, since b is extreme, we have 

1        k b - b ■ ••• ■ b , and the conclusion of the theorem holds. 

Let b - (ßp ..., ßn), c - (yl,   ..., Yn).  If b - 0, we 

are done. Rearranging coordinates if necessary, we may 

now suppose that 

ßx > 0, ..., ße > 0, ße+1 - ••• - ßn - 0. 

Since b is extreme in 9,  we can find an e by e submatrix 

E of A such that the equations E x ■ 1 have the unique solution 
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x - (ß1, ..., ße).  Let y - (YJ^ •••* Ye). Since 

0 < x < y and E > 0, we have Ey> 1.  If some component 

of Ey is greater than 1, then c { £, a contradiction. 

Hence Ey ■ 1, and thus, since E is nonsingular, y ■ x. 

Let b - (ßj, ..., ßn), and define projections 

b; ■ (ßj, ..., ßg, 0, ..., 0). Since ß^^ - y^ for 

i  ■ 1, ..., e and ß^ - ••• - ßn - 0, we have 

k    i 
b ■ 2 ct^bj. f 

i-1 1 

where h* e 0,  i * I,   ..., k.      Because b is extreme in 9, 
1      k it follows that b ■ b^ ■ •••■b^, and hence b is a projection 

of b for i ■ 1, ..., k. 

Theorem 2.2 is useful in various ways. For example, 

if we are given the nonnegative matrix A defining 

9  ■ fb€R^|Ab< 1} and are able to find the extreme points 

of 9,  then the facets of the anti-blocking polyhedron IS 

can be determined easily, since each facet of 9 corresponds 

to an extreme point of 8  that is not a projection of some 

other extreme point of 9,    Another use is in the proof of 

Theorem 2.3 below. 

THEOREM 2.3. Let a1, ..., a"1 be the 

incidence vectors of a clutter of m subsets 

S^, •••» sm ££ f1* ..., n}, and let A have 

rows a1, . .., a™.  Let /» - fb e R"|Ab< 1} 

-'fiin«mnan-i m  
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1      r be bounded with extreme points b , ..., b 

1      r and let the matrix B have rows b , ..., b • 

Then the extreme points of the bounded 

polyhedron IS  - {a€R?|Ba< 1] are precisely 
1        m 

a , ..., a together with all incidence vectors 

of subsets of S,, ..., S  (i.e., all projections 

of a , • • • i A ) • 

Proof.  Since A is the incidence matrix of a clutter, 

no row of A is dominated by a convex combinatiou of other 

rows of A, and hence each row of A is essential for 8. 

Consequently, by Theorem 2.1,  each row of A is an extreme 

point of 9. Moreover, since B contains the n by n identity 

matrix as a submatrix, it follows that the incidence vector 

of a subset of any Sj is also an extreme point of 15.    There 

can be no others, for if a ia an extreme point of "9  that 

is inessential for 9,  then a is dominated by a convex 

combination of rows of A, and hence by Theorem 2.2, a is 

a projection of some a . 

The example of Fig. 1 illustrates Theorem 2.3. The 

extreme points of 19  ■ {a€R?|Ba< 1} are precisely the 

rows of A (the incidence vectors of the clutter of all 

2-sets of a 3-set) together with the incidence vectors of 

all singletons and the empty set. 

In the rest of this section we discuss a connection 

between anti-blocking pairs of polyhedra and blocking pair« 

of polyhedra [10]. We describe this connection in the 
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context of (0,l)Hmatrices, and shall show (Theorem 2.4) 

that If A is the incidence matrix of a clutter, if B is 

the blocking matrix of A, and if A1 is the complement of 

A (i.e.. A* is obtained from A by interchanging O's and I's) 

then the anti-blocking polyhedron of the polyhedron 

£' - {b cR^JA'b < 1} can be obtained easily from the 

matrix B. 

We recall from [10] that the blocking polyhedron of 

the (unbounded) polyhedron & *  {beRj|Ab> 1}, is the 

(unbounded) polyhedron 9 - {aeR^la. £> 1}, and that the 

nontrivial facets of S correspond precisely to the extreme 
1      r 

points of B,  i.e., if S has extreme points b , ..., b and 

1      r if B is the matrix having rows b , ..., b , then 

9 - (aeR"|Ba> 1}, and each row of B is essential in 

defining 9.    If A is a (0,l)-matrix and if each row of A 

is essential in defining 9,  then A is the incidence matrix 

of a clutter; in this case the blocking matrix B contains 

as a submatrix the incidence matrix of the blocking clutter 

[8,13], i.e., B has a row corresponding to each (0,l)-vector 

that has inner product at least 1 with all rows of A, and 

is minimal with respect to this property. In general, B 

will have many other fractional r^ws in addition to these 

integer rows. 
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THEOREM 2.4.  Let A be the m b^ n 

Incidence matrix of a clutter on {1, ..., n}, 

and suppose A has no column consisting entirely 

of I's. Let B be the r b^ n blocking matrix of 

A, and let P, denote the sum of the elements in 

the j—th row b^ of B.  Let A' be the complement 

of A.  Then the anti-blocking polyhedron of 

9*   - {bcRjlA'b < 1} is the polyhedron 

IS*   - {aeRj|a < 1, B'a < 1}, where B1 is the 

r bjr n matrix having rows b /(P,-l), ..., 

br/(Pr-l). 

Proof.  We note first that P* > 1. For, since A is 

a (0,l)-matrlx, we surely have P. > 1.  If P. - 1, then, 

since b^ is an excreme point of the polyhedron 

9  - {xeRjlAx > 1}, it follows that b"^ is the incidence 

vector of a singleton, and hence the j-th column of A 

consists entirely of I's, contradicting our assumption on 

A. 

We next prove a lemma. 

LEMMA. Let E be an e b^ e nonsingular 

(0,l)-matrix. Suppose the equations Ex ■ 1 

have the unique solution x ■ (5,, ..., § ), 
e 

and that x > 0, 2 54 > 1.  Let E
1 be the 

   -  i.l 1            
complement of E.  Then the equations E'y ■ 1 

have a unique solution y ■ (TK, ..., T) ). 
e 

Moreover, y > 0 and 2 r^ > 1. 
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e 
Let P - 2 ?, • 2 §j, and let J denote the e by e matrix 

1-1 1 

consisting entirely of I's. Then y - x/(p-l) satisfies 

E'y - (J-EX^) -Ä-Ä 

m    (    P P   ^ f    1 1 ^ VpZX» • • • * pZl'  -  Vpij* • • • i pzp 

- 1. 

p Clearly y > 0 and has component sum a  ■ -^r- > 1. If E y ■ 1 has 

two distinct solutions y, and y«, with component sums 

0| f 1, a« f 1, we deduce as above that Ex - 1 has two 

distinct solutionsj contradicting our assumption. If 

E'y « 1 has a solution y with component sum a ■ 1, then 

Ey - (J-E^y - Jy - E'y - 1-1 - 0, and hence E Is singular, 

again a contradiction. This proves the lemma. 

Since b-' Is an extreme point of 5 ■ {x£R?|Ax > 1}, 

there Is a nonslngular submatrlx E of A such that the 

nonzero coordinates of b^ are given as the solution of the 

equations Ex » 1. Applying the lemma, we see that b"V(P.-l) 

Is an extreme point of 8'  ■ {aeR?|A'b < 1} if this vector 

satisfies all the Inequalities defining £'. This follows 

as In the proof of the lemma, since 

A« bJ _ ,T Äv bj _ Jbj    Abj 
A ppr-^pp-ppr-ppr 

s r-^    Jl >>    (   l 1 ^ 

< 1. 
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In an exactly similar way, we see that an extreme 

point b of £' has component sum o > 1, and that if a > 1, 

the same transformation b - b/(a—1) produces an extreme 

point of 9,     Since A1 has no columns of zeros, each unit 

vector is also an extreme point of £', and these are the 

only extreme points of I9%  having component sums equal Co 1. 

This completes the proof of Theorem 2.4. 

It follows from Theorems 2.3 and 2.4 that if we know 

inequalities that characterize the incidence vectors of a 

clutter as the extreme points of a polyhedron of type (1.5), 

then we know inequalities that characterize the convex 

hull of all incidence vectors of the family consisting of 

the complementary clutter plus subsets of members of this 

clutter. 

We conclude this section with an example illustrating 

Theorem 2.4.  In Fig. 2 below, the matrix A is the incidence 

matrix of all spanning trees of the graph shown there, B 

is the blocking matrix of A, A* is the incidence matrix 

of all cotrees, and B' is obtained from B as in Theorem 2.4. 

Inessential rows of B1 nave a line drawn through them. As 

the example indicates, much simplification can occur in 

passing from B to B1. 
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0 0 
1 0 

1 
0 
1 

0 0 
1 1 

0 
1 
1 

A' 

1 
1 
0 

0 
0 
0 
1 

0 0 0 1 
0 0 10 

0 0 
1 
1 
0 
0 
1 
1 

0 1 

1 0 
0 1 
1 0 
0 0 
0 0 

B 

110 0 0 
0 0 0 11 
10 10 1 
0 1110 
0 110 1 
10 110 
o* * * * 
* oü i 
*ü o* 
Ü * * 0 
* * i * i 

(> 1) 

B' 

110 0 0 
0 0 0 11 

» o 4 o i 
o M » o 
o M o i 
» o M o 
o M M 
t o i M 
t M o i 
M M Q 
* * * * * 

(< i) 

Fig.  2 
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3.  THE MIN-MAX EQUALITY AND MAX-MAX INEQUALITY 

In this section we develop analogues for anti-blocking 

pairs of the max-flow rain-cut equality and the length-width 

inequality for blocking pairs of polyhedra. 

Let A and B be nonnnegative matrices, each having n 

columns and neither having zero columns.  Let the rows of 

A be a , ..., a™ and the rows of B be b , ..., b .  We say 

that the min-raax equality holds for the pair A, B (in this 

order) if and only if, for each weR", it is true that in 

the linear program 

(3.1) yA>w, 

y > 0, 

rain 1 • y , 

we have 

(3.2) rain l«y »maxb^'W 
l<j<r 

Similarly, we say that the max-max inequality holds for 

the pair A, B if and only if, for every l e RJ, W€ RJ, we 

have 

(3.3)       ( max a • 0( max b^ • w) > f ♦ w. 
l<i<ra      l<j<r 

THEOREM 3.1.  The min-max equality holds 

for the pair A, B if and onlv if the polvhedra 
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19 m  {b €R"|Ab < 1} and Cf - {aeR"|Ba< 1} are 

an antl-blocklng pair.  Hence if the mln-tnax 

equality holds for A, B, It also holds for 

B, A. 

Proof.  Suppose that 19  and Cl are an ant 1—blocking 

pair.  By Therretn 2.1, the matrix B contains as a row 

each extreme vector of ß  that is essential for d »'S. 

Since an inessential row of B can be Ignored in computing 

max  bJ>w, it follows from the linear programming duality 
l<j<r 
tHeorem, together with the fact that the maximum value of 

a linear form defined over 8  is achieved at an extreme 

point of Q,  that the minimum value of I'y in the linear 

program (3.1) is equal to 

max w« x ■ max b-^'W. 
x€Ä       l<j<r 

Conversely, suppose the min-max equality holds for 

the pair A, B (in this order).  Let 13 have extreme points 

b , ...j F , and let the matrix B have these as its rows. 

We shall show that 

(3.4) tf - fx6Rj|Bx< 1}. 

n — 
Suppose there is a w € R^. such that Bw< 1, but Bw has 

some component greater than 1.  Then 
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(3.5)    max b^. w < max F • w - max w • x . 
l<j<r       l<i<s       xeJ9 

But by the mln-max equality and the duality theorem for 

linear programs, we have that mln l«y, subject to the 

constraints yA > w, y > 0, Is equal to both left and right 

hand sides of (3.5), a contradiction. Hence <7 c {xeRj|Bx < 1} 

Similarly we see that ao  CXCRJIBX < 1}. Hence (3.4) holds, 

and Theorem 2.1 Implies that <7 - £. 

THEOREM 3.2. The polyhedra 

9  - {b€Rj|Ab< 1) and<7- {a€Rj|Ba< 1) are 

an antl-blocklng pair If and only If (1) a •bJ< 1 

for all 1-1, ..., m, j ■ 1, ..., r, and (11) 

the max-max Inequality holds for the pair A, B. 

Proof. Assume (1) and (11).  (Note that (11) Implies 

our blanket assumption that no column of A or B Is zero.) 

We show first that 

(3.6) 5 c ^ - {XCRJIX .^ < 1), 

(3.7) (7c 1 - {x€Rj|x -9  < 1}. 

Suppose a e <7, h e 9.    Then 

max b-J. a < 1, max a . b < 1. 
l<j<r    *   l<l<m 
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Hence by (ii). 

1 > ( max a •b)( max b^.a) > a • b, 
~ l<i<m     l<j<r 

Thus a * S < 1  and b • <7 < 1. Hence a €19,  b e tf, verifying 

(3.6) and (3.7).  If the inclusion in (3.6) is proper, 

let i € ^, a^S.    Since ä eä,  we have "a » Cf <  1. Since 

a^ Ä, we have a »a > 1 for some i • 1, ..., m. But by 

(i), a € ^7, a contradiction.  Hence 9 » "d. 

Conversely, suppose Ct * 9.    If a ■ b^ > 1 

for some i, j, then a ^ <7 « ^, and hence a • b > 1 for 

some b c/9, contradicting the definition of 6.    Hence (i) 

holds.  Let I e Rj, W € R?, and define 

(3.8) \ "   max a . /,, 
l<i<m 

(3.9) tu • max b^ . w. 
l<j<r 

If either -t ■ 0 or w ■ 0, the max-max inequality holds 

trivially. Assume / f 0, w f 0. Suppose \ • 0. Then 

some column of A is zero, contradicting our assumption on 

A.  Hence -t f 0 implies X > 0. Similarly, w f 0 implies 

ui > 0. Then, by (3.8) and (3.9), we have 

(3.10) a1- a/X) < 1, i - 1, ..., m. 
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(3.11) bJ.(w/üü) < 1, j - 1,   ..., r, 

and hence ifX  e 9 * "&, W/UJ e 0,    Consequently (-t/X) • (W/UJ)  < 1, 

•t • w < X u». 
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4.  ANTI-BLOCKING PAIRS OF (O.D-MATRICES. 

In this section we focus attention on anti-blocking 

pairs of (0,l)-matrlces. There are wide classes of such 

matrices having special combinatorial Interest; some of 

these will be discussed in the next section. 

If A and B are nonnegative matrices that define an 

anti-blocking pair of polyhedra, we call A, B an anti- 

blocking pair of matrices.  (We could of course restrict 

A and B to essential rows in discussing anti-blocking 

matrices.) If A is a (Oil)-matrix with antl-blocker B, 

we say that the min-max equality holds strongly for A, B 

provided the linear program (3.1) has an Integer solution 

vector y whenever w is a nonnegative Integer vector.  It 

is intuitively clear that a necessary condition for the 

strong min-max equality is that all essential rows of B 

be (0,l)-vectors.  It is surprising that this condition 

is also sufficient. 

THEOREM 4.1.  Let A be a (0,l)-matrlx 

having no zero columns and let B be an anti- 

blocking matrix of A. The min-max—equality 

holds strongly for A, B if and only if each 

essential row of B is a (0fl)-vector. Hence 

if the min-max equality holds strongly for 

A, B, it holds strongly for B, A, 
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Before proving Theorem 4.1, we emphasize that the 

analogous statement for blocking pairs of matrices Is 

false. A counterexample for blocking pairs Is shown 

below In Fig. 3. The example Is based on the result, 

due to T. C. Hu [12], that the max—flow mln—cut theorem 

Is valid for two—commodity flows In undirected graphs, 

but that fractional flows may be required.  In the example, 

the matrix A Is the Incidence matrix of all s to s' and 

all t to t* paths In the graph shown. Take w - 1 and 

observe that the unique solution to the program yA < w, 

y > 0, max l.y, Is given by y - (^, fc, i, |).  It can 

also be shown for this example that the program yB < w, 

y > 0, max l*y, always has Integer solutions for arbitrary 

nonnegative Integer vectors w. Thus Integer solutions 

In one of the two maxim' a packing programs for a blocking 

pair of (0,l)-matrlces does not imply integer solutions 

in the other. 

Proof of Theorem 4.1.  Suppose the min-max equality 

holds strongly for A, B, and assume that B has a fractional 

row b ■ (ß,, ..., ß ) that is essential. Thus b is an 

extreme point of the polyhedron ß  - [xeR?|Ax< 1} and 

there Is a nonnegative Integer vector w ■ (u)^, ..., UJ ) 

such that the maximum value of wx, for x e/9, is achieved 

uniquely at x » b. Let \ be a positive Integer. By 

assumption, the linear program yA > w, y > 0, mln l«y, 

has an Integer solution y and (Xw)«b ■ 1* (Xy) is a positive 
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1 3 t' 1 J_ 3 4 5 6 
1 1 0 0 0 1 

2 5 1 0 10 10 

4 6 s' 
A: 0 

0 

1 

0 

110 0 

0 111 

1 1 0 0 0 1 

1 0 10 10 

0 1 110 0 
(bloc ker) B: 0 

1 
0 

0 

0 

J 

1 

0 

0 111 
0 10 0 

0 0 10 

10 0 1 

Fig.  3 

I 
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Integer a.  Suppose 0 < ß^ < 1, and let 

w. ■ (X(D,+ 1, Xuu«» ..., ^"'n)*  Thus w. «b - a + ß^ is not 

an Integer. Consider the prcgram yA > w, , y > 0, mln 1* y. 

There is an integer vector y. solving this program, and 

this vector y, satisfies I'y^ ■ max w, «b1, where the 

maximum is over rows b1 of B.  Since l'y. is an integer 

and w.*b is not an integer, there is a row 

bX - ^l^)' •••' ßn^X^ f b of B such that 

wx,bx ' ^i^^ + ^Xw),bx > wx*b " ßi+ (Xw),b* 

and hence 

(4.1) ß^X) > X(w.b - w. bx). 

But w^b > w« b1 for all rows b1 f b of B. Hence, since 

B has finitely many rows, we have w.b-w-b. > 6 > 0, 

where 6 is independent of X.  Thus from (4.1), ßi(X) > X6. 

Since X is an arbitrary positive integer and B has finitely 

many rows, this is absurd.  Hence all essential rows of B 

are (0,1)—vectors. 

Suppose, conversely, that each essential row of B is 

a (0,l)-vector.  We shall describe an algorithm for obtaining 

an integer solution to the linear program yA > w, y > 0, 

min l«y, where w is a nonnegative integer vector.  (Actually, 

in the description, we suppose the initial w is positive. 

As will be clear, this is merely a convenience.) We know 

See the proof of Theorem 5 of [1] for a special case 
of this construction. 
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that min l*y subject to these constraints Is equal to 
* 1       r 

max bJ'w, where b , ..., b are the essential rows of B. 
J      i 

Let max bJ*w - tu, a positive integer.  Suppose that 
1  J i bJ'W - tu for j - 1, ..., k, bJ.w < ou for j - k+1, ..., r. 

Then the linear system of equations and inequalities 

(4.2) bj.x • 1,   j - 1, ..., k, 

(4.3) bJ-x < 1,   j - k+1, ..., r, 

(4.4) x > 0, 

has the solution w/uu.  It follows that there is an extreme 

point a of <7 - fxeR^lBx < 1} that satisfies (4.2)-(4.4), 

and hence either vector a is a row of A or is a projection 

of some row of A, say either a ■ a or a is a projection 

of a . Set the 1-th component of y equal to 1 (temporarily), 

reduce all components of w that correspond to positive entries 

in a by 1, and delete columns in A and B that correspond to 

nonpositive components of the reduced weight vector, as well 

as these components of the reduced weight vector, obtaining 

matrices A', B', and an integer vector w* > 0.  One can 

verify (either directly or by using Theorem 3.2) that the 

matrices A' and B' constitute an anti-blocking pair. Moreover, 

since b^«a «1 for J - 1, ..., k, and b-^.a - 0 or 1 for 

j ■ k+1, ..., m, it follows that max b'-w', taken over all 

rows b1 of B', is equal to ou—1.  We can now repeat 

. 

i 

-«■■■■■■■■ ■«^•».«»j«. 
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the argument, and In this way build up an integer solution 

vector y to the program yA > w, y > 0, min l'y.  This 

completes the proof of Theorem 4.1. 

A key point in the proof (one that breaks down in 

attempting an analogous argument for blocking pairs of 

(0,l)-matrices) is that the matrices A' and B' again 

constitute an anti—blocking pair. Geometrically, deleting 

column i from A corresponds to projecting the polyhedron 

B  ■ {x€R?lAx < 1} on the hyperplane ?. ■ 0, which is the 

same as intersecting 19 with this hyperplane.  The dual 

operation for B is again to delete column i from B, i.e., 

to project the anti-blocking polyhedron £ on the hyperplane 

\.  ■ 0.  (For blocking pairs of polyhedra, the dual of a 

projection of one on the hyperplane ?. = 0 is not a projection 

of the other, but is instead an intersection of the latter 

with this hyperplane.  Projections and intersections are 

distinct operations for blocking pairs.  See [10], where 

these dual operations are called deletions and contractions, 

in analogy with operations in matroid theory.) 

It follows from Theorem 2.1 and well—known linear 

programming results [11] that if A is a totally unimodular 

(0,l)-matrix (all square submatrices of A have determinant 

0, 1, or -1), then there is an anti-blocking matrix B for 

A that is also a (0,l)-matrix.  Hence the min-max equality 

holds strongly for both A, B and B, A if one of the two is 

totally unimodular.  (It is far from true that total uni- 

modularity for A implies total unimodularity for B.) 
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There are significant classes of examples of blocking 

pairs A, B of (0,l)-matrices where it is trivial to see 

directly that the min-max equality holds strongly for B, A, 

say, but where the strong min-max equality for A, B is a 

substantial theorem. 

For example, consider the Dilworth theorem [2] on minimal 

chain decompositions of partially ordered sets.  (This will 

be discussed in more detail in the next section.)  The 

Dilworth theorem is surely a substantial theorem.  The dual 

theorem (in the anti—blocking sense) is just the statement 

that a minimal decomposition of a partially ordered set 

into anti—chains has cardinality equal to the length of a 

longest chain.  But this latter theorem is a triviality, 

since a minimal decomposition into anti—chains can be 

obtained by deleting all minimal elements in the partially 

ordered set, then repeating the process in the reduced 

partially ordered set, and so on. And yet, in view of 

Theorem 4.1, these two dual theorems are in a certain 

sense equivalent. 
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5.  COMBINATORIAL EXAMPLES 

In this concluding section we discuss some examples 

of antl—blocking pairs of polyhedra that have combinatorial 

Interest.  In each example we take A to be an m by n (0,1)- 

matrix, so that A can be viewed as the incidence matrix of 

a family of m subsets of an n-set, and describe an r by n 

anti-blocking matrix B for A. 

Example 1. (Permutations).  Let A be the m » si by 
2 

n ■ s  (0,l)-matrix having a column for each cell ij of 

an s by s array and having a row corresponding to each 

s by s permutation matrix, viewed as a vector in Rn.  It is 

well known that the inequalities 

(5.1) 2 ?^ < 1,  1 = 1,..., s. 
j-l lj ^ 

(5.2) 2 ?.. < 1,  j = 1, ..., s, 
1-1 1J ~ 

(5.3) 5^ > 0,  all 1, j. 

have as extreme solutions x ■ (§JI) precisely the rows of 

A together with all projections of these rows.  Hence 

(5.1)—(5.3) define the antl—blocking polyhedron of 

ß  ■ {x€Rn|Ax < 1}.  In other words, an antl—blocking 
2 

matrix of A is the r ■ 2s by n ■ s matrix B whose rows 

are the incidence vectors of the rows and columns of an 

s by s array.  (See Fig. 4 below for an illustration for 

s - 3.) 



-31- 

11 12 13 
21 22 23 

31 32 33 

11 12 13 21 22 23 31 32 33 

1 0 0 0 1 0 0 0 1 

1 0 0 0 0 1 0 1 0 

0 1 0 1 0 0 0 0 1 

0 1 0 0 0 1 1 0 0 

0 0 1 1 0 0 0 1 0 

0 0 1 0 1 0 1 0 0 

B; 

Fig.  4 
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It is well known that the min-max equality holds 

strongly for both A, B and B, A.  (This also follows from 

Theorem 4.1 and the fact that B Is totally unlmodular.) 

For w a (0,1)—vector, the strong min-max equality for B, 

A is the classical König theorem on maximum matchings and 

minimum covers in bipartite graphs, and the strong min-max 

equality for A, B is the theorem, also due to König, that 

the minimum number of colors required for an edge—coloring 

in a bipartite graph is equal to the maximum valence in the 

graph. Neither theorem is obvious. 

Observe that the max-max inequality says here that 

if I  and w are nonnegative s by s matrices, that If X is 

the value of an optimum assignment for I  (i.e., \  is the 

largest sum obtainable from I  by selecting just one entry 

from each row and column), and if uu is the largest row or 

column sum of w, then XUJ > -f. • w. 

Example 2. (Chains in a partially ordered set).  Let 

A be the incidence matrix of all chains in a partially 

ordered set on n elements. Here one can deduce, either 

from the Dilworth theorem [2] on chain decompositions of 

partially ordered sets or from known results about network 

flows [9], that an anti-blocking matrix B for A is the 

matrix whose rows are the incidence vectors of all anti- 

chains (a subset of elements, no two of which are comparable) 

of the partially ordered set.  (See Fig. 5 below for an 

illustration, where we have listed only essential rows of A 

(maximal chains) and of B (maximal anti-chains).) 
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2 »3t A: 

B: 

12    3    4    5 

10 10 1 
10 0 10 
0    1    0    0    1 I 

110 0 0 
0 1110 
0    0    0    11 

Fig.   5 
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For w - 1, the strong min-max equality for A, B is 

the Dllworth theorem; the extension to nonnegative Integer 

vectors w can be deduced from the Dllworth theorem by 

replicating elements appropriately in the partial ordering. 

The strong min-max equality for B, A is, on the other hand, 

a triviality, since the following simple algorithm solves 

the linear program yB > w, y > 0, min l-y. Select the anti- 

chain of all minimal elements in the partially ordered set, 

and set the corresponding component of y equal to r], where 

r) is the least of the weights (components of w) assigned 

to members of this anti-chain. Reduce each of these weights 

by r), delete any elements now having weight zero, and repeat 

the procedure. 

In general, neither the chain matrix A nor the anti- 

chain matrix B is totally unimodular. 

The max-max inequality asserts that if we are given 

two weight vectors w and i,  then the product of the largest 

chain-weight, computed using i,  and the largest anti-chain 

weight, computed using w, is at least equal to -t«w. 

Example 3. (Cliques in graphs).  Let A be the incidence 

matrix of all cliques (a subset of vertices, every pair 

Joined by an edge) in a graph G on n vertices.  In general, 

no decent characterization of an anti-blocking matrix B is 

known for this situation. But if G is either a rigid circuit 

graph (every circuit of four or more edges has a chord), a 

comparability graph (orientations can be assigned the edges 
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of G so that the resulting directed graph represents a 

partial order on the vertices of G,  I.e.,  If a - b, b -c, 

then a - c), or the complement of a rlgld-clrcult graph 

or of a comparability graph, then an antl-blocklng matrix 

B has rows that are the Incidence vectors of all Independent 

sets of vertices of G.     (A set of vertices Is Independent 

If no pair Is joined by an edge.)     (For Illustrations see 

Fig.  6 below, where we have listed maximal cliques and 

maximal Independent sets only,  I.e.,  the essential rows 

of A and B.) 

Note that In complementing the graph G, we Interchange 

the roles of A and B.    Hence It suffices  to consider only 

the cases (a) G Is a rlgld-clrcult graph,  and (b) G Is a 

comparability graph.    The second of these has been dealt 

with above, since a clique In G Is a chain In the resulting 

partially ordered set,  and an Independent set Is an anti- 

chain.    We shall dispose of (a) by sketching an algorithm 

which can be used to prove that the min-max equality holds 

for A, B In the strong form.     (It is known [1J that If w 

is a (0,l)-vector, the integer form of the min-max equality 

holds, but it does not seem to follow directly from this 

fact that it also holds for general w.     The device of 

replicating a vertex can destroy the rigid—circuit property.) 

This algorithm for computing min 1'y subject to yA > w, 

y > 0,  is based on the known fact  [3J  that a rigid-circuit 

graph always contains a simplical vertex.    Here a vertex 
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A: 

12    3    4    5    6 

B: 

A: 

12    3    4    5 

B: 

Fig.   6 
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1s slmpllclal if It and all Its neighbors form a clique in 

G. The algorithm Is the following. Select a slmpllclal 

vertex In G, say v, and suppose v has w-welght fi. Vertex 

v Is a member of Just one maximal clique C In G; assign 

C a y-component 6,  reduce all w-welghts of vertices In C 

by 6, delete v and all other vertices In G having nonposltlve 

weights, and repeat the process with the new graph G* and 

the new weights w*.  (Note that G* Is again a rigid-circuit 

graph, since deleting vertices does not destroy this property. 

To prove that the algorithm works, construct an Independent 

set in G by making a list of some of the selected slmpllclal 

vertices as follows: when slmpllclal vertex v is selected, 

add it to the list and delete from the list all vertices 

that neighbor v in G.) 

Rigid circuit graphs and comparability graphs are 

examples of a class of graphs that are called perfect 

graphs [1J. For a graph G, let Y(G) denote the chromatic 

number of G (the minimum number of independent sets that 

cover G), let n(G) denote the partition number of G (the 

minimum number of cliques that cover G), let X(G) denote 

the clique number of G (the size of a largest clique in G), 

and let uu(G) denote the independence number of G (the size 

of a largest Independent set in G). A graph G is y—perfect 

if Y(H) - \(H) for every (vertex-generated) subgraph H of 

G; G is TT-perfect if n(H) - üU(H) for every (vertex-generated) 

subgraph H of G; G is perfect if it is both y-perfect and 
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n-perfect.  Thus a graph Is v-perfect if and only if, for 

all (0,l)-vecCors w, we have (a) Che linear program 

yB > w, y > 0, min 1'y, has an integer solution y, and 

(b) min l'y - max a 'w, where the clique matrix A has rows 
1      m  

1<i<m 
a ,  ...,  a  ,    Similarly for TT-perfection. 

In addition to rigid-circuit graphs and comparability 

graphs, "unimodular" graphs are perfect; that is, if 

the clique matrix A is totally unimodular, as it is for 

bipartite graphs, it is known [1] (and follows from 

Theorem 4.1) that the graph is perfect. 

It has been conjectured by Berge that y-perfection 

(or rr—perfection) implies perfection for a graph.  This 

has been frequently called "the perfect graph conjecture." 

In this connection we note that the corresponding "plu- 

perfect graph conjecture" is true. That is, if we define 

Y—pluperfection to mean that the min-max equality holds 

strongly for B, A, and pluperfection to mean that the 

min-max equality holds strongly for both A, B and B, A, 

then Theorem 4.1 shows that Y—pluperfection implies plu- 

perfection. Thus to prove the perfect graph conjecture, 

it suffices to show that y—perfection implies y-plu— 

perfection. For this, it suffices to show that if G is 

y—perfect, and if we replace a vertex v in G by two vertices 

v1, v", where v' and v" are joined by an edge and each is 

joined by an edge to every neighbor of v (i.e.,, duplicate 

v and join v to its duplicate), the new graph G1 is again 

Y—perfect. 
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Example 4. (Independent sets In matrolds). Let A 

be the Incidence matrix of the family of independent sets 

in a matroid on n elements.  (For example, A could be the 

incidence matrix of the family of sub—trees of a graph on 

n edges.) It has been shown by Edmonds [7] that the 

inequalities 

(5.4) 2 ?. < r(S),  all S c {1, ..., n}, 
ieS 1 ~ ~ 

(5.5) ?! > 0*  ie U» ..., n}, 

have as extreme solutions precisely those vectors 

x ■ (5j, ..., ? ) that are incidence vectors of independent 

sets in the matroid.  (In (5.4), r(S) denotes the matroid 

rank of set S. The inequalities (5.4) are not all essential 

in general. For instance, S can clearly be restricted to 

spans (closed sets) in (5.4), but some of these may still 

yield inessential inequalities.) Thus an anti-blocking 

matrix for A is the matrix B having a row bg ■ bg/r(S), 

where hX  is the incidence vector of set S, corresponding 

to each nonempty S c {1, ..., n}.  (We are tacitly assuming 

that no element has rank zero in the matroid, i.e., our 

blanket assumption that A has no zero columns.) The min— 

max equality for A, B does not hold in the strong form, 

but very nearly so:  Edmonds has shown [6J that the best 

integer answer to the program yA > w, y > 0, min l'y, 

yields 

KMlMIIIM ' 
>vw^n '*MmiiiWMHMIMk«HMHI 
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(5.6)        min l«y ■ (max w»bc> , 
S    b 

where (a) Is Che least Integer greater than or equal to a. 

For an Illustration, see Fig. 2.  The matrix A* shown 

there is the incidence matrix of all maximal Independent 

sets (bases) in the cotree matroid (the matroid dual to 

the tree matroid) of the graph shown there. 

Example 5. (Hatchings in graphs).  Let A be the 

incidence matrix of the family of all matchings in a graph 

on n edges. (A matching is a subset of edges, no two on 

the same vervex.) Here Edmonds has shown [4, 5] that 

inequalities of two types characterize the convex hull of 

the rows of A. Let ?., be a variable assigned to the edge 

ij having vertices i and j as ends in the graph G having 

s vertices. The inequalities can then be written as 

(5.7)        2 ?.. < 1,  1 - 1, ..., s, 
J€N. 'ij ^ 

(5.8) 2   ?,. < l^H, all 0 c {1, ..., s}. 

(5.9) qj > 0, all edges 1j. 

In (5.7), Nj denotes the set of vertices that neighbor 1; 

in (5.8) the subset of vertices 0 has odd cardinality |0|, 

and the sum is over all edges joining members of 0. Thus 
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(5.7) and (5.8) determine an anti—blocking matrix B of A. 

(For an illustration, see Fig. 7 below, where we have shown 

essential rows only.) 

Edmonds1 proof that (5.7) and (5.8) have just the 

matchings as extreme solutions is an algorithm for solving 

the dual programs Bx < 1, x > 0, max w.x, and yB > w, 

y > 0, min l'y, thereby establishing the min-rnax equality 

for B, A. 

Note that the best integer answer in the program 

yA > 1, y > 0, min l'y, provides a coloring of the edges 

of the graph with the least number of colors. Hence the 

integer form of this problem is unsolved.  But if we allow 

"fractional colorings", i.e., if we consider the linear 

program yA > w, y > 0, min l'y, over the reals or rationals, 

then Edmonds* result and Theorem 3.1 show what the answer 

is. For example, one can deduce the following:  if G is 

a tri-valent triply connected graph, then the edges of G 

can be "fractionally colored" with a "coloring" of total 

weight three, i.e., min l'y ■ 3 subject to yA > 1, y > 0. 

(For instance, there are six matchings in the Petersen 

graph having the property that if each is assigned weight 

one-half, all edges are covered.) 
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12    3    4    5    6 

A: 

B: 

1 0 1 0 0 0 
1 0 0 1 0 0 
0 1 0 1 0 0 
0 1 0 0 1 0 
0 1 0 0 0 1 
0 0 1 0 1 0 

1 1 0 0 0 0 
0 1 1 0 0 0 
0 0 1 1 0 1 
0 0 0 1 1 0 
1 0 0 0 1 1 
0 0 0 1 1 1 
* i * * i * 

Fig.   7 
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