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PREFACE

Combinatorial mathematics is concerned with arrange-
ments, configurations, relations, and constructions in
finite or discrete systems. Combinatorial problems there-
fore abound in all branches of science and mathematics.
Combinatorial approaches—linear and integer programming,
network flows, graph theory, and so on—are used much more
than they once were, partly because of the availability
of high—-speed computers. For instance, the practical
value of network programming and scheduling algorithms,
developed at Rand to deal with Air Force problems over the
past decade and now extensively applied to calculating
flows through transportation networks, minimum time re-
quired to complete projects, and optimal assignments of
machines to tasks, is enhanced by the computer's ability
to produce numerical answers to very large problems.
Another aspect of modern military technology that has
focused attention on combinatorics is digital communica-
tions, which has necessitated work in error—correcting
codes.

Combinatorics is very much problem-oriented but, like
all mathematics, it must be carried out at a certain level
of abstraction to be worthwhile. For example, there is no
permanent value in calculating the capacity of a single, 4

given network, no matter how great the short—run value of :

53 AP

the calculation; however, there is permanent value in
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devising a good method for calculating the capacity of
any network. This process of abstraction occasionally
makes the connection between mathematical research and
the "real world" somewhat remote, but is absolutely
essential if the research is to achieve its maximum

utility.

Other Rand publications in combinatorial mathematics
will be found in a bibliography of Rand studies on Research
in Combinatorics (SB-1030) available on request from the

Reports Departr.ent, The Rand Corporation, 1700 Main Street,
Santa Monica, California 90406.




SUMMARY

A theory parallel to that for blocking pairs of
polyhedra is developed for anti-blocking pairs of polyhedra,
and certain combinatorial results and problems are discussed
in this framework.

Blocking pairs of polyhedra are intimately related to
maximum packing problems, anti-blocking pairs to minimum
covering problems.

Let ® = {x eREleS 1}, where A is a nonnegative
matrix and 1 = (1, ..., 1). The anti-blocker of the convex
polyhedron # is defined to be the convex polyhedron
B = {xeRiIx *# < 1}. It is shown that ® = ® and a method
is described for finding a nonnegative matrix B such that
B = {x eRElB x< 1}. 1In particular, if A is the incidence
matrix of a family of subsets of {1, ..., n} having the
property that each subset of a member of the family 1is
again a member of the family, a method is described for
finding the facets of the convex hull of the rows of A.

It is shown thet anti-blocking pairs are characterized
by a min-max equality, the analogue of the max—flow min—cut
equality for blocking pairs, or by a max-max inequality,
the analogue of the length-width inequality for blocking
pairs.

Finally, the theory of anti-blocking pairs is applied

to certain problems in extremal combinatorics. A main
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result is the following. If A and B are an anti-blocking
pair of (0,1)—matrices, then the min—max equality holds
strongly for both ordered pairs A, B and B, A, i.e., both
covering problems y A >w, y >0, min 1'y, andy B > w, y >0,
min 1:y, have integer solutions y for all integer vectors

w. This theorem bears on a well-known conjecture in graph
theory, called the perfect graph conjecture, and in fact

establishes what one might call the pluperfect graph theorem.
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ANTI-BLOCKING POLYHEDRA

1. INTRODUCTION
In [10] the notion of a blocking pair of polyhedra

was introduced, and some applications of the resulting
theory to extremal combinatorics were described. In this
paper we develop a parallel theory for anti-blocking pairs
of polyhedra, and discuss certain combinatorial results and
problems from this viewpoint.

Blocking pairs of polyhedra have relevance for maximum
packing problems, anti-blocking pairs for minimum covering
problems. Here by a maximum packing problem we mean the
following. Let A be an m by n nonnegative matrix, and
let w be a nonnegative n-vector. A solution m-vector y

to the linear program

(1.1) yA<Lw

y20

max 1.y,

where 0 = (0, ..., 0) and 1 = (1, ..., 1), is a maximum
packing in w of the rows of A, Similarly a solution

m-vector y to the linear program

(1.2) yAD>w
y20
min 1y,
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is a minimum covering of w by the rows of A, Normally

the words ''packing' and "covering' refer to combinatorial

situations in which A 1s a (0,1)-matrix, thought of as

the incidence matrix of a family of subsets of {1,2, ..., n},

w is an integer vector (usually w = 1), and the solution
vector y 18 required to have integer components, i.e., the
maximum in (1.1), or the minimum in (1.2), is taken over
all integer vectors y that satisfy the constraints. It is
generally an enormous simplification in this situation to
drop the integer requirement on y, as we are doing, and to
consider merely the real (or rational) packing and covering
problems (1.1) and (1.2).
Dual to (1.1) is the linear program

(1.3) A x

X

v Iv
(= B

€
S

min

Similarly the dual of (1.2) is

(1.4) A

]

]
v A
o =

max w+*x .

The constraints in (1.3) define an unbounded, n—-dimensional,

convex polyhedron

(1.5) C = {xeR:Isz 1}
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situated in the nonnegative orthant R2 of R®. The

constraints in (1.4) define an n—dimensional polyhedron
(1.6) 8 = {xeRiIAxs 11,

also situated in the nonnegative orthant R:. The class
of polyhedra of type (1.6) is the primary object of study
in this paper. We shall assume throughout that # is bounded,
i.e., that no column of A consists entirely of zeros. This
is not an actual restriction, since (1.2) is infeasible
unless components of w corresponding to zero columns of A ;
are also zero, in which case such columns of A can be
ignored.

In [10] we investigated the blocking relation for
polyhedra of type (1.5), and found that it pairs members

of this class. The appropriate analogue for polyhedra of

type (1.6) is the anti-blocking relation; it also pairs
members of this class (Theorem 2.1). Anti-blocking pairs

of polyhedra can be characterized by a min-max equality
(Theorem 3.1), the analogue of the max—flow min—cut equality
for blocking pairs of polyhedra, or by a max-max inequality
(Theorem 3.2), the analogue of the length—width inequality
for blocking pairs of polyhedra.

An important class of problems in extremal combinatorics { .

1, .e., a" be (0,1)—vectors, thought

is the following. Let a
of as the incidence vectors of a family of m subsets of an

n—set. (For example, the vectors al, cee, a° might represent
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the family of all simple paths joining two terminals of a
graph G on n edges, the family of all tours in G, the family

of all matchings in G, and so on.) How does one characterize

1, oI5 a™ as the extreme solutions of a system

of linear inequalities? 1If al, XA a™ are the incidence

the vectors a

vectors of a clutter (ro member of the family contains
another member), it is shown in [10] that the nontrivial

facets of the unbounded polyhedron
(1.7) € = conv. hull ({al, Sy a") + Rr

are given precisely by the extreme solutions of the system

1

Ax>1l, x >0, where A has rows a*, ..., a". That is, the

pair of polyhedra é defined by (1.5) and 7 defined by (1.7)
are a blocking pair. Similarly, we find here (Theorem 2.3)
that if al, 485 s a" are the incidence vectors of a family
having the property that each subset of a member of the

family is again a member of the family, then the facets of
1 m
(1.8) & = conv., hull ({a*, ..., a'})

can be determined from the extreme points of its anti-blocking
polyhedron 8 = {x eR:‘_leg 1}. 1t is no longer true for
anti-blocking pairs that each extreme point of one represents
a facet of the other, as is the case for blocking pairs

(for example, the origin is an extreme point of #).
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From the combinatorial point of view, one interesting
result of the paper is contained in Sec. 4, where we discuss
anti-blocking pairs of (0,l)-matrices, and prove (Theorem
4.1) that if A and B are such an anti-blocking pair, then
the min-max equality holds for both ordered pairs A, B
and B, A in a strong, integer form. The connection between
Theorem 4.1 and certain well-known combinatorial theorems
is discussed in Sec. 5, where we note also the connection

between Theorem 4.1 and the perfect graph conjecture.

i g
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2. THE ANTI-BLOCKING RELATION

Let A be an m by n nonnegative matrix. We assume
that m > 1 and that no column of A consists entirely of

zeros. Let

(2.1) 8 = {beR}IADS 1) .

Thus 8 is bounded and hence can be written as the convex

hull of its extreme points bl, ceey bE:

(2.2) ® = conv. hull ({bl, ..., bT}).

It is a consequence of the Farkas lemma on systems of linear
inequalities that a row vector ai of the matrix A is inessential
in defining & if and only if al is dominated by a convex combi-

nation of other rows of A, i.e., if and only if the inequality

m
(2.3) al <N ajaj

j=1

m
holds for some a; >0, ..., a_ > 0 satisfying a, =0, 3 a, = 1,
< m = i j-lj

Let
(2.4) §={acR,la-8< 1].

We call #& the anti-blocker of 4.




THEOREM 2.1. Let A be a nonnegative

matrix having no zero columns and suppose

B = {be RiIAbS 1} has extreme points

bl, Tk b, Let matrix B have rows

bl, O - b". Then B is nonnegative, has no

zero columns, and

(2.5) B ={acRl|Bag 1],

(2.6) B = A,

Proof. Clearly B is nonnegative. If the largest
element in the i-th column of A is My > 0, then B has as
one of its rows the vector (0, ..., O, 1/“1’ 0, ..., 0),
the number 1/“1 occurring in the i-th position. In particular,
B has no zero columns.

Suppose ach = {aeR_t'_‘Ia- 8 < 1}. Then a-bjs 1,
j=1, ..., r, and hence @ c {aeRnIB a< 1}. Conversely,
suppose aeR and a- bj< 1 forj =1, ..., r. Let beas,.

Thus b = Z 0ijj where aj 20, z a, = 1, and hence
j=1 "yul

r
a-b =3 aj(a-bj) <1
j=1

Hence ac¢#, and (2.5) holds.

T B
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Clearly A c 3. Suppose x e?;’, x¢ 8. Thus for some

1, we have a*+ x > 1, since xe&':, x ¢85,

1

row of A, say a

1

But a c-:l?._t'_1 and satisfies Ba~ < 1, and so al ¢ 5 =

{aeREIBa < 1}. Since x¢B and ale &, we must have
al +x <1, a contradiction. Thus & = 8.

It follows from Theorem 2.1 that if we are given the
matrix A defining ®, then a matrix B defining B can be
determined as follows. Append the n by n identity matrix
to A, and then find an n by n nonsingular submatrix A of
the matrix thus obtained. Next solve the linear system
of equations having A as coefficient matrix and having
right hand side 1 or 0 according as the corresponding row
of A belongs to A or to the appended identity. If the
resulting solution b satisfies b > 0, Ab < 1, then b is
an extreme point of 8. All extreme points of #® can be
obtained in this way.

3 is shown

An example illustrating Theorem 2.1 in R
in Fig. 1 below.

In the example, if we start with the matrix A, all
of whose rows are essential for & (define facets of #®),
we obtain B by the process outlined above. All rows of
B except the first are essential for . On the other hand,
if we start with B (or just the essential rows of B) and
compute the extreme points of &, we obtain, in addition to

the rows of A, the four vectors (0,0,0), (1,0,0), (0,1,0), (0,0,1)

all of which are of course inessential for 8. Note in




Fig. 1
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either case that an inessential extreme point (say an
extreme point of & that does not represent a facet of #)
is a projection of some other essential extreme point (an
extreme point of & that does represent a facet of #8). We

now prove that this is true in general.

THEOREM 2.2. Let A be a nonnegative matrix
defining the polyhedron & = {b ¢ RilAbs 1} and

let b, bl, ..., b® be points of # such that b
is an extreme point of & and is dominated by a
convex combination of bl, ..., b5, Then b is a
projection of some bi.
Proof. We may suppose
LAY
(2.7) bgizlaib = C,

k
where ay 20, L =ud, .., k; andiz oy = 1. If equality

holds in (2.7), then, since b is extreme, we have

bm=bl = =K

, and the conclusion of the theorem holds.
Let b = (Bl, s Bn), cC = (Yl, el 5 Yn)' If b = 0, we
are done. Rearranging coordinates if necessary, we may

now suppose that

Bl >o_| ey Be>0, Be_'_l-'.. -Bn-Oo

Since b is extreme in 8, we can find an e by e submatrix

E of A such that the equations Ex = 1 have the unique solution
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x-(Bl, ...,Be). Lety-(yl, ool Ye). Since
0<{x<yadE >0, we have Ey> 1. If some component
of Ey 1s greater than 1, then c ¢ 8, a contradiction.
Hence Ey = 1, and thus, since E is nonsingular, y = x,

Let bi

= (B%, 00 5111)’ and define projections
bf; - (Bi, ceey Bi, 0, ..., 0). Since Bi =Yy for

i=1, ..., e and Pet1 ™ "' -Bn = 0, we have

ko4
b = iz-l Cl.ib* s

where bi‘ eR, 1i=1, ..., k. Because b is extreme in 8,
it follows that b = b% = °'°-bl:, and hence b is a projection
of bl fori =1, ..., k.

Theorem 2.2 1s useful in various ways. For example,
if we are given the nonnegative matrix A defining
R = {b eRiIAbS 1} and are able to find the extreme points
of M, then the facets of the anti-blocking polyhedron %
can be determined easily, since each facet of ® corresponds
to an extreme point of & that is not a projection of some

other extreme point of #. Another use is in the proof of

Theorem 2.3 below.

1

THEOREM 2.3. Let a~, ..., a" be the

incidence vectors of a clutter of m subsets

Sys ++v, S of {1, «.., n}, and let A have

rows al, cee, av. Let 5 = {beR_r'_‘lAbS 1}

s
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be bounded with extreme points bl, N oN, b*

and let the matrix B have rows bl, PR

Then the extreme points of the bounded

polyhedron & = {a ¢ R:IB a< 1} are precisely

al, 5008 am together with all incidence vectors

of subsets of Sl’ ceey S (i.e., all projections

1

o—fa , ..., am).

Proof. Since A i1s the incidence matrix of a clutter,
no row of A is dominated by a convex combination of other
rows of A, and hence each row of A is essential for #&.
Consequently, by Theorem 2.1, each row of A is an extreme
point of &. Moreover, since B contains the n by n identity
matrix as a submatrix, it follows that the incidence vector
of a subset of any Si is also an extreme point of &. There
can be no others, for 1f a is an extreme point of # that
is inessential for ®, then a is dominated by a convex
combination of rows of A, and hence by Theorem 2.2, a is
a projection of some ai.

The example of Fig. 1 illustrates Theorem 2.3. The
extreme points of # = {ac¢ REIB a< 1} are precisely the
rows of A (the incidence vectors of the clutter of all
2—sets of a 3-set) together with the incidence vectors of
all singletons and the empty set.

In the rest of this section we discuss a connection
between anti-blocking pairs of polyhedra and blocking pai:rs
of polyhedra [10]. We describe this connection in the
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context of (0,l)-matrices, and shall show (Theorem 2.4)

that 1f A 1s the incidence matrix of a clutter, 1f B is

the blocking matrix of A, and 1f A' is the complement of

A (L.e., A' is obtained from A by interchanging 0's and 1's)
then the anti-blocking polyhedron of the polyhedron

B' = {b eRilA'b < 1} can be obtained easily from the

matrix B.

We reéall from [10] that the blocking polyhedron of
the (unbounded) polyhedron 8 = {be R:IAbZ 1}, 1is the
(unbounded) polyhedron ?- {ae R_r:la- ® > 1}, and that the
nontrivial facets of ﬁ'correspond precisely to the extreme
points of 8, 1.e., 1f ® has extreme points bl, anene b* and
if B is the matrix having rows bl, Renly br, then
’/3 = {ace REIB a> 1}, and each row of B is essential in
defining ®. If A is a (0,1)-matrix and if each row of A
is essential in defining #, then A is the incidence matrix
of a clutter; in this case the blocking matrix B contains
as a submatrix the incidence matrix of the blocking clutter
(8,13), 1i.e., B has a row corresponding to each (0,1)-vector
that has inner product at least 1 with all rows of A, and
is minimal with respect to this property. In general, B
will have many other fractional r-ws in addition to these

integer rows.
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THEOREM 2.4, Let A be the m by n

incidence matrix of a clutter on {1, ..., n},

and suppose A has no column consisting entirely

of 1's. Let B be the r by n blocking matrix of

A, and let Pj denote the sum of the elements in

the j-th row b3 of B. Let A' be the complement

of A. Then the anti-blocking polyhedron of

8 = [beR:|A'b < 1} is_the polyhedron

B = {aeRiIa <1, B'a < 1}, where B' is the

r by n matrix having rows bl/(Pl—l), T
r
b /(pr-l).

Proof. We note first that Pj >1l., For, since A is
a (0,1)-matrix, we surely have PJ > 1. If Pj = 1, then,
since b:l i1s an excreme point of the polyhedron
A= {xe Rile > 1}, it follows that bj is the incidence
vector of a singleton, and hence the j—th column of A
consists entirely of 1's, contradicting our assumption on
A.

We next prove a lemma.

LEMMA. Let E be an e by e nonsingular

(0,1)-matrix. Suppose the equations Ex = 1

have the unique solution x = (gl, PR ge),

e
and that x > O,izl €4 > 1. Let E' be the

complement of E. Then the equations E'y = 1

have a unique solution y = (nl, g ne).

e
Moreover, y > o ﬂlﬁiz-:l ngy > 1.
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e
Let p = 3 51, and let J denote the e by e matrix
is=]
consisting entirely of 1's. Then y = x/(pP-1) satisfies

£y - 0GR - 2% - B

p P 1 1
- (p—_[, 5 lehsmy P_—T) = (—P:I’ se0y E:T)

=1,

Clearly y > 0 and has component sum 0 = FET >1l. If E'y = 1 has
two distinct solutions Y1 and Yo, with component sums

aq £ 1, a9 $ 1, we deduce as above that Ex = 1 has two

distinct solutions, contradicting our assumption. If

E'y = 1 has a solution y with component sum ¢ = 1, then

Ey = (J-E')y = Jy — E'y = 1-1 = 0, and hence E is singular,
again a contradiction. This proves the lemma.

Since bJ is an extreme point of 8 = {xeRiIAx > 11,
there is a nonsingular submatrix E of A such that the
nonzero coordinates of bj are given as the solution of the
equations Ex = 1, Applying the lemma, we see that bj/(Pj—l)
is an extreme point of 8' = {aezRElA'b < 1} if this vector
satisfies all the inequalities defining #'. This follows

as in the proof of the lemma, since

J 3 J 3
) b Jb Ab
A =T - (J—A) = —
P P 1 1
< (E—EI: cens -321)'—(33:1: ceey EE:I)
<1
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In an exactly similar way, we see that an extreme
point b of A' has component sum ¢ > 1, and that 1if o > 1,
the same transformation b -~ b/(0-1) produces an extreme
point of A. Since A' has no columns of zeros, each unit
vector is also an extreme point of B', and these are the
only extreme points of ' having component sums equal to 1.
This completes the proof of Theorem 2.4.

It follows from Theorems 2.3 and 2.4 that if we know
inequalities that characterize the incidence vectors of a
clutter as the extreme points of a polyhedron of type (1.5),
then we know inequalities that characterize the convex
hull of all incidence vectors of the family consisting of
the complementary clutter plus subsets of members of this
clutter.

We conclude this section with an example illustrating
Theorem 2.4. In Fig. 2 below, the matrix A is the incidence
matrix of all spanning trees of the graph shown there, B
is the blocking matrix of A, A' is the incidence matrix
of all cotrees, and B' is obtained from B as in Theorem 2.4.
Inessential rows of B' nave a line drawn through them. As
the example indicates, much simplification can occur in

passing from B to B'.
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1 4
3
2 5
(0111 0] 10001
01101 10010
11010 00101
A=|11001 A'= JOo0O110
10110 01001
10101 01010
10011 01100
01011 10100
11000] (>1) (1100 0]
00011 00011
10101 —= O
01110 —1-0———9—0-
B={01101 B' = 40404
10110 —} 0440
0% % %2 —-0-4———4-
[t o¢te — 044
22 £0¢% —+—-04
¢t 40 6
bsﬁéé SEEE.
Fig. 2
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3. THE MIN-MAX EQUALITY AND MAX-MAX INEQUALITY

In this section we develop analogues for anti-blocking
pairs of the max—flow min-cut equality and the length-width
inequality for blocking pairs of polyhedra.

Let A and B be nonnnegative matrices, each having n
colums and neither having zero columns. Let the rows of
A be al, = 15 a™ and the rows of B be bl, o s bY. We say

that the min—-max equality holds for the pair A, B (in this

order) if and only if, for each we R_r;, it is true that in

the linear program

(3.1) yA> w,
y> 0,
min 1.y,
we have
(3.2) min l.y = max bj-w .
1<j<r

Similarly, we say that the max-max inequality holds for

the pair A, B if and only if, for every 1 ¢ R_r"_, weE R:, we

have

(3.3) (max al:t)(max bl.w) > 1w,
1<i<m 1<i<r =

THEOREM 3.1. The min-max equality holds

for the pair A, B if and only if the polyhedra
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B = {beR_:IAbS 1} and @ = {aeRiIBaS 1} are

an anti-blocking pair. Hence if the min—max

equality holds for A, B, it also holds for

B’ Al

Proof. Suppose that 5 and ¢ are an anti-blocking
pair. By Thecrem 2.1, the matrix B contains as a row
each extreme vector of 5 that is essential for @ = 7.
Since an inessential row of B can be ignored in computing
max bj-w, it follows from the linear programming duality
:égggem, together with the fact that the maximum value of
a linear form defined over 5 is achieved at an extreme
point of &, that the minimum value of l‘y in the linear

program (3.1) is equal to

max wW-+ X = max bj-w.
XeR 1<j<r

Conversely, suppose the min-max equality holds for
the pair A, B (in this order). Let # have extreme points
El, R Ss, and let the matrix B have these as its rows.

We shall show that
(3.4) 2 = {xeR|Bx< 1},

Suppose there is a weR\:_1 such that Bw< 1, but Bw has

some component greater than 1. Then

s
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(3.5) max bj-w < max Bi-w = max w+* x .
1<j<Lr 1<i<s xXel®

But by the min-max equality and the duality theorem for

linear programs, we have that min 1.y, subject to the
constraints yA > w, y > 0, is equal to both left and right

hand sides of (3.5), a contradiction. Hence 7 c {xe¢ Rilﬁx < 1}.
Similarly we see that @ > {xeR2|§x < 1}. Hence (3.4) holds,
and Theorem 2.1 implies that 7 = 5.

THEOREM 3.2. The polyhedra

8 =(becR}|Ab< 1} and 7 = {acR}|Ba< 1} are
an anti-blocking pair if and only if (i) ai'bjg 1

for alli =1, ..., my j=1, ..., r, and (ii)
the max-max inequality holds for the pair A, B.

Proof. Assume (i) and (ii). (Note that (ii) implies
our blanket assumption that no column of A or B is zero.)

We show first that

(3.6) 8cZ=(xeRl|x.7< 1},

(3.7) 72c®={xeR}|x-8< 1},

Suppose ae7, be®. Then

max bj.a<1, max ai

< b <1,
1<i<r 1<i<m -



=21-—

Hence by (ii),

1 > ( max ai-b)( max bj-a) >a-b.
T 1idm 1<i<r

Thus a*®# <1l and b+ @ < 1. Hence ae®, bed, verifying
(3.6) and (3.7). If the inclusion in (3.6) is proper,
let ac@, a¢B8. Since aea, we have a+@7 < 1. Since
a¢ M, we have al.a >1 for some i =1, ..., m. But by
(1), ale d, a contradiction. Hence # = 7,
Conversely, suppose @ = 8. 1If al .3 >1

for some i, j, then al ¢z =B, and hence al. b >1 for
some b € #, contradicting the definition of #. Hence (1)

holds. Let teR}, weR}, and define

(3.8) A = max al. 4,
1<i<m

(3.9) © = hax bl. w.
1<3<r

If either ¢t = 0 or w = 0, the max-max inequality holds
trivially. Assume 4 % O, w + 0. Suppose A = 0. Then
some column of A is zero, contradicting our assumption on
A. Hence ¢ % 0 implies A > 0. Similarly, w % O implies
w > 0. Then, by (3.8) and (3.9), we have

(3.10) ale /) <1, 1=1, .ou, m,

g 3D
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(3.11) bJ-(w/w) Sy J=1, ..., t,

and hence /A ¢ ® = @, w/w € a.
tew<houw,

Consequently (¢4/1):(w/w) < 1,
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4. ANTI-BLOCKING PAIRS OF (0,1)-MATRICES.

In this section we focus attention on anti-blocking
pairs of (0,1)-matrices. There are wide classes of such
matrices having special combinatorial interest; some of
these will be discussed in the next section.

If A and B are nonnegative matrices that define an
anti-blocking pair of polyhedra, we call A, B an anti-

blocking pair of matrices. (We could of course restrict

A and B to essential rows in discussing anti-blocking
matrices.) If A is a (0,1)-matrix with anti-blocker B,
we say that the min-max equality holds strongly for A, B
provided the linear program (3.1) has an integer solution
vector y whenever w is a nonnegative integer vector. It
is intuitively clear that a necessary condition for the
strong min-max equality is that all essential rows of B
be (0,1)-vectors. 1Tt is surprising that this condition

is also sufficient.

THEOREM 4.1, Let A be a (0,1)—matrix

having no zero columns and let B be an anti-

blocking matrix of A. The min-max—equality

holds strongly for A, B if and only if each

essential row of B is a (0,1)-~vector. Hence

if the min-max equality holds strongly for

A, B, it holds strongly for B, A.

. ey B
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Before proving Theorem 4.1, we emphasize that the
analogous statement for blocking pairs of matrices is
false. A counterexample for blocking pairs is shown
below in Fig. 3. The example is based on the result,
due to T. C. Hu [12], that the max—flow min—cut theorem
is valid for two—commodity flows in undirected graphs,
but that fractional flows may be required. In the example,
the ma*rix A is the incidence matrix of all s to s' and
all t to t' paths in the graph shown., Take w = 1 and
observe that the unique solution to the program yA < w,

y >0, max 1.y, is given by y = (%, %, #, #). It can
also be shown for this example that the program yB < w,

y >0, max 1y, always has integer solutions for arbitrary
nonnegative integer vectors w. Thus integer solutions

in one of the two maximun packing programs for a blocking
pair of (0,1)-matrices does not imply integer solutions

in the other.

Proof of Theorem 4.1. Suppose the min—max equality

holds strongly for A, B, and assume that B has a fractional
row b = (Bl, 0 2] Bn) that is essential. Thus b is an
extreme point of the polyhedron B = {x eREleS 1} and
there is a nonnegative integer vector w = (wl, YT wn)
such that the maximum value of wex, for xe/®, is achieved
uniquely at x = b, Let A be a positive integer. By
assumption, the linear program yA > w, y > 0, min 1.y,

has an integer solution y and (A\w):b = 1+ (Ay) 1is a positive
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integer a. Suppose 0 < By < 1, and let

w, = (Xw1+ 1, Mgy «oe, Xwn). Thus wxob = a+8, is not

an integer. Consider the prcgram yA > W, ¥ 2 O, min 1-Yy.
There is an integer vector ¥y solving this program, and
this vector y, satisfies l'y, = max wkob', where the
maximum is over rows b' of B. Since 1l'y, is an integer
and wx.b is not an integer, there is a row

b, = (By(A)y oevy BL(V)) $ b of B such that
w)‘-bx - Bl(x) + (XW)-bx > wx'b = Byt (\w) b,
and hence

(4.1) al(x) >A(web — we bk)'

But w.b > w:b' for all rows b' ¢ b of B. Hence, since
B has finitely many rows, we have web- w -bx > 16 310
where & is independent of A. Thus from (4.1), al(x) > A8,
Since A 1s an arbitrary positive integer and B has finitely
many rows, this is absurd. Hence all essential rows of B
are (0,1)—vectors.

Suppose, conversely, that each essential row of B is
a (0,1)-vector. We shall describe an algorithm for obtaining
an integer solution to the linear program yA > w, y > O,
min 1.y, where w is a nonnegative integer vector." (Actually,
in the description, we suppose the initial w is positive.

As will be clear, this is merely a convenience.) We know

*See the proof of Theorem 5 of [1] for a special case
of this construction.
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that min l°y subject to these constraints is equal to
max bj-w, where bl, S B 13 b’ are the essential rows of B.
Let max bj-w = y, a positive integer. Suppose that
bj-w'lw for j =1, ..., k, bj.w <w for j = k+l, ..., r.

Then the linear system of equations and inequalities

(4.2) plex =1, §=1, ..., Kk,
(4.3) blex <1, 3 =ktl, ..., T,
(4.4) x>0,

has the solution w/w. It follows that there is an extreme
point a of @ = {xe:K:IBx < 1} that satisfies (4.2)-(4.4),

and hence either vector a is a row of A or is a projection

of some row of A, say either a = ai or a is a projection

of ai. Set the i-th component of y equal to 1 (temporarily),
reduce all components of w that correspond to positive entries
in ai by 1, and delete columns in A and B that correspond to
nonpositive components of the reduced weight vector, as well
as these components of the reduced weight vector, obtaining
matrices A', B', and an integer vector w' > 0. One can
verify (either directly or by using Theorem 3.2) that the
matrices A' and B' constitute an anti-blocking pair. Moreover,
since bj-ai =] for j =1, ..., k, and bj-ai = 0 or 1l for

j =k+1l, ..., m, it follows that max b':w', taken over all

rows b' of B', is equal to w-1. We can now repeat

B
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the argument, and in this way build up an integer solution
vector y to the program yA > w, y >0, min 1*'y. This
completes the proof of Theorem 4.1.

A key point in the proof (one that breaks down in
attempting an analogous argument for blocking pairs of
(0,1)—matrices) is that the matrices A' and B' again
constitute an anti-blocking pair. Geometrically, deleting
column i from A corresponds to projecting the polyhedron
B = {xeR_r'_‘IAx < 1} on the hyperplane g = 0, which is the
same as intersecting A with this hyperplane. The dual
operation for B is again to delete column i from B, i.e.,
to project the anti-blocking polyhedron # on the hyperplane
& = 0. (For blocking pairs of polyhedra, the dual of a
projection of one on the hyperplane gy = 0 is not a projection
of the other, but is instead an intersection of the latter
with this hyperplane. Projections and intersections are
distinct operations for blocking pairs. See [10], where
these dual operations are called deletions and contractions,
in analogy with operations in matroid theory.)

It follows from Theorem 2.1 and well-known linear
programming results [11l] that if A is a totally unimodular
(0,1)—matrix (all square submatrices of A have determinant
0, 1, or -1), then there is an anti-blocking matrix B for
A that is also a (0,1)-matrix. Hence the min-max equality
holds strongly for both A, B and B, A if one of the two is
totally unimodular. (It is far from true that total uni-

modularity for A implies total unimodularity for B.)
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There are significant classes of examples of blocking
pairs A, B of (0,1)-matrices where it is trivial to see
directly that the min-max equality holds strongly for B, A,
say, but where the strong min-max equality for A, B is a
substantial theorem.

For example, consider the Dilworth theorem [2] on minimal
chain decompositions of partially ordered sets. (This will
be discussed in more detail in the next section.) The
Dilworth theorem is surely a substantial theorem. The dual
theorem (in the anti-blocking sense) is just the statement
that a minimal decomposition of a partially ordered set
into anti—chains has cardinality equal to the length of a
longest chain. But this latter theorem is a triviality,
since a minimal decomposition into anti—chains can be
obtained by deleting all minimal elements in the partially
ordered set, then repeating the process in the reduced
partially ordered set, and so on. And yet, in view of
Theorem 4.1, these two dual theorems are in a certain

sense equivalent.




5. COMBINATORIAL EXAMPLES

In this concluding section we discuss some examples
of anti-blocking pairs of polyhedra that have combinatorial
interest. In each example we take A to be an m by n (0,1)—
matrix, so that A can be viewed as the incidence matrix of
a family of m subsets of an n-set, and describe an r by n
anti-blocking matrix B for A.

Example 1. (Permutations). Let A be the m = s! by

n = s2 (0,1)-matrix having a column for each cell ij of

an s by s array and having a row corresponding to each

s by s permutation matrix, viewed as a vector in R". It is
well known that the inequalities

(5.1) jz.l gij S 1, i= 1, eeey S,
(5.2) ' ; 1 1
g > & <1, R R
{m1 3=
(5.3) 85 20, alli,j,

have as extreme solutions x = (gij) precisely the rows of
A together with all projections of these rows. Hence
(5.1)—(5.3) define the anti-blocking polyhedron of

B = {xeR"|Ax < 1}. 1In other words, an anti-blocking
matrix of A is the r = 2s by n = s2 matrix B whose rows
are the incidence vectors of the rows and columns of an

s by s array. (See Fig. 4 below for an illustration for

s = 3,)
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It is well known that the min-max equality holds
strongly for both A, B and B, A. (This also follows from
Theorem 4.1 and the fact that B is totally unimodular.)
For w a (0,1)—vector, the strong min-max equality for B,

A is the classical Konig theorem on maximum matchings and
minimum covers in bipartite graphs, and the strong min-max
equality for A, B is the theorem, also due to Konig, that
the minimum number of colors required for an edge—coloring
in a bipartite graph is equal to the maximum valence in the
graph. Neither theorem is obvious.

Observe that the max-max inequality says here that
if ¢+ and w are nonnegative s by s matrices, that if ) is
the value of an optimum assignment for ¢ (i.e., A is the
largest sum obtainable from 4 by selecting just one entry
from each row and column), and if w is the largest row or
column sum of w, then \uw > £ .w.

Example 2. (Chains in a partially ordered set). Let

A be the incidence matrix of all chains in a partially
ordered set on n elements. Here one can deduce, either

from the Dilworth theorem [2] on chain decompositions of
partially ordered sets or from known results about network
flows [9], that an anti-blocking matrix B for A is the
matrix whose rows are the incidence vectors of all anti-
chains (a subset of elements, no two of which are comparable)
of the partially ordered set. (See Fig. 5 below for an

illustration, where we have listed only essential rows of A

(maximal chains) and of B (maximal anti-chains).)
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For w = 1, the strong min-max equality for A, B is
the Dilworth theorem; the exteonsion tv nonnegative integer
vectors w can be deduced from the Dilworth theorem by
replicating elements appropriately in the partial ordering.
The strong min-max equality for B, A is, on the other hand,
a triviality, since the following simple algorithm solves
the linear program yB > w, y > 0, min 1l*y., Select the anti-
chain of all minimal elements in the partially ordered set,
and set the corresponding component of y equal to n, where
n 18 the least of the weights (components of w) assigned
to members of this anti—chain. Reduce each of these weights
by n, delete any elements now having weight zero, and repeat
the procedure.

In general, neither the chain matrix A nor the anti-
chain matrix B is totally unimodular.

The max—max inequality asserts that if we are given
two weight vectors w and 2, then the product of the largest
chain—weight, computed using 4, and the largest anti-chain
welght, computed using w, is at least equal to 4-.w.

Example 3. (Cliques in graphs). Let A be the incidence

matrix of all cliques (a subset of vertices, every pair
joined by an edge) in a graph G on n vertices. In general,
no decent characterization of an anti-blocking matrix B is
known for this situation. But if G is either a rigid circuit
graph (every circuit of four or more edges has a chord), a

comparability graph (orientations can be assigned the edges
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of G so that the resulting directed graph represents a
partial order on the vertices of G, i.e., if a - b, b - ¢,
then a - c), or the complement of a rigid—circuit graph

or of a comparability graph, then an anti-blocking matrix

B has rows that are the incidence vectors of all independent
sets of vertices of G. (A set of vertices is independent

if no pair is joined by an edge.) (For illustrations see
Fig. 6 below, where we have listed maximal cliques and
maximal independent sets only, i.e., the essential rows

of A and B.)

Note that in complementing the graph G, we interchange
the roles of A and B. Hence it suffices to consider only ‘
the cases (a) G is a rigid—circuit graph, and (b) G is a
comparability graph. The second of these has been dealt

with above, since a clique in G is a chain in the resulting

e e et

partially ordered set, and an independent set is an anti-
chain., We shall dispose of (a) by sketching an algorithm
which can be used to prove that the min-max equality holds
for A, B in the strong form. (It is known [1] that if w

is a (0,1)—vector, the integer form of the min-max equality

holds, but it does not seem to follow directly from this

fact that it also holds for general w. The device of
replicating a vertex can destroy the rigid—circuit property.)
This algorithm for computing min l:y subject to yA > w,

y > 0, is based on the known fact [3] that a rigid—circuit

graph always contains a simplical vertex. Here a vertex
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is simplicial if it and all its neighbors form a clique in
G. The algorithm is the following. Select a simplicial
vertex in G, say v, and suppose v has w—weight §. Vertex

v is a member of just one maximal clique C in G; assign

C a y—component §, reduce all w—weights of vertices in C

by &, delete v and all other vertices in G having nonpositive
weights, and repeat the process with the new graph G' and
the new weights w'. (Note that G' is again a rigid—circuit
graph, since deleting vertices does not destroy this property.
To prove that the algorithm works, construct an independent
set in G by making a list of some of the selected simplicial
vertices as follows: when simplicial vertex v is selected,
add it to the list and delete from the list all vertices
that neighbor v in G.)

Rigid circuit graphs and comparability graphs are

examples of a class of graphs that are called perfect

graphs [1]. For a graph G, let y(G) denote the chromatic
number of G (the minimum number of independent sets that
cover G), let m(G) denote the partition number of G (the
minimum number of cliques that cover G), let A(G) denote

the clique number of G (the size of a largest clique in G),
and let w(G) denote the independence number of G (the size
of a largest independent set in G). A graph G is y—perfect
if y(H) = A (H) for every (vertex—generated) subgraph H of
G; G is n—perfect 1if n(H) = w(H) for every (vertex—generated)
subgraph H of G; G is perfect if it is both y-perfect and
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n—perfect. Thus a graph is y—perfect if and only if, for
all (0,1)-vectors w, we have (a) the linear program
yB >w, y > 0, min 1y, has an integer solution y, and

(b) min 1*y = max ai°w, where the clique matrix A has rows

1 m -diam
a, +vo, a . Similarly for m—perfection.

In addition to rigid—circuit graphs and comparability
graphs, 'unimodular' graphs are perfect; that is, if
the clique matrix A is totally unimodular, as it is for
bipartite graphs, it is known [1] (and follows from
Theorem 4.1) that the graph is perfect.

It has been conjectured by Berge that y—perfection
(or n—perfection) implies perfection for a graph. This
has been frequently called '"the perfect graph conjecture."
In this connection we note that the corresponding 'plu—

perfect graph conjecture'" is true. That is, if we define

v—-pluperfection to mean that the min-max equality holds

strongly for B, A, and pluperfection to mean that the

min-max equality holds strongly for both A, B and B, A,

then Theorem 4.1 shows that y—pluperfection implies plu-
perfectioh. Thus to prove the perfect graph conjecture,

it suffices to show that y—perfection implies y—plu—
perfection. For this, it suffices to show that if G is
y—perfect, and if we replace a vertex v in G by two vertices
v', v, where v' and v" are joined by an edge and each is
joined by an edge to every neighbor of v (i.e., duplicate

v and join v to its duplicate), the new graph G' is again

y—perfect.
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Example 4. (Independent sets in matroids). Let A

be the incidence matrix of the fam:1y of independent sets
in a matroid on n elements. (For example, A could be the
incidence matrix of the family of sub-trees of a graph on

n edges.) It has been shown by Edmonds [7] that the

inequalities

(5.4) > 8 < r(s), allsc {1, ..., n},
ieS

(5.5) £ 2 0, 1ie{1, ..., n},

have as extreme solutions precisely those vectors

X = (gl, s o gn) that are incidence vectors of independent
sets in the matroid. (In (5.4), r(S) denotes the matroid
rank of set S. The inequalities (5.4) are not all essential
in general. For instance, S can clearly be restricted to
spans (closed sets) in (5.4), but some of these may still
yield inessential inequalities.) Thus an anti-blocking
matrix for A is the matrix B having a row bg = bé/r(s),
where bé is the incidence vector of set S, corresponding

to each nonempty S < {1, ..., n}. (We are tacitly assuming
that no element has rank zero in the matroid, i.e., our
blanket assumption that A has no zero columns.) The min-
max equality for A, B does not hold in the strong form,

but very nearly so: Edmonds has shown [6] that the best
integer answer to the program yA >w, y > 0, min 1-y,

yields

e St IR, SO e .l e I et
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(5.6) min ley = (mgx w-bs) 3

where (a) is the least integer greater than or equal to a,
For an illustration, see Fig. 2. The matrix A' shown
there is the incidence matrix of all maximal independent
sets (bases) in the cotree matroid (the matroid dual to
the tree matroid) of the graph shown there.
Example 5. (Matchings in graphs). Let A be the

incidence matrix of the family of all matchings ir a graph
on n edges. (A matching is a subset of edges, no two on
the same veriex.) Here Edmonds has shown [4, 5] that
inequalities of two types characterize the convex hull of
the rows of A. Let gij be a variable assigned to the edge
1j having vertices 1 and j as ends in the graph G having

s vertices. The inequalities can then be written as

(507) > gijS]., i-l, se0y S,
jeNi
-1
(5.8) 5 <L1L_° ,alloc {1, ..., s
ic0,je0 11 = = ’
(5.9) gij > 0, all edges 1ij.

In (5.7), Ny denotes the set of vertices that neighbor i;
in (5.8) the subset of vertices O has odd cardinality |0],

and the sum is over all edges joining members of 0. Thus
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(5.7) and (5.8) determine an anti-blocking matrix B of A.
(For an illustration, see Fig. 7 below, where we have shown
essential rows only.)

Edmonds' proof that (5.7) and (5.8) have just the
matchings as extreme solutions is an algorithm for solving
the dual programs Bx < 1, x > 0, max w.X, and yB > w,

y > 0, min 1'y, thereby establishing the min-max equality
for B, A.

Note that the best integer answer in the program
yA >1, y >0, min 1'y, provides a coloring of the edges
of the graph with the least number of colors. Hence the
integer form of this problem is unsolved. But if we allow
"fractional colorings'", i.e., if we consider the linear
program yA > w, y > 0, min 1'y, over the reals or rationals,
then Edmonds' result and Theorem 3.1 show what the answer
is. For example, one can deduce the following: if G is
a tri—valent triply connected graph, then the edges of G
can be '"fractionally colored" with a 'coloring" of total
weight three, i.e., min 1*y = 3 subject to yA > 1, y > 0.
(For instance, there are six matchings in the Petersen
graph having the property that if each is assigned weight

one-half, all edges are covered.)
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