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DETERMINATION OF THE SPIN OF THE PROJECTILE

Abstract

The motion of the projectile during the first pericd of the yaw is
studied, to determine a criterion for the spin required for a real rate

of precession. M. d'Adhémar first derives the general criterion®:
|

S8 + 4 BE(8" +0) + 4 ABQM = O, (30)

He refers to M. de Sperre's critaris, derived in different ways for tho
case of "perfectly regular departure!, viz,.:

( 42)2 > 4 B(Rk L), | (31)

-

(49)2 > $8%ri 1), (32)
The departure ie defined &s Uperfectly regulart if
6°=\p°=p°=q°=r020.

Normally, the yaw is slightly different from zero and ite initisl
derivative &!1s slightly different from the regular value |t LI-
The departure is then defined as ¥almost perfecth if

8o = 8°

¥, =0, - c2

Po = 8% + 07, )
L+ ]

de = ¥, sin &, (63)

¥ See the List of Sywbols below,
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Oy e =y, cos &, : - (e4)
: Po = 0 + rg. : (65)

In this caee, the criterion (30) takes the form:

s> U4 Ba(Rel),, (80)

in which s may bs greater than 1/3, which is M. de Sparre's value for the
case of "perfectly regular! departure, as indicated by equation (32).
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LIST OF SYMBOLS

a - caliber, or diameter of the projectile.

a .trace of GA on the plane OHN.

b drag'coefficient.

c . French ballistic coefficient

_.(American C ® ,00114/c).

fy " @Ps.

fe wh§,

g gravitational acceleration.

3 slope of the rifling.

k coefficient of obliguity: Y/S5.

L distance from G to C.

m mass of projectile.

n numerical coefficient.

P component of angular velocity of GUVz or Gxyz
on Gx.

q component of angular velocity of GUVz or Gxyz
on Gy. _

r component of angular velocity of Gxyz on Gz.

s M. de Sparret's coefficient.

t time,

u component of v on OX.

v velocity of G.

Ay f./w {if constant).

Az fz2/0 (if constant).

A(t) p+ A, cos wt + [ sin ot.

B(t) q+ A, sin wt - K, cos wt.

C center of pressure of projectile.
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F, f,/0 = P&,

Fe fa/w = AS.

F(v) French resistance law.

G center of gravity of projectile.

GA axis of projectile, directed towards the point.

GT tangent of the true trajectory, directed in the
direction of motion of G.

GAT plane of yaw; plane of resistance.

GU axis L GT, related to the projectile.

GV axis 1 GTU, related to the projectile.

GUVz "related trihedron”.

GY intersection of GAT and GxX,¥;-.

Gx, horizontal axis, directed to the left of GT.

Gy, axis ih vertical plané containing GT, directed
downwards.

Gz, axls on GT, in opposite direction.

GX3¥12, trihedron with orlgin at G.

- Gx axis 1 GAT.
Gy axis 1 GA in GAT.
Gz axis on GA, directed towards the base.
Gxyz nfree trihedront®,
H, Fl' (if constant).
Hg Fg! (if constant).
K radius of gyration of projectile about GA.
L Bot/Boe '
M w36 tw,.
N @ - m46.
0 point on GT: distance GO = 1,
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OH
ON

OHNT

horizontal axis, directed to the right of GT.

axis in vertical plane contalning GT, directed
upwards.

trihedron with origin at point 0, and axes |
to those of Gx,y.:z, but oppositely directed.

orligin of trajectory.

horizontal axis in plane of fire, directed towards
the target.

vertical axis, directed upwards.

horizontal axis 1 OXY, directed to the right.
absolute trihedron.
Rki/4Q = KX/AQG.

stabillity function: P/|t!'}.

resistance; alr pressure.

(49,)% - 4 B Rkl
wt.

A, cos ot.

A, sin wt.

initial velocity of G.

minimum velocity of G.

Ao cos wt + g, sin wt.

Ao 8in ot - p, cos wt.

zone of trajectory from t = 0 to t = 2x/w.
exial moment of inertia of projectile.
transverse moment of inertia of projectile.
moment of external forces about Gxj; -Rk! §.
moment of external forces about Gy.

moment of external forces about Gz.
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instantaneous center of precession.

retardation: R/m.

angle of projection: 7T, = 0,.

angle between the directlion of resistance and Gz.
yaw3lz,Gzy tan & = Oa.

component of & on OH; - & sin V..

component of & on ON; & cos y.-

[sVA

dxt

angle of inclination of the tangent of the true
trajectory, GT.

drift angle; tann = -

p cos wt + q sin ot.
P sin ot - g cos wt.
component of angular velocity of GUVz on Gz.

engle of inclination of the tangent of the plane

day
trajectory; tan T = x°

ratio: |n%]/197].
7 LxGU.
orientation of plane of yaw; precessilon;
C(NOa = {x,GxX. '
ARQ/B,.
component of 9! and n' on Gx,.
component of Gt and n' on Gy;.
component of 6' and nt on Gz,.
component of w, and wp on GY.
component of w; and w, on Gx.
component of © and w, on Gy.

4

component of Wq and m4 on Gz.
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6" cosy + n" cos O siny .

Hy/aQb,

é" cosy + nY" cos 6 gin Yy - nte' sin @ sin v.
Spin of projectile, 1impressed by the rifling;

Pop initial angular velocity of projectile
about GA. .



THE GYROSCOPIC MOTION 6F STABLE PROJECTILES
. (THIRD REPORT)#
DETERMINATION OF THE SPIN OF THE PROJECTILE
by
R. d'Adhémar,
Engineer of Arts and Manufactures, Doctor of Scilences.
(Mémorial de ltartillerie frangaise, Vol. 12, 1933, p. 249).
1. INTRODUCTION. Let & be the spin proper, impressed
by the rifling; we have: '
R = 2iv,/8;
Vo, 1s the initial velocity on the trajectory,
a 1s the diametef of the projectile,

} 1s the tangent of the angle of inclination of the
grooves.

For example, if a = J = 1/10, then Q= 2V,.

If the number Q 1s not very large, the pendular or
gyroscopic phenomenon does not exist; then, the drifts are
not regular. However, 1f the number  1s too large, there
is an inconvenience*#*: for, on the descending branch of the
trijectory, the stability function Q§ may dssume too small
values.

I shall not study this guestion in all 1ts ampli-
tude, and I shall only seek a lower limit of Q.

M. de Sparre obtalned a lower limit, in hls Report #x
of 1904, by using his formulas, which represent, approximately,
the gyroscopic motion.

@ See: Flrst report, Vém, de 1l'art. fr., Vol, VIII, Ho. 3, 1929
(Trans.: Report No.72, Ballistic Lab.). Second report, Mém. de 1'art, fr,
Vol. XI, ¥o.3, 1932 (Trans.: A-IV-U2, kallistic Sec. file).

** P, Charbonnier. The gyroscopic motion of the projectile, Mom,
de 1'art. fr., Vol.VI No.3.1927.

“#% M, de Sparre. The motion of oblong projectliles sbout thelr cen-

ters of gravity , Arkiv for ¥otematik. Astropomi ach Fysik, Stockholm, 190U,
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M. Esclangon found the true basis of this discussion*,
by starting from the fundamental equations of gyroscopic motion.

This method offers perfect safety. On the contrary,
there exlsts some uncertainty 1in the use of an approximate
solution, which carries all the welght of an accumulation of
simplifications; the simplifications may engender deformations.
However, M. FEsclangon's remarkable analysls must be completed,
because he adopted the ballisticiens' first method of epproxi-
mations, as M. de Sparre did otherwlise in his classic report of
1604. This first approximation, which 1s always useful 1f one
does not ask himself what 1t gives, consists in the substitution
of the conventional yaw for the true yaw. Roughly, it neglects
the curvature of the horizontal proj]ectlion of the trajectory,

I must gilve a precise indication on this subject.

2., THE ROLE OF THE CURVATURE OF THE HORIZONTAL PROJECTION
OF THE TRAJECTORY. I keep the notatlions of my former reports*¥:

- GT 1s the tangent of the true trajectory, GA is the axis of the

projectile. The plane OHLN 1s perpendicular to the tangent. The
axis OH is horizontal and directed towards the rear of the plane
of the flgure; the axls ON 1s 1n the vertical plane containing
the tangent and dlrected upwards. Leta be the trace of GA on
this plane of reference, so that:

Qa = tan & * &, GO = 1.

The coordinates of 2 are &, on OH and &z on ON, I
deslgnate by ¢ the angle NOs , this angle being counted counter-
clockwise, so that OH 1s brought to ON by a rotation of 90°,
Then: . .

I assume that the rifling 1s left handed: for a well-
designed projectile, the drift will be to the left, 1.e., in
front of the plane of the figure. This 1s the plane containing
the plane trajectory, which we know how to calculate.

The drift angle is n (Fig. 2). Let n' be the deriva-
tive of N with respect to time, t. The sign of N and that of n'
depend on the sense of orientation that is chosen; but we have,
as the absolute value:

un'l =& (k-1) | 8,1 . (1)

* E. 'Esclangon., Motion of projectiles about their center of gravity,
Méd. de ltart. fr., Vol. VI, 1927, No. 3.

e R d'Adhémar. On the gyroscopic motion of stable projectiles,
Wém, do ltari, fr. , 1929 and 1932,
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The resistance 1s designated by R and the retardation by
R, so that:

R = mk.

Replacing &, its mean value A,, or else by 1/¢ (see
my previous reportsy we have'

vPin|=g 49k - 1. ' (2)
. ' T m ki '

It is evident that formulas (1) and (2) are not iden-
tical. For example, according to (2), "' could not vanish,
while, according to (1), "' vanishes at the origin if &,
does., This shows the deformation which an element may under-
go as the result of taking an average.

In certain cases, 1t 1s necessary co make & dlstinction
between an exact element x, and the same element smoothed
by averaging. The notatlons x and x might then be used. We
shall write, then:

vi n'] =g49 k-1. (3)

In every question that demands great precision, it is
the element x which must be studied, and not X. Here, for-
mula (3) will be sufficient.

Let us conslder now the angle of Inclination of the tan-
gent to the tra)ectory. F¥For the true trajectory, this angle
1s 8. YFor the plane trajectory, this engle, at the same 1in-
stant t, 1s T . If the yaw & 1s quite small,

exrT, - g &~ 1!,

»

I do not actually inslst on the degree of approximation of
these formulas, end I recsll that :

g...? = =.._ g cost, (4)
dt v

so that we can write:
g1 = - BLos T, (5)



PO

{;,
r.
|

b

v/

———— i+ —



Let us form the ratio:

—
p=l01l = 4 1 2] k -1V, ..
' 'I m cos‘? a v

©j

The ratio 4 /m is very small,

The parameter k is poorly knowni but we may assume that 1ts
value remains near 1 or 2 for very small yaws. This value could
be 3, 4, 5, +.. for large yaws, in the dangerous zone.

The parameter ! 1s the distance from the center of gravity
to the center of pressure C. If this point C is at the height of
the middle of the ogive, then, in the formula ! = na, n can
assume the values 2, 3, ...

Altho the ratio 4 /m is very small, if cosT 1is very small,

"snd if the ratic V,/v becomes quite large, 1t is quite possible

that v 1s not negligible; the derivatives Nt and B6' may have
the same order of magniltude.

In his classic report of 1904 (p. 287), M. Sparre assumed
intultively that the ratio v 1s always negligible. However,

that 1s not exsct for an almost horizontal trajectory with a
very high veloclty. What ballisticiasns call the "Garnler ef-
fect" 1s, we might say, the fact that the ratio v 1s not negli-~
glble, in general. This remark has been made previously by
Englneer General Maurice Garnier.

In the recent works of M. de Sparre and Engineer General
Charbonnier, this ratio was no longer taken as negligible a priori.

Prudence demands that we take account of the curvature of
the horizontal projection of the trajectory, altho 1ts effect
may be, in certain clrcumstances, very small.

3. FIVE INSTANTANEOUS ROTATIONS. I take, as the sense of
orientation of trihedrons, the dlrect sense of trigonometry,
which 1s counterclockwise. Gz, 1s the tangent, in the direction
opposlte to that of the motion of G. Gx, or GH, 1s parallel to
the axis OH, which has been defined. Gz 1s the axis of the pro-
Jectile, towards the basej; the polnt would be on the prolongation
of Gz (Fig. 4).

The moment ¥ _ of the resistance defines the axis Gx (see
my previous reportﬁ). The axis Gy carries the second moment ¥
of the forces of resistance. If 1t 1s the Magnus effect which
1s considered, #y < 0. If it 1s the Esclangon effect, ¥y > O.
According to M. Esclangon, this couple AHy is caused by lateral
frictions and 1ts existence appears certain for a2 well designed

projectlile. We have:
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Hi = Rk &.
We may write:
Hi = APS.

- {
The symbol P represents a known element. To avold all
discussion on the phvsical definition of Hy, I shall write:

yy = AQAS,
and I shall make the apparently natural suppositions:

1 A/P is constant and very small if & 1s very small;
for exsmple, this ratio is equal to 24 or 3% ....

2° A/P may assume a more appreclable value if & be-
comes relatively quite large; for example, for yaws of about
129 or 15°,

So, at the origin, we suppose A/P constant and very
small.,

We have thus defined two trihedrons, Gxi¥,%z, and Gxyz.
Let GU and GV be two axes in the plane Gxy; related to the
projectile., We have a third trihedron GUVz, related to the
projectile. I call it the ''relsted trlihedron", and the tri-
hedron Gxyz shall be the "free trihedron" (Fig. 4).

If Gx,¥,2; were flxed, we would simply have to consider
the three Eulerian angles ¢, v , & (I must substitute & for the
classic notation 8, since I have already used the symbol 9).
Furthermore, we would have only the three lnstantaneous rota-
tions:

or W', a8 or &1,

Qlﬂa
cHi-&

%% or ¢!,

ct

We have, besldes, two instantaneous rotations:
1 The rate of depression of the tangent, @t,

20 The angular velocity of drift, nt (Figs. 2
and 3).

I suppose essentlially that the true trajectory and the
plane trajectory are very close, in size and form, so that, at
each 1nstant t:

e=1t, Q' 1t, QW = 1,

I do not actually discuss this approximation, which 1s

-15=



based on physical intuition of the phenomenon. I shall always
designate the initial velocity, on the trajectory, by vo, and
the minimum veloclty by V .

It must be remarked that:

cosT
[T'= g = ’

and . _
Vg sin ) . (6)

- 1 |
™ = I-rfl (V

In the dangerous zone of the trajectory, i.e., in the
nelighborhood of the point where Q 1s a minimum and in the
neighborhood of the polnt where v 1s a minimum, the ratio

|T"|/|7']. will be extremely small, On the other hznd, at
the origin, this ratio is not very small. In fact, the ratio

[vt| /v can take, at the origin, valv2s such as 1/10 or 2/10 ...
S0, at the origin, the ratio |[™ | / {7t |may be about 1/10 or
2/10 +..., 1t may not be negligible.

The sense of orientation is counterclockwise (Fig. 2)3
so, the axls 0Z 1s directed towards the rear of the plane of
the figure, the plane 0XY. For an observer placed on 0Z,
the angle T 1s positive on the ascending brdnch, and negative -
on the descending branch.

An observer placed on OZ sees the tangent turn in a clock-
wlse direction., 8o, this rotation is represented by a vector
| 6" | , directed forwards. Consequently, the component on the
axls le is negative; it 1s 6t', or spproximately Tt.

When'I supvosed that the true trajectory is very neer the
plane trajectory, I 1mplicitly assumed that the projectile is
stable, that & remains small. Consequently, the drift will be
normal; n and n' will be positive (Figs. 2 and 3).

Moreover, the passage from (2) to (3) would also imply
that the projectile is stable. If V, 1s large and 1f V_, the
minimum of v, 18 not small, the drift will remailn feebl%

(k - 1) will not become large, and n' will remain small lilke 7T°',

I shall not actually discuss the second derivative,
d® =
gz

If the departure of the projectile 1s quite regulasr, NY = 0.

I deslgnate an initial value by x, or x°.

-16-



be SOME INDICATIONS ON THE NUMERICAL DATA. Before golng
farther, I shall give some indicatlons, some flgures, whose
knowledge 1s 1lndispensable, if we wish to avold vague discussions.
We designate by 4 the axial moment of inertiaj; in the formula
A= nas s N may vary, e.g., between 200 and 300%*, We designate
by 8 the transverse moment of inertia; in the formula s=ng4 ,
n may vary from 4 to 8, approximately.

In the formula 4 = mKE; we see Intuitlvely that X must
remain between a/2 and a/3, nearly.

If we take J = 1/10, that corresponds to an angle of
inclination of the rifling of 5°43'; this 1s a probable datum.

For an angle of 7°, J = 0.123. For an angle of 10°,
J = 0.176.

The symbol P, which plays an interesting role, represents
an approximate mean value of the angular veloclty of the point
g zbout the instantaneous center of precession p (see my pre-
vious reports). We have:

L
A8

Let us seek an indication of the numerical values of P,
at the origin, supposing a = 1/10 (100 mm caliber).

P = Rzt , and £ = cF(v).

Let us take the resistance law in the form bvZ.

If the velocity v varles from 400 m/s to 1500 m/s, we can
set b = 1/3%%, This 1s a rough mean, but it is sufficient for
us. Let us take ¢ = 1/2000%*%*; we are at the origin, so we do
not have to consider the varlations of altitude. We may suppose,
at the origin, that k is about 1 or 2. Also, we can take | = 2a
or 3a.

So, 1f we set
kit = 4/10, K® = a®/5;

*Here m 18 the caliber in meters, and 4 is the axial moment of inertia in
kg.m. divided by the gravitational acceleration in mfsec® w=- H.P.H.

“#Hence, bv? 1s the_drag, in kg.m/sec.” of a 1 m. projectile, in air with a
density of % kg/m3. This value of b corresponds to a resistance coefficient
CR = 12310-. . -""H.PtHe

*seThig value of the Franch ballistic coofficlent ¢ corresponds approximately
t0 an American ballistic coefficient C = 2,328, === H.P.H,

~17=



we will have
P, = Vo/60.
For Vv, = 600, P, = 10.
If we take ¢ = 1/4000, keeping the values of all the other

parameters, we will have P, = V,/120. For V, = 1000, P, =8,

Let us also seek an indication of the numerical values of
Pt/P at the origin.

We suppose V, > 400 m/s. We can neglect the variations of
b, k,! and take b = 1/3, since we are not seeking any great
precision here,

I recall the general formula:

%% = v' = ~g(sin 1 +k /2).

When V, is a large number, the ratio R/g can assume values
such as 40 or 50, e.g., or even 60; then

av w
at r-

Then, we can write:
(P1/P)o = 2(¥v'/V), = ~2bcV,,

and the approximation 1s good if V, 1s large.

For ¢ = 1/2000 and V, = 500, (P'/P), = 1/6.

For ¢ = 1/4000 and V, = 800, (P'/P), = 8/60.
For ¢ = 1/10,000 and V, = 1500, (P'/P); = 1/10.
So:

(P*/P), = n/10,
wlith a coefficient n about unity.

Let us return to the formula for Q. For the usual artil-
lery calibers, 1f @ = nV,, the coefficient n is:-between 1 and 4.

-] 8~
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It is often said that € is a large number. To be precise:
2 1s large with respect to unity, with respect to P, and also

with respect to |t/[, 1f the minimum velocity V_, on the trajectory,

is not very small; this exceptional case is extluded.

In the theory which is going to be developed, the approxi-
mation is very good if the number

w = AR/B ,
which is between 1/6 and 1/8 of  , is still quite large with

‘respect to P,.

5. THE INSTANTANEOUS ROTATION OF THE RELATED TRIHEDRON
AND THE INSTANTANEOUS ROTATION OF THE FREE TRIHEDRON. Let us
consider the instantaneous rotations of the two trihedrons which
have been defined, and let us seek thelr components on the axes
of the free trihedron Gxyz. Let us first take the related tri-
hedron. The components of the rotational velocities &', y', and
@! are:

5t, on Gx; w ' sin &, on Gy; ¥' cos & + ¢', on Gz.
The componcnts of the rotational velocities 8% and n' are:

Ot< 0, on Gx,3

=
i

wz = n' cos O, on Gy;;
Wy = - 7' sin 6, on Gz,.

Let us consider the trace GY of the plane of resistance on
the plane Gx,¥,. The axes Gx and GY are orthogonal, as are Gx,
and Gy, (Fig. 5). Let us take the components of w, and wz on
these new axes Gx and GY. They are:

W ®w, cosY¥Y + wz sin¥y, on Gx;

it}

- ®; 8in y + w2 cos y , on GY.

“4

Now, we must take the components of @y and w, on the axes
Gz and Gy; this gives:

0y = g sin & + m4 cos &, on Gy;

1]

Wy = Wy COS & - w, sin &, on Gz.

~19~



So, the components of the instantaneous rotation of the
related trihedron are:

' + o

on Gx: P 5

or p=238! + 08t cosy + 7 cos 6 sin ¥;
on Gy: qg~= ¢! sin & + mg,
or Q= y' sind - 1 sin o6 sin &

+ cos & (-6' sin y+ 7 cos O cos V¥)3
on Gz: p = @ + y' cos b + Dryy

or p

¢! + y' cos & - n' sin 6 cos &

- sin & (-0% sin y+ 7' cos G cos ¥ ).

If the yaw is quite small, we can substitute & for sin &
and 1 for cos 8. Then, let

M = @b+ @, (7)
= - n' & sin0 + (-6t siny + 7n' cos B cosy ),
N = wgy - m46 A (8)

= - % gin6 -5 (-0 sitny + 7' cos 8 cos y ).

We wlll have the following expressions:

p=294'+ 08" cosy + %t cos 8 sin V¥, (9)
g syt S+ M, : (20)
p™ gt + y' + N, (11)

To pass from the related trihedron to the free trihedron,
it 1s sufficient to set

¢ =0, ¢ = 03

whence
r® y' + N, (12)
The components of the instantaneous rotation of the free

trihedron ;1qp, g, r.

-20~



(3

I substitute M for g and N for ®ns to simplify the ex-

planztion; but these approximations are not indispensable.
Notice that:

dM do
M* o, and =5 « 6 3
6' 'dt dt ¥
S B and %% » do,
- ' - dt
In fact,

d ‘sin 8 = cos & d8 ~ d&

-at t dt,
- d_eds § = -~ ain & 48
o ac”™ O

ginﬂg 5‘remﬁi95'quita small, and the smaller & 1s;, the more sat-
1sfactory the approximation is. As fgr as p 1s concerned; equa--

14\ 5(9) is eﬁact, g0 that we obtain immediately by differcn-
ti&ﬁiaﬁ.

Now, I am going to define "perfectly regular departureﬁ.
I ah=1]l sey that the departure is perfectly regular if

'6°= Vo ® Dg = Qo = T = 0.
I exciude the case of vertleal fire: a = 90°,
Consequently: 5: = 0,

Since the initiel yaw vanishes, the gyroscooplc motion con-
gists of oscillintions from the origin to the summlt, and even
beyord that (ase my previous reports). So wve certainly have,
at thke origin, 8; < 0, and since the sense of orientation 1is
couniterclockwida, we must write:

-u W= R(k-1)5,. (13)

on the other hand, we would have to take the + sign
if tke sense of orlentation were clockwise, 1.e., 1f GZ were
directed forward (Fig. 2).
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Since v, >0 and 8° = 0, whatever the value of k may be,
at the origin, 1

Yo =0,
On the other hand, with 6 and T as defined,
vo! = - g cos 8 +R (k-1)bz, (14)
with | |
v T = . pgcosTt ,
and, if the departure 1s perfectly regular, 58 = 0.
So, at the origin:

'while, in general,

R end @' =~ gt
Since
Po = ¥o = Ny =0,

therefore

| 3! + 1Ty =0,

The term 7' cos 6 sin ¥ 1s extremely small at the ori-
gin, for it contains two factors which vanish, It might be
said that this term 1s of the "second order®"; but it is some-

tlmes dangerous to extend to the "very small®, notions which
are clear only for the "infinitesimal®,

Let us retain the formula:
‘Bl .+ T4 =0, or &} = |FL,]| (15)

relative to the case of perfectly regular departure. Notice,
besldes, that, in this case:

Q@ = o = Qo = Qo = 0o = 0o =
@3 m4 g = of M N 0,
and consequently, q, = 0.

In order to have r, = 0, we must set gy} = 0,

Then, for a perfectiy regular departure:

-20m-



8o = ¥o = ¥ = Py 2 Q, =T, =0,
Now, let us find out whether M/5 and mé/a have limits for
t = 0.

If M/8 has a limit, o,/ will have a limit, and it will
be the same limit. The exﬁression for M/8 is:

%’= - of §%QJL +'§% cos @ cos y - 7f sin @,

The last term vanishes at the origin, ss 7 does.
The first term vanishes at the origin, as y! does. To see
this, it is sufficient to apply L'Hospital's rule to the ratio

éi%iﬁ and utilize formula (15).

Now, let us study the second term. By (13),
3\ = R(k-1) 2,
while
5 = -~ &6 sin vy .
As sin y vanishes at the origin, so does the second term.

So, In the case of perfectly regular departure,

lim M = 1lim o, 0. (16)
t=0 8§ t=0 B
Now, we must calculate the derivative %% =z p'.

Equation (9) gives:

p' = 8" + 0" cosy + qM" cos O siny - 7' ©' sin O sin y+ @,y

Let:
$ = g% cos y+ n'" cos O sin v - 'Ot sin 6 sin y , (x7)
8 = 0" cos y+ A" cos O sin y ; (18)
o The derivative of p will then have the form:
Pt = 8" + & + @, W . | (19)

4
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At the origin:

1im §4 = Iim y! =lim‘g_'_ = 1im sin y = O.
Agh L) t=o0 t=0 t=o0

So, the terms P4 ¥' and 1' @' sin O sin ¥ each contain two
A b
factors which vanish at the origin., Therefore, if t is extreme-

ly small,

Poe 218 mitht® o, (20)

and the closer t is to zero, the more satisfactory the approxi-
mation will be.

6. USE OF THE MOMENT OF MOMENTUM THEOREM. Let 0X, 0Y,
0Z be sbsolute axes, and GX', GY', GZ' be axes respectively
parallel to the former. Here, the sbsoclute axes are related
to Earth; thils 1s a sufficient approximation. The motion with
respect to the trihedron of refercence GX'Y'Z' is, by definition,
the "motion with respect to the center of gravity". With this
new trihedron of reference, we can use the fundamental moment
of momentum theorem, without modifying the external forces: The
derivative of the vectorial moment of momentum (with respect to
t) is equipollent to the vectorial sum of the moments (with
respect to G) of the external forces#.

We do not have to bother ourselves with fixing the sbsolute
trihedron 0XYZ; we are goling to take the projections on the axes
of the_free trihedron, which has been defined,

The components of the moment of momentum on Gx, Gy, Gz
are:

BD» BQ, AP

The components of the relative rate of change (with respect
to Gxyz) sare:

‘Bp', Bq', Ap'.

o S%e 6.£., Appellt's Trgit; gg_yéganigue. or alse Painlev;'s Cours de
Mecanique, Gauthler~Villars, 1930.
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The components of the translational rate of change are the
minors of the matrix:

P q r
Isp Bq apl®

l.e.,
4qp - Bar, -(4pp - Bpr), Bpq - Bpq.
We have, then, the three equations! -

dp .

Bt 't Adp - Bar = K, .

d .

BE%-App +Bpr = AS', ' (21)
j do _
4;‘-dt z?

M. Esclangon, who utilized the moment of momentum- theorem
in another form, fortunately discovered that an algebrelc equa-
tion of the second degree 1n ! can be rigorously deduced from
these equations. The condition of reality will give a lower
limit of Q . - , I '

Before seeking this equation of the second degree, I shsall
make & remark. The spin of the projectile has a negligible varia-
tion along the trajectory. So, the role of ¥ 1is almost negli-
gible. To simplify the explanation, I assumd that

-

”z = 0, whence p = const.

'In the case of perfectly regular departure,
Po = 94 =Q. S . (22)
In the contrary case, | '

Po = R,%R. _ . (23)

'in fact, the initial values &,, ¥§, n! are extremely small
if the projectile is well designed and if the tube is not
eroded.,

~2h=
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Note that, if Ny i1s not completely negligible, 1t is suffi-

clent to add to the expression for p a function D(t), which
vanishes at the origin, decreases, end 1s extremely small if
the projlectile 1is normal.

The first of equations (21):

Bpt +4qp - Bgqr = ¥ (24)

x*

would be an absolutely rigorous equation if the parameters k
and !, which figure in %ﬁ’ were known. These parameters

certainly vary along the trajectorys; but they vary little if
the stability 1s sultable, so that the drift 1s regular and
feeble. If we assume that Xk Increases between the origin and
the dangerous zone, and that 1t can take values between 1 and
3 or 4, approximately, this 1s an hypothesis which appears ac-
ceptable, Furthermore, it 1is possible that the variations of
{ are 1n the sense opposite to those of k.

In the case of flat fire, 1t is extremely probable that
the variations of kI are quite small. Tt is difficult to
glve general indications from this point of view in the case
of very high angle fire.

We could study equation (24) with great precision by keep-
ing sin & and cos &, by not assuming any approximation. How-
ever, that would be difficult. So, I shall make certain approx-
imations which will not alter the character of the equation at

. all.

Let us consider, e.g., the derivatives 9! and T,

At the origin, 6%or 1% will be very small if V, is very
large.

Later, 6' or T' will remain very small if V_ remains
quite large. I shall always suppose that V remalns quite
large, so I exclude not only the case: = Yoo °, but also
the case: a ®30°. I do not study almost vertical fire because,
near the summit, the minimum velocity would be quite close to
zero. The phenomena then become entirely different from those
which we are examining.

Now, let us consider the derivative n'.
If 6° = 0, or &° = 0, we shall have: n} = O.
1 .
In the case of perfectly regular departure, n! = 0.

In the contrary case, n' will be very small at the origin,
as &, is. Later, "' will remain small if vV, remains quite large.
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The variations of k and ! plny a role here. Let us repeat
that thls role 1s a minimum in the case of flat fire 1f the
angle of projection is large.

As long as Vm remains large, our ignorance on the sub-
Jeet of kX and I 7 probably gives us no great embarassment.

When I say that the minimum of V_ must be qulte large,
this statement 1s not precise enough.™ Suppose V, very large
and « qulte near 90°., The summit S will have a high alti-
tude and, consequently, at the point of minimum velocity,
the ballistic coefficient ¢ will be very much diminished with
raspect to its initial value c¢,. There results a great dimi-
nution iIn the value of the stabllity function Q. So, the nu-
merical value of the mean yaw might become too large, with regard
to the general conditions of stability. I shall say, then:
V_must always remaln gquite large, and all the larger, the
thher the corresponding point of the trajectory 1s.

So, I always suppose that the initilal velocity V, 1s very
large, that the minimum velocity is not small, and that the
angle of projJection a 1s different from 90°. OQtherwlse, the
stability 1s doubtful & priori; absolutely nothing would be
known about the parameters k andr;, certain hypotheses such as:

(o] g‘r,gtas Tf’gﬂﬁs Tn,

might have no fonndation. Besldes, there would be no‘sense
in writing: '

sin & 5, and cos & =1,

wWithout actually insisting on these questions of approxi-
mation, I must underline their importance.

Let us analyze zll the terms of egquation (24).
Neglecting the product ﬁ'@', we have;

p'= on + 8 + @, y'.

Neglecting products such as: ©'6%, 782, or2s, 125,
n'6'd, etc., we have: : ,

2
qr ¥ § yt? + y (2m36 + m4).

Therefore,

P! - qr ¥ 8" + 6 - & y'2 - 2036y . (25)
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( On the other hand, 1f we suppose IHZ = 0,

P = po = R3. ’
The very approximate expression for q 1s:

.aQ F 8 tﬁl + M.
 So: o
0 % 86 W o+ 0. e
The first member of equation (24) will be, with a good

approximation if we remein within the limits previously in-
dicated: :

A9, (5 v + 058 + @) 4B (BN 40 ~ & W - 2058 1),

However, we know, 8 priori, thatQ, must be 2 large num-'
- ber and, on the other hand, 3/4 1s certainly less than 8 or
£ 10, for example.

Besides, |m3l remains very small,

S0, we can certainly neglect the last term, for 1t is
always extremely small with respect to the first. So, for
the primitive equation (24), we can substitute the following
spproximate equation:

.

= BIE ¢ AQS Y1 + B(6M +0) + AN - KIS = O, (27)

Roughly, the approximation 1s good if b remains small,
and the better, the closer 6 1s to zero.

The condition of reality of y' will be:

v

(AQ,8)% + 4B & [B (8" +8) +42 ;M - Rk ! §) 0. - (28)
I recall that:

-, R = nﬂ}‘ = meF(v),



o

6=0" cosy + n" cos 8 siny ,
RS
M’“mé 0)4,
and
cu4 = - @' siny + &' cos B cos Yy .,
This is M. Esclangon's criterion, mutatils mutandis (loc.
cit., p. 780).

I shall put it in the following form:

S6% + 4 B2 8 (8" + @) + LABQSM = 0, L (29)

setting _
S= (@R ;)% - 48 Rkl .-

Since the yaw 8 1s positive, the criterion (29) can be
put 1n the form:

6 + 4 8%(8" +8) + 4ARM=O0. . o (30)

M. de Sparre, in his aforementioned Report of 1904 (pp. 293

- and 295), gave two successive criteria:

(49 )*> 4 B(Rk ! Yor y - (31)
or ' . L
S,> 0, with £ =@,
and _
(42)% > %—é B (Rx 1 );,’_. S - e (32)

The first criterion is deduced from the equations of
gyroscoplc motion, derived in the Report of 1904, and the
second criterion is deduced from very ingenious considerations
of the physical character of the alr resistance.

I shall study criterion (30) at the origin, i.e., for

t 2 0, As a result of this, if the departure is perfectly
regular, the second criterion 1is applicable again, for t ® O.
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As a result of this, if the departure is perfectly regular, the
second criterion is applicable again, for t ¥ Q, However, if the
departure has the least irregularity, it must be foreseen that

the second eriterion will be insufficient for t ® 0. M. de Sparre
always implicltly supposed that the departure was perfectly regular,

After the criterion has been studied at the origin, 1t must be
studied for any values of t whatever; but actually, I put this guas-
tion aside.

M. Esclangon made a penetrating study of this question by dis-
tinguishing zones of stabllity and zones of instablility on a tra-
Jectory. }

Te INTEGRATION OF A DIFFERENTIAL SYSTEM. I suppose that
the departure is perfectly regular and that ¥_ = 0. Under these
conditions, equations (21) become: z

Bp' + ¢ 49 -BT1) = K, (33)
B5q' - p 4Q -8r) = Hys
with
P = Po =Q
Besides, '
ro = 0.

S0, the termB r is negligible with respect to 48 at the origin,
i.2., when t ® 0, and the above equations can be replaced by the
following with an excellent approximation:

Bpt + g4 Q =Hx;,

BQ' = PA = H . - - | (34)

These are the differential equations which M. Sugot very
fortunately used to derive the approximate equations of gyroscopic

‘motion. His equations are similar to those of M, Esclangon and

the approximations are the same. I am golng to study equations
(34), so as to be able to discuss criterion (30).

Let w = 4Q/8 3 o will be a large number, liké Q . I suppose,
in fact, that the ratio 8/4 1s less than 7 or &, for example.

We shall write:

~30=
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wPd = £y, ' .
- ’ (35)
wA §

3tz

b
g
I

Although it appears a bit paradoxical at first glance, I
am going to integrate equations (35) as if f, and f» were known
functions of t. These functions are continuous and differentiable,
since we suppose essentielly that the derivatives &' and d" exist,
in all that precedes.

“Note that the ratio fa/f1 -A,/P is supposed constant and
very small for t ® O. We assumed that this ratio can have a value

. such as 2% or 3% at the origin.

The classic method of "variation of constants" immediately
gives the solution: ‘ ‘

p =Acos wv + U sin mt;

(36)
q = Asin ot - | cos ot.
whence:
A' = f, cos wt + £z sin wt,
(37)

ut = £, sin wt - fa cos owt.

. To have py, = g, = 0, we must take A, = u, = 0. It will be
- econvenient to introduce the following symbo s: . - .

‘

fi/0 = Fy, f2/0 = Fa.

It should .be remarked that, always,
p? + 9% = A% +p?,

T shall have to be occupled with the case where F1 and Fa
are linear functions of t: .

F, (t) = Hyt, Fa(t) = Hat, Ha/H, = A/P. ," '(38)'

It will 'be convenient to introduce the auxiliary variable:

T = ot.
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Immediately:

T T '
oA =H J TcosTdl + Hs J T sin T 4T,
) q ° o
;

wX = H (T sin T+ cos T - 1) + He (~T cos T + $in T), . (39)

and, similarly,

w = H(-Tcos T+ sinT) - Ha(T sin T + cos T - 1).  (40)

The curves of A andﬂp,can be constructed according to the
formulas, remarking that the extremes depend uniquely on the
ratio A/P, from the point of view of their position.

On the ot! »r hand, the terms in Hz will generally be neglili-
gible with respect to the terms in H,, because the constant H,
will be a very small number, and because the ratio A /P is small
with respect to unity. S

I adopt the followlng notation

X = X5 Xy X2, Xg3r X;»

for
T =0’V%_, £, gly 2K ,
or
N 2
Hence: r "5- o . e
why, = H (£-1) +Hey, op =H - (5 -1)H,
: 1 1 \> ’ P; 1 \2 ’
oAz = - 2Hy + #H, op 2 = xH; + 2H,,
w RB = - (3% + l)H1 - Hz’ w IJ-3 = - H1+ (3% + ;)Ha’
0)?\4::- 2%¢Ha, (D‘}L4-=—2#H1.
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Consequently:

2H
P1 = Fz”_%l: Pz = ~ Az 8557,
1 . - (41)
Py = - u3® yh P, = N, = 247,
g = )‘13(%'1)%1: Qagpa‘”ﬂgl’ .
g - (42)
= o b ® =1 - - = =11
. q3 RB (3§ + l)w ’ q4 HA 2#@ °

The curves of p and g can t;e constructed, remarking that

" the extremes of p are given by the eguation:

q(t) = Fi(t), (43)
and the extremes of g by the equation:
p(t) = - Fa(t), (44)

so that the extremes of p correspond to the followling values:
T=0, T ®x, and T = 2x.

The extremes of q correspdnd to the values:
T=0,T= 2x.

Figures 6 and 7 represent the curves of A, kK, p, and q
in the intervel from T =0 to T = 2x.

Besides, we must note this: whatever the functions P(t)
and §(t) are, i1f they are finite and continuous in the neighbor-
hood of the point t = 0,

lim p = 11m g = 0.
t=0 & t=0 &

In fact, let us return to equations (36) and (37), end
suppose: '

Ao =Ho = P = Qo = O,
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The functions f, and f, contain & as a factor. It will be
sufficlent to apply the theorem of the mean in the interval from
t =0 tot =¢, and to meke & approach zero as a limit.

Remark, I must make & remaerk. In thls theory, there exists
an appearance of a vicious circle, for I seek the value of @ and,
at the seme time, I sometimes rest on.the fact that & will be =
large number. However, this 1s only an appearance of a vicious

circle. 1In fact, @ 1s not a parameter that is susceptible to

vary from zero to infinity. With a given caliber and initial vel-
ocity, we are certain that € will vary between two rather close
limits @ and &", That is why we can regard &, a priori, ss a
large number with respect to other elements which come into play.

Finally, when & will have been determined according to the
criterion, we shall see well whether the method followed 1s good,
mediocre, or bad. In the last case, the method will have to be

~perfected.

For example, the major calibers might require particular
studies; but I am not actually making a comrlete discussion of

allthe cases.

8. STUDY OF THE YAW AT THE ORIGIN. I suppose that the
departure 1s perfectly regular; I am golng to make the approx-
imate calculation of & at the origin, 1.e., when t varies from

-0 to 2“/0).

I shall make a first approximation by starting from formulas
(9) and (15), and setting - ;

5% T t, ‘ . (45)
o .
That will permit the knowledge of v, with a great approxi-
mation, according to the preceding study of p and qg.

Knowing p, I shall make a second approximation of 6 by
setting . ,

LRSI o (46)

That will give the form of the curve 3(t) at the origin.

Note that t varies here in an extremely small interval if
®w 1s & large number. As a result of thls, we know, we can regard
P{t) and Tt'{t) as constants and equzl respectively to P, and T!
in the interval from T = 0 to T = 2x. e



g rrrr—————— — — + -

— — —— g

F/q.8a

37



So, the first approximation will give:
Pb ~ P, 1! t. ' (47
If we refer to the previous notations, we must set, here:

Hy = Pl T!l , or %1-1%;-»‘!1 ', (48)

I suppose that the ratio P,/w is very small. (Besides,

T} is very small if V, 1is very large). Consequently, the ordi-

nates of the curve of p (Fig. 7) are always very small with res-
pect tot!. The curve which represents 8'(t) will be, with a

very great approximation, the curve of p, but referred to an axis
OtX', parallel to OX, the distance 00' belng equal to |t} {(Fig. &).

The function &' will have a maximum for T = ¥ + h, where
h ®0, and a minimum for T = 2x.

So, the curve of § will have a point of inflection for T =
# + h, end another for T = 2.

Here, then, is an essential fact: in the interval from
T=0toT=#«+ h, 3> 0, and, in the interval from x« + h to
2x, &M < 0. . ‘

When t varies from O to about #/w, the curve §(t) turns its

concavity upwards, and when t varies from about #/w to 2x/w, the

curve 0(t) turns its concavity downwards; this is an important
fact.

9. STUDY OF THE CRITERION AT THE ORIGIN. DEPARTURE PER~

| FECTLY REGULAR. I suppose that the departure 1s perfectly regu-

lar. So, it will be necessary to substitute Rfor £, in the
inequalities (29) and (30).

Besldes, I actually study the criterion only at the origin,

"1.e., for t # 0.

By the relation (16), .

1im M = O,
t=o0

and M/5 1s negligible for t ® 0 in the inequality (30).
If there is, for t ® 0, a double inequality of the type:
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o< 8 <, (49)

where A is positive, then, at the origin, we shall be able to
adopt the criterion (31). Moreover, it must be remarked that
this criterion is obtalned immediately if 1t 1s assumed that,
at the origin, the projectile 1s similar to the top -- 2 rather
fragile intuiiion, when 1t concerns so delicate a discussiomns,

However, I have Just shown that &" changes sign in the
immediate neighborhood of the origin. As 2 result of thils, the
possibility of this relation (49) 1s not probable, and I am go-
ing to study carefully the values of QE_%_JL for t %~ 0.

With reference to formula (20): '

E'-g 5" + (2]

5 5 s for t 3‘0;

it will be sufficient to study the values of p!'/d for t*® O.
:With a sufficient approximation,
p! = o(Psd - q), " (50)

Pl =otp, - 9. | (51)

So, it 1s necessary to study the varlations of q/& for
t =0. ) ’ ’

In the interval from T = 0 to T = % + h, p' > 0. However,
in the intervel from w + h to 2#, pf < O.

So, 1t 1is necessary to know the maximum of the modulus of

(Pod - q) in this interval; it is this maximum which intervenes

in the criterion.

The followlng values are yery approximate:

for T =«, & = % |t , aq= g [ To! Pos
for T = 2%, & = %EIT'I y Q= %£| T4 | Pos

®* On the subject of the elementary theory of tho top, see e.g.. Béghin.
Statics and Dynamics, Vol., II, collection Armsnd Colin, p. 168,
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So, at these two points, the value of q/8 is the same, with
a great approximation.

The following values are also very approximate:

; t . t .
forT=%’£,6=%l'f.,l,q="(:}")'('g—#+1)|'to| Po'

So, at this point, the value of q/5 is greater than at the
points ¥ and 2x. If the number P,/w is very small (which can be
verified when the value of € is fixed), all these approximations
are satisfsctory; but they are approximations; so it 1s useless
to seek the exact maximum of q/8. We have immediately a superior
limit of this maximum, by taking the largest vazlue of q in the

interval, and the smallest value of 8. That gives:

sup lim g/b = 2P,, (52)

sup lim (a/d - P,) =P, (53)
in the interval from T = x + h to T = 2, or, finally,

sup lim | p'/&| = @P 4, _ (54)

sup lim léﬂ-%ﬁL}= wP, (55)

The inequality (30) can then be put in the following form
for t = 0O o _

S Z 4 B® wP,, | | (56)
where

5§ (48)%2 -4 B(RKL ), 3
i.e.’ ) .

(4Q)2 =88 (RKL Doy . (57
for .

PERkl

49 °

The coefficient 8 in (57), which I obtain thus, is rather
high. M. de Sparrets coefficient in (32) is 16/3. However, I

0w
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immediately find M. de Sparre's coefficient again intuitively.
According to the preceding, the maximum of q/& will occur
approximately at T = 3x/2. At this point, with & great approx-
imation,

o '
a3 = (B2 +1) Eival 5 85 =25 15 |,

33._'31%_4-_1' g - p 2
53-“”’P° 3x/2 'Sg"Po Po gy »

If I substitute 1/3 for 2/3x, I obtain M. de Sparre!s
coefficient. As this theory has no point of contact with
M. de Sparre's, I consider the concordance of figures as be-
ing very satisfactory. However, this asccord exlsts only in
the exceptional case of perfectly regular departure.

10, INTEGRATION OF A DIFFERENTIAL SYSTEM NEAR THE PRECED-
ING SYSTEM, We shall now have to consider a non-vanlshing
initlel yaw. As a result of this, it wlll be opportune to
integrate the system (3%) by tsking f, and fz as constants.
I obtain the expression of these constants by takling the
values of P and & at the instant t = &#/w, for my study will
be limited to the interval of time from t = 0 to t = 2x/w0.
By thus taking constant approximate values, I introduce an
artificial periodicity; but that offers no inconvenience at
all, since thls study 1s actually limited to the Interval of
time indicated above.

Let
f, =wa; and £ = wAz.
Hence,
Az/Ay; = A/P,

and we know that this ratio 1s very small, For example, at
the origin, its value might be 1% or 2% or:3%.

First, suppose:
Ao SHPo = Po = Qo = 0.

Integration of equations (37) gives immediately:

wlle
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A=A, sin ot + A2(1 - cos wt),

. | . . (58)
M= Al(l - COSs (Dt) - Az sin ot.

It is eonvenieht to introduce the variasble T = wt.

It 1s seen immedlately that A has a maximun near A, for
T ® /2, and a minimum near -, for T *® 3#/2, since Ap is
negligible with respect to A,.

Similarly, M has a maximum near 24, for T*® &, and a very
small minimum for T ® 0. Also, 1t 1s evident that the curves
of A and p are very close to each other, and that the curves of
4 and g are very close to each other, That origingtes, par-
ticularly, in the following fact: . ,

P* +.0% = A+ p® = 4(A% + 4?) sin ® (0t/2), (59)

so that the points (\,u) on the one hand, snd (p,q) on the other,
describe two clrcles of the same diameter, passing thru the orl-

gin (Fig. 10)., If we consider the tangents at the origin, these

two tangents are symmetric with respect to 0x, and very slightly
inclined to Ox. 8o, the centers B, and B of the two circles

are symmetric with respect to Oy, and are very close to 1it; they
would be confused if the ratio Az/A, were zero, The symmetry of

the tangents wlith respect to Ox results immedistely from the follow-
ing expressions: - . ‘

P! = @hy,y Q' = 0hz; A= Ay, B! = - Ohe,
(-] ] . L~} -]

!A'xt = - gt :
b/ M a;/p!

It must be noted that the forms of the four curves (Fig. 9)
are determined by the value of the ratio Az/A,, and thls is what
makes this approximation interesting.

Now, suppose:

| po#O,IQ#OO
Bince
Po = Ao 8nd q, = - P-o.!.

we will have:
lo#oand HQ#OI

1Y,
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Let us keep the notation A, p, p, q for the expresslons

- which have been calculated and which vanish at the origin. We

must now replace A and p by A+ Ay, and pu + W,
The new expression of p will be A:
A=p+ hgcos ot + p, sin wt.
The new expression of g will be B:
B =q+ lo sin wt - ko COS wt.

What has been done permits us to integrate the system (35)

In somewhat more general conditions.

‘Let (p,, q,) be the solution, which vanishes at the origin,
for the case:

‘Let (pz, q9z) be the solution, which vanishes at the origin,

- for the case:

fl = U)H]_t, fz = (DHzt;

(p, + pzy, Q1 + Qz) will be the solution, which vanishes at the

origin, for the following case:
f, = w(A, + Hyt), fa = (A2 + Hat).

Furthermore, to have a solution that passes thru the point
(pos 4o,) at the origin, 1t 1s sufficient to add the veriodic

functions.

W, = A, cos wt + K, sin wt, (60)

Wg = A, sin ot - K, cos ot, ' (61)

To avoild all confusion, we could designate the solution of
(35), which vanishes at the origin, by p and q, and the general
solution, which assumes the values p, and q, at the origin, by A
and B.

11, COMMENTARY on IRREGULAR DEPARTURES. .It must be fore-
seen that the departure could not be perfectly regular. It cer-
tainly depends on us to utilize only well Inspected shells and un-
eroded tubes, but other facts do not depend on us, Violent re-
actions, which make the trunnions of the gun vibrate, can be
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produced at the contact of the earth and the carriege. Further-
more, at the muzzle, the expansion of the gases and their in-
flammation can © . generste certain vortices and cavitations which
act on the projectile as deviating forces. From the analytic
point of view, we say that an irreguler deperture corresponds to
a non-vanishing initial value of the yaw, and an initial value

)
of 36 different from the regular initisl value | T.].

However, a distinction must be made.

If very viclent Derturbations existed at the departure,
we would then have to study the primitive equations (21), and
not the equations such as (27), deduced from the primitive
equations by simplifications which are permitted by reeson of
a certain regularity of the physical phenomenon, of which we
have a well founded Intuition. The study of very violent per-
turbstions 1s not & question which properly concerns ballistics:
I do not spesk of 1it.

I am golng to consider exclusively the following conditions,
which seem to me normal if the initizl perturbation is small.

I assume the existence of zan extremely smzll initizl value
8,, say of the order of a thousandth of a degree, thlis figure
being only an 1ndication. :

Furthermore, I assunme the exlstence of a modification of
the regular value of 3 _, which is | 1'|, a small modification
compared to the regular value |t' |. o

-]

I shall remaln almost in the preceding frame of study,
and shall say that the departure is almost perfect.

[+
To simplify the facts, I suppose y, = 0, i.e., 6 = 0.
Whence, &6, = 62, while 6, = 0 in the case of perfectly regulsar
departure. . :

'
As a result of this, 70, = 0.

Consequently, as in the case of perfectly regulsr departure:
w:'= w; = mz = m; = m; = 0,
Me = N° = 0.

Let us.conéider the expressions for p, q, p. We have:

.
L ]

= 88 + Q' = &t + T, (62)

o ] o

I assume again that @' = ¢!, because b, 18 extremely small.
] o
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(f) Thens

Qo = yb sin 8, ~yd,, .. (63)
’I‘o =y c%os 8o myd, ' L - (64) )
Po = 2 + Taoe i N ] ' . ‘ ; (65)

Let us return to the fundamental system (21), supposing
”z = 0, for greater simplicity.

The third equation will give:
: ¥

P = po,= QF I, . T (66)
p¥Q+ yb. - - o (67)

I shall suppose essentially that the ratio |rg,l/w is smallj;
consequently, the ratio |r.}/Q will be a very small number. We
shall then have a sufficient approximation if we substitute &

" for p in equations (21), and Ap for 4p - Br, for t ®¥0. 8o, we
egain find equations (34}, but with not quite so good an spproxi-
mation as 1In the case of perfectly regular departure; for, in
the latter case, r, = 0.

=™
|

I have thus substituted the following for the system (21):

%% + wg =K

R  (e9)

2ls

:'.-mp:”

P = Po-

The system (21) 1s not an ordinary system defining .p, a, p,
because &, which figures in the second members, is also an un-
known function of t. However, I am going to place myself 1in par-
ticular conditions. I consider only the very small interval of
time from t = 0 to t = 22/w, corresponding to a very small zone
Z, on the trajectory. In this zone Z,, I shall be able to obtain
a very satlisfactory approximation of &, as I have already done,
and that will permit me to regard the system (21) as a differential
system defining o, q, and p. Of course, I suppose the parameters
k and ] to be well known at the origin. '

(‘ Furthermore, considering (21) or (é8) from this point of
. - view, I shall be able to choose py, Ue, Peo arbitrarily, teking
account of the condition which I have imposed on myself concern-

ing the limitation of |rd/w. '
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_ To glve Pgs Qos Pos OF Pos Uos Ies 1s to give the Initlal
perturbation of the free trihedron.

I essentlzlly supoose that thls perturbatlon 1s a minimum,
For example, the ratio |p,/ T}l will be less than 1/20 or 1/30.

" .. The value of &§,, e.g., could be less than 1/10,000 or
1/100,000, which corresponds to abou

57.3° 57.3°
t 16,000 °F 100,000°

I shell set gl =¢ P,, where |9 | can be comprised between
zero and a number qulte close to 1, for example.

If
Ity | = 1/100,
€.8., We wiil have
Ipol < 1/2000.
Then take:

8,
this will give:

1/60,000, about 1°/1000; and y} = 5

Li

4, = 1/12,000, and r, ®5.

In general, the figures which I give are only slightly probable
nunbers. The last ones, in particular, constitute only a vague 1in-
dicetion. In each case, it will be necessary to examine what can
be a normal initisl perturbation, Furthermore, from the polnt of
view of approximations, the caliber plays an important role, ac-
cording to the fundamental formula:

8= 2V,i/a.

The design of the shell also plays 1ts role, since
w = A4 9Q/8. '

We have previously seen the role which the ratio P,/w plays,
and T supposed that this ratio 1s small. It is

...P..:. = BP°
® o
and, 1f & designates the dlameter, | .
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.

Po,/Q = nacj

so that Po/w 1s generally small, because the ballistic coefficient
¢ 1s a very small number.- However, 1t wlll be necessary to examine
all the possible cases, in order to evaluate the coefflclent n.

Since the devarture 1s almost peffect, my method of approxi-
mation will be modified a 1ittle. Formula (62) glves

8y = 1 13] + Dpe.

The first approximation of &' will be &' = 5}, which glves
& = b, + (l T+ Do) te. ‘ (69)

The function p, or A(t), will be calculated, taking the value
Po 8t the origin; and the second zpproximation of &t will be

5t = [ 14| + A(t). | (?0)

p, OT A(t;, and q, or B(t), should be calculated according to
the system (35), 1in which the second members comprise & constant and
a term in t, according to the approximate expression for §, given by
formuls (69).

We shall be able to construct the curve of g, or B(t), relative
to the zone Z,. In this zone, the first approximztion of the yaw is
represented by the straight line O"ee!, whose slope 1s 8}; and OE = §,.

Draw the tangent O"E to the curve g; the ratio of the slopes of
?he stra§ght lines OYE and O"e gives the maximum of the ratio g/b
Fig. 11). . .

The constants p, and q, can agaln effect a ralsing of the curve
of @ and, conseqguently, increase the maximum of q/b.

It will not be useless actually to consider the nature of the
sporoxirations adopted in this study. Equation (9) is an exact re-

lation. The last term in n' is negligible in the zone Z,, for 1t
contains two factors which vanish at the origin. We czn substitute
cos y, for cos ¥, 1fy} 1s quite small. Besldes, here, cos ¥, = 1.

So, I shsll replace cosy by 1, essuming that vy} 1s guite small,
I assume intuitively that, in the zone Z,, © =T and 6' = T in
particular, that 6} = 1.

If the variation of T' 1s very feeble in this zone -- which
occurs, 1n general -- we can substitute T} for 6!, -which gives,
with a great approximatlion, in the zone 7,,

P=5’+‘r§,-
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Furthermore, by substituting the approximate expression 4(t)
for p, we obtaln formula (70). This formula puts in relief the
points of inflection of the curve 5(t) -- an important fact.

] Then, I again take the approximate expression (69) for 6.
This approximation will be good if | p/T!| remeins small in the
zone Z,. In particular, if p, # 0, the ratio |p,/ T4| will have
to be small for the apvroximstion to be valid.

In general, the smaller | p/ T4| 1s, the better the approxi-
metion will be, ) :

In these questions, we must always try to see the conditions
which concern a very good approximstion. If great difficulties
sometimes keep us at a little distance from the conditions re-
quired for a good approximation, we shall then know that the method
1s less sure, and shall have to introduce some prudence 1n the
terms of the conclusion.

For example, when I say that @ or w is a large number with
respect to certalin parameters, this fact must be discussed and
verified. A complete discussion of the azpproximastion would involve
& classification of projectiles according to their dlameter, their
ballistic coefficient, etc., sand it would be seen that such an
approximation, which 1s excellent for certzin calibers, is weak for
others. I content myself here with quite general indicsations.

In my study of the system (35), I always supposed P constant,
and substituted P, for P. That reguires some enlightenment.

According to the preceding,

(P'/Po) = - n/loy‘ ' : (71)
where n 1s quite close to 1, but I am not more precise,

Now, suppose V, comprised between 500 and 1500 m/s. To give
an indicatlon that is probable but not precise, I shall say that £
could be comprised between 1000 and 3000. Moreover, taking orob-
able values for the ratiod /B , we could say that w is comprised
among such numbers as 70x, 100x, and 150«x. '

In these conditions, the zone Z, would correspond to a dura-
tion of 2/70, 2/100, gnd 2/150 sec.

Now, let us study the ratio 8'/5 in.the zone ZQ;
Lef us first suppose &, = 0. We have:

51 5L, 3~ 8t | '

51/5 ~ 1/t.

(72)



In the zone Z,, this derivative 1s extremely large.

Now, let us suppose 5,>0, and extremely small. This concerns
almost perfect departure, and I suppose essentlally that the ratio
: 6'/6 | 75| /3, 1s a large number.

In the zone Zo,
5t~ 81, 8 % 5, + Bit.
Bet o

81t = L8,.
For t = 0, .
L = 0.

At the end of the zone Z,,
="2/70 or 2/100 or 2/150,
approximately, and, e.g.,

L.= 2, 3’ 4.’ cosee

Write
LY o : ,
5! «~ °
& ) S (73)

Evidently, this ratio is quite a large number, a little less
than &}/8,, in the zone Z,, if w-is a large number,

In all cases, the ratio 8'/5 is much larger than|P!/Pjin
the zone Zo, if w is a large number. )

~

In‘the zone Z,, the product P& is increasing, altho P may
be decreasing; the variations of P are insignificant with respect
to those of §, in general.

To avold all equlivocation, I must repeat that T do not examlne
all possible cases, when I refer to the numerical value of Q@ , w,
or L, That would require a much more detailed discussion.

12. SUMMARY STUDY OF AN ALMOST PERFECT DEPARTURE. I have
defined the almost perfect departure. In particular, (M/8), = O,
so that, in the zone Z,, we shall put the criterion (30) in the
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form:

§ + 482 ég.%ii_ >0, S (74)
or else:

s+ 482 2 > o, (75)

When p' 1s negative, we must seek the maximum of
|pt/6| and the criterion takes the form:

8> 4B*? lgll max. | ; (76)
I recall that

8 = (A'?;l)” - 4B Rkl.

Furthermore,

lgll max‘“w[(%) max 'P°j , . (7D

so that we ought to seek the maximum of g/§.

Set
 Bpax =B+ P (e
so that i
|§_|max“ ©SP,, : ' N ' (79)
and the criterion will take the form: '
S > 4 BS(RXL) s . - (80)
for - ‘ :
‘WP = Rkt .
B

A general study of the curve of g, or B{t), would have
to be made in the case of almost perfect departure. To abridge
the discussion, which would require quite long developments, I
shall only make & sketch, by examlnlng two particular cases.

First case. 1 suppose:
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60=wo=ws=0! po=lo<0'

Then: )

“~

q°=r°=0, 'I‘L°=0n

ﬂoredver, the ratio [ p,/T}| is very small, which will
pernit me to keep the method of approximation previously
adopted. Here, &s in the case of perfect departure,

1im M -
t=0 5 = 0»

but with p, # 0; so, this 1s an almost perfect departure.

Calculate the solutions p and q of the system (35),
which vanish at the origin; they &re represented by the curves
elready constructed (Fig. 7). To pess irom p to A(t) and
from q to B(t), it 1s sufficient to add respectively the periodic
functions W, and Wz:. These functions, defined by formulas (60)
and (61), have here the simpler form:

Uy = A\, cos ot, . By (81)
Uz = A, sin ot. : : (82)

Consequently, the curve of g will be raised in the interval
from T = ¢ to T = 2%, and the curve of p will be raised in the
interval from T = #/2 to T = 3x/2.

The solid line (Fig. 12) represents the curve of q, and the
dotted line represents the curve B(t). We ought to draw the tan-
gent OE to the latter curvej it is evident that the tangent 1is
raised. At the same time, the straight line Oe', which represents
the first approximation of &, will be lowered a little. So, the
maximum of q/& 1s augmented by the presence of the non-vanishing
parameter p,. . : ’ ' .-

Therefore, if we take M. de Sparre!'s coefficient s = 1/3
in the case of perfect departure, 1t will be possible to have
s >1/3 in the case of almost perfect departure.

Second caée. Take:

V., = 1200, g cos « = 1,a ™ 84
Then _ '
[ty 1 = 1/1200.
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We shall take
= 1/120,000,
which gilves
3,/ | T4 | = 1/100.
. The firét approxiﬁation of & will be

1 1
5 = y255 (365 + ¥)-

Altho o is unknown a priorl, we know that its numerical
value will be quite large if the diameter of the projectile

-1s not very large. 8o, suppose the caliber medium, e.g.:

80 mm, 100 mm, 140 mm, .... Represent the value of & for

T = x by 6m’ and the value of § for T = 2x, which corresponds
to the end of the zone Z,, by & . For example, if x/w were
near 1/200, we would have: ~

3 % 200, 5 ~2s,.

If x¥/o were near 1/100, we would have:

§ * 20,, & * 3b,.

m n

Since the variation of 6 1s not large in the zone Z,, I
shall be able to make an approximation which is somewhat
rougher, but raplid and convenient. I shall take a mean value
of Pb in Z,, the value at the instant T = »#. The fact that
w is not known is unimportant, as we shall see. 8So, the mean
value of P& will be Poﬁm, very approximately.

80, I integrate the system (35), by setting:

A
w s Pobm.

fl = CDPof)m, fa = P

We know the solutions p and q, which vanish at the orlgin,
and we know that:
¥ Pobys Gpay ©2Pob; (83)

I'p lmax max

To obtain the maximum of q/8, I ought to draw a tangent
to the curve thru the point 0". I can assume, ‘'as a new approx-
imation, that the point of contact E 1is confused with the
summit Z of the curve. By the hypothesis which was made about
the numerical value of A /P, the maximum of q occurs for
T e
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(%) max " ép" . (84)

This approximate result is independent of the numerical
value of & , and that 1s what makes the approximation easy.
In the actBal case, with this approximation, s ¥ 1.

Now, suppose therdeparture almost berfect, 1.28.5 Doy
Qos T'o Non-vanishing and small enough for the adopted approx-
imation to be valid,

From the polnt of view of the approximation, we must
examine the numerical value of P,. The approximation will be
good if P, 15 quite small, i.e.,;, 1if the ballistic coefficient
%g ;ery small. That results from the examination of the formulas

83). - L = ‘ '

_ -8Suppose the initial values p, and g, negative. The curve
of q being represented by the solid lire (Fig. 13), the curve
B{t) will be represented by the dotted line; the curve will be
raised in the region of the summit & , and the maximum of B will
be able to have the same abscissa as the maximum of gq. Then:

(P a2 + B)Po, B >0,
i.6., 8 5 1. '

Since this method of approximation is not very precise,
the value of s is not very well determined; but I have shown

" intuitively that a minimum initial perturbation can make the

numerical value of s greater.

Sinéebthe eriterion relative to Q is represented by formula
(80) at the origin, we see quite simply that minimunm irregulari-
ties at the departure might increase the coefficient s,

Moreover, 1f the artillery adopts a coefficlent s greater
than M. 4e Sparrets, that signifies that it foresees quite
strong initial perturbations*,

I have examlned one of the numerous aspects of the problem,
and I shall complete these researches later. .

-

Translated by

‘ H. P. Hitchcock

*G, Sugot, Theoretlc Exterior Ballisties, M;ﬁ. de 1'art. fr., Vol. VI,
1927,
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