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DETERJUNATION OF THE SPIN OF THE PROJECTILE 

Abstract 

The motion of the projectile during the first period of the yaw is 
studied, to determine a criterion for the spin required for a real rate 
of precession, !A. d'Adhemar first derives the general cri tcrion .. : 

I 
(30) 

He refers to ~!. de Sps.rre's critsria, derived in different waye for thG 
case of "perfectly regular doparture 11 , viz.: 

( AQ) 2 > 4 B(Rk L ) 0 , 

• 

( AQ)2 > ~6B(Rk L )o• 

The departure is defined as "perfectly regular" if 

Normally, the yaw is slightly different from zero and 
derivative o~ is slightly different from the regular value 
Th& departure ls then defined as "almost perfect" if 

II" = 1)0 • 2 

!flo = o, 
=: li' + 0'' Po . 0 

0 

qo - ' 'flo sin 11 0 , 

0 See the Lht of Sytabols below. 

-1-

(31) 

(32) 

its initial 
I -c ~ 1. 

(62) 

( 63) 
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Po = Q + ro• 

In this cass, the criterion (30) takes the form: 

s > 4 B B (:RkD 0, 

(64) 

(65) 

(80) 

in which s may b~ greater than 1/3. which is ~. de Sparre's value for ths 
case of 11perfectly regular" departure, as indicated by equation (32). 

H, P. Hitchcock 
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LIST OF SYMBOLS 

a caliber, or diameter of the projectile. 

a trace of GA on the plane OHN. 

b drag·coefficient, 

c . French ballistic coefficient 
(American c '" .00114/c). 

f 1 roP!>. 

fa erA!>. 

g gravitational acceleration. 

j slope of the rifling. 

k coefficient of obliquity: Y/5. 

L distance from G to C. 

m mass of projectile. 

n numerical coefficient. 

p component of angular velocity of GUVz or Gxyz 
on Gx. 

q component of angular velocity of GUVz or Gxyz 
on Gy. 

r component of angular velocity of Gxyz on Gz. 

s M. de Sparre's coefficient. 

t time. 

u component of v on OX. 

v velocity of G. 

A1 f 1 /ro (if constant). 

A2 f2/ro (if constant). 

A(t) p + A0 cos rot + 1-'1. sin rot. 

B(t) q + A0 sin rot - jl 0 cos rot. 

c center of pressure of projectile. 
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fdro = P6. 

fa/ro = A6. 

F(v) French resistance law. 

G center of gravity of projectile. 

GA axis of projectile, directed towards the point. 

GT tangent of the true trajectory, directed in the 
direction of motion of G. 

GAT plane of yaw; plane of resistance. 

GU axis l GT, related to the projectile. 

GV axis l GTU, related to the projectile. 

GUVz "related trihedron". 

GY intersection of GAT and Gx 1 y1 • 

Gx 

Gy 

Gz 

Gxyz 

Hl 

Ha 

K 

L 

M 

N 

0 

horizontal axis, directed to the left of GT. 

axis in vertical plane containing GT, directed 
downwards. 

axis on GT, in opposite direction. 

trihedron with origin at G. 

axis 1 GAT. 

axis 1 GA in GAT. 

axis on GA, directed towards the base. 

"free trihedron". 

F1
1 (if constant). 

Fa' (if constant). 

radius of gyration of projectile about GA. 
I 

50 t/5 0 • 

0)3 5 + 0)4. 

0)3 - (])4°" 

point on GT: distance GO = 1. 
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OH 

ON 

OHNT 

0 

ox 

OY 

oz 
OXYZ 

p 

Q 

' R 
I 

s 

T 

U1 

u2 
Vo 

vm 

wl 
Ws 

Zo 

A 

B 

H" 

Hy 

Nz 

horizontal axis, directed to the right of GT. 

axis in vertical plane containing GT, directed 
upwards. 

trihedron with origin at point o, and axes II 
to those of Gx1 y1 z1 but oppositely directed. 

origin of trajectory, 

horizontal axis in plane of fire, directed towards 
the target. 

vertical axis, directed upwards. 

horizontal axis l OXY, directed to the right. 

absolute trihedron. 

Rkl/ A Q = Kx/A Q 6. 

stability function: PI I• 1 I • 

resistance; air pressure. 

rot. 

Ao cos rot, 

Ao sin rot. 

initial velocity of G. 

minimum velocity of G. 

Ao cos rot + IJ.o sin rot. 

k 0 sin rot - fJ. 0 cos rot. 

zone of trajectory from t = 0 to t = 2n/ro. 

axial moment of inertia of projectile. 

transverse moment of inertia of projectile. 

moment of external forces about Gx;·Rkl o. 
moment of external forces about Gy. 

moment of external forces about Gz. 
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p 

R 

y 

I) 

7J 

Q 

f.l 

p 

u 

instantaneous center of precession. 

retardation: R/m. 

angle of projection: T 0 = 9 0 • 

angle between the direction of resistance and Gz. 

yaw;L.z1 Gz; tan 13 = 0 a. 

component of 13 on OH; - 13 sin 'f .• 

component of 13 on ON; 13 cos 'f• 

dZ drift angle; tan 7J = - dX • 

angle of inclination of the tangent of the true 
trajectory, GT. 

p cos rot + q sin rot. 

p sin rot - q cos rot. 

component of angular velocity of GUVz on Gz. 

angle of inclination of the tangent of the plane 
_ dY 

trajectory; tan T - dX' 

ratio: l,il'l/(6'•!. 
/ lxGU. 

orientation of plane of yaw; precession; 

LNO a = Lx1 Gx. 

A Q/B.· 

component of gr and 

component of 9' and 

component of Q' and 

IJ' on Gx1 • 

TJ' on GY1• 

TJ' on Gz 1 • 

component of ro1 and ro2 on GY. 

component of ro1 and ro2 on Gx. 

component of ro3 and ro
4 

on Gy. 

component of ro3 and ro
4 

on Gz. 
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( ' e 9" cos"' + 7J" cos 9 sin 'I' i • 

A Hy/AQ&. 

~ 9" cos"' + TJ" cos 9 sin 'V - 7JI 9 I sin 9 sin 'I'· 

Q Spin of projectile, impressed by the rifling. 

~ Po; initial angular velocity of projectile 
about GA. 

( ' 
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THE GYROSCOPIC MOTION OF STABLE PROJECTILES 

(THIRD REPORT)* 

DETERMINATION OF THE SPIN OF THE PROJECTILE 

by 
, 

R. d'Adhemar, 

Engineer of Arts and Manufactures, Doctor of Sciences. 
, 

(Memorial de l'artillerie fran~aise, Vol. 12, 1933, p. 249). 

1. INTRODUCTION. Let ~ be the spin proper, impressed 
by the rifling; we have: 

Q = 2jV 0 /a; 

V0 is the initial velocity on the trajectory, 

a is the diameter of the projectile, 

j is the tangent of the angle of inclination of the 
grooves. 

For example, if a = j = 1/10, then Q = 2V 0 • 

If the number Q is not very large, the pendular or 
gyroscopic phenomenon does not exist; then, the drifts are 
not regular. However, if the number Q is too large, there 
is an inconvenience**: for, on the descending branch of the 
trajectory, the stability function Q may assume too small 
values, 

I shall not study this question in all its ampli
tude, and I shall only seek a lower limit of Q. 

M. de Sparre obtained a lower limit, in his Report *** 
of 1904, by using his formulas, which represent, approximately, 
the.gyroscopic motion. 

, 
• See: First report, !.:em. de 1 1art. fr. Vol. VIII, No. 3, 1929 

(Trans.: Report No.72, Ballistic Lab.).·Second report, M~m. de 1 1art. fr. 
Vol. XI, No.3, 1932 (Trans.: A-IV-42, ballistic Sec. file), 

' ** P. Charbonnier. The gyroscopic motion of the projectile, ~· 
de l'art. fr., Vol.VI No.3:1927. 

••• M. de Sparre. The motion of oblong projectiles about their con
ters of gravity , Arki v for )!Qj;ematik, A:;tronomi och Eysl k, Stockholm, 1904. 
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M. Esclangon found the true basis of this discussion*, 
by starting from the fundamental equations of gyroscopic motion. 

This method offers perfect safety. On the contrary, 
there exists some uncertainty in the use of an approximate 
solution, which carries all the weight of an accumulation of 
simplifications; the simplifications may engender deformations. 
However, M. F.sclangon•s remarkable analysis must be completed, 
because he adopted the ballisticians' first method of approxi
mations, as M. de Sparre did otherwise in his classic report of 
1904. This first approximation, which is always useful if one 
does not ask himself what it gives, consists in the substitution 
of the c.onventional yaw for the true yaw. Roughly, it neglects 
the curvature of the horizontal projection of the trajectory; 
I must give a precise indication on this subject. 

2, THE ROLE OF TJffi CURVATURE OF THE HORIZONTAL PROJECTION 
OF THE TRAJECTORY. I keep the notations of my former reports**: 
GT is the tangent of the true trajectory, GA is the axis of the 
projectile. The plane OllN is perpendicular to the tangent. The 
axis OH is horizontal and directed towards the rear of the plane 
of the figure; the axis ON is in the vertical plane containing 
the tangent and directed upwards. Let a be the trace of GA on 
this·plane of reference, so that: 

0 a = tan l'l "' l'l , GO = 1. 

The coordinates of a are 1'1 1 on OH and l'l2 on ON. I 
designate by ~ the angle NOa , this angle being counted counter
clockwise, so that OH is brought to ON by a rotation of 90°, 
Then: 

1'1 1 = - l'l sin ' , l'l2 = l'l cos '··· 

I assume that the rifling is left handed: for a well
designed projectile, the drift will be to the left, i.e., in 
front of the plane of the figure. This is the plane containing 
the plane trajectory, which we know how to calculate. 

The drift angle is~ (Fig. 2). 
tive of ~ with respect to time, t. The 
depend on the sense of orientation that 
as the absolute value: 

Let ~· be the deriva
sign of ~ and that of ~·· 
is chosen; but we have, 

u I~' I 

• E. ·Enclangon, Motion of projectiles about their center of gravity, 
M~~. de l'art. fr., Vol. VI, 1927, No. 3. ------,----

•• R. d 1Affi1cmar. On the gyroscopic motion of Gtable projectiles, , 
Mem, do l'art, fr., 1929 and 1932. 
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The resistance is designated by R 
so that: 

R = rr.R • 

Replacing &1 b} its mean value 6u 
previous reports , we have: 

v 2 I~' 1 = g 4-Q k- 1. 
· m k l 

and the retardation by 

or else by 1/Q (see 

(2) 

It is evident that formulas (1) and (2) are not iden
tical. For example, according to (2), ~~ could not vanish, 
while, according to (1), ~~vanishes at the origin if &1 
does. This shows the deformation which an element may under
go as the result of taking an average. 

In certain cases, it is necessary co make a distinction 
between an exact element ~. and the same element smoothed 
by averaging. The notations x and :X might then be used. We 
shall write, then: 

y2 I~ I I = g LQ_ k - 1 • (3) 
. m k l 

In every question that demands great precision, it is 
the element x which must be studied, and not x. Here, for
mula (3) will be sufficient. 

Let us consider now the angle of inclination of the tan
gent to the trajectory. For the true trajectory, this angle 
is e. For the plane trajectory, this angle, at the same in
stant t, is ~ • If the yaw o is quite small, 

I do not actually insist on the degree of approximation of 
these formulas, and I recall that 

d~ 
=-r' 

g cos~' 
dt = - v 

(4) 

so that we can write: 

9' g cos ~ = - • v 
(5) 
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Let us form the ratio: 
_, 

u = L!Ll.. 
I Q I I = !. 

m 
1 

cos 'I" 

z.J.k-1V 0 , 

a kL v 

The ratio A /m is very small. 

The parameter k is poorly known; but we may assume that its 
value remains near 1 or 2 for very small yaws. This value could 
be 3, 4, 5, ••• for large yaws, in the dangerous zone. 

The parameter l is the distance from the center of gravity 
to the center of pressure c. If this point C is at the height of 
the middle of the ogive, then, in the formula l = na, n can 
assume the values 2, 3, ••• 

Altho the ratio A /m is very small, if 
·and if the rati~ V0 /v becomes quite large, 
that u is not negligible; the derivatives 
the same order of magnitude. 

cos -r is very small, 
it is quite possible 
~~ and gt may have 

In his classic report of 1904 (p. 2g7), M. Sparre assumed 
intuitively that the ratio u is always negligible. However, 
that is not exact for an almost horizonta.l tra.jectory with a 
very high velocity. \-/hat ballisticians call the "Garnier ef
fect" is, we might say, the fact that the ratio u is not negli
gible, in general. This remark has been made previously by 
Engineer General Maurice Garnier. 

In the recent works of M. de Sparre and Engineer General 
Charbonnier, this ratio was no longer taken as negligible £!: priori. 

Prudence demands that we take account of the curvature of 
the horizontal projection of the trajectory, altho its effect 
may be, in certain circumstances, very small. 

3. FIVE INSTANTANEOUS ROTATIONS. I take, as the sense of 
orientation of trihedrons, the direct sense of trigonometry, 
which is counterclockwise. Gz 1 is the tangent, in the direction 
opposite to that of the motion of G. Gx 1 or GH1 is parallel to 
the axis OH, v1hich has been defined. Gz is the axis of the pro
jectile, towards the base; the point would be on the prolongation 
of Gz (Fig. 4). 

The moment N of the resistance defines the axis Gx (see 
my previous report~). The axis Gy carries the second moment Ny 
of the forces of resistance. If it is the Magnus effect which 
is considered, My < 0. If it is the F.sclangon effect, )fy > o. 
According to M. Esclangon, this couple Hy is caused by lateral 
frictions and its existence appears certain for a well designed 
projectile. We have: 
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We may write: 

Jfx = AQ>5. 

The symbol P represents a known element. 
discussion on the phvsical definition of Hy' 

NY = AQM, 

To avoid all 
I shall write: 

and I shall make the apparently natural suppositions: 

1° A/P is constant and very small if 5 is very small; 
for example, this ratio is equal to 2% or 3% .••• 

2° A/P may assume a more appreciable value if 5 be
comes relatively quite large; for example, for yaws of about 
12° or 15°. 

So, at the origin, we suppose A/P constant and very 
small. 

We have thus defined two trihedrons, GlC1 y 1 z1 and Gxyz. 
Let GU and GV be two axes in the plane Gxy, related to the 
projectile. We have a third trihedron GUVz, related to the 
projectile. I call it the "related trihedron", and the tri
hedron Gxyz shall be the "free trihedron" (Fig. 4), 

If Gx1 y 1 z 1 were fixed, we would simply have to consider 
the three Eulerian angles ~' ~ , 5 (I must substitute 5 for the 
classic notation 0, since I have already used the symbol G). 
Furthermore, v;e would have only the three instantaneous rota
tions: 

QsQ I d~ 
dt or cp ' dt 

dEl or . ~~~ , d t or 51 • 

We have, besides, two instantaneous rotations: 

1° The rate of depression of the tangent, 91, 

2° The angular velocity of drift, 111 (Figs. 2 
and 3). 

I suppose essentially that the true trajectory and the 
plane trajectory are very close, in size and form, so that, at 
each instant t: 

I do not actually discuss this approximation, which is 
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\ ) based on physical intuition of the phenomenon. I shall always 
designate the initial velocity, on the trajectory, by V0 , and 
the minim~ velocity by Vm. 

It must be remarked that: 

cos 't" 
IT'I= g v ' 

and - (v' - g sin 't") • -'t"" = l't"'l v (6) 

In the dangerou& zone of the trajectory, i.e., in the 
neighborhood of the point where Q is a minimum and in the 
neighborhood of the point where v is a minimum, the ratio 

I 't" "1/ I 't" 'I. will be extremely small, On the other hand, at 
the origin, this ratio is not very small. In fact, the ratio 

I vt I /v can take, at the origin, vah·-;s such as 1/10 or 2/10 
So, at the origin, the ratio l't"" I I IT' lmay be about 1/10 or 
2/10 •••• , it may not be negligible. 

The sense of orientation is counterclockwise (Fig. 2); 
so, the axis OZ is directed towards the rear of the plane of 
the fj_gure, the plane OXY. F'or an observer placed on OZ, 
the angle 't" is positive on the ascending branch, and negative 
on the descending branch. 

An observer placed on OZ sees the tangent turn in a clock
wise direction, So, this rotation is represented by a vector 
I Qt I ; directed forwards. Consequently, the component on the 
axis Gx1 is negative; it is G', or approximately -rt, ' 

When I supposed that the true trajectory is very near the 
plane trajectory, I implicitly ass~ed that the projectile is 
stable, that o remains small. Consequently, the drift will be 
normal;~ and ~~ will be positive (Figs. 2 and 3). 

• • • 

Moreover, the passage from (2) to (3) would also imply 
that the projectile is stable, If V0 is large and if Vm' the 
minimum of v, is not small, the drift will remain feeble, 
(k- 1) will not become large, and ~~ will remain small like -rt, 

) 

I shall not actually discuss the second derivative, 

d 2 TJ 
~ =nn, 

If the departure of the projectile is quite regular, ~ t = 0. 

I designate an initial value by X0 or X0 • 

-16-
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4. SOME INDICATIONS ON THE NIDIERICAL DATA. Before going 
farther, I shall give some indications, some figures, whose 
knowledge is indispensable, if we wish to avoid vague discussions. 
We designate by A the axial moment of inertia; in the for~ula 
A= na5 , n may vary, e.g., between 200 and 300*. We designate 
by B the transverse moment of inertia; in the formula B = n A , 
n may vary from 4 to 8, approximately. 

In the formula A= mK 2 ·, we see intuitively that K must 
remain between a/2 and a/3, nearly. · 

If we take j = 1/10, that corresponds to an angle of 
inclination of the rifling of 5°43'; this is a probable datum. 

For an angle of 7°, j = 0,12.3. For an angle of 10°, 
j = 0.176. 

The symbol P, which plays an interesting role, represents 
an approximate mean value of the angular velocity of the point 
a.about the instantaneous center of precession p (see my pre
vious reports). We have: 

P = _11!.._ R ·{ t , and R = cF ( v) , AQ . 

Let us seek an indication of the nu:nerical values of P, 
at the origin, supposing a= 1/10 (100 mm caliber). 

Let us take the resistance law in the form bv2
• 

If the velocity v varies from 400 m/s to 1500 m/s, we can 
set b = 1/3**· This is a rough mean, but it is sufficient for 
us. Let us take c = 1/2000***; we are at the origin, so we do 
not have to consider the variations of altitude. We may suppose, 
at the origin, that k is about 1 or 2. Also, we can take t= 2a 
or 3a. 

So, if we set 

kl = 4/10, K2 = a 2 /5; 

•Here a is the caliber in meters, and A is tho axial moment of inertia in 
kg,m. divided by the gravitational acceleration in m/sec.2 

--- H.P,ll, 

.. Henco, bv 2 is the drag, in kg.mfsoc.~ of a 1 m. projectile, in air with a 
density of S kgfm3. · This valuo of b corresponds to a resistance coefficient 
Ca = 12xl0- • ---H.P.H, 

•••This value of the French ballistic coefficient c corresponds approximately 
to an American ballistic coefficient C = 2.28. --- H,P,H, 



. .. , 
we will have 

For V0 = 600, P 0 = 10. 

If we take c = 1/4000, keeping the values of all the other 
parameters, we will have P 0 = V 0 /120 •. For V 0 = 1000, P 0 "' 8. 

Let us also seek an indication of the numerical values of 
ptjp at the origin. 

We suppose V 0 > 400 m/s. We can neglect the variations of 
b, k, l and take b = 1/3, since we are not seeking any great 
precision here. 

I recall the general formula: 

dv = vr = -g(sin 't +R /g). 
dt -

When V0 is a large number, the ratio R/g can assume values 
such as 40 or 50, e.g., or even 60; then 

and 

Then, 

dv "' -R • 
dt 

we can write: 

(Pt/P) 0 "'2(vt/v) 0 

the approximation is good 

For c = 1/2000 and Vo = 
For c = 1/4000 and Vo = 
For c = 1/10,000 and V 0 

So: 

"' -2bcV 0 , 

if V0 is large. 

500, (P 1/P) o = 1/6. 

800, (P 1 /P) 0 = 8/60. 

= 1500, (P 1 /P) 0 = 1/10. 

(P 1 /P) 0 = n/10, 

with a coefficient n about unity. 

Let us return to the formula for Q • For the usual artil
lery calibers, if Q = nV 0 , the coefficient n is· between 1 and 4· 

-18-
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It is often said that Q is a large number. To be precise: 
Q is large with respect to unity, with respect to P, and also 

with respect to 1•'1, if the minimum velocity V , on the trajectory, 
is not very small; this exceptional case is ex&luded. 

In the theory which is going to be developed, the approxi
mation is very good if the number 

co = AQ /B , 

which is between 1/6 and 1/8 of Q , is still quite large with 
respect to P 0 • 

5. THE INSTANTANEOUS ROTATION OF THE RELATED TRIHEDRON 
AND THE INSTANTANEOUS ROTATION OF THE FREE TRIHEDRON. Let us 
consider the instantaneous rotations of the two trihedrons which 
have been defined, and let us seek their components on the axes 
of the free trihedron Gxyz. Let us first ta!(e the related tri
hedron. The components of the rotational velocities bl, ~~.and 
q>l are: 

bl, on Gx; ~ 1 sin 6, on Gy; ~~ cos 6 + q>l, on Gz. 

The components of the rotational velocities 91 and 1JI are: 

co~. = 9 1 < 0, on Gx1 ; 

coa = 1J 1 cos 9, on Gy1 ; 

co3 = - TJI sin 9, on Gz10 

Let us consider the trace GY of the plane of resistance on 
the plane Gx1 y1 • The axes Gx and GY are orthogonal, as are Gx1 
and Gy1 (Fig. 5). Let us take the components of ro1 and 002 on 
these new axes Gx and GY. They are: 

co5 = co1 cos ~ + 002 sin~ , on Gx; 

co4 =- co1 sin~+ 002 cos~ , on GY. 

Now, we must take the components of co3 and co
4 

on the axes 
Gz and Gy; this gives: 

(1)6 = (1)3 sin 6 + (1)4 cos 6, on Gy; 

(1)7 = (1)3 cos 6 - (1)4 sin 6, on Gz. 

-19-
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So, the components of the instantaneous rotation of the 
related trihedron are: 

on Gx: p = I'll + (J)5' 

or p = li' + 9' cos 'II + 7J' ' cos 9 sin 'II; 

on Gy: q = 'II' sin 5 + ro6 , 

or q = 'II' sin li rp sin 9 sin li 

+ cos 6 (-9' sin 'II+ 7J' cos 9 cos 'II); 

on Gz: p = cpl + 1j1 I COS li + ro7 , 

or p = cp' + 'II' cos 6 7J' sin 9 cos 6 

- sin l'l (-9' sin 'II+ 7J' cos 9 cos 'II ) • 

If the yaw is quite small, we can substitute li for sin li 
and 1 for cos li. Then, let 

(7) 

-- 7J' li sin 9 + (-9' sin 'II + 7J' cos 9 cos 'II ), 

(8) 

=- 7J' sin 9- li (-9' sin 'II+ 7J' cos 9 cos 'II). 

We will have the following expressions: 

p = lit + 9' cos 'II + 7J' cos 9 sin 'II , 

q ,.. 'II' li + M, 

p ,.. cpl + 'II' + N. 

(9) 

(10) 

(11) 

To pass from the related trihedron to the free trihedron, 
it is sufficient to set 

whence 

r .. 'II' + N. (12) 

The components of the instantaneous rotation of the free 
trihedron areP, q, r. 
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I substitute M for w6 and N for w7, to simplify the ex
planetion; but these approximations are not indispensable. 
Notice that; 

Jll'!l (1)6 : and dM dw6 • 
cit "' dt • 

Jf -~ and dN .. dw7 • 
dt dt 

In·fa<:t;· 

.!L .. llin a = cos IS diS .. dl) 
- dt dt dt, 

. d;,c~:t . 5 = - sin li d!i "' 0 .· dt'·· :: . dt , 

s1~:9~t!!:;o.~·~elll8.·:Mls· quite small, and the smaller 5 is, the more sat-· 
isf~~tQry th,e· approximation is. As f~r as p is concerned, equn-· 
t:l~~·,(!J) is -e:not, so that we obtain at immediately by d:tffercn
tia:'t-!.PU. 

Now, I ~ going to define "perfectly regular departur-e", 
I shall sa:r·th£it the departure is perfectly regular if 

. 60 = '• = Po = Q0 = r.; = 0. 

I exclude the ease of vertical fire: a = 90°. 

cisnseq_UA~n.tl:r: a• = o. 
1 

Since the initial yaw vanishes, the gyroscopic motion con·· 
sists of osfil)J.iltions from the origin to the summit, and evEn 
beyond that (see my- previous reports). So \:e cert~inly h.."l.ve, 
at the origin~· 51 < o, and since the sense of orientation is 
counterclock'W_1$e 1 we IIIUBt write: 

(13) 

On the other hand, we would have to talte the + sign 
if the sense of orientation were cloclcwise, Le., if GZ v:ere 
directed forward (Fig. 2). 
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Since U 0 >0 and flO = O, whatever the value of k may be, 
at the origin, 1 

with 

'l''o = o. 
On the other hand, with Q and -r as defined, 

vQ 1 = - g cos Q + R (k-1) fl2, 

V 'r I "' - g COS 'r 1 

and, if the departure is perfectly regular, fl~ = 0, 

So, at the origin: 

while, in general, 

Q .. 'r and Q 1 .. -r1 • 

Since 

Po = 'l'o = ~t = O, 

therefore 

(14) 

The term ~· cos Q sin 'I' is extremely small at the ori
gin, for it contains two factors which vanish. It might be 
said that this term is of the "second order"; but it is some
times dangerous to extend to the "very small", notions which 
are clear only for the "infinitesimal", 

Let us retain the formula: 

(15) 

relative to the case of perfectly regular departure. Notice, 
besides, that, in this case: 

(1)0 = mz = (1)6 = (1)0 = M0 = N° = o, 3 7 

and conseq uen.tly, qo = o. 
In order to have r = 0 o, we must set 'l't = o·. 

Then, for a perfectly regular departure: 
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Now, let us find out whether M/6 and oo6/6 have limits for 
t = o. 

If M/6 ha~ a limit, oo /6 will have a limit, and it will 
be the same limit. The ex~ression for M/6 is: 

~ =- 91 ~ +'~ cos 9 cos~ - IJ' sin 9. 

The last term vanishes· at the origin, as 'IJ!. does. 

The first term vanishes at the origin, as ·~ does. To see 
this, it is sufficient to apply L'Hospital's rule to the ratio 

si~ o/ and utilize formula (15). 

Now, let us study the second term. By (13), 

-u ~ = R" (k - 1) ~ , 

while 

61 = - 6 sin ~ • 

As sin ~ vanishes at the origin, so does the second term. 

So, in the case of perfectly regular departure, 

limM 

t=o o 
= lim oo6 

.t=o o = o . 

Now, we must calculate the derivative ~i = p 1 • 

Equation (9) gives: 

(16) 

pt = 6" + 9" cos~+ TJ" cos 9 sin~ -1)' 9' sin 9 sin~+ oo4 ~'· 

Let: 

+ = 9" cos ~+ 1] n 

e = 9" cos ~+ TJ" 

The derivative of 

P' = 1)11 + + + Ol 
4 

~I 

cos 9 sin~ 1] I(,) I 

cos 9 sin ~ • 

p will then have 

• 
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the form: 
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At the origin: 

lim 64 =rim 
.•:,· tl!'o t=o 

ljll = lim 
t=o 

= lim sin 'II = o. 
t=o 

So, the terms ~4 ljll and ~~ 91 sin g sin ljl each contain two 
6 

factors which vanish at the origin. Therefore, if t is extreme-

ly small, 

f "' 6" ~ 8 , with t "' 0, (20) 

and the closer t is to zero, the more satisfactory the approxi
mation will be. 

6. USE OF THE MOMENT OF 14o:'o1ENTUM THEOREM. Let OX, OY, 
OZ be absolute axes, and GX', GY', GZ' be axes respectively 
parallel to the former, Here, the absolute axes are related 
to Earth; this is a sufficient approximation. The motion with 
respect to the trihedron of reference GX'Y'Z' is, by definition, 
the "motion with respect to the center of gravity". With this 
~ trihedron of reference, we can use the fundamental moment 
of momentum theorem, without modifying the external forces: The 
derivative of the vectorial moment of momentum (with respect to 
t) is equipollent to the vectorial sum of the moments (with 
respect to G) of the external forces*. 

We do not have to bother ourselves with fixing the absolute 
trihedron OXYZ; we are going to take the projections on the axes 
of the free trihedron, which has been defined, 

The components of the moment of momentum on Gx, Gy, Gz 
are: 

The components of the relative rate of change (with respect 
to Gxyz) are: 

'•Bpi . ' Bq I ' A pI • 

~ , , 
• S~e e,g., Appall's Traits !!§.. Mac3.111gue, or else Palnlevels Cours S!, 

Mecanigue, Gauthier-Villars, 1930. 
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The components of the translational rate of change are the 
minors of the ma.trix: 

i.e., 

p 
I Bp 

q 
Bq 

Aqp - Bqr, -(A pp -· Bpr), Bpq - Bpq. 

We have, then, the three equations: 

B~'+Aqp-Bqr= ~, 

B * -A pp + B pr = .Y• (21) 

M. Esclangon, who utilized the moment of momentum theorem 
in another form, fortunately discovered that an algebraic equa
tion of the second degree in v' can be rigorously deduced from 
these equations. The condition of reality will give a lower 
limit of Q • 

Before seeking-this equation of the second degree, I shall 
make a·remark. The spin of the projectile has a negligible varia
tion along the trajectory. So, the role of K is almost negli
gible. To simplify the explanation, I assum~ that 

Kz = O, whence p_= cons_:t• . . . '' 

·In the case of perfectly regular departure, 

Po "' (j)t. = Q • 

In the contrary case, 

Po = Q 1"' Q • 

' . 

(22) 

(2.3) 

In fact, the 'initial values (J 0 , vt, 7lt are extremely small 
if the projectile is well designed and if the tube is not 
eroded. 
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Note that, if Kz is not completely negligible, it is suffi

cient to add to the expression for p a function D(t), which 
vanishes at the origin, decreases, and is extremely small if 
the projectile is normal. 

The first of equations (21): 

B p 1 +A qp - Bqr = II :,- · 
X-

would be an absolutely rigorous equation if the parameters k 
and ~ , which figure in 'x' were known. These parameters 

(24) 

certainly vary along the trajectory; but they vary little if 
the stability is suitable, so that the drift is regular and 
feeble. If we assume that k increases between the origin and 
the dangerous zone, and that it can take values between 1 and 
3 or 4, approximately, this is an hypothesis which appears ac
ceptable. Furthermore, it is possible that the variations of 
~ are in the sense opposite to those of k. 

In the case of flat fire, it is extremely probable that 
the variations of kl are quite small. It is difficult to 
give general indications from this point of view in the case 
of very high angle fire. 

We could study equation (24) with great precision by keep
ing sin o and cos o, by not assuming any approximation. How
ever, that would be difficult. So, I shall make certain approx
imations which will not alter the character of the equation at 
all. 

Let us consider, e.g., the derivatives 9' and 'tl. 

At the origin, 9 1 or 't~ will be very small if V0 is very 
large. 

Later, 9' or '"'will remain very small if Vm remains 
quite large. I shall always suppose that Vm rema~ns quite 
large, so I exclude not only the case: Cl = '10° 1 but also 
the case: Cl ~90°. I do not study almost vertical fire because, 
near the summit, the minimum velocity would be quite close to 
zero. The phenomena then become entirely different from those 
which we are examining. 

Now, let us consider the derivative ~'· 

If 0° = O, or 0° = O, we shall have: ~& = 0. 
1 

In the case of perfectly regular departure, ~' = o. 
0 

In the contrary case, 
as o1 is. Later, ~~ will 

~~ will be very small at the origin, 
remain small if Vm remains quite large. 
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The variations of k and l play a role here. Let us repeat 
that this role is a minimum in the case of flat fire if the 
angle of projection is large. 

As long as V remains large, our ignorance on the sub
ject of k and L m probably gives us no great embarassment. 

When I say that the minimum of V must be quite large, 
this statement is not precise enough.m Suppose V0 very large 
and a quite near 90°. The summit S will have a high al ti
tude and, consequently, at the point of minimum velocity, 
the ballistic coefficient c will be very much diminished with 
respect to its initial value c 0 • There results a great dimi
nution in the value of the stability function Q. So, the nu
merical value of the mean yaw might become too large, with regard 
to the general conditions of stability. I shall say, then: 
V must always remain quite large, and all the larger, the 
h'gher the corresponding point of the trajectory is. 

So, I always suppose that the initial velocity V0 is very 
large, that the minimum velocity is not small, and that the 
angle of projection a is different from 90°. Otherwise, the 
stability is doubtful ~ priori; absolutely nothing would be 
known about the parameters k and~l; certain hypotheses such as: 

might have no foundation. Besides, there would be no sense 
in writing: 

sin & ~ &, and cos & ~1. 

Without actually insisting on these questions of approxi
mation, I must underline their importance. 

Let us analyze all the terms of equation (24) • .. 
Neglecting the product ll'9', we have: 

p' ... &n + e + (I) 4 "'' • 

Neglecting products such as: 9•& 2
, ~·& 2 , gr 2 &, ~· 2 &, 

"1}'9'&, etc., we have: 

Therefore, 
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So: 

On the other hand, if we suppose 

P = Po = g 1• 

·11 = 0, . z 

The very approximate expression for q is: 

' A "'~>. I) '11 1 + M. 

The ·first member of equation (24) will be, with a good 
approximation if we remain within the limits previously in
dicated: 

(26) 

However, we know, .!! priori, that Q 1 must be a large num
ber and, on the other hand, B/A is certainly less than 8 or 
10, for example. 

Besides, 1w
3
1 remains very small, 

So, we can certainly neglect the last term, for it is 
always extremely small with respect to the first. So, for 
the primitive equation (24), we can substitute the following 
approximate equation: 

Roughly, the approximation is good if I) remains small, 
and the better, the closer I) is to zero. 

The condition of reality of 'II' will be: 

> o. 

I recall that: 

R = rrti: = mcF(v), 

-2S-
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8= Qll COS 1jl + IJ" cos Q sin 'I' ' 
M"' (1)6 .. (1)4' 

and 

(1)4 = - '!I' sin'!'. + ~· cos Q cos 'I' • 

This is E· Esclangon' s criterion, ;nuta tis mutandis (loc. 
cit., p. 780), , 

I shall put it in the following form: 

Sli 2 + 4 82 li (li" + @ ) + 4A 8 QlliM 
> 
= o, (29) 

setting 

s::'-'g 1)2 - 48 Rkl • 

Since the yaw li is positive, the criterion (29) can be 
put in the form: 

·, . (30) 

M. de Sparre, in his aforementioned Report of 1904 (pp. 293 
and 295), gave two successive criteria: 

or 

and 

(A Q. ) 2 > 4 '8 (Rk ~ ) o, 

S 0 > 0 , with Q1 = Q , 

16 
>'-3 

8 (Rk l ) :, 

. ' (31) 

(32) 

The first criterion is deduced from the equations of 
gyroscopic motion, derived in the Report of 1904, and the 
second criterion is deduced from very ingenious considerations 
of the physical character of the air resistance. 

I shall study criterion (30) at the origin, i.e., for 
t "' 0. As a result of this, if the departure is perfectly 
regular, the second criterion is applicable again, for t ~ 0. 
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As a result of this, if the departure is perfectly regular, the 
second criterion is applicable again, for t ~ 0. However, if the 
departure has the least irregularity, it must be foreseen that 
the second criterion will be insufficient for t ~ 0. M. de Sparre 
always implicitly supposed ~hat the departure was perfectly regular. 

After the criterion has been studied at the origin, it must be 
studied for any values of t whatever; but actually, I put this q~zs
tion aside. 

M. Esclangon made a penetrating study of this question by dis
tinguishing zones of stability and zones of instabilitv on a tra
jectory. 

7. INTEGRATION OF A DIFFERENTIAL SYSTEM. I suppose that 
the departure is perfectly regular and that N = 0. Under these 
conditions, equations (21) become: z 

with 

Besides, 

BP 1 + 1< (AQ-Br) = 

Bq' p(AQ-Br)= 
(33) 

So, the term B r is negligible with respect to A Qat the origin, 
i.e., when t ~ 0, and the above equations can be replaced by the 
following with an excellent approximation: 

B P' + qA Q = N ' X 

oq'- pAQ =Ny• (34) 

These are the differential equations which M. Sugot very 
fortunately used to derive the approximate equations of gyroscopic 
motion. His equations are similar to those of M. Esclangon and 
the approximations are the same. I am going to study equations 
(34), so as to be able to discuss criterion (30), 

Let ro = A 1!./B ; ro will be a large number, like !l • I suppose, 
in fact, that the ratio B /A is less than 7 or s·, for example. 

We shall write: 
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() .!!.12+ = (I)Pa = fu dt wq - ·•· 
... 

(35) 
.!!9: - wp = wA a c: fa• dt .. 

~· ~· 

Although it appears a bit paradoxical at first glance, I 
am going to integrate equations (35) as if f 1 and f 2 were known 
functions of t. These functions are continuous and differentiable, 
since we suppose essentially that the derivatives at and an exist, 
in.all that precedes. 

Note that the ratio f2/f 1 =A /P is supposed constant and 
very small for t ~ 0. We assumed that this ratio can have a value 

. such as 2% or 3% at the origin. · 

The clas'sic method of "variation of constants" immediately 
gives the solution: 

p = A cos Wl; + · fl sin wt, 

Q = >..sin wt - fl cos wt. 

Whence: 

X' = fl cos wt + fa sin wt, 

fl' = fl sin wt fa cos wt. 

To have Po = Q0 = O, we must take A0 =flo = 0. 
convenient to introduce t~e following symbols: 

It should be remarked that, always, 

pa + Q 2 = A 2 + f.L 2. 

(36) 

(37) 

It will be 
.•. 

· I shall have to be occupied with the case where F1 and F: 2 
are linear functions of t: 

(38) 

It will'be convenient to introduce the auxiliary variable: 

T ,..wt. 
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Immediately: 

w ~ = H1 f T T cos T dT + H2 l T sin T dT, 
0 0 

w ).. = H1 (T sin T + cos T 1) + Ha (-T cosT+ sin T), (39) 

and, similarly, 

w P,- = H1 (- T cos T + sin T) - H2(Tsin T + cos T - 1). (40) 

The curves of ).. and !!. can be constructed according to the 
formulas, remarking that the extremes depend uniquely on the 
ratio A/P, from the point of view of their position. 

On the otr~r hand, the terms in H2 will generally be negli
gible with respect to the terms in H1 , because the constant H1 
will be a very small number, and because the ratio A /P is small 
with respect to unity. 

I adopt the following notation: 

X= Xo, x1, xa, x.il, x4' 

for 

T = o, " "• 21!. 2K 1 2. , 2 , 

or 

t = o, It 1!.. 21!. 21t 
2w' w• · 2w' (I) • 

Hence: •. 

.(1)~1 = Hl (!. 
2 1) + Ha, (I)!! = H - (~ - 1) Ha, 

1 1 

(I)),. 2 -- 2Hi + ~tHa, W!J. 2 = KH1 + 2Ha, 

(I) ),.3 =- (3!. + l)H1 - Ha, (I)!J.3=- H1 + (3~ + l)H:a, 2 
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The curves of p and q can be constructed, remarking that 
· the extremes of p are given by the equation: 

q(t) = F 1 (t), (43) 

and the extremes of q by the equation: 

p(t) =- F2(t), (44) 

so that the extre~es of p correspond to the following values: 

T = 0, T tJ n , and T = 2n • 

The extremes of q correspond to the values: 

T = O, T = 2n. 

Figures 6 and 7 represent the curves of ). , Jl , p, and q 
in the interval from T = 0 to T = 2n. 

Besides, we must note this: 
and 5(t) are, if they are finite 
hood of the point t = o, 

lim Q = lim~ = 0. 
t=o o t=o o 

whatever the functions P(t) 
and continuous in the neighbor-

In fact, let us return to equations (36) and (37), a.nd 
suppose: 

). o =flo = Po = qo = 0 • 
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The functions f 1 and f 2 contain 6 as a factor. It will be 

sufficient to apply the theorem of the mean in the interval from 
t = 0 to t = e, and to make e approach zero as a limit. 

Remark. I must make a remark. In this theory, there exists 
an appearance of ~ vicious circle, for I seek the value of Q and, 
at the same time, I sometimes rest on. the fact that Q will be a. 
large number. However, this is only'an appearance of a vicious 
circle. In fact, Q is not a parameter that is susceptible to 
vary from zero to infinity. With a given caliber and initial vel
ocity, we are certain that Q will vary between two rather close 
limits Qt and Qtr. That is why we cB.n regard b.!, a priori, as a 
large number with respect to other elements which come into play. 

Finally, when Q will have been determined according to the 
criterion, we shall see well whether the method followed is good, 
mediocre, or bad. In the last case, the method will have to be 

. perfected. 

For example, the major calibers might require particular 
studies; but I am not actually making a complete discussion of 
allthe cases. 

8. STUDY OF THE YAW AT THE ORIGIN. I suppose that the 
departure is perfectly regular; I am going to make the approx
imate calculation of 6 at the origin, i.e., when t varies from 
0 to 2n/w. 

I shall make a first approximation by starting from formulas 
(9) and (15), and setting 

6 "'I ·ttl t. (45) 
0 

That will permit the knowledge of p, with a great approxi
mation, according to the preceding study of p and q. 

Knowing p, I shall make a second apprpximation of· 6 by 
setting 

.. 6 I "'I 't I I + p. .(46) 
0 

That will give the form of the curve 6(t) at the origin. 

Note that t varies here in an extremely small interval if 
w is a large number. As a result of this, we know, we can regard 
P(t) and -rt(t) as constants and equal respectively to P0 and 'tl 
in the interval from T = 0 to T = 2n. 0 
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So, the first approximation will give: 

Po .. Po I "t ~I t. (47) 

If we refer to the previous notations, we must set, here: 

'or E1 =Po j"t 'I. 
(I) (I) .• 0 

(48) 

I suppose that the ratio P0 /w is very small. (Besides, 
"tt is very small if V0 is very large). Consequently, the ordi

nates of the curve of p (Fig. 7) are always very small with res
pect to"t~. The curve which represents 5'(t) will be, with a 
very great approximation, the curve of p, but referred to an axis 
0'X', parallel to OX, the distance 00' being equal to l"t ~ I(Fig. 8). 

The function 51 will have a maximum for T = K + h, where 
h "'o, and a minimum for T = 2n. 

So, the curve of 6 will have a point of inflection for T = 
n + h, and another for T = 2n. 

Here, then, is an essential fact: in the interval from 
T = 0 to T = n + h, 5" > 0, and, in the interval from n + h to 
2n, 5n < 0. 

When t varies from 0 to about n/w, the curve o(t) turns its 
concavity upwards·, and when t varies from about n/w to 2n/w, the 
curve &(t) turns its concavity downwards; this is an important 
fact. 

9. STUDY OF THE CRITERION AT THE ORIGIN. DEPARTURE PER
FECTLY REGULAR. I suppose that the dep!'lrture is perfectly regu
lar, So, it will be necessary to substitute Qfor Q 1 in the 
inequalities (29) and (30), 

Besides, I actually study the criterion only at the origin, 
i,e,, for t "' 0. 

By the relation (16), 

lim M = o, 
t=o o 

and M/o is negligible fort., 0 in the inequality (30), 

If there is, for t ., o, _a double inequality of the type: 
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0 < (In + e A 6 . < , (49) 

where A is positive, then, at the origin, we shall be able to 
adopt the criterion {31). Moreover, it must be remarked that 
this criterion is obtained immediately if it is assumed that, 
at the origin, the projectile is similar to the top -- a rather 
fragile intui~ion, when it concerns so delicate a discussion*. 

However, I have just shown that (In changes sign in the 
immediate neighborhood of the origin. As a result of this, the 
possibility of this relation (49) is not probable, and I am go
ing to study carefully the values of li" + & for t "' o. 

. ' I) 

With reference to formula {20): 

nl ·.., l)n + e f t ... 0 f 6 ' or ; 

it will be sufficient to study the values of pi /5 for t"' 0 • 

. :With a sufficient approximation, 

(50) 

Ql !l. 
I) = ro(P 0 - ~). (51) 

So, it is necessary to study the variations of q/6 for 
t .. o. 

In the interval from T = 0 to T = ft + h, p 1 > 0. However, 
in the interval from ro + h to 2ft, p 1 < 0. 

So, it is necessary to know the maximum of the modulus of 
.(P 0 6 - q) in this interval; it is this maximum which intervenes 
in the criterion. 

The following values are very approximate: 

for T = ft, I) = !!. 
' (I) 

I "[~I , q =!!.l"r 1 1 
(I) 0 Po; 

f·or T = 2ft, I) = 2ft l"r' I 
(I) 0 

, q = 2K I"[ I 
(I) 0 I Po· 

, 
• On the subject of the elementary theory of tho top, see e,g., Beghin, 

Statics and DWnamics, Vol, II, collection Armand Colin, p, 168. 
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So, at these two points, the value of q/6 is the same, with 
a great approximation. 

The following values are also very aoproximate: 

for T = 2K 6 = 2K I -r 
1 

I · q = 1 ( 3n + 1) 1 -r 
1 

1 
· 2' 2ro 0

' ro2 ° 

So,, at this point, the value of q/6 is greater than at the 
points n and 2n. If the number P 0 /w is very small (which can be 
verified when the value of Q is fixed), all these approximations 
are satisfactory; but they are approximations; so it is useless 
to seek the exact maximum of q/6. We have immediately a superior 
limit of this maximum, by taking the largest value of q in the 
interval, and the smallest value of 6. That gives: 

in the 

sup lim q/6 = 2P 0, 

sup lim (q/6 p 0) = Po 

interval from T = lt + h 

sup lim I p 1 /61 = wP 0 , 

sup lim I 6" ~A 1= wP 0 

to T = 2lt' or, firiaiiy, 

(52) 

(53) 

(54) 

(55) 

The inequality (30) can then be put in the following form 
for t ., 0: 

(56) 

where 

= S ( A Q ) 2 - 4 B (Rkl ) o: ; 

i.e., 

(57) 

for 

p _ Rkl 
A Q • 

The coefficient 8 in (57), which I obtain thus, is rather 
high. M. de Sparre's coefficient in (32) is 16/3. However, I 
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immediately find M. de Sparre's coefficient again intuitively. 
According to the preceding, the maximum of q/6 will occur 
approximately at T = 3n/2. At this point, with a great approx
imation, 

.. · .. 

._<G_ 
0:- Po 

3 

If I substitute 1/3 for 2/3n, I obtain M. de Sparrets 
coefficient. As this theory has no point of contact with 
M. de Sparre's, I consider the concordance of figures as be
ing very satisfactory. However, this accord exists only in 
the exceptional case of perfectly regul~r departure. 

10. INTEGRATION OF A DIFFERENTIAL SYSTEM NEAR THE PRECED
ING SYSTEM. \Ve shall now have to consider a non-vanishing 
initial yaw. As a result of this, it will be opportune to 
integrate the system (35) by taking f 1 and f2 as constants. 
I obtain the expression of these constants by taking the 
values of P and 6 at the instant t = n/m, for my study will 
be limited to the interv~l of time from t = 0 to t = 2n/m. 
By thus taking constant approximate values, I introduce an 
artificial periodicity; but that offers no inconvenience at 
all, since this study is actually limited to the interval of 
time indicated above. 

Let 

Hence, 

and we know that this ratio is very small. For example, at 
the origin, its value might be 1% or 2% or·J%. 

First, suppose: 

~D =~o = Po = qo = 0. 

Integration of equations (37) gives immediately: 
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).. = A1. sin rot + A2(l - cos rot), 

1l 
,;, A1.(1 -·cos rot) - A2 sin rot .• 

.. , 
It is convenient to introduce the variable T = rot. 

It is·· seen immediately that >.. has a maximun near A1 for 
T "' n/2, and a minimum near· -A1 for T "' Jn/2, since A2 is 
negligible with respect to A1 • 

(58) 

Similarly, ~ has a maximum near 2A 1 for T"' n, and a very 
small minimum for T "'0. Al·so, it is evident that the curves 
of>.. and p are very close to each other, and that the curves of 
~ and q are very close to each other. That originates, par
ticularly, in the following fact: . 

p 2 +.q 2 = >.. 2 + ~ 2 = 4(A 2 + A2) sin 2 (rot/2), (59) 
. 1 2 

so that the points 0., ·j!) on the one hand, and ( p, q) on the other, 
describe two circles of the same diameter, passing thru the ori
gin (Fig. 10), If we consider the tangents at the origin, these 
two tangents are symmetric with respect to Ox, and very slightly 
inclined to Ox. So, ·the centers B1 and Ba of the two circles 
are symmetric with respect to Oy, and are very close to it; they 
would be confused if the ratio A2/A1 were zero. The symmetry of 
the tangents with respect to Ox results !~mediately from the follow-
ing expressions: - · · 

p 1 = roA 1 , q' = roA2; )..I = roA 1 , ~~ = - roA2,· 
0 0 0 0 

~I/).. I = 
0 0 

q I /pi . 
0 0 • 

It must be noted that the forms of the four curves (Fig. 9) 
are determined by the value of the ratio A2/A1 , and this is what 
makes this approximation interesting, · 

Now, suppose: 

Po f O, q f 0. 

Since 

Po = >..o and qo - - ~o> 

we will have: 

>.. o f 0 ~nd fL 0 f 0. 
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Let us keep the notation A , fl , p, q for the expressions 
· Which have been calculated and which vanish at the origin. We 

must now replace A and fl by A+ A 0 and fl + flo. 

The new expression of p will be A: 

A = p + A0 cos rot + fl 0 sin rot. 

The new expression of q will be B: 

B = q + A0 sin rot - flo cos rot. 

What has been done permits us to integrate the system (35) 
_in somewhat more general conditions, 

Let (p 1 , q1 ) be the solution, which vanishes at the origin, 
for the case: 

f 1 = roA~, f2 = roA2. 

Let (p2, q2) be the solution, which vanishes at the origin, 
for the case: 

f 1 = roH 1 t, f2 = roH2t; 

(p 1 + p2, q1 + q2) will be the solution, which vanishes at the 
origin, for the following case: 

f 1 = ro(A 1 + H1 t), f2 = ro(A2 +Hat). 

Furthermore, to have a solution that passes thru the point 
(p 0 , q 0 ) at the origin, it is sufficient to add the periodic 
functions: 1 

(60) 

Wa = A0 sin rot - flo cos rot, (61) 

To avoid all confusion, we could designate the solution of 
(35), which vanishes at the origin, by p and q, and the general 
solution, which assumes the values Po and q 0 at the origin, by A 
and B. 

11. COMMENTARY on IRREGULAR DEPARTURES. It must be fore
seen that the departure could not be perfectly regular. It cer
tainly depends on us to utilize only well inspected shells and un
eroded tubes, but other facts do not depend on us, Violent re
actions, which make the trunnions of the gun vibrate, can be 
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produced at the contact of the earth and the carriage. Further
more, at the ~u~zle, the expansion of the gases and their in-
flammation ca~ generate certain vortices and cavitations which 
act on the projectile as deviating forces. From the analytic 
point of view, we say that an irregular departure corresponds to 
a non-vanishing initial value of the yaw, and an initial value 

d5 I 
of dt different from the regular initial value I ~ 0 1. 

However, a distinction must be made. 

If very violent perturbations existed at the departure, 
we would then have to study the primitive equations (21), and 
not the equations such as (27), deduced from the primitive 
equations by simplifications which are permitted by reason of 
a certain regularity of the physical phenomenon, of which we 
have a well founded intuition. The study of very violent per
turbotions is not a question which properly concerns ballistics: 
I do not speak of it; 

I am going. to consider exclusively the following conditions, 
which seem to me normal if the initial perturbation is small. 

I assume the existence of an extremely small initial value 
o0 , say of the order of a thousandth of a degree, this figure 
being only an indication. 

Furthermore, I assmpe the existence of a modification of 
the regular value of o , which is 1 't I 1, a small modification 
compared to the regular value 1 ~' 1 • o 

0 

I shall remain almost in the preceding frame of study, 
and shall say that the departure is almost perfect. 

0 

To simplify the facts, I suppose ~o = O, i.e., 5
1 

= 0. 
Whence, 50 = 5~, while 50 = 0 in the case of perfectly regular 
departure. 

As a result of this, 
I 

1Jo = 0. 

Consequently, as in the case of perfectly regular departure: 

0. 0 0 0 0 

Ol = 0).3 = 0)4 = 0)6 = 0)7 = o, 
2 

MD = NO = o. 
Let us consider the expressions for p, q, P• We have: 

Po = 51 + Ql = o' + ~I • (62) 0 
0 0 0 

I assume again that Q1 = -c', because 50 is extremely small. 
0 0 



() Then: 

( 

' . 

(63) 

(64) 

(65) 

Let us return to the fundamental system (21), supposing 
Nz = o, for greater simplicity. 

The third equation will give: 

P = Po,= Q + ro, 
' 

(66) 

(67) 

I shall suppose essentially that the ratio lr 0 1/w is small; 
consequently, the ratio lroi/Q will be a very S'Jlall nu.'llber. \Ve 
shall then have a sufficient approximation if we substitute Q 
for p in equations (21), and Ap for Ap - Br, for t "'O. So, we 
again find equations (34), but with not quite so good an approxi
mation as in the case of perfectly regular departure; for, in 
the latter case, r 0 = 0. 

I have thus substituted the following for the system (21): 

_Q_Q+wq=N, dt X 

.9..9. 
., (68) 

= wp = N 
dt y' 

·-p = Po• 

The system (21) is not an ordinary system defining p, q, p, 
because b, which figures in the second members, is also an un
known function of t. However, I am going to place myself in par
ticular conditions. I consider only the very small interval of 
time from t = 0 to t = 2:~/w, corresponding to a very small zone 
Z0 on the trajectory. In this zone Z0 , I shall be able to obtain 
a very satisfactory approximation of b, as I have already done, 
and that will permit me to regard the system (21) as a differential 
system defining p, q, and p. Of course, I suppose the oarameters 
k and J. to be well known at the origin. 

furthermore, considerine (21) or (68) from this point of 
view, I shall be able to choose p 0 , q 0 , Po arbitrarily, taking 
account of the condition which I have imposed on myself concern
ing the limitation of lrJ/w. 
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To give Po> Q0 , p 0 , or Po> Q0 , r 0 , is to give the initial 
perturbation of the free trihedron. 

I essentially suppose that this perturbation is a minimum. 
For example, the ratio I p 0 / 't ~I will be less than 1/20 or 1/30. 

. The value of 6 0 , e.g., could be less than 1/10,000 or 
. . . 57.3° 57.3° 

1/lOO,OOO, which corresponds to about 10 , 000 or 100 , 000 • 

I shall set '!'~ = 11 Po> where Ia I can be comprised between 
zero and a number quite close to 1, for example. 

If 

I "'t I= 1/loo, 

e.g., we will have 

I Pol< 1/2000. 

Then take: 

bo = 1/60,000, about P/1000; and '!'!. = 5; 
this will give: 

Qo = 1/12,000, and r 0 '-5. 

In general, the figures which I give are only slightly probable 
numbers. The last ones, in p1:1.rticulnr, constitute only a vague in
dication. In each case, it will be necessary to examine what can 
be a norT.al initial perturbation. Furthermore, from the point of 
view of approximations, the caliber plays an important role, ac
cording to the fundamental formula: 

The design of the shell also plays its role, since 

o> = A Qj B, 

We have previously seen the role which the ratio P 0 /o> plays, 
and I supposed that this ratio is small. It is 

_ B Po - , 
-nr- . ' 

and, -if a designates the diameter, 
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= nac; 

so that P 0 /oo is generally small, because the ballistic coefficient 
c is a very small number.- However, it will be necessary to exa~ine 
all the possible cases, in order to evaluate the coefficient n. 

Since the departure is almost perfect, my method of approxi
mation will be ffiodified a little. Formulo (62) gives 

~ t = I 't~ I + Po • 

The first approximation of ~ 1 will be ~~ = 5&, which gives 

~ = ~o + (I -r& I+ Po)t. (69) 

The function p, or A(t), will be calculated, taking the value 
Po at the origin; and the second approximation of 5 1 will be 

&1 =I -r~l + A(t). (70) 

p, or A(t), and q, or B(t), should be calculated according to 
the system (35), in which the second wembers comprise a· constant and 
a term in t, according to the approximate expression for 5, given by 
formula (69). 

\l'e shall be able to construct the curve of q, or B(t), relative 
to the zone Z0 • In this zone, the first approxir.J&tion of the yaw is 
represented by the straight line O"ee', whose slope is~~; and OE =5 0 • 

Draw the tangent O"E to the curve q; the ra.tio of the slopes of 
the str&ight lines O"E and O"e gives the ·maximum of the ratio q/5 
(Fig. 11). 

The constants Po and q 0 can again effect a raising of the curve 
of q and, consequently, increase the maximum of q/~. 

It will not be useless actually to consider the nature of the 
aporoxi~ations adopted in this study. Equation (9) is an exact re
lation. The last term in ~· is negligible in the zone 2 0 , for it 
contains two factors which vanish at the origin. \o/e c::n substitute 
cos ljl 0 for cos .ljl·. if ljl~ is quite small. Besides, here, cos ljl 0 = 1. 

So, I shall replace cosljl by 1, assuming that ljl~ is quite s!:iall. 
I assume intuitively that, in the zone 2 0 , g = 't and 9' = 'tt; in 
particular, that Gt = -rt. 

If the variation of -rt is very feeble in this zone -- which 
occurs, in general -- we can substitute -rt for gt, ·which gives, 
with a great approximation, in the zone Z 0 , 

p = ~I + -rt • 
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( ) Furthermore, by substituting the approximate expression A(t) 
for p, we obtain formula (70), This formula puts in relief the 
points of inflection of the curve 5(t) -- an important fact. 

. Then, I a"gain take the approximate expression (69) for t:.. 
This approximation will be good if I p/<~1 remains small in the 
zone Z 0 • In particular, if Po i 0, the ratio lp 0 / •tl will have 
to be small for the approximation to be valid. · 

In general, the smaller I p/ • tl is, the better the approxi-
mation will be. · 

In these questions, we must always try to see the conditions 
which concern a very good approximation. If great difficulties 
sometimes keep us at a little distance from the conditions re
quired for a good approximation, we shall then know that the method 
is less sure, and shall have to introduce some prudence in the 
terms of the conclusion. · 

For example, when I say thatg or w is a large number with 
respect to certain parameters, this fact mubt be discussed and 
verified. A complete discussion of the approximation would involve 
a classification of projectiles according to their diameter, their 
ballistic coefficient, etc., and it would be seen that such an 
approximation, which is excellent for certain calibers, is weak for 
others. I content myself here with quite general indica.tions. 

In my study of the system (35), I always supposed? constant, 
and substituted P0 for P. That requires some enlightenment. 

According to the preceding, 

(71) 

where n is quite close to 1, but I am not more precise. 

Now, suppose V0 comprised between 500 and 1500 m/s. To give 
an indication that is probable but not precise, I shall say that Q 
could be comprised betv1een 1000 and 3000. Moreover, taking prob
able values for the ratio A /B , we could say that w is comprised 
among such numbers as ?On, lOOn, and l50n. · · 

In these conditions, the zone Z0 would correspond to a dura
tion of 2/70, 2/100, qnd 2/150 sec. 

Now, let us·study the ratio 51/f:J in the zone Z0 • 

Let us first suppose tl 0 = 0. We have: 

f:J!/tJ ""1/t. 
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In the zone Z0, this derivative is extremely large. 

Now, let us suppose 60 > o, and extremely small. This concerns 
almost perfect departure, and I suppose essentially that the ratio 
6t/6 0 = I :rt I /6 0 is a large number, 

In the zone Z0, 

61 ., 6b, 6 .,_ 60 + 6tt. 

Set 

. 6tt.= L6 0• 

For t = o, 

L ·= 0, 

At. the end of the zone Z0, 

· t- = · 2/70 or 2/100 or 2/150, 

approximately, and, e.g., 
. -

L = 2, 3, 4, ••••• 
Write 

(73) 

Evidently, this ratio is quite a large number, a little less 
than 6t/6 0, in the zone Z0, if oo is a large number. 

In allcases, the ratio 6t/6 is much larger thaniP'/PI·in 
the zone_Z 0, if oo is a large number. 

In the zone Z0·, the product P6 is increasing, altho P may 
be decreasing; the variations of P are insignificant with respect 
to those of 6, in general. 

To avoid all equivocation, I must repeat that I do not examine 
all possible cases, when I refer to the numerical value of Q , oo, 
or L. That would require a much more detailed discussion. 

12, SUMMARY STUDY OF AN ALMOST PERFECT DEPARTURE. I have 
defined the almost perfect departure. In particular, (M/5) 0 = O, 
so that, in the zone Z0, we shall put the criterion (30) in the 
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form: 

or else: 

s + 4B2 r > o. 

When p' is negative, we must seek the maximum of 
Jp'/6J and the criterion takes the form: 

S> 4B 2 1f1 max. 

I recall that 

Furthermore, 

so that we ought to seek the maximum of q/6. 

Set 

<%>max = 
so that 

(s + 1) Po, 
-. 

' . . 
·1 Flmax"' cosP 0 , 

and the criterion will.take the form: 

for 

S > 4 es(Rk.l) 0 , 

·OlP·= Rkt • 
B 

A general study of the curve of q, or B(t), would have 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

to be made in the case of almost perfect departure. To abridge 
the discussion, which would require quite long developments, I 
shall only make a sketch, by examining two particular cases. 

First ~· I suppose: 
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Then: 

= o. 

Moreover, the ratio (p 0/~tl is very small, which will 
permit me to keep the method of approximation previously 
adopted. Bere, as in the case of perfect departure, 

lim M 
t=o a "' o, 

but with Po ~ 0; so, this is an almost perfect departure. 

Calculate the'solutions p and q of the system (35), 
whic.h vanish at the origin; they are represented by the curves 
already constructed (Fig. 7). To pass .;,·rom p to A(t) and 
from q to B(t), it is sufficient to add respectively the periodic 
functions W1 and W2. These functions, defined by formulas (60) 
and (61), have here the simpler form: 

u1 = )..0 cos rot' 

u2 = )..0 sin rot. 

(81) 

(82) 

Consequently, the curve of q will be raised in the interval 
from T = n to T = 2n, and the curve of p will be raised in the 
interval from T = n/2 to T = 3n/2. 

The solid line (Fig. 12) represents the curve of q, and the 
dotted line represents the curve B(t). We ought to draw the tan
gent OE to the latter curve; it is evident that the tangent is 
raised. At the same time, the straight line Oe•, which represents 
the first approximation of o, will be lowered a little. So, the 
maximum of q/o is augmented by the presence of the non-vanishing 
parameter Po• 

Therefore, if we take M. de Sparre•s coefficient s = 1/3 
in the case of perfect departure, it will be possible to have 
s > 1/3 in the case of almost perfect departure. 

Then 

Second ~· Take: 
0 

V0 = 1200, g cos a= l,a- 84 

f't t I = l/1200. 
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We shall take 

6 0 = 1/120,000. 

which gives 

lio/ I T 1 I = 1/100. 

The first approximation of 6 will be 

1 ( 1 6 = 1200 100 + t). 

Altho ro is unknown a priori, we know that its numerical 
value will be quite large if the diameter of the projectile 
-is not very large. So, suppose the caliber medium, e.g.: 

· 80 mm, 100 mm, 140 mm, •••• Represent the value of 6 for 
T = n by 6 , and the value of 6 for T = 2n, which corresponds 
to the endmof the zone Z0 , by lin. For example, if n/ro were 
near 1/200, we would have: · 

6 ~ 3bo li ~ 21i m 2 • n o• 

If n/ro were near 1/100, we would have: 

lim~ 21i 0 , lin "' 36 0 • 

Since the variation of li is not large in the zone Z0 , I 
shall be able to make an approximation which is somewhat 
rougher, but rapid and convenient. I shall take a mean value 
of Pli in Z0 , the value at the instant T = n. The fact that 
ro is not known is unimportant, as we shall see. So, the mean 
value of Pli will be P 0 1im, very approximately. 

So, I integrate the system (35), by setting: 
A 

f 1 = roP 0 1im' f2 = ro p P 0 1im. 

We know the solutions p and q, which vanish at the origin, 
and we know that: 

(83) 

To obtain the maximum of q/6, I ought to draw a tangent 
to the curve thru the point 0 11 • I can assume, ·as a new approx
imation, that the point of contact E is confused with the 
summit ~of the curve. By the hypothesis which was made about 
the numerical value of A /P, the maximum of q occurs for 

llf T n. 
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So: 

C!)max"' iP o• (84) 

This approximate result is independent of the numerical 
value of &m' and that is what makes the approximation easy. 
In the actual case, with this approximation, s '"'1. 

Now, suppose the departure almost perfect, i.e., p 0 , 

q 0 , r 0 non-vanishing and small enough for the adopted approx
imation to be valid, 

From the point of view of the approximation, we must 
examine the numerical value of P 0 • The approximation will be 
good if P 0 is quite small, i.e.; if the ballistic coefficient 
is very small. That results from the examination of the formulas 
(83). 

. ' · .. 
. ·.Suppose the initial values. Po and Q 0 negative. The curve 

of q being represented by the solid.lir.e (Fig. 13), the curve 
B(t) will be represented by the dotted line; the curve will be 
raised in the region of the summit ~ , and the maximum of B will 
be able to have the same abscissa as the maximum of q. Then: 

(~)max"'(2 + h)P 0 , h > O, · 

i.e., s > 1. 

Since this method of approximation is not very precise, 
the value of s is not very well determined; but I have shovm 
intuitively that a minimum initial perturbation can make the 
numerical value of s greater. · 

(80) 
ties 

Since the criterion relative to Q is represented by formula 
at the origin, we see quite simply that minimum irregulari
at the departure might increase the coefficient s. 

Moreover, if the artillery adopts a coefficient s greater 
than M. de Sparre's, that signifies that it foresees quite 
strong initial perturbations*. 

I have examined one of the numerous aspects of the problem, 
and I ·shall complete these researches later •. 

Translated by 

H. P. Hitchcock 
., 

•G. Sugot, Theoretic Exterior Ballistics, Mem. de 1 1art. t£., Vol. VI, 
1927. 
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