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ACOUSTIC RADIATION FROM FLUID LOADED RECTANGULAR PLATES

by

Huw G. Davies

Abstract

The acoustic radiation into a fluid filled infinite half-space
from a randomly excited, thin rectangular plate inserted in an infinite

baffle is discussed. The analysis is based on the in vacuo modes of

the plate. The modal coupling coefficients are evaluated approximately
at both low and high (but below acoustic critical) frequencies. An
approximate solution of the resulting infinite set of linear simul-
taneous equations for the plate modal velocity amplitudes is obtained
in terms of modal admittances of the plate-fluid system. These admit-

tances describe the important modal coupling due to both fluid inertia
and radiation damping effects. The effective amount of coupling, and

hence the effective radiation damping acting on a mode, depends on
the relative magnitudes of the structural damping, i.e., on the widths
of the modal resonance peaks, and the frequency spacing of the resonances.

Expressions are obtained for the spectral density of the radiated
acousti- power for the particular case of excitation by a turbulent
boundary layer.

Massachusetts Institute of Technology
Department of Mechanical Engineering
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1. Introduction

to random excitation

Much research has recently been done on the response/of struc-

tures vibrating in air. In general, and certainly as far as most

practical situations are concerned, the response in tnis case is

effectively the in vacuo response, no consideration of the interac-

tion of the structural vibrations with the associated sound 'eld

being necessary. The acoustic radiation, if required, can then be

estimated from the already determined structural response.

Light fluid loading effects have alsu been included in some analyses.

Much of this work is based on the statis'.cal energy method of Lyon

and Maidanik 1) . Maidanik (2 ) has used the method to estimate the

radiation from finite panels vibrating It air. More recently,

Leehey ( 3 ) and Davies ( 4 ) have discussed its application to turbulent

boundary layer excited panels. The pr-sent analysis is to a certain

extent an extenson of some of this work.

Previous work concerning water loading effects has -oncentrated

on spherical shells, infinite cylindrical siells and infinite thin

(5)plates (see, for example, Junger , which contains a large number of

additional referencesand Maidanik(6)). In each of these cases the

interaction problem is simplified because the i, vacuo normal modes

of the structure are maintained when the structure is submerged in

watcr, as the acoustic field can also be expanded in the same series

of characteristic functions or modes. For the infinite plate, the

series is, of course, replaced by an integral over a continuous spectrum

of wavenumbers.
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In situations, such as that to be considered here, where the

structural response is cbaracterised by a discrete wavenumbe- .. er-

trum and the aco-itiL field by a continuous wavenumber spectrum, the

in vacuo normal modes are not retained. However, the expansion of

the vplnrify rpaw-inp f a structure in terms of its in vacuo modes

is still valid. It is convenient still to refer to these functions

as modes and to talk of the resonance frequencies of these modes, in

which case although we do not refer to a frequency associated with

some natural mode of vibration, we still imply a frequency associated

with the maximum value of the amplitude response of a characteristic

function. An essential feature of this problem now becomes the coupling

together of the in vacuo modes by the structure fluid interaction.

Although we discuss here the particular case of radiation into a

fluid filled semi-infinite space from a rectangular plate in an

infinite rigid baffle, the arguments given concerning the amount and

the effect cf the modal coupling induced can obviously be applied to

other geometries. What we attempt in this paper is hardly a complete

solution of the coupled problem; the modal interactions are far too

complicated; but rather, after a considerable but necessary series of

approximations, we determine and interpret the most Important fea-

tures of the structure-flid interaction and their effect on the

response of the system.

We consider a simply supported thin rectangular plate inserted

in an infinite rigid baffle and fluid loaded on one side. The normal
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vibration velocity field of the plate is expanded in a series of

the in vacuo normal modes or characteristic functions of the plate.

This approach leads, because of the structure-fluid interaction,

to an infinite set of simultaneous linear algebraic equations to be

solved for the infinite number of unknown modal response amplitudes.

These equations are obtained in section 2, below. Furthermore, many

of the coefficients in these equaLunas; thosc a ozie:ated with thp

fluid loading terms; are defined by integrals which themselves can

only be evaluated approximately for various regimes of frequency.

Some of these coefficients have been evaluated by Maidanik ( 2 ) and

also by Davies ( 4 ) . We will continue to refer to those discussed by

Maidanik (2 ) as modal radiation coefficients as they are a measure of

how efficiently a particular modal shape radiates when no other modes

are excited. However, we also require the modal coupling coef-

ficients connecting the vibration of one plate mode with that of

other plate modes because of the plate-fluid interaction. These

additional coefficients are obtained, at least asymptotically at

low and high frequencies, and discussed in section 3. The previously

determined modal radiation coefficients can obviously be obtained

as special cabt-s of the modal coupling coefficien,d. The real parts

of the coefficients are associated with a radiation damping effect

on the plate response: the imaginary parts lead to a virtual mass

to be added to the mass of the plate, hence causing a decrease in

the modal resonance freque-cies.
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In sections 4 and 5 the solution of the resulting infinite set

of modal equations is discussed: for low frequencies in section 4,

and for high frequencies(but below the acoutic critical frequency)

in section 5. At low frequencies, k 0 i k o 3 3 7r/2 (where ks is

the acoustic wavenumber and 2l, 3 are the dimensions of the plate),

all modes have similar radiation characteristics and the modal equa-

tions are all of the same form. An approximate solution of the set

of equations is discussed and modal admittances for the plate-

fluid system obtained which contain the important coupling effects.

The radiated power spectral density is then discussed. A simple

expression is obtained in terms of the modal radiation coefficients,

the modal components of the correlation function of the applied

force and the modal admittance functions. It is assumed that the

applied force is such that it causes no additional modal coupling.

This requires that the typical correlation lengths of the forcing

field be much less than the panel dimensions, a condition that is

satisfied in many practical applications. The case when this condi-

tion does uct hold is discussed briefly in an appendlx. The modal

admittanceL ontain the virtual mass terrm~ and ddditional damping

terms due to the fluid loaditg. The incrtia coupling terms are

small. Because of the coupling, the radiation damping term i found

to b itself a summatlon over many modes. Now, if the total damping

is assumed small, the power radiated in a narrow band of frequencies

is mainly from the modes resonantly excited at frequencies within the
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band. Furthermore, we need only consider the coupling between

resonant modes in the band. It is shown that the magnitude of the

radiation damping is determined by the amount of modal coupling,

that is, by the numbers of modes that interact. This in turr

depends on the relative magnitudes of the structural damping, a

measure of the width of the resonance peaks, and the frequency spac-

ing between resonance peaks. Under the assumption of light damp-

ing there can be no likelihood of power flow between modes, tha, is,

no coupling, if the resonance peaks do not overlap. This dependence

of ttie radiation damping on the structural damping is discussed in

section 4. Estimates are obtained of the radiation damping under

light (hence no coupling) and heavy structural damping. These

are then used in the expressions for the spectral density of radiated

power obtained by averaging over the resonant modes in narrow fre-

quency bands.

At high frequencies, k oZ , k oZ3 >> , the modal interactions

are more complicated, and an analysis of the modal coupling effects

correspondingly more difficult. Maidanik(2) has shown that at

these frequencies the modes can be divided into three groups accord-

ing to their radiation characteristics, namely, edge, corner and

acoustically fast modes (see section 3, below). We estimate, in

narrow bands of frequency, the total coupling between different

types of modes. Since we assume small damping, it is sufficient when

considering edge and corner modes in the estimates to include only
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resonant modes. We restrict the analysis to frequencies below the

acoustic critical frequency, that is, the resonant modes we consider

all have wavespeeds on the plate less than the acoustic wavespeed,

and thus do not consider the case of resonantly excited acoustically

fast modes. This is hardly restrictive in practice; the acoustic

critical frequency for a 1/4' steel plate in water is about 400,000

Hertz. Howe!ver, as the radiation efficiency of the acoustIcally fast

modes is high, it is necessary to determine whether or not the con-ri-

butiom from these modes to the radiated power at any f-equency is of

importance even when the modes are non-reconantly excited. These modes

are thus included in the jiaj.sis. Our PqrirtcG ciT Lite modal coupling

effects in narrow frequency bands thus include the interactions

between resonantly excited edge and corner modes and non-resonantly

ey.:ited acotusticaiiy fast modes. We find, howeverr. that In most cases

the acousticallv fast modes are not suifficiently h~ghly excited either

by their being coupled to resonant edge modes or by the acousticallv

taAr mode corr'nonent of the external forcing field to give any consiaersble

contribution to the radiated field. Expressions for the spectral

density of radiated power are again obtained. The radiation damping of

a trote is again found In the form of at stnnvation over many modes because

of the coupling effect. 71-is atmmation Is 'valuated ar, in the low

froqtiencv case.

In sect ion the direct ivitv of the radiated field is brieflv

k4" U.s a e d
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In section 7 numerical estimates of the radiated power 3pectral

density are made assuming the plate is excited by a turbulent botmdary

layer. Cor-os (7 ) model of the correlation function of the wall pres-

surc field is used. The estimates are compared with the 3pectral

density obtained neglect Lng fluid loading. A wide range of values of

the structural damping is used to demonstrate the dependence of the

modal radiation damping c- the structural damping.

Finally in an appendix, we discus3 the case whe- the modes are

also coupled together by the extemnal field. A simple expression for

the radiated power spectral d.ensity can still be c' tained at low fre-

qucncies in terms of the mod:l coupling coefficients, the modal admit-

tance functionL .lready discussed, and Powell's (8 ) modal joint accep-

tances. It would seem that the two forms of coupling act independently,

and can be dealt wifh separately.

2. The Coupled Equationsof Motion

A simply supported thin rectangular panel of length kI and width

z3 is inserted in a flat infinite rigid baffle. The acoustic field

r'di.ted into the dense fluid in the semi.infLite space on one side

of the panel and baffle will be considered. It is assumed that reither

the panel vibration nor the acoustic field affect the applied external

fo -f-,

R,' tangular coordinates (xl, x2 , X 3) (x.x 2) ace chosen as usual,

X2 being normal to the panel and the origin being at one corner of the
,e. g. water
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panel. The fluid fills the region x2 > 0 (see Figure 1). The equation

for thin panel normal aisplacement y(x,t) driven by a pressure field

p (_,t) is:

where ?(x, x2, t) is the acoustic pressure generated by the motion

of the panel, and D and m are the flexural rigidity and mass per unitp

area of the panel, respectively. P is a coefficient introduced to

account for mechanical damping of the panel.

Following reference 4, we consider the frequency Fourier trans-

form of equation 2.1 and expand the panel normal velocity displace-

ment v(x,w) in terms of the nortalised characteristic functions

-. 2 1.c

TMniT
whore m- , k -- and A -Z The modal equation for the

M II t p 1 3

frequency Fourier transform of panel velocity is thus obtained:

-k - + 2.

rh 01on r
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2 2 2
where k - k m k n n is a modal structural loss factor and pmn

and P are of similar form and defined by

P can be expressed in terms of the modal velocity amplitudes v

using the wave equation for P(x, x2, w) in the acoustic medium, and the

boundary condition in the plane of the plate, namely

After some rearrangement, we can obtain P () in the form

mnrnr

the (q,r) mode defined by

00"".( , )L a ,, _ j (,) S r --



10

Here, Z(kw) is the radiation impedance

with k -iki, k - w/c and S M(k) is a shape function defined by- 0 0 r-

Pr-.ious results using light fluid loading approximations have

only included the term Rmnmn and have neglected the modal coupling

terms. It is shown below that many of the modal coupling coefficients

are equal in magnitude to the modal radiation coefficients.

The equations of motion can now be written in the form

In the following sections approximate values of the radiation

coefficients R axe obtained for both high and low frequencies, andmn qr

the solution of the system of coupled equations 2.5 is discussed.

p.
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3. The Radiation Coefficients

Values of the modal radiation coefficients have been obtained in

references 2 and 4 for various frequency regrnes. Maidanik's ( 2 ) classi-

fication of the modal radiation coefficients is shown in Figure 2. The

modal waventmbers are at fixed lattice points in wavenumber space.

At any frequency w we define the acoustic wavenumber k - w/c ° , which,

in k-space, divides the modes into those with k < k , thus having a-- mn 0

wavespeed on the plate greater than the acoustic wavespeed and hence

called acoustically fast modes, and those with k > k called acousti-mn o

cally slow modes. The acoustically slow modes can be further divided

into edge and corner modes. These are further discussed at the end of

this section.

The types of approximations used in references 2 and 4 a-e also

suitable for evaluating many -f the cross-coupling coefficients. However,

for some high frequency -esults Lighthill's ( 9 ) methods for the asymptotic

evaluation of Fourier transforms of generalised functions are used.

The shape fur tions used in the integral for R are:mnqr

z k mk A _ L~e, 1 -1)

A ( k'_
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The integrand in equation 2.3 thus includes terms of the form

which has the effective value:

( 2(1 - (-i)m cos kl I  if m and q are either both odd
11 or both even

0 otherwise

where we have noted that the rest of the integrand is even in k the

sin k kI term in the integrand thus vanishing. It follows that R
11 mnqr

is only non-zero when both m and q and n and r have the same parity,

where by parity we mean here that m and q(and n and r) must be either

both even or both odd. Each mode is thus coupled to at most only one

quarter of all the other modes.

The radiation coefficients will be written:

R - S + iT
mnqr mnqr mnqr
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The real part of the integral, Smnqr , involves integrations over

values Ik] < k . We note that the only singularity of the integrand

is Zhe square root singularity. Typical values of the function

are shown in Figure 3. Ths function is such that

o

0
MAd



14

We consider the term S first. Various approximations aremnqr

necessary for different types of modes. Evaluation of the various

coefficients is conveniently divided into three parts.

a) k, k >> k (with similar results applying to modes with km, kr o q

>> ko )  ko 9 1 kot3 >> "

We make the approximation k3 - k2  -k 2n. The k3 integration

can then easily be performed leaving the approximate result:

0__ to__ k 0  7 ~ k
Tr kr. kr

If k , k < k we can vrite the integral as f - fk to obtain thea' q o o k
0

result:

where 6 is a Kronecker delta. The last wm-n here will be neglectedmq
-l

as being of higher order in powers of (k C)
0

If k a k 0 k q> k 0 the integral is written

KO K q

'L

,3
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g iv ing

r

The case kq > k is treated more #ccurately in part(OwIthout

the restriction k P. kokl >> 

b) k - k < k k 1 ko >>r
m q o ol o3

(2) (10)Following Maidanik , and earlier Kraichnan (his eqation

5.5) a delta function approximation can be used in the form

7-T

leading to the expression

'o~~ fN ,

For k k, a similar delta function approximation leads directly
n r

t, the acoustically fast mode radiation coefficient S - 0 c 0lmmn 0 0
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For k , k > k we obtain the edge mode result of equation 3.2.11 r o

For the coupling coefficient between two acoustically fast modes

or an edge mode and an acoutically fast mode we require an estimate

of the integral

-k

for k < k . As this Integral is relevant only for edge or acousticallyr o

fast modes, it is sufficient to evaluate it for large values of k ot3.

We can treat the terms 1 and (-1) ncos k 3 3 separately if we treat

the separate integrals as Cauchy principal values. The first integral

is zero in this case and we are left with an integral which we can

write, following Lighthill (9 ), as

It KI
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where

7L

and H is the unit step function. The function f has singularities

at z- +k /k and z - 1 1. The main contributions to the integral at larger o

values of ko 0 3 can be estimated from the Laurent series expansion of

f(z) about its singularities. We find, as expected, no contribution

from the singularities at z - t k r/k ° , and from the square root

singularities -btain the asvmptotic result

-- ... , / .

Equition 3.4 can now be evaluated for all cases. The results are

sutomar, -d below.

c) A result valid for all corner modes at all frequencies Is

obtained fromn equation 3.1 by writing it in the form
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= K. 'o i , ',' C

" K....r. K K , .. ..

-- n !!K
K ~f-~?~(0

'e note that because of the parity of (m,n) and (q,r) the (-1) m a i

I) terms are interchangeable w'th (-")q and (-) r tems, respectivelv.

S nqr is thus symmetric in m and I and n and r.

\aiiuc of the re-iu varts of the modal "oup1 Inc cneffic ents can

be qi ar~zed as folos:

:f (.=,n) is an X-tv,,ae eole mode and-.

I) (q,r) is an edge mode

Sr
Mr
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ii) (q,r) is a corner mode,

i-i) (q,r) is an acoustically fast mode,

If both (m n) and (q,r) are acoustically fast modes

DOC k, )' K, 0 ~(h '' k
nr TT '

-= o MNJ Ko(.L c (k €,- T) _ .-

ki A ' K - /

SS 10
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Equk.rMon (3.6) gives valbws ef 5: when both modes are corner

modes which are valid at ie.' frequencies.

We note that the edge,corner and acoustically fast modal radiation

coefficients can be obtained as special cases of the above results.

Only the dominant terms in the expressions for different modes

have been retained. At thiis point we make no comparisons of the

relative magnitude of the various coupling terms, l~av this discus-

sion until se.tions 4 and 5. The telative importa-ce of the coupling

terms will obviously be influenced by the nimbers of each of the various

types of modes which i re coupled.

In a similar way we estimate the mass loading coupling term

T mqr. The integration involved is over all wavenumbers greater than

the acoustic wavenmuber. The required value of the square root in
S 2 ko) /2"

equatv± n (3.1) tf now -ilk ! 4 k3 - k2) hus, for all acoustic.ally
- 3 o

slow modes the range of integration includes all the modrl vi"venumbers.

It is obvious in this case from the nature of the integrand that the

largest coefficients are those having either, or both, m-q and n-r.

We consider first the coupling coefficient of two X-type modes. The

range of integration can be divided into the three regions

Jk k l -0,

K C

~\ dk1
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For two X-type edge modes, it is easily seen that the first of these

terms is the dominwit one. We obtain in this case

- A( z

We, thus, obtai , -tegrals of a form similar to that in equation

(3.5). We gain treat -he terms 1 and (_i) n cos k 3£3 separately as

Cauc o- principal values. The square root singularity leads to the

same asymptotic form as before. However, we now obt&in a finite contri-

butioL, from the term

0I<

kkm

"is gives the dominant term, It: is sufficiently accurately

estimated as

~ko

- ____a 0
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The terms arising from the cos k3t 3 Integration are now not required.

The modal mass coupiing term for two X-type edge modes is obtained

in the form:

T -- kJ 17- LZ

where we have made the further approximation

We will be concerned in the fol jwing sections with the coupling

between resonant edge modes only, that is with wodes close together in

wavenumber space. For these modes, expression (3.13) is approximately

true.

In a similar way we may obtain the mass coupling coefficients

between other types of modes. We note that when both modes are corner

modes we obtain in place of the integral in (3.1., )proximate

form

I_( r) 1
o
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ij.4.) (q,r) in an acoutically fast mode

T p-ci ko t k- r E v%3

When both (mn) and (q.r) are cornet modes we obtain:

It k,.,, ka f

Fc'- all modes we also have the result:

(k a

Again as in the expression for S only the dominant terms inmnqr

the expressions for T have been retained.

Expressions (3.6) to (3.10) for S and expressions (3,16)
mnqr

to (3.20) cor T sho, a marked contrast in the nature of the couplingmn qr

Induced by the radiation terms and the mass loading terms, respectively.

A physical basis for the nature of the radiation coupling coefficients

p

I
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We also note that in both expressions (3.11) and (3.14) when n-r the

delta function approximation leads directly to the result

T -

This result is true for acoustically slow modes. Further inspec-

tion shows that T is negligibly small for acoustically fast modes.mnmn

Values of the imaginary parts of the modal coupling coefficients

can be summarized as follows (compare equatiorns (3.7) forward):

If (m,n) is an X-type edge mode and...

i) (q,r) is an edge mode

1- k- k g

ii) (q,r) is a corner mode

T~

-k, 

_.

T
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can be given in terms of the volume velocity cancellation effects

(2)
described by Maidanik 2 . We refer to Figure 4. When the acoustic

wavelength X is much greater than the modal wavelength X the radia-o n

tion character of the mode can be represented by a series of pistons

of width n/2, there being a phase change of 1800 between neighboring

pistons. Arain as A > An, the combined radiation from two adjacent
C ~0

half pistons is of dipole character. The modal radiation character

is thus described by a series of dipoles, leaving at each end mono-

poles of width A /4. The dominant radiation is from these edge mono-n

poles. These monopoles are themselves coupled if A > k3" However,

the dipoles further combine to higher order nultipoles in this case

and the dominant radiation is again from the edges. If, on the other

hand, , < A , there is no such cancellation, as the radiation fromo n

the mode snape is essentially uncoupled along the entire length of

the plate. Thus, for example, an X-type edge mode is so called

(Am > ,o An < X < k 3) because the volume velocity cancellation

in the x3 direction and the lack of cancellation in the xI direction

lead to dominant radiation from strips of width A /4 alonFg the edgesn

X1.O and xl. I'

We may treat the modal radiation coupling coefficient > asmn qr

a measure of the contribution from the (q,r) modal plate veloeltv to

the (mn) modal component of the acoustic field. V-' first consider

equation (3.7), where both modes are X-tvpe edge modes. The contribution
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is large when the mode numbers in the x direction are the same. Along

the length of the strip radiators we require, for large coupling,

that there be no inter-modal velocity cancellations, that is, the strips

must vibrate in the same mode shape along their length. Changes in

the width of the strip are of negligible importance. Similar arguments

also explain the presence of the Kronecker delta functiors in equations

(3.9) and (3.10) . However, when we consider the radiation coupling of

a corner mode with either another corner mode or an edge mode (equations

(3.6) and (3.8), respectively) we find, of course, that the only contri-

bution from the (q,r) modal plate velocity to the (m,n) component of

the acoustic field now comes from the uncancelled monopole radiators

in each corner. The only criterion for there to be a coherent contri-

bution is that these corner radiators be in phase. This is controlled

solely by the parity of (m,n) a- (q,r),

The imaginary parts of the modal coupliiu coefficients, Tmnn qr'

lead to virtual mass terms to be idded Lo the mass of the plate.

Voltime velocity cancellation effects are now of no consequence; the

inertia terms act over the whole area of the plate. This is demonstrated

,Ky the fict thit T Is the same for all acousticalIv slow modes and
mnmn

thaL even the mass couI i1nn terms T in equations (3.lt) to (3.10) aremn qr

essentiallv ol Sce same form, irrespective of the division K radiation

ch rd trfsti-s into k and corner modes. For there to 1e I z-ge

n, t'tla coupIinc. '-e twten m.odes we require that two mode numbers ho

the same, so thit in ,no direct icn the modes vibrate in t ,' sane shape.

, he kronec ,r e!ta funct ions in ciatons 3,Ir to 3.1K
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It is known that for wave motions on an infinite plate, wave

mo'ions with supersonic phase velocities appear as a damping of the

plate respons- as energy can be transferred from the plete to the

fluid becoming acoustic radiation, whereas wave motions with subsonic

phase velocities lead to a virtual mass term as no energy is trans-

ferred. This observation is also true for finite plates, the addi-

tional constraint of the edges of the plate being sufficient to mbtaLl

acoustic radiation from subsonic wave motions on the plate. The volume-

velocity cancellations that lead to radiation from these subsonic

wave motions have been described above, following Maidanik(2 ). Th~e

essential features of supersonic and subsonic waves on the plate are

still preserved, however, as shown by the large radiation coefficient

of acousticallyfast modes (equation 3.5) and he large modal inertia

coefficient of acoustically slow modes (equation 3.20).

The forms of the coupling coefficients suggest that the set of

equations (2.5) can be conveniently rewritten in the torm

A

k
where now the term 0 c o of equation (3.20) is included in the term

ok-

B . In what follows, T will be defined solely as In equationsmn mnqr

(3.16) to (3.19). B is defined as
mn

Lr

ri- ,t
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w ith

The solution of the set of equations (3.21) is discussed in the fol-

lowing sections. The discussion is restricted to frequencies below

the acoustic critical frequency.

4. The Low Frequency Limit

At frequencies such that k oZ. koZ 3 Q T all modes are of corner

mode radiation character. The radiation and coupling coefficients are

described by equations (3.6) and (3.19), Each of the modal equations

(3,21) is thus of similar form. They can be written:

'1 H

s i- described by equ,t ion ( T.) . V and T3  are defined~n cr mnmr Tnqn
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by the expressions

and

S - -i

- - K ,

The summations in equati-ns (4.1) are over all (q,r) mode5 with

the same parity as (m,n). Thus, there tire four separate sets of

equations (4.1) to be solved corresponding to the four combinatior.

of even and odd values of m and n. We will, of course, assume th.t

the nomenclature of equation (4.1) covers all four such cases.

The set of equations (4.1) cannot be solved exactly. We

for an approximate solution of these equation, which includes the ma

features ot the coupling. The solution for v is obviously a functlc.
mn

of all the modal forcing functions P . However, we might reas,,ablv

expect that the solution for v can be written in the form of a :- 'al
th

admittance function Y multiplying the (m,n) modal 7orcin f tion

Pmn with, in additiodt hig er order terms of !m.. iter majnltude 4nvc1-

ving the coupling coeffi( ents and iI the forcing functions . -

can obtain such a solution: the inter DretAtlon of the approximations
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we meke in doing so is more fully discussed later in this section.

The equations (4.1) are first rewritten in the form

where

The seL of equatio ns (4.2) can be rearranged to give in

terms of the neW Lorce f .The term

M

is evaluated by substituting for v fro% the equations (4.2), W,

ob tain

rr
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where we have used the relatiunship

T M= T M M

[It may be helpful to note here that the sufficies m, q, u will always

refer to mode numbers in the x1 direction; the sufficies n, r, v will

always refer to mode numbers in the x3 direction.]

If we now substitute from equation (4.3) into equation (4.2)

we obtain the exact form:

wheir.e

r r

and B1  is defined by the expression
moru

T,.b~rw
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We thus find, already, sn admittance function containing at least some

of the TI type coupling effects.mrmn

We now repeat the above process. The term

ST3
1 01

is evaluated using the equations (4.5). When we substitute for this
term back into equation (4.5), noting the relation:

T& T T T

we obtai. the exact form:

-1 V3 n

or

where

,r M
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and B1 3 is defined by the expression

- -Tr 0v

Once again we can solve the equations (4.6) as S is symmetric
mnqr

and satisfies the relation

We finally obtain the expression

where

T

rr

by~
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The equations (4.7) are an exact relation derived from equations

(4,1) However, they do not represent a solution of the set of equa-

tions (4.1): there are still terms in v on the right hand side. We

could, in principle, perhaps, continue "s o l v i ng" the set of equations

as above. However, the modal velocity terms we would now deal with

are second order, that is, they are multiplied by products of the form

S T nWe would thus be dealing with second order couplingSmnqr mnmv"

effects. The first order coupling effects can be extracted directly

from equation (4.7). The admittance function Y we assumed could be~mn

found is seen to be

y -

The remaining terms in equation (4.7) include )- h the excita-

tion of the modcl velocity vmn by all the modal forcing functfons, and

also tLa higher order coupling effects.

The simplest way to extract the loit terms is by redoing

the above analysis and discarding the higher order trms as the

analysis proceeds. Thus, in equation (4.5) we may write for gm the

approximate form

TT /

rI

3
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The second order terms we neglect here are

T S - Tr^ T

From the definitions of the c..upling tezms we find that

7, 
,.

Later, when evaluating the magnitude of the cou,-ling we will find

it sufficient to consider only the coupling between resonant modes. We

would then expect that for resonant mcdes k and k in equation (4.10)V n

are of similar magnitude. Thi terms we neglect, (4.9), already second

order, thus also tend to cencel each otbcr.

By neglecting other similar product terms we can finally obtain

-an approximate form of equation (4.7). We will -onsider this to be

the required approximate solution of the se, of equations (4.1). This

solution is

T L

LK
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where

t4

and -X is defined by equation (4.8). We note again that the 4--m in ex-

pression 3.20 is not included in the definition of R IM

Our approximate solution is in terms of an admittance Y - -IW fmn n

which itself includes both modal radiation and modal inertia coupling

effects. We have also retained the first order forces on the (m,n))th

mode of the other modal forcing functions. We note that equation (4.11)

can be rewritten in the form

However, the importance of mn in this equation is obscured. We will

find when considering power flow into and out of the plate that equa-

tion (4.11) is a more useful form. The summations in equation (4.11)

are concerned with the forces on the (m,n) mode due to the modal compo-

nents p qr' and the forces exerted by pmn on all the uther modes. As

fir .,.s the total -'-.Locity field of the plate is concerned these com-

bined effects will tend to be self cancelling. We then fhid that the

important coupling effects are contained Inm n . This becomes evident

,.en we consider the power flow in the system.

I



37

/

We also note at this point thr the solution (4.7) can be obtained

directly by evaluating

r

where R is defined by equation (4.12). The form of the admittancemnqr

function does not become as easily evident in this case, and little is

saved in the amount of algebra required as we must still expand

R in terms of S T and T3  . Having obtained the quasi-
mnqr mnqr, mnmr mnqn

solution (4.7), however, we recognize that the approximate solution

(4.11) follows by assuming that

The error terms in this last expression are just those terms,

such as (4.10), that we discarded to obtain our approximate solution

(4.11). In some of the analysis that follows we will make direct

use of the approximate relation (4.14).

Having obtained an approximate solution for the modal velocity

field of the plate, we now use this solution to obtain estimates of the

total power input to the system and the radiated acoustic power. For

simplicity in obtaining these results some assumptions will be made

about the nature of the forcing field. We will assume that it is both

sp pt!illy homogeneous in the plane of the plate and is temporally stationary,

that is, its correlation function is a function of both spatial and tem-
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poral separation only. We further assume that the characteristic

correlation lengths, including the conveeted length, if any, in which

the field decays, are much smaller than the dimensions of the plate.

These last criteria are those of Dyer These assumptions are not

unreasonable and correspond well to typical physical situations. They

are useful in that they lead to no coupling of the plate modes by the

forcing field. It has already been noted that we assume no interaction

between the external force and either the plate vibration or the associated

acoustic field, i.e., the external force is specified irrespective

of the response of the system.

We can express the correlation of two modal forces as follows:

where <X> denotes the expected value of X. Because of our assumption

of homogeneity we may write

)r )

-I -4

P () d
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where (k,w) is the wavenumber-frequency Fourier transform of the cor-

relation function of the force p(x,t). Dyer's (11) criter4 a imply

that $(k,w) is essentially constant in k. The orthogonality of the

characteristic functions then leads to the simple result

6

where

is a modal correlation function.

The correlation functions <p P are essentially Powell's
8

joint acceptances. When Dyer's criteria are not satisfied we must

include all these functions in the analysis. However, as these

criteria are satisfied in a large range f physical situations it is

assumed in the andlysis that follows that the joint acceptances always

satisfy the simple relation (4.15). We may, indeed, reasonably conjec-

ture that the two modal coupling mechanisms, the external field and

the acoustic field, act independently, at least to first order. Thus,

a far as a study of fluid loading is concerned there is no loss of

generality in assuming that Dyer's criteria are met. We expect the

extension of the analysis to include the additic.a1 coupling effects
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to be straightforward, although, possibly, laborious. An approximate

solution is suggeted in an appendix for cases when Dyer's criteria

are not satisfied.

We now estimate the energy flow into and out of the plate. We

consider first the radiated acoustic power. The total power flow into

the fluid from tne plate is defined to be an integral over the area

of the plate, namely

. > P

For the present we will not restrict attention to the real part of this

expression but rather consider the total complex power. We may refer

to the real and imaginai.; pc.:nents as the resistive power and reactive

power, respectively. The resistive power describes the drain of

energy by radiation to infinity: the reactive power is a measure of

the enerKg that is stored in the fluid. To obtain the spectral density

of the zadiated power,H (u), we require the expected value of P(x, 0, t)

tir.cs v(x, t + i) for all time delays T. We again consider both the

real anJ imaginqrv parts of H(w).

H 21
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By using the modal expressions and the rxthogonality of the

characteristic functions we obtain the result

where the surration is over all modes. P in our present notationmn

is given bi, the expression

-J

where Rmnqr is defined by eqtqtion (4.12) and we have 
4
nciuced the

term. T separately. If we substitute for v using equation (4.11)mn mn qr

we obteLn dlrectix

-I -- i --- 4I-

We ncm' use the fact th,at our solutieon is based on t,e apDroxrnnte

relat ; (4.14). To this degree of apprximat ion the doulle .uv..atc..

a>o,,,V can ;e !- Plected. A s ITIlar doulIe q 'rat Ion s neyiected whe. we
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substitute for P and v in equation (4.16). When Dyer's crit. I
inn Mn

are assumed to hold, the expression for the (complex) radiated power

reduces to the simple form

The real part of tihis expression, the s,,ectral density o1 the power

raciated to inf inity, say 11(), is seen to he

(3),whiere, rfoI lowfiiw Iceeie we Piave written S -rnm o 0 Mn , I e ein i

the nodanl reidlet ion 6 - iciencv - I for acoust teal>.' fast nx~kdes)
.n r

quat ion (-, IS) Is s- tar in fori t o rrev ioiis 11v nib Iqixed resul ts for

thie ridtated' power oandeither by neglect tag flild loadinv, efeets;

or !,\ assurnilg lighlt 'i in d load inc. The iznportanee of the adrl t tan,

UTrct 1@C L :iow cirse:: e fluidc loaniing effecs -he modal cou-

-W tndtr'Ceu, radia2 CC ~tion loadinpg anti inextt a8 lond tag a I

a llub:z in Thc aIdm 4 : tan ce functlens Y

rr i MP~ci i ed ex verneil U cc actifag on the p~late the sr'eetra 1

den Itv ak ;nust i : power ra,!intted1' the plate e !pe ck,.iruted retl



from equiation (4.18). M',=1 -IF plate modal density in frequency space

is high, more useful exoress ico s can be obtained by averaging Jllw ) over

narrow bands of frequency and considering only the power radiatci by

modes with resonanace frequencies within tine frequency band. It is

assumed th~t ever with the aIded damping due to fluid loading the resonan~ce

peaks are sufficiently masrked that the radiated power is indeed mainly

from the resonant modes. It is again emphasi2ed that the resonance

frequencies referred to are merely the freruencies at, which the real

f'omponents of the admittance func7tions Y mnvanish. The inertia terms,

of course, cause a decrease this frequency from the in vacuo

resonance frequency. By averaging over a narrow band of frequenzies, 2 '

equation (4.18) for the radiated power spectral density can be written

E~
-I2.

where the summation is over those modes with resonance frequencies in the

aw band.

The integration over I 2n 12 will now be carried out. To emphasize

the coupling effect we write Y min the for

innn

where T is replaced by P o C r The terms p oc To are, in general, con-

eqainrqr fo h rdae oer sporoqesiyr a ewrte
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k
siderably smaller than the inertia term p c -- included in B . The'o ok anmneffect of inertial coupling will thus, presumably, be small. When

averaging, as in equation (4.19), we are interested in those modes with

resonance f equencies in Aw. Conversely, when estimating the coupling,

as in equation (4.20) we are interested in frequencies near the resonance

frequency of Y mn and hence, as"qr is small, near the resonance

freouency of B . The added damping is seen to be due to ,as in

light fluid loading approximations, plus other modal radiation coef-
B

ficientso modified by the terms B-. To evaluate the expressionqr qrqr

(4.20), the frequency is written in terms of the resonance frequency

Wmn Of Bmn,

where E coicesponds to the small variations of frequency within the

tw band. Tne reaonance frequency of Bqr is related to that of bmn

by the expression

where pn is a measure of the separation of the resonance peaks. At
qr w

frequencies within A- we can now write

r -, ( z7
M~,
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and, similarly,

z

The summation in equation (4.20) can now be expressed in the form

ti

K~~~~ 
E , ( ~~T c

z~)r

It is clearly seen that the important contributions to the summetion

at the resonance frequency of B come from those modes with resonance

frequencies close to w . Thus, the amount of coupling is controlled

by the spacing of the resonance frequencies, there being a large coup-

ling effect into those modes with Xma << that is when the separa-
qr mn'

tion is less than the effective widths of the resonance peaks. On the

other hand, since we assume that the modes art only appreciably excited

at their resonance frequencies, we neglect the coupling between modes

i.,!iooe res-nance peaks do not overlap.

Two cases must be distinguished in evaluati-g expression (4.25).

When the structural damping is small, that is when Xran >> n for all.
qr

L~. ________
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modes, then there is no effective modal oupling, and expression (4.25)

reduces to a single term. We obtain directly in this case that at

frequencies near resonance:

where we have dropped the term p coC as it is much smaller -han the
k 0oMn

term p c -- . wn is, of course, already defined with the inertia

k
term poC -- included. Expression (4.26) is not strictly complete as

mn
we have not included the possibility o 2wo modes having the same

resonance frequency. in particular as in the degeremte case of a

square plate. However, at very low values of the structural damping

we see that we may reasonably neglect modal coupling. The particular

case of a square plate can be included in this anaijsis simply by doub-

ling the value of the radiation damping.

The second case concerns plates with large structural damping and

high modal densities. Considerable modal interaction now occurs. To

evaluatf- the coupling effects we may suppose the modes evenly spaced

in frequency, in which case the separation between adjacent modes is

obtained from equation (4.22) as

I
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where y is the frequency modal density. We are now i-terested in the case

>> n , that is, we have the condition

The summation (4.25) can be treated approximately as an integral

in X in the form

-- P

The limits have been taken as - to include all modes, a factor

1/4 being introduced to account for the fact that there is coupling

only between modes of the same parity. The inaginary part of the integral

involves the factor (1mn - n qr) and has been neglected. We thus obtain

for the admittance function near the resonance frequency

(A 4- 4,28
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Again we have dropped the additional inertia terms, . Had wean

included these terms, the effective mass of the plate wculd be described

by

Typically we expect that the last term here is small, but, if necessary,

it can be included in the estimate of the resonance frequency W n" Equa-

tion (4.28) still correctly describes the nature :-r the function Y near

its resonance frequency although this resonance frequency is now slightly

changed. The important fluid loading inertia term, khe modal "self"
PoC k

inertia W k , has already been included.
mn

The dominant fluid loading effects are the change of resonance

frequency by the inodAl "self" inertia and the, possibly, large increase

in the total damping. Some typical magnitudes of these effects r-e

discussed in section 7. The inertia modal coupling terms, although

adding considerable complexity to the analysis, are found Lo have little

effect on the admittance of the plate-fluld system. In this context

it is worth noting that if we neglect the terms T1  and T3

mnmr mnqr

throughout the analysis, equations ( 4.8), (4.11) and (4.12) then

together represent an exact solution of the set of modal equations (4.1).

The integratic., over Y n 12 (now as a function of ) can now be

performed as in previous analyses (e.g. references 3 and 4) by assuming
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that the total damping is sufficiently small that the effective reso-

nant bandwidth is much less than the bandwidth Aw. We obtain two estimates

of the radiated power spectral density by using expressions (4.26) and

(4.28), respectively:

i) ~ K

TT 4F

The summations are over all the resonant modes in the Aw frequency band.

In a similar way we can obtain an estimate of the total input

power to the plate-flutd system. Thus, corresponding to equation (4.16):

IT (1
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The required power is the real part. This expression can rlso

be ust ats: by averaging over the A frequency band. The integral

over the second term is zer. We obtain an expression for the spectral

density of input power Ahich is independc.t of either the structural or

the radiation damping: the only fluid loading effect is the change of

nodal resonanc- frequency by the modal self inertia term. Thus,

S' - <K>

It is shown in reference 4 that the modal correlation functions

mn (w) re the same for all resonant modes In a narrow frequency b-id

if the correlation lengths of the forcing field are consl-'rably less

than the corrqspondlng modal wavelengths. Fox excitaton by a turbelent

boundary layer tnis condition is satisfied at frequencies well above

the hydrodynamic critical frequency, that is, the resonance frequency

of tne plate modes with wavespeed on the plat- equal to the convection

velocity of the forcing field. In this case, the functions 1m can be

taken outside the summations in equations (4.24) Rnd (4,25). The

radiated power spectral density is then linearly celated to the input

power snectra1 density.

A comparison of some typical numerical values of the radiated power

spectral density showing the magnitude of the fluid loading terms is

made in section 7.
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5. The High Frequenc" Limit

At high frequencies, k o91 k o 3 >> Tr , the radiation and zoupling

characteristics of t'e modes are not the same for all modes s i the

low frequency case. The coupled moual equations are thus coniderably

more complex and cc -respondingly irore difficult to solve. In this s-c-

tion an approximate solut-ton of -ie modal equations we have obtained

discussed. We start by est aot ng Lhe magnitude of the force exer d

on a mode due to its being coi.,ie to other types of modes, Thus t r

example, we make an estimate of toe total effect on t, response of

an edge mode of the coupling into all the corner modes, based on a

typical corner mode resonant amplitude and the total nun.ber )f resonant

coupled corner modes. This approach leads to a first approximation in

which the corner and edge mode responses can be solved fol s, aratelv,

including cnlv the coupling into other corner and edge -oues, reF-ectively.

We include the nonresonant acoustically fast modes in the analysis and

calculate their response due to coupling to resonant euge mode.. 7Th is

step seemed necessary as the associated radiation from these highly

efficiently radiatig modes could be of importance. An estimate of the

total radiated power shows, however, that the effect of these modes Is

negligible. From some numeric-l estimates o- the radiated powei made

in section 7 it would also seem that the modal component of the frrce

exciting the nonresonant acoustically fast modes also leads to a neg-

ligibly smell contribution to the power.
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The corner mode contribution to the radiated power is included

in this high frequency analysis. It is known that under light fliAd

loading conditions at frequencies where edge mode radiation occurs,

this radiation dominates that from corner modes. Under dense fluid

loading conditions, however, the higher radiating efficiency of the

edge modes causes correspondingly higher damping of the modes, the

effect being such that, in some cases, the edge mode radiation domimance

does not occur except at frequencies where very many edge modes are

excited. Structural damping is important in determining the relative

magnitudes of the edge and corner mode radiation. This is discussed

in section 7.

We first consider the effect on the edge mode response of the

coupiing into other types of modes. The complete modal equation for

an X-type edge mode response will be writter

I'

Here, v is the modal velocity amplitude of an X--tvpe edge mode,
mn

RX is the coupling coefficient between the (m,n) X-tvpe edge mode
mnqr

and the (q,r) acousticallv fast rjide: similar interpretations follow

c-,viously for the otlier notaticvns C indicating a corner mode. The

Ii
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suIrmations are over all the coupled modes taking the parity of the mode

numbers into account. Similar equations exist for Y-type edge modes,

corner modes and acoustically fast modes.

Estimates of the magnitudes of the sunmmations inequation (5.1) are

made using the values of the coupling coefficients obtained in section 3.

Thus, using equations (3.7) and (3.16),

using equations (3,8) and (-'.17),

and using equations (3, Q) and ( 18)

- I
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Now, if there is a considerable amount of modal interaction, the

relalive importance of the terms in expressions (5.2), (5.3) and (5.4)

can be estimated by asstnning that all the acus--tical1y Go , Moden in

a narrow wavenumber band Ak are coupled together, We also include all

the nonresonant acoustically fast nodes. The case of low structural

damping with essentially no modal interaction can then oe obtained as

a particular case. We assume when estimating the relative importance

of the various terms that all the resonant acoustically slow modes and

all the non-vesonant acoustically fast modes ha-- the same velocity

amplitude, respectively. The radiation coupling and the inertia coupling

are estimated separately. The following ratios are obtained from

equations (5.2), (5.3) and (5.4):

i) radiation coupling force on X-tvpe edge mocfe

C F

!1 inertia~ coupling force on N-type edge mode

4
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We cannot yet estim.ate the effect of the acoustically fast moles

on the euge ,iode response without first considering the acoustically

fast mode ecuation. This is:

It
r e

The acoustically fast modes we treat are at frequenctes well

above their resonance frequencies: they are thus mass controlled. This

is reflected in the term (w 2m + iLO c ) whit.. is merely the mass con-p o0o

trolled admittance plus tho modal radiation term u c 0 "ere is no

virtual mass term for these modes- The summations in equation (5.7)

can be estimated as before. However, the dominant term in this equa-

F
tion is the modal admittance: a comparison of the terms shows that v

qr
-l Xis Pt least a factor (k 0i) times v . That the nnr#snrant amplitudes

F are very much smailer than the resonant amplitu;des of i s hardly
qr mn

a surprising fact. But it makes possible a number of approximations.
F

In equation (5.7), the summation E is dropped. Only the inertia coup-

X Y
ling terms are retained in F and F: the radiation coupling terms are

negligible compared with the radiation term p C. The edge mode

inertia coupling is retained as being of possible importance, particu-

larly if the modal force p F is small. Returning to equations (5.5)



and (5.6), we now find that where there is considerable modal interaction,

so that Ak is reasonably large, the edge mode ,mations dominate,

although not to any great extent. For example, if kM - k /2 and

kmn - 10 ko, the ratioe of edge to corner mode 3ummations in equations

(5.5) and (5.6) are, respectively I : 1/10 and I k /1200 Ak. It0

is thus reasonable to include only the edge mode summation in the edge

mode equation (5.1). (As we are considering frequencies such that

k o9 k oR 3 >> the acoustically fast mode summations are obviously

negligible.) In a similar way we find that the dominant coupling in

the modal equation for the corner mode response is into other corner

modes. ke have thus reduce' the problem at high frequencies to solving

for the edge and corner mode responses separately, neglecting the coup-

ling between edge and corner modes. Having found the edge mode response

we can then estimate t.e nonresonant acoustically fast mode response.

The acoustically fast modes are retained in the analysis until we can

show when estimating the radiated power that their effent is, in general,

neglig ible.

The reduced a,- - .--al equations is as follows

where only the first term of equation (3.16) is now included, the other

being negligikd as shown by equation (5.6); with a similar equation



for Y-tye edge modes:

where Sc c and T c c are defined by equations (3,6) and (3.19)
mnqr mnqr

respectively: and

mr AN

The dominant terms In these educed equations have been obtained

from estimates based on the numbers of resonant modes. It is easier

now to solve the equations as they stand considering all the modes in

the summations. The re,-nant modes will then again oe picked out when

we subsequently average over a narrow band of frequencies.

Equation (5.9) is almost identical to equation (4.1), the only

difference being that now aA n~t e1 1 modes are corner modes, the summa-

tions in equation (5.10) are over only a limited number of modes. The

approximate solution is similar to equation (4.11) with this restriction

applied to the summations.

The coupling terms in equation (5.8) satisfy the relation

X -1 ( Y = 'R Y,

r M rI



exactly. An exact solution is thus possible. This is

r rvrvv

where

K /

A similar solution exists for v . Finally, by substituting these
mn

values into equation (5.10) we obtain the approximate result

+ -

Illl I '--4

7rqsions for the -J'qited power sp.cral dens_, can now be

obtained, We again assume that equation (4.15) applies to the forcing

field. The radiated power is the sum c" the power radiated by each

type of mode separately. We wili consider here only the resistive

powet. Thus

T IT r



These terms are estimated separately. We obtain, analogous

to equation (4.16) (where now the real part only Is implied)

I -:P,-1

with similar express ionfor bcth 7 Y(u, and C (w). The expression

for (cw) involves a double summation:

C, -0 - 1

~ i.-

This expression is simplified by substituting for the coupling coef-

ficients and performing one of the summations in each cf the last

t2 r2two terms. The two summations are over the terms k 2 and m respectivelyf.
n



r' large! numbers of acoustically fast irodes are excited these simumation
ko 3  k0 1

have dhe respective values, noting the parity requirement, 4 nd .i --

11Te radiation excited by the term mn taking both edge and acoustically
mn

fast modes into account is then found to be

t, I o 7 1

The direct radiation at resonance i considernbly higher than Lhe

ra('iation from the coupled nonresonant acoustically fast modes. We

thus obtain as arT approximation to the radiated power spectral density

the Gum of the radiation from each type ot mode independe .!y.

v, A WkA Mwk

"lie summations are nominally over all modes of each type. "1owever.

o o f the modal eq1uations to a form we could solve was made

. t~e o=o ' ,tty, , ioeLween resonant modes. These

• nodea pir cked ont when equation (5.11) !s averaged over a narrow

S'.Uof o frequencies, T1he -, plnln effects, as In the low frequency

are contained in the adilttance functions only. We have gone to



some lengths to show that most cf the coupling effects, in particular

those betu'en iltfe:-ent types of modes, ae small. Th,? negiect of the

additional coupling terms will be most justified when the structural

damping is small. No m~odal coupling now occurs, except between different

modes with the same resonance frecuency. We do not include this pos-

sibility in the analysis The criteriat be satisfied for there t,

be no coupling are:

i) no coupling of corner modes if

ii) no coupling of edge modes if "' 2

and I

where v and i fre the modal densities of those edge modes tha: are

coupled defined by

Y\, Y I

When the above criteria are satisfied, averaging equation (5.11)

over a narrow band of frequencies leads to the straightforward res'ilt
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. r '..~t,- T -' Q,

2 . . . . - " , .

-)7-

In this expression, the edge mode damping and modal correlation
A ak

functions are treated as uniform for all edge modes, Nx - NY C) k &Iw

A k

is tLe number of resonant edge modes of each type, and NF - is th(
4TT

nu,,,ber of ac,:astically fa-t modes. This resolt is the same as pre--

viously obtained light fluid loading results (e.g. references 2 and 4),

ith the addition of nonresonant acous icallv fast modes. The effect

of these addirlonal modes is , In general, small as is shown in

section 7.

When the criteria (5.1--e 3atLsfieo t-,-derahje modal

coup I Ing occurs. The ifrequencv averages over the idmfttance functions

must ncw he obtained as in section 4 (equatio'n (4.20), forward). We

obtain the result, analogous to equation (. 0) in the low 'renuencv case



.- . '. , ', f •

+F

The (M,nI) SuIMations and averages here are over all the resonant

modes of each type in the No frequency r and. T'he (q,r) averag~e is over

all the acousticallv fast modes.

'Thc additional modal inertia terms arlsing from the admittance

functions again serve only to modifv slightly the mod;at res;onance

Sthe .'to frequency hand, Vheir effect is again small ; the important

inertia term Is the self inertia defined 11v equation (3.20).

TvpiCVal numerical values of equa tions ( .13) and (.14 r i

cussed in section 7.

A ~ I
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the only component being along the radius vector from the erigin.

We will assume that equation (4.15) aeain applies to 01' external

F
field and neiect the uffect of M1 We then obtain a simple approxi-mn

mate form ior the intensity of the acoustic field:

which, on averaging over a narrow frequency bland reduces to

The sunation in equation (6.1) is over all modes with resonance

trequer 'es in the Aj) frequency band. The expression is valid at all

(sub-acoustic cr.tical) frequencies.

The directivity is deter,,ined by the terms I112 and 113n12

At low frequencies the radiation obviously uniform in direction.

At sufficiently high frequencies, the dominant radiation is from

edge mode.,. Now, r example, an X-type edge mode (k <k , k > k )
00 o n 0

I-!
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has a sharp maximum intensity uf radiation In the direction

.ty

We can approximate .I here by 2/k For any given mode, thf
3n' mn

direction of maxinum radiation at its resonance frequency is nearer to

the normal to the panel under flaid loading conditiuns because the
Xl

corresponding k is decreased. Ihe change in -- is In the ratio of
0R

the change in resonance frequencies, namely

But, at any given frequency w, k0 and hence the "width" of the edge

mode regions in k-space, is fixed. Thus, for example, the X-mode

radiation is always due to modes with the same values of k , alhoughm

the values of k corresponding to the resonant modes at this frequencyn

will change. The directivity pattern of radiated intensity at high

frequencies is thus essentially independent o. .,luid loading, although

the overall magnitude of the intensity will depend on changes in the

wavenumlers associated with a resonance frequency, and on the relative

numbers of resonant edge modes in a bandwidth.
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We note finally that the radiated power is the total intensity

integrated over all directions. To demonstrate this we require from

equation (6.1) the iJa- ral

i.~~~~~ = 1 L_ Z

where Q is the surfact of solid angle 2rrat radius R. For the

X-edge modes we make the approximation

I - z 2.
in

ani write

a
I rv,. K c

COSck~\;' C-___

k rA

o do

0 )L , \
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Using an approximation similar to that used In section 3,

namely

. IN ill,

____ "o __ z . /o '' 'r. ,k ,,, o,,O" / S,,' >K'

I ~-

we can obtain:

, IK^

ko

ko ro ,,,. ..

with a similar expressicn for E. L- is easily calculated by approxi-

mating In m and II 2/k M ac112 andka and 2/k respectively, giving

C ''
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Using theee values together with equation (6.1) we finally

obtain

Yd

IT '4

This expression is equivalent to equation (5.13) if is Leromn

and when suitable expressions are substituted for the modal radiation

coefficients; and to equation (4.29) when only corner modes are excited,

7. Evaluation of the Effect of Fluid Loadin&

In this section some typical values of the power spectral densities

of radiated sourJ1 obtained in sections 4 and 5 are estimated when the

plate is excited by a turbulent boundary layer. Corcos' (7) modei is

used for the cross-spectral dens it of the pressure field generated by

the turbulent boundary layer. ThIs is
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I) = + ~xS~kj~211. - -

where we hnve further ass;umed T hat the loi-gitudinal ':nId lateral ampli-

tudeq decay exponentially. in this expression )w) is the spectral

density of the mean square boundary layer pressure, i. :- (r 1 ,r 3 ) is the

spatial separation, U Cis the convection speed of the pressure field

and a I an d a 3 are non-ciimensiona.. constants. In referenc~e 4 it is

shown that the modes are uncoupled (i.e. condition -,.15 holds) if

It Is assumed that thes- inequalities are satisfied for the range

of frequencies we will -,onsider, It is further assum~ed that U Cis so

small that no hydrodynamic coiincidence effects occur. This last

as---mprior?, although reasona."..e, ;ti- made solely to make the deter-

mination of m easy and does not affect the discussion c, the fluid

loading effects. Under these assumjitions we obtain the simple relation:
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4mn is thus constant for all modes being a function only of fre-

quency.

The structural damping of the plate is an important factor in

determining the velocity response and the associated radiation. Un-

fortunately no simple description, if any, of the structnral damping is

available. Most of the energydInsspa~ed in thin plates is into the end

supports and thus depends greatly on the means of supr-rt and the struc-

tures to which the plate is attached. The ef~eczt of the structural

damping is further modified under dense fluid loaning conditions by

its magnitude relitive to the radiation damping. The addition of damping

treatment to a plate ksn lead to different effects under light and dense

fluid loading conditions. To demonstrate the interaction of both

structural dnd fluid damping, and the magnitudes of the fluid toading

effects, some extremely simplyfying assumptions wilJl be made about the

structu~al damping. We will assume that the structural loss factor is

Inversely proportional to frequency and is independent of wavenumber.

This last assumption if' equivalent to assigning the total structural

loss factor measured in narrow frequency bands to each mode in the band.

For thin plates the total structural loss factor is found in genvr.

to be inversely proportional :6 frequency, but is usually measured on.,,
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over fairly s-11 ranges of frequency. We will partly compensate for

this lack of knowledge of values of the loss factor by evaluating the

power for several widely different values. We thus write for all

modes

where is constant, and evaluate the radiated power using various

values of .

Under these simplyfying assumptions, the evaluation of the radiated

power spectral density is particularly straightforward. For example,

at low frequencies, by averaging over all modes in a band, we obtain

from equation (4.29)

and from equation (4.30):

M i |

The average values of the radiation coefficients obtained in reference

4 are used. These differ by a factor 2 fro-1 those published earlier
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(2)

by Maidanik x2 j. No account will be taken of the second order inertia

terms when alculating the modal resonance frequences. In the calculations

performed here, the wavenumber corresponding to resonant modes at any

frequency (including the modal self-inertia term), that is, the solu-

tion of the equation

Ir k I-~ LP

was obtained graphically.

Typical values of these expressions are compared in Figure 3 with

the spectral density obtained by neglecting fluid loading, that is,

with the expression

where here the modal expre-.- ons are evaluated at the in vacuo T onant

frequencies The ex-ressions obtained In section 5 can be simplified

in a similar manner.

Figures .) and 6 show some typical values of the power radiated by

a 2' x 2' x 1/10' steel plate water loaded on one side. A very thin

piate Is cho3en to demonstrate more markedly the effects of fluid load-

Ing. For thicker plates the modal density is too low for the averag-

Ing technique over resonant modes in narrc%' frequency bands to b
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applicable at low frequencies (assuming 1/3 octave band3 are used)

although the radiation may be readily computed from equation (4.18).

Three different values of 6 are used, namely, - IT , 20r and 200r.

These values correspond to quality factors at 1000 Hertz of 2000, 100

and 10, respectively. The range thus covers both very lightly and very

heavily damped systems. We would expect the value t - 100 at 1000

Hert4 t- be of mczt practical interest.

The curves shown in Figures 5 and 6 are not restricted to the low

and high frequency regimes considered in sections 4 and 5 (in this

example, these regimes correspond to f < 625 Hz and to f >> 1250 Hz).

Rather it is assumed that the ccrnr modes are always essentially un-

coupled to other types of modes and that the corner mode solution is

thus applicable at all frequencies. To this solution must be added

the edge mode radiation when k oZ, k o3 > 37. (In reference , it

Is noted that the first few edge modes excited as one considers

increasing frequencies have radiation coefficients more characteristic

of corner modes. fh ; fact has been used to estiTmate the un-loaded

radiation and accounts for the discontinuities in Ohe spectra at

k oI ko l - 3r. The edge mode radiation ,inder dense fluid loading

is shown das';ed in Figure 5 for frequencies 7 < ko0 1 < 3-.) xcept

for the very ioavlly damped case, the edge mode radiation Is ess than

the corner mode radiation until many' odge modes are excited. Th is

tact. together wich the fact that the contribution from the acousticallv

F
fast modes ,ue to F is negligible (In this example the a.f. rad!at !on

mn
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is less than 5% of the total radiation at all the frequencies considered)

lends added justification for the neglect of additional coupling effects

in the corner mode solution in the middle range of frequencies.

The effect of an increase in the structural damping on an un-inaded

plate is a uniform reduction in the radiated spectrun.. The effect on

a fluid-loaded plate is less straightforward. We consider first :he

corner mode radiation in F!-ure 6. For S - r, a very lightly damped

plate, the additional damping due to fluid loading causes a marked

decrease in the radiated spectrum. For greater damping, P - 20T,,

the additional effect of fluid loading is not as marked. Both these

cases have been evaluated using equation (4.29) (and its analogy at

higher frequencies). Hov'ver. further increase of the structural damp-

lug, - 200r, causes modal coupling as the resonance peaks c,'erlap.

Equation (4.30) is now applicable. Figure 6 shows that rather than a

further decrease in the fluid lcading effe t as : is increased frow 20r

to 200-. the modal coupling results In a Qreat]v Increased radiation

damping and hence shows - marked fluid loadinc effect. Further Increase

of :, of course, would acaIn result In a decreasiniz chanie duo to fluid

_)ad n . !s behavior is character Ist ic of corner mode radl.t ion at

all frequeri'Ces.

.he r 21: trIon dam-ni nw of edee mode is ve v h'tchh. "or a . "

t ec I ;,late -,ater the uncour le,! rad 'at Ion darn inv of in ee i-ole

corresrono,,s to a qua. ity factor of 2;1 at ?'O(Y 1:7. (O'Y Is value < ,

:'t o:" t::, tfcku'. the p1ate o, lv throuh the chance of r.nance
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frequency due to iaass loading.) Unless the structural damping ic; verv

hgthe factor C 0 c U r (arm p flm + 0C 0 C, )nA i- essentially' unfity

for all edge- modes. 1'he increased radliating efficiency over the corner

modes is thus offset h~v the increased damping and, as seen in Pl-ure 5,

verv many edge modes must, he excited )e tore tlim edg-e Mode radilat ion

dominates the corn.er mode radiation. This Is tr-ue for :"'and 2

At very 'high 1-veis of damn 1mg h 1owever, - f ,the increase.;

Cor;.er mrode ra dlation (!nmr in duie to romac P I n ecrea',es t, ccrn"'r

mode r atinto suc- en xtent t~hat el c " oc e ra atIn aI .av>

p ed:'Tht s P a roze d ic CenT1t imut it' 'L1" the 'rVo

~'es~ma -! e to our inhlI'to a' Cise cor-rietolx the( -ioc, -cn

Ifi Incefects In the rIddle atin-j (:,io i ne,, A~ cen 7- 0 7- e

r:iedth e cna;siq civen Innsect ion i', ts ''a ost iccu.att, '-c

OW Vi.1'O Of5 ot1 ti' r utu' 1C t r L!Inc. 711

*i one t~ tenroI

0 nr~ dhroWo' rh1' :1 t ne '1' -S 1!, t

~ \ t~' '' ~o'L~o no.oao nc 5 jt*215 toanOltt

V!n':. ic 'Io<s t-~i I'' l~'e '.* ' .2 ,,
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At low frequencies, k ko£ 5 < r/2, the approximations to the

coupling coefficients of the modal equations are good and the resulting

equations can be solved fairly accurately. The radiated power spectral

density can be obtained either by averaging over resonant modes in

narrow frequency bands when the modal n. ity 's high (equation (4.20)

and (4,30)) or computed directly from equation (4.18).

At higher frequencies, the complexities of the modal interactions

are such that considerable simplification of the modal equations must

be made before even an approximate solution is found. The approxir-tions

made in this case are more justifiable in .ases rhere the structural

damping is so low that in any case a negligib] arount of modal inter-

action occurs.

The main effects of fluid loading have been discussed in section 7.

We 'nave noted that the inertia coupling terms pla a somewhat minor role.

This is ot really surprising: there can be no exchange of energy via

inertiai coupling. We have treated systems such that the response of

tLhe syrtem at any frequency is described by the response of those modes

that are resonant At, or near, that frequency. The response is thus

pr, r'ily determined by the amplitudes of the modal resonances. These

amplitudes are changed frori the in vacuo case solely by the additional

energy loss by acou. ic radiation to infinit5 : we call this additional

energy loss the radiatic" damping of the plate. The slight changes in

resonance frequen :Les caused by the inertia coupling are overshadowed

bv the large changes in frequ,:ncy caused by the modal self inertia.
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The magnitude of the radirtion damping is partly deternined by the

amount of modal interaction that occurs. When the structural damping

is small the resonance peaks are very sharp; no modal interactions occur

as the energy of the system is contained in very narrow, separate bands

of freouenciec. Thus, the acoustic fVeld at any frequency is generated

solely by the mode that is resonant ant that frequency. The ".radiation

damping of each mode can then only be due to the acoustic field generated

by that mode alone. Except for very thin plates, this is the most

typical situation met with in practice. When the structaral damping

is large, the widths of the resonance peaks are increased, i.e., each

mode is considerably excited over a wider band of frequencies. The acous-

tic field at any frequency is now due not only to the mode resonant at

that frequeicy but also to other modes with resonance frequencies near to

Lhat frequency. The radiation damping is correspond ngly hig,aer. The

net result, of course, is a decrease in the total radiated field because

of the decreased amplitude of the plate response.

The to Lmportant features of fluid loading are the fluid

inertld effect and the radiation damping. Both effects lead to a

decrease in the radiated acoustic field. The radiation damping causes

a ,ecrease iii the velocity response amplitude of the plate. The fluid

inertia causes c decrease in the modal resonance frequencies. At any

fIey,, 'ncy the resonan ,,des correspond to higher wavenumbers, and thus,

have lower radiation efficiencies.

r
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APPENDIX

It has been assumed throughout the analysis that condition 4,15

applies to the external force, that is, there is no modal coupLing

induced by 'he applied force, However, at low frequencies a simple

expression for the radiated power similar to equation (4.18) can still

be obtained even if this -_ondition does not hold. The many cross-coup-

ling terms representing power flow between the modes again cancel and

we obtain the expression

C. r i <c P pr

where we have made use of the approximate result 4.14.

The spectrum of tne radiated power is represented by the real

part of equation (A.1). This expression can be averaged over a narrow

h-nd of frequencies in cases where the modal density is high. We require

an estimate of the integral

u-l

Using the notation of section 4, and assuming light structural 1

r1
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damping, this integral has the form

(IIVA
rMb 2 t

V.2,

This result is a factor

times the corresponding integral over IYMn 1 2 . We assume that fnm /c

is always very small, that is, the widths of the modal resonance peaks

are 1ess than the width of the frequency band over which we integrate.

The corner mode results given in section 4 will thus be approximately

correct for low values of the structural damping even when condition

4.15 does not hold. For excitation by a turbulent boundary layer the

conditions for equation (4.15) to hold are frequency dependent. It is

at low frequencies that the additional approximation givesl here may

be applicable.
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