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ACOUSTIC RADIATION FROM FLUID LOADED RECTANGULAR PLATES

by

Huw G. Davies

Abstract

The acoustic radiation into a fluid filled infinite half-gpace
from a randomly excited, thin rectangular plate inserted in an infinite
baffle is discussed. The analysis is based on the in vacuo modes of
the plate. The modal coupling coefficients are evaluated approximately
at both low and high (but below acoustic critical) frequencies. An
approximate solution of the resulting infinite set of linear sgimul-
taneous equations for the plate modal velocity amplitudes 1s obtained
in terms of modal admittances of the plate~fluid system. These admit-
tances describe the important modal coupling due to both fluid inertia
and radiation damping effects. The effective amount of coupling, and
hence the effective radiation damping acting on a mode, depends on
the relative magnitudes of the structural damping, i.e., on the widths

of the modal resonance peaks, and the frequency spacing of the resonances.

Expressiong are obtailned for the spectral density of the radiated

acousti: power for the particular case of excitation by a turbulent
boundary layer,

{assachugetts Institute of Technology
Department of Mechanical Engineering
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1. Introduction
to random excitation

Much research has recently been done on the respons%iof struc-
tures vibrating in air. In general, and certainly as far as most
practical situations are concerned, the response in this case is
effectively the in vacuo response, no consideration of the interac-
tion of the structural vibrations with the associated sound 'eld
being necessary. The acoustic radiation, if required, can then be
estimated from the already determined structural response, |

Light fluid loading effects have alsu been included in some analyses.
Much of this work is based on the statist-cal energy method of Lyon

(1)

and Maidanik . Maidanik(z) has used the method to estimate the

radiation from finite panels vibrating it air. More recently,

(3) (4)

Leehey and Davies

have discussed its application to turbulent
boundary layer excited panels, The present analysis is to a certain
extent an extens.on of some of this work.

Previous work concerning water loading effects has _oncentrated
on spherical shells, infinite cylindrical siiells and infinite thin
(5)

plates (see, for example, Junger , which contains a large number of
additional references,and Maidanik(6)). In euch of these cases the
interaction problem is simplified because the in vacuo normal modes
of the structure are maintained when the structure is submerged in
water, as the acoustic field can also be expanded in the same series
of characteristic functions or modes. For the infinite plate, the

series is, of course, replaced by an integral over a continuous spectrum

of wavenumbers,




In situations, such as that to be considered here, whcre the
structural response 18 characterised by a discrete wavenumber =rec-
trum and the aconetiz iield by a continuous wavenumber spectrum, the
in vacuo normal modes are not retained. However, the expansion of
the velarity reangynee ~f a gtructure in terms of its in vacuo modes
is still valid. It is convenient still ;;'?efer to these functions
as modes and to talk of the resonance frequenc;es of these modes, in
which case although we do not refer to a frequency associated with
some natural mode of vibration, we still imply a frequency associated
with the maximum value of the amplitude response of a characteristic
function. An essential feature of this prcbiem now becomes the coupling
together of the in vacuo modes by the structure fluid interaction.
Although we discuss here the particular case of radiation into a
fluid filled semi-infinite space from a rectangular plate in an
infinite rigid baffle, the arguments given concerning the amount and
the effect cf the wnodal coupling induced can obviously be applied to
other geometries. What we attempt in this paper is hardly a complete
solution of the coupled problem; the modal interactions are far too
complicated; but rather, after a considerable but necessary series of
approximations, we determine and interpret the most important fea-
tures of the structure-fluid interaction and their effect on the
response of the system,

We consider a simply supported thin rectangular plate inserted

in an infinite rigid baffle and fluid loaded on one side. The normal
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vibration velocity field of the plate is expanded in a series of

the in vacuo normal modes or characteristic functions of the plate.
This approach leads, because of the structure-fluid interaction,

to an Infinite set of simultaneous linear algebraic equations to be
solved for the infinite number of unknown modal response amplitudes.
These equations are obtained in section 2, below, Furthermore, many
of the coefficients in these equaiions; thesc azgoziated with the
fluid loading terms; are defined by integrals which themselves can
only be evaluated approximately for various regimes of frequency.

(2)

Some of these coefficients have been evaluated by Maidanik and

(4)

also by Davies . We will continue to refer to those discussed by

Maidanik(z)

as modal radiation coefficients as they are a measure of
how efficiently a particular modal shape radiates when no other modes
are excited. However, we also require the modal coupling coef-
ficients connecting the vibration of one plate mode with that of
other plate modes because of the plate-fluid interaction. These
additional coefficients are obtained, at least asymptotically at

low and high frequencies, and discussed in section 3. The previously
determined modal radiation coefficients can obviously be obtained

as special cases of the modal coupling coefficien.s. The real parts
of the coefficients are associated with « radiation damping effect

on the plate response: the imaginary parts lead to a virtual mass

to be added to the mass of the plate, hence causing a decrease in

the modal resonance frequercies.
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In sections &4 and 5 the solution of the resulting infinite set
of modal equations is discussed: for low frequencies in secticn 4,
and for high frequencies(but below the acoutic critical frequency)

in section 5. At low frequencies, kozl, k°l3

the acoustic wavenumber and 21,23 are the dimensions of the plate),

all modes have similar radiation characteristics and the modal equa-

< m/2 (where ko is

tions are all of the same form. An approximate solution of the set
of equations is discussed and modal admittances for the plate-

fluid system obtained which contain the important coupling effects,
The radiated power spectral density is then discussed. A simple
expression is obtained in terms of the modal radiation coefficients,
the modal components of the correlat:on function of the applied
force and the modal admittance functions. It is assumed that the
applied force is such that it causes no additional modal coupling.
This requires that the typical correlation lengths of the forcing
field be much less than the panel dimensions, a condition that is
satisfied in many practicsl applications. The case when this condi-
tion does nct hold is discussed briefly in an appendix. The modal
admittance:, contain the virtual mass terms and additional damping
terms due to the fluid loading. The incrtia coupling terms are
small. Because of the coupling, the radiation damping term is found
to be itself a summation over many modea. Now, 1f the total damping
{s assumed small, the power radiated in a narrow band of frequencies

{s mainly from the modes resonantly excited at frequencies within the
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band. Furthermore, we need only consider the coupling between
resonant modes in the band. It is shown that the magnitude of the
radiation damping iy determined by the amount of modal coupling,
that is, by the numbers of modes that interact. This in turc
depends on the relative magnitudes cf the structural damping, a
measure of the width of the resonance peaks, and the frequency spac-
ing between resonance peaks. Under the assumption of light damp-
ing there can be no likelihood of power flow between modes, tha: is,
no coupling, if the resonance peaks do not overlap. This dependence
of the radiation damping on the structural damping is discussed in
section 4. Estimates are obtained of the radiation damping under
light (hence no coupling) and heavy structural damping. These

are then used In the expressions for the spectral density of radiated

power obtained by averaging over the resonant modes in narrow fre-

quency bands.
At high frequencies, kotl, kol3 >> 1n, the modal interacticns
are more complicated, and an analysi{s of the modal coupling effects
)

correspondingly more difficult. Maidanik has shown that at

these frequencies the modes can be divided into three groups accord-
ing to their radiation characteristics, namely. edge, corner and
acoustically fast modes (see section 3, helow). We estimate, in
narrow bands of frequency, the total coupling between different

types of modes. Since we sssume small damping, it ia sufficient when

considering edge and corner modes in the estimates to include only




resonant modes, We restrict the analysis to freaquencies below the
acoustic critical frequency, that 1s, the resonant modes we consider
all have wavespeede orn the plate less than the accustic wavespeed,

and thus do not consider the case of resonantly excited acoustically
fast modes. This 1s hardly restriccive in practice; the acoustic
critical freguency for 2 1/4" steel plate in water 1is about 400,000
Hertz. Howover, as the radiation eificiency of the acousticalily fast
modes is high, it 18 necessary to determine whether or not thes con.ri-
bution from these modes to the radliated power at any frequency is of
importance even when the mcdes are non-reeonantly excited. These modes
are thus included in the s=nalvsis. Our eetimates of inhe modal coupling
effects in narrow frequency bands thus include the interactions
betwveen resonantly excited edge and corner modes and non-resonantly
excited acousticaily fast modes. We find, howeve:r, that in most cases
the acoustically fast modes are not sutficientlv highly excited either
by their being coupled to resonant edge modes or by the acousticallv
fast mode comnonent of the external forcing field to give anv considerable
contribution to the radiated field. Fxpressiona for the spectral
density of radiated power are again obtained. The radiation damping of
a mode {s again found in the form of a sumpation over many modes because
of the coupling effect. 7Tris summation is ~valuated as in the low
fraquency case,

In section 6 the directivity of the radiated fileld 1s briefly




In section 7 numerical estimates of the radiated power spectral
denrity are made assuming the plate is excited by a turbulent boundary

(7)

layer. Cor.os model c¢f the corralation function of the wall pres-
surc field 18 used. The estimates are compared with the spectral
dengity obtained neglecting fluid loading. A wide rarge of values of
the structural dampine is used to demonstrate the dependence of the
modal radiation damping c¢.. the structural damping.

Finelly in an appendix, we discusa the case when the modes are
algo roupled together by the external field. A simple expression for
the radiated power spectral Jdensity can still be c>tained at low fre-
qucncies in terms of the modszl coupling coefficients, the modal admit-

(8)

tance functionz .lready discussed, and Powell's modal joint accep-
tances., It would seem that the two forms of coupling act independently,

and can be dealt wirh separatrely,

2. The Ceupled Equations of Motion

A simply supported thin rectangular panel of length 21 and width
23 is inserted in a flat infinite rigid baffie. The acoustic field
rrdisted into the dense fluid*in the semi-infil.ite space on one side
of the panel and baffle will be considered. It is assumed that reither
the panel vibration nor the acoustic field affec: tho applied externsal
for 2e,

Re ~tangular coordinates (xl, X, x3) -+ (E,xz) are chosen as usual,
X, being normal to the panel and the origin being at one corner of the

e.g. water
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panel. The fluid fills the region x, > 0 (see Figure 1). The equation

for thin panel normal aisplacement y(x,t) driven by a pressure field

p(x,t) is:

N 2,
Bety o+ me®t o4 mpfd = Lot) = Plymeee) 0 201
- D ot s
where 2(x, X, t) is the acoustic pressure generated by the motion
of the panei, and D and mp are the flexural rigidity and mass per unit
areza of the panel, respectively. B i8 a coefficient introduced to
account for mechanical damping of the panel,

Following reference 4, we consider the frequency Fourier trans-
form of equation 2.1 and expand the panel normai velocity displace- )
ment v(x,w) in texms of the norralised characteristic functions

. ‘ \ llb‘a .'._A. “.?
/\;\()Mn ‘\f-\l = ._2'_ Sin 1&'”\3&1 sin Ky g 3 'y
JHF :_',\..
where k_= 20 | k « BT nd A w22

9“1 a 13 and Ay 1¥3+ The modal equation for the

frequency Fourier transform of panel velocity is thus obtained:

. 4 R , . .
Epkm* ulmh~ xwmbnmﬂsgnm} U’MM'Q) = —1“.bm,+““?.,\‘ 2.2




where k= = kZ + kz » N__ 18 a modal structural loss factor and p
mn m n mn m

and Pm are of aimjlar form and defined by
Prn E ble, ) Yo () de

P

il

Plx o -,;;) v ode
™o r Ay 4 ’*Mn ()‘() — i
Ay
Pmn can be expresgsed in terms of the modal velocity amplitudes v

using the wave equation for P(x, Xy &) in the acoustic medium, and the

boundary condition in the plane of the plate, namely

BP ‘ LLQFOU‘(X LA)

-)

4

After some rearrangement, we can obtain Pm(w) in the form S

%0 = .
= 4 g A
T =) Z Rmv (‘N) %"( ) ?
4, =1

where R is 3 coupling roefficient connecting the (m,n) mode and

mngr :

the (q,r) mode defined by v
Y ' ‘
AT
Ve < * k 2.3 i

_Rmz'\\r' (“) (;;T)L z()s)“) bmn(’i) Sc‘(" (E> d-— ) °
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Here, Z(kw) is the radiation impedance

-t
2

Z (k) = poco (1 - Tk[)

with k =|k|, k, = w/co and 5 (k} is a shape function defined by

Lk
Son L) * 1 ey e de
An

Pr..ious results using light fluid loading approximations have
only included the term Rmnmn and have neglected the modal coupling
terms. It 18 shown below that many of the modal coupling coefficients
are equal in magnitude to the modal radiation coefficients.

The equations of motion can now be written in the form

Ibkn‘:_ “S‘MP‘ L“‘»Ml. .Vlmgﬂns{] SR - Lh é:?

™ Mnr\rf
AR L

In the following sections approximate values of the radiation
coefficients Rmnqr are obtained for both high and low frequencies, and

the solution of the system of coupled equations 2.5 1is discussed.

Y -
"Mn

Z k4

2.§

St——
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3. The Radiation Coefficients

Values of the modal radiation coefficients have been obtained in
references 2 and 4 for various fregquency regimes. Maidanik’s(z) claggi-
fication of the modal radiation coefficients is shown in Figure 2. The
modal wavenumbers are at fixed lattice points in wavenumber space.

At any frequency w we define the acoustic wavenumber kb = w/co, vhich,
in k-space, divides the modes into those with kmn < kb’ thus having a
wavespeed on the plate greater than the acoustic wavespeed and hence
called acoustically fast modes, and those with kmn > ko called acousti-
cally slow modes, The acoustically slow modes can be further divided
into edge and corner modes. These are further discussed at the end of
this section.

The types of approximations used in references 2 and 4 a—ve also
suitable for evaluating many ~f the cross~coupling ccefficients. However,
for some high frequency -esults Lighthill's(g) methods for the asymptotic

evaluation of Fourier transforms of generalised functions are used.

The shape fur tions used in the integral for Rmnqr are:

H

Zk, X, R TN | PR BCRT N o
e L - aflor et

"
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The integrand in equation 2.3 thus includes terms of the form

R !>e\+m ) (-‘)% ekk‘e’ —(-‘)M e—«k\?.

which has the effective value:

2(1 - (-1)™® cos klll) , if m and q are either both odd

or both even

, othervise

where we have noted that the rest of the integrand is even in kl; the

sin k1£1 term in the integrand thus vanishing. It follows that Rlnn

is only non-zero when both m and q and n and r have the same parity,

where by parity we mean here that m and q(and n and r) must be either

both even or both odd. Each mode is thus coupled to at most only one

quarter of all the other modes.

The radiation coefficients will be written:

R - S + 1T
nnqr maqr mnqr
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{DL’:AEQL" ‘<~ ‘lc(»\ i‘(y:‘ i( . L-o (l : (Aﬁm tes kjei)( I - (-1)“(05. ks{}j\ dk: d ks
: (e ) (R k- W )

(4}

31

The real part of the integral, Smnqr’ involves integrations over
values Ikl < ko. We note that the only singularity of the integrand

is :he square root singularity. Typical vaiues of the function

are shown in Figure 3. The function is such that

O

g L, (k)dk = O

o]

iF mity

|
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We consider the term Smmqr first. Various approximations are
necessary for different types of modes. Evaluation of the various

coefficients is conveniently divided into three parts.

— ———

a) kn’ kr >> ko (with similar results applying to modes with km, kq

> ko.) kozl, k°£3 > n.,

We make the approximation kg - k; 3" -k;. The k3 integration

can then easily be performed leaving the approximate result:

ko
! S"‘V\ovr = %fo(o k”\k‘} ko IM"V(k') dk, .
Tr RP kl'\ k(- ”
If k , k <k we can write the integral as / - [ to obtain the
m q ° o ko

result:
|
|
'-' - Rpecs ke 6, \ 2.2 ’
! mag D fole ‘*—‘kjr k" ( a LLQV_ 7
k ALk ke VLK 5 Ko

where (qu is a Kronecker delta. The last term here will be neglected
as being of higher order in powers of (koi)—l.

If k-< ko . kq) ko , the integral i{s written

L kao (|~ ‘Avqmca&k\e‘) N‘p(l |
, T lkek, = - = =TT
W\% k%,\ y(“-':(w\ Kc\ ]
. M 5 ]
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giving

L

= Bpato Km

M\'\%r — e .

The case km, kq > kc is treated more accurately in part (c)without

the restriction k £., k £, >> 7
ol o2

1. >
s kol?.l, ko 3 n

(2)

b) k =k < k
m .q o

Following Maidanik (10)

, and earlier Kmichnan (his eguation

5.5) a delta function approximation can be used in the form

. !

m N N
m Loz
Kﬁ'\

_{_\

leading to the expression

S * T N dk
M m ~ ;'?°(“ kg%\ T K Ir\rkksj 3

For kn - kr‘ a similar delta function approximation leads directly

t. the acoustically fast mode radiation -oefficient S 0" PaCor
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For kn , kr > ko we obtain the edge mode result of equation 3.2.
For the coupling coefficient between two acoustically fast modes

or an edge mode and an acoutically fast mode we require an estimate

of the integral

Ka
’\”" (“l)m (4.3 kif'!)) dks

Lo (ke-ke) (kE- k)72

for kr < ko, As this integral 1s relevant only for edge or acoustically
fast modes, it is sufficient to evaluate it for large values of kol3.

We can treat the terms 1 and (—l)ncos k323 separately if we treat

the separate integrals as Cauchy principal values. The first integral

is zero in this case and we are left with an integral which we can

write, following Lighthill(g) as

b
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wherte

and H 1is the unit step function. The function f has singularities

at z= tkr/ko and z = > 1. The main contributions to the integral at large
values of k023 can be estimated from the Laurent series expansion of

f(z) about its singularities. We find, as expected, no contribution

from the singularities at z = ¢ kr/ko , and from the square root

singularities ~btain the asvmptotic result

Equation 3.4 can now be evaluated for all cases. The resulta are
sunmar. °d below.
¢€) A result valid for all corner modes at all frequencies is

obtained from equation 3.1 by writing it Iin the form
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el < ky
Q Dol k q- / N Lk P " P \ |
= o iyl ‘ =l b- i roq %
\)Mﬂ‘r oo I T \ ) sk \i( J el SAY M
ne kg kake (kl."l‘.= Ve
- N o o T M T ke
~ z ! ke
Fpe O A, L LY, 6
TRL O kux . kol " :
o ' K«A( LN oV KofB
——
Wy N fytopt
+~ - Sin Ko §, 95 .
: 7
o [er ot /
IR 36

- L, M
We note that because of the parity of (m,n) and (q,r) the (-1) a i

0 ; qQ N o
(1) terms are interchangeable with (-1)" and (-1) terms, reapectivelv.

S is thus symmetric {n m and 7 and n and r.
mnqr

Valucs of the reai parts of the modal ~oupling crefficients can
[ ]

be aummarized as followa:

if tm,n) is an X-tvpe eage mode and...

1) (q,r) is an edge mode

:P‘}(O '(’-_,“\\ UMQ
"“"‘r;(’ R Y
1

: [
[l e K

g
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1) {q,r) is a corner mode,
Mg = Zfo(u kM s
‘ Mt AL, t(“ |k,. kty
111 (q,r) is an acoustically fa2t mode,
C = -1 i e l'z’ P
- wmo\r =) "\'?CCQ “c Koty EN CoS|{ Kyin
A,k kS kot

If both (m n} and (q,r) are #coustically fast modes

ch‘r‘ = Foco S g

TAL kK

o

+ (")Mi&& &Ef; koes( LU

w Ab l\: ) "nel

- e b Y | St o

:‘/‘?

+ (‘l.'\ bepo o k,\ X koe l T )“555 ko
Mo Tnr ) ZtPof n I(A’-kuf}, (

)V

p3

lCOS(kc(I-

[}

)8

3-8

"%
VJ_T) 8

n{
4 .

. O




Equation (3.%) gives values of Smnqr vhen both modes are corner

modes which are valid at 8l! frequencies.

We note that the edge,corner and accusticalily fast modal radiation
coefficients can te nbtained as special cases of the ahove results.

Cnly the dominant terms in the expresaicna for differen* modes

have been retained., At tuis point we mske no comparigons of the

relative magnitude of the various coupling terms, leaviiy this discus-

gion until se.>ions & and 5,

The r1elative importaunce of the coupling

terms will obviously be influenced by the numbers of each of the various

types of modes which are coupled.

In a similar way we estimate the mass loadiug coupling term

Tmnqr' The integration involved is over all wavenumbers greater than

the acoustic wavenumbher.

The required vslue of the square root in

equation (3,1} 1¢ now -i(kf + k; - k;)l'/2

glow modes the range of Integration includes all the modrl wavenumbers.

. Thus, for all acoustically

It is obvious in this case from the natuve of the integrand that the

largest coefficiente are these having efther, or both, m=q and n=r.

We consider first the coupling coefficlient of two X-type modes. The

range of integration can be divided into the three regiona

jol
>
H

i ~ L ?‘9 <o °e
M e F & dh;} ak, 4 jdk; j dk,

[he- ks
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For two ¥-type edge modes, it is e¢asily seen that the first of these

terms is the dominait one, Wc obtain in this case

WA e
\

o

[

T _ B ifitlo l‘-h !‘r ‘kcel‘ j Iv\t‘(kSB i dkl
L k)

v Ay

o

We, thus, obtaln I-tegrels of a form similar to that in eguation
{3.5). We gain treet *he terms 1 and (—l)n cos k3£3 separately as
Caud+ principal values. The square root singularity leads 2o the
same msympiotic form as before. However, we now obtein a finite contri-

butiow.. from the term

Q@

‘ )
N U
P T

Ko

™48 gives the dominant tern. It 18 sufficiently accurately

estimated as
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The terms arising from the cos k323 integration are now not required.

The modal mass coupiing term for two X-type edge modes is obtainad

ir the form:
= — L’rfoco &Oe\ l ?—KMV\ 5 A
Mo —“ \ ° ’
w AF ka Kr Ko
where we have made the further approximation
2k ’
\oﬂ i Zkr 2.13

o
c
1
o
Lo
Zf

We will be concerned in the fol owing sections with the coupling

between resonant edge modes only, that 1s with rodes close together in .

wavenumber space., For these modes, expression (3.13) is approximately

true.

In a similar way we may obtain the mass coupling coefficients

between other types of modes. We note that when both modes are cormer

nodes we ohtain in place of the integral in (3.1., Jsproximate ;

form

8

Lk ) dk N | : :
((;““L‘\f)s AN CLA

nan mb
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144) (q,r) is an acoutically fast mode

- U oo k°Q| ‘(r SM
T A S — % 318
MV\Q‘(’ A\; kn k:

When both (m,n) and (q.r) are corner modes we obtain:

- _‘f_‘r_\:,-c: o, E&nkrz f;m% — HEOCo koe‘_g k:\k&;.np 219
™ AP ‘\M‘;\ K aar TTAP K i koivl\

MA%F

For all modes we also have the result:

- Polo _,E_E_ ) kmv\> ko
Tkan = | ™ .20
S |
( 0 , Ko & Ko

The mass coupling between two acoustically fast modes 1is negligibly

small.

Again as In the expression for Smnqr oanly the dominant terms in
the expressions for T have been retained,
nngr

Expressions (3.6) to (3.10) for Smnqr and expressions (3.16)

to (3.20) ‘or T

mqr shew a marked contrast in the nature of the coupling

induced by the radiation terms and the mass loading terms, respectively.

A phyvsical basis for the nature of the radiation coupling coefficients
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We also note that in both expressions (3.11) and (3.14) when n=r the

delta function approximation leads directly to the result

MA M { — »

This result is true for acoustically slow mcdes. Further inspec-
tion shows that Tmnmn is negligibly swmall for acoustically fast modes.

Valuee of the imaginary parts of the modal coupling coefficients
can be summarized as follows (compare equations (3.7) forward):

If (m,n) is an X-type edge mode and...

i) (q,r) is an edge mode

-+ ) = - L(-Eoﬁo _15_9_2_. ’032'_‘2-'1'1‘ gmq(
M'\Q' ™ AP ‘(v\ !\r ko

— Tpe kaly __Mk Sar

11) (q,r) 1is a corner mode

= T hpoto ko(s _k_'fi‘ﬂ(_ Snr

W\V\%l"
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can be given in terms of the volume velocity cancellation effects
described by Maidanik(z). We refer to Figure 4. When the acoustic
wavelength Ao is much greater than the modal wavelength An the radia-
tion character of the mode can be represented by a series of pistons
of width ln/2, there being a phase change of 180° between neighboring
pistons. Arain as Ao > An’ the combined radiation from two adjacent
half pistons is of dipole character. The modal radiation character
is thus described by a series of dipoles, leaving at each end mono-
poles of width Anlé. The dominant radiation is from these edge monc-

poles. These monopoles are themselves coupled if Ao > £ However,

3
the dipoles further combine to higher order .aultipeles in this case

and the dominant radiation is again from the edges. If, on the other

hand, Ao < An‘ there 1is no such cancellation, as the radiation from

the mode snape is essentially uncoupled along the entire length of
the plate. Thus, tor example, an X-type edge mode is so called

(A > A A < X < £.) because the volume velocity cancellation
m o 'n o 3

in the x3 direction and the lack of cancellation in the Xy direction

lead to dominant radiation from strips of width An/& along the edgee

x1=0 and xlsxl.

We may treat the modal radiation coupling coefficient hmnqr as
a measure of the contribution from the (g,r) modal plate velocitv to

the (m,n) modal compenent of the acoustic field. W~ first consider

equation (3.7), where both modes are X-tvpe edge modes. The contribution

Lp—
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is large when the mode numbers in tue Xy direction are the same. Along
the length of the strip radiators we require, for large ccoupling,

that there be no inter-modal velocity cancellations, that is, the strips
must vibrate in the same mode shape along their length. Changes in

the width of the strip are of negligible importance. Similar arguments
also explain the presence of the Kronecker delta functiors in equations
(3.9) and (3.10) . However, when we consider the radiatica coupling of
a corner mode with either another corner mode or an edge mode (equations
(3.6) and (3.8), respectively) we find, of course, that the only contri-
bution from the (q,r) modal plate velocity to the (m,n) component of

the acoustic field now comes from the uncancelled monopole radiators

in each corner. The only criterion for there to be a cohereut contri-
bution is that these corner radiaters be in phase. This is controlled
solely by the pearity of (m,n) a. (gq,t).

The imaginary parts of the modal couplia., coefficients, Tmnqr

’
iead to virtual mass terms tc be added to the mass of the plate.

Volume veleccity cancellation effects are now of no consequence; the
{nerti{a temms act over the whole area of the plate. This i{s demonstrated
by the fact that Tmnmn is the same for all acoustically slow modes and
that even the mass coupling terms Tmnqr in equations (3.16) to (3.19) are
esgentially of the same form, irrespective of the division v radiatien
chara teristi 2 inte « oo and corner medes. Feor there to be 1 rge

ine rtia coupling between modes we require that two mode numbers he

the same, so thot {n one drecticn the modes vibrate {n the same shape.

3 svmbelised by the Kronecker Jdelta functions in cguatlions 3,10 ro
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It is known that for wave motions on an infinite plate, wave
®. mo’ ions with supersonic phase velocities aprear as a damping of the
plate respone~ as energy can be transferred from the plate to the
fiuild becoming acoustic radiation, whereas wave motions with subsonic
phase velocities lead to a virtual mass term as no energy is trans-
ferred. This observation is alsc true for finite plates, the addi-
tional constraint of the edges of the plate being sufficient tc -btailn
acoustic radiation from subsonic wave motions on the plate. The volumo-
velocity cancellations that lead to radiation from these subsonic

(2)

wave motions have been described above, following Maidanik The

essential features of supersonic and subsonic waves on the plate are
g‘ still preserved, however, as shown by the large radiation coefficient
o of acousticallyfast modes (equation 3.5) and :he large modal iner:ia
coefficient of acoustically slow modes (equat.ion 3.20).

The forms of the coupling coefficients sugpes” that the set of

equations (2.5) can be convenientlv rewritten in the form

! A
- — ~ - % v‘“ - - e
'lel‘f " - — MAQ‘\—‘ %(‘ ’\) i M'\“r q“ s A
' i

where now the term rooig of equation (3.20) 1{s Included in the term
k

: B . In what follows, ™0 will be defined solely as in equations
mn mnqr

(3.16) to (3.19). an is defined as

- - \ R Mb T M, AN

e




The solution of the set of equations (3.21) is discussed in the fol-
lowing sections. The discussion 1s restricted to frequencies below

the acoustic critical frequency.

The Low Frequency Limit

At frequencies such that koi 3

1 kol < 7 all modes are of corner
mode radiation character. The radiation and coupling coefficients are
described by equations (3.6) and (3.19). Fach of the modal equations

(3.21) 1is thus of similar form. They can be written:

< 1s described bv eguuatfon (3.0)., T and T are defined
mner mnagn




by the expressions
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The summations 1In equati.ns (4,1) are over all {(q,r) modes with
the same parity as (m,n). Thus, there sre four separate sets of
equations (4.1) to be solved corresponding to the four combinatior:
of even and odd valuves of m and n. We will, of course, assume that
the nomenclature of equation (4.1) covers all four such cases,

The set of equations (4.1) cannot be solved exactlv., We
for an approximate solution of these equations which includes the ma“’
features ot the coupling. The solution for Von ig obviouslyv a functic.

of all the modal forcing functions Pon” However, we might reasonably

expect that the solution for v can be written in the form of a -~ lal

i

- _ , th .
admittance functien Ym“ multiplving the (m,n) modal forcing funition

Pon with, {n addition higher order terms of sm. iler magnitude invel-
ving the coupling coeffic ‘ents and .11 the forcing functions P we

can obtain such a solution: the {nterpretation of the approximations




we megke in doing so is more fully discussed later in this seciion.
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The equetione (4.1) are first rewritten in the form

VAN

where

The set of equaticns (4.2) can be rearranged to give

i A3
Y ‘54 T e ey S =
“—q At T ome — Mﬂ%n ﬂ\
,_ y
A _4;/1 (\
Tonn = T 7 s Pmmar Yar .
~ ' a I ! '

on

terms of the new torce fm . The term

is evaluated by substituting for v

obtain

-~

r

i

froa the equationa (4.2). Wa
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where we hagve used the relativnship

{
Mt IO o 38 M m e mn mJ

[It may be helpful to note here that the sufficies m, q, u will always
refer to mode numbers in the Xy direction; the sufficies n, r, v will
always refer to mode numbers in the Xq diraction.]

If we row substitute from equation (4.3) iInto equation (4.2)

we obtain the exact form:

-1 /,/‘ kS .
B U + oS T = - Hdcl h.§
mwn FA mv\ﬁn ﬁv\ Y0y
wvhere
\ 3
- ! ) R Twege By
Qoo © Fan ® 92§ Tzt Fan s Tonr ] HH0ER e
ro( Brar Bonr - 3 \ s
" Tn\v\mf‘ o Jar
i A

and B:‘m is defined by the expression
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We thus fiad, &lready,

-1 <
of the rmm type coupling effacts.

We now repest the above process.

S TE g
i Mn».,f\ 1'\
%

is evaluated using the equations (4.5).

an sdmittance function containing at least some

The term

When we substitute for this

term back into equation (4.5), noting the relation:

T3 3 _

mv\wﬂ ﬁ"\ wn

we obtain the exact form:

13 !

™Man "MW

where

3 3
T
'%V\Qin Tmnur\ 2
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and 8*3 is defined by the expression

i
T 2
}
Q‘: = B (\+ WS, T uii“&f‘).
3N "
v a7 % BQ’“
Once again we can solve the equations (4.6) as Smnqr is symmetric
and satisfies the relation
= § S
Smno‘r qr W M 474
We finxlly obtain the expression
. T
G o= = im + W<t LS
Xt\w\ M ! L‘ww\ — M E}I’&f
3. 13
Ry
.+
r - PN} {{l L‘v\r g"""‘s%_r )
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The equations (4.7) are an exact relation derived from equations

(4,1) However, they do not represent a solution of the set of equa-
tions (4.1): there are still terms in Von On the right hand side. Ve
couyld, in principle, perhaps, continue 'soiving" the set of equations

as above. However, the modal velocity terme we would now deal with

are gecond crder, that is, they are multiplied by producte of the form

1

T . We would thus be dealing with second order coupling
mngr mnmv

effecta. The first order coupling effects can be excracted directly
from equation (4.7). The admittance function Ymn we assumed could be

found is seen to be

y =T
mn -)(nnn
The remaining terms in equation (4.7) fnclude »~zh the excita-
tion of the modecl velocity Voo by all the modal forcing functions, and
also ti.> higher order coupling effects.
The simplest way to extract the dorinmat terms is by redoing
the above analysis and discarding the higher order t rmg as the

analysis proceeds. Thus, in equation (4.5) we may write for 8o the

approximate form

\
3»\4'\ - fmn + ) #M“ -I—Tr o -~ W £ T‘M“MP #mr
r B r Bmf‘

mi




The second order terms we neglect here are

¢ i ! Ja e
i é: 5_1 i T mou T S WV\%" - Tmnmu‘ SM‘J‘Q“" E _L
e v R

mJ
From the definitions of the cLupling terms we find that

de‘md‘ Smna‘r - _T S d; ___,‘E.‘;E_,.

MAmT T mrgr "
|

imyg Sn

Later, when evaluating the magnitude of the counling we will find
it sufficient to consider only the coupling between resonant modes. We
would then expect that for resonant mcdes kv and kn in equation (Al0)
are of similar megnitude. The terms we neglect, (4.9), already second
order, thus also tend to cencel each other.,

By neglecting other similar product terms we can finally obtain

-an approximate form of equation (4.7). We will ~onsider this to be
the required approximate soluticn of the sec ¢f equations (4.1). This

solution 1s

- 1 #Dm“ + (.LL«J)‘L /:?:‘: _R\R: u*rp *"‘"
qQr

Remgr Par
Bor
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where

Favi
18
*
(3
-
o

. [ . 3
MAQ‘F g + 4 TMV\qn gnf‘

and'Xﬁn is defined by equation (4.8). We note again that tho - -a in ex-

pression 3.20 is not included in the definition of R X

Qur approximate solution is in terms of an admittance Ymn = - 'n
which itself includes both modal radiation and modal inertia coupling
effects. We have alsc retained the first order forces on the (m,n)th

mode of the other modal forcing functioms. We note that equation (4.11)

can be rewritten in the form

Gn = T bme o )t b Rmnge bar
B Xon qr  Bar

However, the importance ofﬂﬂmn in this equation 1is obscured. We will
find when considering power flow inte and out of the plate that equa-
tion {4.11) is a more useful form. The summations in equation (4.11)
are concerned with the forces on the (m,n) mode due to the modal compo-
nents pqr’ and the forces exerted by Py, OO all the vther modes. As
far ng the total v_ iocity field of the plate is concerned these com-
bined effects will tend to be self cancelling. We then find that the
important coupling effects are contained in'ﬁhn. This becomes evident

.en we consider the power flow in the system.

.13




37

We also note at this point the: the solution (4.7} can be obtained

directly by evaluating

’ “ -
e
e < ‘zvnn(%r ‘:ﬂr'
T
where Rmnqr is defined by equation (4.12). The form of the admittance
function does not become as easily evident in this case, and little is
saved in the amount of algebra required as we must stiil expand
R in terms of S , Tl and 'I‘3 . Having obtained the quasi-
mnqr mngr’ “mnmr mngn
solution (4.7), however, we recognize that the approximate solution
(4.11) follows by assuming that

%er Rovur = Raor R +

'\Mﬂqr gruv G4 mnu g :

The error terms in this last expression are just those terms,
such as (4.10), that we discarded to obtain our approximate solution
(4.11). In some of the analysis that follows we will make direct
use of the approximate relation (4.14).
Having obtained an approximate solution for the modal velocity
field of the plate, we now use this solution to obtain estimates of the
total power input to the system and the radiated acoustic power. For
simplicity in obtaining these results some assumptions will be made
about the nature of the forcing field. We will assume that it is both
spatially homogeneous in the plane of the plate and is temporally stationary,

that is, its correlation function is a function of both spatial and tem-
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poral separation only, We further assume that the characteristic
correlation lengths, including the corveeted length, 1f any, in which

the field decays, are much smaller than the dimensions of the plate,

These last criteria are those of Dyer(ll). These assumptions are not
unreasonable and correspond well to typical physical gituations. They

are useful in that they lead to no ccupling of the plate modes by the
forcing field. It has already been noted that we assume no interaction
between the external force and either the plate vibration or the associated
acoustic field, i.e., the external force is specified irrespective

of the response of the system.

We can express the correlation of two modal forces as follows:
PE i B .. * ~ .
S Fea Far > = < Py, Lo) )P (g)w} v (1) “hr(;) > d_)_(. d_(;

where <X> denotes the expected value of X. Because of our assumption

of homogeneity we may write

e T e €S g g ok
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where ¢(E,w) is the wavenumber-frequency Fourier tranaform cf the cor-
relation function of the force p(x,t). Dyer’s(ll) criterta imply
that ¢ (k,w) 1is essentially constant In k. The orthogonality of the

characteristic functions then leads to the simp.e result

- *
< Baa )P:‘, >

is a modal correlation function.

The correlation functions <pmn pz;* are essentially Powell's(8 )
Joint acceptances. When Dyver's criteria are not satisfied we must
include all these functions in the analysis. However, as these
criteria are satisfied in a large range f phvsical situations it {s
assumed ir the analysis that follows that the Jjoint acceptances always
satisfyv the simple relation (4.15). We may, indeed, reasonsablv conjec-
ture that the two modal coupling mechanisms, the external field and
the acoustic fileld, act independently, at least to first order. Thus,
ar far as a study of fluild loading is concerned there is no loss of

generalitv in assuming that Dver's criteria are met. We expect the

extension of the analysis to Include the additic:al coupling effects
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to be straightforward, although, possibly, laborious. An approximate

solution is suggec.ted in an appendix for cases when Dyer's criteria
are not satisfied,

We now estimate the energy flow into and out of the plate. We

consider first the radiated acoustic power. The total power flow into

the fluid from tne plate 1s defined to be an integral over the area

of the pla*e, namely

For the present we will not restrict attention to the real part of this

expression but rather consider the total complex power. We may refer

to the real and Imaginar - caompcnents as the resistive power and reactive

power, respectively. The resistive power describes the drain of

energy by radiation to infinity; the reactive power is a measure of

the energy that is stored in the fluid. To obtain the spectral density

of the radiated power,H (0), we require the expected value of P(x, 0, t)

times v(x, t + 1) for all time delays 1. VWe again consider both the

real and imaginarv parts of H(w).

‘:ii(_ O‘t




By using the modal expressions and the .rthogonality of the

characteristic functions we obtain the result

where the surmation 1is over all modes. Pmn in our present notation

is giver. by the expression

A ;
T_) ) - - - - - ‘ KO \:-
I RS . ‘\Mfc\r‘ :‘(‘ A ‘D;Cu — M )
P | .

where Rmnqr is defined by equation (4.12) and we have ‘nciuded the
term T separately. If we substitute for Var using equation (4.11)

mnmn

we obtzlin directiv

we now use the fact that our solulicn {8 based on the approximate
retlatic: (&.14). To this degree of approximation the double sui.aticn

abave can be noglected. A similar douhle summation {s neglected when we
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*
substitute for Pmn and Vo4 in equation (4.16). When Dver's crit. i

are agsumed to hold, the expression for the (complex) radiated power

reduces to the simple form

. » : ra »

P SERELY G o

"\ﬁ)/ T N\ A dm A - \ ?Mf\ - &POCQ T "‘—" < ‘&‘Jw\ﬁ\l >
M}A ! /\MV‘\‘ Mmoo KM{\

The real part of this expression, the svectral density ol the power

radiated te infinity, say N{w), is seen to be

- . ‘/J ; z 2
PEoess pue S LY 3 -
: ' oA mA l Badhe’ p M
m oA

where | tollowing Leehey(g)

. we nhave written € =nc ¢, C he ing
mnmn 0o 0 mn mn ;
N - R
the medal radiation ef.i1clency (o . 1 for accustically fast modes).
a :
4
Fauation (4.18) s sim{ilar in form to previonusiv oi™7'ished results for 4

the radlated power obrained either by neglecting fluid loading effectsy

or bv assuming light “luid loadine. The importance of the admittance

tunct {on i aow clearly seen.  The fluid ecading effects, ~he modal coun-

ing nduced hoth v radiation lcading and inertia lvoading, are alil

inciuded in the adnittance functiens Y
mn

For a specitied external force acting on the plate the spectral

dens iy ot

acoust ic pover radiated hve

the nlate can he couputed directly
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from equation {4.18). Whern t'F plate modal density in frequency space

is high, more useful eapressic:s can be obtained by averaging Il(w) over
narrow bande of frequency and considering onlv the power radistad by
modes with resonanace fregquencies within the frequency band. It is
asgumed thct ever with the zided damping dve to fluid loading the resonence
peaks are sufficiently marked that the radiated power 1s indeed mainly
from the rescnant modes. It is again emphasized that the vesonance
frequencies referred to are merely the freauencies at which the real
~omponents of the admittance functions Ymn vanish, The inertis terms,

of course, cause a decrease this frequency from the in vacuo

resonance frequency. By averaging over a narrow band of frequencies, Aw,

equation (4.18) for the radiated power spectral density can be written

o dw
P i & “ LS \ rﬁ
=Tl A = ~ < SN ; \ : [ ) . o
RN ’\)! o b ()0(0 ...;4‘ Oj:,\,\ \V\‘) Tv'{“n \'\)} J {Ymv\(w ~ o
"on e ha
pa

where the summation 1is over those modes with resonance frequencies in the

Aw band,
The integration over ’Ymn,z will now be carried out. To emphasize

the coupling effect we write Ymn in the form

=
WA “~

-~} s
—n (O”c‘r ¥ &.T%r\} it 0

where T is replaced by p ¢ T . The terms 0 ¢ T are, in general, con
qrqr 0 0 qr 0 6 qr
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giderably smaller than tne inertia temm %6 % included in Blm' Tha
eifect of inertial ccupling will thus, p:‘ezuma;n;.y, be smail. ¥hen
averaging, as in equation (4.19), we are interested in those modes with
resonance frequencies in Aw. Conversely, when estimating the coupling,
a2 in equation (4.20) we are intereated in frequencies near the resonance
frequency of Ymn' and hence, astqr is small, near the resonance
freovency of an. The added Jdamping is seen to be due toC on® 28 in
light fluid loading approximations, plus other modal radiation coef-

B

icients a’qr modified by the terms f‘-‘- To evaluate the expression

qr
(4.20), the freguency is written in terms of the resonance frequency

N sf B
thn of mn

N = L\\Mn(g+ E) {+o2!

where € coivesponds to the small variations of frequency within the
bw band. The resonance frequency of qu is related to that of bm“

by the expression
mn
- g 22
Saa T "‘)C}F*/‘“r lqr) +

mn
where )‘qr is a measure of the separation of the resonance peaks. At

frequencies within Al we can now write

Emn = D k:v\ - lev\(li‘ E)z M‘:’ - '{_LQ:“(H— é)z mk'v‘lmn
‘ / v Tk 4,23
- allar® nb(‘i+ 1M}, 2%9>
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and, similarly,

Bom -2 MF(5+?\"“+4‘,%“13;\ . 2y
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The summation in equatifon (4.20) can now be expressed in the form

% - et dmp o Jee N = T Tye)
< Braa . - (/’ ' e \ \/E'+ :‘"‘ ﬂ"mv\/}l(é N r " )
::\ tg;: '\CT%("k "'Lﬁf’\) ‘f_{ (\O/\?‘r ! *‘\-Tﬁr) — L_Hb %‘N Z' E .
C T ey
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It is clearly s2en that the important contributions to the summzticn
at the resonance frequency of an come from those modes with resomance -
frequencies close to wmm' Thus, the amount of coupling is controlled
by the spacing of the resonance frequencies, there being a large coup-
ling effect intc those modes with AZ: <«< nmn’ that 1s, when the separa-
tion is less than the effective widths of the resonance peaks. On the
other hand, since we assume that the modes arc only appreciably excited
at their resonance frequencies, we neglect the coupling between modes
whogse res~nance peaks do not overlap.

Two cases must be distinguished in evaluating expression (4.25).

When the structural damping 1is small, that is when Azt >> Mn for all

-

A
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modes, then there is ne effective mocdal ~oupling, and expressicu (4.25)
reduces to a single term. We obtain directly in this case thet at

frequencies near resonance:

AN B : N
N ié+ L (1, xR dm\)i
2o My 2" W
where we have dropped the term pocétmn as it is much smaller ‘han the
k
term p ¢ . is, of course, already defined with the inertia
) kmn mn
ko
term pocO e included. Expression (4.26) is not strictly complete as
mn

we have not included the possibility o: ‘wo modes having the same
resonance frequency. in particular as in the degererate case of a

square plate, However, at very low values of the structural damping

we see that we may reasonably neglect modal coupling., The particular
cage of a aquare plate can be included in this anai,sis simply by doub-
ling the value of the radiation damping.

The second case concerns plates with large structural damping and
high modal densities. Considersble modal interactiom now occurs. To
evaluate the coupling effects we may suppose the modes evenly spaced
in frequency, in which case the separation between adjacent modes is

obtained from equation (4.22) as

I 26




where y is the frequency modal density. We are now i~terested in the case

A > nmn’ that is, we have the condition

D V> l w2t

The summation (4.25) can be treated approximately as an integral

in X in the form

T oy L LY 1 -t M e -0
ar T ‘ : M \ =
; - g+ a)E v (F "i%’)"
LR ANY e : "p i
- dVV\v\ *—W\-A mA ~
Y § <a> H LT QS o Tor

The limits have been taken as * = to include all modes, a factor
1/4 being introduced to account for the fact that there 1s coupling
only between modes of the same parity. The imaginary part of the integral
involves the factor (‘mn - nqr) and has been neglected. We thus obtain

for the admittance function near the resounance fraquency

A

‘ -
= r \ A" X w3 Y mn oo < T > ?. b,238
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Again we have dropped the additional inertia terms, (S Had we
included these terms, the effective masas of the plate would be described

by

y e

my Polo kg P» Lo (0% Nn < kel kot kot k,.:)>§
%CHF g N mn My Z2k,)5 Ry ( : '

Typically we expect that the last term here is small, but, if necessary,

it can be included in the estimate of the resomnance frequency(cmn. Equa-
tion (4.28) still correctly describes the nature ~r the fumctien Ymn near
its rescnance frequency althcugh this resonance frequency is now slightly

changed. The important fluid loading inertia term, che modal "self"

P ko
inertia - ¥ has already been inc?uded.
mn

The dominan: fluid loading effects are the change of resonance
frequency by the medal ''self" inertia and the, possibly, large increase
in the total damping. Some typical magnitudes of these effects £~e
discussed in section 7. The inertia modal coupling terms, although
adding considerable complexity to the analysis, are found (o have little
effect on the admittance of the plate-fluid system. In this context
it I8 worth noting that i¥ we neglect the terms T;mmr and Tinqr
throughout the analysis, equations ( 4.8), (4.11) and (4.12) then
together represent an exact solution of the set of modal equations (4.1}.

The integratic. over lYmnlz (now as a functioen of €) ceén now be

performed as in previous analyses (e.g. references 3 and &) by assuming

Liage -
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that the total damping is sufficiently small that the effective reso-
nant bandwidth 1is much less than the bandwidth Aw. We obtain two estimates

of the radiated power spectral denaity by using expressions (4.26) and

(4.28), respectively:

i) NU”Vlm,. <L 1

i (u) Ay = I é 4’%\\»\ Polo Swn B ) . 29
M, o WML Amn T Polo G,
TS ,
M) dw = T Lol pbse n30
N SRS I " g
£'1P " HMP’V\MVQ 1 —E(NV’V]M‘)# Pofo <®A> ". ,

b

The summations are over all the resonant modes in the Aw frequency band.
In a similar way we can obtain an estimate of the total input '

power to the plate-fluld system. Thus, corresponding to equation (4.16):

A »* .
1TL<“) = & < *DM“ D
.Mlp\ |
A Al‘nl * - » ) ‘m ‘
i <= ¢MA(N) p (i" 4%3YMA/RWMMW> .
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The required power is the rezl part, This expreesion can rlso
be est aat: . by averaging over the A frequency band, The integral
over the second term 1s zerr. We obtain an expression for the spectral
dens ity of Iinput power which is Independe:t of either the structural or
the radiation damping: the only fluid loading effect is the change of

wodal resonanc. frequency by the modal self inertia term. Thus,

N A = - T vbhu< 4,
fla) 4 z_m,é: Fun ) zrtbv RS A

It is shown in refevence & that the modal correlation functions
¢mn0») rve the same for all resonant modes In a narrcow frequency b._ad
if the correlation lengths of the forcing field are consi- -rably less
than the corresponding modal wavelengths. For excitatfon by a turbulent
boundary layer tnis condition is satisfied at frequencies well abov.
the hydrodynamic critical frequency, that is, the resonance frequency
of the plate modes with wavespeed on the plat. equal to the convection
velocity of the forcing field. In this case, the functions¢mn can be
taken outside the summations in equations (4.24) and (4.25). The
radiated power spectral density is then linearly related to the input
power spectra! density.

A comparison of some typical numerical values of the radiated power
spectral density showing the magnitude of the fluid loading terms is

made 1n section 7.
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5. The High Frequencv Limit

At high frequencies, k°2 kORB >> m , the radiation and coupling

1’
characteristics of tte modes are not the same for all modes 28 11 the
low frequency case. The coupled moual equations are thus conciderably
more complex and cc vrespondingly more difficult to solve. In this sec~
tion an approximate solutuion of _ine modal equations we have obtained '«
discussed. We start by est .at ng che magnitude of the force axer =d
on a mode due to its being cou,ie to other types of modes. Thus t r
example, we make an estimate of t..e total effect on tuL2 response of

an edge mode of the coupling into all the cormer modes, bascd on a
typical corner mode resonant amplitude and the total number >f zesonant
coupled corner modes. This approach leads to a first approximation in
which the corner and edge mode responses can be sclved for s« raratelv,
including mly the coupling into other corner and edge mocas, res-ectively,
We include the nonresonant acoustically fast modes in the analysis and
calculate their response due to coupling to resonant edge mode.. This
step seemed necessary as the assoclated radlation from these highly
efficilently radiati'g modes cuuld be of importance. An estimate of the
total radiated power shows, however, that the effect of these modes 1s
negligible, From some numericrl estimates o~ the radlated powei made
in section 7 it would also seem that the modal component of the force
exciting the nonresonant acoustically fast modes also leads to a neg-

1igibly smell contribution to the power.
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The corner mode contribution to the radiated power is included
in this high frequency analysis. It 18 lknown that under light fluid
loading conditions at frequencies where edge mode radiation occurs,
this radiation dominates that from corner modes. Under dense fluid
loading conditicns, however, the higher radiating efficiency of the
edge modes causes correspondingly higher damping of the modes, the
effect being such that, in some cases, the edge mode radiation domimance
does not occur except at frequencies where very many edge modes are
excited. Structural damping is important in determining the relative
magnitudes of the edge and corner mode radiation. This 1s discussed
in gection 7,

We first consider the effect on the edge mode response of the
coupiing into other types of modes. The complete modal equation for

an X-tyne edge mode response will be writter

Here, Vzn is the modal velocity amplitude of an X-tvpe edge mode,

RX

mnqr is the coupling coefficient between the (m,n) X-tvpe edge mode

and the (q,r) acousticallv fast rode: similar interpretations follow

¢hviously for the other notativas, C indicating a cormer mode. The
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suzmations are over all the coupled modes taking the paritv of the mode
numbers into account. Similar equations exist for Y-type =2dge modes,
corner modes and acoustically fast modes,

Estimates of the magnitudes of the summations inequation (5.1) are
made using the values of the coupling coefficients obtained in section 3.

Thus, using cquations (3.7) and (3.16),
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Now, 1if there 1s a considerable amount 5f modal interactiocn, the 3
rzla*ive importance of the terms in expressions (5.2), (5.3) and (5.4) i
can he estimated by assuming that all the sccoustically zlow modes in
a narrow wavenumber band Ak are coupled together. We also include all 1

L4
the nonresonant acoustically fast modes, The caase of low structural 1

PPy

damping with essentially no modal interaction can then be obtgined as
a particular case. We assume when estimating the relative importance

of the various terms that all the resonant acoustically slow moaes and

all the non-yvegsonant acoustically fast modes hav~ the same velocity
amplitude , respectivelv., The radiatien coupling and the inertia coupiing
are estimated separately, The foliowing ratios are obtained from

equations (5.2), (5.3) and (5.4):

1) radiation coupling force on X-tvpe edge moce

x & F
! ’ * - —
- ; A i * o \\.— <
. [ A N haad
- . ﬁM L’i < ~n : :‘“{“ B _(_,ﬂ_. ~ i : ‘,\ o T ,'l{—. : -
R r, - A \;»(:Q'/l i -

11} 1irert¢.a coupling force on X-tvpe edge mode
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We cannot yet eatimate the effect of the acoustically fast mo:ies
on the edge .uode response without first considering the acoustically

tast mode ecuation. This is:

J IR . \ Ind ' /i =
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The acoustically fast modes we treat are at freauenciles well
above their resonance frequencies: thev are thus mass controlled., This
is reflected in the term Guzmp + iwpocn) whic: is merely the mass con-
trolied admittance plus the modal radiation term W € ™ are is no
virtual mass term for these modes. The summationa in equation (5.7)
can be estimated as before. However, the dominant term in this equa-
tion 1s the modal admittance: a comparison of the terms shows that vgr

. -1
is st least a factor (koﬁ) t imes vfi. That the nenrerongni amplitudes

ke

A

vqr are very much smailer than the resonant amplitiudes of VEn is hardly

a surprising rfact. But it mnakes possible a numper of approximatioms,

F
In equation (5.7), the summation I is dropped. Only the inertia coup-
X Y

ling terms are retained in I and Y: the radiation coupling terms are
negligible compared with the radiation term wpoco. The edge mode
inertia coupling is retained gs ba2ing of nossible importance, particu-

larly if the modal force p:; is small. Returning to equations (5.5)
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and (5.6), we now find that where there is considerable modal interaction,
go that Ak is reasonably large, the edge mode  mations domingte,
although not to any great =2xtent. For example, if km = EOIZ snd

kmn = 10 ko‘ the ratios of edge to corner mode summations in equations
(5.5) and (5.6) are, respectively 1 : 1/10 and 1 : ko/1200 Ak, Tt

is thus reasonable to include only the edge mode summation iIn the edge
mode equation (5.1). (As we are considering frequencies such that

koll, k0£3 >> m the acoustically fest mode summations are obviously
negligible,) In & similar way we find that the dominant coupling in

the modal equation for the corner mode response is iInto other corner
modes. We have thus reduce’  the problem at high frequencies to solving
for the edge snd corner mode responses separately, neglecting the coup-
ling between edge and corner modes. Having found the edge mode response
we can then estimate the nonresonant acoustically fast mode response,

The acoustically fast modes are retained in the analysis until we can

show when estimating the radiated power that their effect is, in general,

negligible.
The reduced s.. - --.al equations 1s as follows
8 X : <14' X X : - X
3’“\ Twn 1w ngmv\mt‘ t LT\A{\nnr:\r) J‘M)(P b Fw‘"‘
+

where only the first term of equation (3.16) is now included. the other

being negligihle as shown by equation (5.6); with a similar equation

Ly




for Y~tyre edge modes:

/ ce ) .t _ d 519
L TG e s e
f)mn G—mn ] 5 k"M\"«‘p’" =4 mr\a‘r “0‘ faslal
9,0 '
where s¢ € and 1€ € are defined by equations (3.6) and (3.19)
mnqr mnqr
regpectively: and
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The dominant terms in these . 2duced equations have been obtained
from estimates based on the numbers of resonant modes. It is easier
now to solve the equations as they stand considering all the modes in
the summations. The rer~nant modes will then sgain oe picked out when
we subsequently average over a narrow band of frequencies,

Equation (5.9) 1s almest identical to equation (4.1), the only
difference being that now as n~t 211 modes are ccrner modes, the summa-
tions in equation (5.10) are over only a limited number of modes. The
approximate solution is similar to equation (4.11) with this restriction
applied to the summations.

The coupling terms in equation (5.8) satisfy the relation

R oA X RX X = R*r * K KX

A w I mEmo mam g memPE




exactly. An exact solution is thus possible, This is
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A similar solution exists for V;Z . Finally, by substituting thesge

values into equation (5.10) we obtain the approximate result
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™ ~reqgions for the r~*‘ated power spc.iral dens. ., can now be
chtalned. We again assume that equation (4.15) applies to the forcing
field. The radiated power is the sum c{ the power radiated by each
type of mod: eeparately. We wili consider here only the resistive

power, Thus




These terms are estimated separately. We obtain, analogous

to equation {4.16) (where now the real part only 18 implied)
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with similar expressiomns for beth HY(w) and Hc(w). The expression

for HFQ») involves a douvle summation:

. . 2 ,
<. (7— £ % )* A~ A + 2%3.
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This expression is simplified by substituting for the coupling coef-

ficients and performing one of the summations in each of the last

2 2
two terms. The two summations are over the terms kn and km, respectively,




T¢ large numbers of acoustically fast modes are exclited these summation

k'L, K3
o3 o'l

—— #nd -
dw

have the regspective values, noting the parity requirement, o

PN

The radiation excited by the term $§n raking both edge and acoustically

fast modes Into account 1s then found to be
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The direct radiation at vesonance is considersbly higher than the
raciation from the coupled nonvesonant acoustically fast wmodes. Ve
thusg obtain as an approximation to the radiated power spectral density
the sum of the radiation from each type ct mede independe _ly.
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The gsummations are nominally over all modes of each tvpe. ‘nwever,

the redis on of the modal equations to a form we could solve was made

o, the haela ~f aetimneas

[}

T3 wwapiiug Leiween resonant modes. These

[#]
8]

nodes are picked ont when equation (5.11) {s averaged over a narrow
pavd of frequencies., The « upling effects, as in the low frequency

sose, are contained {n the admittance functiens only. We have gone to
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some lengths to show that wmost cf the coupling effects, in particular
thuse betw~en different types of modes, a.e small. The negliect of the
additioral coupling terms will be most justified when the structural
camping is small., No modal coupling now occurs, except between different
modes with the same resonance frecuency. We do not include this pos-
3ibility ip the analysie  The criteriato be gsatisfied for there t:

be no coupling are:

1} no coupling of corner modes if

o
(.

. -
O Mo <L

oy
;;

ii) no coupling of edge modes if

SR Mn =1

and
\1’Y [AY ‘V‘iz“ L -i J

where yx and yy tre the mcdal densities of those edge modes that are

coupled defined by

XY,
g | x)} = (_)S_)_}

S PN 2w

( ]
Okma  ny Gy Ko

When the above criteria are saiisfied, averaging equatfon (5.11)

over a narrow band of frequencles leads to the stralghtforward resnilt
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In this expression, the edge mode damping and modal correlation

A dk
functions are treated as uuniform for all edge modes, N =Y . k0»5~£§r&ﬂ
. Ak
F p o
is tl.e number of resonant edge modes of each type, and N = e=a is the

nuwber of accustically fa .t modes. Thiz result 1s the same as pre-

vicusly obtained light fluid loading results (e.g, references 2 and &),

with the addition of nonresonant acousrically fast modes. The effect

of these addirional modes {is , in general, small as 1is shown in
section 7.

When the criteria (5.1?) »ve . satisfiea coustderahle modal
coupling occurs. The freauencv averages over the admittance functions
must now be obtained as in section 4 (equation (4.20), forward). We

obtaln the result, analogous tc equation {(4.3}) In the low “requency case
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The (m,n) summations and averages here are over all the resonant
modes of each type in the M frequency pand. The (q,r) average is over
all the acousticallv fast modes.

The additional modal inertia terms ar‘sing from the admittance
functions again serve only to modify slightlv the modal rescnance
trequency and hence the determination of which modes are resconant in
the \w frequencv band, Thelr effect {s again small; the important
inertia term is the self inertia defined bv equation (3,20).

Tvpical numerical values of equations (5.13) and (5.14) are dis .

cussed in section
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the only component being along the radfius vector from the crigin.

We will assume that equation (4.15) again applies to th- external

-~

field and vegliect the effect of $; ., We then obtain a simpie approxi-

L

mate form 1or the intensity of the accustic field:

S
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which, on averaging over a narrow frequency band reduces to
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c 2
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The summation in equation (6.1) is over all modes with resonance
trequer ‘es in the M {requency band. The expression is valid at all

(sub-acoustic critical) frequencies.

The dicectivity is deternined by the terms |I |2 and |13n|2.

im
At low frequencies the radiation obviously uniform in direction,

At sufficiently hipgh frequencies, the dominant radiation is from

edge modes. Now, : .r example, an X-type edge mode (km< ko N kn> ko)

n

13

17-'? e -ERE S A




has a sharp maximum iIntensity of radiation in the direction

12 ?

We can approximate }IBn‘ here by z/kﬁn' For any given mode, the

direction of maximum radiation at its resonance frequency is nearer to

the normal to the panel under fiuid loading conditions because the
X,
corresponding ko is decreased. The change in §£ is in the ratio of

the change In resonance frequencies, namely

Rut, at any glven frequency w, ko, and hence the ‘width" of the edge
mode regions in k-space, is fixed. Thus, for example, the X-mode
radiation 1s always due to modes with the same values of km, although
the vaiues of kn corvesponding to the resonant modes at this frequency
will change. The directivity pattern of radiated intensity at high
frequencies is thus essentially independent o. .luid loading, although
the overall magnitude of the intensity wilil depend on changes in the
wavenumhers associated with a resonance frequency, and on the relative

numbers of resonant edge modes in a bandwidth.
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We note finally that the radiated power is the total Intensity
integrated over a'' directions. To demonstrate this we require from

equation (6.1) the dn.-gral

[

where @ is the surfacw of solid angle 21 at radius R. For the

X-edge modes we make the approximation
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Using an approximation similar te that used in section 3,

namely
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we can obtain:

with a similar expressicn for E?. EF is easily calculated by approxi-

2 2 2 2
mating lIlml and II3nI as 2/km and 2/1'.n , respectively, giving

) 2.

o R

PR ¥
LN n




69

Using these values together with equation (6.1) we finally

obtain
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This expression iz equivalent to equation {(5.13) 4if ¢;n is xevo
and when suitable expressions are substituted for the modal radiation

coefficients; and to equation (4.29) when only corner modes are excited,

7. Evaluation of the Effect of Fluid Loading

In this section some typical values of the power spectral densities
of radiated sour.d obtained in sections 4 and 5 are estimated when the

(D

piate is excited by a turbuleat boundary layer. Corcos modei is
used for the cross-spectral density of the pressure field generated by

the turbulent boundary layer. This is




where we have further assumed that the lougitudinal znd lateral ampli-

tudes decay expoumentialliy. 1in this eypression ¢ (W) is the spectral

density of the mean square beoundary layer pressure, i = (rl,rS) ig the

spatial separatioen, Uc is the convection speed of the pressure field
and ul and a3 are non-dimensionar constants. In reference 4 it is

shown that the modes are uncoupled (i.e. condition -.15 holds) if

It is assumed that these inequalities are satisfied for the range
nf frequencies we will consider, It is further assumed that Uc is so
small that no hydrodynamic coincidence effects occur, This last
asenmpt lon, =2lthough reasonabie, 1s made solely to make the deter-
mination of ¢mn easy and does not affect the discussion ¢ the fluid

loading effects. Under these assumutiouns we obtain the simple relation:
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¢MA{N) - é(u) P

¢nm is thus constant for all modes being a function only of fre-
quency.

The gtructural damping of the plate is an important factor in
determining the velocity response and the associated radiation. Un-
fortunately no simple description, if anv, of the structural damping is
available, Most of the energvdissipaiad in thin plates is into the end
supports and thus depends greatly on the means of supr-ri and the struc-
tures to which the plate i{s attsched. The effect of the structural
damping I8 further modified under dense fluid loasing conditions by
its magnitude relative to the radiation damping. The addition of damping
treatment to a plate .an lead to different effects under light and dense
fluld loading conditions. To demonstrate the iInteraction of both
structural and fluid damping, and the magnitudes of the fluid itoading
effects, some extremely simplyfying assumptions will be made about the
structu.al damping. We will assume that the structural loss factor is
inversely proportional to frequency anc 1s independent of wavenumber.
This last assumption i¢ equivalent to assigning the total structural
loss factor measured in narrow frequency bands to each mode in the band.
For thin plates the total structural loss factor is found in gen=r.

to be inversely proportional ¢ frequency, but is usuallv measured on.y

§+J

o —




over falrly sr-11 ranges of frequency. We will partly compensate for
this lack of knowledge of values of the loss factor by evaluating the
power for several widely different values. We thus write for all

modes

Moy = 1 = £

where B 1s constant, and evaluate the radiated power using various
values of g .

Under thege simplyfying assumpticns, the evaluation of the radiated
power spectral density is particularly straightforward., For example,
at low frequencies, by averaging over all modes in a band, we obtain

from equation (4.29)
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and from equation (4.30):
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The average values of the radiation coefficients obtained in reference

4 are used. Thege differ by a factor 2 from those published earlier
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by Maidanik(z).

No account will be taken of the second order inertia
terms when alculating the modal resonance frequences. In the calculations
performed here, the wavenumber ~orresponding to resonant modes at any

frequency (including the modal self-inertia term), that is, the solu-

tion of the equation

5 —
_bkmn - P\\Lm\r.kmn - leo - ©

was obtained graphically.
Typical values of these expressions are compared in Figure 3 with
the spectral density obtained by neglecting fluid loading, that 1is,

with the expression

v 2 5
moY = T4 oAy e Vo Dole L @m.>
T ,\XJ - (?( ) ey [
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where here the modal expre=:fons are evaluated at the in vacuo r onant
freguencies The exrressions obtained 1n section 5 can be simplified
in a similar manner.

Figures > and 6 show some typical values of the power radiated by
a 2" x 2" x 1/10" steel plate water loaded on one side. A verv thin
plate Is choszen to demenstrate more markedlv the effects of fluid load-

ing. Fer thicker plates the modal densitv {s too low for the averap-

{fug technique cver resonant modes in narrow frequency bands to be




applicable at low frequencies (assuming 1/3 octave banda are used),
although the radiation may be readily computed from equation (4,18).
Three different values of B are used, namely, B = 7, 207 and 200w,
These values correspond to quality factors at 1000 Hertz of 2000, 100
and 1G, respectively. The range thus covers both very lightly and very
heavily damped systems. We would expect the value ¢ = 100 at 1000
Hertz t~ be of mrct practical interest,

The curves shown in Figures 5 and 6 are not restricted to the
and high frequency regimes considered in sections 4 and > (in this
example, these regimes correspond to f < 625 Hz and to £ >> 1250 Hz).
Rather it is assumed that the cocrncr modes are always essentially un-
coupled to other types of modes and that the corner mode soluticn is
thus applicable at al! frequencies. To this solution must be added
the edge mode radiation when kogl' k023 > 37. {(In reference ~ it
is noted that the %irst few edge modes excited as one considers
increasing frequencies have radiation ceosfficlents more characteristic
of corner medes., Th's fact has heen used to estimate the un-loaded
radilation and accounts for the discontinuities in the spectra at
k ;1‘ = 3rv. The edge mode radfation under dense fluid loading

o]

1 shown dashed in Figure 5 for frequencies 7 < k Ql v € 37.)  Ixcept
o1,
tor the very weavily damped case, the edge mode radiation 18 less than

the corner mode radiacion until manv edge medes are excited. This

tfact. topether wich the fact that the contribution from the acoustically

. ¥ )
fast modes due to ¢mn is negligible (in this example the a.f. radiation
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is less than 5% of the total radiation at all the frequencies considered)
lends aaded justification for the neglect of additional coupling effects
in the cormer mode solution in the middle range of frequencies.

The effect of an increase in the structural damping on an un-inaded
plate is a uniform reduction In the radilated spectrum. The effect on
a fluid-loaded plate is less straightforward. We consider first -he
corner rode radiation in Floyre 6. For 3 = 1, a very light!y damped
plate, the additicnal damping Aue to fluid loading causes a mariked
decrease in the radiated spectrum. For grezter damping, g = 207,
the additional effect of fluid loading is not as marked. Both these
cases have been evaluated using equation (4.29) (and its analogv at
higher frequencies). However, further increase of the structural damp-
ing, F = 2007, causes modal coupling as the resonance peaks cverlap.
Equation (4.30) is now applicable. Figure € shows that rather than a
further decrease in the fluid lcading effe 't as ¥ {is increased from 207
to 2007, the modal coupling results {n a greatly increased radiation
damping and hence shows ~ marked fluild loadine effect. Further increase
of 7, of course, would avain result {n a decreasine chanre due to fluid
toadineg.  This hehavier Is characteristic of corner mode radiatien at
all tfreguencies.

The radiation Jdamping of edee modes s verv high., Yor a

SIS

L]

stee! olate i water the uncourled radiation dampine of an eldre molde
corresronds tooa guatite factor of 20 ar 2000 a2 (This value < lepen

fent oon the thichness of the plate only through the chanre of vescnance
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frequency due to mass loading.) Unless the structural damping is verv

o -1

E high, the factor ¢ ¢ O (um_ 7%+ p c © ) 7 is esgsgentiallv unity

y 0o 0 m p mn o o mn 8 :
for all edge modes. ihe increased radiating efficiency over the corner

L)
modes 1s thus offset by the increased damping and, as seen in Fisure 5,
verv manv edge modes must be excited hefeore the edze mode radiation
dominates the covuer mede radiation. This {s true for &=7 and & = 20,

“ At verv high invels of damping bowever, = = 2007 the increased

[ corier rode radiation damping due teo modal coupling Jdecreases th> corner

NS mode riliation to such an extent that e.dce rode raniarion agpain alwavs

nredorinates. Th large discountinuiftr in the -urves fo

"
5
!

RIREE I
presumahly e to our inabilite te anaivise completelv the moda® coun-
liny effects in the middle [amwe of Treqaencien.  As bas heen nreviousty
recarked the analvsis given n section < and & i most accurdate oo

tow valves of the atructural! Jdamrioe.

heomedal o arpreact used here fs nerbaps cot particclarivosud

PO stuy o the offects of fludd leadinge as it o leads te oan intiaite
et inear conat i . can,oot dr, e osolved on vers oanore
owever . the st tas the vt ave that hedng aued on

VAT moval a0 lances it aliows o ctier ot compariaen o e
ponit Toates and ouns Loaded responses o the suster, Inorart b A
. el nreoe strocturas ant the radiacton farnin 10
arde s :
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At low frequencies, koil, k023 < 1/2, the approximations to the

coupling coefficients of the modul 2quations are good and the resulting

equations can be solved fairly accurately. The radiated power spectral

density can be obtained either by averaging over resonant modes in
narrov frequency bands when the modai “~n. 1ty Is high (equation (4.20)
and {4.30)) or computed directly from equation (4.18).

At higher frequenciles, the complexities cf the modal interactions
are such that considerable simplification of the modal equations must

be made before even an approximate solution is found. The approxir-tions

made in this case are more justifiable in :ases where the structural
damping is so low that in any case a negligibl amount of mrdal inter-

action occurs.

The main effects of fluid loading have been discussed in section 7.

We nave noted that the inertia coupling terms play 2 somewhat minor role,

This 18 ot really surprising: there can bte no exchange of energy via

inertial coupling. We have treated systems such that the response of

the sysrtem at any frequency is described by the response of those modes

that are resonant at, or near, that frequency. The response is thus

pri vily determined by the amplitudes of the modal resonances. These

amplitudes are changed from the in vacuo case solely by the additionat
energy loss by acourtic radiation to infinitg: we call this additional

energy loss the radiatic- damping of the plate. The slight changes in

regsonance frequencies caused by the inertia coupling are overshadowed

by the large changes in frequoncy caused by the modal self inertia.
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The magnitude of the radirtion damping is partly detenined by the
amount of modal interaction that occurs. When the structural damping

is small the resonance peaks are very sharp; no model Interactions occur
as the energy of the system 18 contained in very narrow, separate bands
of freguencies. Thus, the acoustic field at sny frequency is generated
sclely by the mode that 1s resonart a2t that frequency. The vadiation

damping of each mode can then only be due to the acoustic fileld generated

by that mode alone. Except for very thin plates, this is the most

typical situation met with in practice. When the structural damping

is large, the widths of the resonance peaks are increased, {.e., cach

mode is considerably excited cver a wider band of frequencies. The accus~

tic field at any frequency is now due not onlv to the mcde rescnant at

that frequercv but also to other modes with resonance frequenciles near to

that frequency. The radiation damping 13 cerrespondingly higaer. The

net result, of course, is a decrease In the total radiated field because

of the decreased amplitude of the plate response,

it features of fluld loading are the fluid
inertis effect and the radiation damping., Both effects lead to a

decrease in the radiated acoustic field. The radiation damping causes

a Jecrease in the velo~ity response amplitude of the plate. The fluid

inertia causes : decrease in the modal resonance frequencies. At any

freq. ney the resonan . .udes correspond to higher wavenumbers, and thus,

have lower radiation efficiencies.
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APPENDIX

It has been assumed throughout the analysis that condition 4.15

applies to the external force, that is, there is no medal coupliing

induced by che applied force, However, at low frequencies a simple

expreggsion for the radiated power similar to equation (4.18) can still

be obtained even if this zondition does not hold, The many cross-coup-

ling terms representing power flow between the modes 2gain cancel and

we obtain the expression

.;4 »’J,"‘ 1 \ \ * L
H{("\) = N ) 4 .t K Yo e‘i» iMA ;Q‘r < ?Mn ‘?f}r >
o (},r i

where we have made use of the approximate rcsult .14,

The spectrum of tne radiated power 1is represented by the

part of equation (A.1). This expression can be averaged over a narrow

hand of frequencles in cases where the modal density i1s high. We require
an estimate of the integral

nt dn
2

s

hoet) Ve 9

/

Us ing the notation of section 4, and assuming light structural
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damping, this integral has the form

E(
. -} * N
VPR B LA %) [e+10n - tipgr b
LS S lIP d Mb 2 “"\Mb 2 GI( r,\‘p z
-%,
% }
5 , 2
2o M Z

This result 18 a factor

MIY\F’V\MY\ + -"}ofg Tonn

NMF E‘

times the corresponding integral over ]Ymnlz. We assume that nmnisl
is always very small, that is, the widths of the modal resonance peaks
ar: less than the width of the frequency band over which we integrate,
The corner mode results given in section 4 will thus be approximately
correct for low values of the structural damping even when condition
4.15 does not hold, For excitation by a turbulent boundary layer the
conditions for equation (4.15) to hold are frequency dependent. It is
at low frequencies that the additional approximation gives here may

be applicable,

-1
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