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UNCLASSIFIED ABSTRACT 

THERMAL SHOCK FOLLOWING RAPID UNIFORM 
HEATING OF SPHERES AND LONG CYLINDRICAL 
ROil3, by P. Mann-Nachbar and W. Nachbar 

TR-0066(S5816-71)-l 
1i FEB 27 

Stress waves, that develop following rapid uniform internal heating of linear-elastic 
spheres and long cylindrical rods, display a focusing effect as they proceed radially 
towards the center in these geometries. This effect can cause peak interior dynamic 
stresses in both tension and compression that are much larger in magnitude than the 
magnitude of the uniform compressive stress which is initially · induced by constrained 
thermal expansion. Two fundamental problems are treated by the Heaviside wave 
method, one for the heating of a long cylindrical core in an infinite medium, and the 
other for heating of a complete sphere with zero surface traction. A simple closed­
form formula for the stress at the center of the cylinder in the first problem allows 
determination of the effect of a finite heating time (a ramp function) on reducing the 
amplitude of the peak tensile stress at the center. The peak tensile stress at the 
center becomes infinite for the cylinder problem in the limit as heating time goes to 
zero. For the sphere problem, the stress at the center is calculated for a duration 
of several wave-reflection times, and the center stress is also found to be infinite 
for the limit of zero heating time. The infinity of center stress in the sphere is a 
tens!le Dirac delta function, while it is of finite slope for the cylinder. For both 
the cylinder and the sphere, the tensile stress impulse associated with the center 
stress infinity is finite for compressible materials. In the limit of the incompres­
sible material (Poisson's ratio equal to O. 5) the tensile stress impulse tends to 
infinity for both cylinder and sphere. (Unclassified Report) 
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INTRODUCTION 

In this paper, we are concerned in the first part with axially-symmetric elastic 

stress waves that develop when a long cylindrical rod of circular cross section with 

radius "a" ls suddenly heated internally in one of two configurations (Figure 1). In the 

first configuration, the lateral surface of the rod, r = a, ls attached to an lnflnlte, 

unheated medium having the same elastic properties as the rod. In the second con­

figuration, the lateral surface of the rod is free of surface traction. Because of the 

length of the rod, the effects of the ends of the rod are neglected, and it ls assumed 

that the center portion of the rod is in a condition of plane strain (i.e., zero axial 

strain). 

If the effective depth of the internal heating in from the lateral surface ls small 

compared to "a," then it ls expected that the initial behavior of the stress waves !nan 

elastic rod ls similar to the behavior that has been found for plane waves ln a 

thermally-shocked, semi-infinite elastic medium (Ref. 8). If, however, the effective 

depth of heating ls "a, " as, for example, if the rod ls "instantaneously" brought to a 

uniform temperature rise To above ambient, then the curvature of the surface ls 

likely to affect the problem significantly. We expect that if the rod ls heated uniformly 

throughout to temperature To, then the initial compressive state of stress caused by 

thermal strains of magnitude oT0 will be altered, first by an unloading wave proceed­

ing inwards from the surface, and then by the effects of convergence of the cyllndrlcal 

waves toward the center. 

The study of the cyllndrlcal geometry in Part A ls followed by a study in Part B 

of the spherical geometry for a similar problem. Spherically-symmetric stress 

waves are studied for an elastic sphere in which the surface ls free of traction. 1be 

sphere ls suddenly heated to a uniform temperature throughout. 1bls problem for 

the sphere ls here solved ln terms of elementary functions by application of the 

Heaviside wave method (Ref. 5, p. 101). However, the solution ls not nearly so 

accessible for the cylindrical geometry with traction-free surface. (Section 5 of 

Part A below), the second of the two configurations mentioned above in the first para­

graph. The cylindrical problem leads to an expression for the Laplace Transform 

1 
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POSITIVE Z DIRECTION 
OUT OF PAPER 
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§ (b) HEATED CORE ~ IN AN UNHEATED INFINITE 
s MEDIUM "(z) ·w 

Figure 1. Cyllndrlcal Geometry 
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.. (Part A, Eq [ 34] ) that cannot be inverted by use of standard tables of inverses • 

Consequently, in the cylindrical case, we restrict ourselves here only to a "small 

time" solution. 

On the other hand, the first configuration for the cylinder is solved here 

(Section 4 of Part A) exactly and in finite form. A complete numerical solution of this 

problem requires computer tabulation of the functions defined by definite integrals 

(Eqs (24] and (32] of Part A); however, simple expressions valid for all time are 

fo1.1nd for the radial stress component at the center, and these are listed below in 

Table 1. The solution obtained here corrects a previous but erroneous solution for 

this problem that was given in Ref. 3. 

The cylindrical solutions obtained in this paper are all valid for a finite time 

of heating t , assuming that the temperature rise during heating is linear in time. 
0 

Further, solutions are obtained for the limiting case t
0

--+ O, which is called instan-

taneous heating. In the cylindrical geometry under instantaneous heating, the stress 

at the center becomes singular and jumps to an infinite tensile value at a characteristic 

time given by a/c1, where c1 is the dilatational speed. This singularity disappears 

if t is positive, however, and the stress at the center will not become tensile at all 
0 

if t
0 

exceeds a value of the order of a/c1• The spherical geometry solution is simi-

lar to the cylindrical in that there is a singular behavior at the origin at time a/c1 in 

the limit t -+ O, but the nature of the singularity is different for the two geometries 
0 

(compare Figure 5 with Figure 2). 

The investigation of Nelson (Ref 9) was seen after completion of the present 

work. The problem considered in Ref 9 is the transient motion following sudden 

removal of uniform radial pressure on the surface of a long cylinder at ambient 

temperature. This problem is mathematically equivalent to the problem of uniform 

instantaneous heating of the cylinder with a stress-free surface. In the present 

report, only a "short-time" solution is presented for this problem (see Part A, 

Sect 5, below). The solution for all time that is derived in Ref 9 is obtained by 

inversion of a finite Hankel transform and corresponds to zero heating time in our 

problem. The numerical results shown for the stress at various radii as functions 

of time exhibit propagating discontinuities of infinite amplitude in stress. 
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PART A - THE CYLINDRICAL GEOMETRY 

Nomenclature 

radial, axial and circumferential stress components 

u 

r, 8 

T (r, 8) 

a 

E, V 

p 

t 

·-•111::11a;;n~..,.,.~----•--· 

radial displacement component 

polar coordinates 

temperature rise above ambient 

linear coefficient of thermal expansion 

Young's modulus and Poisson's ratio 

density (mass per unit volume) 

time 

4 
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• 1. CONVENTIONAL THERMOELASTIC EQUATIONS (Ref 1, Pg 170, Eq Vlll-24) 

au 1 [ ] - = - er - v (cr + er ) ar E r e z +aT 

j! = .! [er - v (cr + cr >] + a T r E e r z 

0 = i [ cr z - v (crr + cre)] + a T 

From Eq (le) 

Ver 2 
Z V 

- = - (cr + er ) - vaT E E r e 

Therefore: 

au 1 [ 2 ] a r = E (1 - v ) a-r - v (1 + v ) cr e, + (1 + v ) a T 

Equilibrium -----
Refer t.o Figure (la) for sign conventions. We have 

a ju 
ar (crrrd8) cir - cr 8drd8 = p at2 • rd8dr 

for a unit length in the z-dlrecUon. Hence 

5 

(la) 

(lb) 

(le) 

(2a) 

(2b) 

(2c) 



Nondlmensionallzatlon 

Let L be a characteristic length, ca characteristic speed, ~ a characteristic 

stress and T0 a characteristic temperature. We define dimensionless variables as 
follows: 

t = r/a 

w = u/L 

T = tc/L 

s = al~ 

® = .i. 
To 

Equations (2a, b, c) become, upon substitution from the above, 

L aw ~ [ 2 ] a at = E (1 - v ) Sr - v (1 + v) 88 + (1 + v) a To ® 

It ls convenient to define the parameter /( as 

V 
I( 
--= 1 - V 

and to set the nondimenslonal parameter groups ln Eq (3a, b, c) equal to numbers 

as follows 

8 

(3a) 

(3b) 

(3c) 

(4a) 

(4b) 



(1 + v) aT a ___ ..... o __ =1 
L 

2;L 2 
~ =1-K 
ape 

These equations give three relations between the four parameters L, c, ~. T
0

: 

E 
2 

1 - V 
(~) 

L (1 + v) a To '= a 

c2 == L ~ - 1 - v E (La)2 = c21 (&a)2 
a (l _ K2) p - (1 - 2v) (1 + v) p 

where c1, given by, 

is the dilatational wave speed. 

In consequence of Eq (Sa, b, c), the dimensional quantities wlll be given in 

t'.)rms of their nondimensional counterparts by the following relations: 

E 
er= 1-v aTo • s for err, <Ts' crz 

u = (1 + v) a T • aw 
0 

a t = - T 
cl 

* 

Substitution from Eq (4a, b, c, d) into Eq (3a, b, c) gives 

w 
- = S - KS + @ 
; 8 r 

7 

(4c) 

(4d) 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

(5f) 

(5g) 

(6a) 

(6b) 

• 



I 

2 -l a2w 
= (1 - K ) -2 

dT 
(6c) 

Equation (6b) can be eliminated by writing it as 

w 
Se= [ + KSr - ® 

Upon substitution for se in Eqs (6a) and (6c), 

aw = s - K (~ + Ks - @\+ ® a; r ; r / 

asr sr 1 (w ~ 2 -l a2w ar+-r -r ~+KSr-®1=(1-K) aT2 

After collection of terms, these two equations take the form 

aw w 2 
- + K - - (1 - K ) 8 = (1 + K ) @ at ; r (7a) 

as sr w 2 -l a2w 1 
'.l tr + (1 - K) - - - (1 - K ) - = - - @ 
u ~ ; ; 2 a? ; (7b) 

2, SOLUTION BY THE LAPLACE TRANSFORM 

Let the Laplace transform of a function f (;, T) be indicated by f (;, p), viz. 

/ 

<Xl -pT 
~ (f) = I < t, p) = r < ~ , T > e d T. 

·o 

If the initial conditions 

aw 
W(;, 0) =

0
T (;, 0) =0 

I- ar) are assumed, then application of the Laplace transform t.o Eq (7a, b) gives \f' =ar 
_, w 2 -
w + KT - (1 - K ) sr = (1 + K) ® (Sa) 

_, sr 2 -1 
sr + (1 - K) T - (1 - 1< ) 2)- 1 -+p w=-r® (Sb) 

s 

I 
I 
I I 

I 



Upon differentlatJ.on of both sides of Eq (8a), and the combining of the 

resulting equation with (Sa) itself, the equation 

-" W
1 

2 fi (; ' 1 - K ~ 2 [ 1 8r] 
w + ~ - K -~ - (1 + K \ ~ + T" ie;/ = (l - K ) sr + (1 - K) T 

is obtained. Sub~ .. t,:~ to ; ,uto th.is equation from Eq (8b) then gives 

-" w' / 1 i)- -' 
W +-r -\~ 2 +p W=(l+K)@. 

I 

(9) 

The general solution to the homogeneous (® ==-0) equation (9) la (Ref 2, Sect 9.6), 

expressible ln terms of the modified Bessel functions 11 and K 1 as follows: 

(10) 

Here A and Bare functions of p only. Equation (10) ls also the complete solution for 

a temperature distribution that ls independent of ~ • If thermal conduction ls entirely 

neglected for the short time intervals to be considered, and lf to ls a heating tlme, 

TO = ~ to the corresponding nondimenslonal heating time, then the nondimenalonal 

temperature ls independent of t and ls assumed here to have the following form for 

0 < ~ < 1: 

T 
0 ~ T < TO ®=-T 

0 

® = 1 T ~ T 
- 0 

'Ibe llmltlng case To= 0 corresponds to instantaneous heating. Consequently, 

and in the limiting case TO = 0, 

® = .!. 
p 

'Ibe symbol® when written hereafter will refer apeclflcally to Eqa (12a, b). 

9 

(11) 

(12a) 

(12b) 
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Since, by Ref 2, Eq (9. 6. 26), 

d 
; d; I 1 (p t ) =. P ; 12 (p t ) + I 1 (p ~) 

d 
;d; Kl <P;) =-p;K2 <Pt)+Kl <P;) 

then the stress component transform sr can be written from Eqs (Sa) and (10) as 

- 1 I [ l+K ] (1- K) sr (;) = 1 +,c A pl2 <Pt)+-;- 11 (p;) 

[ l+K JI -+ B - pK2 (p;) + -; - Kl (p;) - ® 

3. THE HEATED CYLINDRICAL CORE PROBLEM 

(13) 

We consider next the problem of a suddenly-heated long cylindrical region 

imbedded in an unheated, infinite, elastic medium of the same material. Denote by 

R (i) the region corresponding to the cylindrical core and by R@ the surrounding 

medium (Figure lb). Similarly, let w (i) be the displacement ln R(D etc. The 

requirement of bounded displacements applied to Eq (10) implies that 

(14) 

Therefore, for 0 ~ t ~ 1, 

(15a) 

(15b) 

and for ~ ~ 1, 

w@ (~) = B(i) K1 (p() (15c) 

(15d) 

10 



Continuity of w (t) and sr (t) at t = 1 reqUlres 

A (D 11 (p) = B@ K1 (p) (16a) 

Substitution from Eq (16a) into Eq (16b) gives 

Making use of the Wronskian (Ref 2, Pg 375) 

we then obtain 

B(i) = (1 + ic)eI
1 

(p) 

The solution ln R (I) wlll be carried out in detail because lt ls of primary 

interest. The solution in R @ ls directly analogous. In R (i) , l. e. , O ~ ~ ~ 1, 
Eqs (15a, b) and (18a) give 

(17) 

(18a) 

(18b) 

w (j) (() = (1 + ic) ® K1 (p) 11 (p~) (19a) 

(1 - •l •r (i) (() = i [P K1 (p) '2 G>O + 
1

: • K1 (p) 11 IP() - 1] (19b) 

11 



The inversion of Eq (19a, b) is considered in the following section. We will first 

consider only the stress at the center g = O. For fixed p (Ref 2, Eq (9.6. 7)), 

Um 
g-o 

Hence, Eq (19b) becomes 

From Ref 4, pg 277, 

1 [l ] 1 2 2 l/2 
X p Kl (ap) = a (T - a ) H ( T - a) 

where H(x) is the Heaviside step function that is zero for x <· O and one for x > o. 
Furthermore, if 

~-
1 [r <P>] = F (T), 

then 

1 [/., -pTo) ] 
~- \1 - e f (p) = F (T) - H (T- T 

0
) F (T - T 

0
) 

12 

11 

(21) 

(22) 



Equations (21) and (22) are used to invert Br (D (0+) from Eq (20) to give the value 

of sr (D (t, T) at t = 0+ for T ~ 0: 

(l - ,c) 8 (O+, T) = ~ ~ K 

r (D o 

2 1/2 
(T - 1) H (T - 1) 

- .!.. [T - ( T - T ) H ( T - T ) ] 
T O 0 

0 

Table 1 

(l3) 

VALUES OF NONDIMENSIONAL STRESS AT THE CENTER OF THE CYUNDER, 
FROM EQ (23) 

TO ( 1 T 0 >l (l - IC ) Sr (j) (0+, T ) = 

0<T<T
0 

0 ( T( 1 T --
TO 

T <T< 1 -1 ---0 ----- ------->< 1 ( T < TO 
T 1 + I( (,-2 - 1)1/2 --+-

T 0 2T
0 

l<T<T
0

+1 T
0

<T<T
0

+1 - 1 + .!...:!:.!.. 
2TO 

(T2 _ 1)1/2 

T > 1 + TO T > 1 + TO 1 + • I 1/2 [ 2 r ,2 I - 1 + 2 TO (T2 - 1) - ( T - To) - 1 

13 
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Exs •nination of F:q (23) is facilitated by Table 1 and Figure 2, from which the 

following conclusions can be drawn about sr at ; = O+: 

a. A uniform compressive state of stress, which is a particular integral of 

Eq (7a, b), persists at the center until the relief wave from the surface 

; = 1 arrives at T = 1. This state is 

b. 

w = o. 

For sufficiently small T , the maximum tensile stress occurs at 
0 

T = T0 + 1, and it has the value sr, max in nondimensional form: 

1 1 + K ( 2 ) 
112 

1 s = ---1+- ---
r, ma.x 2 1 - -K To 1 - K 

This peak value becomes infinite in the limit T O = O. Tensile stresses 

disappear entl.rely for 

The spherical geometry solution is similar to the cylindrical in that 

there is a singular behavior at the origin at time a/c
1 

in the limit 

t - 0, but the nature of the singularity is different for the two 
0 

geometries (compare Figure 5 with Figure 2). 

14 

(24) 

(25) 
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'1 
' 

'The right-hand side of inequality (25) depends only on v. It has its 
2 1 1 smallest value for 11 = "= 0, and this value is 3; for v = 3, K = 2, the 

value ls 18/7. The right hand side is unity for "' = }a - 1 = 0.155 or 

V = 0.135. 

c. For T
O 

= 1, in wt Jh case the heating time t
0 

is equal to the wave transit 

time a/c1, the peo.k tensile stress ls 

d. 

./3 
(1 - K) sr, max = 2 (l + K ) - 1 

Since 0.155 -( K < 1, this peak tensile stress ls less than the magnitude 

of the peak compressive stress. Hence, tensile stresses due to the 

focussing effects will be relatively large compared to peak compressive 

stresses only for TO < 1. 

There is only one wave reflection in this problem. For all T , s tr\ 

1 o r ~ 
(0 +, T) tends monotonically to the value - 2. This limit can be shown 

generally from the bottom line of Table 1 and, in a specific case, from 

Eq (26) below. It can also be shown that for all finite T
O

, 

Um 
T ~a:, 

8 ( ;, T) = - -2
1 , 0 ~ ; ~ 1, 

r CD 

by use of Eq (19b) and the relation (Ref 5, Sect 114) 

Um s (;,T)=lim ps (P,0, 
T-oo r(D p-0+ r(D 

e. In the limiting case of instantaneous heating, a singularity appears in 

(1 - K) Br (D (0+, T) at T = 1, at which time this nondimenslonal stress 

jumps from (-1) at T = 1- to (+oo) at T = l+. 

(1 - K) lim 
T -0 

0 

1 + K T 

Sr (D (0+, T) = -2- (T2 - 1)1/2 ff (T - 1) - 1 

16 
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4. INVERSION OF THE TRANSFORM 

Equations (19a) and (12a) can be written as 

W Q) (P = (1 ;o') (1 - e -pTo) [:2 ePKl (p)] 

(27) 

Let 

From Ref 4, pp 276 and 278, and Ref 5, p 5, for T > O and O < ~ < 1: 

(28a) 

(28b) 

Consequently (Ref 5, p 7), if 

-1 - -~ (Gl G2) = G (T, ; ) 

then by convolution 

11:,nh-l Ii (T - A) J (; - A) 
G (T t;) ------~~-r.-~-- H (2 ; - A) d A 

' ~ = TT; O (2 ; A _ \ 2) 1/2 
(29) 

• 

17 
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Using the shlft theorem (Ref 5, p 7, Theorem V) w (i) (t) can be inverted to give 

w (i) (T, t) = l T: K [ G (T - 1 + ;, t) H (T - 1 + ; ) 

- G (T - 1 - T
O 

+ ; , ; ) H ( T - 1 - T
O 

+ ~ ) ] 

It can be shown from Eq (29) that for all T > 0 

Um G (T, ; ) = 0, 
t-o 

and so for all T > 0, it is verified that Eq (30) gives 

W (D (T, Q+) = 0. 

Equation (30) for w can be evaluated numerically by a numerical integration 

to obtain G (T, ; ) from Eq (29). By similar means, one can obtain sr (i) ( ;) from 
inversion of Eq (19b). 

(30) 

For the case of instantaneous heating, the limit T O - 0, one can make use of 

a relation that follows from Eq (22), under the condition F(0+) = o. 

(31) 

If we take 

f (p) = (1 + K) G
1 

G
2 

e -p (l - ; ) 

then 

F (T) = (1 + K) G ( T - 1 + ; , ; ) H ( T - 1 + ; ) 

18 
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Consequently, Eq (27) can be interpreted for the limit T
0 

-0 as in the form of 

Eq (31), and so 

w (D (T, ; ) = F' (T) = (1 + K) G* (T - 1 + ; , ; ) H ( T- 1 + ; ) 

where, with use of Eq (27a) and (27b), 

1 2 d\ (32) 

The displacement is everywhere continuous and vanishes, as required, at the 

origin. The heated cylindrical core problem for T
O 

= 0 was fQrmulated incorrectly in 

Ref 3. The result was that an infinite discontinuity of radial displacement was 

obtained (see Figure 2 of Ref 3) which travelled out from ; =Oat T > 1. 

5. STRESS-FREE BOUNDARY 

If the surface ; = 1 ls stress-free, then sr (D (1) = 0, and we determine from 

Eq (15b) that 

and so 

(33) 

At ; = 0, 

(0+) = ® [---½_P __ _ 
I ~ /( 12 (p) + 11 (p) 

(34) 

19 



, I 

We seek here only to find sr (i) (0+, T) for small T, and hence look for approximations 

for p large (Ref 5, Chapter XIII). If the nwnerator and denominator of the fraction in 

Eq (34) are both multiplied by K1 (p), then by use of Eq (17), 

For large p, K2I1 ;;- K111 ~ ip • Hence, Eq (34) can be written for large p as 

[ 
1 ] 
- p K (p) 

(0+) = ® 2 1 1 + .!. -1 

2 (l + K} 2p 

_ 1 + ,c ( . -pTo)[½ Kl (p) ] 1 ( -pTo) 
---1-e ------1-e 

T l+l+,c 2 
0 - p T p 0 

(35) 

If the added term ( 1 
+ ") in the denominator of Eq (35) ls neglected altogether in 
p -

comparison to unity, then the solution obtained for (1 - ") sr (i) (0+) for the stress 

free boundary in Eq (35) with this approximation can be found from the solution 

previously obtained for i.he cyllndrlcal core problem. It ls only necessary to obsen•e 
1 that the approximate Eq (35) can be obtained from Eq (20) by replacing 2 (1 + ") on 

the right-hand side of Eq (2 0) by (l + "). Hen~e, (1 - " ) Sr (i) (0+, T ) ls immediately 

obtained from Table 1 by replacing the factor 2 (1 + ") by (l + 1<) in the expressions in 

the right-hand colwnn of this table. These expressions are then only asymptotic 

20 



representations of (1 - 1<) Br (D (0+, 7 ) for T - o. A better approximation could be 

found by use of the following: 

.t-1 p 1 ::!Cl 

[ 
.!. K (p) ] 

1 
1 + I( +-­p 

[ .! K (p) -~ K (p) ] p 1 2 1 p 

1 [ 2 1/2 -1 ] = 2 ff (T - 1) T (T - 1) - cosh T 

In the limiting case, T
O 

= 0, Eq (35) becomes 

(1 - , ) •r (i) (O+) "' (1 + , ) K 1 (p) [ 1 - (l ; •) ] 
1 --p (36) 

Eq (36) is valid for large p; under the assumption that it ls valid for T of order 1, the 

inversion of Eq (36) gives 

T 
Um (l-1<)s (0+,T)=(l+1<) 

2 1
7

2 
H(T-1)-1 

T
0 

- O r (D (T - 1) 

2 2 1/2 [ - (1 + K ) (T - 1) ff T - 1 J (37) 

This singular solution too can be obtained from the corresponding stress for the 

( 
1 + /() imbedded core cylinder, Eq (26), by changing the factor -r- to (l + 1<) and adding 

the correction term 

2 2 1/2 r:: 
- (1 + 1< ) (T - 1) H LT - 1 ] 

21 • 



In Ref 7, the case of a cylinder with a free surface ls treated, and there ls 

obtained the (singular) asymptotic solution for the stress at the origin in a Corm 

slmllar to that given by Eq (37) above. The development shown in Ref 7 ls restricted, 

however, to the condition of instantaneous heating. T0 - 0, and lt does not consider 

non-vanishing rise times T 0 • We have now shown that the representation of sr (o+, T) 

for this problem for small times T can be obtained from Table 1 for the case T O > O , 

with the Umlt T
0 
-o being adequately represented by the first two terms on the 

right-hand side of Eq (37) near T = 1. 
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PART B - THE SPHERICAL GEOMETRY: STRESS-FREE BOUNDARY 

1. CONVENTIONAL THERMOELASTIC EQUATIONS 

Introduce the usual spherical coordinate system (r, 8 , cf>) with origin at the 
center of a sphere of radius a. 

The principal stress components are 
er . r· radial 

tangential 

All other quantities are as defined in Part A. 

The governing equations are the stress-displacement relations (Ref 1, p. 170 
Eq VIll-24) 

au=l[er -2vera]+~T ar E r 

which can also be written: 

cr = E [.!!. + V au] E QT 
8 (l + v ) (l - 2 v) r a r - 1 - 2 v 

and the equation of equilibrium: 

aerr 2 a2u 
-- + - (CT - er ) = p-

or r r 8 at2 

23 

(la) 

(lb) 

(2a) 

(2b) 

(3) 
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In terms of the displacement, u, Eq (3) becomes: 

(1 + v) (l - 2 v) a 2u 
(1 - v )E P at2 (4) 

where use has been made of the fact that the temperature field is uniform. 

Introduce dimensionless forms for the radial coordinate, time, temperature, 

stress and displacement: 

r t = -a 

1 - V 

W= (l + v)a,T a u 
0 

1 - V 

s - a,T E o-r r 
0 

1 - V 
<r 8 88 = a,T E 

0 

®= i-
0 

tc 
T =-

a 

where c is the "dilatational" wave speed: 

c2 = 
~l - v) E 

(l + v ) (1 - 2 v) p 

Equations (2a), (2b), and (4) now become: 

1 [w aw] (1-v) 
8 = -- -;-+ V - - --- @ 
8 1 - 2v c; at 1 - 2 V 

(Sa) 
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and 

a2w + _g aw 2w c?w 
a t2 ; at - ;2 = aT2 

Solution of the problem consists of finding a function w which satisfies 

Eq (6), satisfies the initial conditions 

w(;, 0) = 0; ~~] (;, 0) = 0 

and is such that the stress, sr, satisfies the boundary condition: 

S ( 1, T) = 0. r 

2. SOLUTION BY MEANS OF THE LAPLACE TRANSFORM 

As before, let the Laplace transform of a function f ( t, T) be designated 

by f ( t, p). Application of the Laplace transform to Eq (6), under the conditions 

of Eq (7) gives 

2- 2 a- 2w 2-a w + _ .....!'.' _ =pw 
a;2 ;a; ~ 

Because the displacement must remain finite at the origin, the only acceptable 

solution of Eq (9) has the form 

- [ rr /2] 1/2 
w = A (p) PT 13/2 (p ;) 

where 

25 

(5b) 

(6) 

(7) 

(8) 

(9) 

(10) 

• 

j. 



is a modified spherical Bessel Function of the first kind (Ref 2, p. 443) and A(p) is to 
be determined from the boundary condition. 

At t = 1, we have, from Eqs. (5b) and (8) 

w aw -
2 V "I+ (} - V) at - (} - v) @ = 0 (11) 

and, therefore 

A(p) [2 v f1(p) + (1- v) pf1(p)] = (1- 1•) ® 
(12) 

The derivative, f1 (p), can be written in terms of f
0

(p) and f
1 

(p) (Ref 2, p. 444), The 
factor A(p) then becomes 

A(p) = ------®----­
p [ fo(P) - ~ fl (p)] + 1: vv f 1 (p) 

If the heating is instantaneous, then 

- 1 ® = 1 and®= -
p 

If a gradual rise is permitted over a time, T 
0

, say 
T 

® =-

then 

To 

® = 1 T > T 
- 0 

® = 1 [1 -e -p To] 
p • p T 

0 
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Consider now the heating pattern of Eq. (14), (instantaneous) with 

(16) 

The functions f0 and f1 can be expressed in terms of hyperbolic sines and cosines, or 

alternatively, negative and positive exponentials (Ref 2, p. 443). Set 

1 - 2 V : K* 

1 - V (17) 

for simplicity. Then making use of the relationships (for any argument, Z) , 

. z -z 
f (Z) = smh Z = ! (e - e ) 
0 Z Z 2 

z -z z -z f ( Z) = _ sinh Z + cosh Z = _ -1.. (e - e ) + ! (e + e ) 
1 z2 z z2 2 z 2 

equation (16) becomes 

where 

[ -2p~] 
(p t - 1) + (p s + 1) e 

* * Q =l+~+~ 2 - p 2 
p 

* * 2 K 2 K 
Ql = 1-p +2 

p 

27 
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The factor 

1--e ( 
Q2 -2p)-1 
Ql 

can be written as a series in ascending powers of 

The function w then has the series expansion: 

- _ 1 j <Ps - 1> -p <1 - ; > p; + 1 -p <1 + ; > 
w- T 2 e + 2 e 

t p p - 2 K * p + 2 I(* p - 2 K * p + 2 ,c* 

Q Q ) + 2 (p;-l)e-1(3-;)+ 2 (pt+l)e-p(3+;)+----
2Q2 2Q2 

p 1 p 1 

(19) 

the terms of which represent an inward moving wave and its successive reflections. 

The inversion of w can now be carried out term by term. It should be noted, however, 

that in order to compute the displacement, or stress, at the origin, the terms must be 

taken in pairs; i.e., the first two or the first four, etc. The first term of each pair 

gives the contribution of the wave arriving at ; = O. The wave is then immediately 

reflected and the second term of the pair gives the contribution of the reflected wave. 

3. INVERSION OF THE TRANSFORM 

Denote the first term of Eq. (19) by w1, the first two by w1, 2 etc. Consider 

- _ 1 I p S - 1 -p(l - s) 
wl 2- ;r 2 * * e 

' Sp p-2Kp+2K 

+ p~ + 1 -p(l + ; ) I 
2 * * e p - 2K p + 2 K 

(20) 
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2 * * The roots of the polynomial p - 2 K p + 21< are p = r1 and p = r 2: 

* . I * *2 * . I * *2 r1=1< +1v21< -K ;r2=1< -l\!2K - K 

* * *2 Since O ~ v < 1/2, then 1 ?; K > 0, and, therefore, 2 K - K > O. The inverse of 

w1,2 from Eq. (20) is readily found to be (Ref 4, Vol. 1, p. 230; Ref 5, p. 7) 

1 11 - r 1; r 1 [ T - ( 1 - ; ) J 1 - r 2 ~ r 2 [ T - (l - ~) J 1 I 
wl, 2 =? (r2 - rl)rl e + (rl - r2>r2 e - rlr2 

, H[T-(1-;)] 

(21) 

The function w 
1 2 

is identical with w for the time interval T < 3 - (. The third 
' term of Eq. (19) contributes only for 3 - ~ < -r and the fourth for 3 + ~ < -r etc. 

Equations (Sa), (Sb), (14), and (17) determine the stress; thus: 

aw w 
K *sr = a t + 2(1 - K*) 1' - 1 

K *S e 
aw w 

= (1 - K *) a ~ + (2 - K *) 1' - 1 

(22a) 

(22b) 

Stress wave fronts at T = n - ~. n = 1, 3, 5 ••••• , travel in to the center, 

the first arriving there at T = 1. Behavior at the origin at T = 1, which Ls singular, 

is discussed in Section 4. 

Consider here first the stress and displacement at the center in the open 

interval 1 < T < 3. The displacement may be disposed of very simply. It is easily 

shown that 

lim 
(-0 

as required. 

1 < T < 3 

29 
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To compute the stress, write w
1
, 
2 

as 

w1, 2 = ;~G1 [t,T -(1-;)]H[T-(l- ;)J 

+-½ G2 [;, T - (1 + ;)] H [r - (1 + t)] ; 
Then for T > 1 + ; 

and 

~· 8(G + G ) * 
K * s = (l - K ) l 2 + ~ (G + G ) 

e 1, 2 ; 2 a; € a 1 2 

where K *sr and K •s8 are stresses associated with the first incoming 
1,2 1,2 

wave and its reflection from the origin. 

By repeated use of L'Hospital's rule it can be shown that 

At the origin, therefore, 

* • 
K Sr (0, T) = K S O (0, T) = - 1 for 0 < T < 1 

30 

(23a) 

(23b) 

(24) 

(25a) 



* * [ * Gl + G2)] 
K Sr (0, T) = K Se (0, T) = tr: 0 (3 - 2 K ) g 3 - 1 

At T = 1 + 

4 * 1 
= - (3 - 2 1<) - -

3 i<* 

The function sr (0, 1 +) is plotted in Fig. 3 as a function of v 

More generally, for ; = 0, 1 < T < 3: 

for 1 < T < 3 

* 4 * * I(* ( T - 1) I [ /. * *2 ] 
K Sr (0, T) = 3 (3 - 2 K ) K e . cos /2 K - K (T - 1) 

+ (K*-l) stn[/2:- / 2 (T-l)JJ-1 
✓ * *2 2 I( - I( 

(25b) 

(26) 

(27) 

Equations (25a) and (27) show that in the case of a compressible material the 

stress state at ~ = O goes from homogeneous compression, K*s = -1, in the open r 
interval 0 < , < 1 to finite values in the open interval 1 < , < 3. The limit from 

the right, denoted by sr(0, 1 +), is also finite for all v in the interval 0 < v < ½; 
this limit is tensile for v up to about 0.4 as shown in Figure 3. Equations (25a) 

and (27) also show that the stress approaches -oo as v tends to 1/2, or as N* tends 

to 0 r cf. Eq. (17)) . The case v = ½ is for an ideally incompressible material in 

which the dilatational speed would also be infinite. 
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Further investigation of the singular behavior of both stress and displacement 

at the origin for T = 1 is carried out in the following section where it is shown that a 

Dirac delta function at T = 1 must be added to the right-hand side of Eq. (27) in order 

that the interval be extended to include , = 1. Equations (25a) and (27) are plotted 

in Figure 4. 

4. NATURE OF THE SINGULARITY AT THE ORIGIN 

To determine the stress at the origin for T = 1, consider the stress at a 

neighboring point E = € in the time interval 1 - € ~ T < 1 + €. Let sr, 1 be the 

nondimensional radial stress associated with the first incoming (tension) wave and 

s 2 the nondimensional radial stress associated with its reflection at the origin. r, 
s 1 arrives at E = € at time T = 1 - €, ands 2 does not arrive until T = 1 + €. r, r, 
Therefore, for T < 1 + ( , 

K*S =K*S -1 r r, 1 ' 

where s is given by Eq. (22a) with the substitution on the right-band side of r, 1 

Let 

T = 1 - € + 2€ 17 , 

r
1 

[T-(1-!)] 
e 

17 ~ 0. 

(28) 

Substituting Eq. (29) into Eq. (28) and using a Taylor representation, we obtain, to 

third order in E , 

w = 1 
1 l 2 2 €2 2 ( 17 - 17 ) € 

+ 0(,
4
) I H 1~1 (29) 
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Similarly, from Eq. (28), 

2 --w 
E 1 

Again, after substitution and expansion, 

11 * 2 * * 23 = £2 £ + 4,c 11 £ + 4K (2K - 1)17 £ 

+ O ( < 
4

) ] H I ~ I - ¾ w 
1 

Therefore 

K*s =I! r,1 £ 

+ O(<) ] 

* 2 * 8 *2 2 3 4
K ( 7J - 7J ) + 4K - - K (317 - 217 ) 

£ 3 

H [ 17] 

At 17 = 1, i.e., at T = 1 + £, the reflected wave arrives at E = £, and 
therefore 

* * * K S = K S l + K S 
2 

- 1, r r, r, + 
T = (1 + €) 

aw
2 To obtain sr, 2 return to Eq. (21) to obtain w2 and aT as follows: 

1 I l+r1 t r 1 [r-(l+U] 
w2 = -? (r2-rl)rl e 

l+r2 t r 2 [r-(l+O] 
1 
l 

+~-....... - e -- H[T-(1+()] 
(r 1 - r 2> r 2 r 1 r 2 

35 

(30) 

(31) 

(32) 

(33) 

• 
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+ 
r2 [ T - (1 + ()] l 

e H [ T - (1 + 01 

For E = f and T = (1 + €)+, directly behind the reflected wave, 

w2 = 0 

aw2 
aT = 

and therefore 

• 
K s r,2 

1 
- 2 f 

1 
= - -f 

. If I 

+ 
T = (1 + €) 

+ Combining Eqs. (32), (33), and (35), we obtain at T = (1 + €) and f = f: 

* * 8 * 2 
K Sr = 4 K - 3 K - 1 + 0( f ) 

(34b) 

(35) 

(36) 

• The quantity f (K s + 1) is shown in Fig. 4 over the range 0 < T < 1 + f. 
r - -

rn the limit, as £- 0, the stress behaves as a Dirac delta function; its value at 
T = 1 + is easily seen to be 

* + lim Ks (f,(l+E)) 
£-0 r 

* 8 * 2 
= 4K - - K - 1 3 

Comparison with Eq. (26) shows this limit to be identical with the expression 
+ previously obtained for s (0, 1 ). 

r 
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The results of thls section can be combined with Eqs. (25a) and (25b) to give 

the stress over the entire range O ~ T < 3; thus, 

* 2 * [ r/ r1(T - 1) 
K Sr(O, T) = - - (3 - 2K ) --- e 3 r 2 - r 1 

r 2 
2 

r 2( T - 1) ] 
+ --- e H( T - 1) + 6 ( T - 1) - 1 

rl - r2 

4 * * K*(T-1)1 [✓ * *2 
= 3 ( 3 - 2 K ) K e COS 2 K - K ( T - 1) 

+ k * - 1 sin 1✓2K • - K * 2 ( T - l)l l H ( T - 1) 
✓ * *2 2K - K 

+ {, ( T - 1) - 1 

• Equation (38b) for v = 1/3 (K = 1/2) is plotted in Fig. 5. The stress state at 

~ = O goes from homogeneous compression for O ~ T < 1 to an infinite tensile 

sp,ke at T = 1, then immediately falls to a tensile stress about 1/3 the initial 
+ -compressive stress at T = 1 . At r = 3 the stress is again compressive and 

measures three times the initial value. 

(38a) 

(38b) 

Further information requires evaluation of w 3 and w 4. It is expected that 

a second infinite tensile spike will occur at r = 3. 

Using the general expression for w1 and w2, Eq. (21), to obtain the 

solution at the center, while instructive, is tedious. A more satisfactory approach 

is to return to Eq. (16) and interchange the operations of inversion and lim . i.e., to 

compute E-O 
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This gives directly the complete time history at the origin. From Eq. (16) and the 

form of f0 and f 1 it follows directly that 

lim w = 

~-o 1 

Therefore, 

lim 
~-o 

* ­
K S r = 

1 

* 3 - 2K 
3 

aw 
Hm TT 
~-o 

= 3 ( 3 - 2 K ) e -- .., * . 2 * -p [ 1 ] 
~K 2K 1-- + -

p 2 
p 

- 4p 
e + ..•. ] 

where Q2 and Q1 are as defined on Page 27. 

1 
p 

[
l+Q2e-2p 

Ql 

1 
p 

The first term in the series as shown gives the stress associated with the first 

incoming wave and its reflection, the second with the second incoming wave and 
its reflection, etc . , thus 

lim K * (S ) = ~ e -p 
~-o r 1, 2 3 [ 

3 - 2K * ] 
* * 

1-~ + ~ 
p p2 

To carry out the inversion, write this as 

:~o"' (ii,,) a f (3 - 2K •) I •--P [ J)X(p) - I J + e -p) 
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I· 

I I 

' 

where 

x(p) = 2 * * -
p - 2K p + 2K 

and r 1, r 2 are given on Page 29. 

Let 

~ - l [ X(p) ] - X ( i) 

Then 

X ( i) = 

Since 

X( T)-1 
-r-o 

and e-p; x(-r)-0 
-r- 00 

Theorem II, p. 5 of Ref. 5 may be applied to give 

l 
2 -1 -r ~ [px(p) - 1 = ! 

r2 r 1 

Returning now t.o Eq. (43), applying Theorem V, p. 7 of Ref. 5, and recalling 

Eq. (41) for the total transform we obtain for , < 3 

* 2 * 
K Br (0, 'T) = - 3 (3 - 2K ) 

• ff [ -r - 1] + o (; - 1) - 1 
which is identical with Eq. (38a). 
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This derivation lends itself well to an evaluation of the effect of a finite 

heating time, i.e., a ramp load, on the singularity at the center, 

In the transform domain, solutions for a gradual temperature rise Eq. (15), 

are obtained from the solutions for instantaneous heating by introduction of the factor 
-pT 

(1 - e o] 
PT 

0 

The stress transform at the center then is (Equation 41) 

with 

lim 
~-o 

*-K S 
rl,2 

[ 
*-lim K S 

i-o rl, 2 

*-+ K S 

r3,4 
. . . . . l 

-pT 
(1 - e o) 

P
2

T 
0 

* 
= ~ (3 - 2K ) 

3 T 
0 [ 

P ] [ -p _ -p( 1 + T )] 
2 * * e e o 

p -2K p+2K 

For T < 3, standard inversion techniques, as used previously in this paper give 

-\;o 
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(45b) 

(46) 
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" 
For ; 

0 
> 0, this function remains finite and well-behaved throughout the time 

interval 0 < ; < 3, In the limit, as ; - 0, Eq. (46) reduces to Eq. (44). 
- 0 

The displacement also exhibits singular behavior at the center for instantaneous 

heating, the singularities disappearing if the heating time is finite. 

Referring to Equation (29), for t = E, ; = 1 - E + 2 Er, 

[ 
2 4 * 2 3 w

1 
= 2(71 - T} ) + 3 K (3TJ - 2 TJ ) • E 

+ 0 (E'
2

) ] H(r,) (47) 

Similarly, it can be shown that w2, as given by Equation (34a), can be written 

[ 
2 4 * 2 

W 2 = - 2( T} - T} ) + a K ( fl - 1) (1 + 2r,) , E 

+ 0 ( E
2

) ] H ( r, - 1) 

(48) 

with ; = 1 - E' + 2ETJ as before, 

Figure 6 shows w1, 2 = w 1 + w2 at ( = E as a function of ; . The 

displacement starts out at zero, rises to a maximum which is independent of e: and 

then has fallen to a value of order E just as the first reflected wave arrives from 

the center at ; = 1 + E (i.e., TJ = 1). As E - o, the interval in time represented 

by the values 0 < T1 < 1 shrinks and in the limit, at the center, a spike of height 1/2 

appears for the displacement. 

Alternatively, we can examine the displacement profile in space as the first 

tensile wave travels in toward the center. Instead of considering w1 at a given 

point, t = E' , take a given tlme, ; = 1 - E' and write 

E = £+2E'A A>0 
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w1,2 
- - - -2(11-Jf) 

1 
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I \ - - - • 

1-E l+E 
.,. 

,, = 0 11 = 1 

Figure 6, Nondimensional Displacement versus Nondimensional Time 
at a Point Close to the Origin 
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so that 2£A represents distance behind the incoming wave. Substitution into Eq. (28) 

and expansion in £ gives 

1 I 2(A + A
2

) + 4K*A2 (1 +IA)€ wl = 
(1+2A>2 

+ 0 (€2) I H (A] (49) 

Equation (49) ls shown in Fig. 7. At A = O, the slope of the displacement curve, 

as given by the derivative with respect to A , is 2. As £ - 0, a given change in 

A corresponds to smaller and smaller changes in t ( ;A = 2£ ;t ). Therefore, 

the wave front grows gradually steeper as it travels in to the center confirming the 

results shown in Fig. 6. These results for the displacement are consistent with the 

appearance of a delta fWlction at the center for the stress. 

Finally, it will be shown that when the heating is gradual ( -r 
O 

I- 0), 

displacements of order one do not appear near the center and the slope of the 

wave front remains finite as the front moves in to the center. 

To obtain w
1 

for a ramp load, multiply the first term in Eq. (19) by 

[ -pT 
1 - e 

0 

p-r 0 

1 
wl = T 0 

] 

I 
and invert, thus 

1 - r t 1 

1 -r 
0 

1 - r 2 E r '> ( T - T - (1 - t) 1 e ... o +----2~ 
(rl - r2>r2 
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r ( T - T - (1 - E)] 
e 1 o 

-~ H ( T - T - (1 - t)] T- T I 
r1r 2 o (50) 
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Consider again a given tlme, T = 1 - £, and let ~ = £ + 2 £~ with ~ > 0. Since 

T O is fixed and non-zero and since we will wish to take £ arbitrarily small, take 

also T - T < 1 - ~. Substituting into Eq. (50) and expanding in £ we obtain 0 

The leading term in the displacement is now proportional to £ • Further, the 
aw1 

derivative a'r is also proportional to £ so that the slope of the wave front, 

aw
1 

given by aT , remains finite as £ -o. 
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CONCLUSION 

Consider the impulse associated with the tensile stress at the origin for the 

first wave reflection ; in nondimensional form, this impulse is called m, 

+ 
s (0 , T) d T , r 

where Tt is the value of T at which sr becomes zero (cf. Fig. 2 and Fig. 5) 

where Tt ~ 2 for t
0 

= 0. Substitution from Table 1 into Eq. (52) and taking the 

limit gives for the cylinder problem 

(1 - K) m = 
0 

T + 1 

lim 10 [- 1 + 12: K 

T - 0 0 
0 1 

2 
(T - 1)

112 
] dT 

(52) 

(53) 

Let 1 +2 K ( T2 _ 1)1/2 -- b f( T). The first integral in Eq. (53) ecomes 

lim .!... Jl + T
O 

f( T)d T " O and non-vanishing part of the right-hand side of 
T -0 T 

0 0 

1 

Eq. (53) thus gives for m
0

: 

:o I/'} T) - f(T - T o>]d, I 
0 
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'lbe limit of the integral above is just 

and so m for the cylinder problem is given by 
0 

m
0 

= (1 - •>-l [ 1 - , 1 + 
1 ~ • (T: -1,1/2 ] 

For the spherical case, it is seen from Figure 4 that the tensile stress 

impulse associated with the delta function is not greater than 

lim 
£-0 

• = 2/K 

f 
+£ 

= lim (! - 1) .!_ d T 
£-0 € • 

K 

1 - £ 

(54) 

(55) 

There ls also a finite contribution from the stresses given by Eq. (27) (cf. Fig. 5) 

for the time interval 1 < T < T t • 

Hence, the stress-impulse, which ls a crude measure of the dynamic fracture 

capability, ls finite in the limit T
O 

- 0 for both the cylindrical and the spherical 

geometry. For the limit of " -½ , which ls the incompressible material, K for 

• the cylinder tends to + 1 while ,c for the sphere tends to 0. Equations (54) and (55) 

then show that the nondlmenslonal stress impulse becomes infinite for both the cylinder 
1 and the sphere for " = 2 . 
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