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Abstract

The purpose of this investigation is to develop a mathematical
model for the Class V flextensional underwater acoustic transducer,

The transducer is approximated through the consideration of three
distinct problems. The problem of a thin piezoelectric disk with an
arbitrary impedance on its edge is solved in terms of Bessel functionms,
The shell vibration problem is solved using a finite difference model
to approximate the shell. The acoustic radiation problem is solved by
obtaining the source density distribution for 1 system of quad:i-
laterals representing the transducer. With the source density of each
quadrilateral, the near and far field pressures and velocities can be
found. Utilizing these three components, a model is then constructed
for the transducer.

A comparison of the results from the mathematical model with

those obtained from experiments is made in order to validate the model.
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1. INTRODUCTION

In general, the various flextensional designs can be placed in
one of five different classes [2]. The purpose of this investigation
is to develop a mathematical model for the Class V flextensional
underwater acoustic transducer. A picture of a Class V transducer is
shown in Figure 1.1 and a typical sketch in Figure 1.2. The rlass V
flextensional transducer design was originaily proposed as having pos-
sible zpplications as a sonobuoy transducer.

As shown in Figure 1.2, a Class V design consists of two shallow
epherical shelis bonded at the comwon boundary by an epoxy cement to
the edge of a thin piezoelectric disk. The piezoelectric disk is iso-
lated electrically from the two shells by the removal of the electrodes
from the regicn where there is contact between the disk and the shells.
Sufficient epoxy is applied so as to firmly attach each of the shells
to the disk. Two small holes are drilled through the shells and serve
as entrances for the electrical leads of the disk.

To attain the stated objective, one develops a mathematical model
for each of the important components of the system. Then, combining
them in a manner similar to that used by Royster [21], one obtains an
approximate working model for the complete system. The model is then
programmed un the IBM 360-75 computer, and an evai.ution is made by

1
comparing experimental and predicted resuits.

lDuhlke, H. E. and L. H. Royster. 1964. Unpublished notes on '
Shallow Shell Transducer. North American Aviation, Inc., Columbus,
Ohic.
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TRANSDUCER

TYPICAL SKETCH OF A CLASS V

FR§GURE 1.2




2. REVIEW OF LITERATURE

2.1 General

The development of detailed, complete mathematical models for
the various classes of flextensional underwater acoustic transducers
has been underway for about five yeacs. Hence, the literature in
this area is limited to only a few papers and technical reports. On
the other hand, elements of the transducer problem, such as the thin
piezoelectric disks, spherical caps, and acoustic radiation problems
for different geometries have been studied extensively.

2.2 Mathematical Models of Flextensional Underwater
Acoustic Transducers

The present state of the art of analytic models for flextensional
underwater acoustic transducers is presented by Brigham and Royster [2].
They also classified the various flextensional transducer designs into
five different classes. Presently, there are two analytic models, one
complete and one partial, which have been presented. The complete
model was presented by Royster [21] for the Class I transducer as
shown in Figure 2.1. The partial model was presented by Boone and
Royster [1] for the Class II transducer as shown in Figure 2.2, Both
models use a finite difference model for the shell but differ in the
manner by which the shell and stack are coupled and in the media in
which they operate. The Class ] model assumes that the shell vibrates
independent y‘of'the stack and then solves fhe éigenvalue problem for
the shell. On the other hand, the Class II model couples the electrode

shorted stack to the shell through the edge segment equation of motion

i
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and then solves the eigenvalue problem. The Class I model can also

operate in media which produce acoustic loads while the Class II model

in its present state of development is limited to media which produce
only negligible acoustic loads,

Presently, work is underway on discrete models for Classes II,
IITI and IV at the Center for Acoustical Studies, and a continuous
ciosed form solution for a Class IV oval is being developed by North
American Aviation.

Since the mathematical model to be developed herein is for the
Class V transducer, a review of the literature in the areas of thin

piezoelectric disks, spherical caps, and acoustic radiation problems

for three-dimensional bodies is of interest.

2.3 Thin Piezoelectric Disks

Three works in the literature are pertinent to an investigation

of the vibration of a thin piezoelectric disk. The first of these is

the vibration of a free, thin, electrostrictive disk by Mason [11].
Mason established the necessary system of equations and the assump-

tions and procedure needed to solve the problem. The resulting dis-

placements differed from the elastic solution for a thin disk in that
the material properties were measured in a constant electric field.
The second work by Tachibana [23], used Mason's procedure and

solved the problem of a partially-plated, thin piezoelectric disk.

Expressions fo

in the results.

Building on the works uf Mason and Tachibana, Nelson and Royster

[14] obtained expressions for the electric impedance, resonant

= W
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frequencies, and dynamic electromechanical coupling coefficient for a
thin piezoelectric disk with an arbitrary impedance on its boundary.
The expressions were specialized for the case of a spring like

boundary condition.

2.4 Spherical Caps
Langhaar [10] developed an expression for the strain ene-gy in

thin elastic shells. Special cases for the geometry were then ccn-

JRERPERE . M e

sidered, one of the cases being the sphere. From Langharr's strain

bontemn fza

energy expressions for a sphere, McDonald [12] obtained the equations !
of motion for a spherical cap with a clamped edge, using finite dif.
ferences. These equations were then solved numerically for the J

eigenvalues and eigenvectors of the free undamped problem and were

compared to other analytic results. The forced vibration problem was
also solved for various loads.

Using the technique presented in his 1959 work, McDonald [13]
then presented the equations of motion for free undamped vibration of
a thin shell of revolution composed of an orthotropic material with
variable elastic properties and chickness.

Nelson and Royster [15], utilizing the techniques presented in
both papers by McDonald, derived the equations of motion fgr the
guided-pinned and guided-clamped spherical cap. The results were then

set up in matrix representation in order to obtain a numerical solu-

an
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2.5 Acoustic Radiation

Three numerical techniques were considered as possible methods

for obtaining the radiation field for the Class V flextensional
transducer., This section will consist of a review of those techniques.
Chertock [3] developed a method for determining the radiation

field of a vibrating body. In general, a Fredholm integral equation

is solved numerically to give surface pressures. Then the special

case of a surface of revolution with an arbitrary velocity distribu-

) E b NI

tion and frequency is described in detail.

Hess [8] developed a method of solving the radiation problem for
an arbitrary three-dimensional body represented as a system of
quadrilaterale. Specification of the geometry, normal surface
velocities, and wave number leads to a set of linear algebraic equa-

tions which approximate an integral equation for the source density

distribution. Solution of the system gives near and far field pres-

sures as well as other information.

Schench [22] developed four different integral formulations for
obtaining approximate solutions to the exterior steady-state acoustic
radiation problem for an arbitrary surface whose normal velocity is
specified, The fourth method, a Combined Helmholtz Integral Equation
Formulation (CHIEF), overcomes numerical difficulties that arise for
certain wave numbers.

The method chosen for use herein is that developed by Hess. This
method was chosen due to its general approach to the body shape. The
limitations of the method in the frequency range presented no problem

since the fundamental mode of the Class V was well below the first

"forbidden frequency.”
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3. DEVELOPMENT OF MATHEMATICAL MODEL

3.1 General

To develop a mathematical model for the Class V flextensional
transducer, the model is divided into three sections. The first part
is the vibration of a thin piezoelectric disk with an arbitrary
impedance on its edge [14]. The second is the vibration of a
spherical cap having a horizontally guided-pinned boundary condition
[15]. The third section is the acoustic radiation problem due to the
surface displacements on the shell.

The manner in which these three problems are joined depends on
the assumptions made. Hence, discussion of this aspect of the overall
transducer model will be delayed until after the three problems have

been considered.

3.2 Equations of State
Both the equations of motion and the linear adiabatic equations
of state for a piezoelectric material in a rectangular cartesian
coordinate system weres ouilined by Royster [20] and the practical

engineering limitutions noted. Therefore, only the resulting equa-

tions, along vith the assumptions made, will be noted here. In
general, the notation used will also follow that outlined in the
IRE (1949) publication [17].

The equations of motion arise out of the application of Newton's

ONY AW and ale given Oy
dzui
T + £ = 3.1
i5,1 " N Dth 3.1

where T, is a symmetric tensor wnen body moments are neglected.

i3
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o On the other hand, the equations of state rannot be so easily
determined. First using the conservation of energy and then assuming
that the dissipation of energy by the material is small compared to
the rate of change of kinetic and potential energy, and that all

processes are reversible, one can obtain

.- . . ok
Vp = Tijsij + Eipi + eTc (3.2)

]

where (') denotes differentiation with respect to time. From equation

(3.2), it can then be assumed that

vV o=V (S
p¢

\
. D, o*) . (3.3)

From equation (3.3), one can derive the two equations of state needed
in the development of the mathematical model. In obtaining these
equations of state, one must assuﬁe the following:

1) small deflection gradients (linear theory),
and

2) adiabatic process (no heat transferred).

These assumptions limit the transducer to low power applicatiius. The
resulting equations of state, which are commonly called the lineu«:z

[ : adiabatic equations of state, are given in rectangular cartesian ten-or

form by
1
S s 1 +d . E (3.4) i
ij 1ikg ke mij m )
D =d . T, . + ¢ (3.5)
n nk? k2 nom ’
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Equations (3.4) and (3.5) will be referred to simply as equations of
state.

As shown in Figure 3.1, the coordinate system used for the thin
piezoelectric disk is a cylindrical coordinate system. Use of the
appropriate tensor transformations and material properties as shown
in Appendix 7.1 results in the equations of state for cylindrical

coordinates given by

_ E E
Ser = S11Ter T 512(Tgp * T2z * 955,
E E
see - SIITGB * S12(Trr * Tzz) * d3lgz ;
-sEr st et
szz T Y1l zz 12( rr 86) £
!
S :i E
e = (511 - 51Tg (3-6) i
3
_ L E E ‘
Srz N (Sn - slz)Trz
_E E
S = 1y - 51T,

and

T
Dy, = 3351 (Tpp * Tog * 635K, -

3.3 Thin Piezoelectric Disk
The analytical results for a thin piezpe
arbitrary impedance on its edge have been published 14]. The
results presented did not discuss in depth the development of per-
tinent equations. Hence, this analytic effort will now be presented

in detail in order to more ciearly present the disk problem.
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3.3.1 Electric Field and Piezoelectric Equations

The disk being considered is a thin circular disk with electrodes
on the top and bottom as shown in Figure 3.2. The thickness of the

disk, hd’ is much less than the radius of the disk, a;, L.e.,

hd << ad.

In general, the displacements in cylindrical coordinates are

denoted by

=
i

u (r, 9, z, t)

<
!

o= Yt 8 2, O (3.7

and

u, = uz(r, 8 z, t) .

Now the motiog will be assumed to be primarily radial. Therefore,
there will be no displacement allowed in the @ direction, and all
other displacements must be independent of §. Also, the displacement
in the radial direction will be required to be independent of z.

Equation (3.7) can now be written as

u = ur(r, t)
uz = uz(r. z, O (3.8)
and
=0 .
“s

The stresses on a cylindrical clement are shown in Figure 3.

The bottom and top of the disk are free surfaces. Hence, since the

S

N S

#ou
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disk is thin, one can assume that

T =T, =T _=0. ’ (3.9)

The strain.displacement relations for cylindrical coordinates are

given by Fung [5] to be

ou du u
S = r S = .1_ 8 + .—I;
rr or ’ 66 roe r
buz du Ue g aur
SZZ = z ) ZSrB = 61'—- - —i_— + ? -gé— s (J. 10)
du du du Ju

_ r z _ 1 7z ]
Be"mtw Berw twm

Substitution of equation (3.8) in equations (3.10) yields

ou u du
1 S = r S = _£ S = z
» rr  or °’ 66 r ’ z2z oz ’
S (3.11)
i _ & _ _
: ZSrz =5 and Sre = Sez =0.

The equilibrium equations in cylindrical coordinates, which can

i

be obtained from equation (3.1) through the procedure outlined in

Appendix 7.1, are given by

g R
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Using equation (3.9) in equations (3.12), one obtains

oT oT T -T
» _rr 1 ""re rr 68
U T = + T 3% + = (3.13)
oT oT T
_rp 1 77sg rb
0 _B-r__+.r.se__+2_r—. (3.14)
and
u =0. (3.15)

If the piezoelectric material has an electrically conducting
plating on its surface, then the electric displacement can be assumed
to be constant across the thickness of the disk. Also, the potential
at each point along the radius is the same; consequently, Ez is
independent of r [11], i.e.

OE,
5 = 0. (3.16)

Using the results given by equation (3.9) in the piezoelectric

equations of state (3.6), one obtains

E E
Ser = S511Ter T 512700 * 931E,

E E

So6 = S117ge T S12Tpr * 931E,
s =st i +1
zz  "12V'rr L)
(3.17)
E E
Sre - (Sll - SlZ)Tre
Srz = SQZ = 0

and D = d31(Trr + TBB) + ‘33Ez .




|
|

From equations (3.11) and (3.17), one can note that

Srz = Sez = Sre =0 (3.18)
so that

du,

5 - 0 (3.19)
and

Tre =0. (3.20)

One can now note, from equation (3.20) and the independence of
the problem with respect to 8, that the equilibrium equation given by
(3.14) is satisfied identically. From equations (3.8), (3.15), and

(3.19), one observes that u, is now restricted to being a function of

z and a linear function of time. Therefore, it is now assumed that u

is zero, so that equation (3.8) becomes

[ =1
|

L =u (T8 (3.21)

and

The strain-displacement equations given by (3.11) are reduced to

du u
Srr = &'— and See = —I'_- B (3-22)
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From equations (3.17), the equations of state for the twn-dimrnsional

radial motion of the disk are given by

E E
Srr SllTrr * SIZTee * d31Ez (3.28)

H

E E .
68 = 511T08 * S12%r * 9315 (3.25)

and

_ T
Dz = d31(Trr + Tee) + 533Ez . (3.26)

3.3.2 Equation of Motion

In order to obtain the equation of motion, one must find, from
equations (3.24) and (3.25), the stresses in terms of strain and

electric field. From Mason [11], it is found that

SE
iE- -Y®  and - -—éi _— (3.27)
s s
11 11

Hence, equations (3.24) and (3.25) yield

vE vE
T = - (S * 089 - 43y 15 K, (3.28)
-0
and
T X (S._ +0S ) - d -Yf-s (3.29)
86 1 02 06 Y 31 1.0 7z ° .

Substitution of equations (3.28) and (3.29) into equation (3.23) gives

B vE Bzur 1 Bur u
e Sy a5~ (3.30)
l-c© or r




Equation (3.30) is the equation of motion for a thin piezoelectric

disk. This is identical to the equation of motion for a thin elastic
disk and electrostrictive disk [11], except for the fact that Young's
modulus in this case is measured under a constant electric field con-

dition, Equation (3.30) is also identical to that obtained by

Tachibana [23], as it should be.

v
.

3.3.3 Boundary Conditions and Initial Conditions

The model developed herein is limited to steady state vibrations;
therefore, initial conditions are not necessary. Thus, one assumes a

steady state displacement represented by
- jot
ur(r,t) = Ur(r)e . (3.31)

The first boundary condition to be given for the disk applies to
its center., Since the only motion allowed is radial, then the center

must not move; therefore,

u_| =0 . (3.32)

On the edge of the disk, an arbitrary specific impedance is applied.
Hence, from Figure 3.4 and the definition of specific impedance [9],

one obtains

- =2' =+ . 3.33
];E:r‘—" ir ( )

The arbitrary impedance consists of a real (resistive) part and an

imaginary (reactive) part.
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3.3.4 Displacement, Stress, Electric Displacement and Impedance

To obtain the displacements of the disk, one first uses the
steady state assumption given by equation (3.31) in the equation of

motion given by equation (3.30) to obtain

) <12u1r @,
X -d:Z—"'Xa;(—"'(x -I)Ur=0, (3.3[4)
where
[
wr d
x = =, x4 = - (3.35)
and
2 E
Vo = Y8/ o(1-0%) . (3. 36)

The parameter x will be called the dimensionless frequency parameter,

while y is the wave speed in the disk.

The solution of equation (3.34), which is a form of Bessel's

equation, is given in Churchill [4]. Hence, one can write

Ur = AJl(x) + BYl(x) , (3.37)

where A and B are complex constants.

The boundary conditions given by equations (3.32) and (3.33) are
now used. In order to satisfy (3.32), one must require B = O so that

equation (3.37) becomes

Ur = AJI(x) . (3.38)

Stresses, strains and the electrical field are also steady state forms.




g -ttt

For purposes of ccnvenience, their exponentials will be dropped.
Therefore, expressions and equations will be amplitude relations un-

less otherwise stated. Using equation (3.28) in (3.31) and the result

RS

from this substitution in equations (3.22), the steady state strains
are found. The strains may then be used in equations (3.28) and
(3.29) to obtain the steady state stresses. In particular, the
radial stress is found to be

YEA Jl(x) EV

- w 0
Tl’!‘ = -1—-—;2—[ ; JO(X) - (1-0’) P ]-d31 r_—oFd‘ (3-39)

where a steady state voltage of the form

Vv = Voe (3.40)

has been assumed. Hence, using equations (3.31), (3.38) and (3.39) in
the boundary condition given by equation (3.33), one can obtain the

complex constant A so that the radial displacement, equation (3.38),

becomes
. J, (x)
v () - XD s (3.41)
N+ W I,
where
E vV
B Y o
J, (%))
1'74d
§ - 0 ———e (3.42)
Jo(xd)
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: and
H
| F J,(xy) J 1k
' 1M = [ 1-(1l-0) ] - . (3.44)
.- v(l- 02) *gTo(xg) oz"d’
From the procedure previously outlined, one determines the
stresses in the disk to be
E J J
| .. Y (18 [ o) o) 1 ]
TTos1eod) et Tod) ” o)
§
' E vV
Y o}
- d31 e T (3.45)
h
and
E T,, = R AS L) (o o, (1-0) 0 ]
¢
; . 80 v(1-02) T$‘+62 I (x ) x)J (x )
E vV
Y o
- d31 T?E'H; (3.46)
To obtain the steady state electric displacement, one simply
inserts equations (3.45) and (3.46) into the piezoelectric equation
of state for electric displacement given by (3.26), so that
E 2 E
d v
D = T Y(T38) T + [ o« - el i . (3.47)
z vw(l-0) 1‘2*62 J (Xj 33 ) h_(;
Current is defined as the rate of flow of charge, i.e.
.49 ,
1 = a-? . (3.48)

Assuming a3 steady state charge, given by




T
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Q = gl (3.49)
equation (3.48) then gives
:
= 3 jwt _ o JJut ;
i = JuQTe = Ioe . (3.50)
: Electrical admittance, Y, and impedence, Z, are defined as follows:
Y =1/Z = i/V . (3.51)

Therefore, using equations (3.40) and (3.56) in (3.51), one obtains

jaQ
Y =1/2 = Io/v0 = T

(3.52)

The total charge on the electrodes can be found by integrating
the charge per unit area, D,, over the surface of the electrode. One

then has

a
d 2n

Q = j j D rdrdg . (3.53)
(o (¢}

From equation (3.47), one can note that Dz = Dz(r) so that equation

(2.53) becomes
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Qp = 2r Jr D, rdr . (3.54)
Qo

Using equation (3.47) in (13.54) and carrying out the integration, one

finds t 2 total electrical charge to be




E
2 V91 ypie 1%

Qrn = 2ma
T ¢ = R IR
7 E
2¢4 ¥E v
2 7T 31 o) ,
tmaglesy ~ T B (3.55)

d

Using equation (3.55) in (3.52), the electrical admittance is

given by
Y=g+ ib, (3.56)
where
E
¢ - omal 3l _yp O
d Vo(1-6)v TE + 62 deo(xd)
.
b = 2l [ Yy Iy (xg)
d b V{To)y 112 b 5l Xglo (kg
I
33 2
+ %, (1 - kp) ] (3.57)
and
2 E
as v
2 2 .2 2 ;1
ST S T T TR (3.38)
€33

which is the planar coupling coefficient as given in the IRE standards

of 1958 [18]. From equations (3.51) and (3.56), the electrical

impedance can be shown as

z = -%}:Jfl-
g +b

2




3.4 Shell Vibrations

As stated previously, the vibration of a spherical cap having a
horizontally guided.pinned boundary condition has been studied by
Nelson and Royster [15]. Their work was presented in enough detail

so that a basic review will be all that is presented here.

3.4,1 Strain Energy in a Sphere

From the results presented by Langhaar [10], the strain energy
due to stretching and berding can be obtained. The strain energy due

to stretching is given by

Z'n_

8
U, = T}_é&_ J‘o Jo { (ue+w)2+CSC29(VCP+UCOS 6 +wsin e)2

+ 20 csc e(u6+w) (ve+ucos 8 +wsin @)

(1-0)

+
2

cscze(u¢+vesin .- vcos 9)2 } hs sin §d§ do (3.60)

and the strain energy due to bending by

)

U, = o T { 2 +cs‘l+ sin @ a+ 2
T 12(0-0) J‘o J.o Voo ¢ Q(We in §cos WW)

2 .
+ 20 csc e(wee) (wesm Pcos @ +ww)

, 2 2 3,2, .
+ 2(1-¢)csc g(wcp cot e_ww) 1/ (hs/as) sin §d8 dg (3.61)
ou .
where ue =387 etc. . . . The coordinates system used for the

spherical cap is shown in Figure 3.5. The potential energy of the

external forces, U can be readily found from Figure 3.5 to be

ext’

o gl i ek r N I s IR SR SRR S St
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FIGURE 3.5 COORDINATE SYSTEM FOR
THE SPHERICAL CAP




given as

, 2m 8 . -
Uy _, = -a J‘ j (Xu + Yv + Zw) sin 8d8dgp . (3.62)
o (o]

Thus, the total strain energy V of the system is

7 3. 63

= + + . .

v U1 UZ Uext ( )
Due to the symmetrical geometry of the transducer, one is only

interested in rotationally symmetric vibrations. Requiring rotational

symmetric vibrations and thus independence with respect to the

circumferential variable, ¢, equations (3.60), (3.61) and (3.62)

reduce to

U. = %I'H j'e{ (u +w)2 + cscze(ucosfe+wsin 9)2
1 -0 Jg 6

/
/

+ 2o0¢csc e(ue+w) (ucos §+wsin @) } hs sin 6d@ , (3.64)
U2 = _____2_11}3.__7 f [wzee+csc49(wesin g cos 9)2
12(1.cr)aS o
2 . 3,
+ 20 csc e(wee) (wesm §cos ) } hs sin 9d6 , (3. 65)

and

6
= _Znaz f (Ru + 2w) sin §db
o

H
3
i
g
i
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3.4.2 Boundary Conditions

Two sets of boundary conditions are needed for the shell. The
first set describes the crown point; the second set describes the
lower edge of the shell, i.e. & = 8.

Rotationally symmetrical vibrations about the axis of revolution
have been required for the shell. Therefors, the only possible motion
at the crown point is one in which the crown is displaced in a radial
direction. No tangential motion can accompany the radial motion, and
from geometric considerations the slope remains zero. These require-

ments are expressed mathematically as

u|e=0 =0 (3.67)

and

ow )
35 oo =0 . (3.68)

McDonald [13] adds to this set the requirement that

(3.69)

in order to insure a finite solution at the crown point.

It can be observed that the boundary conditions for the lower
edge are somewhere between the guided-pinned and the guided-clamped
cases. The degree to which the boundary conditions approach the
clamped case depends upon the effect of the glued edges. For now,

only the guided-piuned case will be considered. From Figure 3.6, the

boundary conditions on the lower edge are
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bending moment at (8 = @) =0, (3.70)

and

vertical displacement at (@ = €) =0 . (3.71)

The boundary condition given by (3.70) will be discussed later
when expressions for moments are written. The condition given by
(3.71) can now be considered. Thus, from Figure 3.7, one can rewrite

equation (3.71) as

= ul - tan § . (3.72)

v o= 8=8

To consider the guided-clamped case, one need only replace equation

(3.70) with the requirement that the rate of change with respect to

8, at the lower edge of the shell, be zero.

3.4.3 Finite Difference Approximations for Derivatives

The finite difference approximatiorns to be used in the construc-
tion of the model will now be considered. For the crown point, the

following diffarence expressions will be used:

I«
4 =7 44 - 9y (3.73)

2
1 o
qj % (Qj+1 - ZqJ + qj-l) (3.74)

and

3
e 4
qj = "é— (qj+2 - 3qj+1 + 3qj - qj-l) (3- 73)

where j = 0 for the crown point and pf is a half-angle increment so

that
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o= 1/88 . (3.76)

For any interior point, the difference approximations used are

r O
qj - 7 (qj*l - qj) (3.77)
and
0?
qj = T (qj+1 = ij + Qj-l) . (3' 78)

For the lower edge, the difference approximations used are

¢ _ @ -
qj = 2 (QJ qj_l) (3.79)
and
a?
G T F (qj+1 - 2q5 qj-l) (3.80)

where j = N for the lower edge. The segment division and numbering

can be seen more clearly in Figure 3.8.

3.4.4 Stress Resultants

The stress resultants in the shell can be determined from the
displacements. This can be done because of the fact that the
displacements in the shell are assumed known. From the displacements
one can determine the strains. Then, by use of Hook's law for an
isotropic media, one can determine stresses as a function of displace-
ment. The stress resultants are then found by integrating the stresscs

across the thickness. McDonald [12], who references Vlasov [24],

gives the following equations for the stress resultants:
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Me = D[wee:a(wwcscze +wecot ] (3.81a)
Mcp = D[owee+(vWCSc:ze +wecot 0] (3.81b)
NO = K[ue+w +o(ucot a+vwcsc g+w)) (3.81¢c)
N = K[o(u,+w) + (ucot §+Vv csc §+w) 3.81d
o = KIoCug+) +( 0 ] (3.814)

where
Eh) Eh_
D = ————, and K= —Zp0 . (3.82)
12(1-07) 12(1.¢7)

The positive direction of the stress resultants is shcwn in Figure 3.9.
For rotational symmetric vibrations, one can reduce equations (3.81)

to the following:

MB = D[wee + owg cot 8] - (3.83a)
MQ=:D[Uw99+wecot9} (3.83b)
NS = K[ue +w + g(ucot @ + w) ] (3.83¢)
Hc = K[c(ue +w) +ucot @+ wlo. (3.83q0)

The stress resultants of the crown point can be writtea from
equations (3.83) wvhile noting the boundary conditfons given by

equations (3.67) and (3.68). Hence, cne obtains

M, - Dw,
®eo0 ¥ 9.0
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M | =Dow,,| (3. 84D)
?® g=0 66 8=0
N_| = :<[ue + (1+0)w) | (3. 84¢)
e e: P::O
and
N | = K[ouy + (1+0)v] | . (3.84d)
© 6-0 6=0

Using the finite difference approximations given by cquations (2.753)
and (3.74). one obtains the stress resultants in terms of differeuce

expressions to be

2

D .
(MQ)J,,__:0 = TC’ (wy = 29y T ) (3.85a)
DO’(;'2
(Mcp)j=0 = - (wl - 2wo + w_l) {3.85b)
(N o = K (uy-u) + 1w ] (3.863)
and
M), =K (u-u) + (L+odw ] . (3.86b)
¢ j=° 2 1770 o

Now the boundary condition given by equation (3.69) can be used in

connection with equation (3.75) to obtain

W, = 3wo - 3wl + w (3.87)

-1 2

Therefore, inserting equation (3.87) in (3.85) results in

h_;..ll-ﬁ-

» g,




e e ———— —— T

2
M)y, =20 [, - 20) +w,] . (3.88b)

@ j=o 4

. , . th
For an intericr point, the stress resultants on the k=~ segment

are found to be

D .2 2k
(Me)j=k =7 [ Vi1 - 20(x + UCOt'E')wk
2k
+ ol + 20 COt_&')wkﬂ] (3.89a)
D 2 , 2k
3 = + Pl
(Mcp’j= 5 oo Vi1 - 20({ca + cot a)wlc
. 2k
+ a(ow + 2cot —&-—)wkH] (3.89b)
. K 2k
(Ne)j=k = -2-[(2crcot? - Qu tou
+ (1+0r)wk] (3.89¢c)
and
K 2k
(N(p)j=k =5 [(2 cot— - cm)uk + oo,
+ (1+'J:)W" ] . (3.894d)

For the lower edge,

i

.e. § = 6, the stress resultants are given by

M

9)j= = o [{@- 20cot e)wN_l - 20(@- ocot e)wN

~No

bcip s

renliin,,

e TR 40 e S




D - N
(Mcp)j'-=N =z [a(ao - 2 cot G)WN_1 - 2a(oa - cot e)wN
+ cazw ] (3.90b)
N+1 )
_ K r s g
(Ns)j=N =5 [-oug o + (o +20cot B)AN + 2(1+0)wN] (3.90¢)
and
_ K A
(Nm)j=N = 7-[-UOUN_1 + (oo +2cot e)uN + 2(1+0)WN] . (3.904d)

Hence, the boundary condition given by equation (3.70) can be used in

connection with equation (3.90a) to obtain

-2 - 1 -
Vil T o (o~ ocot e)wN -3 (¢~ 20cot B)w (3.90)

N-1°

Therefore, using equations (3.91) and (3.72), where (3.72) can now be

written as

w, = u_ tan 8 (3.92)
cne can obtain vhe stress resultant on the lower edge.

3.4.5 Egquations of Free Vibration

Lagrange’s equation may be written as

d oL oL
_— (=) = .
IF (a' ) o 0 (3.93)
q,
J
where L. = T - V is the Lagrangian energy equal to the difference

between the kinetic and potential energies, and where (') denotes

differentiation with respect to time, so that &j represents the

velocity of a generalized displacement. Hence, for a stationery




system, T = 0 and V = V(qo’ Qus +ees qN) so that equation (3.93)

becomes

(3.949

where q in general represents u, v, and w or 3(N + 1) displacements
for the discrete system being considered. For rotational symmetric
considerations, at most 2(N + 1) - 1 displacements remain.

The total potential energy of the discrete shell can be
obtained by summing the energies on each segment, as now given by

equation (3.63), so that

N

v = [(‘Ul)j + (Uz)j +(U__).] . (3.94b)
=0

ext

j i
The stretching and bending energies as given by equations (3.64) and
(3.65) must aow be obtained across each segment with appropriate

consideration being given to the boundary conditions. Thus, for the

boundary conditions to be considered here, one can obtain 2N simul-

taneous linear equations. In matrix notation this can be written as

2ruhs

—= (s1(q) = (p) (3.95)
E
% where [S] is the 2N x 2N stiffness matrix,
i

{q} is the column vector of displacements,

{p} is the column vector of external forces,
and hS has been assumed constant. The equations represented by
(3.95) are for the spherical cap with a rotationally symmetric static

load., To obtain the equations of free vibration for an undamped

- R e e e e P
W s e Sl AL VW20 W TCB SO o | 8t

RN
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system, one can replace the external forces with D'Alenbert inertia

forces, expressed as

I

g =_ phs'u.

and
Z = -ohsw .
Hence, substituting equations (3.96) in equations (3

Znuhs ' 2 .
1 [8]{a) = -2mpoh_a_[M](q]} .

Assuming steady state metion given by
jwt
q(8,6) = q¥(8)e?
then equation (3.97) can be rewritten as
2 %) -
([s] - A MD{g*) =0 : )

where

2
pa
2 = 20t (o)) (D)

The stiffness and mass matrices denoted in equation

presented in detail here. As shown in Reference [15

(3.96a)

(3.96b)

.95) results in

(3.97)

(3. 98)

(.3.99)

(3.100)

(3.99) are nct

], they are found

in a direct manner by integration of trigonometric quantities to

obtain the equations of motion as presented in Appendix 7.2. These

equations of motion are then written in matrix form

in equation (3.99).

resulting finally




3.5 Acoustic Radiation

The black box technique is used to solve the acoustic radiation
portion of the problem. A computer program developed by Hess [8]
ic used. For any arbitrary three-dimensional body, one must input a
surface geometry, surface normal velocity, and wave number to be
considered. The input geometry is one that represents a system of
quadrilaterals to approximate the surface of interest. The normal
surface velocities are then the velocities of each quadrilateral making
up the surface. The output is then made up in part by the surface
pressures corresponding to each of the quadrilaterals and the far

field pressures.

3.6 Model Construction

3.6.1 General
As discussed previously, the model consists of three basic

parts. They are the disk, the shell, and the acoustic radiation

problem. These three problems have now been discussed in sections

3.3, 3.4 and 3.5 respectively. The manner in which these problems

are now connected depends upon what assumptions one chooses to make.

The model construction will now proceed in the following order: shell,
i acoustic radiation loads, and disk. The assumptions made will be

discussed at the point at which they are made and are basically the

same as those used by Royster [21].
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3.6.2 Shell Vibrations

3.6.2.1 Model Analysis. Onc. can recall that the equations of

motion for an undamped spherical cap undergoing free vibration were

given by equation (3.99) as
(151 - 22D {g*) = 0. (3.99)

This represents the spherical cap alone with guided pinned lower edge.
The physical transducer, on the other hand, does not let the shell
vibrate freely. The piezoelectric disk provides resistance to the
free motion of the shell. Hence to solve the true problem, one must
couple the disk to the shell before the free vibration problem is
solved. However, if the disk adds little stiffness to the shell then
one can assume that the solution of equations (3.99) for the eigen-
vector form without including the effects of the disk will be
approximately equal to the solution with the disk consideration,
Thus. making this assumption, one can solve the eigenvalue problem
given by equation (3.99) by the techniques outlined by both Royster
[20] and McDonald [13].

To obtain the equations of motion for the forced vibration
problem, one considers equation (3.95) where both external forces and
inertia forces are to be considered. Thus, instead of equations

(3.96), one considers

X

-phsﬁ + X (3.101a)

and

2 =

-phsw + 27 (3.101b)
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where X and Z cannot contain inertia effects. FEence, using equations

(3.101) in equations (3.95), one can obtain

2ﬂuhs 2 . 2 :
‘T:Er'[sl[q} + Zﬂpashs[M]{q } = Zﬂas{P] (3.102) 1
¢
where é
- " /e 7 j
u J X, sin 6d# i
/o }
)
. fé
sin 6de
UN é-l/axN
(q} = and {p} = . (3.103)
LA l/a
f z sin 6de
0
Y1
) fé- 1/a
W, Z .sinbd
-1 = -1
LN__ __e.3/cvN j
Now, using the eigenvectors of the free vibration problem as a

basis, one can assume the vector for the solution of the forced vibra-

tion to be of the form

N
(q} = £1br{¢r} (3.104)
r=

where br is a scalar and is called the scalar modal participation
factor while [¢r] is the eigenvector of the free vibration problem
corresponding to the Ar eigenvalue. Hence, using equation (3.104)

in (3.102) gives

R — B st maptnrito sty s e
E-Hﬁﬂ..-nﬁmumW-
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mes N 2 . NS 2 Lo5
i fblrilbr[¢;]-+2npashS[M]r§1 o) = 2ma(p] . (3.105)

Premultiplying by {qg}T and use of orthogonality as can be noted from

Reference [6] gives

2muh ..
—T:gi [wr}T[S]{¢r] + 2ﬂoa§hsbr[erT[M][wr} = 2na§{¢;}T{p} .

(3.106)
Now from the free vibration problem, one has
2

[s] =AM, (3.107)

so that, noting equation (3.100), one can obtain from (3.106)
T
.. 2 1 (o} (p)
br + wrbr = Er (3- 108)

s (o) Mle,)

The steady state solution for (3.108) is easily obtained so that the

steady state expression for (3.104) is given by

T/

Jut N . (o) {p*)
(q} = = 5—- =& (o) (3.109)

phs r=1 2 wr 2 Rr r

w 1-(-) "]
w
where

p = prel®t and R = (o) (M](o,] . (3.110)

3.6.2.2 Mobility and Impecance. As stated in section 3.6.2.1,

the shell has been assumed to vibru:e independent of the disk. lence,

thz shell problem is solved .« i _-oupled to the disk problem,

c

- A——r L i— e

o AN N
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considered in section 3.3, through the arbitrary specific impedance
applied to the edge of the disk. Thus, it now becomes necessary to
obtain the impedance around the lower edge of the shell.

Mobility is defined as

velocity

mobillty = -—-EB?CT y (3.111)

so that from Figure 3.10 one can obtain the mobility at the lower

edge to be

a
My = N . (3.112)

F(217a\s sin 8 cos 6)

Likewise, one can obtain the specific mobility to be given by

L.IN a_sin BrsinBsinl/a- (1 -cos1l/a) cos 8]

M§ = . (3.113)

F cos 5

To obtain the velocity in the tangential directicn, &N’ needed for

(3.112) and (3.113), one can obtain from equation (3.109) that

jwt

e

i 1 le 1 Lp
tq} = -j
q oh

- lo. ) - (3. 114)
1 Y 2 r r
w[l-(?EQ ]

ts =2

S r=

The Nth componen: of equaticon (3.114) then gives the needed velocity.
Hence, the mobility or specific mobility for the edge of the shell can
now te cbtained. Tt shculd be noted that, with a knowledge of the
free vibration problem and the forcing function, one need only con-

sider che first couple of terms of equation (3.114) to obtaitn a value

of mobility around the tirst resonant frequency.




FIGURE 3.10

CROSS-SECTION VIEW OF
DISPLACEMENT AND FORCE
PER UNIT CIRCUMFERENCE
AT THE LOWER EDGE
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Impedance is the inverse of mobility. Therefore, from equations

(3.112) and (3.113), one can determine that
-1/ <
ZN = I/Hh (3.11%)
and

. *
AR VL (3.116)

3.6.3 Acoustic Radiation

For a given shell geometry, normal velocities, and wave number,
Hess' program can be used to determine both the surface and far-field
pressures. It should be noted that these values are per unit density
of the fluid media. Two media will be considered in order to compare
with the experimental results.

The first medium considered is air. Due to the dernsity of the
air, in comparison to that of the shell, one can neglect the resulting
acoustic loads. Thus, the force vector in equation (3.103) reduces
to only cae comp.ient. Hence, the impedance of the shell can be found
by using equations (3.112), (3.114) and (3.119).

The second medium to be considered is water. The forced vector
now becomes complex. Assuming that the mcde shape, including an
external load, is not significantly changed from that of a vacuusm,
enabies one to greatly simplify the problem. The reactive part of the
acoustic impedance can now be converted to an equivalent mass. This
mass must then be added to the mass of the original structure, and the

cigenvalue problem resolved for the neccssary data required in Hess'

numerical program. This iterative process can then be followed until




the system reaches aquilibrium. Then, use of the conservation of

energy in connection with the energy dissipated enables one to obtain

the final resistive part of impedance to be applied to the disk.

3.6.4 Piezoelectric Disk

As discussed in section 3.6.3, with or without significant

acoustic loads one can now obtain the resistive and reactive compo-
nents of specific impedance, i.e. (3 and T, to be applied to the disk.
Then, varying the excitation frequency of the disk, one can determine

the electrical impedance of the particular transducer under coasidera-

tion.

51




P’ﬂ;ﬂ-ﬁmmw .

A S A, RNV PPN B I 3 A e P e

52

4. RESULTS

The mathematical model of the Class V flextensional underwater
acoustic transducer as described in section 3.6 was programmed for
evaluation on the IBM 360-75 computer [16]. Results for a particular
geometry of the transducer can be found by defining the necessary
physical parameters of the transducer.

For this investigation, experimental and mathematical model
results arc compared for a transducer similar to that shown in
Figure 1.2. The thin piezoelectric disk has a diameter of 1.5 inches,
a thickness of 0.04 inches, and the material is PZT-4 (PZT-4 is a
Clevite Corporation trademark for a specific type of piezoelectric
material). The aluminum spherical cap has a 1.563 inch inside radius
and is 0.1 inches thick. The edge thickness of the spherical cap for
each experimental transducer varies and is noted with its data. On
the other hand, the mathematical model is.restricted to constant
thickness caps so that no variation in edge thickness is considered.

The experimertal re.v"Tts2 - presented in Table 4.1 and in
Figures 4.1 and 4.2. The mathematical model results in air are pre-
sented in Figures 4.3 and 4.4. Figure 4.3 plots the magnitude of the
electric impedance in ohms versus the driving frequency in kilohertz
(khz) found using the mathematical model. Figure 4.4 shows both the
analytic and experimental results for air in terms of decibels (db)

versus driving frequency. The experimental results shown in Figure 4.4

are for transducer number 2.

21bid.
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Table 4.1 Experimental results

Common geometric parameters of the transducer are listed below:

Viezoelectric disk:

Spherical caps:

1.5 inch diameter

0.04 inch thickness
PZT-4 material

1.563 inch inside radius
0.1 inch thickness

450 taper at edge to edge thickness

Transducer Edge Frequencies (khz)
Number Thickness -
(inch) Air Water
Resonance Anti-resonance
1 .015 21.8 22.6 12.5
2 .030 22.8 23.7 -
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DRIVING FREQUENCY FOR

ANALYTIC MODEL IN AIR
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In Figure 4.3, the analytic results of the free disk, the
transducer model with a guided-pinned boundary condition, and the
transducer model with a guided-clamped boundary condition are pre-
sented. These results show the disk to be dominated by the shell, as
was assumed in section 3.6.2.1. The fundamental resonant frequencies
for the guided-pinned and guided-clamped boundary conditions respec-
tively are approximately 20.5 khz and 33.08 khz, while the anti.
resonant frequencies are approximately 21.5 khz and 33.1 khz. Compar-
ing these frequency bounds to the frequency results listed in Table
4,1, it is seen that the experimental frequency results do lie between
the frequency bounds supplied by the mathematical model. It can also
be seen that the guided-pinned model provides results much closer to
the experimental results,

In Figure 4.4, the mathematical results in air for the two
bounding boundary conditions are compared to the results of the
experimental transducer number 2 for the electrical circuit shown. As
noted above, the fundamental frequency of the experimental transducer
is bounded by the mathematical results. However, away from resonance,
the experimental results are not bounded by the results given by the
two boundary coaditions in the analytic model. This difference can be
attributed to several possible causes. First, the inaccuracies
inheren’ in the mathematical model itself. These inaccuracies can
result from the uncounling of the shu'l and disk, from the finite
difference mcdel used to approximate the shell, from assuming a
constunt thickness, and from the neglecting of the bond joints and

their digsipation of energy. A second cause ‘s the experimental
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difficulty in obtaining measurements. Instrumentation inaccuracies
are always present, and a variation of + ldb is usually acceptable.
Another point of interest is the dependence of the results on the
series resistor, as shown by Royster [19]; therefore, a variation in
the resistor, due to manufacturing tolerance, would produce a shift in
the results.

To consider the transducer in water, acoustic loads can be
obtained from the numerical program developed by Hess. The loads must
be used in an iterative manner with the main program until the system
converges tc the fundamental resonant frequency. In this case, four
iterations were used. This required a total of 25 minutes of computer
time. The resonant frequency of the analytic model was 11.65 khz, as
compared to 12.5 khz of the experimental transducer number 1 in Table
4,1. This analytic case used the guided-pinned boundary condition,
since the results in air showed the condition to give results nearer
those found experimentally. A point of interest is found in that the
shaved edge of the shell and the bond joint have opposing effects.
While the degree to which each affects the results is not known, it
might be possible for them to cancel each other ocut. This could be a
prime factor in the good agreement betweos the guided-pinned analytlic
results and the experimentai results.

In Figure 4.5, the magnitude of the electrical impedance of the
transducer in sater, with the guided.pinned boundary condition, is
plotted against the uriving fraquency, while in Figure 4.6, the re-

sistive part of the electric impedance for this case is plotted

against the driving frequercy. Since insuftficient experimental
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results are available to which these analytic results can be compared,

a complete evaluation of this part of the model cannot be carried out

at this time.
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5. SUMMARY AND CONCLUSIONS

The fundamental resonant and anti-resonant frequenries in air of
the experimental transducers were shown to be bound by the guided-
pinned and guided-clamped results, with the guided-pinned coudition
giving results within approximately 5.9 percent of the experimental
results. Therefore, using only the guided-pinned boundary condition
in water, a fundamental rescnant frequency of the mathematical model,
which was only 6.8 percent lower than that found experimentally, was
found. From these results, one can conclude that the mathimatical
model with the guided-pinned condition can be used to zpproximate the
fundamental resonant frequencies.

Ian air, the electrical impedance of the transducer, found using
the mathematical model developed her=in, can be used-ir the electrical
experimental circuit to read the voliage in db's across the transducer.
These mathematical results are ahout 2 db's low for the guided-pinned
case and 1 db low for the gridecd-clamped :xate as compared to the
experimental results of transducer number 2.

In water, the electrical impedance and re¢sistive portion of the
electrical impedance can be obtained from the developed model, used in
connection with the numerical pro,ram .f Hesc, Jor the acoustic loads.
However, due to the lack of experimental data with respect to the
electrical impedance, no statement can be made about the reliabil.ty
of this portion of the model.

In conclusion, it can be sajd that the mathenati~al model

developed herein gives results that compare well with exis.ing experi-

mental data. However, additional experimental data must be obtained
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with respect to water loads before the validity of the analytic

results for the loads presented herein can be verified.
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7. APPENDICES
7.1 Obteining Cylindrical Equations of State
from Cartesian Equations of State
As given by equations (3.4) and (3.5), the Cartesian tensor

equations of state are given by

s..=s% 1 +4 & (3.4)

ij ijkd ke mij m ’
and

D =d T  +¢ E (3.5)

n _ “nkake  Comm o ’
The tensor transformations, as given by Hawkins [7] for contra-
variant tensors of rank one and two respectively, are expressed as
axm
- t

Em = 3;;- 0’ (7.1)

and
ox

T, = ) T (7.2)

k2 52; 5§é st ’ ’
where Em and Tk{‘represent any contravariant tensors; X0 refers to the

old coordinate system, and xg refers to the new coordinate system such
that x = x (x').

m m' ' n

Now, in order to transform equation (3.4) into curvilinear co-

ordinates, one rewrites equation (7.2) as

e Oxg
S+ - = Sy > (7.3)

8o that the curvilinear strains are in terms of the Cartesian strains.
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Thus, using equation (3.4) in equation (7.3) gives

o, X g oy Oy
Yoo T, o Skt T w & SEL 7.4

which represents the curvilinear strains in terms of the Cartesian
stress and electric field. Hence, using equations (7.1) and (7.2) in
equation (7.4), one obtains the curvilinear equation of state
corresponding to (3.4) to be

bx; ok, g Ox BxL

!
Sec T &, &, Sigkt ] & o E, . (1.9

oo x Ym T B
i j n

Similarly, the curvilinear equation corresponding to (3.5) is

ox' x, Ox ox' Ox
L Kk At o BT Mo (7.6)
n-'é?m- mk&&s"&: st Ec;'nm&:“s ) *

Hence, equations (7.5) and (7.6) give the curvilinear tensor equations
of state for a piezoelectric material,

One should note that, in general, the tensor components and
physical components are the same only in a rectangular Cartesian
system. Therefore, as shown in Fung [5], the tensor and physical

components of a contravariant tensor of rank two are related by

sij = Vgiig (no sum on i or j) (7.7)

cs €.,
1
e JJ ,..lp pu——— . -

where € and e represent the physical and tensor components respective-

ly and
axi axj
B T3 X buy (7.8)
m
o —— .. A TR

o A e

L ntinit Sealitit
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To obtain the cylindrical equations of state, one simply has to

follow the procedure outlined for the cylindrical-Cartesian transfor-
mation. The coordinate transformations can easily be obtained from

‘ Figure (3.1) to be

*
i

rcos®, y=rsing, and

N
il
N

s (7.9

P
‘ r = sz + y2 , 8= tan'ly/x , and z =2z . (7.10)
!
f v . Hence, the resulting equations of state are given by
s =st 1 +sf (T, +T ) +d E
; Ir 117er 122766 22 317z ’
| S,o =SET. . +sE (T +T ) +d,.E
00 11700 12  rr zz 317z
E E
S:2 = S11Tzz * SlZ(Trr * Tee) ’
E E
= - 3\ .
S0~ 11 - 519 Trp o (7.11)
_ E E
See = G151 Ty
_ ,E E
Sez = 11 - 512 Tg, >
and
) - D =d, (T + Tee) + 6.0 .
z 31 rr 86 33t
. 7.2 Equations of Motinnu for the Spherical Cap
with Guided-Pinned Boundary Condition
As noted in section 3.4.5, the e uations of motion for the
boundary segments .- .: ‘: se adjacent to them are affected by the
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boundary conditions. Therefore, these equations must be derived for

each segment and are, in general, different from the general interior

k{

equations, Defining the stiffness coefficient S1 where ‘ refers

3’ 3
to the displacement component by which thé coefficient is multiplied,

and 5 designates the particular equation from which the coefficient

comes, one can obtain the following equations of motion:

j = 0, equation of motion with respect to Y (crown point)

wu

(50179

CAY ww ww ww
- = 2
+ (Soo)w0 + (S0 1)w1 + (Soz)w2 (MOO)WO 9, (7.12)

j = 1, equation of motion with respect to U,

Quu uu uw uw au _ .
\Sll)ul + (Slz)u2 + (Slo)w0 + (S1 l)wl - (Ml 1)u1 =0, (7.13)

equation of motion with respect to w

1
S ey ¢ S ¢ 6T+ T
+ (8] 3wy - M) {Iw, =0, (7.14)
j = 2, equation of motion with respect to u, (or k = 2)
(Sp10up * (S32)uy + (S53)uy + (550w + (5537w,
- (M‘Z“z’)uz =0, (7.15)
equation of mo;:::-;ith respect to w,
(83208 * (Sg3)uy + 30w + (370w + (857w,
. (5‘;‘;),3 + (S;:)w‘,‘ - (ﬁ;:)&’z =0, (7.16)
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j=k, k=3,4,...,N-4,N3
equations of motion with 128pect to u
uug au au uw
Gere1 U1 ¥ G * G 2% ¥ G2
uw uu
+ (S 0w, - M e =0, (7.17)
equations of motien with respect to i
W u wu A A% ww
G ¥ G 2% G2 )2 * G k1
wWw Ww W W W W
O Y Gt e T Gz Wiz - MoV T 9
(7.18)
j = N-2, equation of motion with respect to Uy 2(k = N-2)
uoou u u a4 u PP
Cyane3’no3 * Gyogwez?e2 * Guianer 2% Gylanes)¥ss
u w u u
- = qQ
P Byan "2 - Myaw2dn2 T 0 (7.19)
equation of motion with respect to Vo2
W u w u LA w oW
Cuoane2?Y2 * Cyoanar 28 ¥ Syan?% * Gyl nea Vs
\~J W W w W w
Oy aw3?¥nos * Oyoama ™2 * Gylanar M
o w
- My ana a2 70 (7.20)
j = N-1, equation of motion with respect to Uy 1
u U u u . U J W
Gaarne2?%e2 " Oxorwc 1 Gporn?9 * Gyiine2 ¥z

u v U u
Y Gpama?r - Mo w B9 (7.21)
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equation of motion with respect to R
w o u w u wow wow
+
Gyoinor 2wt O ¥ Grornaa?™o3 * Gyorne2 295
w oW v oW
M T R R IR R A N T (7.22) ]
j = N, equation of motion with respect to uy
uu uu uw uw
N R R N L R R T I G T I R 8!
uu
- (Mg duy = 0. (7.23)
The stiffness coefficients of the stiffness matrix from the uy
equation of motion 4re listed as follows:
uu_ 2. l.cosl/a L . .
$) 17 @ [—5—~ *sin 2/asinl/a] - 4avcos 2/asinl/a
+ 2[-2sin2/asinl/a+1ntan 3/a- ln tan 1/2qa] , (7.24)
ST ; = -o sin 2/asinljo - 2avcos 2/asirn l/a , (7.25)
uw
S1o0° a(l+v) (1 - cos 1/a) (7.26)
s‘l”i' = ~20(1+v) sin 2/asin 1/a+4(1+v) cos 2/asinl/a . (7.21
The coefficients of thc Y equations are given by the general expres-
sions for b =2, 3, ..., N-3, N.2 vhere
sty 02{ singi*sin M'} sin l/a- Govcrs -zisin l/a
k k o o o ’
+ 2.2 sinz-k-sin la+1n tan 2kl In tan-zf-'—l} , (7.28)
o 2a 20
R, ——

L
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uu 2 2k 2k, (7.29)
Sk K+l - =% sin - sin 1/a +2av cos 5 sin la’

siV = 2a(1+y) sin 2(k-D sinl/a , (7.30)
k k-1

ﬂ:'”l: = Z2a(1+v) sin%sin /o +4(1+v) cos %(-sin l/a . (7.31)

For the U1 and uy equations, one has

u u 2. .
SN-l N1 @ [ sin

) 2
2(2—2) +sin 2(2—1)] sin 1/0, +32_ [ sin §sin 1/a

- (1-cos 1/a) cos 8] - 4av cos 2(2'1) sinl/q
. 2(N-1) . . 2N-1 2N-3
+ 2[-2sin (q ) sin 1/a¢ + 1n tan e " In tan 5 ], (7.32)
u u _ 2 . 2(N-D _, ' 2(N-1) . /
SN-l N - -¢ sin———=sin l/a + 2avcos —5——sin /o

2
+ [aT + a1+ tan8][(1l-cos 1/a) cos B - sin Bsin 1/a]

- av[ cos §sin /o + (1-cos1/a) sin 8] , (7.33)

u w o . 2(N-2) .
SNo1np T 20(1HV) sin===sin /e (7.34)
u w . 2(N-1) ., 2(N-1) |
SN-]. N1 = -20’(1+\)) sin __CY sin 1/a+4(1+\)) cos 5 sin 1/0, s
(7.35)
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uu 2 . 2(N-1) ot - _
SNN = & sin a- sin l/a+ [-?:-+2(1+v) (a+2 tan 6) tan 8]

(sin Bsin 1/a- (1-cos 1/a) cos 8] +2[av+2(1+v) tan 8]

[cos Bsin /a+(l-cos l/a)sin®] +2[ (1 - cos 1/a) cos )

- sin@sin1/a+1ntan §/2 - In tan 2;1;1]

ho. o2 i )
+ 1-12- (8—5-)2[22- tanZ® [ (gv cot 8) 2 - 2a(a-v cot B) +a?]
s

[ sin@sin1/a- (1 - cos 1/a) cos 8] - o?v> tan 8[ cos § sin /o

2 - -
+ (1- cos 1/a@) sin 8] +97tan2§[(1 - cos 1/a) cos 8- sin@sinl/e

+ Intano. Intan ZN'1] +3 tanzésinMsin /o
2 2o 4 o
3.2, 2 2(N-1) o 2 2(8-1)
+ o”v tan §cos —~——sin 1/a *5- tan 6[-2sin -—-&——sin 1/a
2N-1 2N-3
+ 1n tan T 1n tan —za—]} , (7.36)
h 4 3.2
uw 1 s,2,0 . 2(N-1) , oV 2(N-1), _. =
SN N2- TD (;-s-) {-4—..1n S +=5—cos 5 ) sin 1/atan @, (7.37)

B 8 e A AN LA s A3 i R AD v S , os




e s

B

L ST e

h 2

uw . 2(N-1) 8.2 ¢«
SNN-I— 2a(1+v) sin 5 1/01+ ( ) [—-tane [(x

- veot 6) (a- 2v cot 8) - (20 - 3v cot é) + orz]

[(1- cosl/a) cos 0 - sin@sinl/o] + az\)3[ cos 8sinl/a

2 - _ -
(1 - cos l/a) sin 8] - %—tan 8 (1 - cos l/a) cos B - sin @sin 1/0{

+

I

8 2N-1, o 2(N-1) _.
+ 1n tani--ln tan T] ..—--ta 8 sin 5 sm /o
3 2 2 -
- 30'2\) tan 8 cos 28-1) ¢ nl/a-%—-tan o[-2 sing(—z’:}—)-sin /o
2N-1 2N-3
+ - . .
1n tan = 1n tan e 1} (7.38)

The coefficients of the Vg Yo and v, equations are given as the
following:
ww 1 hS 2 04
00— 4(1+v) (1 - cos 1/a) t 13 ( ( T[(l' cos 1/a)
+ 2sin2/asinl/a]} , (7.39)

| h 4
s;‘i’: - .112_ (a_s.)2 { %- [(1- cos1l/a) + 2sin2/asinl/e]
s

+Q’\)

7— €08 2/asinl/a } , (7.40)

WW

4
S -1—( ) { % [(1- cosl/a) + 2sin2/asinl/a]

32
+°'—2\i- cos 2/asinl/a } ,
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wW 1 hS 2 aa
S 8(1+v) sin 2/asin 1/a+1-2-(a_s.) { - [2(1 - cos l/a)
+ (4sin2/a+ siné4/a) sin 1/a] +20°v? cos 2/asinl/a
0'2 1
+ -5 [-2sin2/asin 1/or+1n tan 3/20!- 1n tania- 1), (7.42)
VYL <hs)2 ( o’ [ 1/a) +2(sin2/a+ sin4/a) sin 1/a]
12__.17.5; T - cos l/o inz/o
0/3\)2 0’2
+ ==~ [3 cos 2/a+ cos 4/a] sin 1/a+—2— [-2sin2/asinl/a
+1n tan 3/20- Intanl/Za]) , (7.43)
¥V oo 1 (hS)2 { gl:sinép/ sinl/ +a3v2cos4/ sinl/aj (7.44)
13 " 12 'é: % a ot — o aj , .
VA 1 hs 2 04
5,5 = 2(14V) sin4/asin 1/a+ﬁ " (g [(1- cos 1/a) +2(sin2/a
s

+4sin4/a+ sin6/a) sin 1/q] +a v cos 2/a+2cos 4/a] sinl/a

+ %_ [-2( sin 2/a+ sj_nl;/q) sin 1/a+1n tan-s—_ In tan%y-]} )

2
(7.45)
W W 1 hs 2 <>t4
= o e (o — i i 1
S, 3 5 \as) { 5 [sin 4/a+ sin6/a] sinl/a
o 2 o’
+ —5— [3cos4/a+ cos 6/a] sin 1/a+-2- [-2sin4/gsin 1/a
+ 1n tan-z- In tan—3— 1} 7.46)
20 ~ 2a ’ .
h 4 3.2
ww 1 s\2 oo . .y a”v :
S,u =13 (a-s-) [ Zsiné/a + —— cos 6/a) sinl/a . (7.47)

The general expressions where k = 3, 4, ..., N-4, N3 are
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4
SZK 8(1+v) sm-zak-sml/a'* ( ) (& [sinz(l;'l)

+sin 2(k+1)
o

] sin 1/(,\!'9-013\)2 [ cos-zﬁ-;l—)

+ 2cos %] sinl/a

2

o 2k+1
+ -
T [ 2( sin

20

2(k;1) +sin %c-) sin1/a+1n tan

- 1ln tan Zk 3

1} , (7.48)

h 4 2k

ww _ 1 2 (o . . 2(k+1), .
K k4l - 17 (i) [T [ sin— +51nT] sinl/a

32
oV 2k 2(k+1)
+—f—[3cos-——a + cos 3 ]

012 2k
sin 1/oz+-2— (-2sin=—=sin /o

2k+1_1 th

k-1
+ 1n tan 5 n tan —— 1}, (7.49)

h 4 32
ww _ 1 8.2 r o . 2(k+l) &'V 2(k+1l), .
Seki2™ 13 (-g) [ 5-sin =+ ——cos — ]sinl/a . (7.50)

For ) and Uy 12 ©ome has

o
S;-Z‘:LZ = 8(1+v) sin—z(g'z) sin 1/a+ (_) (2 [sin2(§'3)

+ 4 sin

2(N-2)
o

n&x:&] sin 1/o1+cr3\)2[ cos 2(2'3)

Z(N 3)

+ 2 cos 2(N-2)
o

2(N-2 .
]51n1/a+T[ -2(sin ————~ +sin—(—a——)) sinl/a

2N-3 2N.7

- 1n tan

+ 1n tan 5 n tan —— 11, : (7.51)
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v oW 1 B2 o 2(¥.2) 2(N-1)
SN.oN.1™ - 7 (5:) { 5 [sin—a t8in———= ] sin 1/
o v? 2(N-2) 2(N-1)
+ —5— [3cos 5 +cos ] sin 1/«
+ 02 [ Zsinz(N'z) sinl/o + lntanZN 3 1r. ta n2N 5] }
7" - A 2a T ’
(7.52
wow 2(N-1) 2(N 2)
SN.1 N1 8(1+v) sin——a—-—sm 1/a+ (.__) (¢ T [ sin
2(N 1) o’ o
+ 4 sin ] sinl/a + T [(o-2vcot 9)

- 20(a- 2vcot B) ][ sinBsinl/a - (1 - cos 1/0) cos 8]

+ as\az[ cos .ZLg:gl. + 2 cos 2(:'1)] sin 1/01- a2v3 cot §[ cos 0sin 1/01
- P 2(N-2) 2N-3
+(1- cos 1/a) sin 8] + > [-2sin 3 sinl/a+1n tan-—za—

2N-1

sinl/a + 1ln tan e

2N-5 2(N-1)
- lnt:an-r] +—[ 2sin =

2N-3 02 -
- ln tan 2;] +-2-— [ (1- cosl/a) cos 8 -sin@sinl/g

+ 1n tang- - In tan 2—2—1 (7.53)
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7.3 List of Symbols
radius of piezoelectric disk
radius of shell ' *
scalar modal participation factor
electric displacement vector
piezoelectric strain constant
electric field intensity vector
force per unit circumferential lemgth
body forces per unit volume
thickness of piezoelectric disk
thickness of shell
amplitude of steady state electrical current
electrical current
Bessel function of first kind of order N
planar coupling coefficient
Lagrangian energy
mobility at lower edge of shell (j = N)
specific mobility at lower edge of shell (j = N)
moment per unit length acting in 8-direction

moment per unit length acting in g-direction

- mid-plane force per unit length acting in 8-direction

mid-plane force per unit length acting in g-direction

column vector of external forces

- amplitude of steady state external forcing function

electrical charge

= amplitude of steady state electrical charge
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general displacement
amplitude of general displacements for steady state motion
column vector of displacement
normalizing factor
stiffness matrix
strain tensor
stiffness coefficient in stiffness matrix [S]
elastic compliance matrix at constant electric field
kinetic energy
stress tensor
time
strain energy due to stretching
strain energy due to bending
amplitude of steady state displacement of disk
strain energy due to external forces per unit area
displacement components of spherical cap with respect to
r, ¢, 6 directions respectively
amplitude of displacements for steady state motion
displacement in the ith direction
potential energy
steady state voltage amplitude
potential energy per unit volume
external forces per unit area acting on spherical cap
external forces per unit aresa other than inertia forces

electrical admittance

- Young's Modulus for a constant electric field
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Bessel function of second kind of order N
electrical impedance
arbitrary specific impedance on boundary of disk
impedance at lower edge of shell (j = N)

specific impedance at lower edge of shell (§ = N)

3 -

inverse of half-angle "increment

imaginary part of specific impedance on boundary of disk
half-angle increment

Kronecker delta

permittivity matrix at constant ctress
absolute temperature

opening angle of spherical cap

rth eigenvalue

shear modulus of shell material

density

Poisson's ratio

entropy per unit volume

eigenvector corresponding to xr eigenvalue

real part of specific impedance on boundary of disk

angular velocity
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