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Abstract

The pulrpose of this investigation is to develop a mathematical

model for the Class V fiextensional underwater acoustic transducer.

The transducer is approximated through the consideration of three

distinct problems. The problem of a thin piezoelectric disk with an

arbitrary impedance on its edge is solved in terms of Bessel functions.

The shell vibration problem is solved using a finite difference model

to approximate the shell. The acoustic radiation problem is solved by

obtaining the source density distribution for i system of quadri-

laterals representing the transducer. With the source density of each

quadrilateral, the near and far field pressures and velocities can be

found. Utilizing these three components, a model is then constructed

for the transducer.

A comparison of the results from the mathematical model with

those obtained from experiments is made in order to validate the model.

S.
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1. INTRODUCTION

In general, the various flextensional designs can be placed in

one of five different classes [2]. The purpose of this investigation

is to develop a mathematical model for the Class V flextensional

underwater acoustic transducer. A picture of a Class V transducer is

shown in Figure 1.1 and a typical sketch in Figure 1.2. The rlass V

flextensional transducer design was originally proposed as having pos-

sible applications as a sonobuoy transducer.

As shown in Figure 1.2, a Class V design consists of two shallow

spherical shells bonded at the cowrton boundary by an epoxy cement to

the edge of a thin piezoelectric disk. The piezoelectric disk is iso-

lated electrically from the two shells by the removal of the electrodes

from the region where there is contact between the disk and the shells.

Sufficient epoxy is applied so as to firmly attach each of the shells

to the disk. Two small holes are drilled through the shells and serve

as entrances for the electrical leads of the disk.

To attain the stated objective, one develops a mathematical model

for each of the important components of the system. Then, combining

them in a manner similar to that used by Royster [21], one obtains an

approximate working model for the complete system. The model is then

programmed un the IBM 360-75 computer, and an evaie tion is made by
1

comparing experimental and predicted results.

IDmhlkc, H. E. and L. H. Royster. 1964. Unpublished notes on

Shallow Shell Transducer. North American Aviation, Inc., Colubus,
Ohio.
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2. REVIEW OF LITERATURE

2.1 General

The development of detailed, complete mathematical models for

the various classes of flextensional underwater acoustic transducers

has been underway for about five years. Hence, the literature in

this area is limited to only a few papers and technical reports. On

the other hand, elements of the transducer problem, such as the thin

piezoelectric disks, spherical caps, and acoustic radiation problems

for different geometries have been studied extensively.

2.2 Mathematical Models of Flextensional Underwater

Acoustic Transducers

The present state of the art of analytic models for flextensional

underwater acoustic transducers is presented by Brigham and Royster [2].

They also classified the various flextensional transducer designs into

five diffetent classes. Presently, there are two analytic models, one

complete and one partial, which have been presented. The complete

model was presented by Royster [21] for the Class I transducer as

shown in Figure 2.1. The partial model was presented by Boone and

Royster [1] for the Class II transducer as shown in Figure 2.2. Both

models use a finite difference model for the shell but differ in the

manner by which the shell and stack are coupled and in the media in

which they operate. The Class I model assumes that the shell vibrates

inde'pen e'n~t1y of the stack and then solves the eigenvalue problem for

the shell, On the other hand, the Class II model couples the electrode

shorted stack to the shell through the edge segment equation of motion

S. ...I
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and then solves the eigenvalue problem. The Class I model can also

operate in media which produce acoustic loads while the Class II model

in its present state of development is limited to media which produce

only negligible acoustic loads.

Presently, work is underway on discrete models for Classes II,

III and IV at the Center for Acoustical Studies, and a continuous

closed form solution for a Class IV oval is being developed by North

American Aviation.

Since the mathematical model to be developed herein is for the

Class V transducer, a review of the literature in the areas of thin

piezoelectric disks, spherical caps, and acoustic radiation problems

"for three-dimensional bodies is of interest.

2.3 Thin Piezoelectric Disks

Three works in the literature are pertinent to an investigation

of the vibration of a thin piezoelectric disk. The first of these is

the vibration of a free, thin, electrostrictive disk by Mason [11].

Mason established the necessary system of equations and the assump-

tions and procedure needed to solve the problem. The resulting dis-

placements differed from the elastic solution for a thin disk in that

the material properties were measured in a constant electric field.

The second work by Tachibana [23], used Mason's procedure and

solved the problem of a partially-plated, thin piezoelectric disk.

Expressions for

in the results.

Building on the works of Mason and Tachibana, Nelson and Royster

[14] obtained expressions for the electric impedance, resonant
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frequencies, and dynamic electromechanical coupling coefficient for a

thin piezoelectric disk with an arbitrary impedance on its boundary.

The expressions were specialized for the case of a spring like

boundary condition.

2.4 Spherical Caps

Langhaar [10] developed an expression for the strain encrgy in j
thin elastic shells. Special cases for the geometry were then cfn-

sidered, one of the cases being the sphere. Frow Langharr's strain

energy expressions for a sphere, McDonald [12] obtained the equations

of motion for a spherical cap with a clamped edge, using finite dif-

ferences. These equations were then solved numerically for the

eigenvalues and eigenvectors of the free undamped problem and were

compared to other analytic results. The forced vibration problem was

also solved for various loads.

Using the technique presented in his 1959 work, McDonald [13]

then presented the equations of motion for free undamped vibration of

a thin shell of revolution composed of an orthotropic material with

variable elastic properties and thickness.

Nelson and Royster [15], utilizing the techniques presented in

both papers by McDonald, derived the equations of motion for the

guided-pinned and guided-clamped spherical cap. The results were then

set up in matrix representation in order to obtain a numerical solu-

,I
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2.5 Acoustic Radiation

Three numerical techniques were considered as possible methods

for obtaining the radiation field for the Class V flextensional

transducer. This section will consist of a review of those techniques.

Chertock [3] developed a method for determining the radiation

field of a vibrating body. In general, a Fredholm integral equation

is solved numerically to give surface pressures. Then the special

case of a surface of revolution with an arbitrary velocity distribu-

tion and frequency is described in detail.

Hess [8] developed a method of solving the radiation problem for

an arbitrary three-dimensional body represented as a system of

quadrilaterals. Specification of the geometry, normal surface

velocities, and wave number leads to a set of linear algebraic equa-

tions which approximate an integral equation for the source density

distribution. Solution of the system gives near and far field pres-

sures as well as other information.

Schench [22] developed four different integral formulations for

obtaining approximate solutions to the exterior steady-state acoustic

radiation problem for an arbitrary surface whose normal velocity is

specified. The fourth method, a Combined Helmholtz Integral Equation

Formulation (CHIEF), overcomes numerical difficulties that arise for

certain wave numbers.

The method chosen for use herein is that developed by Hess. This

method was chosen due to its general approach to the body shape. The

limitations of the method in the frequency range presented no problem

since the fundamental mode of the Class V was well below the first

"forbidden frequency."
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3. DEVELOPMENT OF MATH34ATICAL MODEL

3.1 General

To develop a mathematical model for the Class V flextensional

transducer, the model is divided into three sections. The first part

is the vibration of a thin piezoelectric disk with an arbitrary

impedance on its edge [14]. The secono is the vibration of a

spherical cap having a horizontally guided-pinned boundary condition

[15]. The third section is the acoustic radiation problem due to the

surface displacements on the shell.

The manner in which these three problems are joined depends on

the assumptions made. Hence, discussion of this aspect of the overall

transducer model will be delayed until after the three problems have

been considered.

3.2 Equations of State

Both the equations of motion and the linear adiabatic equations

of state for a piezoelectric material in a rectangular cartesian

coordinate system wersý ouLýined by Royster [20] and the practical

engineering limitations noted. Therefore, only the resulting equa-

tions, along vi:th the assumptions made, will be noted here. In

general, the notation used will also follow that outlined in the

IRE (1949) publication [17].

The equations of motion arise out of the application of Newton's

FoRT-vaw ana-re yiven By

d~u

T + fi d 2 u (3.1)
dt

where T ijis a symmetric tensor when body moments are neglected.
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On the other hand, the equations of state Pannot be so easily

determined. First using the conservation of energy and then assuming

that the dissipation of energk by the material is small compared to

the rate of change of kinetic and potential energy, and that all

processes are reversible, one can obtain

S= Tij i= + E 16i + 8;* (3.2)

where () denotes differentiation with respect to time. From equation

(3.2), it can then be assumed that

Vp = Vp(SijD oD ). (3.3)

From equation (3.3), one can derive the two equations of state rneeded

in the development of the mathematical model. In obtaining these

equations of state, one must assume the following:

1) small deflection gradients (linear theory),

and

2) adiabatic process (no heat transferred).

These assumptions limit the transducer to low power applicatiuL.s. The

resulting equations of state, which are coanonly called the linei..

adiabatic equations of state, are given in rectangular cartesian ttn'or

form by

Sij = EkT + d.E (3.4)
i jk~j kij m'j M

T
D :d T +T E (3.5)

n nk kt M.km
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Equations (3.4) and (3.5) will be referred to simply as equations of

state.

As shown in Figure 3.1, the coordinate system used for the thin

piezoelectric disk is a cylindrical coordinate system. Use of the

appropriate tensor transformations and material properties as shown

in Appendix 7.1 results in the equations of state for cylindrical

coordinates given by

SS ET + SE (T +T + d E
rr ll rr 12 Te zz 31Ez

E + S(T + T ) +dSBe 1SI1To 12  rr zz 31Ez

s S T + S (Tr+ Tee

E E
Sr8 = (Sll - S )T (3.6)

S (S E S E )T

Srz =(S - S r2)Tz

and

D d3l T +Te T_ * E~

3.3 Thin Piezoeltctric Disk

The analytical results for a th " "

arbitrary impedance on its edge have been Published [l4j. Th.

results presented did not discuss in depth the development of per-

tinent equations. Hence, this analytic effort will now be presented

in detail in order to more clearly present the disk problem.
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3.3.1 Electric Field and Piezoelectric Equations

The disk being considered is a thin circular disk with electrodes

on the top and bottom as shown in Figure 3.2. The thickness of the

disk, hd, is much less than the radius of the disk, ad, !.e.,

hd << ad'

In general, the displacements in cylindrical coordinates are

denoted by

ur = ur (r, e, z, t)

ua = uA(r, 6, z, t) (3.7)

and

u= u (r, 9, z, t)

Now the motioi will be assumed to be primarily radial. Therefore,

there will be no displacement allowed in the e direction, and all

other displacements must be independent of 8. Also, the displacement

in the radial direction will be required to be independent of z.

Equation (3. 7) can now be written as

u u (r, t)r r

u - Z(r, z, Y (3.8)

and

ue -" 0

The stresses on a cylindrical element are shown in Figure 3.3.

The bottom and top of the disk are free surfaces. Hence, since the
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disk is thin, one can assume that

T =Tez = T 0. (3.9)
rz ez zz

The strain-displacement relations for cylindrical coordinates are

given by Fung [5] to be

r 1 e r

rr r Seo

S = 2S a e + 1 r (3.10)zz rO- 7- 7 F •TV

au 6u 3u Ou
2S = r z 2S 1 +z + e

rz +r' 2S z - e T7

Substitution of equation (3.8) in equations (3.10) yields

a u u 6u
- r r z= S = --

Srr 9--' r zz '

(3.11)

2 z and Sre = 0z•"2rz F re =O 0

The equilibrium equations in cylindrical coordinates, which can

be obtained from equation (3.1) through the procedure outlined in

Appendix 7.1, are given by

6r +1 3T + rz T rr -Toe= T r- e•-e 3z- r

6 Tre I 6Teý 6T 9z r

ru e + 1 T•- + +z + Tr (3.12)

ý T 6Tz 6T T
rz +1 zz rzPU -- + + +rz r 7To- T- -F
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Using equation (3.9) in equations (3.12), one obtains

•T I Tr-

rr + 6r r + (3.13)
PUrr r F +r r

_TB i•B TrB
a0 6 + 6Tre" + 2 Tr (3.14)

and

u=0. (3. 15)z

If the piezoelectric material has an electrically conducting

plating on its surface, then the electric displacement can be assumed

to be constant across the thickness of the disk. Also, the potential

at each point along the radius is the same; consequently, E isZ

independent of r [11], i.e.

6E
Z

= 0. (3.16)

Using the results given by equation (3.9) in the piezoelectric

equations of state (3.6), one obtains

S E T +S ET +d Err ll rr 12 ee 31Ez

E ESee SII1T 69 + S12 Trr + d 31E z

S = SE (T + T)zz 12 rr ee
(3.17)

- sE 2 ) Tr
St = (SII-E )

S S =0

Srz Bz

and D = d3 1 (T + T) + T7 _33z
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From equations (3.11) and (3.17), one can note that

Srz ez 0 (3.18)

so that

z - (3.19)

and

T = 0. (3.20)

One can now note, from equation (3.20) and the independence of

the problem with respect to e, that the equilibrium equation given by

(3.14) is satisfied identically. From equations (3.8), (3.15), and

(3.19), one observes that u is now restricted to being a function of

z and a linear function of time. Therefore, it is now assumed that u

is zero, so that equation (3.8) becomes

ur = u (rt) (3.21)

and

U u =0.

The strain-displacement equations given by (3.11) are reduced to

au u

S - r and S r (3.22)rr F ee r

The equilibrium equations become

6Trr + rr T9 (3.23)pr = + r

-r . .-. ..
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From equations (3.17), the equations of state for the two-dimrnsional

radial motion of the disk are given by

E E
S ES T +S T +d E + (3.24)Srr ll~rr S12T8e d31Ez

S E T + SE T Jd E (3.25)
ee = Iee 12Trr 31Ez

and

D =d3 (T + T Te + ~E (3.26)Dz =31(Trr + 8ý + 33T

3.3.2 Equation of Motion

In order to obtain the equation of motion, one must find, from

equations (3.24) and (3.25), the stresses in terms of strain and

electric field. From Mason [11], it is found that

s EI _ E and 12 (3.27)SE E- - •
SII SI1

Hence, equations (3.24) and (3.25) yield

T - (S +rr S d -E
rr 1_ 2B rr e 31 1-U z (3.28)

and

T 1 (S + US - d - E (3.29)

ge _,2  99 r 311u

Substitution of equations (3.28) and (3.29) into equation (3.23) gives

yE 2 u u u(330)

1-u 6r r
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Equation (3.30) is the equation of motion for a thin piezoelectric

disk. This is identical to the equation'of motion for a thin elastic

disk and electrostrictive disk [11], except for the fact that Young's

modulus in this case is measured under a constant electric field con-

dition. Equation (3.30) is also identical to that obtained by

Tachibana [23], as it should be.

3.3.3 Boundary Conditions and Initial Conditions

The model developed herein is limited to steady state vibrations;

therefore, initial conditions are not necessary. Thus, one assumes a

steady state displacement represented by

ur(rt) = Ur(r)eJwt (3.31)

The first boundary condition to be given for the disk applies to

its center. Since the only motion allowed is radial, then the center

must not move; therefore,

UrI = . (3.32)
r=o

On the edge of the disk, an arbitrary specific impedance is applied.

Hence, from Figure 3.4 and the definition of specific impedance [91,
one obtains

Tjrri
r=ad

- - i - Z = d z n + Jr • (3.33)- rl
r =a d

The arbitrary impedance consists of a real (resistive) part and an

imaginary (reactive) part.
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3.3.4 Displacement, Stress, Electric Displacement and Impedance

To obtain the displacements of the disk, one first uses the

steady state assumption given by equation (3.31) in the equation of

motion given by equation (3.30) to obtain

d 2 U dU

2 r r x2_ I)U (3.34)
x dx- +x x-+(x=0,

where

x r ad- (3.35)
v d v

and

2 E 2 (3.36)

The parameter x will be called the dimensionless frequency parameter,

while v is the wave speed in the disk.

The solution of equation (3.34), which is a form of Bessel's

equation, is given in Churchill (4]. Hence, one can write

U r -- AJ 1 (x) + BYI(x) , (3.37)

where A and B are complex constants.

The boundary conditions given by equations (3.32) and (3.33) are

now used. In order to satisfy (3.32), one must require B 0 so that

equation (3.37) becomes

U = AJ1 (x) . (3.38)

Stresses, strains and the electrical field are also steady state forms.

_ A --
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For purposes of ccnvenience, their exponentials will be dropped.

Therefore, expressions and equations will be amplitude relations un-

less otherwise stated. Using equation (3.28) in (3.31) and the result

from this substitution in equations (3.22), the steady state strains

are found. The strains may then be used in equations (3.28) and

(3.29) to obtain the steady state stresses. In particular, the

radial stress is found to be

T ¥YEA [ 1 jl(x)] 0
rr 1_2 V o r d 3 1 - dd (3.39)

1-cr d

where a steady state voltage of the form

V = V ej~ t (3.40)

has been assumed. Hence, using equations (3.31), (3.38) and (3.39) in

the boundary condition given by equation (3.33), one can obtain the

complex constant A so that the radial displacement, equation (3.38),

becomes

( (.-j 6) J 1 (x) (3.41)
U(r) 2 + 62 W Jo(xd)

where

yE V0
Y d • 0 (3.42)

31 1-a hd

JI(xd) (3.4')
0 (X d) odi

S.. . . .• • . . . . . . . .
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." and

J(xd) Jl (Xd)
-- (l-a) 1do r J. d (3.44)

From the procedure previously outlined, one determines the

stresses in the disk to be

yE 3o(x) J31 (x)
Y E Y(T-j6) [ - W

rr 2 2 2 T (X)J (l•d)

E V
Y 0

- d3 1 l- d (3.45)
h

and

T e _ y(n - ij 6) J o 30(x) 1(x)

T* - i 2 2 +62 - + (l-d) (x)J (x d)

yE V°
-d31 T Rdd (3.46)

To obtain the steady state electric displacement, one simply

inserts equations (3.45) and (3.46) into the piezoelectric equation

of state for electric displacement given by (3.26), so that

E2E
Y d31 .( .• j 6) Jo(x) T 2d 3yE Vo

3 y = 2 o ) + [ 31 0 I " (3.47)
VTl-a) 2 2 1 (x) ~ 33 1- a K.*

'r + 0 odd

Current is defined as the rate of flow of charge, i.e.

i Z dQ (3.48)

Assuming a steady state charge, given by
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Q = QTe Jw (3.49)

equation (3.48) then gives

iJw% eit =1 0 e e (3.50)

Electrical admittance, Y. and impedance, Z, are defined as follows:

Y = I/z = i/v. (3.51)

Therefore, using equations (3.40) and (3.50) in (3.51), one obtains

Y = I/Z = 1Io/V° T (3.52)

0

The total charge on the electrodes can be found by integrating

the charge per unit area, Dz, over the surface of the electrode. One

then has

ad 2r

QT I f DzrdrdG (3.53)
0 0

From equation (3.47), one can note that Dz D (r) so that equationzz

(2.53) becomes

ad

QT 2,r Dz rdr. (3.54)
0

Using equation (3.47) in t3.54) and carrying out the integration, one

finds t z total electrical charge to be
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Y d 3 1  Y(TH) l (Xd)

QT fd j(l-a5 T2
I+ x~ X~J(xdT

2d 2( d 1YE V0+--r• -n 1-) -2. (3.55)
d 33 1 d

Using equation (3.55) in (3.52), the electrical admittance is

given by

Y = g + jb , (3.56)

where

YEdYgd31 2 3 Jl(xd)
g = 2 (-ad VT(l_1) 2 + 82 xdJo(xd)

b - 2  
2 r YE d 3 1Jl (xd)

T

+ 33 (1 - k2) 2 (3.57)
d

and

d2 YE

k2 2 k2 T2 d31(
p T1-7 31 -a (3.58)

C33

which is the planar coupling coefficient as given in the IRE standards

of 1958 [18]. From equations (3.51) and (3.56), the electrical

impedance can be shown as

g g-jb
- 2(3.59)
g 2+b2
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3.4 Shell Vibrations

As stated previously, the vibration of a spherical cap having a

horizontally guided-pinned boundary condition has been studied by

Nelson and Royster [15]. Their work was presented in enough detail

so that a basic review will be all that is presented here. t
3.4.1 Strain Energy in a Sphere

From the results presented by Langhaar 1iO], the strain energy

due to stretching and berding can be obtained. The strain energy due

to stretching is given by

U = l 2 t (ue +w)2 +csc e(v+ucos e+wsin e)2
0 0

+ 2a csc e(u +w)(v +ucos e+wsin e)

+ (1-o-) csc2 (u' +v sine-vcos8)2 ) h sin dOdcp (3.60)
2 tP 9 S

and the strain energy due to bending by

U 2 8 2 +csc 4 (w sin 8cos e+w) 2

+ 2ocsc O(w (w sin @cos e +w )

+ 2(1-o)2( cote p28 / (h 3/a 2 sin Bd@dcp (3.61)

where u = , etc. . . . The coordinatcs system used for the

spherical cap is shown in Figure 3.5. The potential energy of the

external forces, Uext' can be readily found from Figure 3.5 to be

S.. .. . .. .. . . . . . •, i ~'O , b ".. : -:
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given as

Uext - • j (Xu + Yv + Zw) sin e ddcp • (3.62)

0 0

Thus, the total strain energy V of the system is4-!

V U+(3.63)

V=U 1  2 ext

Due to the symmetrical geometry of the transducer, one is only

interested in rotationally symmetric vibrations. Requiring rotational

symmetric vibrations and thus independence with respect to the

circumferential variable, cp, equations (3.60), (3.61) and (3.62)

reduce to

Ul 2 • • (u +W) 2+ csc2 e(ucos e+wsine)
2

+ 2acsc 9(u +w) (u cos e+wsin e) ) h sin 8de , (3.64)
e s

r, 2 4 2
U w +csc e(w sin ecos 8)u2 2 ee S@

12(1-o-)a2 o

+ 2u csc 8(w, 8 ) (wesin ecos e) h 3sin 9de (3.65)
s

and

U -2fa 2 (Ru + Zw) sin od8 (3.66)

0
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3.4.2 Boundary Conditions

Two sets of boundary conditions are needed for the shell. The

first set describes the crown point; the second set describes the

lower edge of the shell, i.e. 9 =

Rotationally symmetrical vibrations about the axis of revolution

have been required for the shell. Therefore, the only possible motion

at the crown point is one in which the crown is displaced in a radial

direction. No tangential motion can accompany the radial rootion, and

from geometric considerations the slope remains zero. These require-

ments are expressed mathematically as

ul=O = 0 (3.67)

and

2X1. (3.68)
"F=0

McDonald [13] adds to this set the requirement that

3
S0, (3.69)

e =0

in order to insure a finite solution at the crown point.

It can be observed that the boundary conditions for the lower

edge are somewhere between the guided-pinned and the guided-clamped

cases. The degree to which the boundary conditions approach the

clamped case depends upon the effect of the glued edges. For now,

only the guided-pinned case will be considered. From Figure 3.6, the

boundary conditions on the low•l• edge are
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bending moment at (9 = 6) = 0 , (3.70)

and

vertical displacement at (o = ) 0 . (3.71)

The boundary condition given by (3.70) will be discussed later

when expressions for moments are written. The condition given by

(3.71) can now be considered. Thus, from Figure 3.7. one can rewrite

equation (3.71) as

w1= =ul= tan • (3.72)

To consider the guided-clamped case, one need only replace equation

(3.70) with the requirement that the rate of change with respect to

e, at the lower edge of the shell, be zero.

3.4.3 Finite Difference Approximations for Derivatives

The finite difference approximations to be used in the construc-

tion of the model will now be considered. For the crown point, the

following difference expressions will be used:

q = ( (qjl - qj) (3.73)

2
"q (q + qji) (3.74)q - • (j+l qj _~l

and

3
"q = -- (qj+ 2  + - qji) (3.75)q1 8 j - 3qj+l + 3qj - q _,

where j 0 for the crown point and be is a half-angle increment so

tha t

S... . . mI-
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=1/AO (3.76)

For any interior point, the difference approximations used are

qj Of (qj*l " qJ) (3.77)

and

2
" " = (q 2q + q (3.78)

For the lower edge, the difference approximations used are

qj (qj " qj-I) (3.79)

and

2

"q It - (q -2q + qj_) (3.80)j j+l j

where j N for the lower edge. The segment division and numbering

can be seen more clearly in Figure 3.8.

3.4.4 Stress Resultants

The stress resultants in the shell can be determined from the

displacements. This can be done because of the fact that the

displacements in the shell are assumed known. From the displacements

one can determine the strains. Then, by use of Hook's law for an

isotropic media, one can determine stresses as a function of displace-

ment. The stress resultants are then found by integrating the stresses

across the thickness. McDonald r12j, who references Vlasov [24],

gives the following equations for the stress resultants:
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"m D(w 8 8+o-(w csc 2 +we cot e)] (3.81a)

KM =D[ow8 +(w csc 2 e+wcot )] (3.81b)

N= K[ue+W+OC(ucot e+v csc e+w)] (3.81c)

N =K[o(ue+w) + (ucot e+v csc e+w)] (3.81d)

where

Eh3  Eh
D , and K - (3.82)12(1-a 2) 12(1-a2)

The positive direction of the stress resultants is shown in Figure 3.9.

For rotational symnetric vibrations, one can reduce equations (3.81)

to the following:

M8  D[wee + wecote] (3.83a)

No = K[u6 + w + •(Tucot e+ w)'I (3.830)

N =K[c(u + W) + u cot 0 + w" (3.836)

V••.e stress resultants of the crown point can be written frr.•n

equations (3.83) while noting the boundary conditions given by

equations (3.67) and (3.68). Hence, one obtains

( DO w

""
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M Dow (3.84b)
(P 8=0 89 =0

N K[u 8 + (1+o)w] (3.84c)N0 9=0 8 ý:O)

and

N I KLCu + (1+o)w] I (3.84d)

6 --0 8=0

Using the finite differe.ce approximations given by equations (3.73)

and (3.74). one obtains the stress resultants in terms of differeace

expressions to be

2
(M•)j~ 4~. (w! - 2w0 + w-i (3.85a)

(M = Dua - 2w + (3.85b)

to j=o 0 w 2o Wl

(N K[2 (u' "I + 'I Wo] (3.86a)

and

(N = K[Z2 (u u) + (l+o-)wo (3.86b)

Now the boundary condition given by equation (3.69) can be used in

connection with equation (3.75) to obtain

W = 3w - 3wl + w2 " (3.87)

Therefore, inserting equation (3,87) in (3 85) results in
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(Mej Do,_ [w - 2w1 + w2] (3.88a)

and

2(M) DcT•
(MD) j=o 4 [W 0 2wl + w2] (3.88b)

th
For an interior point, the stress resultants on the k segment

are found to be

D 2 2k
(Me)jk = [a wk- - 2ci(at + ucot )wk

2k+ a(a + 2ocot-)wk] (3.89a)
Sk+l

(M~ D 2 -2ya+ot2k-2•(Y1-- + cot )W,
(M'j=k T [I' Wk- i -

2k+ o-(y + 2cot-n)w (3.89b)
ak+1]

(N)j=k E [(2o-cot - a)2 u +2 a -- Uk + k+i

+ (l+o)wk] (3.89c)

and

K 2k(Nj=k ( [(2 cot.-- o)uk + o-auk+l

+ (1+,T) w1 ] (3.89d)

For the lower edge, i.e. 9 = e; the stress resultants are given by

(M ) DN 2- La 2 oI- 2cot -)wN 2a(a c-cot e)wN

+ oWNf w (3.90a)

- --- - ---- -----.---
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D

(M)j=N =- [a(o- 2cotO)wN_I - 2t(o- cot e)wN

+ Or 2 WN+l] (3. 90b)

(Nr). N = 2" + 2ucot )N + 2(l+a)wN] (3.90c)

and

(N K [_ NUl + (rcy+ 2 cotO)uN + 2(1+o-)wN] (3.90d)jN j=N 2 N-1

Hence, the boundary condition given by equation (3.70) can be used in

connection with equation (3.90a) to obtain

w 2 (I aUcot b)wN 1 - - 2o-cot
N+1 - ( o N_ (3o91)

Therefore, using equations (3.91) and (3.72), where (3.72) can now be

written as

wN =u tan 8 (3.92)w N u

one can obtain che stress resultant on the lower edge.

3.4.5 Equations of Free Vibration

Lagranges equation may be written as

d3Lil j 0 (3.93)

q I~

where L = T - V is the Lagrangian energy equal to the difference

between the kinetic and potential energies, and where (') denotes

differentiation with respect to time, so that qj represents the

velocity of a generalized displacement. Hence, for a stationery
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system, T = 0 and V = V(qo, ql, ""." qN) so that equation (3.93)

becomes

6V = 0 • (3. 94a)

where q in general represents u, v, and w or 3(N + 1) displacements

for the discrete system being considered. For rotational symmetric

considerations, at most 2(N + 1) - 1 displacements remain.

The total potential energy of the discrete shell can be

obtained by summing the energies on each segment, as now given by

equation (3.63), so that

N
V = E [(•)j + (U2)j + (Ue)j] (3.94b)

j=o ext

The stretching and bending energies as given by equations (3.64) and

(3.65) must now be obtained across each segment with appropriate

consideration being given to the boundary conditions. Thus, for the

boundary conditions to be considered here, one can obtain 2N simul-

taneous linear equations. In matrix notation this can be written as

1-T [S](q} = (p} (3.95)

where [S] is the 2N x 2N stiffness matrix,

fq} is the column vector of displacements,

(p} is the column vector of external forces.,

and hs has been assumed constant. The equations represented by

(3.95) are for the spherical cap with a rotationally symmetric static

load. To obtain the equations of free vibration for an undamped
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system, one can replace the external forces with D'Alenbert inertia

forces, expressed as

S-ph sU (3.96a)

and

-= -0 hsW . (3.96b)

Hence, substituting equations (3.96) in equations (3.95) results in

2 rShq) = -2rph a2 [M](q4) (3.97)

Assuming steady state mction given by

q(8,t) q*(e)ej~t .(3.98)

then equation (3.97) can be rewritten as

([S] - X2[M])(q*} = 0 (3.99)

where

2
X 2 2(i _ 2 )( sa (3. 100)

The stiffness and mass matrices denoted in equation (3.99) are nct

presented in detail here. As shown in Reference [15], they are found

in a direct manner by integration of trigonometric quantities to

obtain the equations of motion as presented in Appendix 7.2. These

equations of motion are then written in matrix form resulting finally

in equation (3.99).
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3.5 Acoustic Radiation

The black box technique is used to solve the acoustic radiation

portion of the problem. A computer program developed by Hess (8]

is used. For any arbitrary three-dimensional body, one must input a

surface geometry, surface normal velocity, and wave number to be

considered. The input geometry is one that represents a system of

quadrilaterals to approximate the surface of interest. The normal

surface velocities are then the velocities of each quadrilateral making

up the surface. The output is then made up in part by the surface

pressures corresponding to each of the quadrilaterals and the far

field pressures.

3.6 Model Construction

3.6.1 General

As discussed previously, the model consists of three basic

parts. They are the disk, the shell, and the acoustic radiation

problem. These three problems have now been discussed in sections

3.3, 3.4 and 3.5 respectively. The manner in which these problems

are now connected depends upon what assumptions one chooses to make.

The model construction will now proceed in the following order: shell,

acoustic radiation loads, and disk. The assumptions made wi]l be

discussed at the point at which they are made and are basically the

same as those used by Royster [21).
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3.6.2 Shell Vibrations

3.6.2.1 Model Analysis. On, can recall that the equations of

motion for an undamped spherical cap undergoing free vibration were

given by equation (3.99) as

([S] - x2 [M])lq*} = 0 (3.99)

This represents the spherical cap alone with guided pinned lower edge.

The physical transducer, on the other hand, does not let the shell

vibrate freely. The piezoelectric disk provides resistance to the

free motion of the shell. Hence to solve the true problem, one must

couple the disk to the shell before the free vibration problem is

solved. However, if the disk adds little stiffness to the shell then

one can assume that the solution of equations (3.99) for the eigen-

vector form without including the effects of the disk will be

approximately equal to the solution with the disk consideration.

Thus,. making this assumption, one can solve the eigenvalue problem

given by equation (3.99) by the techniques outlined by both Royster

[20] and McDonald [13].

To obtain the equations of motion for the forced vibration

problem, one considers equation (3.95) where both external forces and

inertia forces are to be considered. Thus, instead of equations

(3.96), one considers

R = -Phus + X (3.1Ola)

and

Z = -phs + Z (3.101b)
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where X and Z cannot contain inertia effects. Hence, using equations

(3.101) in equations (3.95), one can obtain

[S] q) + 2Trpa hs[M]tq } = 2ras(P) (3.102)

where

31c1I 1

U2

UN /0! XNsin ede

(q} and (p) . (3.103)

WO 0

N-ZN/10t sin 9 dl

wN-- 3/a N-i

Now, using the eigenvectors of the free vibration problem as a

basis, one can assume the vector for the solution of the forced vibra-

tion to be of the form

N
(q) = E br(Crp (3.104)

r=l

where br is a scalar and is called the scalar modal participation

factor while tcp r is the eigenvector of the free vibration problem

corresponding to the Ai eigenvalue. Hence, using equation (3. 104)
ri

in (3.102) gives
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2Nh N 2 N 2
i-a [S] E b r pr) +27pash s[M] E brr (r(P = 2TTa s p() (3. 105)

r=1 r=l

Premultiplying by (cps}T and use of orthogonality as can be noted from

Reference [61 gives

2 h hs T 2 h (I Tr M ], 2T •T• i
I-- " (9P)•rTCS]),spr + 20atel sP1 •

(3. 106)

Now from the free vibration problem, one has

SIS] = 2 [M] , (3.107)
r

so that, noting equation (3.100), one can obtain from (3.106)

"+ W2 b 1 (rC}T(p}r r • {0r}[M][0r}(3. 108)
r r r TF- T

s (9P) IMI (CPr

The steady state solution for (3.108) is easily obtained so that the

steady state expression for (3. 104) is given by

ejwt N 9 r}Ttp*}
(q) . h rph .E 2 R ((r} (3.109)

hs r=l 2i() r

where

pp*e= e and R =( .r)I M(Pr (3.110)

3.6.2.2 Mobility and Impedanice. As stated in section 3.6.2.1,

the shell has been assumed to vibr:,t-., independent of the disk. Kence,

tha shell problem is solved D:, upled to the disk problem.

(
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considered in section 3.3, through the arbitrary specific impedance

applied to the edge of the disk. Thus, it now becomes necessary to

obtain the impedance around the lower edge of the shell.

Mobility is defined as

mobility velocity (3.111)
force '

so that from Figure 3.10 one can obtain the mobility at the lower

edge to be

MN -- (3. 112)
F (2ra s sin ý cos e

Likewise, one can obtain the specific mobility to be given by

uN a sin b [sin Osin I/o- G - Cos I.() Cos
M = N (3. 113)

F cosA

To obtain the velocity in the tangential direction, UN,. needed for

(3.112) and (3.113), one can obtain from equation (3.109) that

e Jwt N 1P irI T~p*

o oE Wor R WTrjf - (3.114)

The Nth compone-L of equation (3.114) then gives the needed velocity.

Hence, the mobility or specific mobility for the edge of the shell can

now be obtained. It should be noted that, with a knowledge of the

free vibration problem and the forcing iunction., one need only con-

sider the first couple of terms of equation (3. 114) to obtaji, a value

of mobility around the tirst resonant frequency.

II
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FIGURE 3.10 CROSS-SECTION VIEW OF
DISPLACEMENT AND FORCE

PER UNIT CIRCUMFERENCE

AT THE LOWER EDGE
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Impedance is the inverse of mobility. Therefore, from equations

(3.112) and (3.113), one can determine that

zN 1 (3.115)

and

Z* 1/(3. 116)

3.6.3 Acoustic Radiation

For a given shell geometry, normal velocities, and wave number,

Hess' program can be used to determine both the surface and far-field

pressures. It should be noted that these values are per unit density

of the fluid media. Two media will be considered in order to compare

with the experimental results.

The first medium considered is air. Due to the density of the

air, in comparison to that of the shell, one can neglect the resulting

acoustic loads. Thus, the force vector in equation (3.103) reduces

to only ,Aie comp.:ient. Hence, the impedance of the shell can be found

by using equations (3.112), (3.114) and (3.115).

The second medium to be considered is water. The forced vector

now becomes complex. Assuming that the mude shape, including an

external load, is not significantly changed from that of a vacuum,

enables one to greatly simplify the problem. The reactive part of the

acoustic impedance can now be converted to an equivalent mass. This

mass must then be added to the mass of the original structure, and the

rigenvalue problem resolved for the necessary data required ii Hess'

numerical program. This iterative process can then be followed until



51

the system reaches aquilibrium. Then, use of the conservation of

energy in connection with the energy dissipated enables one to obtain

the final resistive part of impedance to be applied to the disk.

3.6.4 Piezoelectric Disk

As discussed in section 3.6.3, with or without significant

acoustic loads one can now obtain the resistive and reactive compo-

nents of specific impedance, ioe. 0 and r, to be applied to the disk.

Then, varying the excitation frequency of the disk, one can determine

the electrical impedance of the particular transducer under considera-

tion.
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4. RESULTS

The mathematical model of the Class V flextensional underwater

acoustic transducer as described in section 3.6 was programmed for

evaluation on the IBM 360-75 computer [16]. Results for a particular

/geometry of the transducer cali be found by defining the necessary

physical parameters of the transducer.

For this investigation, experimental and mathematical model

results are compared for a transducer similar to that shown in

Figure 1.2. The thin piezoelectric disk has a diameter of 1.5 inches,

a thickness of 0.04 inches, and the material is PZT-4 (PZT-4 is a

Clevite Coiporation trademark for a specific type of piezoelectric

material). The aluminum spherical cap has a 1.563 inch inside radius

and is 0.1 inches thick. The edge thickness of the spherical cap for

each experimental transducer varies and is noted with its data. On

the other hand, the mathematical model is. restricted to constant

thickness caps so that no variation in edge thickness is considered.

2The experimcrtal rep,-Its - eqented in Table 4.L and in

Figures 4.1 and 4.2. The mathematical model results in air are pre-

sented in Figures 4.3 and 4.4. Figure 4.3 plots the magnitude of the

electric impedance in ohms versus the driving frequency in kilohertz

(khz) found using the mathematical model. Figure 4.4 shows both the

analytic and experimental results for air in terms of decibels (db)

versus driving frequency. The experimental results shown in Figure 4.4

are for transducer number 2.

21Ibid.
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Table 4.1 Experimental results

Common geometric parameters of the transducer are listed below:

Piezoelectric disk: 1.5 inch diameter

0.04 inch thickness

PZT-4 material

Spherical caps: 1.563 inch inside radius

0.1 inch thickness

450 taper at edge to edge thickness

Transducer Edge Frequencies (khz)
Number Thickness -Air

(inch) Resonance Anti-resonance

1 .015 21.8 22.6 12.5

2 .030 22.8 23.7
___________ _..
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In Figure 4.3, the analytic results of the free disk, the

transducer model with a guided-pinned boundary condition, and the

transducer model with a guided-clamped boundary condition are pre-

sented. These results show the disk to be dominated by the shell, as

was assumed in section 3.6.2.1. The fundamental resonant frequencies

for the guided-pinned and guided-clamped boundary conditions respec-

tively are approximately 20.5 khz and 33.08 khz, while the anti-

resonant frequencies are approx-imately 21.5 khz and 33.1 khz. Compar-

ing these frequency bounds to the frequency results listed in Table

4.1, it is seen that the experimental frequency results do lie between

the frequency bounds supplied by the mathematical model. It can also

be seen that the guided-pinned model provides results much closer to

the experimental results.

In Figure 4.4, the mathematical results in air for the two

bounding boundary conditions are compared to the results of the

experimental transducer number 2 for the electrical circuit shown. As

noted above, the fundamental frequency of the experimental transducer

is bounded by the mathematical results. However, away from resonance,

the experimental results are not bounded by the results given by the

two boundary coaditions in the analytic model. This difference can be

attributed to several possible causes. First, the inaccuracies

inherent: in the mathematical model itself. These inaccuracies can

result from the uncouiling of the shcil and disk, from the finite

difference model used to approximate the shell, from assuming a

constant thickness, and from the neglecting of the bond Joints and

their dissipation of energy. A second cause 's the experimental
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difficulty in obtaining measurements. Instrumentation inaccuracies

are always present, and a variation of + ldb is usually acceptable.

Another point of interest is the dependence of the results on the

series resistor, as shown by Royster [19]; therefore, a variation in

the resistor, due to manufacturing tolerance, would produce a shift in

the results.

To consider the transducer in water, acoustic loads can be

obtained from the numerical program developed by Hess. The loads must

be used in an iterative manner with the main program until the system

converges tc the fundamental resonant frequency. In this case, four

iterations were used. This required a total of 25 minutes of computer

time. The resonant frequency of the analytic model was 11.65 khz, as

compared to 12.5 khz of the experimental transducer number 1 in Table

4.1. This analytic case used the guided-pinned boundary condition,

since the results in air showed the condition to give results nearer

those found experimentally. A point of interest is found in that the

shaved edge of the shell and the bond joint have opposing effects.

While the degree to which each affects the results is nor known, it

might be possible for them to cancel each other out. This could be a

prime factor in the good agreement betweoa the guided-pinned analytic

results and the experimental results.

In Figure 4.5, the magnitude of the electrical impedance of the

transducer in witer, with the guided-pinned boundary condition, is

plotted against the U'riving frequency, while in Figure 4.6, thi, re-

sistive part of the electric impedance for thie case is plotted

against the drivirg frequercy. bince insufficient experimental
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results are available to whi.ch these analytic results can be compared,

a complete evaluation of this part of the model cannot be carried out

at this time.

AM~
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5. SUMMARY ANI CONCLUSIONS

The fundamental resonant and anti-resonant frequencies in air of

the experimental transducers were shown to be bound by tie guided-

pinned and guided-clamped results, with the guided-pinned condition

giving results within approximately 5.9 percent of the experimental

results. Therefore, using only the guided-pinned boundary condition

in water, a fundamental resonant frequency of the mathematical model,

which was only 6.8 percent lower than that found experimentally, was

found. From these results, one can conclude that the mathb.matical

model with the guided-pinned condition can be used to approximate the

fundamental resonant frequencies.

In air, the electrical impedance of the transducPr, found using

the mathematical model developed herain, can be used'ir the electrical

experimental circuit to read the vol~age in db's across the transducer.

These mathematical results are about 2 db's low for the guided-pinned

case and I db low for the guidee-clamped zaxe aa compared to the

experimental results of transducer number 2.

In water, the electrical impedance and rcsistixe portion of the

electrical impedance can be obtained from the developed model, used in

connection with thL numerical proram -f ;ies., "or the acoustic loads.

However, due to the lack of experimental data with respect to the

electrical impedance, no statement can be made about the reliability

of this portion of the model.

In conclusion, it can be said that the mithemati-al model

developed herein gives results that compare well with exis.ing experi-

mental data. However, additional experimental data must be obtained
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with respect to water loads before the validity of the analytic

results for the loads presented herein can be verified.
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7. APPENDICES

7.1 Obtaining Cylindrical Equations of State
from Cartesian Equations of State

As given by equations (3.4) and (3.5), the Cartesian tensor

equations of state are given by

S..=SE T +d.d E , (3.4)
ij ijkLT kt mij m

and

T
D =d T + CE (3.5)
n nk k nm m

The tensor transformations, as given by Hawkins [7] for contra-

variant tensors of rank one and two respectively, are expressed as

E m E' (7.1)m = -r n
n

and

T xk Cxt

t,= k 37 Ts (7.2)
5 t

where Em and T represent any contravariant tensors; xm refers to the

old coordinate system, and x' refers to the new coordinate system such
n

that Xm = x (x')'
m m n

Now, in order to transform equation (3.4) into curvilinear co-

ordinates, one rewrites equation (7.2) as

\x 6xt
S' = S (7.3)

~i j

so that the curvilinear strains are in terms cf the Cartesian strains.

*l J_ _ l
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Thus, using equation (3.4) in equation (7.3) gives

S + s td E (7.4)
st -S 3 Sijk•Tkt +57 Z mij m

1 I 1 J

which represents the curvilinear strains in terms of the Cartesian

stress and electric field. Hence, using equations (7.1) and (7.2) in

equation (7,4), one obtains the curvilinear equation of state

corresponding to (3.4) to be

St- tSE 3k CT' + s xt m E' (7.5)st =T•. T ijk't ' mn •E . dijm ' n
1 j m n I j n

Similarly, the curvilinear equation corresponding to (3.5) is

,k nT' + n T m E' (7.6)
D' ! dk ~ Er +t 6- ~rDn= mkt, 3- st N ranm M"

m s t m s

Hence, equations (7.5) and (7.6) give the curvilinear tensor equations

of state for a piezoelectric material.

One should note that, in general, the tensor components and

physical components are the same only in a rectangular Cartesian

system. Therefore, as shown in Fung [5], the tensor and physical

components of a contravariant tensor of rank two are related by

e j e (no sum, on i or j) (7.7)

where c and e represent the physical and tensor components respective-

ly and

9 = j (7.8)
km ccý 7 i

{m
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To obtain the cylindrical equations of state, one simply has to

follow the procedure outlined for the cylindrical-Cartesian transfor-

mation. The coordinate transformations can easily be obtained from

Figure (3.1) to be

x rcos , y rsin9 , and z = z , (7.9)

or

r = yx+ , e = tan- y/x , and z z (7.10)

Hence., the resulting equations of state are given by

S E +E
S =S ET + S (T +T ) +d E,
rr ll rr 129 + zz 31 z

E E
S =S T + S (T + T + d E
99 11= 9 12 rr zz 31 z

E ES =5 T + S (T +T
rz 11 zz 12 rr Tee

E E

S =(S S T , (7.11)
rO 11 12' rO

z ~ 11 12~ Trz

S =(S E SE T

and

D =d (T + T 9) + 3 Ez 31 Trr asEJZ

7.2 Equations of Motion for the Spherical Cap
with Guided-Pinn-d Boundary Condition

As noted in section 3.4.5, the e.,uations of motion for the

boundary segments se adjacent to them are affected by the
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boundary conditions. Therefore, these equations must be derived for

each segment and are, in general, different from the general interior

equations. Defining the stiffness coefficient S , where refers

to the displacement component by which the coefficient is multiplied,

k
and k designates the particular equation from which the coefficient

comes, one can obtain the following equations of motion:

j = 0, equation of motion with respect to wO (crown point)

(Slj)ul + (So0)W0 + (Sl )wl + (So2)w2 o(M )wo =t) , (7.12)

j = 1, equation of motion with respect to u1

(S1 l)ul + (S2)u2 + (Su)w 0 + (S-7)w 1  (M '' )U = 0 (7.13)

equation of motion with respect to w1

(s ) + (S' )u + (S' + w1)U 1 2 2 o)W0 + (Sl)Wl + (S12)w2

+ (SI)w3 - (MI j)wl = 0 , (7.14)

j = 2, equation of motion with respect to u2 (or k -- 2)

(S u)u + (S )u2 + (S 3)u3 + (S )wl + (SU )w2

_(M2 u ) 0
2)u 2 2 0 , (7. 25)

equation of motion with respect to w2

w u WW vv

(S )u2 + ( u 3 )u3 + (S,)W + (S )w + (Sw)2 2 2 3 2 0 2 1 1 222

+(33 +-I )w 0-. (7.16)

== 3 4)-
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j=k, k = 3,4,..., N-4,N-3

equations of motion with xispect to uk

(S u )U k u (SUU)u (SUU )u + )UW

Skk1k-1 + kk)k + kk+1 + (Sk k.1 k-1

+ (Skk)wk - (M)Uk =0 (7.17)

equations of motion with respect to wk

w U w u ww wv
Sk k+l)uk+ + (Skk2)wk2 + (Sk-l)wk-

+ (S ww ww ww
+ (S kkl)w )w + (Sk )W - (M)W = 0

kk k k+1 k+1 k k+2 k+2 Okk k

(7.18)

j N-2, equation of motion with respect to uN 2 (k N-2)

.u u u u SU 11 u w
(SN2N3)uN3 + (S_ 2)U + (S NN)U (SUNN_3)W

+ SU W U (719

(S-2N-2)WN-2 -MN-2 N-2) UN-2 = O 7.0

equation of motion with respect to wN-2

W W W(SN-- )U + -N -? )UN- + (SN 2NV)UN + (SNi- N-4)W

+NS- w + Sw w )w +NSw -)
N( -2N-3)WN-3 +(N-2 N-2)WN-2 N S-2N-I)WN-1

N-2 N-2)N-2 , (7.20)

j = N-1, equation of motion with respect to uN-1

U U U U UU U V
SN IN 2)UN2 N (SN IIN )UNlI 4 iSN IN)UN + (IN _12)wv72

+(SNI l)Wv~ - (M~ .i~ ) UNi =0 ( 7.21)

I;I I I ~
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equation of motion with respect to WN.1

w U W U + ( +W
(SN- IN-)UN-I + S-IN )NNN + + N-N-2)N-2

+ w w w 1w N V 0 (0

N-1(MN-I)vNI , (7.22)

j = N, equation of motion with respect to uN

(SN N )UN + (SNN)uN + (SN_ 2 )wN_2 + (SNN_

- ( N)uN=0. (7.23)

The stiffness coefficients of the stiffness matrix from the u1

equation of motion dre listed as follows:

S u 2u .2l-cos0 /0 +sin 2/iesin i/(Y] - ov cos 2/asin l/o'

1 1 2

+ 2F-2 sin 2/otsin I/a + In tan 3/o- In tan 1/2a] , (7.24)

S 2 sin 2/osin l,/a, - 2orvcos 2/csin I/o , (7.25)

S1o= a(l+v)(I- cos 1/01) , (7.26)

S 1 = -2o'(l+v) sin 2/cysin 1/a+4(1+v) cos 2/orsin 1/a . (7.27)

The coefficients of thc uk equations are given by the general expres-

sions for k - 2, 3. ... , N-3, N-2 where

.uu -o, 2F sin Lk -sin 2(k- 1) 1 3in I/ _4of , (v cr~s 2k sin I .'Sk k I a a- -- a-

2k 2k+l 2k-I1
+ 2F-2 sin Lsino+ I t In n - In tan---- , (7.28)

a'2a' 2o'

t-
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Skk+l - -a sinLk sin1/e+ 2vcos-L-sinli 2k (7.29)

S -= 2&(I+v) sin 2(k-l) sin i/0 (7.30)
*kki Ia'

k -2,(I+) sin2sin I/a+4(i+v) cos Lsin i/iv (7.31)
k a!--'

For the uN_ 1 and uN equations, one has

2
2 u 2 2(N-2). 2(N-1),li /'~-[i~ii~

! Su u = a2[ sin2N) +sin------2(-) sin1/a+2 sin sinl/10

[ 2 (N-I)

(i- cos 1i/Y) cos 8] -4'vcos 2 sin I/a'

+ 2[-2 sin 2(N-1) sin 1/a +in tan 2N-I - in tan2N-3 (7.32)y 2a-•- -•- 7 2

u u 2 2(-1 2(N-1)

S = -a' sin 2(N') sin 1/c + 2, 2cos sin I/0

2
+ + ,(i+' tan ][(icos i/a) cos 9 sin sin /a']

- a[cos isinli/a + (1-cos i/a) sine] , (7.33)

Su- w- = 2a'(l+v) sin2(N-2) sin 1.l (7.34)N s 2(N-I)

N-I N- = -2a'(I+v) sin 2(N-I) sin i/a+4(1+v) cos 2 sin i/aa a' N

(7.35)

I
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cuu - 2. 2 (N- 1) 2~1 aeSNN at2sin-2N) sin1/ct+[!-+2(l+v) (&+2 tan 9) tan 0]
0sin

NNa

[sin isin I/a- (1 - cos I/a) cos l] +2[ctv+2(1+v) tane]

[cos Osin'!/J+(- cos 116) sin] +2[(l1-cos I1/) cos 6

2N-II

-sin e sin i/i+ in tan i/2 - In tan-

h 2o

+ (-) [-tan 2[( '-vcot)2 - 2o(i-v cot 6) + 2]

[sin 9 sin I/a- (1 - cos i/6 cos 0] -' 2v 3 tan 9[ cos sin i/a

(I- cos i/a') sin b] ++ tan2- - cos -/() cos sin i sin i/a'

4
2N-_ 1- tan 2 - 2n(N-1) s1) /" in tany- In tan --- s isin-

" a 3 v2 tan 2 ecs 2(N--• sin •/a l+2 tan2 -[2 sin 2 sin 1/01

"+ in tanN1 - In tan-2-3 (7.36)

uw i.hs.2a4 .n -2(NI),3 2 2(-) /tn

SN N-2 1(--) 2 Ct sin 2(N--1) + v Cos-2.(N-} sin 1/'tane, (7.37)
N N_2 12 a7 4 CY a'O

5
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h 2
s_= 2(1v)u sin 2(N-1) sin 1/+ 1 s5 2 a

- cot I)(a- 2vcot •) - a(2•- 3vcot e) + ~2]

[(i- costi/) cosi n sinesin i/o] + ta2 3 [cos sin l/a

2+ (1- cos i/) sin] - 2ctan [(l - cos I/t)cos 8- sin+ sin1/

+In tan!- n tan •I] -•tan~sin 2(-)snio

2 3

322 2N-I) 2 - 2(N-)+ Intan no t -ian =F l/ an stan [-2isin in I/o

+ in1tan s sin N I tan823sin
- 2 Of 5 o 2  L st1/

2N_.2N3 (7.38)

The coefficients of the wo, wl, and w2 equations are given as the

following:

s 0 4(1+v) (I - cos 1/a) + 1 s [(1- cos i/a)
s

+ 2sin 2/asin 1/al) (7.39)

i= - 2 [(l- cos 1/a1) + 2sin 2/asin /a]
s

32
+ cos 2/asin I/aC} (7.40)

s; i(h__ 4

2= -1 S2 of [(I- cosl/a) + 2sin2/otsinl/a]
s

32
+ 

C 

(

+ cos /a sin1/(y-7.41
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ww1 s 2 a

SlW~= 8(1+v) sin 2/sinhl/+2-3-) ( r [2(1 - cos 1/a)
S

+ (4 sin 2/a'+ sin4/a) sin 1/a] +2a 3 v2 cos 2/asin I/a

2
2+- [-2 sin 2/asin I/a+In tan 3/2a- In tan2v (7.42)

w w 1 (hs2 4

82 (.;-) ( ( [ [(I- cos l/a) +2(sin2/a+ sin4/o') sin i/a]
S

+ ot 2

cs2 2/t+ cos 4/a] sin 1/a + [-2 sin 2/asin I/a

+ in tan 3/2a- Int anl/ a] , (7.43)

h 4 3 2w w 1 (as 2 ct 4y +v 4•il/}.4

S13 12 a 4 2 c-s4/asinl/a) i(7.44)
s

h 4

2 = 2(1+v) sin4/ltsinl/+h+-- s2 [ [(1- cos Ila) +2(sin 2/a22 w/ +21 2  i n
S

+4 sin 4/ci + sin 6/a) sin l/a] + v3 2[ cos 2/a + 2 cos 4/a] sin 1/a

2
+ -2( sin 2 /a + sin4/)in i + In tan - In tan ) ,

(7.45)

ww I •hs 2 4
S2w 1- ) " [sin4/a+ sin 6/a] sin l/a

2 3 12 'a2
S

32 2+ T 3co4/i+cos6/•]sin/i+ [-2 sin 4/a sin 1/a

53"+ In tan- - in tan ] } , (7.46)
73 2ct

wwh s2 a4 L32

ww 1 (a)2 sin 6/ + 2 cos 6/a] sin 1/ . (7.47)
T 2 12 aen 4 [ 2

The general expressions where k = 3, 4, ... , N-4, N-3 are
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w 8(1+v) sin2ksinl/+ h [si sin
k kk 01 12 (5)2

S
2(+)32 2(k-l) 2k

+sin 2(k+l)] sinl/a+v3v2 [ cos-1 + 2cosL] sinl/a
a at a

S2 2(k-1) 2k 2k+l
+ [-2( sin + sin -)sin l/a + in tan--

T a 2a

2k-3
In tan--) , (7.48)

h 4

ww 1(a)2 Si, +sin 2(k+l) sin I/Skk+l 12 -t i•{ ick n/

S

32 2k 2(k+l) 2 2k

+ [nsC- +T [-2 sin--sin 1/a

2k+l 2k- (7.49)
+ In tan -T- - Intan-_---- •

h 4 32
2w i (s)2 sin + Cos() sin 1/a. (7.50)

1k k+2 a a. 22

For uN- 2 and uN-l, one has

'h 4
w w 2(N-2 ____ 1 .s 2 aj [ 2(N-3)

S = 8(1+\) sin sin/+ (I-s) ( [ sin
N-2 N-2 cl 12 a

S

+4sin 2(N-2) + sin2(N-1)I sinl+3 v2 Cos2(N-3)

+ 2cos (N-2) sin 1/a + a2 [-2( sin +(in2)N-2) sin 1/a

2N-3 2N-7+ In tan- - Intan-•-- ] I , (7.51)

S2( 
5

I.
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h 4
w - 1 2 of 2(N-2) + sin 2(N-I sin 1/aN.-2 -= (i) { -[sin N-1 -2 /

Ot 3 2  2(N-2) 2 (N- 1)
S2[3 cos C-+ Cos a-] sin 1/0,

a,2  2(N-2) 2N-3 2N-5
+ [-2 sin sin i/a + In tan--•- in tan-Ž] }

(7.52)

w 2(N-1)h 2(42
SN N = 8(i+v) sin 2(N-)sinl/a,+ 1L (_s)2 , rsin2(N_2)

N-1 N-1 ) a - 2S

+ 4snsininl/a + [(a_ 2v cot 12 + of 2

- 2o,(oe- 2v cot •)][ sin Osin 1/a, - (I- cos 1/0a) cos

3 2N-)2 (N- )

+ a3v2 [ Cos2(N-2) + 2cos 2 1] sin /1.c 23 cotG[ cos Isinl/I

+(I - cos I/a) sin 6] + CY [-2 sin 2(N-2) sin 1/a/+ In tan 2N- 3

2N5] 22(-1 2N-I1

- intan + 2-- [-2 sin 2(N-- ) sin i/a + intan-.-

2 -O

2N-3 2
- In tan-:C-l- + 2-- [ (1_- cos i/a,) cos e -sin sinl/a,

naN-I.(
+In tan- - In tan-L- -J ) (7.53)
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7.3 List of Symbols

ad = radius of piezoelectric disk

a = radius of shell

b = scalar modal participation factorr

Di = electric displacement vector

d = piezoelectric strain constant
mij

Ei = electric field intensity vector

SF = force per unit circumferential length

f i = body forces per unit volume

hd = thickness of piezoelectric disk

h = thickness of shell
S

10 = amplitude of steady state electrical current

i = electrical current

JN(x) = Bessel function of first kind of order N

k = planar coupling coefficientp

L = Lagrangian energy

MN = mobility at lower edge of shell (j = N)

M = specific mobility at lower edge of shell (j = N)

N= moment per unit length acting in 8-direction

MH = moment per unit length acting in tp-direction

N a mid-plane force per unit length acting in 8-direction

N = mid-plane force per unit length acting in p-direction

(p) = column vector of external forces

p = amplitude of steady state external forcing function

Q = electrical charge

SQT amplitude of steady state electrical charge

tz

t
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q = general displacement

q = amplitude of general displacements for steady state motion

(q} = column vector of displacement

Rr = normalizing factor

IS] = stiffness matrix

S iJ = strain tensor

S = stiffness coefficient in stiffness matrix IS]
ij
E
S E = elastic compliance matrix at constant electric field
ijk~t

T = kinetic energy

Tij = stress tensor

t = time

UI = strain energy due to stretching

U2 = strain energy due to bending

U = amplitude of steady state displacement of diskr

Uext = strain energy due to external forces per unit area

u,vW = displacement components of spherical cap with respect to

r, cp, 9 directions respectively

u* ,w = amplitude of displacements for steady state motion

th
u. = displacement in the i direction

V = potential energy

V = steady state voltage amplitude0

V = potential energy per unit volumeP

X,Y,Z = external forces per unit area acting on spherical cap

XZ = external forces per unit area other than inertia forces

Y = electrical admittance

E
Y = Young's Modulus for a constant electric field
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YN(x) = Bessel function of second kind of order N
gN

Z = electrical impedance

SZI = arbitrary specific impedance on boundary of disk

zN = impedance at lower edge of shell (j = N)

ZN = specific impedance at lower edge of shell (jj= N)

N

S= inverse of half-angle increment

r = imaginary part of specific impedance on boundary of disk

AS = half-angle increment

= Kronecker delta

Ts = permittivity matrix at constant stress
nm

= absolute temperature

SI = opening angle of spherical cap

Xr = r th eigenvalue

= sheer modulus of shell material

P = density

r = Poisson's ratio

C* = entropy per unit volume

[cpr} = eigenvector corresponding to Xr eigenvalue

f= real part of specific impedance on boundary of disk

W angular velocity

'p

I
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grams and the Naval Underwater Sound

N*e puriose of this investigation is to develop a mathematical model for the
rClassBV flextensional under-water acoustic transducer.

The transducer is approximated through the consideration of three dlitinct pro-
blers, The problem of a thin piezoelectric disk with an arbitrary impedance on
its edge Is s~olved in term'- of Bessa1 functions. The -shell vibration problem
Is solved using a finite difference model to approximate the shell. The acoustic
radiatioD. problem is solved by obtaining the source density distribution for a
system of quAdrilaterals representing the transducer. With the source density vt
each quadrilateral, the nlear and far fit-ld pressures and velocities can be found.
Utilizing these three components, a model is then constructed for the transducer.

A compai-isoa of the results from the mathematical model with those obtained
experiments is made in. order~to 'validate the "o.el.
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