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SPARSE MATRIX TECHNIQUES IN TWO MATHEMATICAL PROGRAMMING CODES
by
George B. Dantzig#
Roy P. Harveyt

Robert D. McKnightt
Stanley S. Smitht

Introduction. The M3 and M5 linear/separable programming codes [1] and [2] were

written for the IBM 7090/94 class of computer using the FORTRAN Monitor System.
They solve problems up to about 400 rows. M3 waa'developed first, during the
period 1960-62, in part by RAND Corporation personnel and in part'by the Standard
011 of éaliforﬂia (SbCAL). It has been available through the SHARE library for

several years. M5 was developed later, during the period 1962-64, by the authors

IR R Y

of this paper and is a SOCAL proprietary code.

. Through the use of sparse matrix techniques and other devices, M5 can

solve a problem in about one quarter of the time taken by M3. Before discussing

these improvements, we list first some of the features that the codes have in common:
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5 Single Precision
. Upper Bounding Algorithm [3]
. Cost Ranging Algorithm {41, [5] |
. Composite Algorithm [6]
. An Upper-Bounded and a Non-Upper-Bounded Separable-Programming Algorithm
' (71, (81, 91, [10], [11]
. The ability to designate free variables by use of controls (a free variable ¢

is unrestricted as regards sign‘)

. The ability to designate frozen variables by use of controls (a frozen
variable must be zero in the final solution whether in or out of the basis)
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. Getoff and Restart Procedures

The ability to handle multiple objectives and right hand sides without
the need to recalculate the inverse

. Row and Column Error Calculations as desired

c An Automatic Tolerance Regulation Mode of Operation [12)

. A Pivot Rejection Algorithm

. Crashing Procedures

5 Multiple Pricing: The selection (and possible use) of several attractive

non-basic columns during the pricing-out operation in a simplex iteration

The most interesting aspects of the codes with respect to the topic of
_ sparse matrix methods are in connection with the inversion techniques. The search
for more and more efficient methods for computer solution of large linear programming
problems has resulted in procedures that for the most part are really only variants
of the simplex method. Some of these variants, such as decomposition, represent
fairly radical departures; others differ only in computational form. The so-called

revised simplex method is perhaps an example of the latter group [13].

In review, recall that the '"tableau" of the original simplex method, is, in

effect, the m x n matrix:

c=51a (1)

where B 1s the matrix of basis vectors and A 1is the matrix of coefficients

augmented by the right-hand-side.

The term "revised" of the "revised simplex method" is used because the matrix
multiplication, B-lA, is not performed. Instead, the inverse B_1 is maintained

explicitly, and is used to compute only those elements of C that are critical to




the simplex algorithm. Thus, if the top row of C represents the relative cost

factors (&j's). we can compute them by applying the top row of B-1 to A.

The minimum of these Gj's determines the pivotal column of C which we compute

by applying B—l to the corresponding column in A. 1In a formal sense then, the

original simplex method requires us to recompute an m x n matrix 2ach iteration

while the revised form requires us only to recompute one row and onea column and to

update the right-hand-side and the m x m inverse matrix B-1

This apparent advantage is sometimes less than real, but the revised

form offers other benefits that aid greatly in the solution of large problems.

If, for example, C 1is too large to be kept in the computer's high speed memory

device, the revised form would have obvious advantages. When high speed memory 1is

no longer adequate to hold B-l, the revised form is in trouble. The product form

of the inverse is a help in this case [14].

As noted, with the revised simplex method we do not update C; we only

update ,B-l; C given by (1) 1is never computed. With the revised simplex method,

with the inverse in product form, we do not update B"1 either. Instead we compute

a sequence of elementary matrices Nis Nosees where an additional ny is computed

on each "re-inversion' iteration and on each simplex iteration. After re-inversion

and k simplex iterations B-1 is given by (2) below. It is never computed.

1
B = Mok Mrbie-1 Mok (e 0+ 1) (2)

When the price vector (i.e. the top row of B_l) is to be computed, the product

terms of (2) are premultiplied by p = (1, 0, 0,...,0) and the multiplications

executed by working from left to right so that each multiplication is that of a

1 < m vector by an elementary m x m matrix. When the pivotal column of C is

to be computed, the product terms of (2) are post-multiplied by the selected

.




column of A. The calculations are performed from right to left sotha: each

multiplication is that of an elementary m X m matrix by a m x 1 vector.

Host problems require so many iterations that the product form becomes
impractical unless the product is periodically reduced to its fewest factors.
Unless there happen to be unit basic columns, this minimum number is m as shown
by (2). The usual practice is to "throw away" all the n's and to reconstruct
m new ones from the current basis B. In LP parlance this process is called

"re-inversion" or simply, "inversion".

If the usual simplex rules are adhered to and we neglect the occurrance
of "ties", the n's outside the parentheses in (2) are determined uniquely.
These are the n's produced during the simplex iterations and their vglues
result from the simpléx pivot criteria. The n's 1inside the parentheses in (2)
are the ones produced during inversion where different criteria may be applied.
The moﬁt successful criteria seem to be those that seek two major goals; in their

purest form they are:

(a) Numerical accuracy

(b) Few non-zero elements

We will return to (a) later. In order to appreciate (b), it must be noted that
most large LP matrices have a low percentage of non-zero eiements. (A density
of less than 5Z 1s not unusual.) If the n's can be kept relatively sparse they
will not only imply less arithmetic, but it will also be possible to.hold them
in less computer store by the use of a compact format containing only the non-

zero's (in the relevant column) and their row indices.




As far as the authors know there is no known theoretical way (except

perhaps exhaustive search of pivots) for finding the product form of the inverse

that has the minimum number of non-zero elements. Some very simple procedures,

however, in practice have shown quite remarkable improvements over those where

no attention to (b) is given. Selecting the pivot columns of B 1in the order

of increasing density often has a profound effect on the percentage of non-zeros

in the inverse product form. (In practice, the entire matrix A may be pre-

ordered by density which makes the ordering of any basis B automatic.)

One of the measures we have used in connection with criteria (b) shown
above is the percent increase in non-zero elements in the representation of the

inverse compared with the number of non-zero elements in the basis matrix before

inversion.

M3 uses the product form of the inverse and early versions selected pivot
columns'during inversion by considering basis columns in the order they were

originally given and the pivot row was selected by taking the largest pivot in

absolute value on the remaining rows. On typical problems in the 2-5% density

class, it was found that often there was an increase of about 5-10 fold in non-

zero elements after inversion. Using just the simple technique of presenting the

columns by density (actually only a partial sort on large problems) it was found

that this increase in non-zeros could -be cut by a factor of about two.

A related idea is the so-called "merit'" sort which orders the columns

by increasing merits. The total merit in a column is the sum of merits assigned

to each non~zero element in the column. The merit of a non-zero element in row 1

is the number of non-zero elements in row 1. Some other techniques of this kind
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are described in Larsen [15) and Tewarson [16]). The compact inversion technique

used in M5 was influenced by the above experience with various criteria. M5 uses

the "Elimination Form of the Inverse', see Markowitz [17]. The rotable thing‘

about this evolution of computational improvements is that each one introduces

something additional to be done implicitly rather than explicitly: the revised

method does not explicitly compute C, the product form method does not explicitly
1

compute B ~, the Markowitz' method does not explicitly compute the elements

of ny in rows previously used for pivoting. '

It has long been known that triangularization followed by back solution
requires less calculation than full diagonalization in 100% dense systems. Our
experience indicates that the same holds for sparse systems. Application of the
triangularization approach to a staircase structured basis is found in [18]. 1In

[19] Bartels discusses numerical accuracy of elimination procedures.

Elements on rows already used for pivoting are not eliminated in M5 but
are stored as a matrix T which is triangular with respect to the pivot diagomal,
The transformation matrices Ei are similar in structure to a product form
transformation matris with the exception that there are no elements above the
diagonal, the diagonal being defined from left to right from successive pivot

positions. Ignoring a permutation matrix which in practice is effected by maintaining

the indices of pivot positions, the following relationships hold:

B™ = T EE ,...EE (3)

As with the product form, after k simplex iterations, we will have:

-1
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The device of course is not to compute ! put only T. In M5 the
elements of the triangular matrix T are stored by columns. When the top row

of B-1 is desired, we first compute from left to right:

B P17 Mol

then

t

is found by "backsolving" the triangular system P,T = P, and finally, we compute

the product, again from left to right:

PEE ..‘E

2 m m-1 1

The selected column of C 1is calculated in an analogous right fo left
manner. The matrices T and Ei are not unique so that there exists the
opportunity to seek goals (a) and (b). With this in mind, we considered several

pivot selection rules.

Pivot Selection

In our initial investigations five pivot selection algorithms were
considered, which are described below. A comparison between them was made by
performing symbolic triangularization on several bases taken from actual applied
problems and keeping track of the position of non-zero elements. This symbolic
triangularization was carried out on the computer. The proliferation of non-zero
elements was all that was recorded. The arithmetic of the reduction procedure
was not performed. One consequence of this is that any cancellation on non-zero

elements giving rise to a zero in any particular spot was assumed not to occur.
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The five pivot-selection algoritﬁms considered have one characteristic
in common. They are all dynamic in the sense that at each stage, the next
pivot is chosen in the light of the updated matrix. In this way, the criteria
differ from some of the techniques mentioned earlier. At each pivot-selection
step, the choice depends only on properties of that part of the updated matrix
made up of rows and columns not yet made use of for pivoting and, of course,
the pivot choice is made from this submatrix. The number of non-zero elements
in each such partial row and column is recorded and kept current at each pivot

step.

'Thelivbt-selection criteria considered are now described. Of all the
positions in the as yet unpivoted portion of the updated matrix which contain

a non-zero element:

1) Select as next pivot row, the row with the
minimum number of non-zero entries. In the
case of ties, take the first such row. As
the pivot column, take the first column
which contains a non-zero entry in this
plvot row.

2) Select next pivot row as in 1), Of all columns
which have a non-zero entry in the pivot row,
select the first column which contains the
minimum number of non-zero entries.

3) Consider the subset of rows {R} which have
the minimum number of non-zero entries. There
will be only one such row, unless ties occur.
0f all the columns which have at least one non-
zero entry on a row of {R}, select the first
column which contains the minimum number of non-
zero entries. This is the pivot column. The
first row of {R} containing a non-zero entry
"in the pivot column is taken as the pivot row.

4) Select that element as pivot, such that the
product of the number of other non-zero elements
in its row, times the number of other non-zeros
in 1ts column, is a minimum. This criterion is
due to H. Markowitz [17].
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5) Take that position containing a non-zerc entry
as pivot which creates the fewest additional
non-zero entries, when carrying out the
reduction step.

6) to 10).Apply the same rules as above to the
transposed matrix. Note that 9)could lead to

a different choice of pivot than & because of the
tie-breaking rules; similarly 10)differs from 5)

In each case, the total number of non-zero entries in the Ei and T
matrices 1s compared with the number of non-zeros in the originél matrix B of

basis vectors.

‘The results for two matrices are shown in Table 1. They are typical
of results that we have observed on other matrices which are not presented here
because of incomplete information regarding the source of the matrices or
incomplefe analysis on our part. In our opinion, it would be worthwhile for some
one to collect a wide variety of matrices used in LP applications (not randomly

generated ones) to verify whether or not these results are typical.




Matrix I Matrix II
SIZE 62 x 62 216 x 216
N
NUMBER OF NON-ZERO
ENTRIES © 348 1400
DENSITY 9% 3%
ALGORITHMS NON-=ZERO ENTRIES z NON-ZERO ENTRIES y 4
i IN E { AND T INCREASE ! IN E 1 AND T INCREASE
! .
|
1) Minimum Row - 378 8.6 j 1456 ' 4.0
Column with 1st non i
zero entry. !
2) . Minimum Row 364 4.6 | 1485 | 6.1
Minimum Column ‘
3) Minimum Rows 366 5.2 | 1424 1.7
Minimum Column
4) Minimum Product 378 8.6 1492 6.6
[Markowitz]
5) Minimum Increase 420 20.7 ] 1553 10.9
6) Same as 1 on 408 17.2 | 1654 18.1 ,
transpose 1 *
7) Same as 2 on 361 3.7 | 1493 6.6 '
transpose '
8) Same as 3 on 361 3.7 1461 4.4
transpose
9). Same as 4 on 381 9.5 | 1514 8.1
transpose
10) Same as 5 on 366 5.2 | 1523 8.8
transpose - |
TABLE 1. PIVOT SELECTION CRITERIA
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}ﬁ Our intuition would have probably led us to algorithm 5), which

¥ did not show up very favorably in our admittedly few experiments. We chose to
% adopt algorithm 8) for the LSP code MS5.

% It is interesting to note that our experiments indicated the above
% technique performs much less favorably on sparse matrices whose non-zeros have

5§

& been generated in a random manner. Symbolic matrices of 5% density and of orders
: 50, 200 and 400 were generated using the pseudo random number generator based on
&

, - 35 13

: . Xi+1 = aX, ‘mod 2°7) where a Xo 5

The location of a non~-zero element in the matrix was determined by
randomly selecting its row and its column. To insure non-singularity, symbolic

non-zero elements were first located alog the main diagonal.

The results using algorithm 8) are as follows:

Random Random Random
Matrix 1 Matrix 2 Matrix 3 MatrixI Matrix IT

s A

SIZE 50 200 400 62 216

DENSITY 5% 5% 5% 9% Ky 4

INCREASE OF DENSITY AFTER
TRIANGULARIZATION USING

ALGORITHM 8) 137 3331 480% 3.7% 4.4 ,’
These results are evidence that general conclusions should not be drawn from linear :
programming algorithm experiments which have been performed using matrices whose
elements have been generated in a random manner.

]
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The exact form of the algorithm implemented is given below. For
numerical accuracy, the above procedure is modified 1f tlie pivot chosen is
less in absolute value than a specified tolerance value (see step 3). The

test and procedure in the case of an ill-conditioned basis is omitted.

STEPS IN INVERSION PROCEDURE

1 Count and store number of non-zeros in basis matrix by
column and row.

2 Restrict the candidates for pivot to non-zero elements
in columns and rows not previously used for pivot whose
non-zero column-counts are minimal,

Further restrict the candidates to those whose absolute
values are > a given tolerance value; if none then
thosé whose absolute values are maximal.

Further restrict the candidates to those being in rows
whose non-zero row-counts are minimal.

Among the latter select as pivot the one with the lowest

column-index and then the lowest row-index.

3 Generate transformation column Ei and corresponding
column of T,

4 Update residual matrix, adjusting the non-zero row and
column counts of elements in non-pivoted rows and columns.

5 Repeat steps 2 through 5 until all columns have been used
for pivoting.

The implementation ofthis algorithm also presented us with some interesting
systems problems in data handling. We choce to restrict the application

of the code to problems where inversions could be carried out entirely in the high
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speed storage of the computer. As noted earlier both M3 and M5 are uwsed for
problems up to about 400 rows. With the density and size problems encountered

M5 has carried the elimination form of inverse successfully in core.

Some comparison times of M3 v8 M5 are given in Table 2,

TABLE 2.  COMPARISON OF RESULTS [M3 vs M5]

Run Time

PROBLEM SIZE M3 M5 M5 as %
: - of M3
99 165 Complete Problem 67 secs 42 secs 63%
166 744 Average Inversion 21 secs 10 secs 48%
Average Iteration 3.1 secs 1.0 secs 322
264 1118 " Average Inversion 100 secs 25 secs 25%
Average Iteration 4.7 secs 1.2 secs 26%

#
3
o
3
4
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