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THE CHEMICAL EQUILIBRIUM PROBLEM 

I.  Formulation 

Consider a beaker, Into which we will put known amounts of 

various atoms. Ions, radicals, molecules, or other chemical entitles. 

These entitles, called 'inputs' will have the property that no combination 

of more than one can react together to form other Inputs.  Thus If we were 

to load the beaker with H  Ion and OH  Ion, we could not also use H-0 

as an Input.  I.e. We assume that the entitles when expressed as vectors 

are linearly Independent.  We order the Inputs 1 • 1,2 m and enter 

the amount In moles of the 1   Input Into the 1   component of a vector b. 

These Inputs may react with one another In fixed proportions 

to form various chemical species.  If we number the species j ■ 1,2 n 

then species j may be represented by a vector P. with m compenents, 

specifying in Its 1   component how moles of the 1   Input are consumed 

In the reaction which forms one mole of species j .  Then, If x. - the 

number of moles of species j In the solution, conservation of mass demands 

that the following vector equation be satisfied: 

I P.x. - b (1.1) 
J-l J J 

If we define: 

n 
x - J x. (1.2) 

J-l J 

i — th 
then    /x  Is the concentration, In mole fractions, of the j   species. 



There is a function, called the Gibbs Free-Energy function, which 

expresses the total electro-chemical potential of the solution. This 

function in the single compartmented case is proportional to z ; where 

.1 
n x. 

'I    x  c + log 3/x 
j-1 J  J 

(1.3)" 

1. Theory tells us that for an ideal chemical solution, the partial 

molar electro-chemical potential of a species j takes the form: 

Jj 
M + RT log Cj + z FX 

where c  is the molar concentration of species J , z. the electric 

charge on each molecule of species J , and X the electrical potential. 

R, T and F have their usual meanings. 

On the range of concentrations for which ideality is a good 

approximation to the real world, there is a constant a , approximately 

the same for each species, such that: c = a J'x (to be read 

'approximately equal to ').  Clearly then, 
o 

Mj-M 

We let: 

u.1 
+ z1 

FX 

RT 

0 + Z1 
FX 

+ log a 

+ log a 

+ log ^/x 

xi/- 
c. + log J/x 

j        RT 

Then the actual Gibbs free-energy function becomes 

G -  I RT x, 

RT z 

Thus z is Indeed proportional to the Gibbs free-energy. 

Also, our constants c, include any electrical potential 

Impressed from outside upon the compartment. The number u  is the 

standard partial molar free-energy, and can be found in the literature. 

The constant a converts mole fractions to molar concentrations.  In 

dilute aqueous solutions a will be approximately 55.5 moles/liter. 

...   j 



Willard Gibbs showed that our beaker will be at equilibrium when the 

chemical solution achieves the composition x ■ (x. x ) and Min z 

satisfying: 

I      Xj   Cj + log J/x   -    z(x)(Min) 

n 
s.t.  I  P. x. -    b        (1.4) 

j-1  J J 

x, 1   0 , j - 1,2,...,n. 

where 

Methods for finding equilibrium solutions to chemical 

problems based on this formulation have had much success. R. J. Clasen [1] 

at Rand Corporation, for example, has devised several procedures for solving 

(1.4). However, all such methods have so far run into trouble whenever 

degeneracy has occurred during the computational procedure, i.e. whenever 

some x. becomes zero or nearly zero. This paper will propose a method ( 

not at all discommoded by degeneracy. 

II. Method of solution 

Suppose we had an initial feasible solution x m  (x.,...,x ) 

to (1.4) with the property that each component x. of x were strictly 

positive.* Then by following the stops given below, one can successively 

Improve the solution, and ultimately find a solution as close to the 

optimal solution as desired. 

* Before the method in this Section can be applied it is necessary to have 
at hand an initial solution with all x. > 0 . How to find such a solution 
when it exists is discussed in Appendix 1. If for certain J, x ■ 0 must 
hold, Appendix 1 gives an algorithm for determining which x. must be dropped 
so that the above algorithm can be initiated on a subset of  the variables. 

i » 



Step 1; 

Letting  e. - 7 ,   j - 1,2,...,n, 
3        J 

and 9 -f • 
find the unique y satisfying the quadratic program: Find y. ^ 0 , 

Min z: 

This is equivalent to solving 

2 I ej yj + I  Cj - 1 - log (Sj/e) yj 

^1 y2 yn n 

el -/ v -31 

'•. e 
n -P1 

n 

pl P2 -- P„ 
__ WM 

c, - 1 - 

c« - 

c - 

-b 

v 
log e /e 

iog 'e 

- 

0i 

?2 
! 
0 
n 

0 

■^ ^^ 11 

(2.1) 

y. > 0 , a > 0 ,    j - 1,2 n. 

and  n 

j-1 l    3 

Step 2; 

Form the weighted average solution u  , 

u - Xx + (1 - A) y (2.2) 

■ ■■ 



^^»^W^WI^^^^""— 

where A is chosen to minimize the value of z(u(A)) for all values 

of X for which (2.2) is non-negative. Notice from (2.1) that y is 

a feasible solution to (1.4), and since x is feasible, so must p be 

feasible. 

I    Xi " yi 1 
Now compute n. = I 6. + •'   •'  .  If each  n.  is small i      \   i ^      j ' j ' 

enough  then p is a close approximation to the optimal solution. If 

not, go to Step 3. We can decide if each |ri.| is small enough by the following. 

It will be shown that x = (x1,...,x ) is an optimal solution 

to problem (1.4), 

/       x  \ 
Min z(x) * [ x I c. + log J/x 

IPJXJ =  b 

xj       1    0 

if and only if there is a vector n  satisfying: 

o 
x. 

c, + log ;J/x0 - n0P =0    j = l,...,n. 

We have assumed here that x > 0 , j = l,2,...,n. 

Let x " (x, x ) be the optimal solution to the similar problem. 

Ix 

c. + log  /x 

IPJXJ -  b 

xj       1   0 

Clearly, the feasible solution x of both problems are the same. Further- 

more, if x is feasible, then: 

MMaMMMi J* 



|w(x) - z(x)I 1 [ x. |c. - c. 

Suppose that we have a bound  '2 on the right-hand side of the above, or: 

l^-cjl < V2 

for all feasible x. 

Then 

|w(x) - z(x)|  <  G/2 

Furthermore, recalling that x  yielded the minimum value of z(x) , and 

x  the minimum value of w(x) for all feasible x,  it is easy to see that: 

wfr1) - z(x0)| < e/2 

Thus: 

IzCx1)  - z(x0)|  - IzU1)  - wCx1) + wfr1) - z(x0) 

< IzU1) - wCx1)! + ^(x1) - z(x0) 

< e 

we have that; 

Now notice from eqn,   (2.1)  that since    6,  - 1/x    .     9 -i 
J     j      x * 

-L + i-
y-A + 

If we let: 

■i    n 

CJ- nj 

i. 
x. I   l08 ^ - "Pj " 0 

+ log J/x - np, 

then the current solution x is the optimal solution to: 

■ 



Min w(x) 

s.t. 

I  Xj cj + log j/x 

^ 

= b 

> 0 

Hence, by the foregoing: 

|z(x) - z(x0)| < B , 

where B Is any bound which satisfies: 

2ltj|cj-cj|     =      2 1^1      ^B 

for all feasible solutions t ■ (t t ) 
1'   ' n 

Such bounds are not usually hard to find.  For example, one 

can usually determine a bound  t  on t ■ £t ; by inspection.  If the 

inputs may combine together but in no species does an Input split into two 

or more parts, then the sum of the inputs is such a bound t  on t . 

Then if n " max I n. I • we can let: 
m   j  i  j 

B - 2 mnm 

found by: 

Alternately, a separate upper bound on each species may be 

mj= "f { ±/aii' biaij ^0 • aij ^0; 
th 

= "o if no such b. and a.. 

where a   is the i  component of the vector P. .  If all these numbers 

m.  are finite, then we can set 
J 

B - 2 ^ mj | rij | 

Whatever B is finally decided upon, the following will be true: 

z(x0) >. z(x) - B  . 

Hence we will be able to estimate how close the solution a ~ Ax+(1-A)y 

is to the optimum. 

J « 
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Step 3. 

In theory, since x is strictly positive, then u will also 

be strictly positive (see Section 3).  If the computations are made in 

practice, it may be that some component of u, say u., Is so small as to 

be negligible.  In this case, set u,  at some small lower bound and 

continue the computations.  If there are several such u., they can be made 

all small and at the same time proportional to exp(IIP. - c.). 
J   J 

Alternatively, column j could be deleted from the problem 
i 

th '' 
entirel".  This of course, means that the J   species will not appear at 

all in the final solution, and so it is treated as if it were zero in the final 

solution to the original problem. 

Step 4o 

Let the strictly positive solution u, modified as in step 3, 

take the place of x in step 1 and in (2.1). 

One will repeatedly cycle through these four steps until the 

convergence criterion of step 2 is satisfied. At that point, the last 

solution found will closely approximate the actual optimal solution to (l.A). 

Ill, Derivation; 

The chemical equilibrium problem (1.4 or 3.1 below) is 

difficult to solve because its objective, the function z(x), is non-linear. 

Linear problems being easy to solve, we will attempt to replace this problem 

with a linear one.  We do this in two stages:  first, we find an approximating 

problem with a non-linear separable objective which in turn is approximated by 

a quadratic program with a convex separable objective.  The first step is 

accomplished by theorem 1. 

8 
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Theorem 1  Consider the following two problems: 

Min z 
11 

1=1 :, 

1 - 
c + log J/x 

11 

j=l  I - 
(3.1) 

> 0 

where 
ii 

* - I x 
1=1 :, 

and: Min w = 2, XJ 

s.t, I  p.x- 

c + K + log x 

= b 

> 0 

(3.2) 

Then there is a particular value of K for which the optimal solution 

x ■ (x-,.,.,x ) to (3.2) is also optimal for (3.1). 
i     n 

Proof;    Look at the optimality conditions for the two problems: x 

is optimal for (3.2) if there exists a vector n ■ (IL,...,n ) such that 

(x , n ) satisfies: 

w(x ) - n0 I P. xu - b k k 

8x. 
= c + 1 + K + log x n0 p, 

1 o 

= 0 

j = 1,. ..,n 

if Xj > 0 

(3.3) 

I » 
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Similarly, it is optimal for (3.1) if there is a  FI - (11, FI ) such 
1     m 

that  (x0, n ) satisfies: 

3 U0) - n1 |l Pkxk - b)]        x0 
L Lk ij_   - c^ + log J/x -HP. 

Sx, 

Now let: 

2. 0  j = l,...,n 

- 0  if x° > 0 

K = -1 - log x0 

(3.A) 

(3.5) 

Substitution of (3.5) into (3.3) shows that  (x0, 11°), for this value of 

K , satisfies the optimality conditions (3.4) of problem (3.1).  Of course 

this also shows that: 

n1 = n0 (3.6) 

QED. 

If we did happen to know the value of x  , then theorem 1 

states that the solution to problem (3.2), with K as in (3.5) would be the 

desired solution to (3.1).  In addition, (3.2) is separable, as we wished. 

Unfortunately,  x  is not known.  Instead, we will use the 

value of x in the current solution to (3.1) to approximate K in (3.5) and 

(3.2). 

If our current feasible (but non-optimal) solution to (3.1) 

is x = (a.,...,£) ,  so that x « ^ x. , we let: 

10 
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d >» c - 1 - log x 
(3.7) 

and then consider the problem! 

Min w = ^ x (ds +  log x.) 

s.t.   I  P x      = b (3.8) 

xj     L   0 

The approximating quadratic program could be obtained by 

expanding M log y into a Taylor series about y • y . However, it is 

also possible to "linearize" (3.8) by replacing it with an equivalent 

generalized linear program: 

Min 0(x,e) - I  x (d - log 6 ) 

s.t.        I  P x     = b   : n      (3.9) 
JXJ 

=    b : n 

Jxj 
<.    1 :   (-yj) 

XJ 2.   0 

where 9 >_ 0 is a variable that can be chosen independently of x. . 

It is easy to show that from any feasible solution of either 

(3.8) or (3.9), a feasible solution to the other can be found. Furthermore, 

the same holds true for optimal solutions. 

A moments thought will convince one that if  (x,e) is a 

solution to (3.9) which does not satisfy: 

SJXJ = 1 (3.10) 

11 

i » 

 L 



for each x. > 0 , then it can be improved by increasing their respective 
J 

e. 's. 
2 

The 11 and -y  appearing to the right of the constraints 

of (3.9) are Lagrange Multipliers. The multipliers 11 corresponding to 

equality constraints, are unrestricted in sign, but the -y.  corresponding 

to inequalities of the sort ^_ raust satisfy: 

yj  i o (3.11) 

We will assume that the current solution (x , 6) - 

(x.,...^  ;  6  6 )  is strictly positive, and that (3.10) is satisfied 

for each j .  Now consider the 
j 

as constants.  For the given 6 assume 

x = x  is an optimal solution to (3.9);  then, there must exist multiplier 

(n , y.) which satisfy the Lagrangian conditions (3.11) and: 

*(x* 6) 
k 

+ I Vv   (Qv4 -  !> 

9x. 
f(ej) 

dj - log ei - nPj + yi Bi (3.12) 

j ■ 1,2,...,n. 

We will show that we can find an improved solution to (3.9) if and only if 

we can find a new vector of constants 6 = (6.,,..,9 ) , which satisfy: 

f(ep <   o j " 1»2,...,n (3.14) 

12 
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for which the inequality is strict for at least one j . 

If we are trying to satisfy (3.14), we look for that value 

of 6, which minimizes f(e.) .  Since f(6.)  is strictly convex, it 

has a unique minimum, occuring at 0. = 9, where 

fl(V ■0 - - ij+ "j 

Thus we pick 

'} 
< 

—  if y > 0 , otherwise 

(3.15) 

3  (some arbitrary large number) 

So far, we have only asserted the existance of multipliers 

(n, y)  satisfying (3.11) and (3.12).  Conditions (3.11) and (3.12) in 

general are too few to determine their values.  But equations (3.15) suggest 

that y. be interpreted as an amount of species j , which together with 

9 = —  would correspond to a new feasible solution to (3.9).  Thus we 

ask that in addition to (3.11) and (3.12), the multipliers satisfy: 

I Pjyj   - b (3.16) 

13 
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Writing (3.12) and (3.16) in matrix form gives: 

y?  —  yr 

r— —i 

el V 
^2 -V 

• : 

6 
n 

-PT 

n 

pl P2 P 
n 

,  . 

A 

d1 - log e1 0 

d2 - log e2 0 
• 
• 
• 

A 

d - log 6 
n    6 n 

• 
* • 

0 

- b 0 
_ _ 

(3.17) 

If the matrix [P^ P2,...,P ] has rank m , it is easy 

to show that there is a unique solution (lUy) to (3.17). However, that 

solution need not satisfy y. 1 0 . Thus we relax the restrictions 

slightly. 

y9  —  y. 

1  —. 

^1 < 

e2 < 
• 

•        A 

6 
n -PT 

n 

pl P2 -" - P 
n 

d1 -  log 01 61 

d2 - log 02 62 

• 
•                A 

d - log 6 
n    * n 

• • 
• 
6 
n 

- b 0 
       __ wm-        — 

(3.18) 

yj 1 0 .  6j - 0 '   J " 1,2,...,n 

I yfr ■ o 

14 
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It can be shown by the application of complementary pivot 

theory, or by noting that (3.18) is equivalent to a positive definite 

quadratic program, that (3.18) has a unique solution (II,y) . 

Theorem 2;   If the feasible solution to (3.8) y 4 x found by solving 

(3.18) then y yields a lower value of w than the current solution 

X    V"i,•.•jX / . i     n 

Proof;      Taking (n,y) from (3.18), we have that: 

fOj) - dj - log ej - nPJ + Vj- 6^0 

We have shown that 

- log Sj + yjOj >. log yj ■,- 1 

Now: 

oil^   - I^-iog^- n?i+y^) 

- w(x) - lib + I y 

since 6 = — .  Similarly, summing all j  for which y. > 0 , 

>. lyi (dj + log yi  -  nPj + 1) 

>. w(y) - Hb + ^y 

15 
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Thus:       w(x) - üb + ][ y >_ w(y) - üb + J y 

Or; w(y) £ w(x) 

And the Inequality Is strict If there is any y. > 0 such that 6. 4 — • 
J 3  yj 

Q.E.D. 

However, problem (3.8) Is not the problem we are 

Interested In. We must show: 

Theorem 3;   y found by (3.18) yields a lower value of z in (3.1) 

than does the current solution x . 

Proofi 

Evalua 

Inserting d  from (3.7) into f(e.) , 

f(e ) - c -i - log x - log e - np +y 6 - 6 

ting   I  x f(e )  and  I y. f(~ ) , we find 
j       j J      y i 

l xj f(ej) - z(x) - x + J yj -   nb-J xi&i i 0 

I', <% ) - z(y)  - nb + y log  (y/x) £ 0 

!, we expressed ^ x f(9.) and J y^ f(— ) in 
J  j      j yj 

In theorem 2, 

terms of w(x) and w(y) .  Simple algebra shows that: 

z(x) - z(y) - w(x) - w(y) + y X   ...   X 7 - 1 - log 3 

(3.19) 

= w(«) - w(y) + yg r] 

16 
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where g(y)"n-l- log y is defined for y _> 0 . 

It is easy to check that the strictly convex functions g(y) has a 

minimum at y ■ 1 of g(l) ■ 0 . 

Thus: g(y) _> 0 

Since: y ' I y^  > 0 , 

and from theorem 2, w(x) - w(y) >_ 0 , we have 

z(y) <. z(x) 

As in theorem 2, the inequality is strict if for any y. > 0 , the 
A   1 

corresponding 9.4'" • 
J  yj 

Q.E.D. 

So far then, we have a procedure for finding an improved 

solution y for (3.1), starting from a non-degenerate solution x . 

In order to apply the method again, we must find a new non-degenerate 

solution. 

Theorem 4:   If y is a degenerate solution to (3.1), and x is a 

non-degenerate solution to (3.1), then there exists A > 0 such that 

the solution  y defined by: 

y - (l-A)y + Xx, 

satisfies z(y)  < z(y) , Ay - b , n > 0 . 

( y is non-degenerate since x is , and A > 0 .) 

17 
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Proof; Consider z a function of A • Then: 

V»*. 
z(A) - I  u(A) (X)    C + log ^u(A) 

Taking the derivative, and evaluating at A ■ 0  (I.e.  u ■ y) , 

d2(u(A)) 
dA ICj-V    (cj+iog^/y) 

Since y Is degenerate, we will suppose y, • 0 .  Then 

Äk " ^k > 0 ' 

yk - and    log  /y ■ - oo 

Thus; dz(u(A)) 
dA A - 0 

dz 
Since z and -rr are continuous functions of A , for 1 ^. A > 0 , 

dz 
there will be an Interval  (0, ß)  In which — Is negative. Thus: 

dA 

z(u(ß)) < z(0)  - z(y) . 

Q.E.D. 

Corr; If there exists a non-degenerate feasible solution to 

(3.1), then the optimal solution will be non-degenerate. 

We would like to show that the value of z in (3.1) 

computed using the solution u is strictly lower than z computed 

using £ . 

18 
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Theorem 5;   Elther y ■ x, in which cane x is the optimal solution 

to (3.1), or y 4 x, in which case there is a solution    of the 

form (3.20) which yields a value of z strictly less than z evaluated 

at x . 

Proof;      If y - x , then: 

f(0j) - Cj - 1 - log 8    - log x - nPj +yjej 

Xi/- - C   + log   J/x - n?   - 6    , 

1 
remembering that 9i " A •  Since x is non-degenerate, so is y . 

1   Xj 

Thus 

I y^i  - 0 -> (Sj - 0 ,   j - 1,2 n. 

Hence: 

C + log J/x - HP  - 0 ,   j - 1,2 n.   (3.21) 

But (3.21) are the optimality conditions for (3.1). 

A A 

Thus if y - x , then x is optimal. 

If y 4 x , and y is degenerate, we have from theorems 

3 and 4 that there is a  u of the form (3.20) satisfying: 

A 

z(u) < z(y) ,< z(x) 

A 

If y 4 x and y i8 non-degenerate, then the concluding 

remark of theorem 3 holds, so that 

z(y) < z(x) 

In this case the best value of A might be either A > 0 or A - 0 . 

19 
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Our process, then, is an iterative one. We start with 

a non-degenerate solution x « (x.,...,» ) to (3.1) and find (y,n) 

satisfying (2.1), which is repeated here as (3.22); 

yl y2 yn 
n 

el 

e2 

V 
-/ 

•• • e 
n -P1 

n 

pl P2 P 
n 

m^ —1 

c1-l - log 

c2-l - log 

c -1 - log 
n 

-b 

'e si 

+ • • • 
6 n 

0 

(3.22) 

yj > o. 6^ o. j » 1.2 n 

where 

I y*s j j 

i 

Problem (3.22) can be easily derived by replacing the constants d.  in 

(3.18) by their values given in equations (3.7). 

Then we form the new non-degenerate solution u to (3.1) 

by equations (3.20), choosing A to minimize the value of the function 

z(u(A)). The new solution u replaces x , and the process is repeated. 
A 

Each iteration produces a strict improvement in z , or. If x is optimal 

reproduces the current solution x and the corresponding value of z . 

(See Sec. 2) 

20 
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The only remaining question is whether the process 

converges, and if it converges to the optimal solution. 

Theorem 6    This process converges to the optimal solution. 

Proof;      For any real chemical problem, the set of feasible solutions 

x to (3.1) is bounded.  Thus the possible values of z are bounded.  In 

particular,  z is bounded from below, by z , the optimum. 

Suppose successive applications of the method yielded a 

sequence x , x ,...,x ,... of solutions to (3.1) with corresponding values 

of z , 

(1)   (2) (n) 
Z  ' > Z    > ... > 2    > ... 

(k) 
Since the sequence  {z  }  is monotone decreasing and 

bounded from below, it must converge.  Suppose it converges to z > z . 

The sequence {x  } has elements taken from a compact subset 
(i^) 

of n-space. Thus it possesses a subsequence {x   } which converges, 
(nk) 

and of course,  {z   } also converges, to z . 

(nk) 
Let lim x    ■ j^ . Clearly, since z is a continuous 

k 
function of x , we can say that 

2 = z(«) . 

And since 2 > z , * cannot be optimal. 

Thus, by Theorem 5, if we apply our method to x , we will 

find a solution u to (3.1) such that z(u) < z(a) . 

21 
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Let z(ü) = z(x) - h , for some h > 0 . 

I claim however, that Ü  is a continuous function of £ . 

Let x be as in (3.26). Clearly y is a continuous 

function of Ä . And: 

ü - Ao*+ (1-V * 
where X      is that value of A at which! 

o 

z(Ü(X)) = Min. 

By a theorem by Dantzig,et al [2] on the continuity of the minimum set 

of a function, u is a continuous function of x . Thus z(u)  is a 

continuous function of z(x) . 

Thus it is possible to pick a k. so large that the 

nk nk 
solution u   derived by our method from x   is as close as desired 

n, v to  u , since x ^ will be close to x ; and the value z(u "") will 

nk 
be as close as desired to z(u) .  Let z(u  ) < z(ü) + e , for some 

small 0 < e < h .  Then: 

nk 
z(u K) < z(d) + e < z(x) - h + e < z(*) . 

n,   n +1 n,+1 
But u  = x    , and z(x   ) > z(x)...contradiction. 

Thus z  converges to z 

Since the optimal solution x0 to (3.1) is unique, 

r n-, o 
lx ) must converge to x 
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APPENDIX 1 

AN INITIAL NON-DEGENERATE SOLUTION 

Before the method given in section 2 can be applied, an 

initial non-degenerate feasible solution to the problem must be found. 

That is, we must find x = (x.,...^ ) such that: 

I    P-X4       = b 

(Al.l) 
x.    > 0 
J 

To do this, first define the vector Q , where: 

Q - JPj (Al.2) 

Then consider the problem: 

Max y 

s.t.    Qy + I  I" u   = b  : A (Al. 3) 

ui      >0 

This is a simple linear program, and therefore easily solved. 

Let  (y , u-, ,.. . ,U ) be the optimal solution. 

Suppose y  > 0 .  Then a strictly positive solution to 

(Al.l) would be: 

x^. = u° + y0 (Al.A) 

If, on the other hand, there were no feasible solution to 

(Al.3), or if y < 0 , then there would be no feasible solution to 

(Al.l). This statement is clear since if there were a feasible x to 

(Al.l), then by setting u = x,  in (Al.3), we would have a feasible solution 

with y = 0 to (Al.3). 
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Finally, suppose Max y = 0 . We must find at least one 

u. which is constrained to be zero by the equations (Al.l), (for other- 

wise we could reduce all u  by A « Min u. and replace y  by 

y + A , implying y  is not maximum.) Now let A  be the vector 

of multipliers associated with the optimal solution (y0, y0) to (Al.3). 

Pricing out, 

1 + A0Q « 0 (Al.5) 

x°?   <   o  (x0pi)lJj " 0 and J"1»2 n- 

From the duality theorem A b = -y , hence the equation: 

U0Q)y + I (A^j)  - -y0       (Al.6) 

is an equation which must be satisfied by all solutions to (Al.3). Since 

y = 0 , and A Q = -1 , we have: 

But 

so that lor at least one j we can say that: 

y + [   (A0?^   Uj   -  0 (Al.7) 

I    A0P             =    A0Q - -1,  by 
j           J 

(Al.2). 

X0P. < 0 (Al.8) 
J 

Letting a. = - A P  , we have from (Al.7), 

y + I Q^j = 0 (Al.9) 

We have argued that we should only consider solutions to (Al.3) which 

satisfy y ^_ 0  , so that (Al.9) becomes: 

I Vj 1 0 (Al. 10) 
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where a, > 0 for each i , and a^ ^ 0 for at least one j . That 

is, a positively weighted partial sum of non-negative variables must 

be less than or equal to zero. This can only occur when those variables 

are zero. 

Thus we delete those columns j  from (Al.l) for which 

X P < 0 , and again apply the method. The process will continue either 

until we have found a reduced problem (Al.3) with y > 0, or until we have 

deleted all but m of the columns of (Al.l).  If the latter occurs, then 

there is only the one feasible solution to the original problem, and it 

must be optimal. 
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APPENDIX 2 

MULTIPLE COMPARTMENTS 

Suppose that our beaker, in section 1, were divided into 

several different compartments, each set off from the others by semi- 

permeable membranes. Some species would exist in all compartments, 

others would be excluded from some of the compartments. 

This method can readily be extended to find the equilibrium 

distribution of the inputs among the various species in the different 

compartments. The mass balance equations, while still taking the form: 

I  PJXJ = b (A2.1) 

are by species into the various compartments, thus: 

nl        n2 \ 
I    pjxj + I    ?2x2    +    ... + I    PV - b  (A2.2) 

j=l J J   j=l ■j J j=l J J 

where species j in compartment i has vector description P. in terms 

of the inputs. Now, however, an extra equation must be added to the 

system (A2.2) for each compartment beyond the first. This new equation 

will state that the net electrical charge within a compartment is zero; 

n. 

I    a1    x1 = 0  ,      i = 2,3,...,k    (A2.3) 
j=l  ■J J 

where a is the charge per mole of the j species in compartment i . 

Equations (A2.3) can be appended to (A2.2) by including the charge per mole 

of species j  in compartment i as another component of P . 
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An equation of the sort (A2.3) is not needed for one of the 

compartments because presumably the inputs b are themselves neutral, 

forcing the entire system to electrical neutrality.  If all but one 

compartment are individually neutral, and all compartments together are 

neutral, then the remaining compartment must also be neutral. 

Remember also that if a species, say water (H.O), is 

permitted to enter more than one compartment, its vector representation 

PH „ must be reproduced in each compartment where it is allowed.  If 

a species is represented by its column P.  in only one compartment, it 

will never occur in any other. 

The entire multi-compartment formulation becomes; 

n,        / 1\ n«       / 2\ n.        / ki 
1 ■■   /   i x,   \ 2 „  /   „ x.   \ k ,   /   . x, 

Min z - 
j 
I x1    C^log ^f   + J x2    C2

+log if U ... +    I xj    cJ+log ^ 
-1 J \ J      X  /   j=l J \ J      X  / j=l J \ J      X 

s.t. y p^ xj    + I p? x2 + ... + y p^ x^      = b 
^ j j    L   i   ) ^   J j 

x^ 0 ,  i » 1 n ,  i = 1 k.   (A2.4) 

Now, of course, as well as reflecting the relative free energies 

of the various species with respect to the inputs, the c, must reflect 

any forces applied to the entire compartment. A voltage inposed from 

outside on one compartment but not another, or a difference in mechanical 

pressure between compartments or the outside will alter the c. . 

Once the problem is formulated, the method for solving it 

becomes the same as in section 2.  Now, however, we let: 
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^ "i 
where n. 

x  =  Z x. 

Then (2.1) becomes:  Find  (y, 11) satisfying: 

28 
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The modifications of the theorems in section 3 and their proofs necessary 

to handle the multi-compartment case are obvious, except perhaps in the 

case where all quantities in a compartment vanish. 

For example, consider the case below: 

Compartment 1 Compartment 2 

H20    Sugar H20 

1 

1 

1 

RHS 

id 

10 

with all free energy constants c. = 0 .  The second compartment vanishes 

in the optimal solution for this problem. However, it is important to 

note that the concentration of H^O in the second compartment is never 

zero.  In any solution in which there is a positive amount of ÜJ)  in 

compartment 2, the compartment 2 concentration of H„0 is 1. Thus in the 

limit, as we tend toward the optimal solution, the concentration of H-0 

in compartment 2 is still 1. 

In general, if a given compartment has not vanished, then 

the sum of the concentrations of the species in that compartment will be 

unity. Thus, in the limit as the compartment vanishes, the concentration 

of species in the compartment must still sum to unity.  The problem is 

only to apportion this total concentration of one among the species. 

Suppose, at some iteration, all the quantities y.  in 

(A2.6) either vanish or become so small that they may be considered to 

have vanished.  That is, all of compartment 1 is gone. 
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Harking back to the optlmality conditions to the original problem, we 

would like the concentrations of species in compartment 1 to satisfy: 

CJ + log rij - IIPj ^ 0 , j = 1,2 ^ (A2.7) 

where n.  is the concentration of the j  species in the first 

compartment, and the n we use in the one we have available—the one 

computed in (A2.6).  In addition, of course, we demand that: 

nl 
I  n. = 1 
1-1  ;1 

(A2.8) 

and ^4 I 0 .  J = 1,2,...,^ (A2.9) 

Suppose we let: 

n. = exp [npj - ch/S (A2.10) 

where n1 

S - I    exp[npj - C^] (A2.ll) 
k=l      K   K 

Then clearly (A2.8) and (A2.9) are satisfied.  Furthermore, from (A2.6) 

every species in compartment 1 must satisfy: 

a _ , x „iQ   _ ^^   j/e1 - -1 c" - i + y|e   - log   J/e   - np^- ^ o (A2.12) 

Since the compartment has just vanished, every species must have either 

decreased in amount (if it were above the minimal allowed level previously) 

or at least not increased (if it were at the minimal allowed level). Thus 

for each j , we have y.,9.1 .1 1 so that: 

- log di/Ql   >   up* - cj 
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Exponentiating and summing: 

nl -1    nl 
1 B    I   -i    1     I    exp[npj - Ct] - s (A2.13) 

k-1 e|    k-1     J   J 

Thus, substituting (A2.10) into (A2.7) and using (A2.13) we find: 

c1 + log n. - npj- - log S ^ 0 

Equations (A2.7) are also satisfied. 

The rest is simple. To enter a new iteration of (A2.6), 

compute the new 6  by choosing an appropriately small quantity for 

/e  , and using n.  as in (A2.10) in the equation: 

I1 - n. (A2.14) 

8j 
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