

6647.5-M

THE CHEMICAL EQUILIBRIUM PROBLEM

BY

JAMES H. BIGELOW

TECHNICAL REPORT NO. 68-1 FEBRUARY, 1968

> This document has been approved for public release and sate; its distribution is unlimited.

OPERATIONS RESEARCH HOUSE

7.02043

Stanford University CALIFORNIA THE CHEMICAL EQUILIBRIUM PROBLEM

BY

JAMES H. BIGELOW

Technical Report No. 68-1

February, 1968

Operations Research House Stanford Universtiy Stanford, California

Research supported by Office of Naval Research, Contract ONR-N-00014-67-A-0112-0016, and Metercul Xneileteler of Akerita, Comis 789.02. Reproduction in whole or in part for any purpose of the United States Government is permitted.

THE CHEMICAL EQUILIBRIUM PROBLEM

I. Formulation

Consider a beaker, into which we will put known amounts of various atoms, ions, radicals, molecules, or other chemical entities. These entities, called 'inputs' will have the property that no combination of more than one can react together to form other inputs. Thus if we were to load the beaker with H^+ ion and OH^- ion, we could not also use H_2O as an input. i.e. We assume that the entities when expressed as vectors are linearly independent. We order the inputs i = 1, 2, ..., m and enter the amount in moles of the i^{th} input into the i^{th} component of a vector b.

These inputs may react with one another in fixed proportions to form various chemical species. If we number the species j = 1, 2, ..., nthen species j may be represented by a vector P_j with m compenents, specifying in its ith component how moles of the ith input are consumed in the reaction which forms one mole of species j. Then, if $x_j =$ the number of moles of species j in the solution, conservation of mass demands that the following vector equation be satisfied:

$$\sum_{j=1}^{n} P_{j} \mathbf{x}_{j} = \mathbf{b}$$
(1.1)

If we define:

$$\overline{\mathbf{x}} = \sum_{j=1}^{n} \mathbf{x}_{j}$$
(1.2)

then $^{x}j/\bar{x}$ is the concentration, in mole fractions, of the jth species.

There is a function, called the Gibbs Free-Energy function, which expresses the total electro-chemical potential of the solution. This function in the single compartmented case is proportional to z; where

$$z = \sum_{j=1}^{n} x_j c_j + \log^{x_j} / \bar{x}$$
 (1.3)¹

1. Theory tells us that for an ideal chemical solution, the partial molar electro-chemical potential of a species j takes the form:

$$\mu_{i} = \mu_{i} + RT \log c_{i} + z_{i} FX$$

where c_{i} is the molar concentration of species j, z_{i} the electric charge on each molecule of species j, and X the electrical potential. R, T and F have their usual meanings.

On the range of concentrations for which ideality is a good approximation to the real world, there is a constant α , approximately the same for each species, such that: $c_i \simeq \alpha^{xj/x}$ (to be read 'approximately equal to '). Clearly then,

$$\mu_{j} = RT \left[\left\{ \frac{\mu_{j}^{0} + z_{j} FX}{RT} + \log \alpha \right\} + \log^{x_{j}} / \overline{x} \right]$$

$$c_{i} = \frac{\mu_{j}^{0} + z_{j} FX}{RT} + \log \alpha$$

We let:

$$c_{j} = \frac{\mu_{j} + z_{j} FX}{RT} + \log \alpha$$

Then the actual Gibbs free-energy function becomes

$$G = \sum RT x_{j} \left(c_{j} + \log \frac{x_{j}}{\bar{x}} \right)$$

Thus z is indeed proportional to the Gibbs free-energy.

Also, our constants c, include any electrical potential impressed from outside upon the compartment. The number μ_{i}^{o} is the standard partial molar free-energy, and can be found in the literature. The constant α converts mole fractions to molar concentrations. In dilute aqueous solutions α will be approximately 55.5 moles/liter.

Willard Gibbs showed that our beaker will be at equilibrium when the chemical solution achieves the composition $x = (x_1, \dots, x_n)$ and Min z satisfying:

$$\sum_{j=1}^{n} x_{j} \left(c_{j} + \log^{x_{j}} / \overline{x} \right) = z(x) (Min)$$
s.t.
$$\sum_{j=1}^{n} P_{j} x_{j} = b \qquad (1.4)$$

$$x_{j} \geq 0, j = 1, 2, \dots, n$$
where $\overline{x} = \sum_{j=1}^{n} x_{j}$

Methods for finding equilibrium solutions to chemical problems based on this formulation have had much success. R. J. Clasen [1] at Rand Corporation, for example, has devised several procedures for solving (1.4). However, all such methods have so far run into trouble whenever degeneracy has occurred during the computational procedure, i.e. whenever some x_j becomes zero or nearly zero. This paper will propose a method, not at all discommoded by degeneracy.

II. Method of solution

Suppose we had an initial feasible solution $\underline{x} = (x_1, \dots, x_n)$ to (1.4) with the property that each component x_j of \underline{x} were strictly positive.* Then by following the stops given below, one can successively improve the solution, and ultimately find a solution as close to the optimal solution as desired.

^{*} Before the method in this Section can be applied it is necessary to have at hand an initial solution with all $x_i > 0$. How to find such a solution when it exists is discussed in Appendix¹1. If for certain j, x = 0 must hold, Appendix 1 gives an algorithm for determining which x_j must be dropped so that the above algorithm can be initiated on a subset of ^j the variables.

<u>Step 1</u>:

T

6

Letting
$$\theta_j = \frac{1}{x_j}$$
, $j = 1, 2, ..., n$,
and $\overline{\theta} = \frac{1}{\overline{x}}$,

find the unique y satisfying the quadratic program: Find $y_j \ge 0$, Min z:

$$\frac{1}{2} \sum_{i=1}^{n} \theta_{j} y_{j}^{2} + \sum_{i=1}^{n} \left[c_{j}^{2} - 1 - \log \left(\theta_{j}^{2} / \overline{\theta} \right) \right] y_{j} = z$$

$$\sum_{i=1}^{n} P_{j}^{2} y_{j}^{2} = b$$

This is equivalent to solving

Step 2:

Form the weighted average solution μ ,

,

$$\mathbf{u} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \tag{2.2}$$

war of the party -

where λ is chosen to minimize the value of $z(\mu(\lambda))$ for all values of λ for which (2.2) is non-negative. Notice from (2.1) that y is a feasible solution to (1.4), and since x is feasible, so must μ be feasible.

Now compute
$$n_j = \left(\delta_j + \frac{x_j - y_j}{x_j} \right)$$
. If each $|n_j|$ is small

enough then μ is a close approximation to the optimal solution. If not, go to Step 3. We can decide if each $|n_i|$ is small enough by the following.

It will be shown that $x^{\circ} = (x_1^{\circ}, \dots, x_n^{\circ})$ is an optimal solution to problem (1.4),

$$\begin{array}{ll} \operatorname{Min} z(\mathbf{x}) = \sum \mathbf{x}_{j} \left(\mathbf{c}_{j} + \log \frac{\mathbf{x}_{j}}{\mathbf{x}_{j}} \right) \\ \text{s.t.} & \sum P_{j} \mathbf{x}_{j} &= b \\ & \mathbf{x}_{j} &\geq 0 \end{array}$$

if and only if there is a vector Π^{O} satisfying:

$$c_{j} + \log \frac{x_{j}^{o}}{x^{o}} - \pi^{o}P_{j} = 0$$
 $j = 1,...,n.$

We have assumed here that $x_j^0 > 0$, j = 1, 2, ..., n. Let $x^1 = (x_1^1, ..., x_n^1)$ be the optimal solution to the similar problem.

$$Min w(x) = \sum x_j \left(c_j^1 + \log \frac{x_j}{x} \right)$$

s.t.
$$\sum P_j x_j = b$$

$$x_j \ge 0$$

Clearly, the feasible solution x of both problems are the same. Furthermore, if x is feasible, then:

$$|\mathbf{w}(\mathbf{x}) - \mathbf{z}(\mathbf{x})| \leq \sum_{j} \mathbf{x}_{j} |\mathbf{c}_{j}^{1} - \mathbf{c}_{j}|$$

Suppose that we have a bound $\epsilon/2$ on the right-hand side of the above, or:

$$\sum x_j |c_j^1 - c_j| < \frac{\varepsilon}{2}$$

for all feasible x.

and there was

and within

Then

1

$$|w(x) - z(x)| < \frac{\varepsilon}{2}$$

Furthermore, recalling that x^{0} yielded the minimum value of z(x), and x^{1} the minimum value of w(x) for all feasible x, it is easy to see that:

$$|w(x^1) - z(x^0)| < \varepsilon/2$$

Thus:

$$|z(x^{1}) - z(x^{0})| = |z(x^{1}) - w(x^{1}) + w(x^{1}) - z(x^{0})|$$

$$\leq |z(x^{1}) - w(x^{1})| + |w(x^{1}) - z(x^{0})|$$

$$\leq \varepsilon$$

Now notice from eqn. (2.1) that since $\theta_j = \frac{1}{x_j}$, $\overline{\theta} = \frac{1}{x}$,

we have that:

$$c_{j} - \left(\delta_{j} + 1 - \frac{y_{j}}{x_{j}}\right) + \log \frac{x_{j}}{x} - \Pi P_{j} = 0$$
$$= \left[c_{j} - \eta_{j}\right] + \log \frac{x_{j}}{x} - \Pi P_{j}$$

If we let:

$$c_{j}^{1} = c_{j} - n_{j}$$
,

then the current solution x is the optimal solution to:

$$Min w(x) = \sum x_j \left(c_j^1 + \log \frac{x_j}{x_j} \right)$$

s.t.
$$\sum P_j x_j = b$$

$$x_j \ge 0$$

Hence, by the foregoing:

$$|z(\mathbf{x}) - z(\mathbf{x}^{0})| \leq B,$$

where B is any bound which satisfies:

 $2\sum_{j} t_{j} |c_{j} - c_{j}| = 2\sum_{j} t_{j} |n_{j}| \leq B$ for all feasible solutions $t = (t_{1}, \dots, t_{n})$.

Such bounds are not usually hard to find. For example, one can usually determine a bound \overline{t}_m on $\overline{t} = \sum t$; by inspection. If the inputs may combine together but in no species does an input split into two or more parts, then the sum of the inputs is such a bound \overline{t}_m on \overline{t} . Then if $\eta_m = \max_j |\eta_j|$, we can let: $B = 2^{\overline{t}_m \eta_m}$

Alternately, a separate upper bound on each species may be

found by:

$$m_{j} = \min_{j} \left\{ \frac{b_{i}}{a_{ij}} \mid b_{i}a_{ij} \ge 0, a_{ij} \ne 0 \right\}$$

= ∞ if no such b_{i} and a_{ij}

where a_{ij} is the ith component of the vector P_{j} . If all these numbers m_{j} are finite, then we can set

 $\mathbf{B} = 2 \sum_{j=1}^{\infty} |\mathbf{n_j}|$

Whatever B is finally decided upon, the following will be true:

$$z(x^{\circ}) \geq z(x) - B$$

Hence we will be able to estimate how close the solution $u = \lambda x + (1-\lambda)y$ is to the optimum. Step 3.

In theory, since x is strictly positive, then u will also be strictly positive (see Section 3). If the computations are made in practice, it may be that some component of u, say u_j , is so small as to be negligible. In this case, set u_j at some small lower bound and continue the computations. If there are several such u_j , they can be made all small and at the same time proportional to $exp(\Pi P_i - c_i)$.

Alternatively, column j could be deleted from the problem entirely. This of course, means that the jth species will not appear at all in the final solution, and so it is treated as if it were zero in the final solution to the original problem.

Step 4.

Let the strictly positive solution u, modified as in step 3, take the place of x in step 1 and in (2.1).

One will repeatedly cycle through these four steps until the convergence criterion of step 2 is satisfied. At that point, the last solution found will closely approximate the actual optimal solution to (1.4).

III. Derivation:

The chemical equilibrium problem (1.4 or 3.1 below) is difficult to solve because its objective, the function z(x), is non-linear. Linear problems being easy to solve, we will attempt to replace this problem with a linear one. We do this in two stages: first, we find an approximating problem with a non-linear separable objective which in turn is approximated by a quadratic program with a convex separable objective. The first step is accomplished by theorem 1.

a Jahr Chines Calify

Theorem 1 Consider the following two problems:

$$\operatorname{Min} z = \sum_{j=1}^{n} x_{j} \left(c_{j} + \log^{x_{j}} / \overline{x} \right)$$
s.t.
$$\sum_{j=1}^{n} P_{j} x_{j} = b \quad (3.1)$$

$$x_{j} \geq 0$$
where
$$\overline{x} = \sum_{j=1}^{n} x_{j}$$

$$\operatorname{Min} w = \sum x_{j} \left(c_{j} + K + \log x_{j} \right)$$
s.t.
$$\sum P_{j} x_{j} = b \quad (3.2)$$

$$x_{j} \geq 0$$

and:

Then there is a particular value of K for which the optimal solution $x^{0} = (x_{1}^{0}, \dots, x_{n}^{0})$ to (3.2) is also optimal for (3.1).

<u>Proof</u>: Look at the optimality conditions for the two problems: x^{o} is optimal for (3.2) if there exists a vector $\Pi^{o} = (\Pi_{1}^{o}, \dots, \Pi_{m}^{o})$ such that (x^{o}, Π^{o}) satisfies:

$$\frac{\partial \left[w(x^{\circ}) - \Pi^{\circ}\left(\sum_{k}^{\circ} P_{k} x_{k} - b\right)\right]}{\partial x_{j}} = c_{j} + 1 + K + \log x_{j} - \Pi^{\circ} P_{j}$$

$$\left\{ \begin{array}{c} \geq 0 \quad j = 1, \dots, n \\ = 0 \quad \text{if} \quad x_{j}^{\circ} > 0 \end{array} \right.$$

$$(3.3)$$

1.

Similarly, it is optimal for (3.1) if there is a $\Pi^1 = (\Pi^1_1, \dots, \Pi^1_m)$ such that (\mathbf{x}^0, Π^1) satisfies:

$$\frac{\partial \left[z(x^{0}) - \pi^{1}\left(\sum_{k}^{0} P_{k}x_{k} - b\right)\right]}{\partial x_{j}} = c_{j} + \log \frac{x_{j}^{0}/x^{0} - \pi^{1}P_{j}}{\left(\sum_{k=0}^{0} j = 1, \dots, n\right)}$$

$$\begin{cases} \geq 0 \quad j = 1, \dots, n\\ = 0 \quad \text{if } x_{j}^{0} > 0 \end{cases}$$
(3.4)

Now let:

$$K = -1 - \log \bar{x}^{0}$$
 (3.5)

Substitution of (3.5) into (3.3) shows that (x°, π°) , for this value of K, satisfies the optimality conditions (3.4) of problem (3.1). Of course this also shows that:

$$\pi^{1} = \pi^{0}$$
 (3.6)
QED.

If we did happen to know the value of $\bar{\mathbf{x}}^{0}$, then theorem 1 states that the solution to problem (3.2), with K as in (3.5) would be the desired solution to (3.1). In addition, (3.2) is separable, as we wished.

Unfortunately, \bar{x}° is not known. Instead, we will use the value of \bar{x} in the current solution to (3.1) to approximate K in (3.5) and (3.2).

If our current feasible (but non-optimal) solution to (3.1) is $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$, so that $\hat{\bar{x}} = \sum \hat{x}_j$, we let:

$$d_j = c_j - 1 - \log \hat{\vec{x}}$$
 (3.7)

and then consider the problem:

$$\begin{array}{l} \operatorname{Min} w = \sum_{j} x_{j} \left(d_{j} + \log x_{j} \right) \\ \text{s.t.} & \sum_{j} P_{j} x_{j} = b \\ & x_{j} \geq 0 \end{array}$$
(3.8)

The approximating quadratic program could be obtained by expanding μ log μ into a Taylor series about $\mu = \mu_0$. However, it is also possible to "linearize" (3.8) by replacing it with an equivalent generalized linear program:

$$\min \phi(\mathbf{x}, \theta) = \sum \mathbf{x}_{\mathbf{j}} (\mathbf{d}_{\mathbf{j}} - \log \theta_{\mathbf{j}})$$
s.t.
$$\sum \mathbf{P}_{\mathbf{j}} \mathbf{x}_{\mathbf{j}} = \mathbf{b} : \Pi \quad (3.9)$$

$$\theta_{\mathbf{j}} \mathbf{x}_{\mathbf{j}} \leq 1 : (-\mathbf{y}_{\mathbf{j}})$$

$$\mathbf{x}_{\mathbf{j}} \geq 0$$

where $\theta_{j} \ge 0$ is a variable that can be chosen independently of x_{j} .

It is easy to show that from any feasible solution of either (3.8) or (3.9), a feasible solution to the other can be found. Furthermore, the same holds true for optimal solutions.

A moments thought will convince one that if (x, θ) is a solution to (3.9) which does not satisfy:

$$\theta_{j} \mathbf{x}_{j} = 1 \tag{3.10}$$

1.

for each $x_j > 0$, then it can be improved by increasing their respective θ_j 's.

The Π and $-y_j$ appearing to the right of the constraints of (3.9) are Lagrange Multipliers. The multipliers Π corresponding to equality constraints, are unrestricted in sign, but the $-y_j$ corresponding to inequalities of the sort \leq must satisfy:

$$y_j \ge 0 \tag{3.11}$$

ないのないないというないないないないないないない

We will assume that the current solution $(\hat{x}, \hat{\theta}) =$

 $(\hat{x}_1, \dots, \hat{x}_n; \hat{\theta}_1, \dots, \hat{\theta}_n)$ is strictly positive, and that (3.10) is satisfied for each j. Now consider the $\hat{\theta}_j$ as constants. For the given $\hat{\theta}$ assume $x = x^*$ is an optimal solution to (3.9); then, there must exist multiplier $(\hat{\Pi}, \hat{y}_j)$ which satisfy the Lagrangian conditions (3.11) and:

$$\frac{\partial}{\partial \left[\phi\left(\mathbf{x}, \mathbf{\hat{\theta}}\right) - \hat{\Pi}\left(\sum_{k} P_{k} \mathbf{x}_{k}^{*} - b\right) + \sum_{k} \hat{y}_{k} \left(\theta_{k} \mathbf{x}_{k}^{*} - 1\right)\right]}{\partial \mathbf{x}_{j}} = \mathbf{f}(\hat{\theta}_{j})$$

$$= d_{j} - \log \hat{\theta}_{j} - \hat{\Pi}P_{j} + \hat{y}_{j} \hat{\theta}_{j} = 0 \qquad (3.12)$$

$$j = 1, 2, \dots, n.$$

We will show that we can find an improved solution to (3.9) if and only if we can find a new vector of constants $\theta^1 = (\theta_1^1, \dots, \theta_n^1)$, which satisfy:

$$f(\theta_{j}^{1}) \leq 0 \qquad j = 1, 2, ..., n$$
 (3.14)

for which the inequality is strict for at least one j.

If we are trying to satisfy (3.14), we look for that value of θ_j which minimizes $f(\theta_j)$. Since $f(\theta_j)$ is strictly convex, it has a unique minimum, occuring at $\theta_j = \theta_j^1$ where

$$f^{1}(\theta_{j}) = 0 = -\frac{1}{\theta_{j}} + y_{j}$$

Thus we pick

$$\theta_{j}^{1} = \begin{cases} \frac{1}{y_{j}} & \text{if } y_{j} > 0 , \text{ otherwise} \\ \beta & \text{(some arbitrary large number)} \end{cases}$$
(3.15)

So far, we have only asserted the existance of multipliers $(\hat{\Pi}, \hat{y})$ satisfying (3.11) and (3.12). Conditions (3.11) and (3.12) in general are too few to determine their values. But equations (3.15) suggest that y_j be interpreted as an amount of species j, which together with $\theta_j^1 = \frac{1}{y_j}$ would correspond to a new feasible solution to (3.9). Thus we ask that in addition to (3.11) and (3.12), the multipliers satisfy:

$$\sum P_{1}y_{1} = b$$
 (3.16)

Writing (3.12) and (3.16) in matrix form gives:

1

If the matrix $[P_1, P_2, \ldots, P_n]$ has rank m, it is easy to show that there is a unique solution $(\Pi_1 y)$ to (3.17). However, that solution need not satisfy $y_j \ge 0$. Thus we relax the restrictions slightly.

$$y_{1} \qquad y_{2} \qquad --- \qquad y_{n} \qquad \Pi$$

$$\begin{bmatrix} \hat{\theta}_{1} \qquad & & -P_{1}^{T} \\ & \hat{\theta}_{2} \qquad & -P_{2}^{T} \\ & \ddots \qquad & \vdots \\ & & \hat{\theta}_{n} \qquad -P_{n}^{T} \\ \end{bmatrix} + \begin{bmatrix} d_{1} - \log \hat{\theta}_{1} \\ d_{2} - \log \hat{\theta}_{2} \\ \vdots \\ d_{n} - \log \hat{\theta}_{n} \\ -b \end{bmatrix} = \begin{bmatrix} \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{n} \\ 0 \end{bmatrix}$$

$$y_{j} \geq 0, \quad \delta_{j} \geq 0, \quad j = 1, 2, ..., n$$

$$\sum y_{j} \delta_{j} = 0$$

$$(3.18)$$

It can be shown by the application of complementary pivot theory, or by noting that (3.18) is equivalent to a positive definite quadratic program, that (3.18) has a unique solution (Π, y) .

<u>Theorem 2</u>: If the feasible solution to (3.8) $y \neq \hat{x}$ found by solving (3.18) then y yields a lower value of w than the current solution $\hat{x} = (\hat{x}_1, \dots, \hat{x}_n)$.

<u>Proof</u>: Taking (Π, y) from (3.18), we have that:

$$f(\hat{\theta}_j) = d_j - \log \hat{\theta}_j - \Pi P_j + \hat{\theta}_j y_j = \delta_j \ge 0$$

We have shown that

$$-\log \theta_{j} + y_{j}\theta_{j} \ge \log y_{j} + 1$$

Now:

$$0 \leq \sum \hat{x}_{j} \delta_{j} = \sum \hat{x}_{j} (d_{j} - \log \hat{\theta}_{j} - \Pi P_{j} + y_{j} \hat{\theta}_{j})$$
$$= w(\hat{x}) - \Pi b + \sum y_{j}$$

since $\hat{\theta}_{j} = \frac{1}{\hat{x}_{j}}$. Similarly, summing all j for which $y_{j} > 0$,

$$0 = \sum y_{j} \delta_{j} = \sum y_{j} (d_{j} - \log \hat{\theta}_{j} - \Pi P_{j} + y_{j} \hat{\theta}_{j})$$

$$\geq \sum y_{j} (d_{j} + \log y_{j} - \Pi P_{j} + 1)$$

$$\geq w(y) - \Pi b + \sum y_{j}$$

15

Ι,

Thus: $\hat{\mathbf{w}}(\mathbf{x}) - \Pi \mathbf{b} + \sum \mathbf{y}_{\mathbf{j}} \ge \mathbf{w}(\mathbf{y}) - \Pi \mathbf{b} + \sum \mathbf{y}_{\mathbf{j}}$ Or: $\mathbf{w}(\mathbf{y}) \le \mathbf{w}(\mathbf{x})$

And the inequality is strict if there is any $y_j > 0$ such that $\hat{\theta}_j \neq \frac{1}{y_j}$.

Q.E.D.

However, problem (3.8) is not the problem we are interested in. We must show:

<u>Theorem 3</u>: y found by (3.18) yields a lower value of z in (3.1) than does the current solution \hat{x} .

Proof: Inserting
$$d_j$$
 from (3.7) into $f(\theta_j)$,
 $f(\hat{\theta}_j) = c_j - 1 - \log \hat{x} - \log \hat{\theta}_j - \Pi P_j + y_j \hat{\theta}_j = \delta_j$
Evaluating $\sum x_j f(\hat{\theta}_j)$ and $\sum y_j f(\frac{1}{y_j})$, we find
 $\sum \hat{x}_j f(\hat{\theta}_j) = z(\hat{x}) - \hat{x} + \sum y_j - \Pi b = \sum \hat{x}_j \delta_j \ge 0$
 $\sum y_j f(\frac{1}{y_j}) = z(y) - \Pi b + \overline{y} \log (\overline{y}/\hat{x}) \le 0$
In theorem 2, we expressed $\sum \hat{x}_j f(\hat{\theta}_j)$ and $\sum y_j f(\frac{1}{y_j})$ in

terms of w(x) and w(y). Simple algebra shows that:

$$\hat{z(x)} - z(y) = w(\hat{x}) - w(\bar{y}) + \bar{y} \left[\frac{\hat{x}}{\bar{y}} - 1 - \log \frac{\hat{x}}{\bar{y}} \right]$$

$$= w(\hat{x}) - w(y) + \bar{y}g \left(\frac{\hat{x}}{\bar{y}} \right)$$
(3.19)

where $g(\mu) = \mu - 1 - \log \mu$ is defined for $\mu \ge 0$.

It is easy to check that the strictly convex functions $g(\mu)$ has a minimum at $\mu = 1$ of g(1) = 0.

Thus: $g(\mu) \ge 0$

Since: $\overline{y} = \sum y_j > 0$,

and from theorem 2, $w(x) - w(y) \ge 0$, we have

 $z(y) \leq \hat{z(x)}$

As in theorem 2, the inequality is strict if for any $y_j > 0$, the corresponding $\hat{\theta}_j \neq \frac{1}{y_j}$.

Q.E.D.

So far then, we have a procedure for finding an improved solution y for (3.1), starting from a non-degenerate solution x. In order to apply the method again, we must find a new non-degenerate solution.

<u>Theorem 4</u>: If y is a degenerate solution to (3.1), and x is a non-degenerate solution to (3.1), then there exists $\lambda > 0$ such that the solution μ defined by:

$$\mu_{j} = (1-\lambda)y_{j} + \lambda x_{j}$$

atisfies $z(\mu) < z(y), A\mu = b, n > 0.$

(μ is non-degenerate since x is , and $\lambda > 0$.)

s

Consider z a function of λ . Then:

$$z(\lambda) = \sum_{j} u(\lambda)_{j}(\lambda) \left(C_{j} + \log \frac{u_{j}(\lambda)}{u(\lambda)} \right) .$$

Taking the derivative, and evaluating at $\lambda = 0$ (i.e. u = y),

$$\frac{dz(u(\lambda))}{d\lambda} = \sum_{j} (x_{j} - y_{j}) \left(C_{j} + \log \frac{y_{j}}{\sqrt{y}} \right)$$

Since y is degenerate, we will suppose $y_k = 0$. Then

$$\hat{x}_k - y_k > 0$$
, and $\log \frac{y_k}{y} = -\infty$

Thus:

Proof:

$$\frac{dz(u(\lambda))}{d\lambda} \bigg|_{\lambda} = 0 = -\infty$$

Since z and $\frac{dz}{d\lambda}$ are continuous functions of λ , for $1 \ge \lambda > 0$, there will be an interval (0, β) in which $\frac{dz}{d\lambda}$ is negative. Thus:

$$z(u(\beta)) < z(0) = z(y)$$
.

Q.E.D.

<u>Corr</u>: If there exists a non-degenerate feasible solution to (3.1), then the optimal solution will be non-degenerate.

We would like to show that the value of z in (3.1) computed using the solution u is strictly lower than z computed using \hat{x} .

<u>Theorem 5</u>: Either $y = \hat{x}$, in which case \hat{x} is the optimal solution to (3.1), or $y \neq \hat{x}$, in which case there is a solution of the form (3.20) which yields a value of z strictly less than z evaluated at \hat{x} .

<u>Proof</u>: If $y = \hat{x}$, then:

$$f(\hat{\theta}_{j}) = C_{j} - 1 - \log \hat{\theta}_{j} - \log \hat{x} - \Pi P_{j} + y_{j} \hat{\theta}_{j}$$
$$= C_{j} + \log \hat{x}_{j} / \hat{x} - \Pi P_{j} = \delta_{j},$$

remembering that $\hat{\theta}_j = \frac{1}{\hat{x}_j}$. Since \hat{x} is non-degenerate, so is y.

Thus

$$\sum y_j \delta_j = 0 \Rightarrow \delta_j = 0, \quad j = 1, 2, ..., n.$$

Hence:

$$C_j + \log^{\hat{X}_j}/\hat{x} - \Pi P_j = 0$$
, $j = 1, 2, ..., n.$ (3.21)

But (3.21) are the optimality conditions for (3.1).

Thus if y = x, then x is optimal.

If $y \neq x$, and y is degenerate, we have from theorems 3 and 4 that there is a u of the form (3.20) satisfying:

$$z(u) < z(y) \leq z(x)$$

If $y \neq \hat{x}$ and y is non-degenerate, then the concluding remark of theorem 3 holds, so that

In this case the best value of λ might be either $\lambda > 0$ or $\lambda = 0$.

Our process, then, is an iterative one. We start with a non-degenerate solution $\hat{\mathbf{x}} = (\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n)$ to (3.1) and find (\mathbf{y}, Π) satisfying (2.1), which is repeated here as (3.22);

 $y_j \ge 0, \quad \delta_j \ge 0, \qquad j = 1, 2, \dots, n$

 $\sum y_j \delta_j = 0$

where $\theta_j = \frac{1}{\hat{x}_j}$, $\theta = \frac{1}{\hat{x}}$.

Problem (3.22) can be easily derived by replacing the constants d_j in (3.18) by their values given in equations (3.7).

Then we form the new non-degenerate solution u to (3.1) by equations (3.20), choosing λ to minimize the value of the function $z(u(\lambda))$. The new solution u replaces \hat{x} , and the process is repeated. Each iteration produces a strict improvement in z, or, if \hat{x} is optimal reproduces the current solution \hat{x} and the corresponding value of z. (See Sec. 2) The only remaining question is whether the process converges, and if it converges to the optimal solution.

<u>Theorem 6</u> This process converges to the optimal solution.

<u>Proof</u>: For any real chemical problem, the set of feasible solutions x to (3.1) is bounded. Thus the possible values of z are bounded. In particular, z is bounded from below, by z^{0} , the optimum.

Suppose successive applications of the method yielded a sequence x^1 , x^2 ,..., x^m ,... of solutions to (3.1) with corresponding values of z,

 $z^{(1)} > z^{(2)} > \ldots > z^{(n)} > \ldots$

Since the sequence $\{z^{(k)}\}\$ is monotone decreasing and bounded from below, it must converge. Suppose it converges to $\hat{z} > z^{\circ}$.

 (n_k) Let lim x = \hat{x} . Clearly, since z is a continuous k function of x , we can say that

 $\hat{z} = z(\hat{x})$.

And since $\hat{z} > z^{\circ}$, \hat{x} cannot be optimal.

Thus, by Theorem 5, if we apply our method to \hat{x} , we will find a solution \hat{u} to (3.1) such that $z(\hat{u}) < z(\hat{x})$. Let $z(\hat{u}) = z(\hat{x}) - h$, for some h > 0.

I claim however, that \hat{u} is a continuous function of \hat{x} . Let \hat{x} be as in (3.26). Clearly \hat{y} is a continuous function of \hat{x} . And:

$$\hat{\mathbf{u}} = \lambda_{\mathbf{x}} \hat{\mathbf{x}} + (1 - \lambda_{\mathbf{x}}) \hat{\mathbf{y}}$$

where λ_{α} is that value of λ at which:

$$z(\hat{u}(\lambda)) = Min.$$

By a theorem by Dantzig, et al [2] on the continuity of the minimum set of a function, \hat{u} is a continuous function of \hat{x} . Thus $z(\hat{u})$ is a continuous function of $z(\hat{x})$.

Thus it is possible to pick a k so large that the solution $u^n k$ derived by our method from $x^n k$ is as close as desired to u, since $x^n k$ will be close to \hat{x} ; and the value $z(u^n k)$ will be as close as desired to $z(\hat{u})$. Let $z(u^n k) < z(\hat{u}) + \varepsilon$, for some small $0 < \varepsilon < h$. Then:

$$z(u^{''k}) < z(\hat{u}) + \varepsilon < z(\hat{x}) - h + \varepsilon < z(\hat{x})$$

But $u^{n_{k}} = x^{n_{k}+1}$, and $z(x^{n_{k}+1}) > z(\hat{x})$...contradiction. Thus z^{n} converges to z^{0} .

Since the optimal solution $\ensuremath{\,x^{o}}$ to (3.1) is unique, $\{\ensuremath{x^{n}}\}$ must converge to $\ensuremath{\,x^{o}}$.

Q.E.D.

APPENDIX 1

AN INITIAL NON-DEGENERATE SOLUTION

Before the method given in section 2 can be applied, an initial non-degenerate feasible solution to the problem must be found. That is, we must find $x = (x_1, \dots, x_n)$ such that:

$$\sum_{j=1}^{n} P_{j} x_{j} = b$$
(A1.1)
$$x_{j} > 0$$

To do this, first define the vector Q , where:

$$Q = \sum_{j=1}^{n} P_{j}$$
(A1.2)

Then consider the problem:

Max y

s.t.
$$Qy + \sum_{j} \Gamma_{j}\mu_{j} = b : \lambda$$
 (A1.3)
 $\mu_{j} \ge 0$

This is a simple linear program, and therefore easily solved. Let $(y^{o}, \mu_{1}^{o}, \ldots, \mu_{n}^{o})$ be the optimal solution.

Suppose $y^{0} > 0$. Then a strictly positive solution to (Al.1) would be:

$$x_{j} = u_{j}^{o} + y^{o}$$
 (A1.4)

1 .

If, on the other hand, there were no feasible solution to (A1.3), or if $y^{0} < 0$, then there would be no feasible solution to (A1.1). This statement is clear since if there were a feasible x to (A1.1), then by setting $u_{j} = x_{j}$ in (A1.3), we would have a feasible solution with y = 0 to (A1.3).

Finally, suppose Max $y^{\circ} = 0$. We must find at least one μ_j which is constrained to be zero by the equations (Al.1), (for otherwise we could reduce all μ_j by $\Delta = Min \mu_j$ and replace y° by $y^{\circ} + \Delta$, implying y° is not maximum.) Now let λ° be the vector of multipliers associated with the optimal solution (y°, μ°) to (Al.3). Pricing out,

$$1 + \lambda^{O}Q = 0 \qquad (A1.5)$$
$$\lambda^{O}P_{j} \leq 0 \qquad (\lambda^{O}P_{j})\mu_{j} = 0 \text{ and } j=1,2,\ldots,n.$$

From the duality theorem $\lambda^{o}b = -y^{o}$, hence the equation:

$$(\lambda^{\circ}Q)y + \sum (\lambda^{\circ}P_{j})_{j} = -y^{\circ}$$
 (A1.6)

is an equation which must be satisfied by all solutions to (A1.3). Since $y^{0} = 0$, and $\lambda^{0}Q = -1$, we have:

$$-y + \sum (\lambda^{o} P_{j}) \mu_{j} = 0$$
 (A1.7)

But
$$\sum_{j} \lambda^{o} P_{j} = \lambda^{o} Q = -1$$
, by (A1.2),

so that for at least one j we can say that:

$$\lambda^{o}P_{j} < 0$$
 (A1.8)

Letting $\alpha_j = -\lambda^o P_j$, we have from (A1.7),

$$y + \sum_{j} \alpha_{j} \mu_{j} = 0$$
 (A1.9)

We have argued that we should only consider solutions to (A1.3) which satisfy $y \ge 0$, so that (A1.9) becomes:

$$\sum \alpha_{j} \mu_{j} \leq 0$$
 (A1.10)

where $\alpha_j \geq 0$ for each j, and $\alpha_j > 0$ for at least one j. That is, a positively weighted partial sum of non-negative variables must be less than or equal to zero. This can only occur when those variables are zero.

Thus we delete those columns j from (Al.1) for which $\lambda^{0}P_{j} < 0$, and again apply the method. The process will continue either until we have found a reduced problem (Al.3) with $y^{0} > 0$, or until we have deleted all but m of the columns of (Al.1). If the latter occurs, then there is only the one feasible solution to the original problem, and it must be optimal.

1 .

APPENDIX 2

MULTIPLE COMPARTMENTS

Suppose that our beaker, in section 1, were divided into several different compartments, each set off from the others by semipermeable membranes. Some species would exist in all compartments, others would be excluded from some of the compartments.

This method can readily be extended to find the equilibrium distribution of the inputs among the various species in the different compartments. The mass balance equations, while still taking the form:

$$\sum_{j=1}^{n} P_{j} x_{j} = b$$
 (A2.1)

are by species into the various compartments, thus:

$$\sum_{j=1}^{n_1} P_j^1 x_j^1 + \sum_{j=1}^{n_2} P_j^2 x_j^2 + \dots + \sum_{j=1}^{n_k} P_j^k x_j^k = b \quad (A2.2)$$

where species j in compartment i has vector description P_j^i in terms of the inputs. Now, however, an extra equation must be added to the system (A2.2) for each compartment beyond the first. This new equation will state that the net electrical charge within a compartment is zero;

$$\sum_{j=1}^{n_{i}} a_{\varepsilon j}^{i} x_{j}^{i} = 0, \quad i = 2, 3, ..., k \quad (A2.3)$$

where $a_{\epsilon j}^{i}$ is the charge per mole of the jth species in compartment i. Equations (A2.3) can be appended to (A2.2) by including the charge per mole of species j in compartment i as another component of P_{j}^{i} . An equation of the sort (A2.3) is not needed for one of the compartments because presumably the inputs b are themselves neutral, forcing the entire system to electrical neutrality. If all but one compartment are individually neutral, and all compartments together are neutral, then the remaining compartment must also be neutral.

Remember also that if a species, say water (H_2^{0}) , is permitted to enter more than one compartment, its vector representation $P_{H_2^{0}}$ must be reproduced in each compartment where it is allowed. If a species is represented by its column P_j in only one compartment, it will never occur in any other.

The entire multi-compartment formulation becomes:

$$\text{Min } z = \sum_{j=1}^{n_1} x_j^1 \left(C_j^1 + \log \frac{x_j^1}{\overline{x}^1} \right) + \sum_{j=1}^{n_2} x_j^2 \left(C_j^2 + \log \frac{x_j^2}{\overline{x}^2} \right) + \dots + \sum_{j=1}^{n_k} x_j^k \left(C_j^k + \log \frac{x_j^k}{\overline{x}^k} \right)$$

$$\text{s.t. } \sum_{j=1}^{n_1} x_j^1 + \sum_{j=1}^{n_2} x_j^2 + \dots + \sum_{j=1}^{n_k} x_j^k \left(C_j^k + \log \frac{x_j^k}{\overline{x}^k} \right)$$

$$x_j^1 \ge 0 , \quad i = 1, \dots, n_j, \quad i = 1, \dots, k.$$

$$(A2.4)$$

Now, of course, as well as reflecting the relative free energies of the various species with respect to the inputs, the c_j^i must reflect any forces applied to the entire compartment. A voltage inposed from outside on one compartment but not another, or a difference in mechanical pressure between compartments or the outside will alter the c_j^i .

Once the problem is formulated, the method for solving it becomes the same as in section 2. Now, however, we let:

1 .

Then (2.1) becomes: Find (y, Π) satisfying:

$$b_{j}^{1} \ge 0 , j = 1, \dots, n_{i}; i = 1, \dots, n_{i}; i = 1, \dots, n_{i}$$

٤.

 $j = 1, \dots, n_i; i = 1, \dots, k$

y<mark>i</mark> > 0

The modifications of the theorems in section 3 and their proofs necessary to handle the multi-compartment case are obvious, except perhaps in the case where all quantities in a compartment vanish.

For example, consider the case below:

Compartment 1		Compartment 2		RHS	
^H 2 ⁰	Sugar	н ₂ 0	-	[10]	
1	1	1		10	

with all free energy constants $c_j = 0$. The second compartment vanishes in the optimal solution for this problem. However, it is important to note that the <u>concentration of H₂0 in the second compartment is never</u> <u>zero</u>. In any solution in which there is a positive <u>amount</u> of H₂0 in compartment 2, the compartment 2 <u>concentration</u> of H₂0 is 1. Thus in the limit, as we tend toward the optimal solution, the concentration of H₂0 in compartment 2 is still 1.

In general, if a given compartment has not vanished, then the sum of the concentrations of the species in that compartment will be unity. Thus, in the limit as the compartment vanishes, the concentration of species in the compartment must still sum to unity. The problem is only to apportion this total concentration of one among the species.

Suppose, at some iteration, all the quantities y_j^l in (A2.6) either vanish or become so small that they may be considered to have vanished. That is, all of compartment 1 is gone.

Harking back to the optimality conditions to the original problem, we would like the concentrations of species in compartment 1 to satisfy:

$$C_{j}^{1} + \log n_{j} - \Pi P_{j}^{1} \ge 0$$
, $j = 1, 2, ..., n_{1}$ (A2.7)

where n_j is the concentration of the jth species in the first compartment, and the Π we use in the one we have available--the one computed in (A2.6). In addition, of course, we demand that:

$$\sum_{j=1}^{n_1} j = 1$$
 (A2.8)

and

$$n_{j} \ge 0$$
, $j = 1, 2, \dots, n_{1}$ (A2.9)

Suppose we let:

$$\eta_{j} = \exp \left[\prod P_{j}^{1} - C_{j}^{1} \right] / S$$
 (A2.10)

where

$$S = \sum_{k=1}^{n_1} \exp[\Pi P_k^1 - C_k^1]$$
 (A2.11)

٢.,

Then clearly (A2.8) and (A2.9) are satisfied. Furthermore, from (A2.6) every species in compartment 1 must satisfy:

$$C_{j}^{1} - 1 + y_{j}^{1}\theta_{j} - \log \frac{\theta_{j}^{1}}{\theta_{j}^{1}} - \Pi P_{j}^{1} \ge 0 \qquad (A2.12)$$

Since the compartment has just vanished, every species must have either decreased in amount (if it were above the minimal allowed level previously) or at least not increased (if it were at the minimal allowed level). Thus for each j, we have $y_j^1 \theta_j^1 \leq 1$ so that:

$$-\log \frac{\theta_{j}^{1}}{\theta_{j}^{1}} \geq \Pi P_{j}^{1} - C_{j}^{1}$$

Exponentiating and summing:

$$1 = \sum_{k=1}^{n_{1}} \frac{\overline{\theta}^{1}}{\theta_{j}^{1}} \ge \sum_{k=1}^{n_{1}} \exp[\Pi P_{j}^{1} - C_{j}^{1}] = s$$
 (A2.13)

Thus, substituting (A2.10) into (A2.7) and using (A2.13) we find:

$$C_j^1 + \log n_j - \Pi P_j^1 = -\log S \ge 0$$

Equations (A2.7) are also satisfied.

The rest is simple. To enter a new iteration of (A2.6), compute the new θ_j^1 by choosing an appropriately small quantity for $1/\bar{\theta}^1$, and using n_j as in (A2.10) in the equation:

$$\frac{\overline{\Theta}^{1}}{\underset{j}{\Theta}_{j}^{1}} = n_{j}$$
 (A2.14)

REFERENCES

2

- [1] CLASEN, R.J., "The Linear-Logarithmic Programming Problem", RAND Corporation, memorandum RM-3707-PR, June 1963.
- [2] DANTZIG, G.B., FOLKMAN, J., SHAPIRO, N. "On the Continuity of the Minimum Set of a Continuous Function", J. Math. Anal. Appl., V 17, No. 3, March 1967.

F N

	INT CONTROL DATA - R&D					
(Security classification of title, body of abstract a	ind indexing ennotation must be entered	when the overall report is cleasified)				
1. ORIGINATING ACTIVITY (Corporate author)	2.0.	24. REPORT SECURITY CLASSIFICATION				
Department of Operations Research		Inclassified				
Stanford University	2 4	SACUP				
STANFORD, California 94305						
3. REPORT TITLE						
The Chemical Louilibrium Problem						
The chemical Equilibrium Froblem						
4. DESCRIPTIVE NOTES (Type of report and inclusive d	(#100)					
Technical Report						
S AUTHOR(S) (Last name, lirst name, initial)						
BIGELOW, James H.						
. REPORT DATE	TA TOTAL NO. OF PASES	75. NO. OF REFS				
February, 1968	33	2				
SA CONTRACT OR GRANT NO.	Se. ORIGINATOR'S REPOR	Se. ORIGINATOR'S REPORT NUMBER(S)				
N-00014-67-A-0112-0011						
5. PROJECT NO.	Technical Repor	rt No. 68-1				
NR-047-064						
c.	B. OTHER REPORT NO(5) this report)	(Any other numbers that may be assigned				
4						
10 AVAILABILITY/LIMITATION NOTICES						
Distribution of this document is	unlimited					
11. SUPPLEMENTARY NOTES	12 SPONSORING MILITARY	ACTIVITY Logistics and				
	Mathematical St.	atistics Branch,				
	Mathematical Sc	iences Division				
	Office of Naval	Research				
		20360				
13 ABSTRACT	WASHINGTON, D.C	. 20300				

composition of a solution of chemically reacting species could be formulated as a constrained minimum problem. Previous methods for solving the chemical equilibrium problem in this form have had much success. However, all such methods run into trouble whenever degeneracy or near-degeneracy occurs during the computational procedure.

This paper shows that the constrained minimum formulation of the chemical equilibrium problem is equivalent to a generalized linear program which can in turn be replaced by a quadratic program. In these alternative forms, degeneracy is more easily accomodated than in previous methods.

DD . 50RM. 1473

Unclassified Security Classification

90 90 95	OLE	WT	ROLE	wT	ROLE	W
45						
NS						
sed by secures: 1) "Qualification of the secure of the se	ified re- from Di- ign anni by DDC . Govern- eport dir shall re- . militar directly request distribut DDC use	lassifica equesters DC'' nounceme C is not nment ac rectly fr request th ry agenc ty from D through through	ation, usi s may obt ent and di authorize gencies m rom DDC, hrough ciea may o DDC. Oth this report il request	ing stand ain copi issemini ed." Other of Other of obtain c ier quali t is cont through	dard state ies of this ation of th in copies qualified 1 opies of t fied users trolled Q	ment of Dix his
((; (; (; (; ; ; ; ; ; ;	 "Qual report "Fore report "U. S. this re usera "U. S. report shall "All c ified I "All c ified Supplies 	 "Qualified rereport from D "Foreign any report by DD "U. S. Gover this report di usera shall request shall request "U. S. militareport directl shall request "All distribuified DDC us If the report has b vices, Department e this fact and ent SUPPLEMENTAL 	 "Qualified requester report from DDC." "Foreign announcem report by DDC is not "U. S. Government a this report directly fr users shall request t "U. S. military agenure report directly from I shall request through "All distribution of ified DDC users shall If the report has been fur- ryices, Department of Com supplement of Com supplementation of the fact and enter the post SUPPLEMENTARY NOT 	 "Qualified requesters may obtareport from DDC." "Foreign announcement and dareport by DDC is not authorized." "U. S. Government agencies a this report directly from DDC. users shall request through "U. S. military agencies may report directly from DDC. Other shall request through "All distribution of this report ified DDC users shall request the report has been furnished to vices, Department of Commerce, for a this fact and enter the price, if for SUPPLEMENTARY NOTES: Use 	 "Qualified requesters may obtain copreport from DDC." "Foreign announcement and dissemin report by DDC is not authorized." "U. S. Government agencies may obtain this report directly from DDC. Other users shall request through "U. S. military agencies may obtain c report directly from DDC. Other qualishall request through "All distribution of this report is con ified DDC users shall request through If the report has been furniahed to the Officience, bepartment of Commerce, for sale to e this fact and enter the price, if known. 	 "Qualified requesters may obtain copies of this report from DDC." "Foreign announcement and dissemination of the report by DDC is not authorized." "U. S. Government agencies may obtain copies this report directly from DDC. Other qualified is users shall request through "U. S. military agencies may obtain copies of the report directly from DDC. Other qualified users shall request through "U. S. military agencies may obtain copies of the report directly from DDC. Other qualified users shall request through "All distribution of this report is controlled. Q ified DDC users shall request through If the report has been furnished to the Office of Tecl vices, Department of Commerce, for sale to the public e this fact and enter the price, if known. SUPPLEMENTARY NOTES: Use for additional exp

fi-

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (par-ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical re-port. If additional space is required, a continuation sheet shall be attached.

.

It is highly desirable that the ubstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the in-formation in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. How-ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identi-fiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical con-text. The assignment of links, rales, and weights is optional.

9b. OTHER REPORT NUMBER(S): If the report has been ensigned any other report numbers (either by the originator or by the sponyor), also enter this number(s).

the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

NUMBER OF REFERENCES Enter the total number of

8a. COMPACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

86, 86, & 8d. PROJECT NUMBER: Enter the appropriate

wildery department identification, such as project number, aubproject number, system numbers, task number, etc. 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the

cial report number by which the document will be identified and centrolled by the originating activity. This number must be unique to this report.

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further discemination of the report, other than those

DD FAM. 1473 (BACK)

references cited in the report.

76.

Unclassified Security Clussification

1.