# AD702040

é

**Technical Report** 



FIELD TESTING OF ELECTRICAL GROUNDING RODS

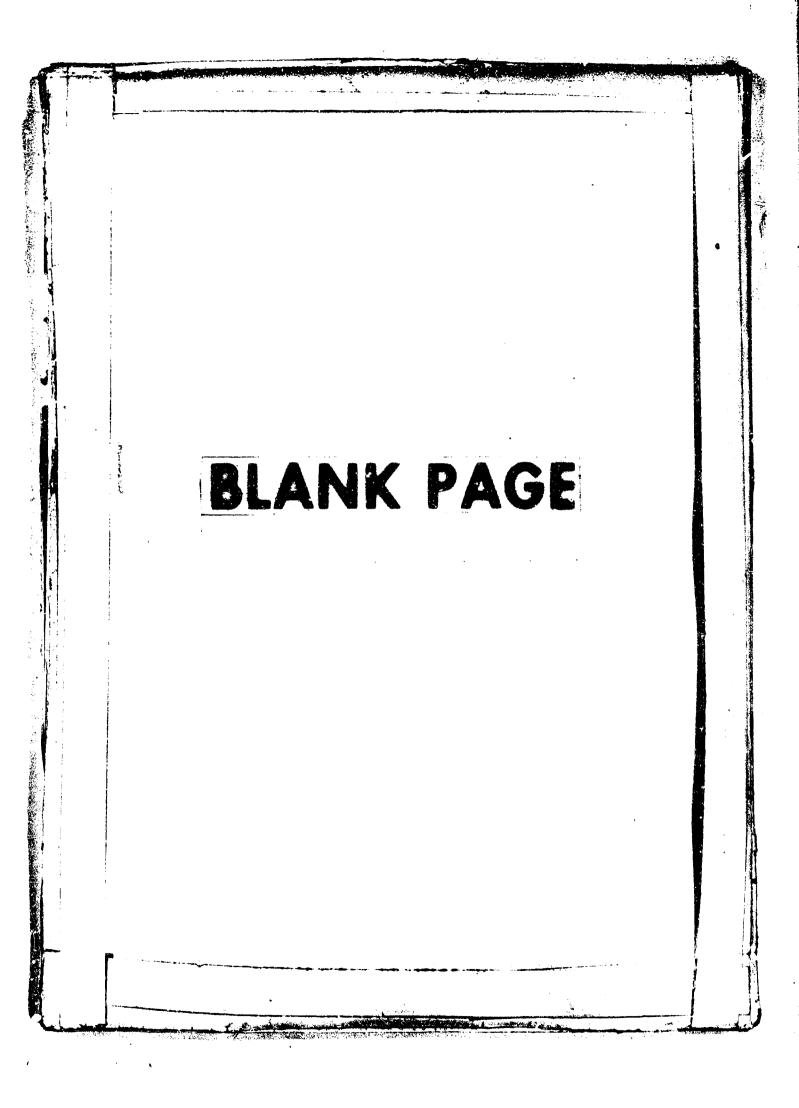
February 1970



65

Sponsored by

NAVAL FACILITIES ENGINEERING COMMAND




### NAVAL CIVIL ENGINEERING LABORATORY

Port Hueneme, California

This document has been approved for public release and sale; its distribution is unlimited.

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151



### FIELD TESTING OF ELECTRICAL GROUNDING RODS

Technical Report R-660

YF 38.534.006.01.001

by

Richard W. Drisko and A. E. Hanna

### ABSTRACT

In cooperation with the National Association of Corrosion Engineers, NCEL conducted a 7-year program of field testing metal rods for electrical grounding. Single rods of galvanized steel, copper-clad steel, Ni-Resist cast iron, type 302 stainless steel, type 304 stainless-clad steel, zinc, magnesium, and aluminum were tested along with couples of these to mild steel rods. Sets of both single and coupled rods were removed, cleaned, and weighed after 1, 3, and 7 (or 5) years. Potential, resistance, and current measurements were made monthly as far as practicable. Weight losses and electrical data were analyzed for correlations. It was concluded that type 302 stainless steel and type 304 stainless-clad steel rods were the best choices for general use.

| CFSTI                                              | WEITE      | RECEIM |             |
|----------------------------------------------------|------------|--------|-------------|
| DAC                                                | 1177       | ः ः भ  | •••<br>•• * |
| en a mentre da | £9         |        | ÷           |
| stillar o                                          | <u>ея</u>  |        |             |
|                                                    | ·· ·*··**. |        |             |
| 11                                                 |            |        |             |
| <b>3</b> 8. (*)                                    | 2 t - 1    |        |             |
| mat.                                               | A 34 39    | 5 . P  |             |
|                                                    |            |        |             |
|                                                    |            |        |             |
|                                                    |            |        |             |
|                                                    |            |        |             |

This document has been approved for public release and sale; its distribution is unlimited.

Copies available at the Clearinghouse for Federal Scientific & Technical Information (CFSTI), Sills Building, 5285 Port Royal Road, Springfield, Va. 22151

## CONTENTS

ş

|                                                              | page |
|--------------------------------------------------------------|------|
| INTRODUCTION                                                 | 1    |
| NACE TEST PROGRAM                                            | 2    |
| NCEL TEST PROGRAM                                            | 3    |
| RESULTS                                                      | 10   |
| 1-Year Rods                                                  | 10   |
| 3-Year Rods                                                  | 10   |
| 7-Year Rods                                                  | 10   |
| DISCUSSION                                                   | 13   |
| FINDINGS AND CONCLUSIONS                                     | 27   |
| RECOMMENDATIONS                                              | 28   |
| APPENDIXES                                                   |      |
| A – Weight Changes of Test Rods                              | 29   |
| B - Electrical Measurements for Single Test Rods             | 33   |
| C — Electrical Measurements for Coupled Test Rods $\ldots$ . | 46   |
| REFERENCES                                                   | 59   |
|                                                              |      |

### FOREWORD

The Naval Civil Engineering Laboratory prepared the following report to meet the requirements of the National Association of Corrosion Engineers (NACE) Program. The other participating agencies will submit their findings to NACE as soon as they complete their work. NACE will then evaluate all the information and will prepare a summary report.

### INTRODUCTION

Grounding in electrical installation and other construction is important for at least six reasons:<sup>1</sup>

- 1. To protect personnel from electrocution in case they accidentally ground a circuit whose potential is different from the structure or earth with which the person is in contact.
- 2. To equalize potentials among components of electrical systems.
- 3. To decrease the potential difference between the earth and structures that may accumulate static electric charges.
- 4. To provide a path to ground for electric currents produced by lightning.
- 5. To provide a low impedance connection through the earth between parts of an electric power system.
- 6. To minimize interference with or radiation from communications systems.

In the past it has been a standard practice to use water piping systems for electrical grounding. Now many water companies object to their piping systems being used as a ground for electrical systems, and at least one company has a regulation that holds the customer responsible for any damage resulting from ground wire attachment.<sup>2</sup>

A physical limitation associated with grounding to water piping systems is the increased use of cement, plastic, and wrapped pipe, as well as metal pipe with neoprone joints, in water mains. Also, many water systems install an insulating bushing between the house lines and meter or street mains, thus reducing the size of the grounding network. Several years ago gas companies started a program of installing an insulated meter swivel on the inlet side of meters to prevent an arc or spark when removing a gas meter from the service line.

National, state, and local safety codes usually specify that electrical grounding be made to a continuous metallic underground piping system when such is available. Where this is not available, the grounding connections may be made to other local metallic underground piping systems or plate, pipe, or metal ground rods.

The Navy is especially concerned about the extensive buried grounding networks required for power transformer stations, radar installations, and radio stations. Copper rod or wire or copper-clad steel rods are the ones most commonly used for this purpose. When copper is connected underground to steel pipes, lead cable sheaths, etc., the copper receives cathodic protection from the other less noble (less corrosion-resistant) metals connected to it, at the expense of these other metallic structures. The damage to a large area of steel when a small area of copper is connected to it is not very great. However, a small area of steel connected to a large area of copper will promote rapid corrosion of the steel.<sup>3</sup> Because of its interest in the corrosion problems associated with ground rods, the Naval Facilities Engineering Command (NAVFAC) directed the Naval Civil Engineering Laboratory (NCEL) to conduct a field testing investigation in this area. This investigation was coordinated with a 1-, 3-, 7-year test program of the National Association of Corrosion Engineers (NACE). This report describes the installation and testing of driven electrical grounding rods conducted by NCEL.

### NACE TEST PROGRAM<sup>2,4,5</sup>

In 1960 a proposal for a "Driven Ground Rod Program" was first formulated by NACE. The purpose of this program was "to find a metal that (a) can be readily driven into the ground at or near the electric service entrance to a residential or commercial building to provide a satisfactory ground electrode; (b) will have the property of adequate underground corrosion resistance; and (c) will not cause serious galvanic corrosion to other metals or pipes buried nearby and connected to the grounding rod and electric neutral network." Fourteen sponsors, including NCEL, with 21 test sites agreed to participate in the program.

Three complete sets totaling 33 driven ground rods were to be buried at each location for removal after 1, 3, and 7 years. Each set of 11 were to consist of single rods of SAE Grade 1060 mild steel (1), galvanized steel (G), copper-clad steel (C), Ni-Resist cast iron (N), and type 302 stainless steel (S) and couples of mild steel to copper-clad steel (I-C), mild steel to Ni-Resist cast iron (I-N), and mild steel to type 302 stainless steel (I-S). The Ni-Resist cast iron and type 302 stainless steel rods were to be furnished by the International Nickel Company, the <u>companyled steel rods by</u> the Copper-weld Steel Corporation, the galvanized steel rods by U. S. Steel, Tennessee Coal and Iron Division, and the mild steel rods by the individual sponsors. The coupled rods were to be used to simulate buried steel pipes connected to corrosion-resistant ground rods. Each rod was to be a single piece 8 feet in length and 5/8 inch in diameter. Pointed tips would permit easier driving into the earth with either a hand-held or a power-driven hammer. Three inches of the rod were to extend above the ground to permit coupling to other rods (for the three coupled pairs in each set) and to make electrical measurements periodically. Care was to be taken during driving of the ground rods to prevent vibrations that might make a hole in the ground larger than needed. Tests by the National Bureau of Standards and others indicate that driven steel ground rods have a longer service life than rods buried in disturbed or excavated soil; driving the rods seems to limit the amount of oxygen on their surfaces.

A 6-foot minimum separation was chosen to allow a variation of plot designs that should be free of stray currents. The coupled rods were to be connected with a No. 10 TW wire and a split-bolt type connector; the connections were then to be covered with a putty-type insulating material.

Each single test rod or couple was to be weighed to the nearest gram before installation and after removal and cleaning so that corrosion losses could be calculated. Also, the following electrical measurements indicating changes in corrosion rates were to be made on the ground rods monthly when practical and as permitted by weather conditions:

- 1. Potential of single rods and sets of coupled rods to a copper-copper sulfate reference electrode.
- Resistance of single rods and sets of coupled rods to earth using two auxiliary reference electrodes with a sensitive resistance meter.
- 3. Current flow in coupled sets using a small shunt that was permanently installed and joined only during measurements.

Electronegative potentials of metals and current flow are directly related to corrosion rates. A buildup of corrosion products, causing a decrease in corrosion rates, may be detected by an increase in resistance.

### NCEL TEST PROGRAM

The NCEL test program was an expanded form of the NACE test program. Thirty-one rods of eight different metal systems (Figure 1) comprised each group. In addition to the five metal systems in the NACE program, highpurity zinc (Z), AZ31B magnesium alloy (M), and 6061-T6 aluminum alloy (A) rods were used. Single rods of all eight matal systems were tested; single rods of mild steel coupled to rods of the seven other metal systems and two mild steel rods coupled to rods of copper-clad steel, magnesium, and zinc were also tested. The latter couples were used to obtain data on corrosion losses with different anode-to-cathode area ratios.

| and a subsystem of the states a summarized brighter restore association. The same wash them same represented by the original of the second states are associated by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                       |                                                                                                                        |                          | · |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|---|
| المراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · ·                                              |                                       | ini<br>Mahamatan di kacamatan di kacamat | a                        |   |
| a construction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | · · · · · · · · · · · · · · · · · · · |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mild steel                                               |                                       | •                                                                                                                      |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                       |                                                                                                                        |                          |   |
| CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pper-clad steel                                          |                                       | , de a 1910 - En 1910        | ·                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                       |                                                                                                                        |                          |   |
| فتحصيرها فتصفحهم بحاجا بالمراجع المنابع المتعلم فراجع المتعالي المتعاد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                       |                                                                                                                        | the second second second |   |
| Remark with the party set of the |                                                          |                                       |                                                                                                                        |                          |   |
| Remark with the party set of the |                                                          |                                       |                                                                                                                        |                          |   |
| Remark with the party set of the |                                                          |                                       |                                                                                                                        |                          |   |
| Remark with the party set of the | alvanized steel                                          |                                       |                                                                                                                        |                          |   |
| Remark with the party set of the | sivanized steel                                          | 3162                                  |                                                                                                                        |                          |   |
| Remark with the party set of the | alvanized steel                                          |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alvanized steel                                          |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alvanized steel<br>zinc<br>Resist cast fron              |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sivenized steel<br>zinc<br>Resist cast fron              |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alvanized steel<br>zinc<br>Resist cast fron              |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zinc<br>Resist cast iron<br>stainless steel              |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zinc<br>Resist cast fron<br>stainless steel              |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zinc<br>Resist cast iron<br>stainless steel              |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zinc<br>Resist cast iron<br>stainless stool<br>magnesium |                                       |                                                                                                                        |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | zinc<br>Resist cast fron<br>stainless steel              |                                       |                                                                                                                        |                          |   |

Figure 1. Typical group of electrical grounding rods.

Two years after initiation of the test program, sets of type 304 stainless-clad steel rods (B) were included for 1-, 3-, and 5-year exposures. The 1- and 3-year sets had one single stainless-clad steel rod and one coupled to a mild steel rod; the 5-year set had these plus two stainless-clad steel rods coupled to a mild steel rod.

The rods were installed in the NCEL test site located at the southeast corner of the main Laboratory compound (Figure 2). The site was approximately 200 feet long and 20 feet wide, with two reference electrodes for resistance measurements permanently installed 50 and 100 feet from the edge of the site area on a line perpendicular to the length of the site and located at its center. The site paralleled the south boundary fence and ocean, with the first row of test rods 6 feet from the fence.

The soil in the test site consisted of a 3-foot layer of crushed sandstone fill covering a 5-foot layer of sand and gravel hydraulic fill and a natural deposit of sand and gravel of undertermined thickness. The resistivity of the soil to an 8-foot depth averaged 1,200 ohm-cm.

Rods were installed in the rectangular pattern on 6-foot centers, as shown in Figure 3. An air hammer with a special driving head (Figure 4) was used to drive the rods into the soil after they had been started with a sledge hammer. A 5/8-inch-diameter steel rod was used to make pilot holes for the aluminum, magnesium, and Ni-Resist cast iron rods. The first two rods are relatively soft and tend to mushroom when driven; the third is quite brittle and might break if driven into rocks present in the fill. A slightly larger pilot hole was drilled for the zinc rods which were so soft that even slight resistance to driving might cause them to bend above ground. After the rods were inserted, these holes were backfilled carefully with fine sand to insure good contact between the rods and the soil.



Figure 2. Ground rod test site at NCEL. Breakwater and boundary fence are at left with the test area in the center foreground.

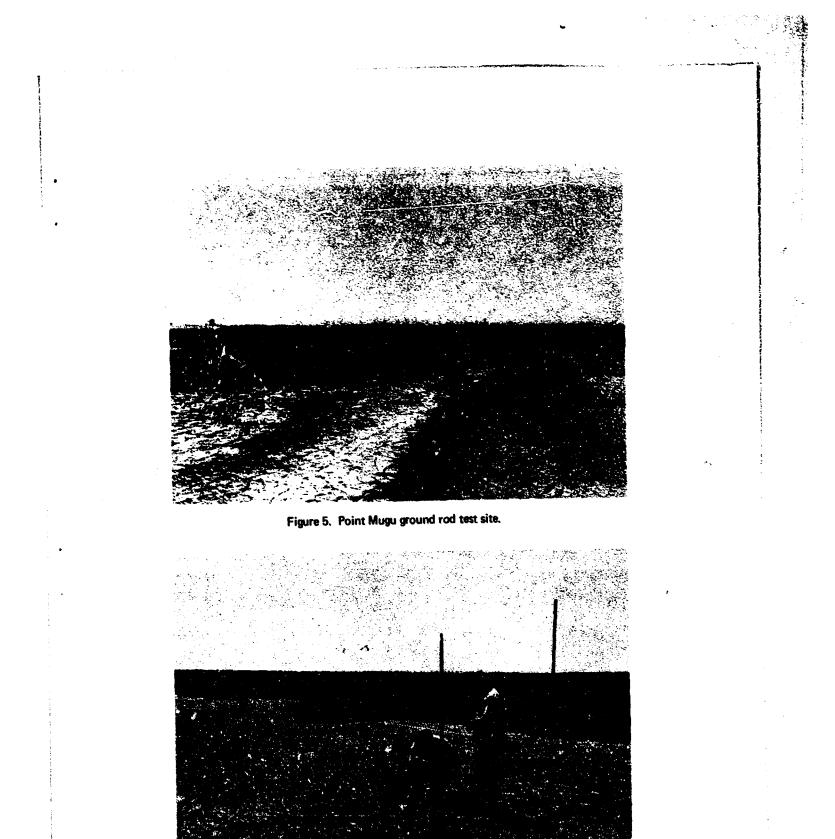

| 7-Years |        |             |                  |       |      | 5     |                       |          | 1         | 1                                                                  |                      |             |      | 3-`  | Yea  | rs |        |        | 4      | 1-Year |        |    |             |    |           |      |     |             |                       |
|---------|--------|-------------|------------------|-------|------|-------|-----------------------|----------|-----------|--------------------------------------------------------------------|----------------------|-------------|------|------|------|----|--------|--------|--------|--------|--------|----|-------------|----|-----------|------|-----|-------------|-----------------------|
| I       | 11     | 11          | 1                | 1     | 1    | I     | ī                     | 11       | 1         | 1                                                                  | 11                   | 1           | 1    | 1    | ī    | 1  | 11     | 11     | I      | 1      | 11     | 11 | I           | I  | 1         | 1    | 1   | 11          | I                     |
| ů<br>z  | ۳<br>z | о<br>М<br>Z | o<br>M<br>M<br>o | Α     |      | 0     | o<br>o<br>N<br>N<br>o | 8 °C C ° | ° – ° ° ° | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 00<br>00<br>00<br>00 | N<br>N<br>N | 0    |      |      |    | % M No | °<br>Z | )<br>z | o<br>Z | ۳<br>z |    | о<br>М<br>М |    | ono G G o | 0    |     | °<br>°<br>° | 0<br>0<br>0<br>1<br>0 |
| Note    | : A    | odi         | ar               | 9 01  | n 6- | foc   | ot co                 | ente     | ers.      | a. Each group contains 31 rods.<br>also pattern for Point Mugu     |                      |             |      |      | site |    |        |        |        |        |        |    |             |    |           |      |     |             |                       |
| I       |        | Mile        |                  |       |      |       |                       |          |           |                                                                    |                      |             |      |      |      |    |        |        |        |        |        |    |             |    |           |      |     |             |                       |
| C       | =      | Cop         | pe               | r-cl  | ad 1 | tee   | 1                     |          |           |                                                                    | Α                    | = A         | lun  | ninı | m    |    |        |        |        |        |        |    |             |    |           |      |     |             |                       |
| N       | =      | Ni-I        | Res              | ist ( | cast | t irc | n                     |          |           |                                                                    | Μ                    | = N         | lag  | nesi | um   |    |        |        |        |        |        |    |             |    |           |      |     |             |                       |
| S       |        | Τγρ         | e 3              | 02    | sta  | inle  | 55 5                  | tee      | 1         |                                                                    | Ζ                    | = Z         | linc |      |      |    |        |        |        |        |        | C  | )           | Si | ngle      | e rc | d\$ |             |                       |
| G       | ; =    | Gał         | van              | ize   | d st | eet   |                       |          |           | II = Two mild steel rods O-O Coupled rods                          |                      |             |      |      | ds   |    |        |        |        |        |        |    |             |    |           |      |     |             |                       |

Figure 3. Arrangement of test rods at NCEL test site.

A separate set of ground rods was also driven into a very aggresive soil at the Naval Air Station, Point Mugu, for a 1-year exposure. The test pattern is shown in the right-hand portion of Figure 3. It was hoped that these rods would show accelerated corrosion when compared to the test rods in the less aggressive soil at NCEL. The Point Mugu site (shown in Figure 5) was located in an area sometimes covered with water at high tide and during the rainy season. The site was approximately 70 feet in length and 20 feet in width. Two reference electrodes were located 50 and 100 feet from the edge of the site area and on a line perpendicular to the length of the site and located at its center. The top soil consisted of a fine, silt-like material to a depth of 28 inches, overlying a 2-inch layer of a sand-silt mixture and a 6-inch layer of brown sand. Below the 36-inch depth, the sand was blue gray in color, and sea shells were present in the sand below the 4-foot depth. The resistivity of the soil to an 8-foot depth averaged 85 ohm-cm. A chemical analysis of the soil at the Point Mugu site is given in Table 1. At Point Mugu the rods were hand-pushed into the ground until the sand layer was contacted and then driven the rest of the way with a light hammer (Figure 6). Pilot holes were not needed for any of the rods.



Figure 4. Installing rods with air hammer at NCEL test site.



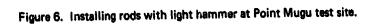



Table 1. Chemical Analysis of Soil at Point Mugu Site

|                              |                    | r       | _       | _       |         |         |         |         |         | ,           |         |         |         | r       |         |           |         |         |                     |
|------------------------------|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|---------|---------|---------|-----------|---------|---------|---------------------|
|                              | Ŧ                  | 7,8     | 7.4     | 1.7     | 7.2     | 8.4     | 7.3     | 7.0     | 7.0     | 7.8         | 7.5     | 7.0     | 2.0     |         | 8.0     | 7.4       | 7.0     | 7.1     | 7.5-8.3             |
|                              | Coco3              | 33,200  | 7,500   | 11,400  | 12,300  | 33,900  | 7,200   | 8,800   | 15,700  | 26,100      | 3,500   | 5,700   | 15,700  |         | 31,100  | 6,100     | 8,600   | 14,800  | 1                   |
| (mqq)                        | Fe203              | 60,800  | 9,100   | 10,700  | 10,800  | 74,000  | 13,900  | 6,500   | 8,700   | 26,000      | 7,100   | 6,300   | 7,800   |         | 53,300  | 10,000    | 7,800   | 9,100   | 1                   |
| onstituents                  | Ai203              | 10,600  | 3,300   | 1,200   | 4,200   | 2,500   | 80      | 1,300   | 1,700   | 5,000       | 1,400   | 1,300   | 1,500   |         | 6,000   | 1,900     | 1,300   | 2,500   | 1                   |
| Insoluble Constituents (ppm) | Acid<br>Insolubles | 739,300 | 934,100 | 942,900 | 922,100 | 748,400 | 947,700 | 919,800 | 935,700 | 839,000     | 964,000 | 944,300 | 946,800 |         | 775,800 | 948,600   | 935.700 | 934,900 | 1                   |
|                              | Organic            | 122,700 | 29,700  | 24,300  | 22,100  | 88,600  | 22,300  | 33,400  | 23,400  | 104,000     | 18,600  | 28,000  | 31,700  |         | 105,100 | 23,500    | 28,600  | 25,700  | ł                   |
|                              | ບຶ                 | 20      | 170     | 200     | 110     | 15      | 8       | 240     | 220     | 25          | 4       | 190     | 160     |         | 20      | 8         | 210     | 163     | 400                 |
|                              | 0W                 | 280     | 260     | 650     | 450     | 310     | 450     | 1,100   | 780     | 295         | 360     | 740     | 750     |         | 295     | 457       | 830     | 660     | 1,272               |
| (mqq)                        | SO4                | 1,250   | 4,750   | 7,250   | 5,000   | 1,450   | 3,750   | 000'6   | 6,500   | 1,375       | 4,100   | 8,500   | 6,750   |         | 1,358   | 4,200     | 8,250   | 6,080   | 2,649               |
| Soluble Constituents (ppm)   | ច                  | 7,500   | 26,200  | 34,600  | 26,400  | 10,600  | 20,700  | 53,500  | 36,500  | 8,000       | 20,800  | 45,800  | 39,400  |         | 8,700   | 22,900    | 41,300  | 34,100  | 18,980              |
| Soluble C                    | TDS                | 16,750  | 57,000  | 70,000  | 52,500  | 25,000  | 47,500  | 134,000 | 000,68  | 19,000      | 44,000  | 87,500  | 81,000  |         | 20,250  | 49,500    | 97,170  | 74,170  | 35,000 <sup>6</sup> |
|                              | HCO <sub>3</sub>   | 120     | 216     | 8       | 119     | 160     | 130     | 180     | 160     | 140         | 142     | 156     | 185     |         | 140     | 163       | 139     | 161     | 140                 |
|                              | <b>60</b> 3        | 0       | 0       | 0       | 0       | 8       | 0       | 0       | 0       | 0           | 0       | 0       | 0       |         | 7       | 0         | 0       | 0       | 1                   |
| į                            | (in)               | 0-18    | 29-47   | 49-69   | 88-69   | 0-18    | 29-47   | 49-68   | 69-85   | <b>0-18</b> | 30-46   | 49-69   | 70-88   |         | I       | <br> <br> | ١       | I       | 1                   |
|                              | Sample No.         | 1-1     | -2      | ů       | 4       | 2-1     | -2      | ę       | 4       | 3.1         | 5       | ņ       | 4       | average | · -     | -5        | ņ       | 4       | seawaterb           |

*b* Reference 6, page 1111. <sup>4</sup> Total dissolved solids.

<sup>c</sup> Approximate value. <sup>d</sup> Reference 6, page 1118.

At the conclusion of each phase of the 1-, 3-, and 7-year program, the ground rods for that phase were removed from the ground. At NCEL a forklift truck similar to that shown in Figure 4 was used, while at Point Mugu the rods were pulled up by hand. If the ground rods broke during extraction because of weakness from excessive corrosion (for example, magnesium and zinc rods) or because of inherent brittleness (for example, Ni-Resist cast iron rods), a hole was dug to expose the broken end and the remainder of the rod was again pulled.

The test rods at both sites were cleaned in a similar manner after removel from testing. The dirt and loosely adhering corrosion products were brushed off with a stiff-bristle scrub brush. The remaining corrosion products were removed by a combination of scrubbing and chemical cleaning, as indicated in Table 2.

The cleaned rods were weighed to the nearest gram on the platform of a laboratory top-loading counter balance. Each rod was placed on the balance so that its center of gravity was directly over the center of the platform.

| Test Rods                     | Chemical Treatment                                      | Method <sup>a</sup>           |
|-------------------------------|---------------------------------------------------------|-------------------------------|
| Mild steel                    | 10% ammonium citrate<br>(heated to 120 <sup>0</sup> F)  | Rods immersed and scrubbed    |
| Galvanized steel              | 10% ammonium chloride<br>(heated to 120 <sup>0</sup> F) | Rods immersed and scrubbed    |
| Copper-clad steel             | 18% hydrochloric acid                                   | Acid swabbed on cladding only |
| Ni-Resist cast iron           | 10% ammonium citrate<br>(heated to 120 <sup>0</sup> F)  | Rods immersed and scrubbed    |
| Type 302 stainless steel      | concentrated nitric acid                                | Acid swabbed on rods          |
| High purity zinc              | 10% ammonium chloride<br>(heated to 120 <sup>0</sup> F) | Rods immersed and scrubbed    |
| AZ31B magnesium               | 6.5% chromic acid                                       | Rods immersed and scrubbed    |
| 6061-T6 aluminum              | concentrated nitric acid                                | Acid swabbed on rods          |
| Type 304 stainless-clad steel | concentrated nitric acid-                               | Acid swabbed on cladding only |

Table 2. Cleaning Procedures for Test Rods

<sup>a</sup> After cleaning, all rods were rinsed with deionized water.

### RESULTS

### **1-Year Rods**

During a routine inspection about 2 months after installation of the ground rods at Point Mugu, it was found that the coupled magnesium rods had corroded to complete separation at the ground level. Both these and the mild steel rods coupled to them were removed at this time. The single magnesium rod at Point Mugu corroded to complete separation 4 months after installation, and it was removed from the test.

The 1-year group of test rods at NCEL and the remaining test rods at Point Mugu were removed about 13 months after installation. The coupled magnesium rods in the 3- and 7-year program were so badly corroded that they and the mild steel rods coupled to them were also removed at this time. As shown in Figures 7a and 7b, there was relatively little corrosion damage to most of the rods when compared with the magnesium rods. With the exception of the magnesium rods and the mild steel rods coupled to them, the rods from Point Mugu generally looked as good as or better than those from the NCEL site. The weight losses for the rods from both test sites are given in Table A-1 and the electrical measurements on these rods in Tables B-1, B-2, C-1, and C-2.

### 3-Year Rods

The 3-year group of rods was removed about 36 months after installation. As expected they were noticeably more corroded than the 1-year rods. Their weight losses are given in Table A-2 and their electrical measurements ... Tables B-3 through B-5 and C-3 through C-5.

### 7-Year Rods

The 7-year group of rods was removed almost exactly 7 years from the date of installation. The 5-year group of stainless-clad steel rods and the mild steel rods coupled to them were also removed at this time. Both the 5- and 7-year rods were generally most corroded at the tip. The corroded tips of the single and selected coupled rods are shown in Figures 8a and 8b respectively. The same rods after cleaning are shown in Figures 9a and 9b. The weight losses for all of the rods removed at this time are given in Table A-3 and their electrical measurements in Tables B-6 through B-12 and C-6 through C-12. The two Ni-Resist cast iron rods were broken during removal, but all of the broken pieces were recovered. The single magnesium rod was also broken during removal, but only four pieces, totaling 40-1/2 inches in length and 274 grams in weight, were recovered. The condition of the individual 5- and 7-year rods after removal is described below.

| Single Rods                   | Comments                                                                                                                                                                                                                                                                                       |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mild ste <del>el</del>        | There was nonuniform rusting and pitting.<br>Some of the pits were quite broad. The<br>rust scale adhered very tightly.                                                                                                                                                                        |
| Galvanized steel              | Most of the galvanizing had been lost.<br>Rusting of steel was greatest near the<br>surface of the ground. Pitting was worst<br>here and near the tip.                                                                                                                                         |
| Copper-clad steel             | The copper cladding was virtually free of corrosion, but the steel core had corroded at the tip to a point 2 inches inside the cladding.                                                                                                                                                       |
| Ni-Resist cast iron           | The rod broke into four pieces during<br>removal. It had rather light corrosion<br>somewhat worse near the surface of the<br>ground.                                                                                                                                                           |
| Type 302 stainless steel      | There was very little corrosion except for localized deep pitting near the tip and near the surface of the ground.                                                                                                                                                                             |
| 6061-T6 aluminum              | There were 3/16-inch deep, broad pits near<br>the tip and near the surface of the ground.<br>These pits were filled with a bluish-white<br>corrosion product. In other areas there<br>was much less corrosion.                                                                                 |
| AZ31B magnesium               | The rod was very badly pitted and reduced<br>in diameter so that only four pieces, totaling<br>40-1/2 inches in length, were recovered. The<br>rest of the rod was too deeply buried for<br>easy recovery. The pits were filled with a<br>thick, white, tightly adhering corrosion<br>product. |
| High purity zinc              | There was deep pitting near the tip and<br>near the surface of the ground. The rod<br>was covered with a tight film of white<br>corrosion product.                                                                                                                                             |
| Type 304 stainless-clad steel | The cladding was free of corrosion, but at the tip the steel core had corroded to a point about 1 inch inside the cladding.                                                                                                                                                                    |

### Galvanized steel to mild steel Most of the galvanizing had been lost, and there was nonuniform rusting and pitting of the underlying steel. Copper-clad to mild steel The copper cladding was virtually free of cladding. Ni-Resist cast iron to mild steel The rod broke into two pieces during removal. It had light corrosion and no pitting. Stainless steel to mild steel This rod was virtually free of corrosion. Aluminum to mild steel There was extensive corrosion with deep, broad pits along the entire length. The rod was covered with a bluish-white, tightly adhering corrosion product. A green corrosion product occurred in many of the pits. At the tip there was considerable reduction in diameter and a 3/4-inch reduction in length.

There was extensive corrosion with scattered broad, deep pits, and it was reduced in diameter and length at the tip. There was a layer of white, tightly adhering corrosion product.

The cladding was free of corrosion, but at the tip the steel core had corroded to a point about 5/8 inch inside the cladding.

There was nonuniform rusting and pitting. At the tip there was considerable reduction in diameter and a 1-1/2-inch reduction in length.

There was extensive nonuniform rusting and pitting. At the tip there was a considerable reduction in diameter and a 1-1/2-inch reduction in length.

There was only slight corrosion. The rod was covered with a tight, hard film.

Zinc to mild steel

**Coupled Rods** 

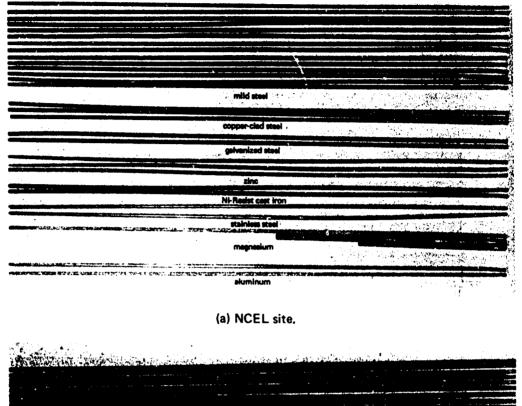
Stainless-clad steel to mild steel

Mild steel to galvanized steel

Mild steel to stainless steel

Mild steel to aluminum

# Comments


corrosion, but at the tip the steel core had corroded to a point about 1 inch inside the

### There was only lightly scattered rusting Mild steel to zinc near the surface of the ground. The rod was covered with a tough, tightly adhering film. There was considerable nonuniform rusting Mild steel to stainless-clad steel and pitting. Some pits were quite broad. Copper-clad to two mild steel The copper cladding was virtually free of corrosion, but at the tip the steel core had lost about 1/8 inch from corrosion. Zinc to two mild steel The rod had been severed into two pieces by corrosion about 2 feet underground. There was extensive corrosion and pitting, and it was considerably reduced in diameter and length at the tip. The rod was covered with a thick layer of white, tightly adhering corrosion product. Two mild steel to copper-clad steel Both rods had general nonuniform rusting. At the tip they were considerably reduced in diameter and had 1-inch reductions in length. Two mild steel to zinc Both rods had only lightly scattered rusting, mostly above ground. They were covered with tough, tightly adhering films. Two stainless-clad steel to mild steel The claddings were free of corrosion, but at the tips the steel cores had corroded to points 3/8 inch and 5/8 inch inside the claddings. Mild steel to two stainless-clad steel There was considerable nonuniform rusting and pitting. At the tip there was a considerable reduction in diameter and a 1/2-inch reduction in length.

### DISCUSSION

Tables 3, 4, and 5 list the percent weight losses of the 1-, 3-, and 7-year ground rods at NCEL. These data were extracted from Tables A-1, A-2, and A-3. Since the different test metals vary greatly in density, percent losses rather

than actual weight losses are given. For both single and coupled rods the relative orders of weight losses were quite similar after 1, 3, and 7 (or 5) years. The losses per year, however, decreased with time as the buildup of passive films of corrosion product tended to mitigate further corrosion.



I mild seed i States Compared and seed a state of the set of the

(b) Point Mugu site.

Figure 7. Cleaned 1-year test rods.

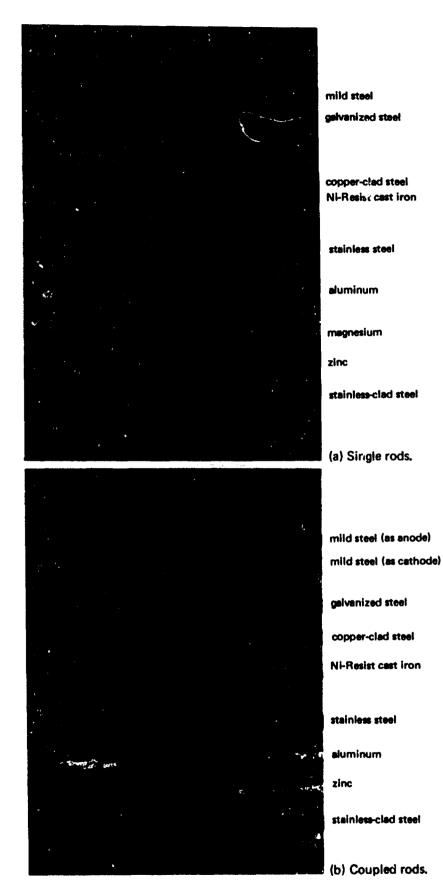



Figure 8. Seven-year rods after removal from ground.

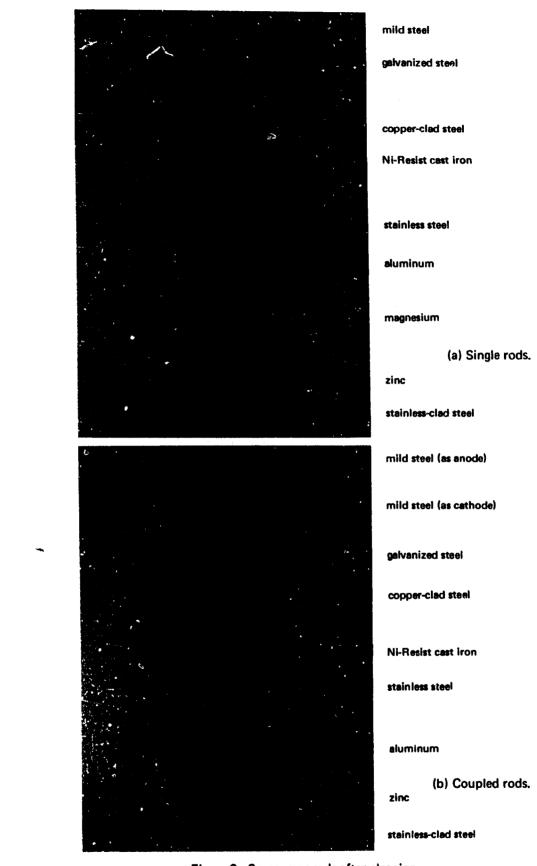



Figure 9. Seven-year rods after cleaning.

| Type of Rod                   | Per        | cent Weight Loss fo | )r                |
|-------------------------------|------------|---------------------|-------------------|
|                               | 1-Year Rod | 3-Year Rod          | 7-Year Rod        |
| Mild steel                    | 2.6        | 6.11                | 7.61              |
| Galvanized steel              | 1.5        | 2.4                 | 2.2               |
| Copper-clad steel             | 0.52       | 0.93                | 1.4               |
| Ni-Resist cast iron           | 0.68       | 1.2 <sup>a</sup>    | 1.9               |
| Type 302 stainless steel      | 0.2        | 0.53                | 1.4               |
| 6061-T6 aluminum              | 0.92       | 1.6                 | 2.3               |
| AZ31B magnesium               | 6.3        | ь                   | 25 <sup>¢</sup>   |
| High purity zinc              | 1.2        | 1.2                 | 4.11              |
| Type 304 stainless-clad steel | 0.29       | 0.63                | 0.87 <sup>d</sup> |

Table 3. Percent Weight Loss of Single Rods

<sup>a</sup> Different manufacture for 1- and 7-year rods.

<sup>b</sup> Undetermined length of rod recovered.

<sup>c</sup> Percent weight loss for 40-1/2 inches of recovered rod.

<sup>d</sup> Value for 5-year rod.

Corrosion is an electrochemical oxidation process in which an electron loss corresponding to 96,500 coulombs (1 faraday) of electricity is accompanied by loss of one gram equivalent weight of metal. Thus by knowing the average current flow of the test couples in which a pure elementary metal of known equivalent weight serves as the anode, it is possible to calculate the weight losses of the anode rods that result from coupling. By adding to these the weight losses that occur to the corresponding single (uncoupled) rods, it is possible to estimate the total weight losses of these rods when coupled. The average current flow in the couples of high purity zinc and those in couples where mild steel rods served as anodes (mild steel was assumed to be pure iron) were determined from the 3- and 7-year data in Tables C-3 through C-12. These values were used for the weight losses were quite close, especially with the couples where anode weight losses were greatest and the corresponding current flows could be measured with much more accuracy.

|                                      | Couple | Percent       | Weight Loss   | for—              |
|--------------------------------------|--------|---------------|---------------|-------------------|
| Coupled Metal                        | Design | 1-Year<br>Rod | 3-Year<br>Rod | 7-Year<br>Rod     |
| Galvanized steel (G)                 | G-1    | 3.72          | 6.24          | 5.66              |
| Copper-clad steel (C)                | C-1    | 0.38          | 0.35          | 0.73              |
| Copper-clad steel (C)                | C-21   | 0.35          | 0.32          | 0.1               |
| Ni-Resist cast iron (N)              | N-1    | 0.26          | 0.35          | 0.29              |
| Ni-Resist cast iron (N) <sup>a</sup> | N-I    | -             | 0.95          | -                 |
| Type 302 stainless steel (S)         | S-1    | 0.05          | 0.01          | 0.05              |
| 6061-T6 aluminum (.4)                | A-I    | 7.4           | 20.5          | 22.7              |
| AZ31B magnesium (M)                  | M-1    | 55.8          | ь             | Ъ                 |
| AZ31B magnesium (M)                  | M-1    | 69.2          | Ь             | Ь                 |
| High purity zinc (Z)                 | Z-1    | 6.88          | 13.0          | 29.66             |
| High purity zinc (Z)                 | Z-ZI   | 8.32          | 20.1          | 30.11             |
| Type 304 stainless-clad steel (B)    | B-1    | 0.1           | 0.1           | 0.58 <sup>c</sup> |
| Type 304 stainless-clad steel (B)    | 2B-I   | -             | -             | 0.58 <sup>c</sup> |
| Type 304 stainless-clad steel (B)    | 2B-I   | -             |               | 0.40 <sup>¢</sup> |

Table 4. Percent Weight Loss of Rods Coupled to Mild Steel Rods (I)

<sup>4</sup> Of different manufacture than above rod.

<sup>b</sup> Rod previously removed.

<sup>c</sup> Value for 5-year rod.

|                                      | Couple           | Percent       | t Weight Loss | for               |
|--------------------------------------|------------------|---------------|---------------|-------------------|
| Rods Coupled to Steel Rods           | Couple<br>Design | 1-Year<br>Rod | 3-Year<br>Rod | 7-Year<br>Rođ     |
| Galvanized steel (G)                 | G-1              | 1.2           | 2.85          | 5.95              |
| Copper-clad steel (C)                | C-1              | 4.83          | 14.8          | 25.9              |
| Copper-clad steel (C)                | C-21             | 3.83          | 10.3          | 17.2              |
| Copper-clad steel (C)                | C-21             | 3.85          | 13.4          | 16.9              |
| Ni-Resist cast iron (N)              | N-I              | 2.4           | 7.46          | 10.9              |
| Ni-Resist cast iron (N) <sup>4</sup> | N-I              | -             | 4.89          | -                 |
| Type 302 stainless steel (S)         | S-I              | 2.5           | 6.79          | 11.8              |
| 6061-T6 aluminum (A) •               | A-I              | 1.0           | 0.53          | 0.38              |
| AZ31B magnesium (M)                  | M-1              | 0.85          | Ь             | Ь                 |
| AZ31B magnesium (M)                  | M-21             | 0.80          | b             | Ь                 |
| AZ31B magnesium (M)                  | M-21             | 0.88          | ь             | Ь                 |
| High purity zinc (Z)                 | Z-1              | 0.88          | 0.82          | 0.2               |
| High purity zinc (Z)                 | Z-21             | 0.88          | 0.91          | 0.1               |
| High purity zinc (Z)                 | Z-21             | 0.89          | 0.77          | 0.1               |
| Type 304 stainless-clad steel (B)    | B-I              | 2.3           | 5.56          | 6.84 <sup>c</sup> |
| Type 304 stainless-clad steel (B)    | 2B-I             | -             | -             | 7.72 <sup>c</sup> |

### Table 5. Percent Weight Loss of Coupled Mild Steel Rods (I)

<sup>a</sup> Of different manufacture than above rod.

<sup>b</sup> Rod previously removed.

<sup>c</sup> Value for 5-year rod.

.á

Table 6. Calculated and Actual Weight Losses for Coupled Rods

| Rod Weighed"                                                                        | Couple<br>Design | Calculated<br>Weight Loss<br>for Couple Rods<br>(g)                        | Actual Weight Loss<br>for Single Rod<br>(g) | Calculated<br>Total<br>Weight Loss<br>(g) | Actual Total<br>Weight Loss<br>(g) |
|-------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------|
|                                                                                     |                  | 3-Y                                                                        | 3-Year Rods                                 |                                           |                                    |
| z                                                                                   | Z-I              | 381                                                                        | 42                                          | 423                                       | 442                                |
| Z                                                                                   | Z-21             | 582                                                                        | 42                                          | 624                                       | 687                                |
| _                                                                                   | 2                | 320                                                                        | 229                                         | 549                                       | 566                                |
| _                                                                                   | C-21             | 241                                                                        | 458                                         | 669                                       | 887                                |
| _                                                                                   | <b>-z</b>        | 73                                                                         | 229                                         | 302                                       | 279                                |
|                                                                                     | S-I              | 8                                                                          | 229                                         | 267                                       | 255                                |
| -                                                                                   | B-1              | 25                                                                         | 229                                         | 254                                       | 207                                |
|                                                                                     |                  | ) <b>/</b> -/                                                              | 7-Year Rods                                 |                                           |                                    |
| Z                                                                                   | I-Z              | 782                                                                        | 142                                         | 924                                       | 1,010                              |
| Z                                                                                   | Z-21             | 782                                                                        | 142                                         | 924                                       | 1,027                              |
|                                                                                     | 2                | 672                                                                        | 285                                         | 967                                       | 970                                |
| _                                                                                   | C-21             | 667                                                                        | 570                                         | 1,237                                     | 1,278                              |
|                                                                                     | 1-N              | 96                                                                         | 285                                         | 381                                       | 412                                |
| -                                                                                   | S-I              | 96                                                                         | 285                                         | 381                                       | 443                                |
| <ul> <li>Z = zinc</li> <li>I = mild steel</li> <li>C = copper-clad steel</li> </ul> |                  | N = Ni-Resist cast iron<br>S = stainless steel<br>B = stainless-clad steel |                                             |                                           |                                    |

|                                                        | Weight        | Changes (g    | ) for            |
|--------------------------------------------------------|---------------|---------------|------------------|
| Description of Rods                                    | 1-Year<br>Rod | 3-Year<br>Rod | 7-Year<br>Rod    |
| Galvanized steel to mild steel                         | -82           | -145          | -128             |
| Copper-clad steel to mild steel                        | +5            | +20           | +24              |
| Copper-clad steel to two mild steel                    | +6            | +21           | +45              |
| Ni-Resist cast iron to mild steel                      | +16           | +10ª          | +61              |
| Type 302 stainless steel to mild steel                 | +5            | +15           | +50              |
| 6061-T6 aluminum to mild steel                         | -84           | -245          | -265             |
| AZ31B magnesium to mild steel                          | -420          | ь             | Ь                |
| AZ31B magnesium to two mild steel                      | -538          | Ь             | ь                |
| High purity zinc to mild steel                         | -194          | -400          | -868             |
| High purity zinc to two mild steel                     | -243          | -645          | -885             |
| Type 304 stainless-clad steel to mild steel            | +6            | +7            | +11 <sup>c</sup> |
| One of two type 304 stainless-clad steel to mild steel | _             | _             | +11 <sup>c</sup> |
| One of two type 304 stainless-clad steel to mild steel |               | -             | +18 <sup>c</sup> |
| Mild steel to galvanized steel                         | +50           | +122          | +64              |
| Mild steel to copper-clad steel                        | -85           | -327          | -685             |
| One of two mild steel to copper-clad                   | -48           | -155          | -364             |
| One of two mild steel to copper-clad                   | -38           | -274          | -344             |
| Mild steel to Ni-Resist cast iron                      | +6            | -50           | -127             |
| Mild steel to stainless steel                          | +1            | -26           | -158             |
| Mild steel to aluminum                                 | +58           | +209          | +271             |
| Mild steel to magnesium                                | +64           | Ь             | Ь                |
| One of two mild steel to magnesium                     | +66           | Ь             | Ь                |
| One of two mild steel to magnesium                     | +63           | Ь             | Ь                |
| Mild steel to zinc                                     | +63           | +198          | +278             |
| One of two mild steel to zinc                          | +63           | +195          | +280             |
| One of two mild steel to zinc                          | +69           | +200          | +281             |
| Mild steel to stainless-clad steel                     | +10           | +22           | +29 <sup>c</sup> |
| Mild steel to two stainless-clad steel                 | -             | -             | -3°              |

Table 7. Weight Changes Due to Coupling for 1-, 3-, and 7-Year Rods

<sup>a</sup> The 3-year Ni-Resist cast iron rods were of different manufacture than the 1- and 7-year rods.

<sup>b</sup> Coupled magnesium rods previously removed.

<sup>c</sup> The 5-year stainless-clad steel rods were removed at the same time as the 7-year rods.

Table 7 lists the changes in weight loss of each type of ground rod due to coupling. These data were derived by subtracting the weight loss of each coupled rod from the weight loss of the corresponding single (uncoupled) rod.

It can be seen that positive changes of one rod of a coupled pair were accompanied by negative changes of the other rod of the pair. Exceptions occurred with some of the couples of mild steel to stainless-clad steel rods where weight loss changes were relatively small. With coupled rods the rod with the more electronegative potential (the anode) cathodically protected the other rod of less electronegative potential (the cathode) from corroding. This was accomplished by a sacrifice in weight loss by the rod serving as the anode. The greater the differences of open circuit potentials of the coupled rods, generally the greater was the current flow and thus the corrosion of the anode rod. Electron flow in coupled rods was always from the rod of higher to the rod of lower electronegative potential.

As expected, doubling the number of mild steel rods coupled to individual magnesium and zinc rods increased the weight loss of these latter rods, but the increase was considerably less than twofold. Conversely, doubling the number of mild steel rods coupled to copper-clad steel rods reduced the weight loss of each of the mild steel rods by about one-half.

Table 8 summarizes weight loss and average potential, resistance, and current measurements for the 1-, 3-, and 7-year rods. From this table (or from Tables B-3 through B-12 and C-3 through C-12 from which the averages of electrical measurements were derived), it can be seen that there was a general overall decrease in electronegative potential and current and an increase in resistance with time. Considerable periodic variations also occurred in electrical measurements in addition to the general trends. These variations were frequently associated with rainfall which initially decreased electrical resistance and thus increased electronegative potential and current flow. Continued rainfall sometimes had the opposite effects by leaching from the soil conductive, water soluble salts introduced by salt spray.

Appropriately selected columns of Table 8 were treated statistically on a computer to obtain the correlation coefficients listed in Table 9. A correlation of 1 would indicate a perfect direct correlation, while one of -1 would indicate a perfect inverse correlation, and 0 would indicate no correlation. For single rods, there was only a fair overall correlation of percent weight loss and electronegative potential measurements. A similar correlation for the coupled rods was much better. Percent weight loss and electrical resistance did not correlate well with either the single or coupled rods. As might be expected from the previous discussion of Table 6, the best overall correlation occurred between the average current of couples and the weight loss of the rod coupled to the mild steel rod. There was only a fair inverse correlation between weight loss of mild steel rods and that of the rods coupled to them. Obviously there were many factors that contributed to irregularities in measurements and consequently less correlation. Two factors not previously discussed are localized variations in the soil substrate at different depths and locations in the test plot and localized anode and cathode areas on the same rod, especially on the galvanized rods and those with cladding.

Table 8. Data

|                                                                                                                                                                                               |                                                          | Single Rods                                                          |                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|------------------|--|
| Rod <sup>a</sup>                                                                                                                                                                              | Percent Weight<br>Loss                                   | Average<br>Electronegative<br>Potential<br>(v)                       | Av<br>Resi<br>(c |  |
|                                                                                                                                                                                               |                                                          |                                                                      |                  |  |
| м                                                                                                                                                                                             | 6.3                                                      | 1.539                                                                | 1                |  |
| 1                                                                                                                                                                                             | 2.6                                                      | 0.618                                                                | 1                |  |
| G                                                                                                                                                                                             | 1.5                                                      | 0.845                                                                | •                |  |
| Z                                                                                                                                                                                             | 1.2                                                      | 1.065                                                                | 1                |  |
| A                                                                                                                                                                                             | 0.92                                                     | 0.776                                                                |                  |  |
| N                                                                                                                                                                                             | 0.68                                                     | 0.509                                                                |                  |  |
| C                                                                                                                                                                                             | 0.52                                                     | 0.331                                                                |                  |  |
| B<br>S                                                                                                                                                                                        | 0.29<br>0.2                                              | 0.516                                                                |                  |  |
| I<br>G<br>Z<br>A<br>N<br>C<br>B<br>S                                                                                                                                                          | 6.11<br>2.4<br>1.2<br>1.6<br>1.2<br>0.93<br>0.63<br>0.53 | 0.664<br>0.728<br>1.068<br>0.776<br>0.554<br>0.353<br>0.407<br>0.133 | 1                |  |
| ·····                                                                                                                                                                                         | r                                                        | T                                                                    |                  |  |
| I.                                                                                                                                                                                            | 7.61                                                     | 0.647                                                                | 1                |  |
| G                                                                                                                                                                                             | 2.2                                                      | 0.685                                                                | 2                |  |
| Z                                                                                                                                                                                             | 4.11                                                     | 1.048                                                                | 1                |  |
| A                                                                                                                                                                                             | 2.3                                                      | 0.768                                                                |                  |  |
| N                                                                                                                                                                                             | 1.9                                                      | 0.537                                                                | 1                |  |
| C<br>B <sup>e</sup>                                                                                                                                                                           | 1.4<br>0.87                                              | 0.328                                                                |                  |  |
| S                                                                                                                                                                                             | 1.4                                                      | 0.080                                                                |                  |  |
| <sup>a</sup> M = magnesium Z = zinc<br>I = mild steel A = aluminum<br>G = galvanized steel N = Ni-Resist cast in<br><sup>b</sup> Minus indicates flow of current from, rather than to, mild s |                                                          |                                                                      |                  |  |

<sup>c</sup> The stainless-clad steel rods were exposed for only 5 years.

| Single Rods Couple of One Rod to One Mild Steel Rod |                            |                      |                     |              | <u></u>                    |                      |                              |  |
|-----------------------------------------------------|----------------------------|----------------------|---------------------|--------------|----------------------------|----------------------|------------------------------|--|
|                                                     | Average<br>Electronegative | Average              | Percent Weight Loss |              | Average<br>Electronegative | Average              | Average                      |  |
| ss                                                  | Potential<br>(v)           | Resistance<br>(ohms) | Mild Steel<br>Rod   | Other<br>Rod | Potential<br>(v)           | Resistance<br>(ohms) | Current <sup>b</sup><br>(ma) |  |
| 1-Year Rods                                         |                            |                      |                     |              |                            |                      |                              |  |
| 3                                                   | 1.539                      | 10.1                 | 0.85                | 55.8         | 1.147                      | 3.1                  | 38.6                         |  |
| 6                                                   | 0.618                      | 11.1                 | -                   | -            | -                          | - 1                  | -                            |  |
| 5                                                   | 0.845                      | 8.3                  | 1.2                 | 7.4          | 0.651                      | 4.5                  | 8.7                          |  |
| 2                                                   | 1.065                      | 11.3                 | 0.88                | 6.88         | 0.924                      | 3.9                  | 16.8                         |  |
| 92                                                  | 0.776                      | 8.1                  | 1.0                 | 3.72         | 0.725                      | 2.8                  | 9.3                          |  |
| 68                                                  | 0.509                      | 12.7                 | 2.4                 | 0.26         | 0.559                      | 7.8                  | -2.1                         |  |
| 52                                                  | 0.331                      | 10.9                 | 4.83                | 0.38         | 0.550                      | 4.0                  | -10.5                        |  |
| 29                                                  | 0.516                      | 5.7                  | 2.3                 | 0.1          | 0.608                      | 6.5                  | -0.4                         |  |
| 2                                                   | 0.092                      | 5.6                  | 2.5                 | 0.05         | 0.581                      | 5.7                  | -1.9                         |  |
| 3-Year Rods                                         |                            |                      |                     |              |                            |                      |                              |  |
| 11                                                  | 0.664                      | 6.0                  | _                   | -            | -                          | _                    | _                            |  |
| 4                                                   | 0.728                      | 7.8                  | 2.85                | 6.24         | 0.660                      | 4.4                  | 4.5                          |  |
| 2                                                   | 1.068                      | 17.2                 | 0.82                | 13.0         | 0.966                      | 4.0                  | 12.3                         |  |
| 6                                                   | 0.776                      | 5.5                  | 0.53                | 20.5         | 0.733                      | 2.7                  | 9.6                          |  |
| 2                                                   | 0.554                      | 8.3                  | 7.46                | 0.35         | 0.632                      | 3.2                  | -2.6                         |  |
| .93                                                 | 0.353                      | 5.1                  | 14.8                | 0.35         | 0.584                      | 2.6                  | -11.7                        |  |
| .63                                                 | 0.407                      | 5.7                  | 5.56                | 0.1          | 0.584                      | 19.9                 | -0.9                         |  |
| .53                                                 | 0.133                      | 5.3                  | 6.79                | 0.1          | 0.621                      | 3.2                  | -1.4                         |  |
| 7-Year Rods                                         |                            |                      |                     |              |                            |                      |                              |  |
| .61                                                 | 0.647                      | 10.0                 |                     | _            | -                          | _                    | _                            |  |
| .2                                                  | 0.685                      | 29.1                 | 5.98                | 5.66         | 0.639                      | 6.5                  | 2.2                          |  |
| .11                                                 | 1.048                      | 16.5                 | 0.2                 | 29.66        | 0.915                      | 6.4                  | 10.4                         |  |
| .3                                                  | 0.768                      | 8.1                  | 0.38                | 22.7         | 0.793                      | 4.0                  | 5.0                          |  |
| .9                                                  | 0.537                      | 13.4                 | 10.9                | 0.29         | 0.616                      | 4.6                  | -1.5                         |  |
| .4                                                  | 0.328                      | 8.2                  | 25.9                | 0.73         | 0.549                      | 3.9                  | -10.5                        |  |
| . <del>.</del><br>.87                               | 0.322                      | 7.5                  | 6.84                | 0.58         | 0.549                      | 16.9                 | -1.4                         |  |
| .4                                                  | 0.080                      | 8.5                  | 11.8                | 0.05         | 0.596                      | 3.8                  | -1.5                         |  |

### Table 8. Data Summary for 1-, 3-, and 7-Year Rods at NCEL

Z = zinc

A = aluminum N = Ni-Resist cast iron C = copper-clad stee!

B = stainless-clad steel

S = stainless steel

flow of current from, rather than to, mild steel rod.

j steel rods were exposed for only 5 years.

teel

| Measurements Correlated                                                                          | Correlation Coefficient for |             |             |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------|-------------|-------------|--|--|
|                                                                                                  | 1-Year Rods                 | 3-Year Rods | 7-Year Rods |  |  |
| Percent weight loss and average electronegative potential of single rods                         | 0.815                       | 0.297       | 0.508       |  |  |
| Percent weight loss and average resistance of single rods                                        | 0.277                       | -0.101      | 0.532       |  |  |
| Percent weight loss of single rods and<br>of these rods coupled to one mild steel rod            | 0.996                       | 0.482       | 0.872       |  |  |
| Percent weight losses of mild steel<br>rods and of other rods coupled to them                    | -0.445                      | -0.740      | -0.695      |  |  |
| Percent weight loss of coupled rods other than mild steel and average electronegative potentials | 0,876                       | 0.687       | 0.977       |  |  |
| Percent weight loss of coupled rods other than<br>mild steel and average resistance of couples   | -0.471                      | -0.305      | -0.176      |  |  |
| Percent weight loss of coupled rods other than mild steel and average current of couples         | 0.896                       | Q.818       | 0.833       |  |  |

### Table 9. Correlation of Corrosion Measurements

All test ground rods met the requirements of the National Electrical Code<sup>7</sup> Section 250-83 that (1) the rods be driven to a depth of at least 8 feet, (2) the iron or steel rods be at least 5/8 inch in diameter, and (3) the nonferrous rods be at least 1/2 inch in diameter. Section 250-84 of the National Electrical Code requires that ground rods have a resistance to ground, as measured for single rods in this report, not to exceed 25 ohms. When the resistance is not this low, it is necessary to connect in parallel two or more rods. It is also suggested that resistive measurements be repeated at intervals of a few months to determine whether conditions have changed due to corrosion of the rods or drying out of the soil. Resistances measured at the Point Mugu site for 1 year were usually less than 1 ohm. At the NCEL site resistance measurements were several times higher than those of Point Mugu, but usually less than 25 ohms. Notable exceptions (resistances above 25 ohms), especially after several years of exposure, were single rods of zinc, magnesium, and galvanized steel.

NAVFAC Specification 9Yi<sup>8</sup> specifies that grounding shall be in accordance with the National Electrical Code except for the following values of resistance to ground:

25

# PRECEDING PAGE MANK

| For grounding generating stations                                                                                                                                                                                                                                                                    | 1  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| For grounding main substations, and switching stations on primary distribution system                                                                                                                                                                                                                | 3  |
| For grounding metal enclosures of electrical and electrically operated equipment and cable sheaths of connecting cables                                                                                                                                                                              | 3  |
| For grounding systems to which portable electrical utilization equipment or appliances are connected .                                                                                                                                                                                               | 3  |
| For grounding secondary distribution systems<br>(neutral), non-current carrying metal parts<br>associated with distribution systems, and enclosures<br>of electrical equipment not normally within reach<br>of other than authorized and qualified electrical<br>operating and maintenance personnel | 10 |
| For individual transformer and lightning arrester grounds on a distribution system                                                                                                                                                                                                                   | 10 |
| For equipment not covered above                                                                                                                                                                                                                                                                      | 10 |

When grounding rods are used because buried metal water piping is not practicable, NAVFAC Specification 9Yi states that the rods shall be of the sectional type and of cone-pointed, copper-encased steel or solid copper.

The previously stated criteria for a superior ground rod were that it (1) could be easily driven, (2) would have adequate corrosion resistance, and (3) would not cause serious galvanic corrosion to metals or pipes buried nearby. The magnesium, aluminum, zinc, and galvanized steel rods do not meet requirement 2. The copper-clad steel rod does not meet requirement 3. The Ni-Resist cast iron, type 302 stainless steel, and type 304 stainless-clad steel rods meet requirements 2 and 3, but the Ni-Resist cast iron rods are difficult to drive because of their inherent brittleness. The necessity of making pilot holes and backfilling would contribute appreciably to costs associated with their use. Types 302 and 304 stainless steel are quite similar in composition. Other stainless steels in the 300 series might have performed well, but types 302 and 304 are among the least expensive and are more readily available. Thus type 302 stainless steel and type 304 stainless-clad steel ground rods are the logical choices based on results of the NCEL study. In 1965, the city of Los Angeles Department of Water and Power initiated a program using type 304 stainless-clad steel ground rods for such installations as transformer mounts. Mild steel ground rods could be used satisfactorily if they were cathodically protected. Thus magnesium anodes were installed to protect mild steel ground rods at Bethlehem Steel's Fairless Works near Morristown, Pennsylvania.<sup>9</sup> It would appear more economical for general use, however, to utilize rods requiring no cathodic protection.

### FINDINGS AND CONCLUSIONS

1. The relative orders of percent weight loss of different types of ground rods were quite similar after 1, 3, and 7 years.

2. Weight losses per year decreased with time.

3. Weight losses of selected coupled rods calculated from current measurements compared well with the actual weight losses.

4. For the coupled rods, an increased weight loss for one rod was accompanied with a decreased weight loss for the other.

5. Doubling the number of cathode rods in a couple increased the weight loss of the anode, while doubling the number of anode rods decreased the weight loss of each anode rod.

6. There was a general overall decrease in electronegative potential and current measurements and an increase in resistance measurements with time.

7. The direct correlation between percent weight loss and electronegative potential was only fair for the single rods but good for the coupled rods.

Percent weight loss and resistance measurements did not correlate well.

9. There was a good direct correlation between current measurements and weight loss of rods coupled to mild steel.

10. Magnesium, aluminum, zinc, mild steel, and gelvanized steel rods did not have the desired corrosion resistance.

11. Copper-clad steel rods caused appreciable galvanic corrosion to coupled mild steel rods.

-12. Mi-Resist cast iron rade performed well; but required special installationprocedures because of their brittleness.

13. Type 302 stainless steel and type 304 stainless-clad steel rods performed the best overall and are the best choice of the different types of ground rods tested.

### RECOMMENDATIONS

It is recommended that type 302 stainless steel or type 304 stainlessclad steel rods be used throughout the Naval Shore Establishment where driven ground rods are required. Appendix A

# WEIGHT CHANGES FOR TEST RODS

|                                                             |                          | NCEL Site             |                       |                          | Point Mugu Site       |                       |  |
|-------------------------------------------------------------|--------------------------|-----------------------|-----------------------|--------------------------|-----------------------|-----------------------|--|
| Description of Test Rod                                     | Initial<br>Weight<br>(g) | Weight<br>Loss<br>(g) | Weight<br>Loss<br>(%) | Initial<br>Weight<br>(g) | Weight<br>Loss<br>(g) | Weight<br>Loss<br>(%) |  |
| Single mild steel rod                                       | 3,751                    | 96                    | 2.6                   | 3,776                    | 52                    | 1.4                   |  |
| Single galvanized steel rod                                 | 3,629                    | 56                    | 1.5                   | 3,662                    | 90                    | 2.5                   |  |
| Single copper-clad steel rod                                | 3,449                    | 18                    | 0.52                  | 3,381                    | 19                    | 0.56                  |  |
| Single Ni-Resist cast iron rod                              | 3,819                    | 26                    | 0.68                  | 3,560                    | 14                    | 0.39                  |  |
| Single type 302 stainless steel rod                         | 3,822                    | 7                     | 0.2                   | 3,803                    | 2                     | 0.05                  |  |
| Single 6061-T6 aluminum rod                                 | 1,303                    | 12                    | 0,92                  | 1,306                    | 4                     | 0.3                   |  |
| Single AZ31B magnesium rod                                  | 857                      | 54                    | 6.3                   | 852                      | a                     | a                     |  |
| Single high purity zinc rod                                 | 3,416                    | 41                    | 1.2                   | 3,412                    | 40                    | 1.2                   |  |
| Single type 304 stainless-clad steel rod                    | 3,785                    | 11                    | 0.29                  | _                        | -                     | -                     |  |
| Galvanized rod coupled to mild steel rod                    | 3,713                    | 138                   | 3.72                  | 3,619                    | 94                    | 2.6                   |  |
| Copper-clad steel rod coupled to mild steel rod             | 3,442                    | 13                    | 0.38                  | 3,392                    | 6                     | 0.2                   |  |
| Ni-Resist cast iron rod coupled to mild steel rod           | 3,814                    | 10                    | 0.26                  | 3,557                    | 4                     | 0.1                   |  |
| Stainless steel rod coupled to mild steel rod               | 3,832                    | 2                     | 0.05                  | 3,811                    | 2                     | 0.05                  |  |
| Aluminum rod coupled to mild steel rod                      | 1,307                    | 96                    | 7.4                   | 1,340                    | 20                    | 1.5                   |  |
| Magnesium rod coupled to mild steel rod                     | 849                      | 474                   | 55.8                  | 852                      | Ь                     | b                     |  |
| Zinc rod coupled to mild steel rod                          | 3.415                    | 235                   | 6.88                  | 3,419                    | 105                   | 3.07                  |  |
| Stainless-clad steel rod coupled to mild steel rod          | 3.783                    | · 5                   | 0.1                   | -                        | _                     | _                     |  |
| Mild steel rod coupled to galvanized rod                    | 3,748                    | 46                    | 1.2                   | 3,782                    | 33                    | 0.87                  |  |
| Mild steel rod coupled to copper-clad steel rod             | 3,749                    | 181                   | 4.83                  | 3,776                    | 65                    | 1.7                   |  |
| Mild steel rod coupled to Ni-Resist cast iron rod           | 3.754                    | 90                    | 2.4                   | 3.777                    | 86                    | 2.3                   |  |
| Mild steel rod coupled to stainless steel rod               | 3.752                    | 95                    | 2.5                   | 3,775                    | 76                    | 2.0                   |  |
| Mild steel rod coupled to aluminum rod                      | 3,743                    | 38                    | 1.0                   | 3,771                    | 37                    | 0.98                  |  |
| Mild steel rod coupled to magnesium rod                     | 3,748                    | 32                    | 0.85                  | 3,768                    | Ь                     | b.00                  |  |
| Mild steel rod coupled to zinc rod                          | 3,749                    | 33                    | 0.88                  | 3,781                    | 29                    | 0.72                  |  |
| Mild steel rod coupled to stainless-clad steel rod          | 3,660                    | 86                    | 2.3                   | -                        | -                     | _                     |  |
| Copper-clad steel rod coupled to two mild steel rods        | 3,461                    | 12                    | 0.35                  | 3,393                    | 5                     | 0.2                   |  |
| Magnesium rod coupled to two mild steel rods                | 856                      | 592                   | 69.2                  | 847                      | Ь                     | b.2                   |  |
| Zinc rod coupled to two mild steel rods                     | 3.413                    | 284                   | 8.32                  | 3,415                    | 161                   | 4.72                  |  |
| One of two mild steel rods coupled to copper-clad steel rod | 3,764                    | 144                   | 3.83                  | 3,769                    | 70                    | 1.9                   |  |
| One of two mild steel rods coupled to copper-clad steel rod | 3,757                    | 134                   | 3.57                  | 3,775                    | 86                    | 2.3                   |  |
| One of two mild steel rods coupled to magnesium rod         | 3,746                    | 30                    | 0.80                  | 3,781                    | 60<br>b               | 2.3<br>b              |  |
| One of two mild steel rods coupled to magnesium rod         | 3,752                    | 33                    | 0.88                  | 3,768                    | Ь                     | ь<br>Б                |  |
| One of two mild steel rods coupled to magnesium rod         | 3,743                    | 33                    | 0.88                  | 3,782                    | 61                    | 1.6                   |  |
| One of two mild steel rods coupled to zinc rod              | 3,751                    | 27                    | 0.85                  | 3,785                    | 37                    | 0.98                  |  |
|                                                             | 3,701                    | 21                    | 0.72                  | 3,700                    | 37                    | 0.90                  |  |

### Table A-1. Weight Changes for 1-Year Ground Rods

<sup>#</sup> Rod removed after 4 months,

<sup>b</sup> Rod removed after 8 weeks.

| Description of Text Rod                                        | Initi <b>al</b><br>Weight<br>(g) | Weight<br>Loss<br>(g) | Weight<br>Loss<br>(%) |
|----------------------------------------------------------------|----------------------------------|-----------------------|-----------------------|
| Single mild steel rod                                          | 3,749                            | 229                   | 6.11                  |
| Single galvanized steel rod                                    | 3,625                            | 86                    | 2.4                   |
| Single copper-clad steel rod                                   | 3,451                            | 324                   | 0.93                  |
| Single Ni-Resist cast iron roa                                 | 3,536                            | 44                    | 1.2                   |
| Single type 302 stainless steel rod                            | 3,833                            | 20                    | 0.53                  |
| Single 6061-T6 aluminuta rod                                   | 1,302                            | 21                    | 1.6                   |
| Single AZ31B magnesium rod                                     | 851                              | c                     | c                     |
| Single high purity zinc rod                                    | 3,423                            | 42                    | 1.2                   |
| Single stainless-clad steel rod                                | 3,785                            | 24                    | 0.63                  |
| Galvanized rod coupled to mild stael rod                       | 3,702                            | 231                   | 6.24                  |
| Copper-clad steel rod coupled to mild steel rod                | 3,452                            | 12 <sup>d</sup>       | 0.35                  |
| Ni-Resist cast iron rod coupled to mild steel rod              | 3,992                            | 14                    | 0.35                  |
| Ni-Resist cast iron rod coupled to mild steel rod <sup>e</sup> | 3,595                            | 34                    | 0.95                  |
| Stainless steel rod coupled to mild steel rod                  | 3,795                            | 5                     | 0.1                   |
| Aluminum rod coupled to mild steel rod                         | 1,300                            | 266                   | 20.5                  |
| Magnesium rod coupled to mild steel rod                        | -                                | i –                   |                       |
| Zinc rod coupled to mild steel rod                             | 3,413                            | 442                   | 13.0                  |
| Stainless-clad steel rod coupled to mild steel rod             | 3,783                            | 5                     | 0.1                   |
| Mild steel rod coupled to getvanized steel rod                 | 3,760                            | 107                   | 2.85                  |
| Mild steel rod coupled to copper-clad steel rod                | 3,761                            | 556                   | 14.8                  |
| Mild steel rod coupled to Ni-Resist cast iron rod              | 3,740                            | 279                   | 7.46                  |
| Mild steel rod coupled to Ni-Resist cast iron rode             | 3,744                            | 183                   | 4,89                  |
| Mild steel rod coupled to stainless steel rod                  | 3,735                            | 255                   | 6.79                  |
| Mild steel rod coupled to aluminum rod                         | 3,749                            | 20                    | 0.53                  |
| Mild steel rod coupled to magnesium rod                        | _                                | -                     | -                     |
| Mild steel rod coupled to zinc rod                             | 3,760                            | 31                    | 0.82                  |
| Mild steel rod coupled to stainless-clad steel rod             | 3,728                            | 207                   | 5.56                  |
| Copper-clad steel rod coupled to two mild steel rods           | 3,481                            | 118                   | 0.32                  |
| Magnesium rod coupled to two mild steel rods                   | _                                | L _                   | _                     |
| Zinc rod coupled to two mild steel rods                        | 3,417                            | 687                   | 20.1                  |
| One of two mild steel rods coupled to copper-clad steel rod    | 3,744                            | 384                   | 10.3                  |
| One of two mild steel rods coupled to copper-clad steel rod    | 3,757                            | 503                   | 13.4                  |
| One of two mild steel rods coupled to magnesium rod            | _                                | -                     | _                     |
| One of two mild steel rods coupled to magnesium rod            | _                                | _                     |                       |
| One of two mild steel rods coupled to zinc rod                 | 3,751                            | 34                    | 0.91                  |
| One of two mild steel rods coupled to zinc rod                 | 3.752                            | 29                    | 0.77                  |

Table A-2. Weight Changes for 3-Year Ground Rods at NCEL

<sup>a</sup> 1-3/16 inch of steel core lost by corrosion,

<sup>b</sup> Original rod broken during driving; this rod of different manufacture.

<sup>c</sup> Rod only partially recovered.

d 1/4 inch of steel core lost by corrosion.

<sup>e</sup> Similar to single Ni-Resist cast iron rod described in b.

f Previously removed from test,

\$ 1/8 inch of steel core lost by corrosion,

| Single mild steel rod                                                        | (g)   | •     | Loss  |
|------------------------------------------------------------------------------|-------|-------|-------|
|                                                                              |       | (g)   | (%)   |
|                                                                              | 3.746 | 285   | 7.61  |
| Single asivanized steel rod                                                  | 3,650 | 82    | 2.2   |
| Single copper-clad steel rod                                                 | 3.451 | 49    | 1.4   |
| Single Ni-Resist cast iron rod                                               | 3,859 | 72    | 1.9   |
| Single type 302 stainless steel rod                                          | 3.849 | 52    | 1.4   |
| Single 6061-T6 aluminum rod                                                  | 1,310 | 30    | 2.3   |
| Single AZ31B magnesium rod                                                   | 855   | 4     | 25.0  |
| Single high purity zinc rod                                                  | 3.457 | 142   | 4.11  |
| Single type 304 stainless-clad steel rod <sup>C</sup>                        | 3,781 | 33    | 0.87  |
| Galvanized steel rod coupled to mild steel rod                               | 3,710 | 210   | 5.66  |
| Copper-clad steel rod coupled to mild steel rod                              | 3.432 | 25    | 0.73  |
| Ni-Resist cest iron rod coupled to mild steel rod                            | 3,816 | 11    | 0.29  |
| Stainless steel rod coupled to mild steel rod                                | 3,845 | 2     | 0.05  |
| Aluminum rod coupled to mild steel rod                                       | 1.302 | 295   | 22.7  |
| Magnesium rod coupled to mild steel rod <sup>d</sup>                         | .,    | -     |       |
| Zinc rod coupled to mild steel rod                                           | 3.405 | 1,010 | 29.66 |
| Stainless-clad steel rod coupled to mild steel rod <sup>c</sup>              | 3,782 | 22    | 0.58  |
| Mild steel rod coupled to gelvenized steel rod                               | 3.693 | 221   | 5.98  |
| Mild steel rod coupled to copper-clad steel rod                              | 3.747 | 970   | 25.9  |
| Mild steel rod coupled to Ni-Resist cast iron rod                            | 3.766 | 412   | 10.9  |
| Mild steel rod coupled to steinless steel rod                                | 3.740 | 443   | 11.8  |
| Mild steel rod coupled to aluminum rod                                       | 3,697 | 14    | 0.38  |
| Mild steel rod coupled to magnesium rod <sup>d</sup>                         | -     |       | -     |
| Mild steel rod coupled to zinc rod                                           | 3.775 | 7     | 0.2   |
| Mild steel rod coupled to stainless-clad steel rod <sup>C</sup>              | 3.743 | 256   | 6.84  |
| Copper-clad steel rod coupled to two mild steel rods                         | 3,472 | 4     | 0.1   |
| Magnesium rod coupled to two mild steel rods <sup>d</sup>                    |       |       | -     |
| Zinc rod coupled to two mild steel rods                                      | 3,411 | 1.027 | 30.11 |
| One of two mild steel rods coupled to copper-clad steel rod                  | 3,769 | 649   | 17.2  |
| One of two mild steel rods coupled to copper-clad steel rod                  | 3.763 | 629   | 16.7  |
| One of two mild steel rods coupled to magnesium rod <sup>d</sup>             | -     | -     | ~     |
| One of two mild steel rods coupled to magnesium rod <sup>d</sup>             |       | -     |       |
| One of two mild steel rods coupled to zinc rod                               | 3,720 | 5     | 0,1   |
| One of two mild steel rods coupled to zinc rod                               | 3,693 | 4     | 0.1   |
| One of two stainless-clad steel rods coupled to mild steel rods <sup>c</sup> | 3,785 | 15    | 0,42  |
| One of two stainless-clad steel rods coupled to mild steel rods <sup>c</sup> | 3,784 | 22    | 0.58  |
| Mild steel rod coupled to two stainless-clad steel rods <sup>c</sup>         | 3.732 | 288   | 7.72  |

## Table A-3. Weight Changes for 7-Year Ground Rods at NCEL

<sup>a</sup> The 40-1/2 inches of rod recovered weighed 274 grams,

b The 40-1/2 inches of rod recovered had lost 25% of its weight.

<sup>c</sup> Five-year rods removed at same time 7-year rods were removed.

<sup>d</sup> Rods previously removed from test.

Appendix B

# ELECTRICAL MEASUREMENTS FOR SINGLE TEST RODS

Table B-1. Electrical Measurements for Single 1-Year Rods (NCEL)

| Test |                                                                        |        |        |                                                      |                                                            | Monthly M     | Monthly Meesurements          |                                                           |                          |        |        |        |         |
|------|------------------------------------------------------------------------|--------|--------|------------------------------------------------------|------------------------------------------------------------|---------------|-------------------------------|-----------------------------------------------------------|--------------------------|--------|--------|--------|---------|
| Rode | -                                                                      | 2      | e      | 4                                                    | 5                                                          | 9             | 7                             | 8                                                         | 6                        | 10     | 11     | 12     | Average |
|      |                                                                        |        |        |                                                      | , Pot                                                      | ential (volts | Potential (volts) to Cu/CuSO4 | s04                                                       |                          |        |        |        |         |
| -    | -0.618                                                                 | -0.599 | -0.596 | -0.587                                               | -0.597                                                     | -0.587        | -0.631                        | 1                                                         | -0.701                   | -0.625 | -0.622 | -0.635 | -0.618  |
| υ    | -1.020                                                                 | -1.085 | -0.882 | -0.827                                               | -0.772                                                     | -0.772        | -0.743                        | ;                                                         | -0.742                   | -0.741 | -0.733 | -0.985 | -0.845  |
| υ    | -0.397                                                                 | -0.370 | -0.329 | -0.330                                               | -0.336                                                     | -0,308        | -0.282                        | 1                                                         | -0.307                   | -0.353 | -0.315 | -0.320 | -0.331  |
| z    | -0.500                                                                 | -0.472 | -0.501 | -0.488                                               | -0.495                                                     | -0.481        | -0.532                        | 1                                                         | -0.518                   | -0.530 | -0.521 | -0.567 | -0.509  |
| s    | -0.055                                                                 | -0.087 | -0.061 | -0.078                                               | -0.106                                                     | -0.092        | -0.026                        | 1                                                         | -0.104                   | -0.137 | -0.150 | -0.118 | -0.092  |
| N    | -1,085                                                                 | -1.060 | -1.060 | -1.055                                               | -1.035                                                     | -1,050        | -1.100                        | 1                                                         | -1.060                   | -1.070 | -1.075 | -1.065 | -1.065  |
| ٩    | -0.792                                                                 | -0.773 | -0.765 | -0.759                                               | -0.793                                                     | -0.758        | -0.790                        | ۱                                                         | -0.770                   | -0.792 | -0.795 | -0.751 | -0.776  |
| 2    | -1,585                                                                 | -1.540 | -1.540 | -1.530                                               | -1.540                                                     | -1,525        | -1.535                        | 1                                                         | -1.520                   | -1.540 | -1.535 | -1.545 | -1.539  |
| 8    | -0.537                                                                 | -0.543 | -0.541 | -0.530                                               | -0.540                                                     | -0.519        | -0.525                        | -0.495                                                    | -0.523                   | -0.458 | 1      | -0.465 | -0.516  |
|      |                                                                        |        |        |                                                      | Be<br>Be                                                   | sistance to ( | Resistance to Ground (ohms)   | ms)                                                       |                          |        |        |        |         |
| _    | 12.1                                                                   | 13.1   | 12.0   | 12.7                                                 | 13.1                                                       | 13.0          | 7.4                           | I                                                         | 10.5                     | 10.8   | 12.2   | 5.1    | 11.1    |
| U    | 5.6                                                                    | 5.8    | 6.5    | 8.2                                                  | 8.9                                                        | 9.7           | 8.8                           | 1                                                         | 10.2                     | 11.3   | 11.2   | 5.5    | 8.3     |
| υ    | 10.2                                                                   | 11.0   | 11.6   | 12.8                                                 | 12.8                                                       | 13.8          | 9.1                           | 1                                                         | 11.9                     | 12.2   | 12.3   | 2.5    | 10.9    |
| z    | 10.9                                                                   | 11.7   | 12.1   | 13.9                                                 | 14.5                                                       | 15.6          | 11.0                          | I                                                         | 16.1                     | 16.7   | 16.2   | 1.9    | 12.7    |
| s    | 5.3                                                                    | 5.5    | 5.8    | 6.2                                                  | 6.2                                                        | 6.5           | 5.0                           | I                                                         | 6.9                      | 6.7    | 6.2    | 1.6    | 5.6     |
| N    | 10.6                                                                   | 11.8   | 12.2   | 12,9                                                 | 11.1                                                       | 12.8          | 8.8                           | I                                                         | 14.8                     | 14.7   | 12.2   | 2.6    | 11.3    |
| <    | 8.4                                                                    | 9.0    | 9.4    | 6.6                                                  | 9.4                                                        | 10.2          | 5.7                           | ł                                                         | 8.1                      | 8.6    | 8.5    | 2.2    | 8,1     |
| Z    | 10.1                                                                   | 10.8   | 11.8   | 12.6                                                 | 11.8                                                       | 13.0          | 7.6                           | 1                                                         | 9.4                      | 10.2   | 10.1   | 3.0    | 10.0    |
| 8    | 5.9                                                                    | 2.6    | 7.0    | 7.4                                                  | 7.4                                                        | 7.4           | 6.5                           | 7.1                                                       | 1.5                      | 2.0    | 1      | 2.0    | 5.7     |
|      | <pre># G = galvanized steel I = mild steel C = copper-clad steel</pre> |        |        | N = Ni-Resist cas<br>S - stainless steel<br>Z = zinc | N = Ni-Resist cast iron<br>S - stainless steel<br>Z = zinc | c             | W                             | A = atuminum<br>M = magnesium<br>B = stainless-clad steel | um<br>lum<br>-clad steel |        |        |        |         |
|      |                                                                        |        |        |                                                      |                                                            |               |                               |                                                           |                          |        |        |        |         |

Table B-2. Electrical Measurements for Single 1-Year Rods (Point Mugu)

| Test             |                                        |        |        |                          | _                                              | Monthly M     | Monthly Measurements          |                               |        |    |        |        |         |
|------------------|----------------------------------------|--------|--------|--------------------------|------------------------------------------------|---------------|-------------------------------|-------------------------------|--------|----|--------|--------|---------|
| tod <sup>4</sup> | 1                                      | 2      | 3      | 4                        | 5                                              | 9             | 7                             | 8                             | 6      | 10 | 11     | 12     | Average |
|                  |                                        |        |        |                          | Pot                                            | ential (volt: | Potential (volts) to Cu/CuSO4 | s04                           |        |    |        |        |         |
| -                | -0.706                                 | -0.679 | -0.661 | -0.671                   | -0.663                                         | -0.653        | -0.663                        | ł                             | -0.673 | I  | -0.555 | -0.440 | -0.636  |
| U                | -1.155                                 | -1.125 | -1.075 | -1.090                   | -1.075                                         | -1.070        | -1.068                        | I                             | -1.015 | ł  | -0.620 | -0.488 | -0.978  |
| υ                | -0.580                                 | -0.490 | -0.461 | -0.548                   | -0.531                                         | -0.506        | -0.470                        | I                             | -0.554 | 1  | -0.453 | -0.510 | -0.510  |
| z                | -0.610                                 | -0.603 | -0.567 | -0.585                   | -0.587                                         | -0.579        | -0.598                        | ł                             | -0.578 | I  | -0.597 | -0.600 | -0.590  |
| s                | -0.290                                 | -0.308 | -0.218 | -0.260                   | -0.268                                         | -0.147        | -0.250                        | I                             | -0.240 | ı  | -0.120 | -0.202 | -0.230  |
| N                | -1.182                                 | -1.136 | -1.125 | -1.095                   | -1.095                                         | -1.090        | -1.110                        | ł                             | -1.075 | I  | -1.085 | -1.075 | -1.104  |
| 4                | -0.853                                 | -0.826 | -0.808 | -0.834                   | -0.837                                         | -0.832        | -0.830                        | I                             | -0.817 | I  | -0.822 | -0.824 | -0.828  |
| Σ                | -1.630                                 | -1.610 | -1.560 | -1.580                   | I                                              | I             | I                             | I                             | 1      | I  | ł      | ł      | -1.595  |
| 8                | I                                      | 1      | 1      | 1                        | 1                                              | 1             | I                             | ł                             | 1      | ł  | ł      | I      | 1       |
|                  |                                        |        |        |                          | Re                                             | istance to (  | Resistance to Ground (ohms)   | ms)                           |        |    |        |        |         |
|                  | 0.52                                   | 0.55   | 0.56   | 0.39                     | 0.70                                           | 0.37          | 0.54                          | I                             |        | 1  | 10.5   | 6.5    | 0.59    |
| U                | 0.58                                   | 0.63   | 0.92   | 0.84                     | 0.68                                           | 0.67          | 0.79                          | 1                             | 1      | ł  | 1      | 30.1   | 4.40    |
| υ                | 0.52                                   | 0.48   | 0.50   | 0.44                     | 0.50                                           | 0.36          | 0.47                          | I                             | 1      | 1  | 0.37   | 0.34   | 0.44    |
| z                | 0.56                                   | 0.62   | 0.53   | 0.37                     | 0.59                                           | 0.35          | 0.59                          | I                             | I      | ١  | 0.42   | 0.41   | 0.49    |
| s                | 0.51                                   | 0.64   | 0.55   | 0.42                     | 0.61                                           | 0.41          | 0.69                          | I                             | 1      | 1  | 0.34   | 0.44   | 0.51    |
| N                | 0.50                                   | 0.64   | 0.78   | 0.98                     | 0.89                                           | 0.72          | 0.81                          | I                             | 1      | I  | 4.5    | 3.0    | 1.42    |
| <                | 0.69                                   | 0.57   | 09.0   | 0.49                     | 0.61                                           | 0.49          | 0.62                          | 1                             | 1      | ١  | 0.49   | 0.41   | 0.55    |
| Σ                | 0.66                                   | 0.84   | 0.84   | I                        | I                                              | I             | ł                             | 1                             | I      | I  | I      | I      | 0.78    |
| 8                | I                                      | 1      | 1      | I                        | 1                                              | I             | 1                             | I                             | 1      | I  | I      | ١      | 1       |
| 9<br>= 0<br>= 1  | G = galvanized steel<br>t = mild steel | Ŕ      |        | N = Ni-Re<br>S = stainle | N = Ni-Resist cast iron<br>S = stainlass steel | c             |                               | A = aluminum<br>M = manastium | Ę      |    |        |        |         |
|                  | C = mmerclari steel                    |        |        | 7 = 2 inc                |                                                |               |                               |                               |        |    |        |        |         |

Table B-3. Electrical Measurements for Single 3-Year Rods

First Year

| Test           |                    |             | •      |        |                                                | Monthly M     | Monthly Mesurements           | 5                            |        |        |        |        |         |
|----------------|--------------------|-------------|--------|--------|------------------------------------------------|---------------|-------------------------------|------------------------------|--------|--------|--------|--------|---------|
| a e            | 1                  | 2 ·         | 3      | 4      | 2                                              | 9             | 2                             | 8                            | 6      | 10     | 11     | 12     | Average |
|                |                    |             |        |        | Pot                                            | ential (volt: | Potential (volts) to Cu/CuSO4 | s04                          |        |        |        |        |         |
|                | -0.648             | -0.618      | -0.630 | -0.620 | -0.623                                         | -0.615        | -0.792                        | 1                            | -0.663 | -0.683 | -0.667 | -0.678 | -0.657  |
| /5             | -0.987             | -0.873      | -0.819 | -0.770 | -0.747                                         | -0.725        | -0.983                        | 1                            | -0.705 | -0.712 | -0.692 | -1.010 | -0.820  |
|                | -0.406             | -0.367      | -0.347 | -0.332 | -0.332                                         | -0.313        | -0.340                        | 1                            | -0.340 | -0.358 | -0.308 | -0.420 | -0.350  |
| -              | -0.548             | -0.507      | -0.512 | -0.538 | -0.550                                         | -0.540        | -0.559                        | -0.549                       | -0.597 | -0.595 | ł      | -0.590 | -0.553  |
|                | -0.267             | -0.230      | -0.261 | -0.250 | -0.151                                         | -0.253        | -0.052                        | 1                            | 0.024  | -0.061 | -0.035 | -0.137 | -0.153  |
| N              | -1.085             | -1.070      | .:.083 | -1.092 | -1.085                                         | -1.070        | -1.105                        | 1                            | -1.025 | -1.060 | -1.060 | -1.085 | -1.072  |
|                | -0.810             | -0.781      | -0.789 | -0.783 | -0.808                                         | -0.877        | -0.810                        | 1                            | -0.752 | -0.812 | -0.802 | -0.797 | -0.802  |
| ~              | -1.575             | -1.545      | -1,546 | -1.536 | -1.545                                         | -1.530        | -1.565                        | 1                            | -1.525 | -1.547 | -1.525 | -1.545 | -1.542  |
| -              | -0.526             | -0.542      | -0.550 | -0.540 | -0.548                                         | -0.591        | -0.543                        | -0.516                       | -0.560 | -0.510 | I      | -0.520 | -0.540  |
|                |                    |             |        |        | R.<br>B                                        | sistance to ( | Resistance to Ground (ohms)   | ms)                          |        |        |        |        |         |
|                | 5.7                | 5.7         | 7.7    | 9.6    | 6.5                                            | 9.4           | 7.0                           | I                            | 5.7    | 7.2    | 7.3    | 1.7    | 6.7     |
|                | 7.3                | 8.5         | 9.0    | 6.6    | 9.8                                            | 12.5          | 9.2                           | I                            | 10.3   | 10.7   | 10.4   | 4.3    | 9.3     |
|                | 5.7                | 5.8         | 6.4    | 6.8    | 7.0                                            | 7.5           | 4.6                           | 1                            | 5.4    | 5.9    | 6.1    | 1.8    | 5.7     |
| _              | 8.2                | <b>9</b> .3 | 8.2    | 10.2   | 9.0                                            | 8.5           | 6.9                           | 7.2                          | 1.8    | 21     | 1      | 2.0    | 6.6     |
|                | 6.3                | 6.3         | 6.4    | 6.9    | 6.6                                            | 7.4           | 4.6                           | 1                            | 6.7    | 1.7    | 1.7    | 1.8    | 6.1     |
| N              | 32.5               | 36.5        | 36.5   | 34.5   | 29.5                                           | 41.0          | 15.3                          | 1                            | 36.5   | 37.0   | 24.5   | 2.5    | 29.2    |
| _              | 6.3                | 6.0         | 6.7    | 7.2    | 6.9                                            | 7.7           | 5.2                           | I                            | 6.6    | 6.8    | 6.4    | 2.4    | 6.2     |
| -              | e,                 | 6.4         | 7.1    | 7.6    | 7.7                                            | 8.4           | 6.4                           | 1                            | 8.6    | 7.7    | 6.7    | 3.1    | 6.9     |
| _              | 8.8                | 7.3         | 6.0    | 6.4    | 6.5                                            | 6.6           | 5.3                           | 6.2                          | 1.4    | 1.8    | 1      | 1.8    | 5.1     |
|                |                    |             |        |        |                                                |               |                               |                              |        |        |        |        |         |
| 5              | c = gewenized stee | E.          |        |        | N = NHRESIST CAST ITON<br>S - statelene statel | c             |                               | A = aluminum<br>M = manadium | Ē      |        |        |        |         |
| incert child ( |                    |             |        |        |                                                |               | -                             |                              | E      |        |        |        |         |

Table B-4. Electrical Measurements for Single 3-Year Rods

Second Year

| Ĩ        |                   |        |        |             | -                   | Monthly M     | Monthly Measurements          |                |        |             |        |            |          |
|----------|-------------------|--------|--------|-------------|---------------------|---------------|-------------------------------|----------------|--------|-------------|--------|------------|----------|
| Rode     | -                 | 2      | 3      | 4           | 5                   | 9             | 7                             | 8              | 6      | 10          | 11     | 12         | año ma v |
|          |                   |        |        |             | Pot                 | ential (volta | Potential (volts) to Cu/CuSO4 | 50 <b>4</b>    |        |             |        |            |          |
| _        | 1                 | -0.700 | -0.672 | -0.670      | -0.678              | -0.678        | -0.672                        | -0.680         | -0.677 | -0.665      | -0.665 | -0.630     | -0.672   |
| <b>0</b> | 1                 | -0.697 | -0.087 | -0.673      | -0.675              | -0.700        | -0,690                        | -0.685         | -0.687 | -0.675      | -0.680 | -0.680     | -0.684   |
| υ        | 1                 | -0.305 | 0.441  | -0.305      | -0.300              | 0.340         | -0.345                        | -0.360         | -0.358 | -0.365      | -0.345 | SIE.0-     | -0.356   |
| z        | 1                 | 0.500  | -0.623 | -0.620      | -0.623              | -0.625        | 1                             | 1              | -0.565 | 0.540       | 1      | -0.513     | -0.587   |
| s        | 1                 | -0.193 | -0.130 | 0.133       | 0.144               | -0134         | 0,100                         | -0.107         | -0.047 | -0.085      | -0.103 | 0.130      | -0.120   |
| N        | 1                 | -1.110 | -1.100 | -1.080      | -1.082              | -1.100        | -1,085                        | -1.080         | -1.090 | -1.080      | -1.090 | -1.095     | -1.090   |
| <        | 1                 | 0.828  | -0.795 | 0,780       | -0.778              | .0.770        | -0.778                        | -0.795         | -0.798 | -0.785      | -0.790 | -0.780     | -0.789   |
| 2        | 1                 | -1.580 | -1.550 | -1.530      | -1.536              | -1.520        | -1.525                        | -1.525         | -1.540 | -1.530      | -1.520 | -1.500     | -1.532   |
| 8        | 1                 | -01510 | -0.525 | -0.441      | -0.337              | -0.327        | 1                             | ١              | -0.190 | -0.225      | 1      | -0.290     | -0.356   |
| ]        |                   |        |        |             | B                   | listance to ( | Resistance to Ground (ohms)   | S.F.           |        |             |        |            |          |
|          | ۱                 | 8.1    | 27     | 8.5         | 5.0                 | 4,5           | 8.8                           | 6.0            | 6.0    | 6.2         | 6.2    | 5.8        | 5.6      |
| <u>ں</u> | 1                 | 3      | 5,0    | 47          | 5.0                 | 7.0           | 7.3                           | 8.8            | 8.8    | 8.8         | 8.8    | 7.6        | 6.9      |
| 0        | 1                 | 1.7    | 28     | 9.1         | 1,8                 | 32            | 5.2                           | 0.0            | 6.2    | 6.3         | 6.5    | 6.2        | 4.3      |
| z        | 1                 | ຄະ     | 1.7    | 25          | 8,4                 | 4.4           | 6.6                           | 1              | 7.8    | <b>6</b> .3 | 1      | 13.7       | 5.9      |
| s        | ۱                 |        | 20     | 20          | 1.8                 | 3.2           | 5.3                           | 5.8            | 5.8    | 6.0         | 6.3    | 6.2        | 4.3      |
| N        | 1                 | 22     | 21     | 34          | E                   | 6.3           | 12.5                          | 15.0           | 16.8   | 16.8        | 16.8   | 14.3       | 10.0     |
| <        | 1                 | 22     | 3.8    | 25          | 24                  | 4.5           | 5.3                           | 5.6            | 5.7    | 5.6         | 80     | 5.8<br>(1) | 4.5      |
| 2        | 1                 | 30     | 20.0   | 32.0        | 38.0                | 30,0          | 39.0                          | 45.0           | 37.0   | 45.0        | 52.0   | 58.0       | 30.0     |
| 8        | 1                 | 20     | 1.4    | 1.2         | 3.0                 | 2.9           | 4.2                           | 1              | 4.7    | 6.9         | 1      | 10.0       | 4.1      |
|          | G = cohonizati se | 7      |        | N = NHR     | aist cast iro       | -             |                               | A = aluminum   | E      |             |        |            |          |
|          |                   |        |        | S = stainle | S = stainless steel | :             | -                             | M = magnesiurn | Cun    |             |        |            |          |
|          |                   | ]      |        |             |                     |               | •                             | ·<br>·<br>·    | •      |             |        |            |          |

1

37

....

Table B-5. Electrical Messurements for Single 3-Year Rods

Third Year

| , Maria                         |                          |        |        |                                      | -                                            | Monthly Meaurements           | Juemenues   |                              |                     |        |        |        | Average |
|---------------------------------|--------------------------|--------|--------|--------------------------------------|----------------------------------------------|-------------------------------|-------------|------------------------------|---------------------|--------|--------|--------|---------|
|                                 | -                        | 8      | e      | •                                    | ŝ                                            | Ð                             | 7           | 8                            | 0                   | 10     | 11     | 12     |         |
|                                 |                          |        |        |                                      | Pod                                          | Potential (volta) to Cu/CuSO4 | to Cu/Cu    | 504                          |                     |        |        |        |         |
|                                 | 0.607                    | -0.051 | 0.860  | -0.658                               | -0.667                                       | -0.666                        | -0.667      | -0.663                       | -0.680              | -0.666 | -0.677 | -0.682 | -0.663  |
|                                 | 0676                     | 0000   | 6.36   | -0.707                               | -0.787                                       | -0.76<br>0                    | 102.0       | -0.007                       | -0.751              | -0.704 | -0.720 | -0.720 | -0.679  |
| U                               | 0330                     | 0330   |        | 0.363                                | -0.368                                       | 0.346                         | -0.348      | -0.360                       | -0.368              | -0.330 | -0.395 | 0.380  | -0.363  |
|                                 | 0520                     | -0.533 | 0.637  | 0090                                 | 0.524                                        | I                             | -0.520      | -0.505                       | -0.500              | -0.473 | -0.580 | -0.521 | -0.522  |
|                                 | 0.155                    | 0.181  | 0220   | 0,119                                | ı                                            | 0.036                         | -0.076      | -0.083                       | -0.055              | -0.078 | -0.166 | -0.220 | -0.126  |
|                                 | -1.086                   | -1.000 | 0.622  | -1.105                               | -1.115                                       | -1.005                        | -1.075      | -1.070                       | -1.120              | -1.089 | -1.075 | -1.100 | -1.042  |
| _                               | 91.0                     | 0.783  | 0.00   | 0.700                                | -0.792                                       | -0.763                        | -0.760      | -0.758                       | -0.775              | -0.760 | -0.777 | -0.652 | -0.738  |
| _                               |                          |        | 124.1- | -1.530                               | -1.405                                       | -1.480                        | -1.400      | -1.530                       | -1.520              | -1.475 | -1.465 | -1.485 | -1.488  |
|                                 | 0.334                    | 0.421  | -0.365 | -0.372                               | -0.363                                       | 1                             | -0.310      | -0.325                       | -0.330              | -0.340 | -0.252 | -0.193 | -0.326  |
|                                 | ]                        |        |        |                                      |                                              | Resistance to Ground (ohms)   | Ground (oh  | 18                           |                     |        |        |        |         |
|                                 | 3                        | e.     | 99     | 6.0                                  | 5.0                                          | 5,0                           | 6.1         | 6.5                          | 4.8                 | 10.1   | 1.8    | 3.3    | 5.7     |
|                                 | 7.4                      | 7.6    | 7.3    | 8.5                                  | 7.6                                          | 8.7                           | 8.7         | 8.2                          | 7.5                 | 1.1    | 34     | 3.3    | 7.2     |
|                                 | 3                        | 67     | 3      | 7.4                                  | 6.5                                          | 5.0                           | <b>6.6</b>  | 5.7                          | 4.8                 | 5.3    | 1.7    | 2.1    | 5.3     |
|                                 | 12.6                     | 0.7    | 9.6    | 122                                  | 127                                          | 1                             | 14.0        | 13.0                         | 12.5                | 12.0   | 15.5   | 14.2   | 12.4    |
|                                 | 3                        | 8      | 3      | 5                                    | 3                                            | 5                             | 6.3         | 6.3                          | 4.2                 | 5.7    | 1.9    | 2.3    | 5.5     |
| N                               | 11.2                     | 127    | 12.0   | 14.6                                 | 11.6                                         | 21.0                          | 23.6        | 12.8                         | 8.0                 | 11.8   | 30     | 3.2    | 12.5    |
|                                 | 33                       | e.     | 62     | 3                                    | 5.3                                          | 7.2                           | 4.7         | 7.5                          | 5.2                 | 6.7    | 23     | 2.8    | 5.8     |
|                                 | 98                       | 200    | 32.0   | 51.0                                 | 47.0                                         | 80.0                          | 0.77        | 30.6                         | <b>0.0</b>          | 68.0   | 88.0   | 87.0   | 61.1    |
|                                 | 3                        | \$     | 6.2    | 93                                   | 7.4                                          | 1                             | <b>6</b> .9 | 10.1                         | 10.0                | 9.4    | 8.3    | 8.2    | 7.9     |
| dinevia<br>6 = 0<br>1<br>2<br>2 | phonized sta<br>this man | 3      |        | N = Ni-Resist co<br>S = staining day | N = Ni-Resist cast iron<br>S = staining stat | c                             |             | A = aluminum<br>M = manasiur | E                   |        |        |        |         |
| C = copper-cled                 |                          | 1      |        | Z = zinc                             |                                              |                               | -           | B = stalniets-clad stani     | <b>Includ</b> steel |        |        |        |         |

Table B-6. Electrical Measurements for Single 7-Year Rods

First Year

| Ŧ    |                                                       |        |        |                                                    |                                                      | Monthly M    | Monthly Mesurements           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |        | Average |
|------|-------------------------------------------------------|--------|--------|----------------------------------------------------|------------------------------------------------------|--------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|---------|
| Rode | •                                                     | 2      | e      | Ŧ                                                  | 2                                                    | Q            | 7                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | 10     | 11     | ;2     |         |
|      | -                                                     | -      |        |                                                    | Pot                                                  | ential (volt | Potential (volts) to Cu/CuSO4 | s04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |        |         |
|      | 0.628                                                 | 0624   | 0.604  | 0.607                                              | 0.619                                                | 0.620        | -0.050                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.661 | -0.662 | -0.662 | -0.663 | -0.637  |
|      | 1.006                                                 | 1180-  | 1060   | 0.840                                              | -0.826                                               | 0.700        | -0.877                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.788 | -0.764 | -0.751 | -1.020 | -0.870  |
| υ    | 0.40                                                  | 0.380  | 0.360  | 0.360                                              | 040.0-                                               | 0.346        | -0.383                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.360 | -0.330 | -0.351 | -0.417 | -0.364  |
| _    | 0520                                                  | 0200   |        | 0.40                                               | -0.508                                               | -0.501       | -0.577                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.547 | -0.530 | -0.538 | -0.595 | -0.536  |
|      | 0.157                                                 | 0,156  | 0.124  | -0.017                                             | -0.120                                               | 0.175        | -0.110                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.019 | -0.075 | -0.063 | -0.113 | -0.102  |
|      | -1.080                                                | -1.000 | -1.030 | -1.036                                             | -1.030                                               | -1.025       | -1.045                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.030 | -1.005 | -1.080 | -1.080 | -1,046  |
|      | 0820                                                  | 5130-  | 0,766  | -0.799                                             | -0.803                                               | -0.790       | -0.800                        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.787 | -0.793 | -0.812 | -0.793 | -0.801  |
|      | -1.800                                                | -1.500 | -1.540 | 905.1.                                             | -1.546                                               | -1.536       | -1.545                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.536 | -1.540 | -1.566 | -1.566 | -1.548  |
| -    | 0.560                                                 | 0.546  | 0.560  | 0.540                                              | -0.561                                               | -0.540       | -0.560                        | -0.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.571 | -0.570 | I      | -0.548 | -0.549  |
| ſ    |                                                       |        | -      |                                                    |                                                      |              | Resistance to Ground (ohms)   | and the second s |        |        |        |        |         |
|      | 8.3                                                   | 83     | 3      | 3                                                  | 8.1                                                  | 9.0          | 6                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.8    | 6      | 5      | 1.6    | 8       |
| (8   | 9                                                     | 8.7    | 11.4   | 10.0                                               | 17.5                                                 | 19.5         | 19.8                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.5   | 23.0   | 23.5   | 5.4    | 16.2    |
| 4.   | 3                                                     | 3      |        | 7.6                                                | 7.5                                                  | 8.4          | 5                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2    | 7.5    | 7.6    | 1.6    | 6.6     |
|      | 92                                                    | 3      | 8.0    | 9.7                                                | 0.0                                                  | 12.5         | 5.7                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.4    | 6.     | 9.4    | 1.6    | 8.3     |
| 5    | 0.2                                                   | 7.2    | 5.C    | 82                                                 | 8.0                                                  | 8.9          | 5.5                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.4    | 7.5    | 7.2    | 1.5    | 6.8     |
| •••  | 152                                                   | 16.6   | 17.6   | 18.3                                               | 16.7                                                 | 20.5         | 14.6                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.2   | 17.7   | 16.8   | 31     | 15.6    |
|      | 5                                                     | 3      | 3      | 7.3                                                | 7.1                                                  | 8.0          | 6.3                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.6    | 7.6    | 7.2    | 2.1    | 6.5     |
| -    | 3                                                     | 3      | 7.4    | 7.8                                                | 7.9                                                  | 8.9          | 6.6                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.2    | 8.7    | 8.8    | 32     | 7.5     |
| -    | 3                                                     | 7.2    | 5.5    | 13.4                                               | 6.3                                                  | 6.3          | 4.8                           | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4    | 1.8    | 1      | 1.8    | 5.7     |
| 379  | G = gahenizad su<br>1 - mild saut<br>C = concercial a |        |        | N = Ni-Realst Ca<br>S = stainleas stee<br>Z = sinc | = Ni-Resist cast iron<br>= stainless steel<br>= sion | 5            |                               | A = aluminum<br>M = mgnasium<br>8 = staloter-carl ster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |        |        |         |

Table B-7. Electrical Measurements for Single 7-Yeer Rods

Second Year

| 2     3     4     5     6     7     8     9       2     3     4     5     6     7     8     9       2     3     4     5     6     7     8     9       2     3     4     5     6     7     8     9       2     2     2     2     2     2     0     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2     2     2     2     2     2     2     2       2 <th>9         10         11           0.6667         -0.640         -0.630         -0.630           0.6667         -0.670         -0.690         -0.690           0.311         -0.515         -0.630         -0.296           0.515         -0.515         -0.296         -0.296           0.516         -0.515         -0.296         -0.296           0.516         -0.516         -0.296         -0.296           0.516         -0.516         -0.296         -0.296           0.516         -0.516         -0.296         -0.296           0.516         -0.516         -0.296         -0.296           0.1050         -1.050         -1.096         -0.776           0.1500         -1.520         -1.1510         -1.1510</th> <th>12<br/>12<br/>12<br/>12<br/>12<br/>12<br/>12<br/>12<br/>12<br/>12</th> <th></th> | 9         10         11           0.6667         -0.640         -0.630         -0.630           0.6667         -0.670         -0.690         -0.690           0.311         -0.515         -0.630         -0.296           0.515         -0.515         -0.296         -0.296           0.516         -0.515         -0.296         -0.296           0.516         -0.516         -0.296         -0.296           0.516         -0.516         -0.296         -0.296           0.516         -0.516         -0.296         -0.296           0.516         -0.516         -0.296         -0.296           0.1050         -1.050         -1.096         -0.776           0.1500         -1.520         -1.1510         -1.1510 | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Addrey         Addrey<                                                                                                                                                                                                                                                                                        | -0.640<br>-0.670<br>-0.670<br>-0.615<br>-0.690<br>-1.620<br>-1.620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                                                                                                                                     |
| Quero         Quero <th< td=""><td>0.640<br/>-0.670<br/>-0.670<br/>-0.615<br/>-0.305<br/>-0.305<br/>-0.305<br/>-0.305<br/>-0.780<br/>-1.520</td><td></td><td></td></th<>                                                                                                                                                                               | 0.640<br>-0.670<br>-0.670<br>-0.615<br>-0.305<br>-0.305<br>-0.305<br>-0.305<br>-0.780<br>-1.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                                                                                                                                     |
| -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56         -1.56 <th< td=""><td></td><td>8<br/>7</td><td>0.650<br/>0.679<br/>0.534<br/>0.533<br/>0.108<br/>0.108<br/>0.108<br/>0.108<br/>0.108<br/>0.108<br/>0.108<br/>0.108<br/>0.108<br/>0.108<br/>0.008</td></th<>                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8<br>7                                                   | 0.650<br>0.679<br>0.534<br>0.533<br>0.108<br>0.108<br>0.108<br>0.108<br>0.108<br>0.108<br>0.108<br>0.108<br>0.108<br>0.108<br>0.008 |
| 4.4         8.0         7.4           8.0         12.0         13.3         6.0         8.0           2.6         12.0         13.3         6.0         8.0           2.6         2.3         2.0         13.3         8.0         8.0           2.6         2.3         2.0         13.2         16.0         8.0           2.1         2.3         2.0         13.2         16.0         8.0           2.1         2.3         2.0         4.0         7.3         8.0         7.4           2.1         2.0         3.0         6.6         6.0         6.0         6.0         8.0           2.1         2.0         2.0         5.3         3.0         6.0         6.0         8.0           2.1         2.0         2.0         5.0         5.0         5.3         8.0         7.4         9.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                                                                                                     |
| 1.5         2.1         3.1         3.1         3.1         A.3         -           N = NL Reside cast bron         N = NL municum         N = NL municum         N = municum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61 60 62<br>75 240 240<br>75 75 75<br>80 83 83<br>83 83 83<br>65 65 68<br>112 65 68<br>112 65 68<br>128 128<br>128 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2002200                                                  | 4 - 5 4 5 6 5 7 1<br>0 4 - 5 4 5 6 6 5 1                                                                                            |

Table B-6. Electrical Measurements for Single 7-Year Rods

Third Year

| 6         7         8           Provential (volta) to Cu/CuSO.4         0.060         0.060           2         0.057         0.0600           2         0.057         0.0600           2         0.057         0.0600           2         0.057         0.0600           2         0.0555         0.0536           2         0.0576         0.0536           2         0.0565         0.0536           3         0.0763         0.0536           3         0.0766         0.0730           4         0.0766         0.0763           3         0.0765         0.0763           4         0.0766         1.0265           0         0.780         0.0783           0         0.780         0.0765           0         0.780         0.0783           0         0.780         0.1655           0         0.780         0.1655           15         0.1655         0.1955           15         0.1655         0.1955           15         0.1655         0.1955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 -0.206<br>-0.206<br>-0.2807<br>-0.206<br>-0.207<br>-0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                         | 12<br>0.682<br>0.682<br>0.688<br>0.688<br>0.666<br>0.666<br>0.666<br>0.666<br>0.666<br>0.666<br>0.666<br>0.666<br>0.666<br>0.648<br>0.666<br>0.648<br>0.666<br>0.666<br>0.666<br>0.666<br>0.668<br>0.666<br>0.666<br>0.668<br>0.666<br>0.668<br>0.666<br>0.666<br>0.668<br>0.666<br>0.668<br>0.666<br>0.668<br>0.668<br>0.668<br>0.668<br>0.668<br>0.668<br>0.668<br>0.668<br>0.668<br>0.668<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.678<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.738<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.7388<br>0.73888<br>0.73888<br>0.73888<br>0.73888<br>0.73888<br>0.7388888<br>0.73888<br>0.738888<br>0.738888<br>0.7388888<br>0.738888<br>0.738888 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| voltal to Cu/CuSO.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.066<br>0.563<br>0.563<br>0.563<br>0.282<br>0.283<br>0.283<br>0.283<br>0.283<br>0.283<br>0.283<br>0.283<br>0.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.675<br>-0.572<br>-0.360<br>-0.562<br>-0.155<br>-0.155<br>-0.783<br>-0.783<br>-0.783<br>-0.783 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 64         0.0607         0.06           00         0.0677         0.06           00         0.0677         0.06           00         0.0677         0.06           00         0.0678         0.01           00         0.0536         -0.05           00         0.0736         -0.05           00         -0.0736         -0.05           00         -0.0736         -0.05           00         -0.074         -0.05           00         -0.074         -0.05           00         -0.076         -1.03           00         -0.076         -1.03           00         -0.146         -0.19           00         -0.146         -0.19           00         -0.146         -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.066<br>0.282<br>0.282<br>0.543<br>0.543<br>0.040<br>1.510<br>0.783<br>0.783<br>0.783<br>0.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.675<br>-0.720<br>-0.350<br>-0.156<br>-0.156<br>-0.783<br>-0.783<br>-0.783<br>-0.783<br>-0.783 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 0.0677 0.00<br>0 0.0577 0.00<br>0 0.0306 0.031<br>0 0.0538 0.053<br>0 0.074 0.05<br>0 0.06 0.10<br>0 0.146 0.16<br>0 0.19<br>0 0.146 0.16<br>0 0.19<br>0 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.067<br>-0.282<br>-0.0543<br>-0.084<br>-0.080<br>-0.283<br>-0.283<br>-0.283<br>-0.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.720<br>-0.360<br>-0.542<br>-0.156<br>-1.046<br>-1.530<br>-0.783<br>-1.530                     | . '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20 0.31<br>25 0.336 0.31<br>26 0.074 0.053<br>20.797 0.70<br>2.795 1.035<br>1.1535 1.153<br>0.146 0.19<br>1.1536 1.153<br>1.1536 1.1536 1.153<br>1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1.1537 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.282<br>-0.543<br>-0.084<br>-0.080<br>-0.283<br>-0.383<br>-0.383<br>-0.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.360<br>-0.542<br>-0.156<br>-1.046<br>-1.046<br>-1.530<br>-1.530                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 25 0.538 0.53<br>76 0.074 0.05<br>76 -1.045 -1.03<br>20 0.797 0.79<br>15 -1.535 -1.52<br>0.145 0.19<br>10 Ground (ohma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.543<br>0.064<br>0.064<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.783<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.784<br>0.785<br>0.784<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.785<br>0.7850 | -0.542<br>-0.156<br>-0.156<br>-1.046<br>-1.530<br>-1.530                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 76 - 0.074 - 0.05<br>76 - 1.046 - 1.03<br>80 - 0.797 - 0.79<br>15 - 1.536 - 1.52<br>- 0.146 - 0.19<br>10 Ground (ohme)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.084<br>-1.040<br>-0.783<br>-0.783<br>-0.383<br>-0.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.156<br>-1.046<br>-0.783<br>-0.783<br>-0.385<br>-0.385                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6 -1.046 -1.03<br>90 -0.797 -0.79<br>15 -1.636 -1.62<br>-0.146 -0.19<br>to Ground (ohme)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.040<br>0.783<br>1.510<br>-0.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.045<br>-0.783<br>-1.530<br>-0.385                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20 0.797 0.78<br>15 -1.636 -1.62<br>-0.146 -0.19<br>to Ground (ohme)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.783<br>1.510<br>-0.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.783<br>-1.530<br>-0.385                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15 -1.636 -1.62<br>-0.146 -0.19<br>to Ground (ohms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.510<br>-0.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.530<br>-0.385                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.146 -0.19<br>to Ground (ohme)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.386<br>-0.386                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| to Ground (ohma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.2                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.2                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                               | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5                                                                                              | 7.2 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.4                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nhe - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | morie<br>E De la Constante<br>E De l |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.7<br>6.0<br>6.0<br>6.0<br>5.9<br>13.2<br>13.2<br>10.5<br>13.2<br>10.5<br>8 - elun<br>M - mugu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.7 12.8 12.2<br>6.0 5.9 5.1<br>13.2 13.2 8.6<br>10.3 10.5 10.3<br>A = atuminum<br>M = magnasium<br>B = stainjoos-clad stoel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < ž œ                                                                                            | 128 122<br>6.9 5.1<br>13.2 8.6<br>13.2 8.6<br>13.2 8.6<br>13.2 10.3<br>A = eluminum<br>M = magnesium<br>B = stainlees cled steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

١,

;

諸語

Table B-9. Electrical Measurements for Single 7-Year Rods

Fourth Year

| ł                                       |                       |         |        |             |                     | MOUTINY MERSURATING | ราเมลมเอากรษ                  |                          |             |        |                  |        |             |
|-----------------------------------------|-----------------------|---------|--------|-------------|---------------------|---------------------|-------------------------------|--------------------------|-------------|--------|------------------|--------|-------------|
|                                         | -                     | 2       | ε      | 4           | 5                   | 9                   | 7                             | 8                        | 6           | 10     | :                | 12     | afie lave   |
| 1                                       |                       |         |        |             | Pot                 | entiai (volts       | Potentiai (volts) to Cu/CuSO4 | 04                       |             |        |                  |        |             |
|                                         | -                     | 0.680   | 0.680  | -0.718      | -0.700              | -0.700              | -0.711                        | 1                        | 1           | -0.680 | -0.673           | i      | -0.692      |
| . (*                                    | 1                     | -0.672  | -0.695 | -0.772      | -0.700              | -0,687              | -0.727                        | ł                        | 1           | -0.640 | -0.855           | I      | -0.693      |
|                                         | 1                     | -0.313- | -0.338 | -0.475      | -0.400              | -0.390              | -0.380                        | 1                        | 1           | -0.297 | -0.251           | 1      | -0.355      |
| 7                                       | 1                     | -0.568  | -0.572 | -0.606      | -0.597              | -0.592              | -0.602                        | ł                        | 1           | -0.550 | -0.535           | 1      | -0.577      |
| .,,                                     | I                     | -0.176  | -0.183 | -0.180      | -0.214              | -0.149              | -0.177                        | 1                        | 1           | -0.058 | -0.046<br>-0.046 | 1      | -0.147      |
|                                         | I                     | -1.075  | -1.080 | -1.095      | -1.050              | -1.050              | -1.075                        | 1                        | 1           | -1.015 | -1.030           | •      | -1.058      |
| i 4                                     |                       | 0.800   | -0.815 | -0.821      | -0.795              | -0.772              | -0.790                        | 1                        | i           | -0.738 | -0.737           | 1      | -0.783      |
|                                         | i                     | -1545   | -1.555 | -1.545      | -1.508              | -1.495              | -1.495                        | 1                        | 1           | -1.450 | -1.450           | 1      | -1.505      |
| 8                                       | -0.257                | -0.297  | -0.198 | -0.177      | 0.169               | -0.173              | -0.167                        | -0.193                   | -0.228      | -0.267 | -0.245           | -0.218 | 0.219       |
| ]                                       |                       |         |        |             | ĕ                   | sistance to (       | Resistance to Ground (ohms)   | ns)                      |             |        |                  |        |             |
| Γ                                       | •                     | 4.1     | 2.5    | 2.0         | 3.0                 | 4.7                 | 4.7                           | 6.5                      | 1           | 7.7    | 15.4             | ł      | 5.6         |
| (1)                                     |                       | 12.2    | 10.2   | 7.3         | 11.4                | 15.1                | 16.5                          | 29.0                     | 1           | 26.5   | 83               | I      | 17.5        |
| 0                                       | 1                     | 21      | 22     | 1.6         | 2.6                 | 4.2                 | 4.3                           | 6.7                      | i           | 8.4    | 11.2             | I      | 4.8         |
| z                                       | I                     | 21      | 2.4    | 1.7         | 2.8                 | 5.0                 | 5.0                           | 7.4                      | ł           | 9.6    | 11.3             | I      | <b>5</b> .3 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | I                     | 7.1 -   | 1.9    | 1.4         | 2.2                 | 3.4                 | 3.4                           | 4.9                      | I           | 6.6    | 8.9              | 1      | 3.8         |
| N                                       | I                     | 6.5     | 6.5    | 5.2         | 6.1                 | 8.7                 | 8.9                           | 12.6                     | I           | 16.2   | 21.3             | 1      | 10.2        |
| 4                                       | ١                     | 2.8     | 30     | 2.2         | 3.0                 | 4.2                 | 4.2                           | 6.6                      | 1           | 7.3    | 9.4              | 1      | 7.7         |
| Z                                       | 1                     | 9.2     | 6.5    | 5.2         | 6.1                 | 8.7                 | 17.3                          | 23.5                     | I           | 25.5   | 26.2             | I      | 14.2        |
| •                                       | 9.3                   | 5.3     | 6.7    | 8.2         | 8.7                 | 8.9                 | 9.7                           | 10.7                     | 11.2        | 10.8   | 10.2             | 1      | 8.8         |
| ]<br>;<br>;;                            | G = calvarized steel  | je je   |        | N = Nj-Re   | sist cast iro       | c                   |                               | A = aluminu              | Ę           |        |                  |        |             |
|                                         | I = mild steel        |         |        | S = stainle | S = stainless steel |                     | -                             | M = magnesium            | m           |        |                  |        |             |
| 8<br>=<br>U                             | C = copper-clad steel | teel    |        | Z = zinc    |                     |                     | -                             | B = stainless-clad steel | -clad steel |        |                  |        |             |

Table B-10. Electrical Measurements for Single 7-Year Rods

.

.

;

Fifth Year

| Test                                            |                                                                 |           |        |                                                       | -                                                          | Monthly M     | Monthly Measurements          |                                                   |                             |                                           |                                           |                                           |                                           |
|-------------------------------------------------|-----------------------------------------------------------------|-----------|--------|-------------------------------------------------------|------------------------------------------------------------|---------------|-------------------------------|---------------------------------------------------|-----------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| sod #                                           | 1                                                               | 2         | 6)     | 4                                                     | 5                                                          | 9             | 2                             | 8                                                 | 6                           | 10                                        | 11                                        | 12                                        | Average                                   |
|                                                 |                                                                 |           |        |                                                       | Pot                                                        | ential (volta | Potential (volts) to Cu/CuSO4 | 304                                               |                             |                                           |                                           |                                           |                                           |
| _                                               | 0.650                                                           | -0.650    | -0.650 | -0.717                                                | -0.695                                                     | -0.688        | i                             | -0.677                                            | -0.675                      | -0.660                                    | -0.525                                    | -0.615                                    | -0.663                                    |
| ى                                               | -0.633                                                          | -0.648    | -0.667 | -0.683                                                | -0.697                                                     | -0.690        | 1                             | 0.692                                             | -0.635                      | -0.630                                    | -0.646                                    | -0.637                                    | -0.859                                    |
| ບ                                               | -0.233                                                          | -0.250    | -0.305 | -0.469                                                | -0.475                                                     | -0.448        | i                             | -0.300                                            | -0.284                      | -0.273                                    | -0.227                                    | -0.213                                    | -0.316                                    |
| z                                               | -0.532                                                          | -0.527    | -0.522 | -0.611                                                | -0.644                                                     | -0.625        | I                             | -0.542                                            | -0.576                      | -0.520                                    | -0.485                                    | -0.477                                    | -0.561                                    |
| s                                               | 0.032                                                           | 0.00      | -0.102 | -0.109                                                | -0.105                                                     | -0.085        | I                             | 8.0                                               | -0.021                      | -0.010                                    | -0.001                                    | -0.006                                    | -0.007                                    |
| N                                               | -1.055                                                          | -1.055    | -1.055 | -1.065                                                | -1.040                                                     | -1.025        | I                             | -1.015                                            | -1.020                      | -1.030                                    | -1.020                                    | -1.015                                    | -1,036                                    |
| <                                               | -0.735                                                          | -0.739    | -0.769 | -0.792                                                | -0.785                                                     | -0.778        | I                             | -0.760                                            | -0.722                      | -0.715                                    | -0.710                                    | -0.714                                    | -0.747                                    |
| <u>۔</u>                                        | -1.455                                                          | -1.455    | -1.460 | -1.465                                                | -1.460                                                     | -1.475        | ١                             | -1.480                                            | -1.445                      | -1.435                                    | -1.420                                    | -1.425                                    | -1.452                                    |
| 8                                               | -0.293                                                          | -0.297    | -0.261 | -0.302                                                | I                                                          | -0.259        | -0.068                        | -0.322                                            | -0.382                      | -0.273                                    | -0.278                                    | I                                         | -0.273                                    |
|                                                 |                                                                 |           |        |                                                       | Re                                                         | sistance to ( | Resistance to Ground (ohms)   | ms)                                               |                             |                                           |                                           |                                           |                                           |
| -                                               | 24.5                                                            | 19.5      | 6.7    | 1.8                                                   | 5.8                                                        | 17.6          | 1                             | 37.0                                              | 8.5                         | 9.1                                       | 10.3                                      | 15.3                                      | 14.2                                      |
| U                                               | 32.0                                                            | 29.5      | 23.5   | 25.5                                                  | 27.5                                                       | 29.0          | 1                             | 31.5                                              | 31.0                        | 31.5                                      | 32.5                                      | 41.9                                      | 30.5                                      |
| υ                                               | 14.8                                                            | 10.3      | 6.1    | 7.7                                                   | 8.4                                                        | 10.2          | ١                             | 12.3                                              | 9.7                         | 10.4                                      | 11.7                                      | 14.9                                      | 10.6                                      |
| z                                               | 14.9                                                            | 14.4      | 9.7    | 8.8                                                   | 10.3                                                       | 11.4          | 1                             | 13.9                                              | 16.5                        | 17.0                                      | 18.5                                      | 13.7                                      | 13.6                                      |
| s                                               | 12.5                                                            | 10.0      | 5.0    | 7.9                                                   | 9.5                                                        | 8.8           | 1                             | 10.1                                              | 31.0                        | 31.5                                      | 32.5                                      | 41.9                                      | 18.2                                      |
| N                                               | 28.5                                                            | 21.2      | 13.8   | 17.6                                                  | 18.4                                                       | 18.7          | 1                             | 19.2                                              | 20.7                        | 21.2                                      | 23.6                                      | 21.8                                      | 20.4                                      |
| <                                               | 11.6                                                            | 11.7      | 6.2    | 11.4                                                  | 11.7                                                       | 11.3          | I                             | 11.2                                              | 11.4                        | 11.1                                      | 11.1                                      | 10.8                                      | 10.9                                      |
| Z                                               | 29.0                                                            | 24.5      | 32.5   | 32.5                                                  | 31.0                                                       | 31.5          | I                             | 32.0                                              | 32.5                        | 33.5                                      | 33.5                                      | 32.4                                      | 31.3                                      |
| 8                                               | 4.6                                                             | 6.1       | 6.8    | 9.7                                                   | 6.4                                                        | 7.2           | 14.3                          | 14.9                                              | 15.0                        | 14.5                                      | 13.6                                      | 1                                         | 10.3                                      |
| G = galvanize<br>I = mild steel<br>C = copper-c | G = galvanized steel<br>1 = mild steel<br>C = copper-clad steel | -<br>     |        | N = Ni-Resist cas:<br>S = stainless steel<br>Z = zinc | N = Ni-Resist cast iron<br>S = stainless steel<br>Z = zinc | e             |                               | A = aluminum<br>M = magnesiun<br>R = stainless-cl | Im<br>lum<br>clad steel     |                                           |                                           |                                           |                                           |
| l = mild<br>C = copp                            | steel<br>ber-clad st                                            | <b>66</b> |        | S = stainle<br>Z = zinc                               | ist steel                                                  |               |                               | - 41 <sup>-</sup>                                 | M = magnes<br>R = stainless | M = magnesium<br>R = stainless clad steel | M = magnesium<br>R = stainiets clad steel | M = magnesium<br>R = stainless clad steel | M = magnesium<br>R = stainless-clad stoel |

N.

Table B-11. Electrical Measurements for Single 7-Year Rods

Sixth Year

|                                        |                       |        |                                                |                           | Monthly M                     | Monthly Messurements |                               |             |        |        |        |         |
|----------------------------------------|-----------------------|--------|------------------------------------------------|---------------------------|-------------------------------|----------------------|-------------------------------|-------------|--------|--------|--------|---------|
|                                        | 2                     | 3      | 4                                              | S                         | 9                             | ~                    | 80                            | 6           | 10     | 11     | 12     | Average |
|                                        |                       |        |                                                | Pot                       | Potential (voits) to Cu/CuSO4 | s) to Cu/Cu:         | 50 <b>4</b>                   |             |        |        |        |         |
| _                                      | -0.630                | -0.628 | -0.722                                         | -0,710                    | -0.695                        | -0.701               | -0.715                        | -0.710      | -0.705 | -0.678 | -0.656 | -0.681  |
| _                                      | -0.657                | -0.653 | -0.675                                         | -0.687                    | 0.695                         | -0.714               | -0.697                        | -0.635      | -0.625 | -0.643 | -0.056 | -0.665  |
| _                                      | -0.255                | -0.298 | -0.457                                         | -0.464                    | -0.454                        | -0.465               | -0.374                        | -0.279      | -0.215 | -0.203 | -0.246 | -0.329  |
| _                                      | -0.473                | -0.503 | -0.619                                         | -0.656                    | -0.637                        | -0.613               | -0.607                        | -0.625      | -0.510 | -0.478 | -0.403 | -0.556  |
| _                                      | -0.025                | -0.013 | -0.013                                         | -0.014                    | -0.010                        | -0.037               | -0.015                        | -0.012      | 0.005  | 0.000  | -0.020 | -0.015  |
|                                        | -1.005                | -1.015 | -1.020                                         | -1.015                    | -1.025                        | -1.025               | -1.020                        | -1.025      | -1.030 | -1.015 | -1.010 | -1.019  |
| -                                      | -0.730                | -0.753 | -0.772                                         | -0.762                    | -0.769                        | -0.785               | -0.769                        | -0.729      | -0.725 | -0.718 | -0.731 | -0.747  |
|                                        | -1.435                | -1.450 | -1.460                                         | -1.450                    | -1.465                        | -1.460               | -1.465                        | -1.450      | -1.425 | -1.415 | -1,420 | -1.443  |
| -                                      | 1                     | 1      | I                                              | 1                         | 1                             | I                    | 1                             | 1           | I      | I      | I      | 1       |
|                                        |                       |        |                                                | Re                        | Resistance to Ground (ohms)   | Ground (oh           | (sm                           |             |        |        |        |         |
| -                                      | 10.8                  | 6.3    | 1.9                                            | 6,2                       | 6.8                           | 6.4                  | 7.2                           | 9.1         | 9.4    | 10.6   | 11.1   | 8.6     |
|                                        | 49.0                  | 51.0   | 57.0                                           | 62.0                      | 57.0                          | 62.0                 | 62.0                          | 59.0        | 63.0   | 62.0   | 67.0   | 58.6    |
|                                        | 11.8                  | 7.4    | 9.3                                            | 10.2                      | 17.1                          | 10.8                 | 14.1                          | 10.1        | 10.6   | 11.8   | 14.8   | 11.4    |
|                                        | 15.7                  | 13.2   | 11.7                                           | 14.8                      | 13.9                          | 13.2                 | 14.6                          | 16.8        | 17.5   | 18.8   | 13.9   | 14.9    |
|                                        | 10.3                  | 8.4    | 8.3                                            | 10.7                      | 9.2                           | 8.7                  | 11.3                          | 11.0        | 11.3   | 11.7   | 12.8   | 10.5    |
| _                                      | 19.3                  | 12.4   | 14.7                                           | 21.2                      | 19.3                          | 16.8                 | 20.2                          | 21.2        | 22.6   | 24.7   | 22.3   | 19.7    |
|                                        | 11.3                  | 9.4    | 12.7                                           | 14.8                      | 15.2                          | 15.7                 | 15.1                          | 16.1        | 15.9   | 14.7   | 12.2   | 13.6    |
|                                        | 36.5                  | 41.5   | 42.7                                           | 30.9                      | 41.5                          | 47.0                 | 43.0                          | 46.0        | 49.0   | 53.0   | 52.7   | 43.0    |
|                                        | 1                     | I      | 1                                              | 1                         | 1                             | ı                    | I                             | 1           | I      | 1      | 1      | i       |
| G = galvanized steel<br>I = mild steel | ~                     |        | N = Ni-Resist cast iron<br>S = stainless steel | sist cast iro<br>as steel | Ę                             |                      | A = aluminum<br>M = magnesium | E E         |        |        |        |         |
| #                                      | C = copper-clad steel |        | Z = zinc                                       |                           |                               |                      | 3 = stainless                 | uclad steel |        |        |        |         |

March Street

Table B-12. Electrical Measurements for Single 7-Year Rods

.

•

Seventh Year

| st    |                                                                                                |        |        |                                                       |                                                            | Monthly M                     | Monthly Measurements |                                                     |             |        |        |        |         |
|-------|------------------------------------------------------------------------------------------------|--------|--------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------|----------------------|-----------------------------------------------------|-------------|--------|--------|--------|---------|
| Roda  | -                                                                                              | 2      | °      | 4                                                     | 2                                                          | 9                             | ٤                    | 8                                                   | 6           | 10     | 11     | 12     | Average |
|       |                                                                                                |        |        |                                                       | Pot                                                        | Potential (volts) to Cu/CuSO4 | s) to Cu/Cu(         | 50 <b>4</b>                                         |             |        |        |        |         |
|       | -0.625                                                                                         | -0.610 | -0.613 | -0.588                                                | -0.685                                                     | -0.500                        | -0.739               | -0.380                                              | -0,232      | -0.418 | -0.608 | -0.550 | -0.545  |
| υ     | -0.649                                                                                         | -0.647 | -0.554 | -0.625                                                | -0.675                                                     | -0.185                        | -0.272               | -0.694                                              | -0.667      | -0.680 | -0.669 | -0.665 | -0.581  |
|       | -0.287                                                                                         | -0.305 | -0.313 | -0.232                                                | -0.477                                                     | -0.199                        | -0.259               | -0.310                                              | -0.261      | -0.238 | -0.259 | -0.261 | -0.283  |
|       | -0.482                                                                                         | -0.475 | -0.517 | -0.459                                                | -0.593                                                     | -0.195                        | -0.458               | -0.542                                              | -0.520      | -0.405 | -0.504 | -0.560 | -0.475  |
|       | -0.068                                                                                         | -0.082 | -0.064 | -0.068                                                | -0.015                                                     | I                             | -0.046               | -0.059                                              | -0.119      | -0.065 | -0.052 | -0.002 | -0.058  |
|       | -1.015                                                                                         | -1,010 | -1.010 | -1.000                                                | -1.005                                                     | -1.650                        | -1.125               | -1.390                                              | -1.030      | -1.020 | -1.050 | -1.030 | -1.111  |
|       | -0.747                                                                                         | -0.753 | -0.768 | -0.720                                                | -0.815                                                     | -0.480                        | -0.644               | -0.750                                              | -0.739      | -0.742 | -0.743 | -0.750 | -0.720  |
| _     | -1.410                                                                                         | -1.400 | -1.415 | -1.410                                                | -1.395                                                     | -1.640                        | -1.478               | -1.440                                              | -1.410      | -1.400 | -1.410 | -1.390 | -1.433  |
|       | I                                                                                              | ı      | I      | i                                                     | I                                                          | ł                             | ι                    | 1                                                   | ł           | 1      | I      | I      | I       |
|       |                                                                                                |        |        |                                                       | Re                                                         | Resistance to Ground (ohms)   | Sround (oh           | ms)                                                 |             |        |        |        |         |
|       | 1                                                                                              | 12.5   | 6.9    | 11.2                                                  | 11.1                                                       | 17.5                          | 13.0                 | 17.5                                                | 30.5        | 100.0  | 18.2   | 40.0   | 25.3    |
|       | I                                                                                              | 17.0   | 18.3   | 26.0                                                  | 57.0                                                       | 60.0                          | 45.0                 | 49.0                                                | 49.0        | 52.0   | 49.0   | 45.0   | 42.5    |
|       | ł                                                                                              | 6.2    | 7.7    | 9.1                                                   | 10.5                                                       | 16.0                          | 12.0                 | 14.6                                                | 15.8        | 17.5   | 17.4   | 13.8   | 12.8    |
|       | I                                                                                              | 6.1    | 9.4    | 6.7                                                   | 14.2                                                       | 52.5                          | 30.0                 | 42.5                                                | 54.0        | 66.0   | 76.0   | 72.0   | 39.0    |
|       | l                                                                                              | 4.9    | 7.6    | 7.2                                                   | I                                                          | 9.6                           | 9.6                  | 13.2                                                | 10.5        | 15.8   | 15.5   | 12.0   | 10.6    |
|       | I                                                                                              | 16.3   | 10.1   | 19.7                                                  | 20.5                                                       | 15.6                          | 10.8                 | 45.0                                                | 46.0        | 47.5   | 44.0   | 39.0   | 28.6    |
| ۲     | 1                                                                                              | 5.9    | 6.2    | 7.9                                                   | 14.8                                                       | 12.0                          | 10.7                 | 13.5                                                | 13.2        | 13.5   | 12.5   | 11.5   | 11.0    |
| _     | ١                                                                                              | 160.0  | I      | 180.0                                                 | 41.0                                                       | 40.0                          | 35.0                 | 125.0                                               | 145.0       | 165.0  | 180.0  | 180.0  | 94.5    |
|       | I                                                                                              | 1      | 1      | ١                                                     | I                                                          | I                             | !                    | 1                                                   | 1           | I      | 1      | ł      | 1       |
| ő.E.S | <ul> <li>G = galvanized steel</li> <li>I = mild steel</li> <li>C = converving steel</li> </ul> |        |        | N = Ni-Resist cast<br>S = stainless steel<br>7 = vinc | N = Ni-Resist cast iron<br>S = stainless steel<br>7 = vinc | c                             | - 6. 0               | A = aluminum<br>M = magnesium<br>B - ctoiclose of a | E EN        |        |        |        |         |
| C = C | C = copper-clad steel                                                                          | teel   |        | Z = zinc                                              | 10010 000                                                  |                               | <b>م</b> ت .         | B = stainless-clad steel                            | ictad steel |        |        |        |         |

د ور سمر مقدوستی مترسد. در در معدر است. روه معمل مدیر از معمل معدر است.

÷,

•

45

ì

Appendix C

## ELECTRICAL MEASUREMENTS FOR COUPLED TEST RODS

| Coupled          |           |              |              |             | Mo         | onthly M   | easureme  | nts                 |                 |            | · · ·      |             | Average   |
|------------------|-----------|--------------|--------------|-------------|------------|------------|-----------|---------------------|-----------------|------------|------------|-------------|-----------|
| Rod <sup>a</sup> | 1         | 2            | 3            | 4           | 5          | 6          | 7         | 8                   | 9               | 10         | 11         | 12          | - Average |
|                  |           |              |              |             | Potenti    | ial (coupl | e to Cu/( | CuSO <sub>4</sub> ) |                 |            |            |             |           |
| G                | -0.830    | -0.724       | -0.671       | -0.613      | -0.620     | -0.600     | -0.639    | _                   | -0.605          | -0.617     | -0.603     | -0.639      | -0.651    |
| С                | -0.563    | -0.556       | -0.542       | -0.537      | -0.550     | -0.537     | -0.542    | -                   | -0.537          | -0.553     | -0.545     | -0,593      | -0,550    |
| Сþ               | -0.558    | -0.554       | -0.548       | -0.546      | -0.565     | -0.551     | -0.584    |                     | -0.538          | -0,560     | -0.558     |             | -0.556    |
| Ν                | -0.552    | -0.540       | -0.538       | -0.520      | -0.550     | -0.532     | -0.567    | -                   | -0,557          | -0.570     | -0.590     | -0.637      | -0,559    |
| S                | -0.598    | -0.579       | -0.573       | -0.567      | -0.583     | -0.572     | -0.590    | -                   | -0,560          | -0.567     | -0.567     | -0.642      | -0.581    |
| Z                | -0.910    | -0.907       | -0.893       | -0.890      | -0.899     | -0.882     | -0.952    | -                   | -0.937          | -0.936     | -0.965     | -0.995      | -0.924    |
| ZÞ               | -0.850    | -0.833       | -0.820       | -0.820      | -0.837     | -0.822     | -0.916    |                     | -0.862          | -0,863     | -0.835     |             | -0.845    |
| Α                | -0.741    | -0.721       | -0,712       | -0,704      | -0,713     | -0,700     | -0.738    |                     | -0.731          | -0.750     | -0.737     | -0.728      | -0.725    |
| M                | -1.335    | -1.308       | -1.295       | -1,280      | -1.290     | -1,270     | -1.235    | -                   | -1.155          | -0.913     | -0.837     | -0.708      | -1.147    |
| Mb               | -1.340    | -1.315       | -1,300       | -1,275      | -1.270     | -1,245     | -1.175    | -                   | -1.135          | -1.147     | -1.070     | -           | -1,229    |
| В                | -0.583    | -0.575       | -0.575       | -0.576      | -0.590     | -0.580     | -0.622    | -0.605              | -0.672          | -0.662     | -          | -0.648      | -0,606    |
| Bc               | -         | -            | -            | -           | -          | -          | -         | -                   | -               | -          | -          | -           | -         |
|                  |           |              |              | <b></b>     | Resis      | tance to ( | Ground (  | ohms)               |                 |            |            |             |           |
| G                | 3.3       | 3.8          | 4.2          | 7.4         | 4.5        | 4.4        | 4.4       |                     | 4.8             | 4.7        | _          | 3.1         | 4.5       |
| č                | 3.6       | 3.4          | 3.7          | 4.1         | 4.1        | 4.4        | 4.6       | -                   | 5.2             | 5.5        | 5.0        | 1.2         | 4.0       |
| ČÞ               | 3.5       | 3.4          | 3.6          | 3.9         | 3.9        | 4.2        | 3.6       | _                   | 5.0             | 5.0        | 4.3        | -           | 4.0       |
| Ň                | 6.9       | 7.3          | 8.0          | 8.9         | 8.9        | 10.0       | 6.2       | -                   | 9.3             | 10.6       | 8.9        | 1.3         | 7.8       |
| S                | 4.9       | 5.4          | 5.9          | 6.3         | 6.2        | 6.3        | 4.8       | _                   | 7.1             | 7.5        | 7.1        | 1.1         | 5.7       |
| Z                | 3.8       | 3.9          | 4,0          | 4.6         | 4.2        | 4,5        | 3.2       | _                   | 4.6             | 4.8        | 2.9        | 2.5         | 3.9       |
| Ζb               | 4.1       | 3.85         | 4.3          | 4.5         | 4.3        | 4.6        | 3.1       | -                   | 4.6             | 4.8        | 3.3        | 1           | 4.1       |
| Ā                | 2.7       | 2.6          | 2.8          | 2.9         | 3.0        | 3.1        | 2.6       | -                   | 3.3             | 3.4        | 3.2        | 1.1         | 2.8       |
| M                | 2.8       | 2.5          | 2.7          | 3.2         | 3.2        | 3.3        | 3.1       | _                   | 3.5             | 4.0        | 4.2        | 1.9         | 3.1       |
| Mb               | 3.3       | 3.4          | 3.6          | 4.1         | 3.8        | 4.1        | 4.0       | _                   | 5.5             | 5.5        | 4.3        | -           | 4.1       |
| B                | 4.1       | 4.3          | 4.4          | 13.0        | 13.9       | 4.3        | 5.8       | 3.7                 | -               | -          | -          | 5.3         | 6.5       |
| Bc               |           | -            |              |             | -          | -          | -         | -                   |                 | _          | -          | -           | -         |
|                  | ]         | LJ           |              | LCur        | rent Flor  | w Betwee   | n Couple  | ad Rods (           | (ma)            |            | L          |             |           |
|                  | 21.7      | 15.3         | 11.1         | 7.5         | 6.8        | 6.2        |           |                     | 4.5             | 4.8        | 5.8        | 3.0         | 8.7       |
| G<br>C           | 11.8      | 15.3         | 10.9         | 11.3        | 9.8        | 6.2<br>9.3 | · –       |                     | 4.5<br>8,1      | 4.0<br>9.9 | 10.3       | 3.0<br>11.9 | 10.5      |
| Cb               | 11.5      | 11.3         | 9.9          | 8.8         | 9.0<br>8.7 | 9.3<br>8,2 | _         | -                   | 6.1             | 9.9<br>6.1 | 8.3        |             | 8.8       |
| N                | 3.6       | 2.9          | 9.9<br>2.1   | 1.6         | 1.8        | 1.5        | -         | -                   | 1.6             | 1.5        | 0.3<br>1.9 | 2,2         | 2.1       |
| S                | 2.5       | 2.9          | 2.1          | 1.8         | 1.7        | 1.6        | -         | _                   | 1.3             | 1.5        | 1.9        | 1.8         | 1.9       |
|                  | 22.0      | 2.3<br>19.8  | 20.3         | 18.8        | 16.9       | 15.9       | -         | _                   | 12.0            | 12.5       | 1.9        | 14.0        | 16.8      |
| Z<br>Zb          | 25.3      | 23.5         | 20.3<br>22.8 | 20.8        | 21.8       | 19.1       |           | -                   | 16.1            | 12.5       | 19.4       | 14.0        | 20.7      |
| A                | 14,1      | 23.8<br>10.9 | 10.5         | 20.8<br>9.4 | 8.8        | 8.3        | 1 1       | _                   | 5.7             | 6.4        | 7.8        | 11.2        | 9.3       |
| M                | 64.2      | 51,8         | 55.0         | 48.2        | 46.7       | 44.7       | -         | -                   | 30.8            | 18.2       | 16.3       | 10.4        | 38.6      |
| Mp               | 71.6      | 68.6         | 65.7         | 57.3        | 55.5       | 51.5       | _         | _                   | 28.0            | 30.5       | 35.0       | <u> </u>    | 51.5      |
| B                | 0,6       | 0.5          | 0.3          | 0.4         | 0.1        | 0.2        | 0.5       | 0.8                 | 0.3             | 0.7        |            | 0.5         | 0.4       |
| Bc               |           | -            | -            |             | -          | -          | -         | -                   | -               | -          | -          | -           | -         |
|                  |           | L.,          |              | N           | Resist ca  | L          |           | •••                 | l               |            |            |             |           |
| a G = gal        | vanizeo : |              |              |             | nesist ca  |            |           | Z = z               | iric<br>Iuminum |            |            | magnesiu    |           |

## Table C-1. Electrical Measurements for 1-Year Coupled Rods (NCEL)

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

G = galvanized steel C = copper-clad steel

S = stainless steel

Z = zinc A = aluminum

M = magnesium B = stainless-clad steel

<sup>b</sup> One rod coupled to two mild steel rods.

<sup>c</sup> Two rods coupled to one mild steel rod.

| Coupled | <u> </u>       |          |          |        | M         | onthly Me  | easureme  | nts                 |         |    |        |            | Average |
|---------|----------------|----------|----------|--------|-----------|------------|-----------|---------------------|---------|----|--------|------------|---------|
| Rod     | 1              | 2        | 3        | 4      | 5         | 6          | 7         | 8                   | 9       | 10 | 11     | 12         | Average |
|         |                |          |          |        | Potenti   | al (coupl  | e to Cu/C | CuSO <sub>4</sub> ) |         |    |        |            |         |
| G       | -1.125         | -1.110   | -1,000   | -0.875 | -0.795    | -0.723     | -0,768    | ł                   | -0.710  | _  | -0.717 | -0.713     | -0.853  |
| С       | -0.692         | -0.683   | -0.658   | -0,662 | -0.670    | -0.657     | -0.678    | -                   | -0,690  | -  | -0,690 | -0.680     | -0.676  |
| Cp      | -0.692         | -0.683   | -0.648   | -0.660 | -0.663    | -0.664     | -0,680    | -                   | -0.650  |    | -0.675 | -0.681     | -0.669  |
| N       | -0.690         | -0.697   | -0.665   | -0,675 | -0.678    | -0.681     | -0.675    | -                   | -0.662  | -  | -0,687 | -0.680     | -0,667  |
| S       | -0,695         | -0.699   | -0.670   | -0.678 | -0.681    | -0.673     | -0.678    | _                   | -0.670  |    | -0.685 | -0.691     | -0.682  |
| Z       | -1.120         | -1.105   | -1.065   | -1,085 | -1.092    | -1.080     | -1.105    | _                   | -1.060  | -  | -1.080 | -1.065     | -1.085  |
| ZÞ      | -1.110         | -1.100   | -1.060   | -1.080 | -1.085    | -1.075     | -1.100    | _                   | -1.050  | -  | -0.807 | -1.060     | -1,052  |
| A       | -0.838         | -0.823   | -0.810   | -0.825 | -0.833    | -0.833     | -0.827    | -                   | -0.815  | -  | -0.844 | -0.813     | -0.826  |
| м       | -1.465         | -1.320   |          | -      |           | -          | _         | _                   | ~       | -  | -      | _          | -1.392  |
| Mb      | -1.455         | -1.280   |          | -      |           | _          |           |                     | -       | -  | - 1    | _          | -1,367  |
| в       | -              | -        |          | -      |           | -          | -         | -                   | -       |    | - 1    | _          | _       |
| Bc      |                | -        | ~        | -      | -         | -          | -         | -                   | -       |    | -      | -          | -       |
|         |                |          |          |        | Resis     | tance to ( | Ground (  | ohms)               |         |    |        |            |         |
| G       | 0.45           | 0.47     | 0.52     | 0.47   | 0.63      | 0.56       | 0.55      | _                   | _       |    | ~      | _          | 0.52    |
| Ċ       | 0.40           | 0.55     | 0.43     | 0.29   | 0.42      | 0.26       | 0.35      | _                   | -       |    | 0.42   | 0.23       | 0.37    |
| Cp      | 0.37           | 0.50     | 0.41     | 0.27   | 0.39      | 0.26       | 0.31      |                     |         | -  | 0.47   | 0.22       | 0.35    |
| Ň       | 0.44           | 0.46     | 0.42     | 0.57   | 0.55      | 0.26       | 0.54      | -                   | -       | -  | 0.78   | 0.27       | 0.47    |
| S       | 0.48           | 0.47     | 0.43     | 0.29   | 0.44      | 0.27       | 0.41      | _                   |         | _  | 0.30   | 0.18       | 0.36    |
| ž       | 0.44           | 0.77     | 0.53     | 0.47   | 0.60      | 0.59       | 0.58      | -                   | -       | -  | 1.25   | 0.47       | 0.63    |
| zb      | 0.36           | 0.50     | 0.48     | 0.38   | 0.52      | 0.36       | 0.36      |                     |         |    | 3.30   | 0.48       | 0.03    |
| Ā       | 0.47           | 0.47     | 0.44     | 0.32   | 0.48      | 0.29       | 0.30      | _                   | -       | _  | 0.33   | 1.40       | 0.50    |
| M       | 0.43           | 0.68     | 0.44     | - 0.52 | 0.40      | -          | -         | -                   |         | _  |        | 1.40       | 0.55    |
| Mb      | 0.38           | 0.56     | _        |        |           | _          |           | _                   |         | _  |        | _          | 0.00    |
| В       | 0.00           | 0.50     | -        |        |           | _          | -         |                     | -       | _  | 1      |            | 0.47    |
| Bc      | _              |          | _        |        |           | _          | _         |                     |         | _  | -      | -          |         |
|         |                |          |          |        |           |            |           |                     |         |    |        |            |         |
|         |                | <i>′</i> | <b>.</b> | Cur    | rent Flo  | w Betwee   | n Couple  | d Rods              | (ma)    |    |        |            |         |
| G       | 28.1           | 9.1      | 3.8      | 0.8    | 0,5       | 1.0        | 0.6       | -                   | 0.5     | -  | 0.5    | 0.4        | 4.5     |
| C       | .4.1           | 4.6      | 1.9      | 1.8    | 1.6       | 2.5        | 1.2       | -                   | 0.4     | -  | 0.4    | 0.3        | 1.9     |
| Cp      | 4.8            | 6.7      | 5.7      | 3.1    | 5.6       | 1.5        | 1.3       | -                   | 2.8     | -  | 1.5    | 1.0        | 3.4     |
| N       | 3.0            | 2.0      | 1.0      | 0.6    | 0,5       | 0.7        | 0.5       | - 1                 | 0.8     | -  | 0.3    | 0.3        | 1.0     |
| S       | 1.6            | 2.0      | 0.4      | 0.2    | 0.2       | 0.7        | 0.5       | -                   | 0,5     |    | 0.4    | 0.1        | 0.7     |
| z       | 34.0           | 11.0     | 6.4      | 3.4    | 4.7       | 4,1        | 2.4       | -                   | 5.6     |    | 2.0    | 3.7        | 7.7     |
| Zb      | 66,5           | 16.5     | 8.3      | 5.3    | 8.0       | 6.6        | 4.6       | -                   | 9.8     | -  | 4.3    | 10.4       | 14.0    |
| Α       | 3,6            | 5.2      | 4.4      | 1.8    | 2.2       | 1.2        | 0.48      |                     | 1.1     | -  | -      | 0.5        | 2.3     |
| M       | 1.1            | 0.5      | [ -      | -      | -         | -          | -         | -                   | -       | -  | -      | -          | J.8     |
| Mb      | 1,1            | 0.4      | - '      | -      | -         | -          | -         | -                   | -       | -  | -      | -          | 0.8     |
| в       |                | - '      |          | -      | -         | - '        | -         | -                   | -       | -  | -      | -          | -       |
| Bc      | <del>.</del> . | -        |          | -      | -         |            | -         |                     | -       | -  | -      | -          | -       |
| G = gal |                |          |          |        | Resist ca | st iron    |           | Z = 2               | inc     |    | M =    | magnesiu   | um.     |
| O - Val |                |          |          |        | nies etc. |            |           |                     | luminum |    |        | stainlass. |         |

## Table C-2. Electrical Measurements for 1-Year Coupled Rods (Point Mugu)

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

.

C = copper-clad steel

N = Ni-Resist cast iron S = stainless steel



B = stainless-clad steel

<sup>b</sup> One rod coupled to two mild steel rods.

<sup>¢</sup> Two rods coupled to one mild steel rod.

## Table C-3. Electrical Measurements for 3-Year Coupled Rods (First Year)

| Coupled          |        |        |        |         | Mo       | onthly Me  | asureme   | nts                 |        |        |        |        | Average  |
|------------------|--------|--------|--------|---------|----------|------------|-----------|---------------------|--------|--------|--------|--------|----------|
| Rod <sup>a</sup> | 1      | 2      | 3      | 4       | 5        | 6          | 7         | 8                   | 9      | 10     | 11     | 12     | AACION   |
|                  |        |        |        |         | Potenti  | al (coupl  | e to Cu/C | CuSO <sub>4</sub> ) |        |        |        |        |          |
| G                | -0.884 | -0,752 | -0,747 | -0.692  | -0.683   | -0.658     | -0.690    |                     | -0.698 | -0.648 | -0.645 | -0.667 | -0,706   |
| С                | -0.594 | -0.560 | -0,569 | -0.551  | -0.558   | -0.551     | -0.613    | _                   | -0.569 | -0,583 | -0.600 | -0.633 | -0.580   |
| Cp               | -0.608 | -0.571 | -0.578 | -0.560  | -0.571   | -0.561     | -0.637    | _                   | -0.582 | -0,596 | -0.613 | -0.650 | -0.593   |
| Ň                | -0.627 | -0.606 | -0.626 | -0.606  | -0.617   | -0.609     | -0.655    | -                   | -0.616 | -0,637 | -0.639 | -0.695 | -0.630   |
| S                | -0.631 | -0.610 | -0.631 | -0.625  | -0.631   | -0.623     | -0.650    |                     | -0.625 | -0.644 | -0.670 | -0.667 | -0.637   |
| z                | -0.910 | -0.877 | -0.895 | -0.873  | -0.890   | -0,877     | -0.920    | _                   | -0.845 | -0,850 | -0.951 | -1.035 | -0.902   |
| Z <sup>b</sup>   | -0.840 | -0.805 | -0.817 | -0,802  | -0.816   | -0.820     | -0,780    | -                   | -0.804 | -0.818 | -0.793 | -1.035 | -0.830   |
| Ā                | -0.777 | -0.735 | -0.747 | -0.727  | -0.742   | -0.730     | -0,760    | _                   | -0.734 | -0,747 | -0.733 | -0.764 | -0.745   |
| м I              | -0.777 | -0.700 | -0.747 | -0.727  | -0,7 -42 | -0.700     |           | _                   | _      | _      | -      | _      | -        |
| Mà               |        | _      |        |         | _        | _          | _         | _                   | _      | _      | -      | _      | _        |
| B                | -0,551 | -0.562 | -0.610 | -0.590  | -0.598   | -0.588     | -0.624    | -0.606              | -0.682 | -0.680 | ~      | -0.665 | -0.614   |
| Bc               | -0.001 | -0.502 | -0.010 | -0.030  | -0.000   | -0.000     | -0.024    | -0.000              | -0.002 | -      | -      | _      | _        |
|                  |        |        |        | L       |          |            | L         |                     |        |        |        |        | <u>_</u> |
|                  |        |        |        |         | Resis    | tance to ( | Ground (  | ohms)               |        |        |        |        |          |
| G                | 2.9    | 3.2    | 3.4    | 3.6     | 4.0      | 3.8        | 3.6       | -                   | 4.1    | 3.8    | 4.5    | 1.8    | 3.5      |
| С                | 2.5    | 2.6    | 2.5    | 2.9     | 2.9      | 3.0        | 2,1       |                     | 3.2    | 3.3    | 2.9    | 0.9    | 2.6      |
| Cp               | 2.1    | 2.2    | 2,6    | 2.5     | 2.5      | 2.9        | 1.8       |                     | 2.8    | 2.9    | 2.2    | 1.0    | 2.3      |
| Ν                | 3.0    | 3.1    | 3.4    | 3.5     | 3.5      | 3.9        | 2.5       | ~                   | 3.8    | 3.8    | 3.5    | 1.3    | 3.2      |
| S                | 2.8    | 2.8    | 2.7    | 2,7     | 2.9      | 3.2        | 2,4       |                     | 4.1    | 4.6    | 2.6    | 1.1    | 2.9      |
| Z                | 3.3    | 3.4    | 3.7    | 4.1     | 4.0      | 4.5        | 3.7       |                     | 5.6    | 4.9    | 2.5    | 1.7    | 3.8      |
| Zb               | 2.5    | 2.5    | 2.6    | 2.6     | 2.8      | 2,9        | 2.4       | -                   | 3.3    | 3.3    | 3.5    | 2.6    | 2.8      |
| Ā                | 2.6    | 2,7    | 2.9    | 3.1     | 3.0      | 3.3        | 2.4       |                     | 3.4    | 3.3    | 2.5    | 1.0    | 2.7      |
| M                |        |        |        |         | -        | -          |           |                     | _      | -      | -      | -      | -        |
| Mb               |        | _      |        |         | _        | _          |           | _                   | _      | _      | _      | -      | -        |
| в                | 4,4    | 12.2   | 4.0    | 11.1    | 8.6      | 11.2       | 10.5      | 6.4                 | 9.3    | 1.1    | -      | 28.0   | 9.7      |
| Bc               |        |        |        | _       | -        | -          | -         |                     | -      | _      | _      | -      | -        |
|                  | !      | I      |        | <br>Cur | rent Elo | w Betwee   |           | d Bods              | (ma)   | L      |        | L      |          |
|                  |        | r      | ·      |         |          |            |           |                     | 1      |        |        |        |          |
| G                | 15.7   | 11.7   | 10.7   | 8.2     | 7.0      | 6.2        | -         | -                   | 4.0    | 3,5    | 4.1    | 2,3    | 7.3      |
| c                | 13.8   | 15.9   | 13.4   | 13.0    | 15.8     | 12.2       | -         | -                   | 11.6   | 12.2   | 15.6   | 12,1   | 13.5     |
| Cp               | 19.2   | 18.1   | 17.7   | 16.4    | 15,9     | 15.6       | -         | -                   | 14.5   | 17.4   | 20.5   | 16.1   | 17.1     |
| N                | 5.6    | 4.5    | 4.1    | 3.5     | 3.2      | 2.6        | -         | -                   | 1.7    | 2.4    | 3.5    | 4,4    | 3.5      |
| S                | 2.6    | 2.1    | 2.1    | 1.9     | 1.7      | 1.6        | -         | -                   | 1.6    | 1.4    | 1.9    | 1.1    | 1.8      |
| Z                | 21.7   | 19,4   | 20.4   | 16.7    | 18.2     | 15.2       | [ _       | -                   | 13.3   | 13.5   | 19.5   | 13,9   | 17.1     |
| ZÞ               | 30.1   | 31.0   | 31.0   | 27.5    | 26.8     | 26.0       | -         | -                   | 23.8   | 24.5   | 35.3   | 19,3   | 27.5     |
| Α                | 9.7    | 9.1    | 9.9    | 8.9     | 8,8      | 8.4        | - 1       | -                   | 8.6    | 8.9    | 10.8   | 7.2    | 9.0      |
| м                | -      | -      | - 1    | - 1     | _        | - 1        | -         | -                   | - 1    | - 1    | - I    | -      | -        |
| Mb               | -      |        | _      | - 1     | - 1      | -          | -         | -                   | -      | -      | [ _ ]  | -      | -        |
| B                | 1.1    | 0.7    | 0.9    | 0.6     | 0.6      | 0.5        | 0.7       | 0.7                 | 0.5    | 0.8    | - 1    | 0.8    | 0.7      |
| Bc               | -      | -      | -      | -       | -        | -          | -         | -                   | -      | -      | -      | -      | -        |
|                  | L      | L      |        |         | <u> </u> | L          | L         |                     | L      |        |        |        | L        |

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

<sup>d</sup> G = galvanized steel C = copper-clad steel

S = stainless steel

Z = zinc A = aluminum M = magnesium B = stainless-clad steel

<sup>b</sup> One rod coupled to two mild steel rods.

<sup>C</sup> Two rods coupled to one mild steel rod.

|         |   |        | specifie |        |          |            |           |                     |        |        |        |        |          |
|---------|---|--------|----------|--------|----------|------------|-----------|---------------------|--------|--------|--------|--------|----------|
| Coupled |   |        |          |        |          | onthly Me  | asureme   | nts                 |        |        |        |        | Average  |
| Rod     | 1 | 2      | 3        | 4      | 5        | 6          | 7         | 8                   | 9      | 10     | 11     | 12     | <b>.</b> |
|         |   |        |          |        | Potenti  | al (coupl  | e to Cu/C | CuSO <sub>4</sub> ) |        |        |        |        |          |
| G       |   | -0.690 | -0,657   | -0.650 | -0,658   | -0,630     | -0.615    | -0.613              | -0.618 | -0.615 | -0.620 | -0.632 | -0.636   |
| c       | - | -0.643 | -0.632   | -0.608 | -0.618   | -0,595     | -0,573    | -0.575              | -0,573 | -0.560 | -0,560 | -0.562 | -0.590   |
|         | - | -0.657 | -0.650   | -0.635 | -0.640   | -0.610     | -0,593    | -0.590              | -0.592 | -0.580 | -0.575 | -0.572 | -0.608   |
| N       | - | -0.685 | -0.659   | -0.650 | -0.655   | -0.640     | -0.605    | -0.615              | -0.618 | -0.610 | -0.610 | -0.620 | -0.633   |
| s       | - | -0.718 | -0.680   | -0.665 | -0.670   | -0,618     | -0,595    | -0.605              | -0.611 | -0.595 | -0.595 | -0.590 | -0.631   |
| z       | - | -1.060 | -1.040   | -1.040 | -1.030   | -0.985     | -0.890    | -0.905              | -0.908 | -0.905 | -0,935 | -0.972 | -0.970   |
| ZÞ      | - | -1.055 | -1.045   | -1.020 | -1.045   | -0.915     | -0.828    | -0.878              | -0,872 | -0.880 | -0.900 | -0.948 | -0,944   |
| A       | - | -0.793 | -0.770   | -0,755 | -0.755   | -0,735     | -0.715    | -0.795              | -0,798 | -0.727 | -0.720 | -0.715 | -0.752   |
| м       |   | -      | _        | _      | -        | _          |           | _                   | - 1    | _      | -      | -      | -        |
| Mb      | - | -      | -        | -      |          | -          | -         | -                   | -      | -      | -      | -      | -        |
| в       | - | -0.650 | -0.690   | -0.663 | -0.655   | -0.655     | -         | -0.532              | -0.557 | -0.519 | -      | -0.489 | -0.601   |
| B¢      | - | -      | -        | -      | -        | -          | -         | -                   | -      | -      | -      | -      | -        |
|         |   |        |          |        | Resis    | tance to ( | Ground (  | ohms)               |        |        |        |        |          |
| G       | _ | 2.0    | 2.0      | 5.5    | 2.4      | 2.2        | 3.0       | 3.7                 | 6.6    | 5.3    | 5.3    | 5.5    | 3.9      |
| č       | _ | 1.0    | 2.0      | 1.4    | 1.3      | 2.1        | 2.6       | 3.2                 | 3.2    | 3.2    | 3.3    | 2.9    | 2.4      |
| Cb .    | _ | 0.9    | 1.9      | 1.2    | 1.4      | 1.6        | 2.2       | 2.6                 | 2.7    | 2.8    | 2.6    | 2.4    | 2.0      |
| N       | - | 1.3    | 2.1      | 1.6    | 1.9      | 2.0        | 3.0       | 3.3                 | 3.7    | 3.8    | 3.9    | 3.9    | 2.8      |
| S       |   | 1.2    | 1.7      | 1,4    | 1.4      | 2.0        | 3.4       | 4.2                 | 4,1    | 4,4    | 4.8    | 4.6    | 3.0      |
| z       |   | 1.1    | 3.3      | 2.9    | 1.6      | 3.5        | 3.5       | 4.3                 | 4,8    | 4.7    | 4.8    | 4.1 -  | 3.5      |
| ZÞ      |   | 1.9    | 1.8      | 1.7    | 1.7      | 1.9        | 3.6       | 2.8                 | 5,5    | 5.0    | 4,5    | 3.2    | 3.0      |
| Ā       | - | 1.0    | 3.3      | 1.3    | 1.5      | 1.9        | 2.6       | 3.0                 | 3.1    | 3.0    | 3.1    | 2.8    | 2.4      |
| M       | - | -      | _        | _      | _        | -          | _         | -                   | -      | -      | -      | _      |          |
| Mb      |   | -      | -        | -      | -        | _          | _         |                     | - 1    | -      | -      | -      | _        |
| 8       | - | 12.5   | 10.5     | 46.0   | 28.0     | 47.0       | 2.6       | 24.0                | 30.0   | 26.0   | -      | 27.5   | 25.1     |
| B¢      | - | -      | -        | -      | -        | -          | -         |                     | -      | -      | -      | -      | -        |
|         |   | ļ      |          | Cur    | rent Flo | w Betwee   | n Couple  | ed Rods             | (ma)   |        |        | L      |          |
| G       |   | 2.5    | 2.1      | 1.1    | 1.6      | 3.6        | 5.1       | 5.0                 | 3.5    | 5.0    | 4,8    | 4.5    | 3,5      |
| č       | - | 15.7   | 8.8      | 14.4   | 9.5      | 11.2       | 13.6      | 12.5                | 11.8   | 12.2   | 12.2   | 12,8   | 12,2     |
| C.      | _ | 20.8   | 10.8     | 22.5   | 11.2     | 15.8       | 18.6      | 16.3                | 16.1   | 16.5   | 16.6   | 19.1   | 16.7     |
| N       | - | 3.9    | 2.8      | 2.4    | 2.0      | 2.9        | 5.6       | 3.6                 | 2.2    | 3.1    | 2.8    | 1,9    | 3.0      |
| S       | - | 1.3    | 0.5      | 1.9    | 0.9      | 1.0        | 1.3       | 1.3                 | 1.3    | 1.4    | 1.4    | 1.5    | 1.2      |
| Z       | - | 20.8   | 13.7     | 16.0   | 7.5      | 16,2       | 19.2      | 13.6                | 13.6   | 15.0   | 14.8   | 14.6   | 15.0     |
| ZÞ.     |   | 23.5   | 17.8     | 22.5   | 13.2     | 29.0       | 28.5      | 25.0                | 21.7   | 11.1   | 9,2    | 7.8    | 19.0     |
| A       | - | 9.0    | 6,3      | 3.8    | 4.8      | 7.4        | 13.3      | 14.0                | 12.8   | 19.5   | 18.0   | 15.0   | 11.2     |
| M       | - | -      | -        | -      | -        | -          | _         | -                   | _      | -      | _      |        | _        |
| M       | - | -      | _        | _      | -        | -          | - 1       | _                   | ~      | _      | -      | _      | _        |
| B       | - | 1.0    | 0,8      | 0.8    | 0.9      | 0.6        | 1.2       | 1.2                 | 0.8    | 1.0    | -      | 1.2    | 0.9      |
| 94      | _ | -      |          | 1      | 1        |            | 1         | 1                   | 1      | _      |        |        | -        |

## Table C-4. Electrical Measurements for 3-Year Coupled Rods (Second Year)

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

<sup>#</sup>G = getvenized steel C = copper-clad steel

N = Ni-Resist cast iron S = stainless steel Z = zinc A = aluminum

M = megnesium B = steiniess-clad steel Delige and a second sec

<sup>b</sup> One rod coupled to two mild steel rods,

<sup>6</sup> Two rods coupled to one mild steel rod.

|                  |        |        |        |        |          |            |          | - 4 -               |        |          |        |        |        |
|------------------|--------|--------|--------|--------|----------|------------|----------|---------------------|--------|----------|--------|--------|--------|
| Coupled          |        |        |        |        | M        | onthly M   | Basureme | nts                 |        |          |        |        | Averag |
| Rod <sup>a</sup> | 1      | 2      | 3      | 4      | 5        | 6          | 7        | R                   | 9      | 10       | 11     | 12     |        |
|                  |        |        |        |        | Potenti  | ial (coupl | e to Cu/ | CuSO <sub>4</sub> ) |        |          |        |        |        |
| G                | -0.625 | -0.633 | -0.549 | -0.641 | -0.642   | -0.623     | -0.634   | -0.642              | -0.662 | -0.645   | -0.682 | -0.680 | -0.638 |
| с                | -0.550 | -0.557 | -0,630 | -0,567 | -0.578   | -0.541     | -0.548   | -0.571              | -0.592 | -0.570   | -0.638 | -0,640 | -0.581 |
| Cp               | -0.560 | -0.563 | -0.604 | -0.578 | -0.594   | -0.560     | -0.569   | -0.585              | -0.610 | -0.584   | -0.612 | -0.663 | -0.594 |
| Ň                | -0.610 | -0.618 | -0.662 | -0.628 | -0.633   | -0.608     | -0.615   | -0.628              | -0.651 | -0.628   | -0.663 | -0.668 | -0.634 |
| S                | -0.572 | -0.577 | -0.658 | -0.607 | -0.591   | -0.588     | -0.592   | -0.632              | -0.646 | -0.626   | -0.682 | -0.680 | -0,595 |
| Z                | -0.970 | -0.982 | -1.020 | -1.020 | -1.085   | -0.990     | -0.985   | -1.060              | -1.075 | -1.020   | -1.050 | -1.055 | -1.026 |
| ZÞ               | -0.948 | -0.963 | -0.965 | -0.942 | -0.975   | -0.919     | -0.972   | -1.045              | -1.020 | -0.976   | -1.065 | -1.065 | -0.987 |
| Ā                | -0.717 | -0.723 | -0.658 | -0.641 | -0.642   | -0.718     | -0.732   | -0.735              | -0.750 | -0.730   | -0.690 | -0.697 | -0.70  |
| M                | _      | _      | -      | _      |          |            | -        | _                   |        | _        | _      | -      | _      |
| Mb               |        |        |        | _      |          | _          | _        | _                   | _      |          |        | _      | _      |
| B                | -0.501 | -0.538 | -0.525 | -0.510 | -0.518   | _          | -0.522   | -0.520              | -0.510 | -0.502   | -0.665 | -0.617 | -0.53  |
| Bc               | -0.501 | -0.555 | -0.525 | -0.010 |          |            | -0.522   | -0.020              | -0.010 | -0.002   | -0.000 | -0.017 | -0.00  |
| 0.               |        |        |        | L      |          |            |          |                     |        |          |        |        |        |
|                  |        |        |        |        | Resis    | tance to ( | Ground ( | ohms)               |        |          |        |        |        |
| G                | 5.7    | 5.0    | 6.0    | 9.7    | 4,2      | 11.0       | 8.8      | 4.4                 | 4.5    | 7.5      | 1.2    | 1.3    | 5.7    |
| С                | 3.3    | 3.3    | 3.7    | 3.6    | 2.9      | 3.6        | 4.0      | 3.1                 | 2,5    | 2.8      | 1.2    | 1.2    | 2.9    |
| Cp               | 2.8    | 2.8    | 3.0    | 2.7    | 2.4      | 3.1        | 2.8      | 2.7                 | 2.2    | 2.7      | 1.1    | 1.3    | 2.4    |
| N                | 3.9    | 3.9    | 4.7    | 4.0    | 4,2      | 4.4        | 4.2      | 3.8                 | 3.2    | 3.8      | 1.7    | 1.5    | 3.6    |
| S                | 4.5    | 3.2    | 4.5    | 4.6    | 3.6      | 4.8        | 4.9      | 3.8                 | 3.0    | 3.8      | 1.2    | 1.3    | 3.6    |
| Z                | 4.4    | 4.5    | 5.0    | 4.5    | 4.0      | 6.7        | 6.8      | 4.0                 | 5.0    | 6.4      | 1.6    | 4.6    | 4.7    |
| ZÞ               | 4.4    | 4.8    | 6.3    | 6.0    | 4.0      | 4.7        | 4.6      | 3.2                 | 3.8    | 3.8      | 1.3    | 3.2    | 4,2    |
| Ā                | 2.9    | 3.3    | 3.1    | 6.6    | 3.1      | 3.5        | 3.4      | 3.1                 | 2.8    | 3.1      | 1.1    | 1.3    | 3.1    |
| M                |        | -      | -      | -      | -        | _          | 1 2      | <u> </u>            | -      |          | _      | _      | -      |
| MB               |        | _      | _      | -      |          |            |          |                     |        | -        |        |        |        |
| B                | 12.5   | 2.7    | 3.9    | 18.5   | 33.5     |            | 55.0     | 47.0                | 8.6    | 5.9      | 43.0   | 42.6   | 24.8   |
| Bc               | -      | -      | -      | -      |          |            | -        | -                   | -      |          |        |        | -      |
|                  | L      | I      | L      | Cur    | rent Flo | w Betwee   | n Couple | d Roas (            | (ma)   | L        |        |        |        |
| G                | 4,3    | 4.0    | 4.5    | 3.6    | 3.4      | 3.4        | 2.4      | 2,1                 | 2.2    | 1.8      | 0.2    | 0.1    | 2.6    |
| С                | 14.6   | 12.4   | 10.4   | 11.9   | 9.8      | 9.5        | 8.8      | 8.9                 | 9.4    | 10.4     | 4,1    | 5.9    | 9.5    |
| C•               | 12,4   | 19,2   | 18,4   | 17.2   | 15.0 .   | 14.0       | 10.1     | 12,1                | 13.8   | 15.0     | 3.8    | 6.5    | 13.1   |
| N                | 1.8    | 1.8    | 2.0    | 1.6    | 1.0      | 0.9        | 0.9      | 1.0                 | 1.0    | 1.3      | 0.8    | 0.9    | 1.3    |
| S                | 1.5    | 1.5    | 1.5    | 1.4    | 1.7      | 1.6        | 1.0      | 1.3                 | 1.6    | 1.6      | 0.5    | 0.8    | 1.3    |
| z                | 6.5    | 6.0    | 13.9   | 6.7    | 3.3      | 3.8        | 2.8      | 2.9                 | 2.7    | 5.2      | 2.3    | 2.9    | 4.8    |
| z•               | 12.9   | 11.4   | 12.0   | 9.5    | 7.0      | 7.2        | 5.0      | 7.6                 | 6.1    | 7.6      | 2.9    | 43     | 7.8    |
| Ā                | 13.7   | 12.8   | 13.2   | 11.0   | 8.3      | 9.2        | 6.3      | 7.1                 | 7.4    | 7.9      | 2.5    | 3.7    | 8.5    |
| M                |        |        |        |        | -        | -          | -        |                     |        | -        |        | 37     | ~      |
| M                | 1      | 1 -    | _      |        |          | _          |          |                     | _      |          |        |        |        |
| 8                | 1.2    | 1.2    | 1.2    | 1.2    | 1.2      | 1          | 0.6      | 0.8                 | 0.9    | 1.2      |        | 6.0    | 1.0    |
| er i             | 1.2    | 1.2    | 1.4    | 1.2    |          | 1          |          |                     |        | 1.a<br>— | 1.1    | we     | 1.0    |
| -                | I      |        |        |        |          | t          |          |                     |        |          | 1      |        | L      |

## Table C-5. Electrical Measurements for 3-Year Coupled Rods (Third Year)

L

(Unless otherwise specified, the counte consists of the indicated rod connected to a single mild steel rod.)

<sup>#</sup>G = geivenized steel C = copper-clad steel N = Ni-Resist cast iron S = stainless steel Z = zinc A = aluminum M = megnesium B = stainless-clad steel

<sup>b</sup> One rod coupled to two mild steel rods.

<sup>c</sup> Two rods coupled to one mild steel rod.

|                             |        |        |          |        |          |            |           |                     |        | to a sing |        |        |         |
|-----------------------------|--------|--------|----------|--------|----------|------------|-----------|---------------------|--------|-----------|--------|--------|---------|
| Coupled<br>Rod <sup>4</sup> |        |        |          | ·      |          | onthly Ma  | sasureme  | nts                 |        |           |        |        | Average |
| NOO                         | 1      | 2      | 3        | 4      | 5        | 6          | 7         | 8                   | 9      | 10        | 11     | 12     |         |
|                             |        |        |          |        | Potenti  | al (coupl  | e to Cu/( | CuSO <sub>4</sub> ) |        |           |        |        |         |
| G                           | -0,817 | -0.728 | -0.658   | -0.643 | -0.640   | -0.628     | -0.742    | -                   | -0.623 | -0.621    | -0.643 | -0.667 | -0.673  |
| C                           | -0.596 | -0.565 | -0.540   | -0.541 | -0.550   | -0.541     | -0.585    |                     | -0.548 | -0.545    | -0.570 | -0.622 | -0.563  |
| C.                          | -0.661 | -0.617 | -0.600   | -0.591 | -0.598   | -0.591     | -0.665    | -                   | -0.603 | -0.597    | -0.627 | -0.670 | -0.610  |
| N                           | -0.526 | -0.607 | -0.507   | -0,588 | -0.598   | -0.591     | -0.637    | -                   | -0.620 | -0.620    | -0.641 | -0.671 | -0.609  |
| S                           | -0.643 | -0.623 | -0.607   | -0.599 | -0.603   | -0.596     | -0.652    | -                   | -0.623 | -0.623    | -0.634 | -0.667 | -0.624  |
| Z                           | -0.948 | -0.920 | -0.897   | -0.887 | 0,902    | -0.893     | -0.991    | -                   | -0.910 | -0.905    | -0.910 | -1.035 | -0.927  |
| ZÞ                          | -0.886 | -0.823 | -0.795   | -0.823 | -0.835   | -0.833     | -0.891    | -                   | -0,824 | -0.835    | -0.837 | -1.000 | -0.862  |
| A                           | -0.763 | -0.740 | -0.717   | -0.721 | -0.730   | -0.719     | -0.765    | _                   | -0.730 | -0.734    | -0.747 | -0.770 | -0.739  |
| M                           | -      | -      | -        | -      | -        | -          | -         | -                   | -      | -         | -      | -      | -       |
| MÞ                          | -      | -      | -        | -      | -        | -          | -         | -                   | -      | -         | -      | -      | -       |
| B                           | -0.472 | -0.570 | -0.617   | -0.592 | -0.608   | -0,600     | -0.621    | -0.609              | -0.708 | -0.690    | -      | -0.687 | -0.615  |
| B¢                          | -0.553 | -0.573 | -0.627   | -0.551 | -0.582   | -0.581     | -0.605    | -0.581              | -0.685 | -0.682    | -      | -0.670 | -0.608  |
|                             |        |        |          |        | Resis    | tance to ( | Ground (  | ohms)               |        |           |        |        |         |
| G                           | 3.1    | 3.2    | 4.4      | 4.0    | 4.0      | 4,7        | 3.6       | -                   | 5.0    | 4,9       | 2.6    | 1,5    | 3.7     |
| C                           | 2.5    | 25     | 2.6      | 2.8    | 2.8      | 3.0        | 24        | _                   | 3.1    | 3.3       | 2.9    | 1.1    | 2.6     |
| Č.                          | 2.4    | 2.6    | 2.7      | 29     | 29       | 2.9        | 25        | _                   | 3.2    | 3.4       | 32     | 1,1    | 2.7     |
| Ň                           | 2.6    | 2.8    | 3.0      | 3.3    | 3.3      | 3.8        | 2.4       | _                   | 3.4    | 3.8       | 3.6    | 1,1    | 3.0     |
| S                           | 2.4    | 2.6    | 2.8      | 3.2    | 3.3      | 3,5        | 2.2       | -                   | 3.4    | 3.5       | 3.4    | 0.9    | 2.8     |
| Z                           | 2.7    | 2.7    | 3.0      | 3.3    | 3.0      | 3.4        | 3.2       | _                   | 4.4    | 8.2       | 30     | 1.6    | 3.5     |
| ZÞ.                         | 2.2    | 2.9    | 32       | 2.6    | 2.6      | 3.0        | 22        | - 1                 | 4.3    | 6.0       | 4.6    | 3.2    | 3.3     |
| Ā                           | 2.2    | 2.3    | 27       | 2.6    | 31       | 2.7        | 21        | _                   | 2.8    | 2.9       | 2.6    | 1,0    | 2.4     |
| M                           | -      | -      | _        | _      | -        | _          |           | _                   | -      | -         | _      |        | -       |
| M                           | l _    | -      | -        | _      | _        | _          | -         | -                   | _      | _         | _      | _      | -       |
| B                           | 4.3    | 10.8   | 7.6      | 13.4   | 7.6      | 12.0       | 6.7       | 26.0                | 7.0    | 1.6       | }      | 10.1   | 9.7     |
| 9f                          | 5.3    | 10.2   | 4.9      | 12.5   | 5.6      | 11.0       | 8.7       | 28.0                | 7.0    | 1.0       | -      | 45.0   | 12,4    |
|                             | I      |        | <b>.</b> | Cur    | rent Flo | w Betwo    | hr Couple | ed Rods (           | (me)   |           |        |        |         |
| G                           | 18.7   | 14.0   | 9.0      | 7.0    | 8.7      | 4.5        | _         | _                   | 2.2    | 2.2       | 2.4    | 8,3    | 7.4     |
| С                           | 16.1   | 14.9   | 16.5     | 15.3   | 15.1     | 14.8       | _ '       | _                   | 14.6   | 15.5      | 21.5   | 18.6   | 16.2    |
| Ċ.                          | 14.5   | 13.6   | 13.3     | 12.5   | 12.1     | 11.6       |           | _                   | 14.4   | 14.5      | 17.6   | 21,8   | 14.6    |
| N                           | 5.2    | 3.3    | 2.7      | 2.3    | 23       | 1.5        |           | I _                 | 1.7    | 1.4       | 1.9    | 2,9    | 2.5     |
| S                           | 21     | 1.8    | 1.5      | 1.2    | 1.1      | 1.0        | _         | -                   | 0.9    | 0.9       | 1.1    | 1.2    | 1.3     |
| Z                           | 30.3   | 28.9   | 27.9     | 25.9   | 26.9     | 24.3       | _         | _                   | 16.8   | 9.5       | 27.3   | 13.8   | 23.2    |
| Z\$                         | 34.8   | 24.8   | 25.8     | 29.7   | 31.6     | 29.0       | _         | _                   | 17.2   | 25.8      | 30.3   | 23.0   | 27.2    |
| Ā                           | 19.0   | 15.2   | 14.7     | 13,1   | 11.8     | 10.7       | í _       | [                   | 9.4    | 10.6      | 11.5   | 7.0    | 12.3    |
| M                           | -      | -      | -        | -      | _        | -          |           | -                   |        | ~         | _      | -      | _       |
| M                           | _      | _      | _        | _      | -        | _          |           | -                   | _      | _         | _      |        |         |
| 8                           | 1.1    | 0.3    | 1.0      | 1.7    | 1.3      | 0.9        | 2.2       | 1.9                 | a7     | 1.3       |        | 1.0    | 1.2     |
| Br.                         | ai     | 0.5    | 1.5      | 44     | 32       | 21         | 4.2       | 2.9                 | 1.3    | 32        |        | 3.4    | 2.4     |
|                             |        |        |          |        |          |            |           |                     |        | L         |        |        |         |

## Table C-6. Electrical Measurements for 7-Year Coupled Rods (First Year)

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

\*G = gelvenized steel C = cupper-clad steel N = Ni-Resist cast iron S = stainless steel Z = zinc A = aluminum M = magnesium

B = stainless-cled steel

<sup>b</sup> One rad coupled to two mild steel rade.

<sup>4</sup> Two rads coupled to one mild steel rad.

### (Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.) Monthly Measurements Coupled Average Rod 12 2 3 4 5 6 7 8 9 10 11 1 Potential (couple to Cu/CuSOA) G -0.697 -0.660 -0.665 -0.665 -0.625 -0.620 -0.620 -0.625 -0.620 -0.615 -0.620 -0.638 -0.523 -0.553 -0.635 -0.630 -0.608 -0.590 -0.582 -0.558 -0.550 -0.540 -0.528 -0.572 С ----C) -0.682 -0.640 0.623 -0.605 -0.607 -0.600 -0.600 -0.548 -0.575 -0.579 -0.606 -0.610 \_ -0.617 N --0.680 -0.658 -0.640 -0.645 -0.618 -0.600 -0.595 -0.595 -0.599 -0.580 -0.537 -0.630 -0.550 -0.599 -0.670 -0.645 -0.628 -0.622 -0.585 -0.570 -0.570 -0.580 -0.565 S \_ -0.946 -0.943 -0.986 \_ -1.060 -1.030 -1.040 -1.045 -1.015 -0.930 -0.940 -0.944 -0.963 Z ZÞ -0.790 -0.635 -0.807 -0.789 -0.860 -0.995 -0.805 -0.815 -0.863 -0.588 -0.745 -0.780 --0.803 -0.715 -0.744 ----0.775 -0.760 -0.760 -0.742 -0.722 -0.730 -0.730 -0.725 -0.730 A м \*\* -\_ \_ --0.673 -0.690 -0.672 -0.666 -0.663 -0.555 -0.575 -0.545 --0.490 -0.614 ----A -0.592 -0.537 -0.557 -0.513 -0.451 \_ -0.650 -0.673 -0.650 -0.650 -0,651 \_ \_\_\_\_ **₽**£ Resistance to Ground (ohms) 10.5 1.7 4.3 5.5 G 3.2 2.7 2.4 4.3 4.5 5.2 4,3 3.4 3.3 3.4 3.0 2.3 С 1.1 1.5 1.2 1.3 1.7 2.7 3.4 3,1 -C+ 3.1 1.6 1.5 3.2 33 3.2 3.0 2.3 -1.2 1.5 1.9 2.5 Ν -1.8 3.6 3.6 3.8 4.2 3.3 2.6 1.1 1.6 1.4 1.4 29 2.9 2.3 S 1.3 2,6 3,2 34 3.4 3.5 -1.0 1.5 1.3 1.6 Z -1.3 5.0 1.7 1.4 1.7 2.5 3,1 4.0 6.5 4.5 2.7 3.0 ZÞ 3.3 5.2 2.8 23 38 32 \_ 20 1.8 1.8 30 27 1.9 A -1.1 1.9 1.7 2.8 2.9 2.8 3.2 2.5 22 1.4 1,8 24 M -----\_ -----\_ --------MÞ --8 \_ 1.3 21.5 40.0 50.0 35.0 15.2 38.0 8.0 7.5 ..... 5.8 22.2 e, -13.5 2.0 8,1 30.0 38.0 14.0 3.2 2.2 8.3 12.7 13.2 **Current Flow Between Coupled Rods (ma)** G 1.9 1,4 2.0 0,7 1.8 2.1 2.4 1.7 2.3 2.5 2.4 1.9 8.8 C 21.8 17.2 19.6 16.8 -11.4 12.8 16.1 17.5 16.6 18.9 17.5 C) 24.3 10.8 12.7 18.6 16,1 14.9 16.9 17.7 16.8 -17.9 17.5 17.2 N \_ 2.2 2.0 3.6 2.1 30 2.1 40 1.6 1.5 41 30 2.2 S -0.8 0.9 1.5 1,5 1,4 1.8 1.5 1.6 1.6 1.5 1.9 1.4 20.5 30.2 17,9 19.2 26.6 23.0 19.7 Z -9.6 14.8 19.5 19.2 17.2 Z\$ -40.7 26.0 18.7 2.4 20.3 8.4 26.5 27.5 22.0 18,0 24.0 20.9 12.9 8.5 5.9 3.9 129 13.6 13.0 13.2 10.7 98 ۸ -5.4 8.1 M ---1 ----------1.2 ð -0.0 1,8 1.3 0.6 0,6 0.5 1,1 1.3 -1,0 1.0 2.8 1.9 Q.7 1,2 -2.6 1.0 1.4 0.9 1.5 0.0 -00 14

# Table C-7. Electrical Measurements for 7-Year Coupled Rods (Second Year)

<sup>d</sup> G = gelvenized steel C = copper-clad steel N = Ni-Resist cest iron 5 = staining stati 2 > zinc A + aluminum M = megnesium

8 = stainless-clad steel

One rod coupled to two mild steel rods.

Two rods coupled to one mild shell rad.

## Table C-8. Electrical Measurements for 7-Year Coupled Rods (Third Year)

| Coupled             |         |        | , <i>u</i> t |             | Mo       | onthly Me  | asureme   | nts                 |              |        |        |              |          |
|---------------------|---------|--------|--------------|-------------|----------|------------|-----------|---------------------|--------------|--------|--------|--------------|----------|
| Rod <sup>4</sup>    | 1       | 2      | 3            | 4           | 5        | 6          | 7         | 8                   | 9            | 10     | 11     | 12           | Average  |
|                     |         |        |              |             | Potenti  | al (coupl  | e to Cu/C | CuSO <sub>4</sub> ) |              |        |        |              |          |
| G                   | -0.624  | -0.636 | -0.632       | -0.647      | -0.643   | -0.627     | -0.640    | -0.635              | -0.664       | -0.658 | -0.678 | -0.687       | -0.647   |
| C                   | -0.525  | -0.536 | -0.537       | -0.553      | -0.568   | -0.535     | -0.545    | -0.550              | -0.582       | -0.564 | -0.638 | -0.630       | -0.563   |
| Cp                  | -0.580  | -0.593 | -0.550       | -0.608      | -0.620   | -0.581     | -0.591    | -0.594              | -0.627       | -0.600 | -0.643 | -0.653       | -0.603   |
| N                   | -0.590  | -0.601 | -0.584       | -0.608      | -0.610   | -0.598     | -0.612    | -0.612              | -0.643       | -0.626 | -0.665 | -0.671       | -0.618   |
| S                   | -0.570  | -0,579 | -0.578       | -0.591      | -0.598   | -0.573     | -0.587    | -0.587              | -0.620       | -0.599 | -0.660 | -0.662       | -0,600   |
| 2                   | -0.96 i | -0.978 | -0.454       | -0.993      | -1.085   | -0.990     | -1.015    | -0.988              | -1.050       | -0.985 | -1.055 | -1.060       | -0.967   |
| Zb                  | -0.781  | -0.781 | -0.333       | -0.809      | -0.975   | -0.798     | -0.790    | -0.798              | -0.834       | -0.840 | -0.930 | -0.965       | -0.802   |
| A                   | -0.728  | -0.740 | -0.508       | -0.748      | -0.760   | -0.738     | -0.752    | -0.747              | -0.763       | -0.745 | -0.850 | -0.828       | -0.742   |
| M                   | -       | -      | -            | -           | -        | -          | -         |                     | -            | -      | -      | -            | -        |
| Mb                  | -0.510  | -0.547 | -0.553       | -0.538      | -0.529   | -          | -0.510    | -0.515              | -0.510       | -0.482 | -0.427 | -0.483       | -0.509   |
| в<br>в <sup>с</sup> | -0.477  | -0.538 | -0.553       | -0.538      | -0.529   | -          | -0.478    | -0.485              | -0.477       | -0.462 | -0.427 | -0.483       | -0.487   |
| D                   | -0.4//  | -0.000 | -0.512       | -0.500      | -0,407   |            | -0.470    |                     | -0.4//       | -0.445 | -0.477 | -0.405       | -0.407   |
|                     |         |        |              |             | Resis    | tance to ( | Ground (  | ohms)               |              |        |        |              |          |
| G                   | 3.7     | 3.6    | 8.5          | 5.9         | 4.7      | 6.4        | 6.9       | 7.9                 | 4.7          | 13.0   | 2.8    | 2.1          | 5.8      |
| C                   | 3.1     | 3.2    | 3.3          | 3.3         | 3.0      | 3.6        | 3.5       | 3.2                 | 2.7          | 3.1    | 1.3    | 1.3          | 2.9      |
| Ср                  | 3.0     | 3.0    | 3.3          | 3.4         | 3.3      | 3.8        | 3.6       | 3.2                 | 2.9          | 3.1    | 1.2    | 1.5          | 2.9      |
| N .                 | 3.9     | 4.0    | 4.1          | 4.2         | 3.7      | 4.6        | 4.1       | 3.7                 | 4.0          | 3.7    | 1.3    | 5.5          | 3.9      |
| S                   | 3.2     | 3.3    | 3.4          | 3.6         | 3.0      | 3.7        | 3.6       | 3.7                 | 2,9          | 3.4    | 0.9    | 1.1          | 3.0      |
| Z                   | 4,5     | 4.3    | 4.1          | 6.0         | 4.0      | 4.7        | 4.9       | 4.0                 | 3.5          | 5.8    | 2.0    | -            | 4.3      |
| zb                  | 3.1     | 4.6    | 4.3          | 5.9         | 3.4      |            | 5.0       | 5.1                 | 5.9          | 8.6    | 3.3    | -            | 4.9      |
| A                   | 2.6     | 2.8    | 2.9          | 4.4         | 2.8      | 3.1        | 2.9       | 2.8                 | 2.8          | 3.1    | 2.1    | 1.1          | 2.8      |
| M                   | -       | -      |              | -           | -        | -          | -         | -                   | <b>–</b> . ' | -      | -      | -            |          |
| B                   | 1.      | 105    |              |             | 1        | -          | -         |                     |              |        |        | 520          |          |
| Bc                  | 7.7     | 10.5   | 9.3<br>14.8  | 8.7<br>16.7 | 9.1      |            | 8.5       | 9.6                 | 37.0         | 44.0   | 47.0   | 52.0<br>54.0 | 22.1     |
| D*                  | 13.2    | 13.8   | 14,0         | 10.7        | 19.2     | -          | 24.5      | 26.5                | 20.2         | 31.5   | 51.0   | 54.0         | 20.0     |
|                     |         |        |              | Cur         | rent Flo | w Betwee   | en Couple | ad Rods             | (ma)         |        |        |              |          |
| G                   | 2.5     | 2.5    | 2.8          | 2.2         | 2.0      | 1.9        | 1.3       | 1.4                 | 1.2          | 1.2    | 0.1    | 0.7          | 1.7      |
| C .                 | 20,1    | 19.3   | 17.7         | 16.4        | 14,8     | 13.9       | 10.2      | 12.6                | 15.5         | 15.9   | 5.4    | 6.3          | 14.0     |
| C <b>b</b>          | 18.2    | 16.9   | 15.3         | 14.4        | 11.3     | 13,1       | 9.3       | 11.9                | 13,1         | 15.1   | 6.0    | 13.0         | 13,1     |
| N                   | 1.7     | 1.7    | 1.2          | 1.7         | 1.7      | 1.1        | 0.9       | 0.9                 | 0,8          | 1.4    | 0.5    | 1.0          | 1.1      |
| S                   | 1,9     | 1,9    | 1.8          | 2.2         | 1.9      | 1.8        | 1.2       | 1.4                 | 2,1          | 1.7    | 0.6    | 1.4          | 1.7      |
| Z                   | 17.2    | 16.3   | 26.0         | 13.5        | 9.0      | 9.2        | 8.4       | 7.7                 | 7.1          | 5.8    | 6.8    | 4.3          | 10.9     |
| Zb                  | 25.0    | 13.5   | 17.0         | 13.8        | 10.8     | 8.3        | 5.8       | 7.9                 | 6.9          | 4.2    | 5,5    | 6.1          | 10.4     |
| A                   | 11.0    | 9.7    | 10.8         | 8.9         | 6.4      | 7.1        | 4.9       | 5.2                 | 5.3          | 6.1    | 0.5    | 1.6          | 6.5      |
| M                   | -       | -      | -            |             | -        | -          | -         | -                   | -            | -      | -      | -            | -        |
|                     | 1       |        | 1            |             | 1        | -          |           | 1                   | 1.           | 1      | 1.     |              |          |
| 8<br>8¢             | 0.9     | 0.3    | 0.3          | 0.5         | 0.7      |            | 0.9       | 1.0                 | 1.1          | 1.0    | 1.0    | 0.8          | 0.7      |
| <b>D</b> -          | 0.0     | 0.0    | 0.0          | 0.0         | 0.4      | -          | 1.4       | 1.0                 | 1.0          | 2.3    | 4.1    | 0.8          | <u> </u> |

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steei rod.)

<sup>#</sup>G = gelvenized steel C = copper-clad steel N = Ni-Resist cast iron S = stainless steel Z = zinc A = aluminum M = magnesium B = stainless-clad steel

<sup>b</sup> One rod coupled to two mild steel rods.

<sup>€</sup> Two rods coupled to one mild steel rod.

## Table C-9. Electrical Measurements for 7-Year Coupled Rods (Fourth Year)

| Coupled              |         |          |             |        | Мо         | onthly Me  | asureme   | nts                 |        |        |        |         | Average  |
|----------------------|---------|----------|-------------|--------|------------|------------|-----------|---------------------|--------|--------|--------|---------|----------|
| Rod <sup>4</sup>     | 1       | 2        | 3           | 4      | 5          | 6          | 7         | 8                   | 9      | 10     | 11     | 12      | Attinuge |
|                      |         |          |             |        | Potenti    | al (coupl  | e to Cu/( | CuSO <sub>4</sub> ) |        |        |        |         |          |
| G                    | -       | -0.678   | -0.679      | -0.697 | -0.692     | -0.680     | -0.687    | -                   | _      | -0.635 | -0.619 | _       | -0.670   |
| С                    | _       | -0.625   | -0.623      | -0.653 | -0.628     | -0.618     | -0.620    | -                   |        | -0,542 | -0.535 | _ 1     | -0.605   |
| C <sub>p</sub>       | _       | -0.650   | -0.652      | -0.688 | -0.647     | -0.645     | -0.654    | -                   |        | -0.591 | -0.605 |         | -0.641   |
| N                    | -       | -0.670   | -0.673      | -0.700 | -0.680     | -0.675     | -0.683    | -                   | -      | -0.628 | -0.600 | -       | -0.701   |
| S                    | -       | -0.655   | -0.660      | -0,689 | -0.677     | -0.660     | -0.677    | -                   | _      | -0.618 | -0.587 | -       | -0.655   |
| Z                    | -       | -1.060   | -1.055      | 1.090  | -1.060     | -1.050     | -1.070    | -                   | _      | -0.970 | -0.933 | -       | -1.036   |
| ZÞ                   | -       | -0.785   | -0.827      | -0.870 | -0.841     | -0.852     | -0.908    |                     | -      | -0.803 | -0.763 | -       | -0.831   |
| Α                    | -       | -0.790   | -0.789      | -0.825 | -0.791     | -0.772     | -0,778    | -                   | _      | -0,732 | -0.717 |         | -0.774   |
| м                    | -       | _        | _           | _      | -          | _          | _         | -                   | _      | _      | -      | -       | ·        |
| Mb                   | _       | -        | -           | _      | -          | _          | -         | -                   | _      | _      | -      |         | -        |
| в                    | -0.500  | -0.515   | -0.537      | -0.545 | -0.537     | -0.517     | -0.508    | -0.497              | -0.485 | -0.473 | -0.413 | -0.447  | -0.498   |
| Bc                   | -0.489  | -0.492   | -0.503      | -0.522 | -0.501     | -0.513     | -0.497    | -0.473              | -0.461 | -0.439 | -0.458 | -0.495  | -0.487   |
| - <u></u>            | <b></b> |          | L. <u>.</u> | Le     | Resis      | tance to ( | Ground (  | ohms)               |        |        |        |         |          |
| G                    | _       | 1.1      | 7.8         | 2.6    | 2.7        | 4.1        | 4.1       | 5.6                 | -      | 10.0   | 9.2    | 1       | 5.2      |
| Ċ                    | -       | 1.3      | 1.6         | 1.3    | 2,3        | 2.4        | 2.3       | 4.6                 | -      | 3.8    | 5.1    | _       | 2.7      |
| C.P                  | -       | 4.3      | 1.8         | 1.4    | 2.5        | 2.7        | 3.2       | 5.1                 | _      | 3.7    | 4,4    | -       | 3.2      |
| N                    | _       | 5.7      | 7.6         | 1.5    | 2.1        | 2,8        | 2.8       | 4.8                 | _      | 4.1    | 5.3    |         | 4.1      |
| S                    | - 1     | 1.1      | 1.3         | 1.0    | 1.7        | 2.3        | 1,9       | 3.8                 | _      | 2.7    | 3.4    | _       | 2.1      |
| Z                    | -       | 3.6      | 4.5         | 1.9    | 2.4        | 2.6        | 3.0       | 5.6                 | _      | 4.0    | 4.7    | _       | 3.6      |
| Zb                   | -       | 3.3      | 3.9         | 3.8    | 5.3        | 3.2        | 2.7       | 10.0                | - 1    | 5.3    | 6.3    | _       | 4.9      |
| Α                    | I -     | 4.3      | 1.8         | 1.3    | 1.9        | 2.3        | 2.2       | 4.1                 | -      | 2.7    | 3.4    | -       | 2.7      |
| м                    | ] _     | _        | _           | -      |            | _          | _         |                     |        | -      |        | _       | - 1      |
| Mþ                   | -       | -        | -           | -      | <u> </u>   | _          | -         | _                   | -      | -      | -      | -       | -        |
| В                    | 55.0    | 43.0     | 21.5        | 8.9    | 9.5        | 9.3        | 8.9       | 9.4                 | 9.7    | 8.9    | 9.3    | -       | 17.6     |
| B¢                   | 59,0    | 47.0     | 26.0        | 18.9   | 23.5       | 27.1       | 26.0      | 27.0                | 29.2   | 31.1   | 55.0   | -       | 33,6     |
|                      | <u></u> |          | L <u></u>   | Cur    | rent Flo   | w Betwee   | n Couple  | d Rods              | (ma)   |        |        |         |          |
| G                    | -       | 1.0      | 1.5         | 1.1    | 0.5        | 0.7        | 0.5       | 0.6                 | _      | 0.4    | 0.3    | _       | 0.7      |
| č                    | -       | 12.0     | 11.3        | 9.2    | 6.9        | 6.9        | 5.6       | 6.4                 | - 1    | 6.1    | 7.1    | -       | 7.9      |
| Cþ                   |         | 13.4     | 11.6        | 9.2    | 9.4        | 8.9        | 6.1       | 7.6                 | _      | 6.6    | 7.6    | -       | 8.9      |
| N                    | -       | 0.5      | 1.2         | 1.0    | 0.4        | 0,4        | 0.2       | 0.9                 | Í –    | 0.9    | 1.3    | -       | 0.8      |
| S                    | - 1     | 1.4      | 1.5         | 1.1    | 0.7        | 0.8        | 0.7       | 1.1                 | -      | 1.2    | 1.6    | -       | 1.1      |
| Z                    | -       | 10.4     | 8.5         | 4.6    | 5.2        | 5.2        | 3.2       | 5.5                 | -      | 4,1    | 6.3    | -       | 5.9      |
| ZÞ                   | ] -     | 3.8      | 8.3         | 5.3    | 4.7        | 1.3        | 2.5       | 3.4                 | -      | 3.8    | 5.4    | -       | 4.3      |
| Α                    | -       | 2.3      | 2.4         | 1.8    | 9.0        | 0.8        | 0.7       | 1.5                 | _      | 0.8    | 3.3    | -       | 1.6      |
| м                    | - 1     | <b>_</b> | -           |        | -          | -          |           | -                   |        | -      | -      | -       | -        |
| мь                   | -       | -        | -           | -      | -          | -          | _         | -                   | _      | -      |        | -       | -        |
| в                    | 0.6     | 0.6      | 0.5         | 0.5    | 0.5        | 0.6        | 1.6       | 0.9                 | 1.0    | 1.0    | 0.9    | 0.8     | 0.8      |
| Bc                   | 0.0     | 0.7      | 0.6         | 0.7    | 0.3        | 1.3        | 0.9       | 1.4                 | 1.6    | 1.7    | 1.6    | 1.2     | 1,0      |
| <sup>4</sup> G = gal | vanized | steel    |             | N = Ni | -Resist ci | est iron   | <u></u>   | Z = z               | inc    |        | M =    | magnesi | um       |

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

<sup>b</sup> One rod coupled to two mild steel rods. <sup>c</sup> Two rods coupled to one mild steel rod.

| Coupled          |        |        |        |        | Mo        | onthly Me  | easureme  | nts                  |        |        |        |        | Average  |
|------------------|--------|--------|--------|--------|-----------|------------|-----------|----------------------|--------|--------|--------|--------|----------|
| Rod <sup>a</sup> | 1      | 2      | 3      | 4      | 5         | 6          | 7         | 8                    | 9      | 10     | 11     | 12     | /ver age |
|                  |        |        |        |        | Potenti   | al (coupl  | e to Cu/( | Cu:SO <sub>4</sub> ) |        |        |        |        |          |
| G                | -0.602 | -0.600 | -0.642 | -0.635 | -0.630    | -0.622     | _         | -0.608               | -0.610 | -0.605 | -0.585 | -0.590 | -0.612   |
| с                | -0.515 | -0.529 | -0.557 | -0.561 | -0,585    | -0.567     | -         | -0.505               | -0.505 | -0,495 | -0.469 | -0.483 | -0.525   |
| Cp               | -0.582 | -0.559 | -0.611 | -0.603 | -0.595    | -0.585     | -         | -0.580               | -0.587 | -0.570 | -0.545 | -0.555 | -0.579   |
| N                | -0.575 | -0,581 | -0.622 | -0.625 | -0.€20    | -0.605     | _         | -0,581               | -0.615 | -0.605 | -0.563 | -0.571 | -0.597   |
| s                | -0.560 | -0.573 | -0.595 | -0.590 | -0.585    | -0.572     |           | -0.558               | -0.602 | -0.555 | -0.521 | -0.513 | -0.566   |
| z                | -0.875 | -0.635 | -0.697 | -0.702 | -0.715    | -0.730     | -         | -0.753               | -0.965 | -0.940 | -0.908 | -0.895 | -0.801   |
| ZÞ               | -0.625 | -0,900 | -0.957 | -0.952 | -0.960    | -0,957     | _         | -0.940               | -0.757 | -0.740 | -0.730 | -0.730 | -0.841   |
| Ā                | -0.708 | -0.710 | -0.750 | -0.713 | -0.725    | -0.727     |           | -0.732               | -0.725 | -0.720 | -0.701 | -0,710 | -0.720   |
| M                | _      | _      | -      | -      | _         | -          | _         | _                    |        | _      | _      | _      | -        |
| Mb               | -      | _      | -      | -      | _         |            |           | _                    | -      | -      | _      |        |          |
| В                | -0.543 | -0.565 | -0.489 | -0.520 | -0.550    | -0.354     | -0.438    | -0,428               | -0.619 | -0.460 | -0.650 | -      | -0.511   |
| Bc               | -0.531 | -0.522 | -0.519 | -0.395 | -0.600    | -0.400     | -0.395    | -0.378               | -0.328 | -0.415 | -0.425 | _      | -0.446   |
| 0-               |        |        |        |        |           |            |           |                      |        |        |        |        |          |
|                  |        |        |        |        | Resis     | tance to ( | Ground (  | ohms)                |        |        |        | _      |          |
| G                | 6.6    | 6.2    | 4.3    | 5.4    | 7.1       | 7.6        | _         | ;1.8                 | 11.3   | 11.1   | 10,7   | 10.4   | 8.4      |
| c                | 6.0    | 6.1    | 3.0    | 3.2    | 3.3       | 5.5        | _         | 6.7                  | 6.6    | 6.4    | 6.1    | 6.0    | 5.4      |
| Cb               | 5.5    | 5.2    | 3.3    | 4.1    | 4.7       | 5.8        | _         | 6.3                  | 6.2    | 6.1    | 5.8    | 5.6    | 5.3      |
| N                | 6.2    | 6.5    | 8.0    | 7.5    | 7.9       | 7.6        | -         | 7.4                  | 7.3    | 7.1    | 6.7    | 6.3    | 7.1      |
| S                | 5.3    | 5.4    | 2.7    | 5.8    | 6.1       | 6.8        | _         | 7.0                  | 7.0    | 6.8    | 6.1    | 5.4    | 5.9      |
| z                | 20.0   | 20.0   | 21.5   | 18.5   | 20.5      | 19.5       | _         | 10.5                 | 12.1   | 11.6   | 9.2    | 9.3    | 15.7     |
| ZÞ               | 7,7    | 7.3    | 4.0    | 5.1    | 6.0       | 6.9        | _         | 15.0                 | 10.3   | 9.8    | 9.1    | 8.9    | 8.2      |
| Ā                | 4.5    | 4.1    | 2.9    | 3.1    | 3,8       | 4.6        | -         | 7.0                  | 7,3    | 7.1    | 6.6    | 6.8    | 5.3      |
| M                | -      | -      | -      | -      | -         | -          |           | 7.0<br>~             | 7.5    |        | -      | -      | -        |
| Mb               |        |        | -      | -      |           | _          |           |                      | _      | _      | _      |        | -        |
| в                | 2.2    | 39.0   | 4.5    | 8.8    | 6.0       | 8.2        | 13.4      | 13.5                 | 17,1   | 11.5   | 20.0   | _      | 13.1     |
| B¢               | 2,2    | 35.0   | 2.7    | 29.5   | 6.0       | 7.6        | 9.9       | 9.6                  | 31.5   | 8.1    | 6.6    |        | 13.5     |
|                  | 6,4    | 35.0   | 2.7    |        |           |            |           | L                    |        | 0.1    | 0.0    |        | 13.0     |
|                  |        |        |        | Cur    | rent Flor | w Betwee   | n Couple  | d Hods (             | .ma)   |        |        |        |          |
| G                | _      | 1.0    | 1.1    | 1.1    | 1.9       | 1.1        | _         | 1.3                  | 1.3    | 1.4    | 1.6    | 1.4    | 1.3      |
| C                | 8.4    | 8.5    | 8.7    | 7.7    | 7.2       | 7.1        | -         | 6.2                  | 6.9    | 6.8    | 7.4    | 7.1    | 7.5      |
| Cp               | 7.7    | 8.1    | 8.8    | 8.5    | 8.0       | 7.4        | -         | 6.3                  | 6.9    | 7.0    | 7.3    | 6.9    | 7.5      |
| N                | 2,7    | 2.5    | 1.2    | 1,7    | 1.7       | 1.8        | -         | 1.9                  | 1.6    | 1.4    | 0.8    | 1.0    | 1.7      |
| s                | 2.0    | 2.0    | 1.9    | 1,8    | 1.7       | 1.6        | _         | 1.4                  | 1.5    | 1.6    | 1,9    | 2,1    | 1.7      |
| z                | 9.9    | 8.5    | 7.7    | 6,4    | 5,8       | 5.1        | _         | 4.1                  | 4.2    | 4.7    | 4.9    | 9.1    | 6.4      |
| ZÞ               | 6.1    | 4,2    | 0.9    | 1.3    | 1,7       | 1.9        | _         | 2.8                  | 2.5    | 1.6    | 1.0    | 6.1    | 2.7      |
| Ā                | 4.3    | 4,0    | 1.5    | 1.5    | 1.5       | 1.5        | -         | 1.5                  | 1.5    | 1.5    | 1.5    | 1.7    | 2.0      |
| м                |        |        | -      | -      | -         | -          | _         | -                    | -      | -      | -      |        |          |
| Mb               | -      | _      | -      | _      | -         | -          | -         |                      | _      | _      | _      |        |          |
| в                | 0.3    | 0.4    | _      | _      | _         | <b>0.6</b> | 0.5       | 0.8                  | 0,8    | 0.8    | 0.7    | -      | 0.6      |
| BC               | 0.9    | 0.8    |        | -      | _         | 1.8        | 1.4       | 1.4                  | 1.4    | 1.4    | 1.5    |        | 1.3      |

## Table C-10. Electrical Measurements for 7-Year Coupled Rods (Fifth Year)

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

<sup>#</sup>G = galvanized steel C = copper-clad steel

N = Ni-Resist cast iron S = stainless steel Z = zinc A = aluminum M = magnesium B = stainless-clad steel

<sup>b</sup> One rod coupled to two mild steel rods.

 $^{\ensuremath{\mathcal{C}}}$  Two rods coupled to one mild steel rod.

## Table C-11. Electrical Measurements for 7-Year Coupled Rods (Sixth Year)

| Coupled          |         |        |        |        | Mo       | onthly Me  | asureme   | nts                 |        |        |        |         |         |
|------------------|---------|--------|--------|--------|----------|------------|-----------|---------------------|--------|--------|--------|---------|---------|
| Rod <sup>a</sup> | 1       | 2      | 3      | 4      | 5        | 6          | 7         | 8                   | 9      | 10     | 11     | 12      | Average |
|                  |         |        |        | ,      | Porenti  | al (coupl  | e to Cu/C | CuSO <sub>4</sub> ) |        |        |        |         |         |
| G                | -0.611  | -0.605 | -0.627 | -0.622 | -0.618   | -0.617     | -0.612    | -0,599              | -0.595 | -0.677 | -0.633 | -0.648  | -0.622  |
| С                | -0,497  | -0.491 | -0.487 | 0.417  | -0.515   | -0.553     | -0.585    | -0.527              | -0.520 | -0.510 | -0.478 | -0.492  | -0.506  |
| Cþ               | -0.567  | -0.570 | -0.565 | -0.562 | -0.585   | -0.571     | -0.574    | -0,567              | -0.572 | -0.563 | -0.540 | -0.566  | -0.567  |
| N                | -0.582  | -0.585 | -0.597 | -0.605 | -0.590   | -0.587     | -0.582    | -0.582              | -0.619 | -0.611 | -0.569 | -0.578  | -0.591  |
| S                | -0.531  | -0,540 | -0.553 | -0.567 | -0.543   | -0.558     | -0.561    | -0.541              | -0.597 | -0.581 | -0.532 | -0.543  | -0.554  |
| z                | -0.863  | -0.890 | -0.843 | -0.836 | -0.846   | -0.875     | -0.867    | -0.893              | -0.912 | -0.895 | -0.878 | -0.893  | -0.874  |
| ZÞ.              | -0.695  | -0.700 | -0.713 | -0.724 | -0.737   | -0.750     | -0.742    | -0.764              | -0.766 | -0.746 | -0.732 | -0.707  | -0.731  |
| A                | -0,717  | -0.708 | -0.725 | -0.705 | -0.714   | -0.715     | -0.763    | -0.716              | -0.705 | -0.703 | -0.697 | -0.702  | -0.714  |
| M                | _       | -      | _      | _      | -        | -          | -         | -                   | -      | _      | - 1    | -       | - 1     |
| Wp               | -       |        | -      | _      | _        | -          | -         | -                   | _      | _      |        | -       | -       |
| в                | _       | -      | _      | -      | -        | _          | -         | -                   | -      | -      | -      | -       | -       |
| B¢               | -       | -      | -      | -      | -        | -          | -         |                     | -      | -      | -      | -       |         |
|                  |         |        |        |        | Resis    | tance to ( | Ground (  | ohms)               |        |        |        |         |         |
| G                | 10.3    | 11.0   | 6.3    | 7.2    | 8.0      | 8.7        | 8.3       | 13.5                | 13.1   | 12.8   | 11.3   | 10.9    | 10.1    |
| С                | 5.9     | 5.4    | 3.0    | 3.4    | 3.8      | 6.1        | 6.9       | 7.4                 | 7.2    | 7.1    | 6.4    | 6.2     | 5.7     |
| Cp               | 4.7     | 4.8    | 3.0    | 3.0    | 3.3      | 5.3        | 6.1       | 5.9                 | 5.7    | 5.8    | 5.6    | 5.7     | 4.9     |
| N                | 5.8     | 5.5    | 7.7    | 6.9    | 6.4      | 6.2        | 5.5       | 6.1                 | 6.2    | 6.2    | 6.3    | 6.3     | 6.3     |
| S                | 4.7     | 4.9    | 2.6    | 5.1    | 5.4      | 5.9        | 4.7       | 6.2                 | 6.1    | 6.0    | 5.7    | 5.5     | 5.2     |
| Z                | 9.4     | 7.6    | 7.2    | 6.9    | 7.1      | 6.9        | 6.7       | 7.1                 | 7.8    | 7.1    | 5.8    | 9.1     | 7.4     |
| ZÞ               | 8.2     | 7.4    | 6.1    | 5.8    | 6.7      | 7.5        | 7.4       | 16.3                | 10.0   | 9.7    | 9.0    | 9.0     | 8.6     |
| Α                | 7.1     | 7.5    | 3.7    | 4.9    | 5.2      | 5.3        | 5.1       | 7.8                 | 7.7    | 7.8    | 7.2    | 7.1     | 6.4     |
| М                | -       | -      | -      | -      | -        | -          | -         |                     | -      | -      | -      | -       | -       |
| Mb               | -       | _      | -      | _      | -        | _          | - 1       | -                   | _      | -      | _      | - 1     | - 1     |
| в                |         | -      | -      | -      | -        | -          | -         | -                   | -      | -      | -      | -       | - 1     |
| Bc               | -       | -      | -      | -      | -        | -          | -         | -                   | -      | -      | -      | -       | -       |
|                  | <u></u> |        |        | Cur    | rent Flo | w Betwee   | n Couple  | d Rods              | (ma)   |        |        |         |         |
| G                | 1.2     | 1.6    | 1.0    | 1.1    | 1,9      | 1.1        | 0.9       | 1.4                 | 1.5    | 1.5    | 1.3    | 1.3     | 1.3     |
| С                | 7.6     | 5.9    | 6,1    | 7.8    | 7.4      | 7.2        | 5.9       | 6.2                 | 6.8    | 6.9    | 7.3    | 7.1     | 6.8     |
| Cp               | 7.1     | 6.2    | 6.3    | 6.1    | 5.9      | 5.8        | 4.8       | 4.9                 | 5,2    | 6.9    | 7.3    | 6.9     | 6.1     |
| Ν                | 0.5     | 0.0    | 1.7    | 1.9    | 2.0      | 2.2        | 0.7       | 2.4                 | 2.2    | 1.9    | 0.7    | 1.0     | 1,4     |
| S                | 1.7     | 2.3    | 2.3    | 2.3    | 2.2      | 1.9        | 0.9       | 1.7                 | 1.7    | 1.8    | 1.5    | 2.0     | 1.9     |
| Z                | 9.2     | 5.9    | 6.2    | 1.2    | 1.2      | 1.4        | 1.6       | 2.0                 | 1.8    | 1.3    | 4.7    | 9.6     | 3.8     |
| zb               | 6.0     | 3.8    | 1.6    | 6.3    | 5.9      | 5.0        | 4.8       | 3.8                 | 3.7    | 4,3    | 6.1    | 6.0     | 4,8     |
| Α                | 2.2     | 1.4    | 1.5    | 1.5    | 1.6      | 1.6        | 1.4       | 1.5                 | 2.2    | 2.4    | 2.4    | 2.2     | 1.8     |
| M                | -       | -      |        | -      | -        | -          | -         | _                   | -      | -      | -      | -       | -       |
| MB               | -       | -      | -      | -      | -        | -          | -         | -                   | -      | -      | -      | -       | -       |
| 8                | -       | - 1    | -      | -      | -        | -          | -         | -                   | -      | -      | -      | -       | -       |
| B¢               | -       |        | -      | -      | -        | -          | -         | -                   | -      | -      | -      | -       |         |
|                  |         |        |        |        | Resist c |            |           | Z = 2               |        |        |        | magnesi |         |

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

<sup>d</sup> G = galvanized steel C = copper-clad steel N = Ni-Resist cast iron S = stainless steel Z = zinc A = aluminum M = magnesium B = stainless-clad steel

<sup>b</sup> One rod coupled to two mild steel rods,

 $^{\mbox{\scriptsize C}}$  Two rods coupled to one mild steel rod.

## Table C-12. Electrical Measurements for 7-Year Coupled Rods (Seventh Year)

| Coupled          |                      |            |        | ····   | M                       | onthly M   | asureme  | nts                 |               |        |        |                        |                   |
|------------------|----------------------|------------|--------|--------|-------------------------|------------|----------|---------------------|---------------|--------|--------|------------------------|-------------------|
| Rod <sup>a</sup> | 1                    | 2          | 3      | 4      | 5                       | 6          | 7        | 8                   | 9             | 10     | 11     | 12                     | Average           |
|                  |                      |            |        |        | Potent                  | ial (coupl | e to Cu/ | CuSO <sub>4</sub> ) |               |        |        |                        |                   |
| G                | -0.628               | -0.633     | -0.635 | -0.609 | -0.710                  | -0.535     | -0.610   | -0.621              | -0.573        | -0.585 | -0.621 | -0.558                 | -0,610            |
| С                | -0.499               | -0.527     | -0.513 | -0.501 | -0.490                  | -0.520     | -0.618   | -0.499              | -0.500        | -0.482 | -0.492 | -0.487                 | -0.511            |
| Cp               | -0.574               | -0.592     | -0.597 | -0.564 | -0.615                  | -0.406     | -0.495   | -0.594              | -0.430        | -0.580 | -0.561 | -0.565                 | -0.548            |
| N ]              | -0.597               | -0.617     | -0.635 | -0.588 | -0.600                  | -0.475     | -0.502   | -0.605              | -0.545        | -0.584 | -0.600 | -0.580                 | -0.577            |
| S                | -0.585               | -0.597     | -0.627 | -0.570 | -0.630                  | -0.490     | -0.571   | -0.562              | -0.562        | -0.568 | -0.570 | -0.561                 | -0.574            |
| Z                | -0.906               | -0.930     | -0.855 | -0.884 | -1.000                  | -0.430     | -0.591   | -0.860              | -0.825        | -0.828 | -0.850 | -0,820                 | -0.815            |
| ZÞ               | -0.659               | -0.600     | -0.687 | -0,648 | -0.875                  | -0.850     | -0.985   | -0.580              | -0.780        | -0.743 | -0.533 | -0,525                 | -0.705            |
| A                | -0.719               | -0.722     | -0.733 | -0.702 | -0.825                  | -0.500     | -0.551   | -0.740              | -0.730        | -0.721 | -0.725 | -0.720                 | -0.699            |
| M                | -                    | -          | -      | -      | -                       | -          | -        | -                   | -             | -      |        | -                      | -                 |
| Mp               | -                    | -          | -      | -      | -                       | -          | -        |                     | -             | -      | ~      | -                      | -                 |
| B .              | -                    |            | -      | -      | -                       | ~          |          |                     | -             | -      | ~      | -                      | -                 |
| Bc               | -                    | <b>-</b> ' | -      | -      | -                       | ~          | -        | -                   | -             | -      | -      |                        | -                 |
|                  |                      |            |        |        | Resis                   | tance to ( | Ground ( | ohms)               |               |        |        |                        |                   |
| G                | -                    | 2.8        | 2.2    | 4.2    | 8.3                     | 1.1        | 6.2      | 9.5                 | 15.5          | 19.1   | 8,5    | 11.5                   | 8.1               |
| с                | _                    | 2.6        | 1.6    | 3.4    | 5.8                     | 6.7        | 5.5      | 8,1                 | 8.7           | 7.5    | 6.7    | 5.4                    | 5.6               |
| CP               | _                    | 2.8        | 1.6    | 3.8    | 4.8                     | 6.1        | 4.8      | 7.3                 | 6.8           | 6.8    | 6.6    | 4.8                    | 5.1               |
| N                | -                    | 2,4        | 3.4    | 3.3    | 6.1                     | 5.4        | 4.7      | 7.6                 | 8.2           | 7.6    | 6.3    | 5.8                    | 5.5               |
| S                | · 🕳                  | 2.1        | 1.5    | 2.8    | 5.8                     | 5.1        | 4.8      | 7.5                 | 8.0           | 7.5    | 7.0    | 6.0                    | 5.3               |
| Z                | -                    | 3.9        | 3.4    | 5.5    | 6.5                     | 5.5        | 8.2      | 11.1                | 10.5          | 10.5   | 9.9    | 8.0                    | 7.5               |
| zb               |                      | 2.9        | 1.6    | 10.1   | 7.7                     | 8.5        | 6.8      | 14.0                | 14.2          | 18.9   | 11.8   | 9.7                    | 9.7               |
| A                | -                    | 2.5        | 2.1    | 3.1    | 4,5                     | 9.4        | 7.8      | 8.4                 | 8.1           | 8,1    | 6.8    | 5.8                    | 6.1               |
| м                | _                    | -          | _      | _      | _                       | -          | _        | _                   | _             | _      | -      | _                      | _                 |
| Wp               | -                    | _          | -      | _      | _                       | -          | _        | -                   | -             | _      |        | -                      |                   |
| 8                | -                    | _          | -      | -      | -                       | -          |          | _                   | _             | -      | - 1    | _                      |                   |
| Bc               | -                    | -          | -      | -      | -                       | ~          | -        | -                   | -             | -      | -      | -                      | -                 |
|                  |                      |            |        | Cur    | rent Flov               | w Betwee   | n Couple | d Rods (            | ma)           |        |        |                        |                   |
| G                | 1.2                  | -          | 1.0    | +      | _                       | -          | 1.0      | 1.1                 | 1.0           | 1,1    | 1.3    | -                      | 1,1               |
| C                | 6.8                  | -          | 5.7    | -      | -                       | +          | 5.5      | 5,1                 | 5.1           | 5.3    | 5,8    | _                      | 5.6               |
| CØ               | 6.3                  | -          | 5.8    | -      | -                       | -          | 6.0      | 4,9                 | 5.0           | 5.4    | 6.9    | _                      | 5.8               |
| N                | 0.4                  | -          | 1,7    | -      | -                       | -          | 0.6      | 0.5                 | 0.5           | 0.6    | 1.0    | -                      | 0.8               |
| S                | 2.0                  | -          | 2.3    | -      | -                       | ~          | 1.5      | 1,4                 | 1.3           | 1.3    | 1.6    | -                      | 1.6               |
| Z                | 9,1                  | -          | 1.7    | -      | -                       | -          | 3.7      | 3.4                 | 0.7           | 0.4    | 0.5    | -                      | 2.8               |
| zb               | 5.9                  | -          | 5.9    | -      | -                       | -          | 1.7      | 1.2                 | 1.3           | 1.2    | 0.8    | -                      | 2.6               |
| A                | 2.0                  | -          | 1.4    | -      | -                       | -          | 0.7      | 0.7                 | 0.8           | 0.8    | 1.0    | -                      | 1.1               |
| M                | -                    | -          | -      | -      | -                       | -          | -        | -                   | - (           | -      | - [    | - [                    | -                 |
| MÞ               | -                    | -          | -      | -      |                         | -          | -        | - 1                 | -             | -      | -      | -                      | -                 |
| B<br>B⊄          | -                    | -          | _      | -      | -                       | -          | -        | -                   | -             | -      | -      | -                      | -                 |
| G = galv         | anized s<br>per-clad |            |        |        | Resist ca<br>niess stee |            |          | Z = z<br>A = al     | inc<br>uminum |        |        | magnesiu<br>stainiess- | im<br>cladi steel |

(Unless otherwise specified, the couple consists of the indicated rod connected to a single mild steel rod.)

<sup>b</sup> One rod coupled to two mild steel rods.

<sup>¢</sup> Two rods coupled to one mild steel rod.

## REFERENCES

1. L. M. Applegate. "Grounding and corrosion in military construction," Military Engineer, vol. 60, no. 393, Jan.-Feb. 1968, pp 32-34.

2. "Driven ground rod test program; a progress report of NACE Task Group T-4A-3 on methods and materials for grounding," Corrosion, vol. 17, no. 7, July 1961, pp 365t-366t.

3. J. D. Ghesquiere. "Cathodic protection and zinc grounding in industrial plant construction," Corrosion, vol. 17, no. 3, Mar. 1961, pp. 149t-153t.

4. "Driven ground rod test program; a status report of NACE Task Group T-4A-3 on methods and materials for grounding," Materials Protection, vol. 2, no. 5, May 1963, pp 95-100.

5. "Driven ground rod test program; second status report of NACE Technical Unit Committee T-4A on effects of electrical grounding on corrosion," Materials Protection, vol. 4, no. 12, Dec. 1965, pp. 75-84.

6. H. H. Uhlig. Corrosion handbook. New York, John Wiley and Sons, Inc., 1948, pp. 1111, 1118.

7. National Fire Protection Association. NFPA no. 70: National electrical code; a USA standard. Boston, Mass., 1968. (USAS C1-1968)

8. Naval Facilities Engineering Command. NAVFAC Specification 9Yi: Electrical apparatus, distributing systems, and wiring. Washington, D. C., Feb. 1968.

9. W. E. Coleman and H. G. Frostick. "Electrical grounding and cathodic protection at the Fairless Works," American Institute of Electrical Engineers, Transactions, vol. 74, pt. 2, no. 17, Mar. 1955, pp. 19-24. (AIEE paper no. 55-110)

|                                                                                                                                                                                                                                                                                                                                                                                            | T CONTROL DATA - R                                                                                                                                                                             |                                                                                                                |                                                                                                                                                            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (Security Clausification of title, body of abstract and<br>RIGINATING ACTIVITY (Corporate author)                                                                                                                                                                                                                                                                                          | indexing annotation must be                                                                                                                                                                    |                                                                                                                | e overall report in classified)<br>BECURITY CLASSIFICATION                                                                                                 |  |  |
| Naval Civil Engineering Laboratory                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 1 .                                                                                                            | Inclassified                                                                                                                                               |  |  |
| Port Hueneme, California 93041                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                | 28. GROUP                                                                                                      |                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                            |  |  |
| FIELD TESTING OF ELECTRICAL (<br>ESCRIPTIVE NOTES (Type of report and inclusive dated)<br>Final; July 1962 - July 1969                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                | 5                                                                                                              |                                                                                                                                                            |  |  |
| u THOR(B) (First name, middle initial, last name)                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                | يتعكر فيعاهد                                                                                                   |                                                                                                                                                            |  |  |
| R. W. Drisko and A. E. Hanna                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                            |  |  |
| IPORT DATE                                                                                                                                                                                                                                                                                                                                                                                 | TE. TOTAL NO. O                                                                                                                                                                                | -                                                                                                              | 75. NO. OF REFS                                                                                                                                            |  |  |
| February 1970                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                             |                                                                                                                | 9                                                                                                                                                          |  |  |
| ONTRACT OR BRANT NO.                                                                                                                                                                                                                                                                                                                                                                       | S. ORIGINATOR                                                                                                                                                                                  | S REPORT NU                                                                                                    | MBER(8)                                                                                                                                                    |  |  |
| PROJECT NO. YF 38.534.006.01.001                                                                                                                                                                                                                                                                                                                                                           | TR-66                                                                                                                                                                                          | TR-660                                                                                                         |                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | SO. OTHER REPO                                                                                                                                                                                 | SD. OTHER REPORT NOIS (Any other numbers                                                                       |                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            | this report)                                                                                                                                                                                   |                                                                                                                |                                                                                                                                                            |  |  |
| SISTRIALTION STATEMENT                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                            |  |  |
| UPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                         | 11. SPONSORING                                                                                                                                                                                 | 12. SPONSORING MILITARY ACTIVITY<br>Navai Facilities Engineering Command                                       |                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                            |  |  |
| BATRACT                                                                                                                                                                                                                                                                                                                                                                                    | Washingto                                                                                                                                                                                      | n, D. C.                                                                                                       |                                                                                                                                                            |  |  |
| In cooperation with the National A<br>a 7-year program of field testing metal in<br>steel, copper-clad steel, Ni-Resist cast in<br>steel, zinc, magnesium, and aluminum w<br>rods. Sets of both single and coupled ro<br>and 7 (or 5) years. Potential, resistance,<br>far as practicable. Weight losses and elec<br>concluded that type 302 stainless steel a<br>choices for general use. | Washingto<br>Association of Corros<br>ods for electrical grou<br>on, type 302 stainless<br>vere tested along with<br>ods were removed, cle<br>, and current measure<br>ctrical data were analy | n, D. C.<br>ion Engine<br>ending. Sin<br>steel, type<br>couples of<br>aned, and v<br>ments were<br>yzed for co | ers, NCEL conducted<br>ogle rods of galvanize<br>304 stainless-clad<br>these to mild steel<br>veighed after 1, 3,<br>made monthly as<br>rrelations. It was |  |  |

2

,

ļ

| 4.             | KEY WORDS         |   | LINK A |                     | LINK B |     | LINK C |         |
|----------------|-------------------|---|--------|---------------------|--------|-----|--------|---------|
|                |                   |   | ROLE   | WT                  | ROLE   | WT  | ROLE   |         |
| Electrical gro | punding           |   | }      |                     | 1      |     |        |         |
| Metal rods     |                   |   |        |                     |        |     |        |         |
| Galvanized s   | teel              |   | {      |                     |        |     |        | 1       |
| Copper-clad    | steel             | 1 |        |                     |        |     |        |         |
| Ni-Resist cas  | t iron            |   |        | i                   |        |     |        |         |
| Type 302 sta   | inless steel      |   |        |                     |        |     |        |         |
| Type 304 sta   | inless-clad steel |   |        |                     |        |     |        |         |
| Zinc           |                   |   |        |                     |        |     |        |         |
| Magnesium      |                   |   |        |                     |        |     |        |         |
| Aluminum       |                   |   |        |                     |        |     |        |         |
| Single rods    |                   | 1 | [      |                     |        | {   |        |         |
| Coupled rods   |                   |   |        |                     | ł      | ł   |        |         |
| Potential      |                   |   |        |                     |        |     | ļ      |         |
| Resistance     |                   | 1 |        |                     |        |     |        |         |
| Current        |                   |   | j      | ļ                   |        |     |        |         |
| Field tests    |                   |   | }      |                     |        | {   |        |         |
|                |                   |   | }      |                     |        | 1   | 1      |         |
|                |                   |   |        |                     |        |     |        |         |
|                |                   |   |        |                     | {      |     |        |         |
|                |                   | 1 |        | ł                   | 1      |     |        |         |
|                |                   |   |        |                     |        |     |        |         |
|                |                   | } | }      |                     |        |     |        |         |
|                |                   |   | 1      |                     |        | ł   | ł      |         |
|                |                   |   |        |                     |        | - [ | [      |         |
|                |                   | 1 |        | 1                   |        |     |        |         |
|                |                   |   |        | 1                   | Ì      | 1   |        |         |
|                |                   |   | - {    | {                   | {      | - [ |        |         |
|                |                   | 1 |        | 1                   |        |     |        |         |
|                |                   | { |        |                     |        |     |        |         |
|                |                   | - |        |                     |        |     |        |         |
|                |                   | ł | }      |                     |        | ł   |        |         |
|                |                   | ļ |        |                     |        | l   |        |         |
|                |                   | 1 |        |                     | ľ.     |     |        |         |
|                | 2 (BACK)          | - |        | Uncie<br>Inverter C |        |     |        | د رون د |

潜

Sample