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ABSTRACT 

A new and useful parameter (a) for avalanche diodes is obtained 
which possesses the properties associated with negative conduc- 
tivity. It is shown how a unifies the description of various as- 
pects of device behavior such as diode impedance Z, total current, 
and the effect of device radius on performance. A greatly simpli- 
fied, approximate formula for X is obtained, in terms of <r. which 
predicts reasonably well the significant trends, zero-crossings, 
and peaks. 
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NEGATIVE    CONDUCTIVITY    IN    SOLID   STATE 

AVALANCHE    DIODES 

INTRODUCTION 

The resistance   H   of a simple,   classical resistor is calculated in an elementary fashion 

u   i\ o 
Hi 

which relates the geometric factors (L = length, A = cross-sectional area) and material param- 

eter (CT conductivity) to R. The impedance Z of a simple parallel-plate capacitor of separa- 

tion   I.,   and eross-seetional area  A,   completely filled with a lossy dielectric of permittivity   < 

and conductivity a   ,   is o 

L 
(jc^  +ao) A (2) 

This report considers the description of an avalanche diode in a new simplified manner using an 

effective conductivity  a.    The impedance Z    of the avalanche region will be shown to be given 

approximately by 

'a       (jaii    • a .) A (51 

In addition,   the total current density (particle plus displacement) will be shown to be specific 

without approximation by 

.1, (CT1   t ju>< ) Bi (4 I 

(where H.  is an amplitude constant) and the radial variation of the electric field and cur-rents 

will be shown to be given for the normal IMPATT mode bv .I   (Tr),   where h. •       o 

T -j^u^cr^  + ju>( ) I . 

n    - material permeability,   and •!   (x) is the Bessel function of the 1st kind and of zeroth order. ro r - o 
Previous  "exact" expressions for Z    in the literature are algebraically complex expressions 

which require lengthy numerical calculations before their- content  can be made explicit.    The 

dependence of the total current,   .1       on radian frequency (u/),   DC current  density bias (.1   ),   and 

the material parameters has not  been previously developed in the literature.     Finally,   the radial 

variation of E   ,   .1    =   —qV   n,   and .1    -  —qV  p (the electron and hole current densities with \ 
xn^sp^s s 

saturated drift speed) has not been previously evaluated,   although they may begin to be noticeable 

in sufficiently large-diameter- ring diodes of the type described by Gibbons and Ylisawa. 

II.     TOTAL   CURRENT   DENSITY 

The total current density is defined by 

I     t .1    + iox   E n        p     ' x 
(61 

It  is shown in the Appendix that 



-JK.x< (-1IS-X \ 
F.BV   >) 

i=l 

(71 

J     + J 
n        p 

V    a.E. 
Li       I    i 

1=1 

(8) 

where B,,   B- = B_ are amplitude coefficients,  and 
1        i. 5 

a.  - 
l 

-2iojcv'J  V J      o o   s 

coZ -(K.V  )2 + 2joja  V v    1    s J       OS 

(i =  1,2, 3) ("I 

are temporally and spatially dependent conductivities,   K. = 0,   and 

K2 = -K3 = y(a>/Vg)
2 + 2j(a;/Vs)«o-2«;JoA 'eV 

are wavenumbers.    Here a    and a'  are the ionization coefficient and da/dE evaluated at the DC 
o o 

electric field value E  .    By direct addition of (8) and jwe times (7), 

JT = '°1 + •'a,£' Bl + 2B2'CT2 + •'W€' cos(K2x) 

Direct calculation yields a    = -jwe,  which leaves the final result 

where 

JT = (<*< + iWi> B^ 

2icv'J   V J   o o   s 

(10) 

(11) 

1 w + 2i»  V J   o   s 

,ja,<   +2»oVsf  -2jo;.T0V3v 

I w + 23aoVs /     4 
(12) 

    Re(JT/B,} 

---   ""{VB,} 

J0  =  10   omp/cm 

L  • 1.5 microns 

Vc  • 8 5 x 106 cm/sec 

for which normalized values are plotted in 

Fig. 1. 

Fig. 1. The real and imaginary components 
of the total current density (J'r) as a fund ion 
of frequency (f) for an X-band silicon diode in 
which the avalanche zone is 1.5 microns in 
length,   J0  =   lo'5 amp/cm2,    fv0  =   6.6 x   103, 
a'Q = 0.164,   and e  = 10 -12 

FREQUENCY (GHz) 



II.    DEVICE  IMPEDANCE 

The impedance is defined by 

Za = V/JTA       , (13) 

where A  - cross-sectional area,   and 

r+L/2 
V = - \ E   dx (14) 

•'-I./2      X 

is the voltage across the diode.    Neglecting space-charge,   integration of Eq. (6) (see Appendix) 

gives 

E    = constant -  B, x 1 

so thai 

V = -E  L -- -B.I.      . (1S> x 1 

From  Kqs.(11),   (13),   and (15),   Eq.(3) is obtained for Z   .    The exact result (see Appendix) is 

(M sine, \ 

Z     =         ; -* ;        , (UB 

where 

62 S K2L/2 = (L/2) J(W/Vs)2 + 2j(u./Vs)no-2n;.Io/,Vs       , 

and 

-2j«' .1   V 
,,        '    (i  o   s  ,.„ 

"   c   (u; + 2jfv   V   ) (jw cosG,  - V   K    sine,) 

Figures 2 tlirough 5 show that the activity threshold and peak impedance frequencies arc 

reasonably well predicted by the approximate result of Kq. (3) (in conjunction with the drift  /one 

impedance),   although the values of Z    in the vicinity of these points are not precise.    Thus,   the 

significant trends,   peaks,   and zero-crossings are revealed by Eq. (3),   although the magnitudes 

show only semi-quantitative agreement in certain ranges.    However,   this is a far better approx- 
2 

imation for Z    than provided by previous simplified analyses,   such as that of Gilden and Bines, 

which,   for example,   shows no negative resistance effects associated with the avalanche region. 

IV.    RADIAL  VARIATIONS 
3 

A lengthier analysis    reveals that the usual quasi-static,   one-dimensional picture may,   in 

a more accurate field theory,   be described as a quasi-TEM  radial wave mode.    One may attempt 

to approximate this by a TEM radial wave mode (which will only satisfy boundary conditions 

approximately).    The equations for a radial mode,   with the only non-zero components being  V. 

and B    ,   are 
0 



F aT <rV 
9E. 

IT. = (a. + joj() E. 

which combine to vield 

3r 

,aiv, 

rau  H   . J     o   tw 

1 ^L    rl^-\  = ju\i (a. + jwe) E. = T2E. r  3 r      \ 0 r /      J   ^o    l     J ill 

The non-singular solution to Eq. (20) is 

•jK.x 
E. = J   (T.r) B. e 

1 Oil 

By direct calculation T.   = —joj^  (ff.  + j 

(i =  1,2, 3) 

t),  shown in Fig. 6,  while cr_ 

(18) 

(19) 

(20) 

(21) 

- j- - — jaif  implies that 

T,   - T,  = 0.    This behavior is  peculiar in that the radial TM wave mode,  with non-zero E  , 

II   , and E    field components (each of which varies as J  (Tr)with the same  T), does not smoothlv cp' r r o   
reduce  to the radial  TEM mode wave.    When  |T|   r « 1,  then J  (Tr) =* 1 and   the usual  one- 

dimensional results are retrieved.    The current density is similarly described as 

-jK.x 
y    J  (T.r)CT.B. e       ' 
Li       Olll 
i=l 

(22) 
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Fig. 2. The approximate and exact silicon IMPATT diode impedance vs frequency (f) 
for a diode in which the avalanche zone (L) is 1.5 microns in length, the drift zone (I)) 
is 2.75 microns, ,J0 = lO^amp/cm2, a0 = 6.6 x 103, a'Q = 0.164. (a) Real part; (b) im- 
aginary part. 



FREQUENCY (GH!) 

(a) 

Fig. 3. The approximate and exact silicon IMPATT diode impedance vs frequency (f) 
for a diode in which the avalanche zone (L) is 0.5 micron in length, the drift zone (I)) 
is 0.92 micron, ,I0 = 3.76 x 103 amp/cm2, o0 = 2 x 104, a'0 = 0.315. (a) Real part, 
(b) imaginary part. 
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Fig. 4.    The   approximate and   exact silicon   IMPATT diode   impedance vs   frequency   (f) 
for a diode in  which the avalanche  zone (I.) is 0.32 micron in length,   the drift   zone (I)) 
is 0.53 micron,   J0 = 7.18 x 103amp/cm2, 
(b) imaginary part. 

3.125 x 104, 0.427.    (a) Heal par 
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Fig. 5. The approximate and exact silicon IMPATT diode impedance vs frequency (f) 
for a diode in which the avalanche zone (L) is 0.22 micron in length, the drift zone (D) 
is 0.387 micron, ,TQ = 1.035 X 104 amp/cm2, aQ = 4.545 x 104. <v0 = 0.542. (a) Heal 
part;   (b) imaginary part. 
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Fig. 6.    The real and imaginary parts of T2 vs frequency (f) for an X-band diode with I. - 
1.5 microns,  J0 = 103 amp/cm2,   aQ - 6.6 x 103 0.164,   and  t =   lO-12 farads/cm. 
The square of the radial wavenumber (for a TEM  cylindrical wave) Kg (which is purely 
real) is indicated for comparison,    (a) Re {T2};  (b) Im {T2}. 



APPENDIX 

IMPEDANCE   DERIVATION 

4 
The continuity equations for electron and hole currents are 

9n/31 - (1/q) ;Un/<')x + g      , (2 3) 

9p/8t      -(1/q) ',)•]  /Ox + g       , (241 

where g •   a   V  (n t p) t  »' V E (n    + p  ) is the small-signal AC component of the electron-hole 

generation rate,   Y   is the saturated drift speed of the carriers,   n  and  p  are the AC electron 

and hole current densities,   and n     f p    are the DC electron and hole current  densities.     After o        o 
some algebraic manipulation,   along with the assumption that all quantities vary as c      ,  Kqs. (2 3) 

and (24) may be written 

Dn-oVp-CE    - 0      , (2S> n o   sK x v 

Op- a   V   n - CE    - 0      , (26) p o   s x v 

where 

I)    = 0/8t) - V   d/dx - a   V   ) n ' s   ' os 

o   = (a/at + v a/ax - a v ) 
p ' s   ' OS 

C =  a' V2(n    t p   ) 
O    S       O o 

from these equations it can be readily shown that 

(1)1)   -(0 V  )2] J    = -qV C [I)   + cv  V   ] i: 'np osn ns'p osx 

2 <-7> [D  D    -(«   \    )   1 .1    = -qV  C   D    + a   V   ]  E 1   n   p o   s    J    p s     l   n        o   s'    x 

jUt-K.x) 
For e dependence it is recognized that   Kqs. (6),   (23),   and (24) yield a third-order sys- 

tem of equations for which the cubic dispersion relation reveals the three roots for K.  given in 

Sec. II.    Then E   .   .1   ,   and .1    must have the form x      n p 

3 
•     =    V     E. 

X           U          1 (-, • 

- jK.x 

= B, e       ' 

i   1 

3 3 

i = y a . 
n        —i       m 

E. 
I 

.1         : 
P 

y    a   .K. U       pi    i 
i    1 i=l 

(7) 

(28) 

where a   . and a   . can be determined bv substituting  Kq. (7) into Eqs. (27) and turn out to be given 
m pi 

by 

a.    r VK. 
o-   .=  ^     H m       2 

a.    r VK. 

' pi       2 a   •      4     1 Ll        , Uq> 



where a. is given in Eq. (9).    Applying the usual boundary conditions 

.1=0      at      x = -L/2 
n ' 

J    = 0       at      x =  L/2 (30) 

it follows that B    = B, and 

B2/B1 = B3/B1 = M (31) 

where  M  is defined in Eq.(17).    Thus,   Eq. (7) can be written 

Ex = Bt [1 + M cos(K2X)] 

Eq. (18) is obtained by summing Eqs. (28). 
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