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Abstract 

A method Is presented to prove that a linear operator 

M is inverse-positive, i.e. Mu ^ o implies u ^ o. The 

method consists in reducing the problem for the given 

operator M to a simpler problem.  Sometimes, iterated 

reductions are appropriate, for example, if M is a differ- 

ential operator of higher order. 



1.     Introduction. 

This paper provides tools for proving that a linear operator   M 

is inverse-positive, that means:    Mu ^ o   implies    u ^ o.    This property 

is frequently used in Applied Mathematics.    For example, it is closely 

related to the boundary maximum principle for second order differential 

operators. 

The abstract formulation of the above property, and a corresponding 

property for nonlinear operators,  is due to Collatz  (see [1] where such 

operators    M   are called "Operatoren monotoner Art",  i.e. operators of 

monotone type).    Collatz showed the importance of this property in 

Numerical Mathematics and, in particular, for obtaining error bounds. 

An abstract theory on such operators provides sufficient and necessary 

conditions   (see [2]  and the references given there),     in this paper, we 

develop methods for proving that these sufficient conditions are satisfied 

in more  complicated cases where this is not immediately seen,  for example, 

in case of higher order differential operators. 

The provided methods reduce the problem of proving that    M    is 

inverse-positive to a corresponding problem for an operator    M ■ LM 

(or   A > LM).    In some cases, a suitable operator    L    can immediately 

be constructed (Section 3);   in others, several operators are used which 

theoretically can be combined in a single operator, but practically 

will not   (Section 4).    This last method is applied to operators   M ■ I-B 

with positive    B,    in Section 5.    There are cases, when it is appropriate 

to actually carry out several reductions, one after the other (Section 6). 

For example, the order of differential operators can be reduced in this 

way,  step by step. 
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2.    Notations and Basic Asaumptlons. 

Let    R    and    S    denote real linear spaces and   Mt R -► S    a 

linear operator.    Suppose that In both these spaces there are defined 

order relations, both denoted by    <t. 

All occurring order relations shall be reflexive, transitive 

and compatible with the linear structure.    The space    (R,^)    will 

be called partially ordered If the relation    4   Is also antisymmetric. 

By   K^   we denote the cone of all    u ^ o    In    R.    For   u    In the 

algebraic Interior (core) of   K ,    we will write   u>*o.     (In other 

words,    u >»o    If and only If, for each    v e R,    there exists some 

number   n    with   nu + v >, 0.)    Corresponding notations are used for    S. 

For all occurring order relations,    > o    shall be equivalent to   ^o 

and    j o,    so that,  for example,    u ^To    means that either    u^-o, 

or   u ■ o. 

We assume that     (R,<)    Is Arahimedian (that means    K_    is linearly 

olosed, or:    for all    u,v £ R,    nu + v ^ o     (n-1,2,...)    implies    u ^ o) 

Suppose, moreover,  that there Is defined a second order relation   £   in 

S   which dominates the first in the following sense:    For    U,V t S, 

U>o—>U>.o;    U>o,    V >, o —> U + V >o. 

We are then Interested in the following properties of   M: 

IP Mu ^ o    impliee   u ^ o,    for   u e R. 

IP'        Mu >c    impliee    u^-o,    for    u e R. 

The operator    M    is called inveree-positive if   IP    holds.    If   R   is 

partially ordered and  M   has both propertieBt   IP    and   IP1,    then 

Mu >o   impliee    u^o,    for   u c R. 
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For,  in this case,    Mu « o    can only occur if    u ■ o. 

In case,  >   is equivalent to    >,    the last property will be 

called strong inverse-positivity: 

SIP Mu ^ o    implies    u^o,    for    u e R. 

Theorem 1 in [2]   contains sufficient conditions     1,11     for   IP 

which can also be used for proving    IP*.    This paper is mainly concerned 

with providing methods for proving 

I     Mv J^ c    foi' eadh    v t. R   with,   v ^ o,    v>f-c>. 

For describing these methods, we will need also other linear spaces 

with two order relations    ^   and   £   such that  the second dominates the 

first.     The letter    X     (also with subscript, etc.) will always denote 

such space.    For these spaces, we will use corresponding notations as 

for    R    (K  , x^«o,    etc.). 

Furthermore,  the letter    L    will always denote a linear operator 

mapping such space    X     (or    S)     into another such space    X    and satisfying 

the following two conditions.     For each    x e X     (x e S), 

(2.1) x ^ o    implies   Lx >_ o, 

(2.2) x > o    implies    Lx>c>. 

(For some of the following results only one or the other of these properties 

is needed.    Notice also that   (2.1) follows from  (2.2) If    (X,^)    is 

Archimedlan and if there exists an element    x > o    in    X.) 

■ 
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3.    Simple Reduction 

The following simple theorem Is the basic tool for what Is derived 

in this paper. 

3.1    Theorem.    Let there exist a linear operator   L   mapping    S 

into a linear apace   X   such that  (2.1),   (2.2) hold and the following 

oonditions are satisfied: 

V      LMv ^ o   for each   v e R   with    v ^o,    v<^o. 

II'    There exists an element    z £ R   with 

(3.2) z i o,    IM« > a- 

Then,    M   has the Properties    IP    and   IP'. 

Proof.    Since    Mu >, o    implies    LMu >, o   and   Mu > o    implies 

LMu > o,   it suffices to prove the Properties   IP     and    IP '     for    LM, 

instead of    M.    The above assumptions, however, are equivalent to the 

assumptions      I , II      in Theorem 1     [2], with   M    replaced by    LM. 

According  to that theorem,    LM    therefore has Property    IP.    This 

property together with    |'    yields that,    LMu > o    Implies    uXc 

Remark.    Instead of     II1    one oan require: 

II       There exists an element    z e R   with   z ^ o,    Mz >o. 

This follows from (2.2). 

The above theorem leads to the following 
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Method of Reduction;    Find an operator   L: S -► X   satisfying 

(2.1),  (2.2) such that   LH - M - N   where   M   has Property   I    and 

N    is positive    (u ^ o ■•> Nu >, o). 

If then    IP    or    II     holds,   M   has Properties     IP  and   IP'. 

The last statement follows from the fact that     I*    Is satisfied 

If    M   has Property    I. 

With this method,  the problem Involving   M   Is reduced to a 

problem with the operator    M.    This can have the following two 

advantages.    First,    M   may be simpler, and second. Property   I     for 

M    may be weaker than Property   I     for   M.    Notice,  that Property   I 

depends on the order relation   <   defined in the range of the operator 

so that different such order relations belong to   M    and   M, 

respectively. 

Example.    Let    R • X « !R  ,    S - IR      and identify operators with 

matrices.    Suppose that    ^    denotes the natural (componentwise) order 

relation,  in each of these  spaces.    For    U  t S,    define    U>o    by, 

U «^-c»    In case  (i),    U > o    in case (11).     For    x e  X,    x>c    and 

x ^ o    shall be equivalent. 

Then, an    n^m-matrix    L    has the properties  (2.1),  (2.2) if 

and only if in case  (1):    each row of    L    contains an element    > 0, 

in case (11):    all elements of   L    are    > 0. 

If the matrix   M    is diagonal, it has Property    I     (as an 

operator:    R ~> X).    Thus,  If we can find a matrix    L   of the prescribed 

type such that all off-diagonal elements of    IM   are   4 0,    the matrix 
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M   has Properties   IP     and    IP'     (as an operator:    R-> S)(    provided 

there exists a suitable vector    z. 

For example, we have 

LM 

5 0 0 0 

-5 5 0 0 

0 -5 5 0 

L o 0 -5 5 

for   M 

3 -1 0 0 4 3 2 1 

3 3 -1 0 ' 3 6 4 2 

1 -3 3 -1 .    L - 2 4 6 3 

0 1 -3 2, 1 2 3 4 

Since L has all elements > 0 we consider case (11). Then, z with 

zT ■ (1,2,3,4) satisfies (3.2). Therefore, M has Property SIP which 

implies that M possesses an Inverse with all elements > 0. 

4. Reducing with Several Operators 

When a suitable operator L as needed in Theorem 3.1 cannot 

Immediately be found the following result can be helpful. 

4.1 Theorem. Let the operator   M have the following  two properties. 

I" For each   v E R with 

(4.2) v >. o, v)f.o 

there exists a linear operator   L ■ L(v)   mapping   S    into a linear space 

X - X(v)    suoh that (2.1) and (2.2) hold, and 

(4.3) LMv^o. 

II       There exists an element    z e R   suah that    z ^ o,    Mz >o. 

Then,    M   ha« the Properties   IP    and   IP'. 

Remark.    The theorem remains true if   \\     is replaced by, 

H"      There exists an element    z e R   with 

* i o»    L(v)Mz>o   for all operators   L(v)    ooaurring in    I". 
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4.5 Example. Let L denote the differential operator, defined 

by Lu ■ -u  + qu for u e CAOtl]   with given q e C[0,1], and 

consider the boundary conditions, 

u(0) - 0 ,  u(l) - 0 

uIV(0) - au'CO) - 0   ,  uIV + au'd) - 0 

uV(0) + 3u"(0) + YU'W),  -uV(l) + bu"(l) - cu'(l) - 0. 

We assume that 

q(8) ^0 (0 ^ s ^ 1), a >, 0, a >_ 0, ß ^ 0, b ^ 0. 

4.6 Let there exist a function z e C,[0,1] aatiafying the given 

boundary oonditiona auch that z{s) ^0, (LzHs) ^0 end (Lz)(s) \ 0 

(0 4 s ^ 1).    Thent  the following is true. 

If   MZ C6[0,1]    eatiefiee the given boundary oonditione and 

LluK») i 0    (0 <, « <, D»    then    u(8) ^0    (0 ^ s 4 1),    and even   \x<^o 

with the order relation   V defined belou (in (4.7)j. 

We will prove this statement by applying Theorem 4.1.    Define 

S - C[0,1]    and let    R   be the set of all    u e 0,(0,1]    which satisfy 

the given boundary conditions.    In both spaces,    R   and   S,    4   shall 

denote the natural (pointwise) order relation.    Then, for   u e R, 

(4.7)    u>-o    if and only if    u(s) > 0    (0 < s < 1),    u'CO)  > 0,    u'd)  < 0. 

For U c S, let U £0 be equivalent to U ^ o. Moreover, define M 

to be the restriction of L from C, to R. We have then to prove 

Property I" for this operator. 
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Let v ^ o, v)^o    for some v e R. Then either v'CO) ■ 0, or 

v'd) » 0, or V(T) ■ 0 for some T t   (0,1), or several of these 

relations hold.  For each such v, we have to find a suitable operator 

L ■ L(v) mapping S into a space X ■ X(v). 

In case v'(0) ■ 0 we choose X ■ IR,  and the linear functional 

LU - j  f(8)U(s)ds with f(s) - 1-s. Obviously, (2.1) and (2.2) are 
0 

true (for x ^IR, x >o shall be equivalent to x > 0). By partially 

integrating twice, using the boundary conditions and observing v"(0) ^ 0, 

v'O) ■ 0, we obtain LMv ^ 0. Thus, (4.3) has been proved in this 

case. 

In case v1 (1) ■ 0 we proceed similarly using the functional 

LU - j  g(x)U(s)ds with g(s) - s. 
0 
Consider now the third case, 

(4.8)  v(') * 0 for some  r e (0,1), v^O) > 0, v'd) < 0. 

We calculate AMv with the operator A defined by 

(AU)(t) « |  K(s,t)U(s)ds, K(s,t) - 
0 

f(s)g(t) for 0 4 t 4 s 4 1, 

f (t)g(8) for 0 4 s 4 t 4 1, 

and again,    f(t)  ■ 1-t,    g(t) ■ t.    Using similar means as above, we obtain 

IV (AMv)(t) 4 v    (t)     (0 < t ^ 1).    In order to reduce the order of the occurring 

derivatives  further, we apply a second integral operator 

(bx)(r) - J      G(t,r)x(t)dt,    G(t,r) 
0 

t(t)H(r)    for    0 <, r <. t <. 1 

i(r),i'(t)    for    0 < t < r < 1 

2        2 
and *(t) ■ (1-t) , +(t) - t . By again partially integrating twice and 

observlnc v'O) ■ c, V"(T) ^O,    we obtain 
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(BAMVHT) <   (BVIV)(T)  - 

-2T(1-T)V"(T) + 2(1-2T)V,(T) - : (1-T)2V,(0) + zA'(1)  < 0. 

For    v    satisfying  (4.8), we define    X - C0t0,l]    vith    x>o    equivalent 

to the natural order relation,  and   L - BA.    Then,   (2.1) and (2.2) hold, 

and (4.3) is also true. 

This proves the statement. 

5.    Application to Operators    M - I-B    with Positive    B. 

Let now the sets    R    and    S    be equal and    ^   denote the same order 

relation, in    R   and   S.    We have, moreover,  the order relations   ^ 

in    S - R,    and ^   in    R - S.    We write    M    as    M - I-B   with the unit 

operator   I   and ask for conditions on the operator   B: R -•• R   such that 

M    has Properties    IP     and    IP*. 

5.1   Theorem.    Suppose that the following three conditions are 

eatiefied (for all   u e R^.- 

(i)    u ^ o   implies    Bu ^ o    fB   is poBvtive), 

(li)    u > o 

u>Bnu    (n-1,2,...) 
implies    u<^»o. 

(iii)    There exists an element    z e R   such that    z >, o,    (I-B)2 >o. 

Then, the operator   M ■ I-B   has the Properties   IP    and   IP'. 

Proof.    Condition  (ii) implies that for each    v e  R   with    v ^ o, 

v^-o,    there exists a natural number   n    such that    (I-B )v^o. 
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Deflne then    L - L(v) ■ I + B +•••+ Bn~  .    This operator maps    S ■ R 

into    X • R    and satisfies    LMv - (I-Bn)v ^ o    as well as  (2.1) and  (2.2) 

Thus,    M ■ I-B    has Property    I"    of Theorem 4.1, and the statements to 

be proven here follow from that  theorem. 

For positive    B,    the assumption  (ii) is satisfied if (a)  or  (b) 

holds: 

(a) u>o    is equivalent to   u^-o. 

(b) u > o    implies    Bnu ^-o    for same natural number   n. 

Condition   (b)   in general requires  that some power of    B    has  a 

stronger positivity property.     In view of Property    IP1     (and  SIP)    we 

like the second order relation   <   in    S    to be as weak as possible.    The 

weaker this relation is,  the stronger is condition  (b). 

Example.     Let    R = iR"    and    <^    denote  the natural   (componentwise) 

order relation.     If    u>o    is equivalent  to    u > o,    property  (b) means 

that some  power    B      of the matrix    B     (the matrix associated with  the 

operator    B)     has all its elements    >  0.     An example is 

B-i 
2 10 

1 2 I 

0    1    2 J 

2        1 with    B    -^ 

5 4 1 

4 6 4 

1    4    5J 

Other definitions of    u >o    also make sense.    Let R - IR    x IR 

with natural numbers    p,q,p+q-m,    and partition    u e  R correspondingly: 

uT -  (uF,u^).    Define then    u >o    by    u1 > o,    u2 > o. In case    p - 2, 

q ■ 2,     the matrix 



B 
11 

0 
'22] 
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wlth B11 - B22 
2 1 

1 2 

satisfies (b) with n - 1. 

Inverse-positlvlty of M « I-B with positive B can also be 

2 
proven by different means. For example, if the series I + B + B +*•• 

converges to (I-B)  , in some sense to be defined, the positivlty 

of the limit operator in general follows from the positivlty of B. 

Under suitable assumptions (using topological terms) this convergence 

Is guaranteed if and only If the spectral radius p (B) of B is < 1. 

The above assumptions may then be considered as sufficient conditions 

for p(B) < 1. Usually, p(B) will not be known. 

6. Iterated Reductions 

For certain operators, it is appropriate to perform several 

reductions. Let us assume that we are given linear operators L. 

(kal,2,...,n) mapping a linear space X. ,  (with X. - S) into a 

linear space X.  such that all these operators Have the properties 

(2.1), (2.2) (Instead of L). Let, moreover. 

(6.1) htVl'^V"1^ <k"1.2. •••."> 

with   ML - M   and linear operators    M. ,N.    mapping   R   into   X. 

(ksl,2,...,n).    Then, we obtain the following result. 

6.2   Theorem.    Suppose that the following three oonditiona are 

eatiefied: 

(I)   All operatore   N.    care positive    fu >, o   implies   fLu^o), 

(li)   Mnv^o   for all   v e R   vith   v ^ o,    v^j-o. 
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(iii) There exists an element    z e R such that 

z i o, Mz > o, or    z > o,    Mz > o with    M - L ...L^L.M. — . n   ^ l 

Then,    M   has the Properties   IP     and   IP'. 

Proof.     We have    LM • M    - N    with 
  n 

(6.3) L - L L    ....L-L. 
n n—i        £  1 

(6.4) N«N    +LN     .+LL    .N    0 +• • •    . 
n        n n-1        n n-1 n-2 

The operator L: S - X  satisfies (2.1), (2.2), and N: R - X  is 
n p 

positive.    Thus, the    n    reductions described by (6.1) can be combined 

to one single  reduction,  and this  theorem follows from Theorem 3.1. 

6.3    Corollary.    inJi ;• the assumptions of Theorem 6.2 it is also 

true   that,  for ill    u ..   k, 

(6.7) Mu       :     i'-xlitS    u ^   r,     M  u (k-1,2,,.. ,n), 

Mu > o    i'tplit'S    u^-^',    H, u >  '    (k"l,2 ,... ,n). 

This  is an easy consequence of Theorem 6.2 and  the positivity of 

the operators    L.     and    N. . 

The relation (6.7) means that    M    is inverse-positive with respect 

to the order relation    ^    in    S    and the order relation in    R,    given by the 

set of inequalities    u ^ 5 ,    M.u     c     (k«l,2,... ,n).    One could very well 

start  with  this different order relation in  the beginning.    We will, 

however,  not pursue this possibility here. 

Although iterated reductions as in (6.1) are easily understood as 

one single reduction with the product operator    L    in  (6.3),  the method 

of Iterated reductions seems to be quite fruitful, practically.    We will 

discuss its meaning and its connection with other methods a little 

further. 
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If (R,<^ is partially ordered and M ■ L ...L2L.M is inverse- 

positive, we have M  -ML ...L.L.. Thus, the method of iterated n       z i 

reductions may be looked at as partly constructing the inverse   M    . 

Of course,    M~      is generally not known, either.   What may be known 

is   M       which operator is connected with   M       as follows: 

M-1 - M"^ ...UL. + N    with    N - M'
1
!«"

1 

n    n       2 1 n 

and   N    as in (6.4).    Since   N    is positive (for positive    N.     and 

inverse-positive    M ,M)    we have obtained a minor ant of    M        in form 

of a product of positive operators,    M    L ...L.L.. 

If the operators   L.    have inverses    P. ,    the recursion formulaes 

(6.1) can be written as 

(6.8) Vl " ^"k ' Qk    (k'1»2 n) 

with Q. " PjN. . Then, the whole method may be considered as one of 

splitting M —additlvely and multiplicatively—into operators ^».»Mi-.Qv 

as shown by the above formulaes. 

To use splitting in order to prove inverse-positivity of 

differential operators has been suggested earlier, and this has 

been worked out in detail for ordinary differential operators of 

the fourth order (see [4] and the references given there). Some 

of those results have been carried over to differential operators 

of the third order and operators of higher order by Trottenberg [5], 

The proofs in those papers are not the same as here, but related. 

This paper provides a more transparent approach to reduce the problem 

for a given operator M to a simpler problem. The following example 

shows how iterated reductions of type (6.1) can be used for treating 

a differential operator of the sixth order. 

Example. Let L be as in Example 4.5 (with q(s) ^ 0), but 

consider now the boundary conditions 
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u(0) « 0 . u(l) - 0 

u'" (0) - au'^O) + ßu'CO) - 0, -iT'a) - au'^l) - bu'd) - 0, 

uIV(0) - YU'CO) .  uIV(l) + cu'd) 0 

with nonnegative a,y,a,c. 

The statement  4.6 holds also in this aase. 

In order to prove this, define the spaces R,S, the operator M, 

and the order relations in R,S, as in Example 4.5. The operator L. ■ A 

with A as given in that example maps S  into 

X1 - |x1 e C2(0,1]: x^O) - x1(l) - 0} . 

For x. t X., define x >, 0 to hold polntwise, and x. > o by 

x   yo,     i.e.  x1(s)  0 {0 <   s <   1), x|(0) >  0,  x^(l) <  0. Then,  L. 

has the properties (2.1), (2.2) and we calculate by partially integrating, 

L.M - M - N  with 

M^ *  u1V,N1u - (l-s)u
IV(ü) + suIV(l) - A(qu). 

Because of the given boundary conditions and    q(s)  <_ 0,    the operator    N.     is 

positive. 

If we can show that this fourth order differential operator   M. : R -» X. 

has Property    I,    the proof is completed.    This does not depend on the way 

tills  is shown.    We will apply a second reduction here. 

The operator    L- s B    with    B    defined in Example 4.5 maps    X.     into 

X2 - |x2 •: C4t0,l]:    x2(0) - xj(0) - x2(l) - xj(l) - 0}. 

For x,, K  X,, define again x. >_. o    to hold polntwise and x. > o by 

x,>-o,  i.e. x2(8) > 0 (0 < t < 1), x2(0) > 0, xlj'd) > 0. The operator 
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Lj    satisfies (2.1), (2.2) also, and we obtain L.M. " M2 ~ N2 with 

N» the null operator, and 

(^(s) - -2s(1-3)^(8) + 2(1-28)11'(s) - 2(l-s)2u,(0) + 28^'(1) 

It remains to be shown that M  has Property I. For that, we 

could try a third reduction. But, we will now use a direct proof. 

If v e R with v ^ o, v^o, then either v(t) - 0 for some 

t e (0,1), or v"(0) - 0, or v"(l) ■ 0, or several of these relations 

hold.  In the first case, we have v'U) ■ 0, v"(t) ^0 so that 

(MjuHt) 40 and thus, MjV^o. 

In the second case, v'(0) - 0, we calculate (M2v)' (0) ■ 0 and 

(M-vV^O) » ^v'" (0) + Av'd). This last expression is nonpositive 

because of the boundary conditions and v"(0) ^ 0, v'd) 4 0. Thus, 

M,v ^ o Is shown again. 

The third case, v'd) • 1, Is handled correspondingly. 

Notice, that these arguments do not carry through if a splitting 

L2M1 ' **2 ~ **2 with ^2V " 2(1-8)2v,(0) " 282v'(l) is used. 
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