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Abstract

A method is presented to prove that a linear operator
M is inverse-positive, i.e. Mu > 0 implies u > 0. The
method consists in reducing the problem for the given
operator M to a simpler problem. Sometimes, iterated
reductions are appropriate, for example, if M 1is a differ-

ential operator of higher order.



1. Introduction.

This paper provides tools for proving that a linear operator M
is inverse-positive, that means: Mu > o implies u > o. This property
is frequently used in Applied Mathematics. For example, it is closely
related to the boundary maximum principle for second order differential
operators.

The abstract formulation of the above property, and a corresponding
property for nonlinear operators, is due to Collatz (see [1] where such
operators M are called ''Operatoren monotoner Art", i.e. operators of
monotone type). Collatz showed the importance of this property in
Numerical Mathematics and, in particular, for obtaining error bounds.

An abstract theory on such operators provides sufficient and necessary
conditions (see [2] and the references given there). In this paper, we
develop methods for proving that these sufficient conditions are satisfied
in more complicated cases where this is not immediately seen, for example,
in case of higher order differential operators.

The provided methods reduce the problem of proving that M is
inverse-positive to a corresponding problem for an operator M= LM
(or ™ > LM). In some cases, a suitable operator L can immediately
be constructed (Section 3); in others, several operators are used which
theoretically can be combined in a single operator, but practically
will not (Section 4). This last method is applied to operators M = I-B
with positive B, 1in Section 5. There are cases, when it is appropriate
to actually carry out several reductions, one after the other (Section 6).
For example, the order of differential operators can be reduced in this

way, step by step.



2. Notations and Basic Assumptions.

Let R and S denote real linear spaces and M: R+ S a
linear operator. Suppose that in both these spaces there are defined
order relations, both denoted by <.

All occurring order relations shall be reflexive, transitive
and compatible with the linear structure. The space (R,<) will
be called partially ordered if the relation < 1is also antisymmetric.
By KR we denote the cone of all u >0 in R. For u in the
algebraic interior (core) of KR’ we will write uj=0. (In other
words, u »=¢p 1if and only if, for each v € R, there exists some

number n with nu + v > 0.) Corresponding notations are used for S.

For all occurring order relations, > o shall be equivalent to > o
and ¥ 0, so that, for example, u':o means that either u }~o,
or u=o.
We assume that (R,<) is Archimedian (that means Ky is linearly
elosed, or: for all u,ve R, nu+v 20 (n=1,2,...) implies u 2 0).

Suppose, moreover, that there is defined a second order relation € 1in

S which dominates the first in the following sense: For U,V ¢ S,
U220 ==>U3>0; U>0o, V2o0==>U+VdDo.
We are then interested in the following properties of M:

IP Mu > o implies u > o0, for uceR.

[ Mu >0 implies u Mo, for uceR.

The operator M is called inveree-positive if P holds. If R <is

partially ordered and M has both properties, WP and IP', then

Mu Do implies udso, for uce R.



For, in this case, Mu = o can only occur if u = o.

In case, > 1is equivalent to >, the last property will be

called strong inverse-positivity:

SIP Mu > 0o implies uMo0, for u e R.

Theorem 1 in [2] contains sufficient conditions I, for IP
which can also be used for proving IP'. This paper is mainly concerned

with providing methods for proving

| Mv$o foreach veR with v2o, vio.

For describing these methods, we will need also other linear spaces
with two order relations < and € such that the second dominates the
first. The letter X (also with subscript, etc.) will always denote
such space. For these spaces, we will use corresponding notations as
for R (K, xd=0, etc.).

Furthermore, the letter L will always denote a linear operator
mapping such space X (or S) into another such space X and satisfying

the following two conditions. For each xe¢ X (x ¢ S),

(2.1) x > o0 timplies Llx > o,

(2.2) x >0 timplies Lx > o.

(For some of the following results only one or the other of these properties
is needed. Notice also that (2.1) follows from (2.2) {if (ﬁ,g is

Archimedian and if there exists an element x >0 in X.)

P ]



3. Simple Reduction

The following simple theorem is the basic tool for what is derived
in this paper.

3.1 Theorem. Let there exist a linear operator L mapping S
into a linear space X such that (2.1), (2.2) hold and the following
conditions are satisfied:

I' WMvdo foreach veR with v>o, vdo.

Il' There exists an element z € R with
(3.2) z >0, Mz>o.

Ther, M has the Properties P and IP'.

Proof. Since Mu > 0 implies IMu > 0 and Mu >0 implies
IMu > 0, it suffices to prove the Properties IP and IP' for LM,
instead of M. The above assumptions, however, are equivalent to the
assumptions |, |l in Theorem 1 (2], with M replaced by IM.
According to that theorem, LM therefore has Property IP. This
property together with |' yields that, IMu>o0 1implies u>o.

Remark. JInstead of W' one can require:

(| There exists an element z ¢ R with z > 0o, Mz Do,

This follows from (2.2).

The above theorem leads to the following



Method of Reduction: Find an operator L: S + X satisfying

(2.1), (2.2) such that IM = M - N where M has Property | and
N 16 positive (u > 0 ==> Nu > 0).
If then W' or W holds, M has Properties |P and IP’.
The last statement follows from the fact that |' 1s satisfied

if M has Property |.

With this method, the problem involving M 1is reduced to a
problem with the operator M. This can have the following two
advantages. First, M may be simpler, and second, Property | for
M may be weaker than Property | for M. Notice, that Property |
depends on the order relation <& defined in the range of the operator
so that different such order relations belong tc M and ﬁ,
respectively.

Example. Let R =X = R", s =R™ and identify operators with
matrices. Suppose that < denotes the natural (componentwise) order
relation, in each of these spaces. For U ¢ S, define U>o by,
U0 in case (1), U > ¢ 1in case (11). For xe¢ X, x>0 and
x &0 shall be equivalent.

Then, an nxm-matrix L has the properties (2.1), (2.2) 1f
and only if in case (1): each row of L contains an element > O,
in case (i1): all elements of L are > O.

If the matrix M is diagonal, it has Property | (as an
operator: R » X). Thus, if we can find a matrix L of the prescribed

type such that all off-diagonal elements of LM are < 0, the matrix




M has Properties P and IP' (as an operator: R + S), provided
there exists a suitable vector z.

For example, we have

5 0 0 3 -1 0 0 4 3 21
-5 5 0 -3 3 -1 0 36 4 2
M=t 0 -5 5o forM=1 ) 3 3 )" L=l24s63]"
0 0 -5 5 0 1 -3 2 1 2 3 4

Since L has all elements > 0 we consider case (11). Then, 2z with
2’ - (1,2,3,4) satisfies (3.2). Therefore, M has Property SIP which

implies that M possesses an inverse with all elements > 0.

4. Reducing with Several Operators

When a suitable operator L as needed in Theorem 3.1 cannot
immediately be found the following result can be helpful.
4.1 Theorem. Let the operator M have the following two properties.

I" For each v e R with

(4.2) v2o, vho

there existe 1 linear operator L = L(v) mapping S 1into a linear space

X = X(v) s8uch that (2.1) and (2.2) hold, and
(4.3) Mv $o.

I There exists an element z ¢ R 8uch that z > o, Mz >o.
Then, M has the Properties IP and IP'.
Remark. The theorem remains true if Il is replaced by,

n" There exiats an element 2z ¢ R with

z >0, L(V)Mz>o0 for all operators L(v) occurring in |".



Proof of Theorem and Remark. Let ‘v be the set of all elements

v e R satisfying v > o, v¥o (i.e. ¥ =3K). We introduce the
product space X = [ X(v) with elements x = {x(v)} and define the

veVv
order relations x > o and X > o0 componentwise. Moreover, let the

operator L: S > X be defined by iu = {L(v)U}. This operator f.,
instead of L, has the properties {2.1), (2.2). Moreover, the
assumptions |" and |IlI" imply that the conditions |', II' of

Theorem 3.1 are satisfied with L replaced by L. Since " is a

consequence of |Il, the statements to be proven follow from Theorem 3.1.

If X(v) 1is chosen to be IR for all v and there exists a U >o
in S, |" obtains the following form when we write f for L.
"' For each v e R satisfying v > o, Vo, there exists a

linear funetional £ on S such that
(4.4) fu > 0 for all U>o0, and fMv < O.

This property has been applied earlier [4], and generalized to
nonlinear problems [3]. In many cases, Property |"' is equivalent to |

which can be shown by using separation theorems.

Suppose, that the set Y of all U >o has the following property:
Whenever a point V e S 1is not in Y, then there exists a linear
functional £ on S such that fU > 0 for all Ue S, and fV < 0.

Under this econdition, | and |"' are equivalent.

In order to show that | dimplies |"', let v >0 and v o.
Then, Mv * o so that (4.4) follows from the above assumptions using

V = Mv.



4.5 Example. Let L denote the differential operator, defined
by Lu = -uVI +qu for uc C6[0,1] with given q ¢ C[0,1], and

consider the boundary conditions,

u(0) = 0 . u(l) =0 :
W0 -aw'@ =0 , uV+a'@) =o .

u’(0) + pu"(0) + yu'(0), -'() + bu"(1) - cu'(1) = 0.
We assume that

q(8) <0 (0 <s<1l), a20, a0, B2>20, b>0.

>
=

4.6 Let there cxist a function z ¢ C6[0,1] satisfying the given
boundary conditions euch that 2(s) 20, (Lz)(8) 20 and (Lz)(s) { O
(0 < 8 <1). Then, the following is true.

If ue ¢lo0,1) satisfies the given boundary conditions and
Llul(s) >0 (0 <s<l), them u(s) 20 (0 <s <1l), and even ueo
with the order relation >~ defined below (in (4.7)).

We will prove this statement by applying Theorem 4.1. Define
S = C[0,1] and let R be the set of all u ¢ C6[0.1] which satisfy
the given boundary conditions. In both spaces, R and S, < shall

denote the natural (pointwise) order relation. Then, for u ¢ R,
(4.7) up>o 1if and only if u(s) >0 (0 <8 < 1), u'(0) >0, u'(l) <O.

For Ue¢ S, let U 2o be equivalent to U > o. Moreover, define M
to be the restriction of L from C6 to R. We have then to prove

Property |" for this operator.




Let v> 0, vao for some ve R. Then either v'(0) =0, or
v'(l) = 0, or v(t) = 0 for some 7t ¢ (0,1), or several of these
relations hold. For each such v, we have to find a suitable operator
L= L(v) mapping S into a space X = X(v).

in case v'(0) = 0 we choose X =|R, and the linear functional
LY = jil f(8)U(s)ds with f(s) = 1-s. Obviously, (2.1) and (2.2) are
true ((fJor X - IR, x >0 shall be equivalent to x > 0). By partially
integrating twice, using the boundary conditions and observing v'(0) > 0,
v'(1) . 0, we obtain IMv ( O. Thus, (4.3) has been proved in this
case.

In case v'(l) = 0 we proceed similarly using the functional
LU = ,01 g(x)U(s)ds with g(s) = s,

Consider now the third case,
(4.8) v(') =0 for some 1 ¢ (0,1), v'(0) - 0, v'(l) < 0.
We calculate AMv with the operator A defined by

-1 f(s)g(t) for 0 <t <s <1,
(AU) (t) = [ K(s,t)U(s)ds, K(s,t) =

"0 f(t)g(s) for 0 <s <t <1,

fin

< <
= ==

and again, f(t) = 1-t, g(t) = t. Using similar means as above, we obtain

13

(A (t) ~ vn(t) (0 <t <1). In order to reduce the order of the occurring
derivatives further, we apply a second integral operator
-1 P(e)¥(r) for O <crctgl

(Bx) (r) —] G(t,r)x(t)dt, G(t,r) =

0 s(r)y(t) for 0 <t <crgl

<
=

and ¢(t) = (1-:)2, y(t) = tz. By again partially integrating twice and

observing v'(1) = ¢, v"(1) >0, we obtain




(BAMV) (1) < (BVIV) (t) =

S22t (A-T)V' (1) + 2(1=21)v' (1) - { (1=1)2v' (0) + 2t%v' (1) < oO.

For v satisfying (4.8), we define X = CO[O,I] with x >0 equivalent
to the natural order relation, and L = BA, Then, (2.1) and (2.2) hold,
and (4.3) is also true.

This proves the statement.

S. Application to Operators M = I-B with Positive B.

Let now the sets R and S be equal and < denote the same order
relation, in R and S. We have, moreover, the order relations <€
in S=R, and =< in R=5S. We write M as M = I-B with the unit
operator 1 and ask for conditions on the operator B: R - R such that
M has Properties IP and IP'.

5.1 Theorem. Suppose that the following three conditions are
satigfied (for all u e R):

(1) u>o0 implies Bu > 0 (B ig positive).

(11) uxo

o implies ud=o.
u>Bu (n=1,2,...)
(111) There exists an element z ¢ R 8uch that z 2 o0, (I-B)z >o.
Then, the operator M = I-B has the Properties IP and IP'.

Proof. Condition (ii) implies that for each v ¢ R with v > o,

v M0, there exists a natural number n such that (I-Bn)v *o.



~-11-
Define then L = L(v) = I + B e+ Bn—l. This operator maps S = R
into X = R and satisfies IMv = (I-B")v $o as well as (2.1) and (2.2).
Thus, M = I-B has Property |" of Theorem 4.1, and the statements to
be proven here follow from that theorem.

For positive B, the asswmption (ii) is satisfied if (a) or (b)
holds:

(a) u>o0 8 equivalent to up~o.

(b) u>o implies BP0 for some natural number n.

Condition (b) in general requires that some power of B has a
stronger positivity property. In view of Property IP' (and SIP) we
like the second order relation <€ in S to be as weak as possible. The
weaker this relation is, the stronger is condition (b).

Example. Let R =R" and < denote the natural (componentwise)
order relation. If u>o 1s equivalent to u > o, property (b) means

that some power B" of the matrix B (the matrix associated with the

operator B) has all its elements > 0O, An example is
2 10 5 4 1
p=3l1 2 1| wien BB=i|a o6 4.
4 - 16
0 1 2 1 4 5

Other definitions of u > o also make sense. Llet R = iRP x IRY
with natural numbers p,q,p+q=m, and partition u ¢ R correspondingly:
ul = (uI,uz). Define then u >0 by u; >0, u, > 0. In case p = 2,

q =2, the matrix
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satisfies (b) with n = 1,

Inverse-positivity of M = I-B with positive B can also be
proven by different means. For example, if the series I + B + 32 Fooe
converges to (I—B)-l, in some sense to be defined, the positivity
of the limit operator in general follows from the positivity of B.
Under suitable assumptions (using topological terms) this convergence
is guaranteed if and only if the spectral radius p(B) of B is < 1.

The above assumptions may then be considered as sufficient conditions

for p(B) < 1. Usually, p(B) will not be known.

6. lterated Reductions

For certain operators, it 1s appropriate to perform several
reductions. Let us assume that we are given linear operators Lk

(k=1,2,...,n) mapping a linear space xk_l (with X, = S) into a

0
linear space Xk such that all these operators have the properties

(2.1), (2.2) (instead of L). Let, moreover,

(6.1) LM =M =N (k=1,2,...,0)

with Mo = M and linear operators Mk’Nk mapping R into xk
(k=1,2,...,n). Then, we obtain the following result.

6.2 Theorem. Suppose that the following three conditions are
satisfied:

(1) All operatore N, are positive (u > o implies Nou 2 o).

k
(11) Mv$Po forall veR with v2o0, v}o.
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(111) There exists an element z ¢ R such that

z>0, Mz>0, or zzo0, Mz>o0 with f(-Ln...LleM.

Then, M has the FProperties WP and IP'.

Proof. We have IM = Mn - N with

(6.3) L=LL _j..Ll

(6.4) N=N + LN + L L (N dEelole
n n n- n n-

1 1"n-2

The operator L: S - Xn satisfies (2.1), (2.2), and N: R - Xn is

positive. Thus, the n reductions described by (6.l) can be combined

to one single reduction, and this theorem follows from Theorem 3.1.
6.5 Corollary. /noer e asswnptions of Theorem €.2 it ts aleo

true ity Jor o all u . K,

(6.7) Mu >~ o irlieé u 2 o, .‘~1ku o (k=1,2,...,0n),

MuD> o Immlice u)-u. Mku>." (k=1,2,...,n).

This is an easy consequence of Theorem 6.2 and the positivity of

the operators Lk and Nk.

The relation (6.7) means that M 1is inverse-positive with respect

to the order relation in S and the order relation in R, given by the

A

set of inequalities u

v

9y Mku ¢ (k=1,2,...,0). One could very well
start with this different order relation in the beginning. We will,
however, not pursue this possibility here.

Although iterated reductions as in (6.1) are easily understood as
one single reduction with the product operator L in (6.3), the method
of iterated reductions seems to be quite fruitful, practically. We will

discuss its meaning and its connection with other methods a little

further.

AT alder L
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If (R,c) is partially ordered and M = L,--+L,L;M 15 inverse-

positive, we have H'l = ﬁ-an...LzL Thus, the method of iterated

ll
reductions may be looked at as partly constructing the inverse H-l.

Of course, ﬁ-l is generally not known, either. What may be known

is H;l which operator is connected with M-l as follows:
MLl oL, + N wieh §o=uhel
n ' n 271 n

and N as in (6.4). Since N is positive (for positive N, and
inverse-positive Hn,H) we have obtained a minorant of M-l in form
of a product of positive operators, M;an...Lle.

I1f the operators Lk have inverses P the recursion formulaes

k’

(6.1) can be written as

(6-8) b&-l - Pkw - Qk (k.l.z 'K .n)

with Qk = P N Then, the whole method may be considered as one of

ik
splitting M --additively and multiplicatively--into operators Pk,Mk,Qk

as shown by the above formulaes.

To use splitting in order to prove inverse-positivity of
differential operators has been suggested earlier, and this has
been worked out in detail for ordinary differential operators of
the fourth order (see [4] and the references given there). Some
of those results have been carried over to differential operators
of the third order and operators of higher order by Trottenberg ([5].
The proofs in those papers are not the same as here, but related.
This paper provides a more transparent approach to reduce the problem
for a given operator M to a simpler problem. The following example
shows how iterated reductions of type (6.1) can be used for treating
a differential operator of the sixth order.

Example. Let L be as in Example 4.5 (with q(s) < 0), but

consider now the boundary conditions
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u(0) = 0 , u(l) =0
u™ (0) - au"(0) +Bu'(0) =0, -u"'(1l) - au"(1) - bu'(l) = O,

u'V (0) - yu'(0) , ulV@) + cu'@) = 0

with nonnegative a«,y,a,c.
Tne statement 4.6 holds also in this case.
In order to prove this, define the spaces R,S, the operator M,
and the order relations in R,S, as in Example 4.5. The operator L, = A

1

with A as given in that example maps S into
X, = {x; € €,[0,1): x,(0) = x, (1) = o}.

1° Xl, define X, >. 0 to hold pointwise, and X,

x1>-cu i.e. xl(s) S0 (U< s < 1), xi(O) >0, xi(l) < 0, Then, L

For x > o0 by

1
has the properties (2.1), (2.2) and we calculate by partially integrating,

LlM = Ml = kl with

12

'y T
Mlu = ulX,Nlu = (l-s)uI‘(U) + suI\(l) - A(qu).

Because of the given boundary conditions and q(s) < O, the operator N is

1

positive,
If we can show that this fourth order differential operator Mlz R > Xl
has Property |, the proof is completed. This does not depend on the way

this is shown. We will apply a second reduction here.

The operator L2 = B with B defined in Example 4.5 maps Xl into
= & Q = ! - - ! -
X, = {x, = C,[0,1]: x,(0) = x)(0) = x,(1) = x5(1) = O}.
For x, » X,, define again X, 20 to hold pointwise and X, >0 by

x,}h-o, i.e. xz(s) >0 (0 <t <1l), x;(O) > 0, x;(l) > 0. The operator
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L, satisfies (2.1), (2.2) also, and we obtain LM, = M - N, with

2 21 2 2

N2 the null operator, and
(Mzu) (8) = -2s(1-s)u'"(8) + 2(1-28)u'(s) - 2(1-s)2u'(0) + 2320'(1).

It remains to be shown that M, has Property |. For that, we

2
could try a third reduction. But, we will now use a direct proof.

If ve R with v>o0, vdo, then either v(t) = 0 for some
t e (0,b1), or v'(0) =0, or v'"(l) = 0, or several of these relations
hold. In the first case, we have v'(t) =0, v'"(t) >0 so that
(qu)(t) < 0 and thus, sz *o.

In the second case, v'(0) = 0, we calculate (sz)'(O) =0 and
(sz)"(o) = -2y""(0) + 4v'(1). This last expression is nonpositive
because of the boundary conditions and v'(0) > 0, v'(l) < 0. Thus,
sz *o is shown again.

The third case, v'(l1) = 1, 1is handled correspondingly.

Notice, that these arguments do not carry through if a splitting

LM, = My - N, with Ry = 2(1-8)2v' (0) - 28%v'(1) is used.
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