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FOREWORD
Dr. R, J. Eichelberger
U.S. Army Ballistic Reseirch Laboratories
Aberdeen Proving Ground, Maryland

The Problems And The Goals For The Seminar On Explosive Reactions

The purpose of this seminar is to explore the feasibility of a
mere fundamental .pproach to the reaction rate portion of detonation
phenomena. The problems peculiar tc military explosives research stem
from the fact that military explosives are pure organic compounds,
mixtures of organic compounds, or mixtvres containing organic molecules
plus inorganic oxidizers, or reactive metals, or both. These materials
are usually in solid form, cast or pressed to the maximum possible
density. During manufacture, storage, and use, they are subjected to a
variety of energy stimuli ranging in intensity from levels too low to
cause any significant changes, to those s':iicient to create iaitial

pressure of several megabars.

Using the principles of hydrodynamics and thermodynamics and some
concepts from solid state physics, investigators have made considerable
progress in the continuum treatment of initjiation and propagation of
detonation. This aspect of the problem can be considered at a level of
sophistication permitting treatment of interacting, non-steady detonation
waves that coalesce into a superficially steady wave, Energy distribu-
tion by transport effects can be treated by continuum methods, and the

influence of boundary conditions car be taken into account.

The great difficulty lies in providing input data to the continuum
models that accurately represent the absorption and distribution of
energy received from an external source or evolved by chemical reactionm,
and the consequent molecular rearrangement and decomposition. No experi~

mental techniques are available or are foreseen that would provide
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direct measurement of the needed quantities. New approaches are clearly

Hiib M

called for. It appears likeliy that the new approaches mignt be found ia

the aress of lattice dynamics and molecular physics, using the mathematical

techniquas of statistical mechanics. The manner in which these fields

hed II'Y i diel

may be joined in the solution of the explosive deccmposition problem is
- suggested in the following hypotheticel model of the phenomena.

: For this purpose, ws envision a molecular solid, consisting

£ of metastable organic molecules in a crystal lattice, being

A subjected to an energy stimulus. The stimulus will ordinarily

= be in the form of mechanical energy, thermal energy, or radiation

in the spectral region ranging from infrared to X-ray. Given
the nature of the energy source, it would be necessary, first,

to accurately predict how the energy is absorbed by the crystal

lattice and the molecules. It then becomes necessary to deter-

mine with reasonable accuracy how the energy is transported

and partitioned between the lattice and the molecules. If

decomposition is to occur, the energy imparted to a molecule

must be sufficient to break bonds and start a rearrangement

forming new molecular species. Some of these reaction processes

will liberate energy and lead to other changes in the state of

: the medium. At some stage, or at some energy density, it will

3 : become critical to determine whether the rate of energy evolution
: : due to molecular excitation and decomposition will exceed the

rate at which energy can be transported away from a given volume
element.

5t v ek
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In order to predict the effects of energy partitioning
upon the chemical phenomena, it is necessary, first, to know
accurately the bond strengths in the molecule.

The changes in bond energies as a result of incorporation
of the molecule in a crystal lattice must alsc be known. The
: distribution of energy among the bonds as a result of direct
3 ’ stimulation, or interaction with the lattice, and the prob-

: abilizy of breakage of each bond, as functions of energy level
and time, are the prime objectives of the model. At low energy
7 ilevels, equilibrium energy distribution, and simple reaction
E kinetic laws may be satisfactory approximations. At high encrgy

5 ’ densities, the distribution of energy among the bonds of a
molecule way never approach that asscciated with equilibrium
conditions; consequently, the course of decomposition, the
chemical species, and the density of species may be quite
different at high energies than at lower values. In the
extreme case of “steady"” detonation, with interacting shock
waves providing the energy source to sustain the reaction,
temperatures approaching 10,0009K and pressures of several

et
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hundred kilobars are produced. It may be completely erroneous
to use the Arrhenius relation, with constants determined under
equilibriom conditiors, iu an analysis of these phenomena.

In the case of mixtures, the diffusion of intermediate
products, mixing and subsequent "hybrid" reactions represent
additional complicating factors governing the overall 'reaction
rate,"

The pertinent long-term objectives of explesives research can be
described as twofold:
. Capability of predicting the chemical behavior of
known organic molecular seolids with sufficient
accuracy to determine the intrinsic sensitivity to

initiation, and the magnitude and rate of energy
evolution, under arbitrary envirommental conditions.

° Capability of predicting the crystal habit and
essential physical characteristics of new organic
compounds and, as in (a), determiring their potential
usefulness as explosive materials.
To achieve these objectives, according to the postulated medel, we
need much more sophisticated treatments of energy absorption, transport
and partitioning in molecular crystals, and of nonequilibrium chemical

reactions. Statistical mechanics provide the essential mathematical

framework.

This seminar provides a means for reviewing the present state and
current directions of research in ecach of the subject areas: lattice
dynamics, molecular physics, and statistical mechanics. More important,
however, is the opportunity to assess the fcllowing (no: mutually

independent) points with respect to each of the fundamental fields:

a. Will the present state of knowledge in the field pecrmit
theoretical treatment of pertinent aspects cf the detcnation process,
with sufficient rigor to yield useful results? If so, have the

necessary mathematical models (computer programs?) been developed?

b. 1If not, what is lacking? What kinds of basic research are
needed to attain the required level cf knowledge? Dces the necessary
basic research appear to be feasible, assuming a dedicated, coherent

effort?

E




c. If additional basic research is needed and appears to be

feasible, what are the best approaches, to both theoretical and experi-
mental investigation?

‘S ’ d. How can the overall phenomenon be best treated? Should an

integrated mathematical model be developed, or should the events be

¢ treated in a series of steps? If the latter course is more tractable,

3 are there evident interface problems in proceeding from one stage of

the phenomenon to another? What devices for simplification can and

: : should be used, and how much error or uncertainty is likely to result?

It is cur hope that, by bringing together experts in the relevant
fundamental sciences, a background can be provided against which appro-
priate plans for future research can be formulated. Answers to the
technical problems are not expected to result directly from the con-

ference, but we hope to learn from the discussion how best to proucead

DR A

to find the auswers.

While the emphasis of the seminar is upon explosives and detonation,
the same questions are of importance in a number of applied research
areas., At the fundamental level of treatment, the detonation process

differs in degree, but not in substance, from many othe. phenomena.

2 s T YT VI DL, o RN 2T AT T

G st e

h3wn ¢




TABLE OF CONTENTS

SESSION I .
Introduction

Crossed Meclecular neams Research and Connections with
Energy.Storage -Problems . . + « « » + ¢ ¢ 4 v 0 4 .

(i i LT LA i

Electronic Structure and Chemical Instability of Explosives

ORI I H

fi fatatd

Particle Waves and Détonation in Cfystalline Solids , . . .

PN DI

SESSION 11

i

Propagation of Waves in Discrete Media, Harmonic, Anharmonic,
a“d Defective: . * * * L) . . L) L] * . . . * L] * . * - . L)

i

RSHE
8

Dielectric and Lattice Dynamical Properties of HMX and
Related Substances*’

Crystal Lattice Effects on Thermal Initiation**}?

The Significant Structure Theory of Liquids Applied to the
Shock Compression of Argon and -Detonation of -Condensed
,EXplosivesi. s e 8 s e s e s e s s e e s s e s e e e

SESSION III .

Mechanism cof Propagation of Steady Detcnitiomw.. .+ « . . .

*Paper is being revised by Dr. Wright
*%Dr, Boddington did not submit paper f£.r publication

39
78

142

145

=
£



‘
!
i _
;. .
ym” |
_
,
i
et 17 oo

. RN r ” Y P S A I SO T Shosos a4
‘
]

.

Fpe— ;
t
I
t
!
t
!
,
TR sy S N A PO A e N ) oL TR |
. 1




T P AN T

T ek Fo % A A

LS FE ki)

SESSION I

Monday - 21 October 1968

CHAIRMAN: Dr, James E, Ablard
U.S. Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland

Introduction

Crossed Molecular Beams Research

And Connections With Energy
Storage Problems

Electronic Structure And

Chemical Instability of
Explosives

Particle Waves and Detcnation
in Crystalline Solids

Dr. James E. Ablard

Dr. Robert K. Davis
Department of Physics
Florida State University
Tailahassee, Florida

Dr. Ferd Williams
Physics Department
Unive~sity of Delaware
Newark, Delaware

Dr. Edwin R. Fitzgerald
The Johns Hopkins University
Baltimore, Maryland




INTRODUCTION
Dr. James E. Ablard

I was in on what I think was the beginning of this ceminar ~-- by
now most of you have had sume contacts with the technical cooperation
program between England and Canada, Australia and the United States.
The Explosives Panel of the Ordnance Subgroup of that diverse body held
its fourth meeting in London in May 1966. Panel 0-2 is & typical com-
mittee from that organization. You've all attended meetings (and the
one in London was no exception) where you were like the observer at
Northhampton Harbor who was shown the facilities for navigatior. thzt had
been growing up over the years. He was shown lighted buoys, red buoys,
black buoys, but when he was telling about it afterwards, he said the
lights flash and the horns blow, bells ring, but the fog rolls in just

the same.

Out of the fog in London came a suggestion from Dr. Eichelberger
that we sponsor a seminar which would review the new knowledge in
instrumentation that has grown up in universities and institutions not

usually connected with our explosives program.

In a way we were like the young pilot several years ago who was on
his way from New York to Boston. After flying above the forecast for
what he thought ought to be long enough, he called down and asked how
much farther it was to get to Boston; the reply came: if you keep on
going in that direction, its 23,999 miles. We wanted to be sure we
were headed towards our objectives in the shortest possible way. We
don't want to continue going 211 the way around the world to get there.
On the other hand, we may bz like the fellow who was groping around
under the street light on the corner. A man came by and asked him what
he was looking for -- a quarter, he said. Where did you lose it? Over
there. Well, what are you looking for it here for? Because there's

more light over here. We may be searching here where it's light and
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we tan see what we -.ve doing, but over there in what is now dark to us

-~ may be the pay dirt. So one of the objectives of this seminar
is to obtain some advice.

The Panei thought that there was a reasonable chance that some of
the new tools and theories of molecular physics could be turned to the
solution of some of our problems. The idea, as Dr. Eichelberger pointed
out to some of you, was not to have the expert solve the problem but to
introduce to us the theories in the fields of their choice and the in-
struments that are used to get the information in their separate fields.
We would expect to take it from there. Getting an idea is like sitting
on a tack -- both make you rise to the occasion. We arose to this idea
and promptly appointed Dr. Eichelberger as Chairman of the Committee to
carry it out. He named the other members of the Committee; 1'11 do it
again. Mr., J. C. Baril was the member from the Canadian Defence Research
Staff in Washington. He escaped back to Canada a month or two ago. Dr.
Peter Dees was the member from the British Scientific Mission -- he had
to rush home and have a brand new first child a few months back. Bill
Pheasant is from the office of the Australian Defence Supply Attache;
he hasn't escaped yet but his relief is in Washington and he is taking
him around this week and couldn't be with us. So the members of the
committee who are still about sre Dr. Jacobs from NOL and Dr. Ray Walker

of the Feltman Research Laboratories at Picatinny.

The Committee was able to secure nine speakers from three countries
for this seminar. We are grateful to the speakers who have diverted
their attention from their usual interests and have come here this
week to brief us. We work in a field quite foreign to their usual
pursuits. I hope that a glance at our problems may lead some of them
as well as us to the ewakening of ideas for our mutual benefit. But
before we proceed with this:it may be well to make some statements
relative to where we are -- from where we think we are in the under-
standing of high explosives. I borrow here heavily from the writings

of Dr. Fichelberger's Committee.

[
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Military nigh explosives may be pure organic compounds, mixtures

of organic compounds, or mixtures containing organic compounds plus
inorganic o;idizers, metals, plastics, and so forth. The usual state

of the mixtures when ready for use is a cast or pressed charge, pressed
to its highest density obtainable in the factories. When this solid
detonates, it is traversed by a strong shock which compresses successive
layers of the material; the density is considerably higher than the
solid density. Under these conditions, essentially complete molecular
rearrangement into small stable molecules takes place, in the order

of hundred to several microseconds.

Progress has been made in the past 25 years in understanding the
physics and chemistry of detonation. We have made use of thermodynamics
and hydrodynamics and the equations of state of high pressure physics.
We have also made progress in measuring the effects of detonation on
the surrouhding environment and in so doing have learned how to estimate
the action to be expected. From the properties of the shocks created
in materials, it is even possible for instance to compute the detonation
pressure, but there are two parts of the detonation process for which we

khave so far only qualitative understanding. They are similar in nature
but different,

1 refer on the one hand to the description of the process that
material undergoes as it is overrun by a detonation and on the other
hand to the process that an explosive goes through when a portion of it
is energized by some mechanism and the resulting exothermic reaction
manages to build up to a detonation. The two processes are similar in
that they both involve reaction rates and probably induction theory but
they are different in many important ways. Material passing through a
steady state detonation is first subject to an extremely high pressure
shock -- 300 kilobars and higher. The chemical reaction then begius
and continues while the pressure decreases. Completion of the reaction

is practically 100 percent certain.
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It is not usuvally necessary to consider more than the small micell
of the material to describe the whole process for all micells. That is

all micells large enough to contain all the atoms of the mixture.

Furthermore, all micells undergo the saue reaction in the same time ~=-

not at the same time but in the same time.

IRt

In the other case the build-up to detonation -- ¢ small amount of

energy may be supplied to a small amount of material at atmospheric

PLIAV bt it et ATV

pressure. Energy may be sufficient to cause a small portion of the

material to decompose. The exothermic reaction may be imparted to

PERN

neighboring materials which in turn may decompose, or may not. The

energy may be dissipated. If the reaction continues, gaseous products

may collect until a small pressure is generated -- the small pressure

ERELE VS Gt

results in a pressure wave length which travels over the unburned

3 material. Continued reaction generates more wzvelengths which may

coalesce into a larger pressure wave — or they may not. They may es-

cape the solid before theycoalesce. This brings in the concept that

the size of the solid sample is important for the build-up to detona-

=
3

tion and its environment is important -- that means whether it is con~

fined or not. And finally a self-sustaining chemically reacting shock

A, Tag L (Gt

may be generated which rapidly builds up to a detonation. Thus in the

3 build-up tc detonation an important part of the prccess can take place

3 at relatively low pressure -- say, under 1 kilobar.

The success of the reaction is dependent on the size of the

sample, on the confinement and other things like the crystal size.

RIS KM AN AT A LU T RO Hab et

Both processes have varying rates depending on the density and some

characteristic of the chemical - not very well defined or understocod.

LA AL St

And finally given the same material in the same state in the same con-

L3 IS

finement to which sufficient energy has been added to build up to

wrre e

wadr

detonation should be successful. Anything less than this we are

(4

inclined to think should fail. However there are certainly many cases

where the apparent energy required is much less than the normal amount.

ELAN B (2 I M i)

Success or failure appeared to be statistical. We begin toc wonder if
a lot less than the usual amount will initiate the detonation some

small fraction of the time. The one case in a thousand keeps haunting us.
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Now what makes us think that molecular physics and solid state
physics might serve to improve the description of these two processes.
We hope that statistical dynamics will be able to describe the state of
the atoms or molecules when subjeccted to these extremely high pressures
such that their densities are about four-thirds of the solid density.
We hope that this description will lead to a prediction of the rates of
reaction. The only rate law that has bzen used to date is the familiar
Arrhenius law. It may be the Lest thing thexe is. Some recent work
tends to show that it leads to reasonable values for the reactioun zone
length in nitromethane and liquid TNT. This would be the first nrocess
referred to above ~- that is the steady state detonation. However a
look at some of the alternatives might produce other descriptioas or
might give us more confidence in the Arrhenius expression. And in any
case it has not been too successful to date in the bujld up to detoration

process.

The equation of state for the gaseous products which have been used
successfully are empiriral expressions which describe the Chapman-Jouget
conditions -at the end of the chemical reaction. They have been arbitrar-
ily fit to what data is available and do not allow much extension beyond
the high pressuve-high temperature conditions in the Chapman-Jourget
sitvation. Molecular physics of mixtures of gases at high pressures

might lead to better more versatile equations of state.

0f considerable current intevest is the second prccess I have
mentioned -- the build up to detonation. Our interest is particularly
drawn to this because of the instances of prematures in guns and bombs,
the cne in a thousand cases that I mentioned previously. Considerable
progress has been made in the continuum treatment of the build up to
detonation process.  This has been accomplished using the familiar
principles of hydrodynamics and simple kinetics. The great difficulty
lies in accurately representing the absorption and distribution of
energy in the initial stages. It seems highly probable that the like-
1ihood of chemical decomposition under a given energy absorption is a

function of the ciystal lattice and imperfections in it. It also seems




probabls chat & higher density of imperfectiou should permit the chain
reaction process to continue in spite of a given set of difficulties
whereas a lesser density of higher chemical potential sites might let

the reaction fail. We would have to translate whatever may be learned
about the propagation of the wave of a reaction in a pure crystal into

a process that jumps from one crystal to another in a conglomerate chart,

but this is far down the stream from thie current figure.

One bit of specialization we have insisted on ~- this particular

Panel is concerned with high explosives. While some mixtures which are

explosives contain ionic crystals, the pure crystalline high explosive
molecules are non-ionic crystals and so we have insisted that we were
particularly iuterested in what the new theories in instrumentation might
tell us about non-ionic crystals. This has posed a new problem because
we are told that the study of ionic solids is not yet complete and the
organic molecules must wait. However we are not content to wait. We
prefer to keep our attuntion on the less familiar - maybe it's in the

dark spot -- but that's where the pay dirt is.

I 3do not know whether the May 1966 decision preceded or followed
the initiation of Dr. Walker's work on organic solid states at Feltman
Research Laboratories or Mr. Connick's work at the Defense Research
Laboratories in Australia and perhaps there is other work in this field
that I do not know about. In any event these two installations have

made a start in direct application of solid state techniques to non-ionic

4 high explosive crystals., Although they have not been solicited as

speakers for this seminar, we will hope that they will make substantial

RVt

contributions to the discussions through their comments.

THTATITR

In summary I quote from the inclosure to the letter that the

Committee mailed to the prospective experts. "In posing the questions

to which the speakers would address themselves, they said: Will the
present state of knowledge in the field permit theoretical treatment of
the detonation process with sufficient rigor to yield useful results?

If so, have the necessary mathematical models been developed? If not,

~J
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E % what is lacking? What kind of basic research is needed to attain the

. : required level of knowledge? Does it appear to be feasible, assuming a
dedicated coherent effort? What are the best approaches to both ex-
perimental and theoretical investigations in this field?" These and

s other questions were posed. It was really a difficult task. The fact

that we were able to have nine speakers on the agenda indicates that we

already have some measure of success.

; Walt Disney told the story of the boy who knew n. such word as
; "fail," he wanted to march in the circus parade so he cffered to take
é : the place of a missing trombonist. He hadn't marched two blocks before

the fearful noises from his trombone caused a horse to rear and to create

a turmoil. The bandmaster commanded: "Why didn't you tell me you
E couldn't play the trombone?" The boy said: "How did I know, I hadn't

ever tried it before." So far as I know the experiment for setting up

NRTIbit L R
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a seminar in this fashion on this subject has not been tried before.

g ot

I hope that it will be a success. At least we will have tried.
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CROSSED MOLECULAR BEAMS RESEARCH AND

CONNECTIONS WITH ENERGY STORAGE PROBLEMS*

R. H. Davis
Department of Physics, Florida State University

ABSTRACT

Because of recent advances in neutral beam source technology, collisions
between a variety of molecules are now subject to detailed experimental
investigation. Total cross section measurements provide crude tests of
molecular collision models. Early measurements of differential cross
sections using alkali beams showed the sensitivity of such measurements
to different types of collisior partners. High intensity, good resolution
nozzle sources extend the domain of feasible differential cross section
measurements as functions of energy and angle. An objective of this new
field of research is the test of collision models so that they may be more
effectively applied to complicated reaction problems such as those which

arise in the formation and detonation of explosives.,

1. INTRODUCTION

The credit for first thinking about molecular collisions shoulid no
doubt go to the several Greek philosophers who invented the concept of a
"molecule" more than two thousand years ago. Through the efforts of numerous
and much later scieatists, many of the properties of gases, liquids, and to
some extent solid state matter are now understood in terms of molecules moving
more or less freely betweasn collisions with one another. Surprisingly simple

assumpticns such as billiard ball molecules are adequate to explain many

*Research supported in part by the Air Force Office of Scientific Research;
Office of Aerospace Research, U. S. Air Force, under Grant No. AFOSR~440-67.
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detzils of the collision mechanisms.

In contrast, relatively precise information has been obtained about
microscopic collisions in nuclear physics. A sense of perspective is
established by considering where nuclear physics would be if observations
were restricted tc atomic bomb blasts. Accelerators and reactors have been
available to nuclear physicists for years while only recently have neutral
beam sources suitable for precise collision studies become available to
molecular physicists.

In Section II, several facets of the physics of explosives are considered
since they point towards the importance of crossed molecular beam research.
Section III is a discussion of c¢rossed molecular beam research with effusive
sources. Systems with supersonic nozzle sources are described in Section IV.
Theoretical considerations in experiment design, data reduction problems,

reactions, and scattering are reviewed in Section V. Section VI concludes

this paper.

II. CORNECTION WITH PHYSICS OF EXPLUSIVES

A. Potential Energy Storage

An explosive may be defined as a material in which the atoms are arranged
in states of high potential energy relative to the states formed in the explosion
products. It is a special energy storage system in that the structure and al-
lowed reaction mechanisms will support a detonation. A practical explosive is
one in which a compromise is struck between high energy storage density and
stability against slow dissipative reactions or accidental detonation during
ordinary handling procedures.

While mixtures, such as oxygen-rich chemicals with fuels, continue to

find important applications as explcsives, the emphasis of current development

10




work is on new materials in which energy storage is understcod in terms of
molecular or crystalline properties. Here the problem reduces to an under-
standing of a stable system of atoms which are held together by "weak' bonds

as shown in Figure 1 but which can, through a rearrangement, form “strong"

bonds.

% The formation process with respect to the natural forms of the atoms 1is
endothermic, It is a process of entropy reduction for the system of atoms
making up the explosive muterial. Of the many systems which may be con-
sidered on a basis of energetics alone, only a few have been obtained in
practical quantities. Chemical processes of formation generally involve

several intermediate steps as schematically shown in Figure 2.

In successive chemical reactions the potential energy of the constituent
atoms of the final explosive material are bootstra—~red upward until a useful
E stored energy density is achieved. The problen is to find a series of such
: reactions which is not abeortively terminated by a Jissipative reaction -hannel

Too often the entire procedure :s carried out without the benefit of detailed

informacion concerning the veaction mec..ani<—s involved.

e

e

B, Stability, Detonation, .:d Frergy of E:plosion

In Figure 2, the concept of sta. ii: .s shown 2= a local potential m: =um

ittt

in which the explosive as a system resides. While .rude, the diagram illus-
trates a basic problem in that the potential minimum which guarantec. stapility

must be delicately reached without over shooting and precipitatin, slow decays

or catastrophic reactions; i.e., an explosion.
Against the practical requirement of stability for ordinary handling is
iodged the equally practical requirement for detonation. Speed of energy re-

lease is desired providing it is controlled and free of sympathetic complications.

11
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As g flgure of merit

ven material ihe energy of explosion is one

of the most important performance ratings. Other practical considerations
being satisfied, it should be made as large as possible.

A cursory examination of bonding energy tables will show that a number
of arrangements of atoms and molecules in crystals give promise of very high
energy densitieg and corvespondingly large energies of explosion. Such a
hypothecical energy storage system is shown in Figure 3., A laminar geometry
is assumed which immediately raises the question of formation, a point to
be taken up later.,

The energy of explosion Qx is obtained from the energy of formation,

QF’ of the explosive and the energy of formation of the explosion products, QP‘
Q = Q - G eV
To get the energy of formation, consider the periodic array of 0-N-H-C as made

up of OE(NHC)Eu Bond (a) is between the O and N and (b) is between C and C.
The bond energies are:

0-C 26 kcal/mole

0-N ~22 kecal/mole
and the average is +2 kcal/mole.

The heat of formation is given by

QF = <33 ~58 +4 = =87 kcal/mole . (2;
HCN 0 Bonds
. {a) and (b)

Several products are possibie. To be specific, assume that the products are

HZO’ co, N?, and C. The energy of formation of the products is

Q, = 1/2 x 58 +1/2 x2 +0 + 0 =42 kcal/mole (3)

P
co N, C

4

The energy of explosion is the difference

12
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Q = 42 - (-87) = 129 kcal/mole

= 3,000 kecal/kg
1)

This may be compared with a value given for RDX of 1390 kcal/mole.

Such a calculation immediately raises several questions. First, can this
or some other equally interesting system exist? If it does exist, what are the
correct bonding energies or taking the system as a whole, what are the details
of its structure? Second, if it does exist, is there a formation process which
will produce it? Historically, many explosives have been invented by the
discovery of a formation process rather than a premeditated design of the system
and a subsequent search for ways to make it.

The hypothetical array is laminar in design since it was originally put
forward in a discussion of tuned chemical reactions of vapors incident on a solid
surface. Momentum control of the reactant beams is assumed to optimize in a
controlled fashion weak bond formation.

The third question, which is raised by any proposed energy storage system,
is whether or not the system will detonate and if so, under what conditions?
How is shock propagated? What are the effects of electromagnetic radiation or
nuclear radiation?

In general, these questions are incompletely answered in our applications
of atomic and molecular physics and chemistry to explosive materials. In some
areas the scientific foundations have not been iaid, while in others the ap-
plication techniques have not been developed.

C. Molecular Collisions

On a microscepic scale the formation of explosive materials is a result of
molecular collisions in which chemical reactiong¢ produce the explosive material.

The control of such collisions is only parametric in conventional chemical

processes in that the number and types of atoms or molecules is specified along

i3




with environmental factors such as temperature, pressure and radiation bath.
Parameters crucial to the reaction such as the relative momentum of colliding
pairs of molecule are not controlled. For a given temperature the spread in
: relative velocities is comparable to the magnitude of the most probable velocity.
The possibility of tuning the reaction to the optimum conditions for the produc-
tion of the desired substance is lost in a Maxwellian blur.

Conceptionally, the situation is much improved if the resultant is

crystalline and if formed by reactions at its surface. Figure 4 illustrates

the control effected by a vapor reactant source, not only with respect to the

momentum of the reactant molecule but the angle of incidence on the reactive

TN P e G e e

2 surface as well. The reactant beam may be tuned to maximize the desired reaction

R

- rate, which is ultimately determined by microscopic quantum mechanical details.
There is not, unfortunately, an extensive literature on crystal growing from

the vapor phase which will serve as a basis for the design and investigation

et HACE R s T IS R AR T 4t

of new crystalline explosive formulations. The advantages of surface reactions

Hitit

with regard to energy and momentum balance are apparent and should not be

overlaoked in future developments,

3

Chemical reactions in gases offer no special advantages in the control

D0k

of the reaction mechanism because of the Maxwellian distribution of relative

Lt

W

velocities as previously mentioned. The formation of weak bonds betweer aggregates

LA gt

of atoms which through a rearrangement can form a strong bond is a matter of chance

it

with dissipative reaction processes working to the detriment of high yields

PNy s

of explosive substances. In one form of chemical reaction theory the hazard

Pt

R

of forming a given chemical product is introduced by assuming a steric factor.

Siditt

Between collisions, . gas molecuie does have a specific energy and momentum

as does the partner in the next collision. Thus, specially prepared gases in

L

the form of jets which are arranged to intersect bring molecules together with

G bt D Kt 4 1L 1
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felative momenta limited by the velocity distributions in each of the jeis.
This is the basic idea of crossed molecular beams research. The objective is
to determine as precisely as possible the conditions of molecular collisions

so that the details of the mechanisms are manifest.

1IT. <CROSSED MOLECULAR BEAMS~EFFUSIVE SOURCES

A. Early Work

If crossed molecular beam techniques are a powerful tool for the detailed
study of molecular collisions, why is the development of the field so belated?
There are two related answers. First, sources for the production of well-
collimated beams of neutral particles of high energy resolution and high
intensity have only recently become available. Second, the uetection of low
energy neutral particles isa difficult technical problem. This in part
accounts for the lead which exists in the study of nuclear collisions. Energies
involved in nuclear collisions are considerably larger ¢ suggested by the
conventional energy unit 1 MeV = 1,000,00C electron volts. Alpha particles
emitted by nuclei can be detected with the assistance of an ordirary microscupe
as individual scintillation events in a zinc sulfide screeun,

The first experiments on reactions with crossed molecular beams are
scirematically shown in Figure 5. Potassium and halogen compound beams produced
in effusive sources intersected in an evacuated chamber with a pressure the
order of ;0-9 Torr. The products of the collision are detected at various
angles with respect to the direction of the potassium beam. Effusive sources
are ovens with suitable ap.rtures and collimating slits to define the beam.
Experiments of these type were chosen by Taylor and Datzz) for two reasons.
First, the alkali atoms and the alkali halide molecules can be detected in

a surface ionlzation device. Second, the beams were readily available.




teveral experiments followed their pioneer work or the reaction
K + HBx - KBr + H (4)

While the yield as a function of angle could be obtained, information relevant
to the details of the collisions was limited by the Maxwellian spread of the
individual molecular beams.

B. Velocity Selection

By the proper angular shift of vanes mounted on a rotating axis in a
turbinelike device, the transmission of molecular beams can be restricted to
a predetermined velocity interval. As the velocity resolution is increased,
there is a corresponding loss in transmitted intensity since particles of the
wrong velocity are removed from the beam. Practically, * 5% is a limit on the
velocity resolution for many experiments. A system for the measurement of a
total cross section is shown in Figure 6.3) Again, note that an alkali beam
is used for ease of detection.

Additional important informationa) can be obtained by the measur: ient of
angular distributions using a system schematically shown in Figure 7.3) Not
only is the velocity of one beam selected, but a further refinement in technique
is indicated here by the addition of a state selector. This device provides
a multipole electric field which via a coupling with the electric moments of
the particle beams defocuses particles in certain states while gathering those
in another. A system producing a 10-pole field is described by Waech et al.s)
The use of state selectors is important in beam preparation and yield detection
but it will not be further discussed here.

The results of reaction studies with potassium beams vary provocatively

for different targets. Qualitative differences in the angular distributions

for alkali halide product is shownX* The extreme forward and extreme backward

* Figure 8.
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peaking of the angular distributions 1s reminiscent of direct reactions in
nuclear physics. The intermediate distributions may be due to long lived
compound systems. While such results demonstrate that the yields of chemical
reactions may be preferentially concentrated at a given angle with respect to
one of the reactant beams, a complete understanding of the anisotropy in terms
of molecular structure and collision parameters is not available at this time.

An cxample of the challenge is dramatically presented by studies of the
following reactions

K+ HBr - KBr +H

K+DBr » KBr +D (5)

K+ TBr -+ FKBr + T
Except for the isotopic differences in the hydrogen atom the three reactions
are identical. From a classical chemistry point of view only minor differences
should exist. The first two reactions have been carefully studied oy Bernstein
and his collaboratorsé) while the last has been recently investigated by Martin
and Kinnsey using a radio-isotope detection technique.7) The angular distribu-
tions are sketched in Figure Y.

Within the uncertainties of the measurement, the results for the hydrogen,
bromide and deuterium bromide are very similar. The angular distribution with
the tritium bromide target appears, however, to be radically different. At
present, this difference is not understood in terms of a reaction mechanism
in which only the isotopic state of the hydrogen is changed.

IV. SYSTEMS WITH SUPERSONIC NOZZLE SOURCES

A. Nozzle Sources

The ideal neutral molecule beam source is one which produces mono-energetic,
high intensity beams of variable energy for a variety of mclecular species. What

is desired is a source which will serve molecular collision physics in the way




in which Van de Graaff accelerators have served Nuclear Physics. The effusive
sources with velocity selectors have opened the field of research but beam
intensities fall far short of the requirements for a general attack. Alkali
beams have been used to compensate for this deficiency since alkali atoms and
certain of their compounds can be very efficiently detected.

An important step towards an ideal source is the supersonic nozzle, one
constructed by J. G. Skofronicka) is schematically shown in Figure 10.
Beams 100 times more intense than those from effusive sources with velocity
selectors are produced.

The idea for this type of source was first put forward by Kantrowitz
and Gray in 1951.9) A series of references describing the evulution of the

source are given in a recent paper by Skofronick and McArdle,B)

10)

and in an
earlier paper by Skofronick.

Structurally simple, the principal of operation can be summarized as
follows. The gas to be used in the jet is delivered to the small stagnation
volume, one of which is the concave surface of the nozzle. As the gas passes
through the nozzle, it is expanded and cooled with a significant fraction of
the energy converted into stream kinetic energy of the jet. Immediately down-
stream from the nozzle is the skimme. which is critically designed to prevent
a downstream flow of the laterally expanded gas while transmitting the jet
with minimum disturbance due to shock fronts. Mach numbers of ten or larger
are readily achieved for the stream velocity.

Thz velocity distribution function is given by

f(v) = v? exp - « (v/vs - 1) (6)

where alpha is the constant and A is the stream velocity of the beam. The

relative shape of the velocity distribution for the nozzle source is compared

®
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with the Maxwellian distribution obtained from effusive sources in Figure 11.
Both distributions have been normalized to a peak value of one. Actually, the
peak for the nozzle source is a minimum of 100 times larger.

Of special importance experimentally is the success achieved in reducing
the pumping requirements and the construction of otherwise compact nozzle
sources.s) Enormous pumps were used in the earlier versions of nozzle sources.

An important feature of these sources, in addition to high intensity and
good energy resolution, is the capability for comntrolled variable energy. This
is accomplished by controlling the temperature of the nozzle bedy which in
turn affects the stream kinetic energy. A demenstration of energy variability
is shown in Figure 12, in which the most probable kinetic energy of argon atoms
is plotted against the nozzle body temperature.

B. Chambers

A conceptually simple experiment is the measurement of total cross sections
schematically shown in Figure 13. The beam labelled f{v) enters the scattering
cell, which contains the target gas. The attenuated beam is measured in detector
(D). Also shown are the relevant formulae and expressions for relating the
collision cross section to the observed or effective cross section Geff' A
total cross section measurement for helium on helium is given in Figure 14.11)
Curve A is a total cross section calculated from a PMY potential (see Figure 15}).
The cross section curves averaged to account for the dispersion in velocity in
both the beam and scatterer areshown as curves B and C for the case of scattering
gas temperatures of 77K° and 300K°, respectively. The averaging techniques
developed by Desloge et al,12) were used.

Figure 16 illustrates the chamber for crossed beams produced by two nozzle

sources. In addition to the two neutral beam sources, a detector is shown which
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in this system is positioned for total cross section measurements, By changing
the angular position with respect to one beam axis, information about the angular
distribution can be obtéined. A formula relating the velocity form factors and
the collision cross section to the observed effective cross section is given

in Figure 17. The importance cof differential cross measurements will be taken
up in Section V.

C. Data Acquisition and Handling

Even with the intensity improvement gained by the use of nozzle sources,
signals at the detector are small. To extract the signals from the noise due to
the vesidual gas and possibly other sources, the beam is chopped as schematically
indicated in Figure 10. By a repetitive comparison of the detector signal with
beam on to that with beam off statistically significant results are obtained.

If the beam burst is of sufficiently short duration, time-of~-flight measure-
mentsll) can be used to determine the velocity distribution experimentally.

J. P. Aldridgel3) has designed an economical on-line computer system which
serves all of the purposes of conventional signal averaging devices and provides
a programmable data handling capability. The system, especially well suited for
time-of-flight analysis, is block diagrammed in Figure 18. Suitable small
computers are available from several manufactuvrers.

Once the data is acquired, i.e., the time-of-flight spectrum is stored,
the full reach of programmable machine capability is available. The first
operation ig signal averaging which is readily accomplished. A comparison
to a spectrum stored in another part of the computer memory representing the
velocity distributicn of the beam provides immediate indicatjon of interesting
features of the velocity distribution. Because such features may be the result

of statistical background fluctuation rather than the real effect, immediate
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indication is vital as the run cau be promptly repeated and a direct comparison
can be made between two ox more runs. Real effects will repeat vwhereas statistical
effects should not.

In addition t~ data acquisition and reduction, certain caleulations such
as kinematic relations can be performed to guide the experimenter in selecting
the most appropriate parameters to improve the quality of the measuremeants.
Further improvements of state selectors, particle detectors and analogue~to-
digital converters will further accentuate the advantages of on-line computers
in molecular collision physics.

V. DISCUSSION

4. Overview

The study of molecular collisions with crossed molecular beams is a new
and rapidly changing field of research. Several topics are discussed in this
section to establish a perspective of what has heen done and what can be done.
The first is a discussion of experiment design c¢yiteria with the objective of
obtaining the best possible data on molecular collision events under conditions
such that quantum mechanical effects are observed. Second, a significant part
of the experimentalist's efforts must be devoted to reductiun and transformation
of the data into a form subject to theoretical interpretation. Graphical
techniques have been extensively used but thesa are tedious as a standard data
processing tool. The nature of the problem is illustrated with computed
results for coplanar trajectories.

The third topic is that of chemical reaction theory. Most of the molecular
collisions involved in the formation, stability and detonation of explosives
are of the reactive type. Consequently, the understanding of reactions in terms
of molecular collision data deserves special comment. While the paucityef data

has rather starved the theoretical developments, szveral promising approaches
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are emerging. Several of these theories require angular distribution measurements
of the reaction products.

Fourth, the importance of elastic scattering data to the understanding of
reactions and of the gaseous state is pointed out. The scattering of helium by
helium is discussed because of the intrinsic interest and as an example.

B. Experiment Design

Since low beam intensities and low detector sensitivity have impeded the
study of collisions of neutral atoms and molecules, quantitative comment on the

situation with crossed beams from nozzle sources is appropriate. These sources yield

19
approximately 10™° neutral pavticles per sr sec with a velocity resolution as good as

+ 5%. With a flight path of 30 cm from each source and a collision volume of
1 cm3, the scattering yield for a cross section approximately 10..16 cm2 is in
excess of 107 particles per cm2 at a distance of 30 cm from the reaction volume.
Isotropy is assumed in this estimate. It should be noted that scattering cross
sections which are important of themselves and to reaction models, are found
to be typically 10-15 cm2 in test calculations.

Some theoretical predictions are useful in determining to what extent the
resolution of the experiment is commensurate with the expected detail of the

molecular collision event. Each collision can be characterized in terms of a

parameter, alpna,given by
o
a = pR- ¢))

where R is the iwmpact parameter and u is the reduced mass for a system with a
projectile mass Mp and target mass Nt' Clearly, alpha represents an effective
moment of inertia under consideration, and for the sake of convenience, it is

assumed to be a simple function of Mp, Mt’ through an approximate (but sufficiently

[ARAA

accurate for these purposes) expression for the impact parameter given by

WXy gy

Y

b
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R = 1071/2

1/3 1/3, 1
(Mp + M

) A (8)

This expression yields the distance at which the two molecules just touch, if

each molecule (or atom) is assumed to have a radius of 1()-'1‘/2 Ml/3

this ap=-
proximation gives a reasonable estimate for the size of the molecule or atom
provided M is in units of the mass of the hydrogen atom. Figure 19 shows values
of alpha plotted against Mt for various projectile masses Mp. Having determined
the value of alpha for a given pair of particles the type of phenomena expected
can be directly read off Figure 20 which indicates the various regions as a
function of relative energy E and the parameter «.

In Figure 20 regions bounded by specific valines of the parameter p are

shown. The parameter p is simply given by the eguation

1/2

p =kR = [(2uE)/ﬁz} R I 9)

max
and this parameter corresponds to the maximum angular momentum zmax contributing
to cthe cross section.
The E, o space is approximately divided by the o = 10 and o = 50 lines
into three physical regions:

1. 0 <p < 10. In this "resonance" region, the cross section should
exhibit rapidly varying values as the energy E is changed due to
the expected quantum mechanical phenomena of "compound states” in
the continuum. High resclution is needed to study such behavior
which is vital to an understanding of the nature of chemical
reactions.

2. 10< o < 30. This is the "diffraction region” in which the cross
sections will tend to be smoother but the angular distributions of
reaction products will still show quantum effects such as are well
known in electron diffraction. Such angular distributions will be
strongly angle-dependent and indicative of the reaction mechanisu.

3. 50< p < =. The "classical region" is a less interesting regicn
where molecules tend to behave more like billiard balls so that the
intrinsic structure becomes relatively unimpcrtant.

Finally, the a, E plane is divided by values for the "width" parameter T

which is given by the equation
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The parameter I' is an estimate of width of the state in the compound system which
exists during the collision process. It is a criterionfor establishing the

g maximum energy resolution which can be allowed if atomic single particle statgs
are to be experimentally detectable. The value of ' immediately shows the
necesaity for high energy resolution. Clearly, a resolution of 10_1 I is

desireble at all energies.

= From the discussion of Figure 20, it is apparent that angular resolutions
: sufficient to reach well into the diffraction region in a given experiment are
= desirable. In angular acceptance A = 1° is a reasonable choice considering
the problems of mechanical construction, desired physical significance, and

‘3 required threshold for detectable flux.

C. Transformation of Data

Since the center-of-mass motion for the system of colliding particles does

not coincide with either beam direction, rather unusual kinematic relationships

are found. A CDC 6400 computer program named PUFF-I has been written by

i? AldridgelA) to quickly establish the kinematic relationships for a given
experiment. This program is of immediate use in fixing the design of atomic
collision chambers in addition to subsequent use in data reduction.

The computer program to handle the kinematics problem is briefly described
here, and results for the elastic scattering of atomic hydrogen by molecular
3 hydrogen are shown by way of illustration. The program works for arbitrary
reactant. and product pairs and for positive, zero, or negative Q values.
g 7 A velocity disgram defining the calculated quantities is shown in Figure

21.

24




i i

ok dhei it ol R )

i N T

WA TSI S et KA

T

Unita: The units to be employed are the convenient sget:
energies in eV
masses in amu
velocities in cm/sec
times in seconds
distances in cm
Since the system is over specified, a conversion is necessary.
E(eV) = 1.0364084 x 10 “2E(amu cm’/sec?)
This is based on Cohen and Dumont.ls) In the cm-amu-sec system E = 1/2 mvz.
Let 1 denote the projectile, 2 the target, 3 the light scattered particie,
and 4 the heavy scattered particle. This is clearly for convenience ws inter-
change of 1 and 2 or 3 and 4 cannot have :. influence on the scattering. In
other words, 2 may be used to denote the projectile and 4 may denote the heavy
scattered particle depending on vhat kinematic information is desired.

The kinematic relations ‘.re summarized

m, 31 + m, 62 =m, 53 + m, 34 (11)

E, +E, +Q=E; +E (12)

where Q = reaction Q value adjusted to proper units using Eq. £. Angles are
measured with respect to the direction of particle 1 for convenience from an
experimental point of view.

Equations 11 and 12 specify vy as a function of £j3. In particular,

Vz i (L + % Y] -V [—fé- (m,v,cos 8, + m,v,cos 8,.)
3 m 3 L mA 11 3 22 23
(13)

™1 "2 it b
+ [f-;{:— - l)E1 + (-E;l:— - l)E2 + —-m;— VlV?-(.oSS Z-Q} =0

cos 623 = cos 62 cos 63 + sin c2 sin 63 cos($2—¢3)
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This quadratic form, Avg + Bv3 + C = 0 can be solved for £ There t.ay be O,
1, or 2 solutions depending on the satisfaction of the conditions (i) Vg 2 0
and (ii) vy real.

(1) means (-B + B2 - 4AC /24 > 0

(ii) means B2 - 4AC >0

Then 54 follows from Eq. 11.

Center of mass velocity:

§ et § +—2_ 73 (14)
M ml+m2 1 ml+m2 2
t
Gi=5m+ﬁi i=1,2,3,4 (15)
It, therefore, follows that
vy
dGLAB = -V-:;-r chM (16)

Scattering angle: The initial velocity of relative motion is given by the

equation
S t 1
G, =9, -%, =0 -7 (17)

The final velocity of relative motion is given by the relation

1

> > '
G =¥y 0, =0, - %, (18)
The scattering angle is defined by the expression
> > > >
cos:esc =q, - qf/(lno|| qfl) 13

Note that it is convenient to ascribe an orientation to these angles. The
orientations such that 64 X 51, 53 X 61, and af X Ei are up define positive
angles. Using a similar conventicen, 62 and ecm should be negative. At present,

these are read in and printed out as positive angles.
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Ag an examnle

, the differcéntial cross section

transformation clab/oc n.’ and the velocity of the scattered projectile are

plotted as functions of the laboratory scattering angle 6, in Figures 22, 23,

3
and 24. Each of the plots are divided into three segments which are labeled
according to the appropriate value of ¢sc or ¢3. The angle ¢ is.measured in
a counterclockwise sense along the beam 1 direction.

In this example, th> relative angle between the beams is 90° which
prevent: the observation of the scattered yield at 90° (and 270°) in the
laboratory. In Figure 22, it is seen that the scattering angle esc of 150°
cannot be measured at 93 = 90° because of the beam 2 position, but it can be
observed at 63 approximately equal to 132°.

For the regions labeled 1, 2, and 3 the transformation of the differential
cross section from the center-of-mass frame to the laboratory frame given as a
ratio is plotted in Figure 23. An expansion or reduction of the angular resolu-

tion results depending on whether the observation point lies below or above

/o =1.

%1ab'%c.m.”

In Figure 24, the velocity of the scattered particle is plotted against
the observation angle 63. Agairn, there are 3 segments in the plct depending
on the choice of the values of ¢3 and O

In this discussion the trajectories of the reactants and the products are
assumed to be coplanar. The three dimensional case can be, of course, prcgrammed.

Recently, DeslogelG)

derived an analytic form for the transformation which per-
mits the calculation for given starting conditions without resort to diagrammatic
techniques.

D. Reactions

While several reactions involving heavy collision partners have been

studied, it is apparent from the discussion of experiment design that collisions
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requires low center—of-mass collision energies corresponding to room temperature
or below in order to limit the number of partial waves involved in the collision
and to reduce internal excitation to a winimum. These restrictions direct at-
tention to the Understanding of the simplest collisions, an accomplishment not
extant at this time. Once simple elastic scattering is understood at least in
terms of improved molecular particles, rearrangement reactions can be considered
as the next step. This basis is needed for a "state of the art" investigation
of more complicated chemical reacticas such as those responsible for the forma-
tion, .cability (or absence thereof) and detonaticn of explosives.

The problem is to understand, in terms of individual events, the mechanisms

which control bulk chemical reactions. These mechanisms are usually discussed

17,18) 19}

in terms of classical or semi-classical approximations. Recently, Micha
has discussed compound state resonances in atom-diatomic-molecule collisions in
terms of a modified Feshback theory. His work reinforces the approach developed
here in two ways. First, as a result of a detailed quantum mechanical discussion
of the collision mechanism, resonance states are computed for the system Xe + H2
and the system Xe + D2. Second, in order to precisely fix the parameters of this
collision analysis, the need for experimentally determined potentials is pointed
out.
Another extreme type of reaction has been discussed by Karplus, Porter,

and Sharmazo)

for the collision of a hydrogen atom with a hydrogen molecule.
Their analysis indicates that a direct reaction mechanism is dominant. That
is, the collision time is comparable to the transit time of the projectile
across the diameter of the target. Such extreme situations are well known in

nuclear physics and it 1is only a careful measurement of the differential cross

secticn as a function of both angle and energy which generally provides a proper
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estimate of the relative contributions of resonance mechanisms and direct

reaction mechanisms. Here again the need for precision scattering data is a
principal requirement for the next step towards understanding the reaction
mechanism,

Perhaps the most richly developed theory for collisions between microscopic
particles is that built on the R-matrix. Fer example, see the recent application

21) Several authors

of R-matrix theory to nuclear physics by Lane and Robson.
have applied the R-matrix theory to chemical reaction problems,22’23) but the
full pewer of this approach has not been brought to bear on the problem because
of the lack of suitable data and sufficiently extensive thenretical investigation.

An objective of the R-matrix theory is the separation of the energy dependent
parts of the cross section from energy independent (or nearly so) parameters which
characterize the reaction mechanism. Mathematically, the essential feature of
the analysis is the separation of space into an "internal volume" in which the
interaction forces are large and an "external volume" in which the forces be-
tween the particles are small or nonpolarizing. The distinction between several
types of forces involved in molecular collision mechanisms is important here and
influences the chcice of internal and external regions. A variety of reaction
mechanisms may be parameterized, such as long lived intermediate systems, direct
reactions, and step-wise reactions which involve more than one identifiable
intermediate stage.

E. Scattering

Scattering data and the molecular potential parameters derived from such
data are the raw material for several models for chemical reaction mechanisms.
They are alsc of intrinsic importance. Consider the collision between two low

anergy neutral helium atoms. While the collision partners are among the simplest

available, the experimental investigation of this collision can, at best, be
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desciibed as inadequate. For the most part, data consists of total cross
sections rather than the far more sensitive differential cross sections.

From detailed differential cross section measurements come more precise

deteruinations of the intermolecular potential.za)

aud Daviszs)'provocative results are obtained with the PMD (See Figure 15) when

As pointed out by Aldridge

calculations for the total cross section and phase shifts are carried down to
very low energies. They find that the conditions for the Ramsauer-Townsend
effect in the collision between two helium atoms are satisfied at a temperature
corresponding to the lambda point for liquid helium II. A plot of the phase
shifts and the total cross section is shown in Figure 25. In collisions where
the Ramsauer-Townsend effect operates, one particle, in this case a helium
atom, passes through the other with no change. This looks like microscopic
superfluidity. Its relation to the dramatic bulk superfluidity property of
liquid “elium II has not been worked out. Confirmation of this possible insight
into quantuvm fluids must await further experimental investigation, in particular
the measurement of angular distributions over a wide range of energy, and a
detailed theoretical analysis of the results.
VI. CONCLUSIONS

Both in energy and in beam species molecular collisions between helium
atoms for which the conditions of the Ramsauer-Townsend effects are satisfied
are rather different from the molecular collisions of the formation and detona-
tion processes in explosives. Current research interests in the collisions
between simple particles is motivated by the ahsence of previous research,
molecular collision physics as described here is a new field, and the power of
such investigations in the develop;ent of collision models. At present, reliable
differential cross sections as functions of energy and angle have not been

measured over a wide range of parameters for simple collision partners.
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From an understanding of the collisions between light aroms and molecules

under conditions such that quantum mechanical details are apparent will come

appropriate models and theories for the analysis of more complicated collisions.

E The first in the hierarchy of increasing complexity are the rearrangement collisions.
The rich and diverse reaction theory worked out for nuclear collisions can be
adopted to such molecular collisions.

Because of the rapid increase in orbital angular momentum, complexity of
internal excitation, and the number of both incoming and outgoing channels which
E resuits when complex molecules interact, it is difficult to extract mechanism
details from such interaction data. Certain systematics will, of course, eaerge.
For example, it appears that several cf the alkali beam experiments can be
explained by a direct reaction mechanism.

The technology is now available to investigate the quantum mechanicail
details of many molecular collisions., The equipment is, as Saul Wexler of the
Argonne National Laboratory put it, "at the point where nuclear physics equip-

ment was during the 197%'s." Development should be no less rapid.
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Electronic Structure and Chemical Instability of Explosives*

Ferd Williams
Physics Department, University of Delawaze

ABSTRACT

After briefly reviewing some experimental results which indicate that
electronic states and electronic mechanisms have an influence on chemicti
instability, we consider the problem theoretically and find that, in an
extension of the quantum mechanical adiabatic approximation, the dynamics
of atomic motion during a detonation are governed by an effective potential
whose dominant term is the electronic energy eigenvalues which are dependent
on the atomic coordinates., The range of validity of the approximations used
in thus establishing a relation between electronic structure and chemical
instability is discussed. We consider the electronic states, and electron
and exciton transport, in the region of the detonation front and conclude

that the gradient in the energy bands arising from the large pressure gradient

and the resulting anisotropic electronic transport may have, in some materials,

appreciable effects on initiation. Representative primary and secondary
explosives are then considered from the point of view of modifications of
their electronic states or of their Fermi levels in order to alter explosive
characteristics, Finally, we suggest the following: single crystal explo-
sives detonated by electronic mechanisms, homogeneous mixed crystals with
intermediate detonation characteristics, and inhomogeneous graded mixed

crystals with nonsteady state and unidirectional characteristics.

* Prepared for Explosives Chemical Seminar at Army Research Office-Durham,
October 21, 1968.

59

&
]
=
=
=

e gt

S

T e mwmmme




3
E<

I, Introduction

In this paper we shall consider the possible effects of the elec-
tronic structure of molecules and crystals on the chemical instability, and
actually the detonation, of explosives, The analysis will be necessarily
preliminary rather than rigorous and thorough, and will be sometimes super-
ficial and occasionally speculative. This is perhaps appropriate for some-
one whose specialization i: electronic structure of crystals and who has
been invited to explore possible relevance to explosive phenomena, It also
seems appropriate because of the lack of published works relating electronic
structure to initiation and detonation,

The lack of published works on this subject arises for two reasons.
First, the theory of the electronic structure and electronic transport has
only recently become anywhere hear adequate to cope with materials as
complex as lead azide on one hand and 1, 3, 5, 7-tetranitro-1, 3, 5, 7-
tetrazacyclooctane (HMX) on the other hand. Second, the hydrodynamic
theory of detonations has been remarkably successful in explaining the
velocities of detonations,1 and initiation has been rezsonably well explained
in wdost casés as ultimately thermal in origin.2

II. Experimental Evidence for the Inter-relation of Electronic Structure
and Chemical Instability

Nevertheless, there does appear to be experimental evidence that the
electronic states, transitions and occupational probabilities of these states
may be involved in the chemical decompositiesn of inorganic and organic

materials, including explosives.

lvans, M. W. and Ablow, C. M., Chem. Rev. 61, 129 '196%)

Macek, A., Chem. Rev. 62, 41 (1961)
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A classical example of chemical changes arising from electronic

processes is the radiation damage of alkali halide crystals. Ionizing radia-
tion generates atomic defects in these crystals, specifically halogen vacan-
cies and halogen molecule negative ions, by electronic mechanisms.3 These
are genuine chemical changes in the sense of creating different molecular or
structural entities, The generation of crystal defects by electrunic mecha-
nisms may occur in materials whose band gap Bg is large compared to the
energy of formation of the defects Ed, because E_ is the maximum energy
which is storable in electronic modes before atomic relaxation to form the
defect, This requirement is not severe for explosives, in which Ey is
negative for those defects involved in the decomposition. More immediately
relevant to explosives than the radiation damage of alkali helides is the
photo-decomposition of alkali and other metallic azides to form defects

such as N4' and Nz' observed in electron spin resonance by King et 31,4

Gilliam and co-workers,s Marinkas and Bartram,6

and others. The photo-
decomposition of silver halides and of organic dyes also involves electronic
transitions.,

The electronic states of crystals are dependent on crystal structure.

Some inorganic explosives, for example, lead azide and many organic explo-

sives, for example, TNT and HMX exist in several structures, The initiation

3Crawford, J. H., Advances in Physics 17, 93 (1968)

%ing, G. J., et al, J. Chem. Phys. 32, 940 (1960); 34, 1499 (1961);
35, 1442 (1961)

SGilliam, 0. R., et al, J. Chem. Phys. 33, 622(1950); Phys. Rev. 125,
451 (1961)

6Marinléas, P. L. and Bartram, R. H., J. Chem, Phys. 48, 927 (1968)
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characteristics for each of the polymorphs are found to be different. This
may be explainable in terms of the differenccs in electronic states for the
different crystal structures.

Finally, the effect of doping with charged impurities on the
decomposition of explosives either through changes in the electronic energy
levels or through changes in their occupational probability, i.e, Permi
level, is of interest., Fair and Forsyth7 have reported changes in the
photelytic decomposition of lead ézide by doping with iron, They have
correlated the decomposition with exciton and impurity absorption and
photoconductivity, all three of which are purely electronic processes.

We shall, therefore, be concerned with relating electronic structure
with chemical instability in the most general theoretical analyses, and with
the following: the energy transport during detonation by electronic mecha-
nisms, the possibility of initiation by nonthermal mechanisms, the origin
of the difference in stability of organic and inorganic explosives, and
electronic means for the possible more efficient use of the energy of

explosives,

III. General Theory Relating Electronic Structure to Chemical Instability

Matter consists of electrons and atomic nuclei, We specify the
spatial and spin coordinates of the i-electron by & and the spatial
coordinates of the j-nucleus by 55‘ According to quantum mechanics a system
in a state is described as completely as is possible by a wave function which

is a function of the coordinates of all the particles. In general the wave

7Fair, H. D., Jr. and Forsyth, A, C. Sixth International Symposium
on Reactivity of Solids, August, 1968, Schenectady (To be published).
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function is also time-dependent, however, we shall be concerned in this
analysis with stationary states and with the solutions of the time-
independent Schrodinger equation, The time~dependence of the chemical
reaction will be taken care of through transitions between stationary

states. For a system of n electrons and N nuclei we have the many

particle wave function:

L AR RS i)

W(_E_ltéz"" 5_,1’51)3_2)”"&) d’(_g_’g_)» (1)

where the dependence on £ and R indicates the dependence on all electronic

it B B U

and nuclear coordinates, a notation we shall now follow., The many particle

wave function satisfies the Schrodinger equation:

where H is the Hamiltonian operator involving terms for the kinetic energies
of all particles and for all electrostatic interactions, and E are the

energy eigenvalues,

From the difference in mass of the electrons m and of the nuclei
Mj and from equipartition of energy, it is evident that the electrons move

3 rapidly compared to the nuclei and, therefore, will exist in separable,

approximate stationary states which are smoothly modified by the motion of
: the nuclei. This is of course the well-known adiabatic approximation of Born
g and Oppenheimer.8 In order to solve for these electronic stationary states

we consider the nuclei fixed in the following Schrodinger equation:

a

PRI R AT

:

2 B }

§ 8Born, M. and Oppenheimer, R., Ann. of Phys, 84, 457 (1927)
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is i which involves electronic coordinates, R

s w e

specifies the fixed 51 ves gn, and Ee1 (R) are the electronic eigenvalues

or electronic structure which are of course dependent on R. Again, in
accordance with the adiabatic approximation we take ¥ to Le the following

form:

VER) = 400 x®). 4)
Substituting Eq. 4 in Eq. 2 and using-fq. 3, we obtain the following for
the Schrodinger equation which governs the motion of the nuclai, if we

neglect two terms to be discussed later:

[\S]

-] 5}3 by + VR +E L R} x® = Ex®) ()

=j
where AR is the Laplacian and V(R) is che direct interaction between nuclei.

The important conclusion, however, is that the electronic structure Ee1(5)
is a major term in the effective potential which governs the motion of the

nuclei. In the usual application of Eq. 5 only displacements in R about

equilibrium sites are involved. For the large excursions in R occurring

during chemical reactions, the approximations must be re-examined. It is

expected, however, that Eel(g) will persist in the effective potential for

the motion of nuclei even during detonations. We believe that the initial

assumption of the slow motion of nuclei versus rapid motion of electrons

remains approximately valid for detonations, For typical electronic states

of molecules and solids, Eel > 1 eV,and therefore the orbital time for

~15

— electronic motion 7, < 10 sec,which is shorter than any process occurring

in a detonation., For example, for shock velocities v = 106cm/sec the time

~-14

to transverse an atomic layer t v 10 sec. The departure from stationary

electronic states is actually one of the terms neglected in obtaining Eq. 5,

and this term can be shown to be of order

W compared to terms retained.
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The other term neglected in obtaining Eq. 5 is the following:

-.1\2
) 3 (Rt () Vpx(RY1. (6)

E iy o== =

The diagonal elements in the matrix formulation of this term vanish if the

number of electrons is conserved, as is the case for nun-nuclear reactions,
The off-diagonal elements correspond to electron-phonon interaction. Further

analysis is necessary to determine whether phonons remain a valid concept

: or whether Eq. 6 diverges in the chaos of the detonation,

We shall continue, assuming Eq. 5 to be approximately valid as the

basis for Fig., 1. The effective potential
E Vegs = V(R) + Eel(ﬂ) (7

is plotted versus the nuclear coordinates or reaction coordinates R.

Because of the double minima the eigenstates x(R) for the system are not
in general simple oscillator funci.ons. They are however bound states
because Veff + = at the extrema of R. The reaction is visualized as
proceeding from an initial '"clamped" state to the final equilibrium state

by the perturbation from electron-phonon interaction. The initial and

final states are describable as linear combinations of the complete set
of x(R). The electronic states Eel(g) at all intermediate configurations
R between the initial and final configurations are of course involved in
determining the x(R). To reduce somewhat the complexity of the problem,
the core electrons which survive the reaction unchanged can be grouped on

their respective nuclei and V(R) taken as the ion-ion interaction, In any

case, it is evident from Eq. 5 and Fig. 1 that the electronic structure

g : Eel(gj plays an important role in chemical reactions, including detonatioms.

B kg
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Electronic States and Electronic Transport in the Region of the

"Shock Front

The classic theory of detonations of Doering, von Neumann and

Zeldovich (see footnote 1 for criginal references) considered the shock

and chemical reaction zones separate; the pressure wave heating the

unreacted explosive so that the reaction occurs thermally after an induc-

tion period. Hirschfelder and co-workers

9 and Woodlo investigated the

effects of coupling of the shock and reaction zones. We are concerned with

the electronic structure in the region of the shock front and with possible

electronic transport getting ahead of the shock and contributing to

initiation,

We therefore look at the details fore and aft of the shock front

in condensed explosives. Ilynkhin and co-workers11 give the shock velocities

v_, the pressure behind the shock front P, and the ratio of specific volumes

after and before shock compression V/V0 for cast TNT, crystalline RDX and

nitromethane. These quantities are approximately 5 x 10° cm/sec, 105 atm

and 0.7 for these explosives. The important observation to be made is that

the electronic structure Belgg) in the region of shock compression is in

general guite different than for the uncompressed explosive, As

noted earlier, the electronic states are approximately stationary at shock

velocities. The initial predictions for most explosives are that the allowed

electfonic bands are wider, the forbidden energy gap narrower and all states

%irschfelder, J. et al, J. Chem. Phys. 28, 1130, 1147 (1958);
30, 470 (1959)

Yyo0d, W. W., Phys. Fluids 4, 46 (1961)

yiynkhin et al, Dokl. Akad. Nauk 13, 793 (1966)
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are perturbed towards the vacuum level in the high pressure region, The

first prediction is evident for organic explosives because the overlap of
the molecular wave functions is increased by compression; the last, from
consideration of the increase in kinetic energy of the electrons confined
to the smaller volume,

The second feature of the region of the shock front with vhich we
are concerned is the spatial dependence of the electronic structure., If
the pressure gradient is only over one or two molecular distances, thenwe are
dealing with an abrupt semiconductor hetevojunction whose electronic trans-
port properties are largely determined by space charge effects; if the
pressure gradient at the shock front extends over at least 100 molecular
distance then, as was shown by Gora and William512 for graded mixed crystals,
the concept of a graded band gap is valid. Craig13 estimated the reaction
zone length for nitromethane at 10~> cm from extrapolation of the equation
of state for the unreacted material and from thermodynamic adiabatic (not
quantum mechanical) explosion thecry. The shock front is probably thinner,
therefore, we take & % 10"6 cm as an estimate of the length of the pressure
gradient and consider the system as having graded band edges. More quanti-
tative determinations of the width of the pressure gradient and of the
electronic structure in the high pressure region are needed for typical
solid explosives., Fig, 2 includes estimates of these two features of the

electronic states in the region of the shock front.

12Gora, T. and Williams, F, 1I-VI Compound Semiconductors

(Benjamin Press, 1967) p. 639

13Craig, B. G. Tenth Symposium on Combustion (1965) p. 863
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We now consider electronic transport in the region of the detona-
tion front. The following analysis applies to conduction electrons or to
positive holes in the valence band und with straightforward modifications
to coupled vlectrons and positive holes (excitons). The component of the

current density arising from ordinary diffusion is:

_ _ dn
JD = nvD = =D -d_x-’ (8)

where n is the carrier concentration, p is the diffusion velocity and D
is the diffusion constant. Our primary concern is with the order of magni-
tude of velocities compared to shock velocities Ves therefore:

n-no.l
&-~D D E‘» (9)

and for negligible charge carriers in front of the shock we have no, << n.

Using the Einstein relation D = %} u, Eq. 9 can be solved in terms of the

mobility u. For an order of magnitude calculation we take u %X 1 cmz/Vsec,
typical for a very poor inorganic semiconductor and for a good organic

% 10~6
semiconductor, 2 7 10

obtain vp v 2 x 105 cm/sec which is the magnitude of but less than Vge

cm as estimated previously and T % 3000°K, and

Incidentally, u is reduced by the high temperature but increised by the
high pressure (105 atmospheres); the latter is particularly pronounced for
organic semiconductors., A value of p for the conditions at the shock front
of the magnitude observed at ordinary temperatures and pressures for good
inorganic semiconductors, i.e. 104 cm%Vsec, would obviously result in the
electronic excitation outrunning the shock wave,

In addition to the ordinary diffusion current, there is an additional

anisotropic current arising from diffusional effects in systems with graded
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band edges such as shown in Fig., 2. Van Ruyven and Williams14 derived

this anisotropic diffusional component of the current density:

_ _ D _ dE(x)

JA—nvA--ﬁn—-a-i—— (10)
where E(x) is the position-dependent band edge for the n electronic
carriers. For the same hypothetical system just analyzed for vp and with
E - Eo estimated as 2 eV from considering the change in energy levels of
an electron in a box of molecular dimension on compression (V/Vo % 0,7),

we find Vo v 2 x 106 cm/sec, This exceeds Ve In general, for n, << m,

E~-Eeo
kT °

In order to have the electrons, positive holes or excitons, whicu

v, exceeds vp by the factor

A
are generated in the detonation region, p.ecede the shock front and
conceivably contribute to initiation, it is also necessary that their
lifetime T, exceed the threshold value R/VA % 10712 sec, Th;s requirement
does not appear to be severe.

The anisotropic diffusion of electrons or positive holes in advance
of the shock front will yield a space charge and result in an electric
field traveling with the shock front. This effect which arises from the
graded band edges may explain the voltages measured in shocks. For example,
the observations of Eichelberger and Hauver15 of shock-induced electrical

polarization in distilled water may originate from graded band edges,

probably for the states involved in protonic conduction.

14yan Ruyven, L. J. and Williams, ¥, E., Am. J. Phys. 35, 705 (1967)

15Eichelberger, R. J. and Hauver, G. E., Les Ondes de Detonation,

Paris CNRS, p. 363 (1962)
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In general, any theory of electronic effects in a detonation
must include the effects of the graded band edges such as shown in
Fig. 2. In addition to band edge transport, electron tunneling is also
shown and would be included in a more complete analysis.

V. Electronic States, Fermi Levels and Decomposition of Representative

Exglosives

As 4 representative primary explosive, we shall consider lead

azide; as a representative secondary, HMX. Both are important militarily;
both are challenging scientifically, It now seems that single crystals of
both materials can be prepared and used for measurements of electronic
properties. We shall consider in a preliminary way a few aspects of their
electronic states and the occupational probability of these states, as
described by the Fermi level, relevant to the decomposition of these
materials,

Perhaps the most striking feature of a preliminary consideration
of the electronic states of lead azide is the diversity of types of excitons
which it may have, In addition to the charge transfer excitons, well-known
in alkali halides, and effective mass excitons, well-known in elemental
semiconductors, one predicts for PbN,: intracation excitens (excited states

of Pb*2, 1p and 3p of the 1s2 ... s5al

6sGP configuration, modified by the
complex crystal field of the PbN6 structure) and intra-anion excitons
(excited states of Ns'). These offer possibilities for the transport of
electronic energy.

Slow decomposition or initiation is predicted from Eq. 5 and illus-

trated in Fig. 1 to depend on occupied electronic states, The Fermi level

is the energy of the state at theltop of the electron distribution, or more
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precisely, the energy for which the occupation probabiliiy is one-half,
If we assume that during the early stages of decompositian, or during

initiation, PbN6 undergoes the following reaction:

2N3- -+ 3N2 + 2e”, an

and that lead metal is not precipitated, then the electrons (2¢7) of Eq. 11
will be in the conduction band, perturbed, however, by the field of the
[Ns'] vacancies. The electrons will be in F-center bound states, the Fermi
level will have risen,and the n-type electronic conductivity increased. The
electronic states Eel(gj in the effective potential Veff of Eq. 7 which
governs the motion of the nuclei in Eq. 5 will have changed. Higher Veff(B)
functions on Fig. 1 should now dominate the chemical reaction: It is tempting
to predict that initiation occurs rather generally by a rising Fermi level.
The well-known memory effect in explosives subjected to repeatedAbartial
decomposition may be explainable by accumulated changes in the Fermi level.
Similarly, if both positive holes p+ and electrons are electrically
injected into PbN6 (double injection), the Fermi level will also rise if the -

positive holes are removed by the reaction:

2,7+ 2p" > 3N, (12)

3

and the compensating electrons occupy perturbed conduction band states, In
other words, appropriate electronic injection can in principle achieve the
same Fermi level change which may be essential to initiation, °

HMX or 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazacyclooctane exists

in four polymorphic forms, These are molecular crystals. Both intramolecular
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in the shock wave during detonation. The mobilities of both types of

R

excitons and intermolecular (charge transfer) sxcitons are predi:ted.
Electronic charge transport depends on overlap of the molecular wave-

functions and is therefore enhanced by the pressures (10s atmospheres)

excitous are glso enhanced by pressure,

Surya Bulusu, <t 3116 have determined with isotopes that the
thermal degradation of HMX proceeds by breakage of C-N bonds, It is
important to determine whether charged intermediates are formed during
decomposition, and even during detonation, because these would change

the Fermi level.

VI, Homogencous and Graded Mixed Crystals

It is well known in semiconductor physics that most homogeneous
mixed crystals of semiconductors have electronic bands intermediate
between those of -the pure components. This can be explained theoretically
on the basis of the virtual crystal approximation, in which the statistical
distributions of unit cells in the random alloy are replaced by an average
hﬁit cell, Because the de Broglie wavelength for the electron is large
compared to unit cell dimensions, the electron responds to the field of
the average cell and has the corresponding band structure, To the extent,
therefore, that the electronic states influence initiation or detonation,
mixed crystal explosives may offer interesting intermediate characteristics.
For example, within the constraints of solubiiity limitations due to differences
in crystal structures of copper azide and sodium azide, Cquai_st may warrant

experimental studies.

16Bu1usu, Surya, et al, West Point Conference on Army Materiel

Command
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In addition, mixed semiconductors with graded compositions have,

as described earli~t relevant to gradations due to pressure, graded elec-
tronic properties, for example, graded band gaps.14 A graded mixed crystal
explosive should have predictable, nonsteady state, detonation characteris-
tics. The nonsteady time dépendence and partial directionality of the
detonation may permit greater utiiization of the energy of the reaction.

VII. Concluding Remarks

In conclusion we emphasize that there are two points of view that
can be taken regarding the impact that investigations of electronic structure
and transport may have on explosives research, The first which is emphasized
in this paper concerns the understanding of phenomena well-known for conven-
tional explosives; the second which is quite speculative concerns the inves-
tigation of qualitatively different phenomena and materials relevant to
initiation and detonation as a consequence of detailed consideration of
electronic processes.
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Figure 1

Effective potential for atomic motion during detonation versus

Different curves correspond

to different electronic states; vibrational levels for initial

and final configurations are also shown,
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Probable electronic structure of unreacted explosive versus
direction through shock front, The pressure fore and aft the

front are respectively po and p; electronic transitions, trans-

port and tunneling are also shown,
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Figure 3

Approximate electronic energy level structure of lead azide.

Transitions for creation of the following excitons are included:

Effective mass excitons, a; intra-anion excitons, b; and

intracation, c.
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Figure 4

Change in Fermi level of lead azide accompanying decomposition:

ZN,- - 3N2 + 2e .
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Introduction

A connection between the propagation of particle waves and deformation
in crystalline solids has been presented in earlier publicationsl’z. In general
the nonelastic deformations of such solids are considered to result from the
motion of certain initially field-free or "free" atoms in a solid in very loose
analogy with the free electron theory of conduction, These atoms, moreover,
are supposed to move tirough a crystal as particle momentum waves with wave

lengths calculated from the de Broglie relation A = h/mvi s+ v, 1s the final

i
velocity acquired by the free atoms just before they pass beyond their initial
field-free regions, h is Planck's constant, and m is the atomic mase A
schematic representation of both external and internal field-free atoms in
relation to s crystal lattice is shown in Fig. 1. The internal field-free

atom of Fig. 1b is, of course, no longer field-free if a stress, Yo’ is produced
in the crystal by an external load. Instead such an atom will now be subjected
to a force, F, = Y°/§ » where { 1is the number of atoms per cross sectional
area in the region of the stress,

An atom located in an initial field-free region of width pd in the
direction of the force will then be accelerated as a particle until it reaches
the end of the field-free region; after this it (or its momentum) propagates
through the crystal as a particle wave with a wavelength determined by the
finél velocity as already stated. By equating the work done, by the force Fi
through the distance pd , to the final kinetic energy of the particle and
using the de Broglie relation for a free particle, a relation between the

external stress applied to a crystal and the wavelength of the resulting

particle momentum wave is obtainedz,
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The parameter, p, which defines a particular initially field-free region
(s = pd) is the only new atomic constant introduced in Eq. 1; its value is
generally taken to be less than one as indicated in Fig. 1. Moreover, in some
cases, final expressions for macroscopic mechanical quantities are independent
of p , and the quan*ities are functions only of known atomic constantsz.
These ideas on the propagation of particle momentum waves and their role
in nonelastic deformation are made more specific by the assumption of a
differential equation for momentum transfer. For example, in a one-dimensional

monatomic row lattice (cf. Fig. 2) conservation of momentum among any three

X . 2
adjacent masses requires that

a(mvn) i

3t PUCIRM S NS - 2vy) vees (D

where m is the momentum of a genera! nth mass, m, in the lattice of spacing

d, i=nh/2r and i =1 . Eg 2 also results from writing the time-dependent

Schroedinger equation for one oi the .asses (atoms) of such a periodic :ructure
provided that.real-property waves (i.e.,, momenium waves) are associated with
moving particles in place of (or in addition to) the Born probalility waves

of orthodox wave mechanics3’4.

From Eq. 2 and its solutions . number of
macroscopic mechanical properties of crystalline solids have been described
and some mechanical quantities calculated directly from atomic comstants.

These have included transition velocities observed in impact experiments,
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threshold velocities for cratering in hypervelocity impact, nonelastic audio
frequency resonances, characteristic stresses of plasti. deformation, and
coefficients of sliding frictionz. A stregse~strain law in close agreement

with the experimental results for cubic crystals has been formulated, the
velucity dependence of sliding friction and other frictional phenomena accounted
for, and the cross-sectional shapes of hypervelocity craters formed at oblique
impact explainedz.

The success with which some hypervelocity impact and high-speed frictional
phenomena are explained by the particle-wave view of nonelastic deformation
suggested that the means by which high explosive reactions are initiated might
also be clarified if considered in a similar fashion. In particular, detonation
by impact has proved susceptible to a particle-wave explanation by extension
of the ideas used for monatomic crystals to diatomic or polyatomic crystals.
This explanation is accordingly presented here after a Lrief review of momentum

transfer and impact in monatomic crys . als.

1. Particle waves and momentum transfer.

The concepts used to account for momentum transfer and detonation in
polyatomic crystals are to a large extent direct extensicns of ideas used in
describing the behavior of monatomic crystals; therefore it is appropriate to
review some of these results. Consider first the infinitely long, one-dimensfonal
row lattice of Fig. 2 with identical point masses, m, spaced a distance d
apart. A continuity equaticn for momentum transfer or flow along this lattice

can be written s
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- = §p(vn-1 - vn) - Ep(vn - vn+i) cees (3)
where
Bﬁmﬁg represents the net time rate of change of
ot momentum of the nth lattice mass
K (vn_1 - vn) is the rate of momentum transfer from the

mass at ne-1 to that at n

) is the rate of momentum transfer from the

mass at n to the mass at n+l

is a momentum transfer constant for the

lattice

That is, according to Eq. 3 above we postulate that as a result of an applied
force (as discussed in the introduction) some type of momentum transfer occurs
in the lattice for which the rate of momentum transfer depends on the velocity
differences between adjacent masses. From the conservation of momentum Eq. 3
then follows directly. The exact nature and/or value of -sp is clearly of
great importance. Fortunately it is possible to obtain an exact expression
for ‘Kp by writing a wave solution for v, in Eq. 3 of the form

-i(2my_t - knd)
v, = Be P vees (&)

where k = 2r/\ is the wave vector, d is the lattice spacing, B is a constant

and the frequency Vp is given by

«12 kd
v, = ——& sin® — eeee (3)
P ™ 2
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According to the particle-wave view of deformationl’2 Eq. 5 gives the frequency
of a particle (mom~ontum) wave in the lattice and in the limit of long wave

lengths (small k) this expression must reduce to that for a free particle,

i.e.,
-128 kd o}
1im =L gin® — = — K? cess (6)
k-0 m 2 4

vhere 1k®/lmm is the free-particle frequency. For small values of k the

sine can be replaced by its argument in Eq. 6 so that
K, = 111/2d% vene (7)

and substitution of this value for ‘Ep in Eq. 3 yields Eq. 2 of the

introduction

= (V +V_ "ZV)’ seoe (2)

while Eq. 5 for the frequency becomes,

Y g._ﬁ_ sina.l-(s_

vsee (5a)
P md> 2

1f instead of the infinite lattice of Fig. 2 we turn our attention to a
finite lattice of length S = Nd wiih fixed ends, a standing wave solution
to Eq. 3 is necessaryl’z, but again the same expressions for JEp and Vp

are obtained. Now, however, discrete values of the wave vector, k, are

demanded such that
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k= (LMy , g=1,2,3 ... (N=1) veee (8)

Minimum and maximum values of k in this case are T/Nd and T/d corres-

ponding to respective minimum and maximum values of vp ’

v_(min.) = —2—0 (for S = Nd)
P 8ms~
A
v_(max.) = — (for N large) eees (9)
p Td2

The prevalence of mosaic structures in real crystals indicates that finite
lattice segments with lengths of a few microns will be .ncountered in momentum
transfer through crystalsz’s. Characteristic values of Vp hence range from
10° to 10%° cps with accumulations of these particle-wave modes near the ends
of the frequency spectruml’z. Considerable experirental evidence existsl’2
for the presence of such nonelastic modes at the audiofrequency end of the

spectrum where from Eqs. 5a and 8 the successive modes are to a very good

approximation supposed to occur according to

qu = ;ﬁ;z q2 .eee (10)
‘n speaking of wave propagation and assuming a wave solution for the
velocity of a general nth mass in a discontinuous medjum such as the periodic
lattice of point masses shown in Fig. 2, a clear definition of wave motion is
needed. We adop: here and apply to the preceding discussion the definition
advanced, for example, by BrillouinG. That is, let wn be some measurable

property of the ath lattice mass which car be defined in the vicinity of the
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mass site, but not elsewhere. Wn is then said to be propagated as a wave

if a differential equation for ¥, can be set up (on a physical basis) with
a solution of the form ¥, = ae-1(Zmvt - knd) where k = 2r/\, v is the
wave frequency, and nd 1is the equilibrium position of the nth mass relative
to the origin. A real property commonly treated in this way is the atomic
displacement from equilibrium (xn) in dealing with elastic displacement waves,
but we have chosen instead the momentum (mvn) to account for nomelastic
deformation. Since the displacement and the momentum can only be measured at
the positions of the masses in the lattice, we expect to be able to know
nothing of such wave properties between lattice masses. Hence it follows that
A= 2d is the smallest measurable wave length for real-property waves in a
lattice of spacing d. Further, in principle real-property waves such as the
momentum waves uiscussed cannot exist in the lattice at wavelengths less than
2d, Then, from the de Broglie relation, there will be a limiting f =e-particle
velucity (for both external and internal field-free atoms) above which the
associated momentum wave will not propagate through a lattice,

v (max.) = h - B veee (1)

m l(min.) 2md

The existence of this velocity limit (for stationary lattices) provides a

basis for explanations of high velocity impact behavior of crystals in general

and the low-velocity impac® behavior (detonation!) of some crystals in particular.
Finally it must be mentioned that, although all of the preceding discussion

has been confined to momentum transfer in one-dimensional (row) lattices, the

results are easily extenided to three-dimensional crysta132 and lead to no
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major changes. This follows partly from the fact that the x,y,z components of
momentum are independently conserved and partly from the assumption of in-line
or central momentum transfer between masses (atoms) in a three-dimensional
lattice. The practical outcome is that the results obtained for row lattices
apply directly to three-dimensional lattices when the periodic spacing dj
between lattice masses in a particular direction in the crystal is usei., Thus
the momentum transfer constant in a direction with spacing, dj’ is A%’= iﬁ/Zdj2
which predicts that the momentum transfer constant will be largest for directions
of closest spacing in a crystal. Thus nonelastic deformation of a crystal
should occur most readily in the directions of closest spacing, and this is in
accord with all experimental evidence. Similarily the maximum values of limiting
velocities for field-free particles given by Eq. 11 can be calculated for a
particular crystal in terms of the distance of closest approach, dl, by

v, = h/2md1 + Values for cubic metal crystals calculated in this way range from

9.46 » 10° cm/sec for lithium to 0.238 x 102 cm/sec for thoriumz.

2. High-velocity impact in monatomic crystals.

The existence of limiting velocities (well below the speed of sound)
for the free particles supposed to be generating momentum waves suggests, at
first, that such waves can not account for high speed deformation of crystals.
It turns out, howeverz, that there is a way in which waves generated by free
particles with velocities above v, = h/Zmd1 can be propagated in a crystal
lattice. 1t is only necessary for a crystal lattice, or parts of it, to move
against the incident free-particle wave. Such reverse motion requires, of

course, a source of energy, and it is evident that this source can only be the
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vibrational (phonon) energy of the crvstal lattice itself. 1In fact, as we shall
demonstrate, the proposed mechanism eventually results in destruction of the
crystal lattice when the free-particle impact veloci*y is such as to demand a

translational lattice energy per atom equal to the lattice binding energy.

a) The effect of lattice motion
The review discussion in Section 1 was in terms of a fixed or
stationary lattice, but we now consider a row lattice of fixed spacing d1 movinag
with a translational velocity v

£

v, as indicated schematically in Fig. 3a. All velocities are measured with

toward an incoming free-particle of velocity

respect to the same system of laboratory coordinates. The distance moved by
the field-free particle in reaching he lattice can be expressed in terms of the
lattice spacing as pd1 in accordance with previous notation., The time required

for the field-free particle to travel up to a stationary lattice is

t = pd /v ceee (12)

while for a lattice (or lattice section) moving toward the incident free

particle with velocity v, this time is reduced to

t! = (pdl - vzt')/vi veee (13

= pd; » where pd; = pdl - vzt' eees (13a)

Eq. 13 can be solved for t' to give

pd
t = ——}_—' svoe (14)

vi + vz
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From Eqs. 12 and 13a it follows that d;./d1 = t'/t and from Egs. 12 and
1%4 the ratio t'/t can be written in terms of the velocities as vil(v1+ vz)

so that

d;(contracted) = ——— eose (15)

The variation of d; with translational lattice velocity is shown in Fig. 3.
The apparent lattice spacing clearly decreases as the lattice moves toward the
incident particle with increasing velocity; therefore momentum waves of
decreasing wavelengths below 2d1 can be propagated through the moving lattice.
In an entirely similar way it can be shown that the apparent lattice spacing

d; increases with lattice velocity for a lattice moving away from the incident

particle. and a single expression written for both cases (cf. Fig. 3b)
d! (apparent) = d - —_— ceee (16)

where positive values of v, denote lattice motion toward the incident field-
free particle and negative values correspond to lattice motion away from the
incoming particle. Finally, from Eq. 16 a new value for the limiting free-
particle velocity allowing momentum wave propagation in a moving lattice can

be calculated as vi(max) =v' = h/2md; or, from Eq. 16,

'
1

ceee (17)

il
<

vi(max) = v
It is instructive to consider the limiting free-particle velocity, v;,

in Eq. 17 as the independent variable and then determine from Eq. 17 the

required values of translaticnal lattice velocity, vy, as in Eq. 18 bzlow.
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v, = v;(l - v;/vl) vees (18)

where now negative values of v, indicate velocities opposite to the incident
free-particle velocity, v;, taken as reference. A plot of v, vs. v! reveals
an inverted parabola with vertex at (v1/2, v1/4) as shown in Fig. 4. From
this figure it is clear that at incident free-particle velocities above v1
the lattice must move with negative velocities (against the incident particle)
in order to allow propagation of the momentum wave associated with the incident
particle.

According to our previous discussion it is not necessary for any transla-
tional lattice motion to occur for free-particle velocities below v, All
particle waves generated by velocities below v1 are propagated in an infinite
lattice, and a series of waves at discrete wave lengths are propagated in a
finite lattice. For a lattice segment of length S = Nd values of incident
free-particle velocities generating such allowed wave lengths are

B qr
Vig mNd

vlﬁ.;-lzl, 2, 3000(N"1) ee o e (19)

There will therefore be a series of evenly spaced allowed velocities along the
abacissa (vg = Q) between 0 and v, as indicated in Fig. 4 (branch 0ODC), as
well as the continuous allowed velocity values for forward lattice motion given
by the positive branch (OBC) of the curve. Thus there is a choice of lattice
behavior for free-particle incident velocities below vlz (1) the lattice
remains stationary and propagates only particle waves of certain discrete wave

lengths; or (2) the lattice moves forward at varying velocities, v,, and
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propagetes particle waves of any wavelengths between & and 2d1. Above v
there is only one possibility; i.e., the lattice must reverse and move agajinst

an incident field-free particle to propagate waves of wavelengths less than

2d .
1

As discussed in detail elsewherez, the conditious under which the lattice
moves or remains stationary represent the difference between transient and
equilibrium behavior, respectively. From Eq. 5a the phase velocity, cp,
(2rv/k) can be calculated in terms of the incident velocity, and be shown to
have a maximum value of v1/m'J§ when v, = 3v1/4 »  The duration times for
transient behavior can then be estimated for a given lattice segment length in
terms of the time needed for a standing wave to be set up in the segment; for a
segment length of 10™* cm. these times are usually of the order of 107° sec. or
greater. Of course there will also be incident velocities below v1 between
the discrete stationary allowed values where only forward lattice motion will
allow propagation.

It is also possible to demonstrate2 the existence of a region of instability
between incident velocities of vl/2 and 3v1/4 where a sudden jump to the
reverse lattice motion required beyond v1 takes place. The exact location
of the instability point on the upper branch, OBC, of the curve in Fig. &
depends on the number of lattice atoms in a particular segment which are moving
with the translational velocity V. This number can never be less than two
since at least two atoms are needed to define an apparent lattice spacing, but
three, four, or many more atoms may eventually share the translational velocity
(and energy) as the momentum wave propagation proceeds along the lattice. As
each lattice atom moves forward it can, in fact, be expected to "push" along the

atoms ahead of it so that additional atoms share in the translational motion

91




S N R A X ot T M R A R S it S

TR

LG A )

ML N3 6 a0

T T T T AT R TS

s R

(RN A

R O SR D E e N N A T

IRl

iy

TNy

T rar ey e T J RURE AN A et v R T

Tt VOGN T

b AR (;i LT

T e e — 2 R T AR LSS SCISEUPICIE T -SSR S S

(with a corresponding decrease in the amount of translational emergy and
momentunm of zach atom). Because of the existence of these inatability conditions
for incident velocities above v1/2 s as a practical matter the reverse flow
will start at some velocity beyond v1/2 instead of at v,o. That is8, an
incoming particle with velocity greater than the instability value will sooner
or later jump to a velocity just above Vs and the lattice will move in the
reverse direction. The extra energy for this jump to a higher velocity is
supplied to the particle by the lattice since a point just beyond v1 corresponds
to a lower absolute value of translational lattice velocity, v, than a
point near v1/2 . Finally, above an incident velocity of .Zvl we expect the
results of reverse fiow to become unusually severe as each lattice atom moves

in the reverse direction with an energy greater than the initial energy of the
incident atom. As mentioned before, such energy can only be supplied by the
crystal itself. For the case where two-atom segments are brok;n loose, the
value of translational velocity demanded of each lattice atom will reach a

final value, Vg when the corresponding energy (mvzf2/2) equals one-half the
dissociation energy per atom (D/2) of the crystal lattice. That is,

Ny veee (20)

Vs

The final value of incident particle velocity, Ves will be that which requires

the final translational lattice velocity or, from Eq. 17

< 4+ 4
vl + 4 v, + vlvzf

= -

2

v
-
5 1+ J 1+ 4v2f7v1) cees (21)

vl(final) Ve
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For Vs >> v, and 2 AT v, >> 1 Eq. 21 beccmes the approximation

= “ vlng

vlll 2 (pm)1/4 oo (22)

o]
1

n

which is accurate to within 5% if vzf/v1 > 100. Values of Ve mnecessary to

produce lattice disintegration or fracture can be calculated from a knowledge of
E v, = h/2mdl and the lattice dissociation energy, D, for a crystal. Eq. 22
also results if we consider a four-atom projectile incident against a three-
dimensional crystal where eight-atom chunks now break loose because four
adjacent two-atom segments are required to move at velocities greater than Vg
§ These ideas on lattice disintegration are depicted schematically in Fig. 5.

A threshold velocity, Ve is thus predicted above which lattice break-up and
"cratering" begins, for example, in high-velocity impact.

é The previous discussion applies to impact between similar atoms, but is

: easily extended to provide for a particle of mass mp with velocity, Vis
striking a lattice with different masses m, for example. The momentum of

1 the striking particle is mpvi with an associated de Broglie wavelength

A= h/mp‘vi . In our view this is equivalent to, and can be replaced by, a
particle with the lattice mass, =) and velocity vi provided only that

mtvi = mpvi . That is, an incideut atom with mass greater than the lattice
masses 18 equivalent to the smaller lattice mass incident with greater velocity,
while the reverse is true for an incident atom with mass smaller than the lattice

masses, For digsimilar projectile-target materials, for example, the final

velocity of Eq. 22 becomes




e e

T
Ve = ';; Ve eese (223)

b)  Phonon fission

The preceding ideas about conversion of lattice energy into transla-
tional energy of lattice segmerts and ultimate lattice disintegration can also
be discussed in terms of the mass-energy equivalense of atoms in a crystal
1attice2’7. We recall that the vibrational energy of a crystal containing N
atoms can be taken as equal to the energy of a system of 3N quantized harmonic
oscillators when attention is confined to linear elastic interactions between
atoms. For a Boltzman distribution of oscillators among the available energy

levels the average cnergy per oscillator at any temperature T is8

hy, hve
<Uq> = e— ¢ Wﬁ-‘l veee (23)
2 e

where Ve is the frequency of oscillation of a particular harmonic oscillator

of the system and k is Boltzman's constant, Tue first term of Eq. 23 represents
the average zero-point energy of the oscillators (atoms) since it remains when

T = 0. With each vibrational mode of frequency Ve @ certain numbers of sound
quanta or phonons can be associated and if hve is taken as the energy of

each, then the number of phonons, n, to be associated with any vibrational

frequency, Ve can be determined from Eq. 23,

<U > 1 1
n,6 = —gi-h = - 4 W ceee (28)
Ve 2 e

From Eq. 24 it is at once clear that phonons of two types occur, viz. intrinsic

(non-thermal) phonons and thermal phonons. The intrinsic phonons are present
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at all temperatures in a constant amount of 1/2 phonon per mode. Thus =ach
lattice atom (with three vibrational modes) corresponds to 3/2 intrinsic
phonons. In the same way there will be three intrinsic phonens associated with
every two lattice atoms as indicated in Fig. 6. Hence any two lattice atoms can
be characterized by one Jongiitudinal and two transverse intrinsic phonons with

sound propagation velocities respectively of Cps Cpos and ¢ Although two

ta th *

lattice atoms are associated with three phonons only one atomic mass is involved
since one half of each lattice mass is assigned to the adjoining atom pair.

Three intrinsic phonons are insufficient, of course, to describe an
arbitrary -mnisotropic solid. Instead three mutually orthogonal three-phonon
sets are needed7 or a total of nine intrinsic phonons; three longitudinal and
six transverse. These correspond to 18 vibrational mcdes of 6 lattice atoms.

In any case it is possible to obtain a quantitative mass-energy equivalence
for lattice atoms Iin general, but consider first a cubic crystal neading only
three intrinsic phenons for characterization. If any two atoms of a crystal
are sufficiently separated by removal from the lattice or otherwise, three
phonons wili be destroyed. A mean squared sound velocity for the crystal can

be written as

V]
{_bﬂ
o
Y
-
o

¢ = cese {25)

and the "phonon" mass involved is m/2 per atom. Accordingly, the annihilation
of three phonons with mean sound velocity Es might be expected to result in
the release of a vibrational energy per atom of mESZ/Z or mcs2 (where

c52 = 682/2). Now if a solid lattice is vaporized by supplying heat energy

equal to D per atom the final result is also the destruction of all intrinsic

95




e — T w4 =~ T -~ . - =

lattice phonons. The separated atoms in the vapor will have an energy of D
per atem above their original energy at 0°K in the lattice. Thus we infer
that the destruction of intrinsic (zero~point) lattice phonons, by any means,
will result in the release of a vibrational energy per atom equal to the

dissociation energy, D, per atom such that

D = me cees (206)

where c82 is the mean sound velocity defined above for a cubic lattice in

terms of three sound velocities. In the most general case the value of csa

will depend on nine sound velocities corresponding to the three sets of three
phonons needed to degcribe a crysta17; for hexagonal crystals four measured sound
velocities or elastic modulii are needed to determine cs2 , etc. We also note
another implication of Eq. 26; if the average dissociation energy per atom, D,

2

is to be comstant then ¢~ must also be a constant of the crystal. Therefore

2 must be invariant and this has been shown

the sound velocity sums defining cg
to be the case according to classical elasticity thecry7.
From Eqs. 20 and 26 it is at once apparent that Vg = ¢y SO that the

final or "fission' velocity for an incident atom to cause disintegration of a

\ = \ C R (2; )

We now refer to this as the phonon-fission velocity since a particle
incident at such velocity will casuse a crystal lattice to break up and thus
produce phonon splitting or fission. Velues of v, are of the order of 10%
te 10° cm/sec. while g is often about 10° cm/sec yielding values of Ve

from 10° to 10* cm/sec. The energy required by an incident particle to produce
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fission is therefore less than one-hundreth of that released for incident and

lattice particles of the same mass.
m_ =2 2
5 Ve S 0.01 me vees (28)

For heavy atoms innident against lattices with light masses the difference
between the striking energy and the released energy wiil be even greater.
Self-sustained phonon fission consequently is possible if somehow fragments
of the fissioned lattice fly off in such a way as to strike other sections of

the lattice to produce more fission, etc.

3. Momentum transfer and impact in diatomic crystals

In order to explain detonation it is necessary to extend the ideas
on momentum transfer and impact to diatomic and polyatomic crystal structures.
A diatomic row lattice with masses m2,ml is shown in Fig. 7a with a distance
da between atoms in each molecule and dm between meclecules in the lattice.
A field-free atom of mass LR incident at velocity v, on such a lattice is
also depicted in Fig. 7b. The question immediately arises as to the manner
in which the momeritum wave associated with the incident particle is propagated
along this diatomic lattice.

Following the general physical principle that the simplest assumption is
often the most useful (or even most valid)9 we assume that the actual momentum
transfer process is equivalent to momentum waves of different frequencies travel-
ling independently along the two sets of masses, m, and ml. The notation adopted

in Fig., 7 is such that all even numbered lattice sites are occupied by m, masses

and odd sites by m masses. From the assumption of independent momentum
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waves the differential equations for momentum transfer are accordingly:

ik
m —=2 = — (v +v - 2v_ ) eees (29)
2 5 9g2 = 2nie 2n-2 an
and
ov i
m —3RE = - (v +v -2v ) cees (30)
1 dt 242 2nts 2n-1 2nt1

where d = da + dm is the periodic spacing between like masses (atoms) in the

lattice., Traveling-wave solutiocns to Egqs. 29, 30 are

-i[27v_t - knd]
v = Be 2 cees (31)

“A[mv t - k(nd +d)]

v2n+1 = Ble cees (32)
where
v, = —— a2 X ceen (33
2 Tm_d> 2
2
v = A sin2 _l_(_(! sese (34)
1 'nmld2 2

and that = .
and so tha v2/v1 mllmz

The separate differential equaticuas (Eqs. 29, 30) likewise result from
writing the time-dependent Schroedinger equation for one molecule (i.e., two
atoms of mass mz,m1 ) and considering the total wave function for the two atoms
to be WT = wz + wl where wz =mv_ and y = mlvl in accordance with the

22 1

idea that ¥ is a momentum wave. Eqs. 29, 30 are also equivalent to the
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assumption that momentum transfer between the molecules of Fig. 7 takes place

[

as if point masses M = m + m, were located at the center of mass of each
molecule to form a monatomic row lattice of spacing, d.

In any event, such separate momentum waves will have different limiting
velocities, v, = h/2m2d and vl = h/2mld s beyond which reverse lattice motion
of each separate set of atoms (i.e., each of the interpenetrating row lattices)
is required. Furthermore, the effective incident velocity of a mass m, will
be different for the "lattice'" of masses m and given by v; = (malml)vi
where A is the actual velocity of a m_ ~ mass. In order to describe the
required translational lattice motion of a diatomic lartice under impact as
previously shown for a monatomic lattice in Fig. 4, two curves of v, vs. vi
are now needed as drawn in Fig. 8.

The curves in Fig. 8 are for a mass ratio mzlml = 107,9/14.0 = 7.70,

Then, for example, an atom of mass m_ , incident with velocity vé has that

effective velocity for the m lattice, but has a higher effective velocity

1"

vi = v; = 7,70 v; against the m lattice. A mass m, incident at velocity
v; = v2/2 may thus require momentarily that the m,  masses move forward at

velocities v2/4 = 0,25 v, while the m, ~masses move forward at the same time
with velocities vl/4 = 1,925 V. The required translational velocity difference
between atoms in the same molecule hence would be 1.675 v,.

For the smaller mass, m incident at a velocity v; = v2/2 , on the other
hand, the transient response of thre m lattice requires a forward velocity
of v, =0.4 v, while the m, lattice has to move as if hit by a mass m,

£1

at velocity v; = 0,055 v, s or with translational velocity vzz = 0.06 v2 .

The required intramolecular velocity difference in this case amounts to only
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about 0.34 v_.

For incident velocities of a mass m, above v, (or a mass m, above

vl) the separate requirements of the two interpenetrating lattices become
alarmingly different in that a large steady state or equilibrium translational
velocity difference is demanded for the atoms of each molecule. Thus at

7' = 1,2 v a reverse velocity of v, = -0.2v_ is required for the m
2 2 L2 2 2

masses along with a reverse velocity of Voo T -1.75 v, (corresponding to

v; = 9,25 vz) or a translational velocity difference of AV, = 1.55 v, At

£

vi =15v ,Av, =4,50v ; at v! = 2v , Av, = 13.4 v, etc.
2 2 Y/ 2 2 2 2

2
Just as in the case of a monatomic lattice we expect thal: final values

of the "lattice" velocities will be reached beyond which disintegration or

fracture of the crystal will occur. Now, however, there are two possibilities

for such a crystal break up: 1) breaking of the lattice bonds between molecules

in the crystal or 2) breaking of the chemical bonds between the atoms forming

the molecules. In the first case lattice disintegration will occur when

2 2

mlvglf + mev/z2f =D ees. (35)

wvhere D is the lattice dissociation energy per molecule and ‘ilf’ vﬂef

are the final values of translational velocity demanded of each set of lattice
atoms; again to define an effective spacing d' at least two atoms of each

lattice (z total of four) must move as indicated schematically in Fig. 7b. 1In

the second case molecular dissociation into component atoms will occur when

24mv Z=2p vees (36)

mlvﬂlf 2 f2f b .

where now Db is the chemical bond dissociation energy per molecule.
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Values of D and Db range from 1 to 10 ev/molecule so that values of
Voig? Vaog AT expected to be of the order of 2 x 10° cm/sec. Since values
of v1 and v2 range from 102 to 10° cm/sec for most crystals, final or

fission velocities of about 10* cm/sec are again expected for incident atoms

of mass m or m
2 1

= / . T . & . LA N (37
Ve T Y V2"Vpar ? Ver SV Voas 37

The choice between breaking of intramolecular chemical bonds and breaking of
intermolecular lattice bonds obviously depends greatly on the relative values
of Db’ D. 1f 2Db < D chemical bonds will be broken before lattice
dissociation occurs. For 2Db > D there will be lattice bond rupture before
the chemical bonds within the molecule break, etc.

The ceneral . Jea that in nonelastic deformation diatomic crystals may
act as separate or interpenetrating lattices of identical atoms, is, moreover,
extremely useful in accounting for many properties. Thus NaCl can be
considered to behave as two interpenetrating fcc monatomic lattices of sodium
and chlorine respectivelyz. The distance of closest approach between like
atoms in NaCl is in the < 110 > directions so that the momentum transfer
constant (h/Zdjz) is greatest and plastic flow or slip is expected to occur
mos  eadily in such directions, as is indeed the case. Similarily from
Egs. 33, 34 and the results presented in section 1 for finite lattices, a
series of discrete audiofrequency modes or resonances for each type of atom
in a polyatomic finite lattice is expected for a given segment length, S

where




v =-——-;q
19 8m s°
1
gl 2
v = q
24 8m282
X
Vg = @ 3 q=1,2,3...N-1 and S =Nd
q SmPS2
or
Vi tVoyt ter Yy T 1/m1 : 1/m2:... : 1/mk cese (38

As we shall see in the final section, there are cases where the observed
(nonelastic) resonance frequency ratios are in very close agreement with
reciprocal atomic mass ratios as expected from Eq. 39. The identification of
. . 2,10,11
two sets of curves in average dislocation velocity v.s., stress data for
NaCl, LiF, etc. also supports the idea that momentum waves may travel independently

through each set of identical atoms in a crystal.

4, Detonation by impact

From these general ideas on momentum transfer and the consequent
breaking or disintegration of u crystal lattice we turn finally to an attempt
to describe the process of deton»tion in a solid. There is general agreement
on the definition of an explosion as a fast chemical reaction forming gases at
high pressures from a small amount of a solid, liquid or gas, but some variation
seems to exist among various authors as to just what constitutes detonation.

Robinson12 says that detonation is a term applied to the brisant explosion of
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high explosives while EowdonlB‘defines detonation as any reaction propagated

at speeds greater than the sound velocity in the detonating medium. Everyone
seems to agree, however, that detonation can be initiated by impact and we
shall first consider such initiation.

The breaking of chemical bonds between atoms in a molecule when the
required translational velocity of the atoms results in a kinetic energy in
excess of the bond dissociation energy has already been discussed., Impact
velocities of 10° to 10* cm/sec are sufficient (depending om the incident atomic
mass) and, as mentioned for phonon fission, the separated atoms will have
energies (and velocities) in excess of that initially required to break the
bonds. A separated or 'dissociated" atom in the row lattice of Fig. 7 may then
strike the remaining undissociated lattice with a velocity equal to or greater
than that of the original incident free-particle (atom) and cause additional
bond breaking, etc.

The chemical bond breaking process may be initiated also by free
particles (atoms) incident at velocities below the fission values, Vfl’ Ve,
if the required translational velocity diiference sz is sufficient to
cause a rapid increase or decrease iAda in the equilibrium bond distance
between the atoms in a molecule. The interaction potential V12 between atoms
in the molecules of Fig. 7 can be represented by the curve shown in Fig. 9
where the mass m is at an equilibrium distance da from mass m, at absoiute
zero. If now an incident mass m, approaches the lattice at some velocity
v; < v2/2 the required transient response will resul: in a forward velocity
difference ANE between atoms in at least the first two molecules as previously
discussed. As a result the bond distance, da’ will be increased with time
(against the attractive force between the atoms) until finally a new distance

d; is reached corresponding to a potential energy equal to the bond energy Db'
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That is

al = d_ +4d
a a a
where
Ada = sztb oo (39)

and tb can be defined as the time necessary for mass ml to obtain a
potential energy (relative to m2) equal to the bond energy. Equilibrium bond
distances vary but are most often between 1 to &4 x 1078 cm; the exact shape

of the interaction potential curve will determine Ada, but it can be taken

as da/Z. Thus the required time, t,» can be estimated from a knowledge of

Awg in terms of the characteristic velocity v, = h/2m2d . For Ada =1.5x 1078

cm  and ANE = 1 x 10° cm/sec, t, = Ada/ANL = 1.5 x 10"2° seconds which is well

b
below the transient duration time for most lattice segments. The attainment of
a potential energy equal to the chemical bond energy can, of course, occur only
by an energy conversion from the intrinsic (zero-point) phonon or vibrational
energy of the molecule. Once separated the atoms of each molecule can pe

expected to share the bond energy in the form of increased translational kinetic

energy according to

2

mv , = D
2 2i

N
3
<

[N

b eees (40)

For typical valies of Db (1 to 10 ev/atom) Eq. 40 requires that at least.one
of the separated atomic masses will have a translational velocity which may be
equal to or greater than the velocity of sound in the crystal. For example,
if v2i = 0 the freed light mass ml will have a forward velocity of

v1i = f§5;7;r whereas the mean sound velocity in the crystal is
cg = J’(Db +D)/2m = Jbe7ﬁv for D, = D.
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The released mass m in the second molecule then becomes an internal
incident free particle against the rest of the lattice and may require, because
of its high velncity, reverse lattice motion of the next two molecules in the
lattice. This will result in a decrease in the bond distance between stoms in
these molecules until again a distance is reached where the potential energy of
mass m, (relative to ma) is greater than the bond energy (cf. Fig. 9b). 1In

this case, however,

d; = d - Ad cees (41)

where da can again be calculated from Ada = Av,t, and for Ada = da/2, t

b

will be abour 107 1° gec as before. Actually, because of the nonsymmetrical

b

shape of the potential curve, the decrease in bond length required to reach a
distance corresponding to a potential energy equal to the bond dissociatiom
energy will be less for contraction than for extension. The freed atoms of
mass ml in this case will be repelled back against the upbroken lattice once
again as incident free particles, and further bond breaking produced in the next
two molecules, etc.

Detonation by heat can evidently be explained along the lines just discussed
if we note that a rise of temperature in a crystal may correspond to an increase
in the mean vibrational energy lev(l of the atoms within a rnlecule as well
as the mean vikrational energy ot molecules in the crystal lattice. At
any iemperature there will be a distribution of both the vibrational energy levels
within the molecules and vibrational energy levels of molecules in the crystal
lattice. If in one molecule (or a few) the rise in temperature results in
raising the vibrational energy level to a value Db’ dissociation may occur feor

that particular molecule with the consequent creation of an internal high
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velocity free particle (atom). Sucb a frae particle will in turn cause bond
breaking in the two adjacent molecules,: - so on to Iinitiate detonation as
previously described.

In general any process which imparts energy in excess of the chemical bond
dissociation energy to one or a few molecules (e.g. a spark discharge, an
intense light beam, local heating or creation of a hot spot, etc.) may result
in initiation of bond breaking or detonation by the creation of an internal
high-velccity free part'~.e in a crystal. Bombardment of a crystal with sub-
atomic sized particles can also Initiate detonation if the velucities are high
enough sc that the momentum imparted to the crystal atoms requires appre -iable
lattice motion

According to these ideas initiation of bond treaking will occur at lower
incident velocities when the lattice is at a higher temperature since the bond
discociation energy decreases as the temperature increases (cf. Fig. 9).

One further rather unusual feature (a >ug meny) of the proposed explanation
of detonation must be mentioned. From Fig. 8 it is evident that a particle
of mass m, incident on the lattice at exactly the limiting velocity v, will
require no lattice motion of either set of atoms. This is true since the
incident mass m, at velocity v, is exactly equivalent to an incident mass
m1 at velocity, vl. Hence no relative motion between atoms in a molecule (or
molecules in the lattice} is required, Av

4

bonds are broken. This is true even though m  atome incident at lower (as
<

= G, and no chemical or lattice

well as higher) velocities may iniciate bond breaking as previously described.

For dissimilar atoms, im,, nondetonation velocities, vy will be those for which
x - - 2 13 1" 11

névz =mv, or vy mévzlmd. Thus for asn incident mass, ml, the "dud

velocity, vy = m2v2/ml = v etz.
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5. Comparison with some experimental results.

Many of the concepts introduced in chis explanation of detonation

in (erms of particle waves are somewhat novel, and it is therefore appropriate
to look for experimental verification of the idcas where possible. Scme
experimental evidence in support of this general view of deformation in crystal-
line solids will be presented first and then mnore particular reference to
detonation made. a) Nenelastic deformation

One of the immediate consequences of the particle wave description of
deformation is the prediction of the existence of #fonelastic audiofrequency
modes dependent on the mosaic structure of crystals., For finite lattice
segment lengths around 10™* cm such modes should be observable in the audio-
range, and, in fact have been extensively reportedz. The existence of such
modes can be readily observed, for exampie, in lightly vulcanized rubber (hevea)
where reversible changes from a completely amorphous state to an ordered
crystalline state can be produced by stretching. This stretch-induced crystal-
'inity has been studied . x-ray diffraction and crystallization found to appear
first at an elongation of 300% at 25°C. Furthermore Yau and StEﬁ}a have
investigated stretched rubber by means of low-aigle light scattering usiung a
laser photographic technique. They report evidence for a crystalliie super-
structure which is pronouncecd above 3007 elongation and of the order of
2 x 10™* cm in ize. These data allow a direct calculation of the lowest
particle-wave mode, q = 1, in terms of the carbon atom, taking S = 2 x 10”? cm.
From Eq. 10

10-27
v = ‘1 = 6.62 x 10 = = 1040 cps.

P1 8ms> 8 x 1.99 x 1972%(2 x 107%)
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This resonance should appear in the stretched rubber at an elongatica just above
300%,and the prediction compares well with the experimental dynamic

shear compliance data of Fig. 10 in which a resonance at 1020 cps appears at

an elongation of 310%.

The existence of critical velocities in impact experiments has long been
recognized. Bellls, for example, has identified hydrodynamic transition
velocities above which "excessive mushrooming in the first diameter is
experimentally observed." From our descriptinn of impact this transition
velocity corresponds to 2v1 (i.e, twice the limiting or "reverse flow" velocity),
and calculated values of 2vl for aluminum and copper are compared with the

Bell transition veiocity below:

Al Cu

Hydrodynamic transition
velority measured by Bell. 2050 in/sec 980 in/sec
(£ 50 in/sec) (£ 20 in/sec)

2v 2039 in/sec 968 in/sec
(5179 cm/sec) (2458 cm/sec)

In addition Bell has reported15 ancther critical velocity in aluminum of
582 in/sec below which there is no mushrooming, delay in strain development,
and poor reproducibility near the impact face. 1In terms of the ideas presented
here,unstable behavior and the mushrooming threshold (due to reverse lattice
flow) should occur between 0.5v1 and 0.75v1 or between 508 in/sec and 765 in/sec
for aluminum.

The idea of reversed iattice metion taking place against an incoming
proiectile is also supported by observations cn impact at so-cezlled hyper-
velocities. That is, according to the ideas presented here, above a certain

characteristic velocity vl (or in practice above v1/2) sections of a target
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will tend to move toward an incoming projectile. Further above another
characteristic value, Ves the target will actually disintegrate or break up;
sections of the target will fly off against the incident projectile and in
so doing will maintain their crystallographic integrity (i.e., "melting"”

is not supposed to occur). The reverse motion is not imagined to result
from reflection or rebounds from some depth (or back surface) of the target,
but, on the contrary, above Ve pieces of the target in the impact region
should peel off from the front surface in groups of two atoms or more.
Another, quantitative test of these ideas is possible from data on zrater
depth vs. incident velocity in high-velocity impact experiments. A thres-
hold velocity, Ves (v%) is predicted by Eq. 22 in terms of Planck's constant,
the closest lattice spacing, a measured lattice dissociation energy, and the

atomic mass,

Nv e v

£ 1 £f

n

n

(h/2md ) 1/2 (pfm) 214 vee. (223)

In using crater depth as a measure of the lattice disintegration process a
distinction between a crater and an indentation must be maintained, of course.
This is mo3t easily done with data for a soft projectile against a siwmilar or
harder target material, Pit-depth data reported by Olive £. Engel16 for 0.1
and 0,285-cm mercury drops against lead targets is shown in Fig. 11, and the
calculated threshold value of v% = 0.54 x 10* cm/sec agrees well with these
experimental results. Similar data given by Partridge17 for 0.483-cm iron
spheres fired into iron targets are shown in Fig. 12. Again the calculated

value of Ve = 2.36 x 10* cm/sec compares well with the extrapclated zero-
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depth value from these somewhat scattered points.

Finally, in comnection with the remarks on impact in monatomic crystals
a connection between a mean elastic sound velocity and the lattice dissociation
energy was developed, i.e. D = mcsg. Measured values of sound velocities
and dissociation enecgies again afford a means of checking the supposed relation.
This "Einstein' relation, indeed, seems to be well verified for 18 cubic metals
as shown in Table I,and is also true for a number of hexagonal metal crvstals.

In more direct support of the ideas presented on detonation scme data on
the independent existence of particle waves in like sets of atoms in a
polyatomic solid are shown in Table II. Here are tabulated some observed
resonances or modes from dynamic shear compliance measurements on a butadiene-
acrylonitrile terpolymer (Mycar 1072). According to Eqs. 38 there should be
sets of frequencies present for each type of atom or each mass value in the
solid lattice. Further, the frequency rstios of a particular mode {(e.g.,

q = 2) should be equal to the reciprocal atomic mass ratios for the same segment
length (S). This does appear to be the case for this terpolymer as it is also
for some other materials.

All of these comparisons, and the more axtensive correlations published
elsewhere2 as discussed in the introduction lend support to the general idea
that nonelastic deformation may be described in terms of momentum wave
propagation in crystalline soiids. However, no detailed confirmation of the
corresponding explanation of the detonation process has yet been attempted.

Such confirmationm w._  require new experiments, modification of present testing
methods, or in fact may not be possible. We can, however, examine some of
the existing data on detonation and attempt to explain it in terms ci the

mechanism proposed in the preceding section.
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b) Detonation

To begin with we expect that for a given crystal structure, the same
spacing between unlike atoms, and comparable bond dissociation energies, the
impact sensitivi*y should increase as the atomic mass ratio of the bonded
atoms increases. This fcllows since the limiting incident velocity at which
reverse motion of the metal "lattice" is demanded, decreases as the metallic
mass increases (v2 = h/2m2d), and also because the required translational
velocity difference, ANZ, leading to rapid bond shortening increases as the
atomic mass ratios increase in a particular crystal structure., Therefore
mercury fulminate (Hg, 200.6) should be more sensitive to impact than silver
fulminate (Ag, 107.9) which, in turn, should be more sensitive than sodium
fulminate (Na, 23). Accoxding to Marshall18 this is true. 1In the same way the
azides should be increasingly sensitive to impact as the mass of the metallic
atom increases, provided the relevant bond lengths, lattice spacings, etc. are
un~hanged. Accordingly we would suppose the sensitivity to shock or impact to
increase for the azides in the order KNa’ CuNa, AgNa, Hga(Ns)z’ TENS, Pb(Ns)z'
Bowdenls, however has listed the azides of increasing semnsitivity or
decreasing stability to heat, light, and shock in a somewhat different order
as shown in Table II1 (see footnote, b). In particular, according to Bowden
Tst is next to KN3 in stability while CuN3 is more sensitive than AgNs. From
our point of view TZNs and CuN3 are out of place, at lecast insofar as sensitivity
to impact is concerned. Bowden has not listed scparately the semsitivities to
shock, heat, and light for the azides and therefore exa.t measures or criteria
of his sensitivity scale are lacking; differences in bond and lattice dis-
sociation enexrgies could perhaps rc3ault in a different ordering of the azide

sensitivities to heat and light than for shock or impact. From the data of
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Gray and Waddingtonlg, in fact, it is possible to calculate the difference
between the lattice and bond dissociaticn energies, AD = D - Da= for some of
the azides listed in Table II. This difference,AD, does increase in the order
of increasing sensitivity as given by Bowden (cf. Table le;thus in terms of
the supposed atomic potential interaction curve of Fig. 9 a localized increase
in energy of the crystal lattice (resulting from heat or light energy) can
initiate detonation by producing dissociation of a chemical bond (in preference
to dissociation of a lattice bond which causes 'melting"). The occurrence of
heat or light produced interatomic bond dissociation prior to interlattice bond
dissociation (melting) is more likely as AD increases and therefore sensitivity
to heat and light might be expected to follow AD,while sensitivity to impact
depends on increasing atomic mass ratios as predicted. Of course a large
decrease in spacing between like atoms in the T{-N bo . direction could also
produce a decrease in impact sensitivity (increase v2) but this does not seem
likely. Rather it appears from our point of view that "seusitivity' by itself
or a collective sensitivity may be meaningless and that one should always
specify sensitivity to something (heat, light, impact, etc.) when speaking

of detonation!

A numerical estimate of what might be called the "falling weight sensitivity"
can also be calculated in ters of the diatomic iinear lattice of Fig. 7 for
specific materials where the crystal structure in : particular Jirectlon
resembles that of Fig. 7. For example, silver azide (AgNa) is orthorhombic
with rows of alternating silver an! nitrogen atoms in line along the Ag-N bond
direction in [201] directions on (010) planeszo. The Ag-N distance is 3.33 i
and hence the limiting velocity, v2, of an incideat silver atom beyond which

reverse flow of the "silver lattice' i3 reguired is




v_(Ag) h/2m d

6.625 x 10°27/2(17.89 x 10723)(6.66 x 10™®)

2,78 x 10% cm/sec

The limiting velocity for a nitrogen atom against the '"nitrogen lattice' is,

in the same way, found to be
vl(N) = 2,14 x 10° em/sec

The velocity v, = 2.78 x 10° cm/sec would be attained by a silver bullet
(weight) dropped from a height H = 39.3 cm (H = v2/2g), for example. Because
of the instability citaed in section 2, reverse lattice motion (and the
consequent initiation of detonation) will in practice occur at velocities
between v2/2 and 3v2/4 or between 1.39 x 10° and 2.08 x 10° cm/sec.

This predicted range of srriking velocities needed to initiate detonation
in AgN3 crystals of a particular orientation can be compared to experimental
determinations of the falling weight sensitivity for polycrystalline AgN3
made by Wohler in 1911 and reported by Marshallls. The tests were performed
according to specifications set forth by the International Committee on
Explosive Testing18 and consisted of a hardened steel weight of 500 grams
falling against a hardened steel striking pin of 12.55 grams in contact with
the AgN3 which was backed by a large steel anvil. Under these conditions the
actual striking velocity of the hardened steel pin can only be estimated for
an assumed coefficient of restitution. The minimum height of fall for the
500-gram weight to initiate detonation was found to be 31.5 cm corresponding

to a final velocity of 2.46 x 10° cm/sec for the weight., This results in a
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calculated striking velocity for the steel pin against the AgN of

3
4,42 x 10° cm/sec if the coefficient of restitution is taken as 0.90. The
equivalent incident or "striking" velocity for a silver pin can these be

determined from the atomic mass ratio as

Vag T 107.9 Vre

0.51 x 4.42 x 107 em/sec

2

2.25 x 10% cm/sec

R

which compares well with the upper limit of 2.08 x 10° for the predicted initiation
detonation velocity of silver against silver azide. In fact, since the texture

or preferred orientation of the polycrystalline sample used by Wohler is not

known, this is an entirely plausible result, The difference between the

predicted initiation velocity of 2.08 x 10° cm/sec and that observed could be

accounted for in a single crystal sample by an angle, 6, between the incident

mass or striking pin and the aligned Ag-N bond directions in the crystal such
that cos® = 2.08/2.25 = .924 or @ = 22.5°. The uncertainties surrounding the

: actual incident velocity of the striking pin against the sample in this falling
weight test, however, are too great to justify any dafinite conclusions in

this regard. The most we can say is that the predicted initiation velocity

Lt S L & o A DS Lt

for silver against silver azide f{or iron against silver azide) is in reasonable
agreement witk the experimental data cited in this instance.

¥ Any falling weight or '"drop'" test in which a separate striking pin must

- be put in motion to produce detonation will always create doubt as to the

3 actual incident or impact velocity of the pin against the sample since assump-

tions about the collision between the falling weight and the striking pin must
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be made. On the other hand, Cu:zhman‘)'1 has reported more receni axperiments

(1918) in which the minimur height of fall of a 3«0z weight with steel firing

pin attached is determined for the onset of misfires (mondetonation). Compounds
tested were iron disulfide (pyrite, FeS,), antimony trisulfide (stibmite,

sb - and lead sulfide (galena, PbS). Extreme precautions were also taken

to prepare samples of the same fineness or grain size distribution in each case;
equal quantities of three sieve sizes being used for the test samples of each
materigl. Calculation of the initiation velocity is particularly easy for

PbS which has the (cubic) sodium chloride structure with a lattice spacing22
between like atoms in the [100] direction of d = 5.936 x 108 cm. Hence the
limiting velocity for a lead atom (m = 34,39 x 1072° g) incident against the

"lead lattice' of PbS is

Vé(Pb) h/2m2d

n

1.62 x 10% em/sec
wvhile that for a sulfur atom against the "sulfur lattice" is
vl(S) = 1.05 x 10° cm/sec.

According to our idea that reversed lattice flow results in initiation of
detonation, for a lead pin incident against PbS this should occur for incident
velocities between 0.81 x 10° cm/sec and 1.21 x 10° cm/sec. Cushman gives

21.0 in. as the minimum experimental drop height producing detonation (100%

of the time) for a steel firing pin, corresponding to a striking velocity of
3.24 x 102 cm/sec for a steel pin against PbS. The equivalent striking velocity

for a lead pin is then
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55,85
Pt~ 207.2 'Fe

0.269 x 3.24 x 10

1

n

0.871 x 10° cm/sec

ich falls very nicely within the predicted initiation velocity range of

0.81 x 107 cm/sec to 1.21 x 10% cm/sec.

The expectation of a range of incident velocities within which firing
or detonation may occur is in our view a direct result of the presence of
an instability region between v2/2 and 3v2/4 as already described (cf.
section 2a and reference 2). Such a range of sensitivities is, indeed, found
in the usual falling weight or drop tests. Taylor and Weale23 describe drop
tests on a mercury fulminate mixture using a 2-ounce weight and 0.4 cm
diameter steel balls zs the striking pins. Some of their data, reproduced

in Table IV, suggested to them a statistical distribution "

«+.governed by

some probabilit: law.'" However we expect an incident wvelocity range for initiation
of detonation, Ana, equal to (3v9/4 - v2/2) or v2/ﬁ in every case; this

being the velocity range or difier=nce between the highest velocity (3v2/4)

and the lowest velocity (v2/2) which, in practice, result in reverse lattice
motion. Further, the ratio of the lowest initiation velocity to the highest
initiation velocity should be axactly 2/3. This ratio can evidently be determined
in a falling weight test (for a constant mass ratio of the falling weight to

the striking pin) from the height for 100% in‘tiation, Hloo’ and the height

for 0% initiation H, as

vy (min) H

vi(max) H
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and compared with the predicted value of 2/3. The experimental values
reported by Taylor and Weale in Table IV give‘JTT§7ZTa or 0.62 which is

in only falr agreement with the expected value of 0.67. More extensive
tests were subsequently carried out by Taylor and Weale in which 100 samples

were tested at each of eight heights of fall. These gave a ratio of

JHOI}Ilo0 =~~3,7/8.0 or 0.68 which is in good agreement with the predicted
ratio of 0,67 (i.e.. 2/3) for the initiation velocities. As mentioned above
it is important in this calculation that all tests be carried out with the
same falling weight for a given mass and type of striking pin so that the
actual incident velocity of the striking pin against the explosive will vary

only with the height of fall. In some casesM’25

the percentage ignition
(0 to 100%) vs. height of fall is reported for several values of falling

weights and the corresponding striking-pin velocities are therefore not

proportional to the falling heights alone, but instead depend on the different
falling weight to striking pin mass ratios, coefficients c¢f restitution,
rigidity of the anvil on which the explosive is placed, etc.

The foregoing comparisons of predicted and experimental results for
the initiation of detonation in crystalline solids are far from extensive
as stated in the beginning. However, the agreement between th; calculat . 18
and the observations is sufficiently close to encourage further investigation
of the general ideas used to account for the initiation of detonation.
3 Further, it must be emphasized that the critical incident velocities are
calculated entirely in verms of fundamental microscopic constants (Planck's
: constant, atomi~ mass, and crystal spacing) withsut the aid of assumed

values for any new parameters.
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Conclusions

With many unanswered or even unasked questions about detonation,there
are still a few general conclusions that can be stated in terms of the simple
model discusséd., First, it is proposed that in orxder for repeated bond-
breaking to proceed in a solid there must be atoms of different mass bonded
together with their bond directions in line for an appreciable distance in a
crystal. Second, for a given bond length, lattice spacing, and bond dissocia-
tion energy the instability of a crystal should increase as the mass ratios
of the bonded atoms increase. This results from the difference in the
required reverse translational lattice velocities for each atom and the
separate dependence of each translational velocity on the reciprocal atomic
masses. That is, for an external or internal incident free atom of velocity,
v

L against a lattice of masses, m, the required translational "ml lattice"

velocity, Vg is

v

2y = vi(l - vilvl) eees (42)

where vl = h/2m1d. For values of vy > v, negative (reverse) lattice
velocities, vzl, are required. If a second type of atom with mass w is
present, the corresponding equation for the tramslational "m2 lattice"

velocity is

vy, = vi(l - vi/va) vees (43)

vhere v, = h/2m°d and values of \ > v, again require reverse lattice

motion. From Egs. 42 and 43 the translational lattice velocity difference

sz sV, =V

1 o is clearly a function of the mass ratio melml. This
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diffrrence in translational velocity results in bond rupture or dissociation
in a very short time as discussed in sectiom 4,

A thivd conclusion is that the impact sensitivity will be a function of
the incident velocity requiring reverse lattice motion; in practice this
incident velocity for the initiation of detonation will be between v2/2
and 3v2/4 for an incident mass, m, identical to one set of lattice masses
(or between v1/2 and 3v1/4 for an incident mass, m identical to the other
set of lattice masses in a diatomic lattice, for example). The fnitiation
(initiatfon of detonation) velocity for any atom of mass, m s can always be

calculated in terms of one of the lattice masses by determining the equivalent
limiting velocitg

\'k B e V2 or vk = e Vl ’ etc, csse (M)
m m
2 1

where mz, m1 are masses of lattice atoms. Accordingly the initiation velocity
for a lead strikingz pin should be less than that for a steel striking pin
against the same explosive; that for a steel striking pin less than that for

an aluminum striking pin, etc: It also follows that the actual ilmpact velocity
of the striking pin against the explosive is the relevant quantity, and not

the velocity (cr momentum) of a falling weigut against a striking pin.

Finally, it is necessary to explain why all solids with large atomic mass
ratios do not explode! 1Ice, for example, has a mass ratio of 16:1, but is not
a high explosive under usual conditions. In terms of the simple "in-line"
model of Fig, 7 this can be attributed to the lack of any long-range alignment
of the 0-H bonds in ice where, in fact, the positions of the hydrogens in the

6

lattic2 do not seem to be well defined2 . In other cases recombination of the

broken interatomic bonds may take place after the momentum wave has passed,
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provided that the products of the broken bond are not subject to sudden

expansion (gaseous), or react violently with their enviroument. Thus the
presence in crystals of chemical bonds between atoms of different masses is
proposed as a necessary, but far from sufficient condition for a detona:ion
wave to be initiated.

It is further possible that rows of adjacent atoms with different periodic
spacings will have different limiting or critical velocities for reverse lattice
motion even when the atoms are of comparable masses. Then chemical bonds
between atoms in adjsining rows could be broken as a result of some type of
microscopic shearing process resulting from the required translational velocity
difference between rows. Such bonds would have to have identical orientations
over some distance in the crystal, but would not necessarily have to be "in
line" as supposed from our simple one-dimensional model.

The eventual success of this attempt toc apply to the detonation process
some of the ideas on particle waves and momentum trans.e» in crystals previcusly
used to describe non-elastic deformation remains to be determined. At this
stage, however, we are in complete agreement with Willoughby Walke's
conclusionsz7 of 1897:

", ..cAccording to this view, detonation is the result of

a combination of true chemical and dynamical reactions, neither

of which alone suffices to explain the attending phenomena...."

Further understanding of the initiation process for detonation will therefore
depend on the acquisition of more information on the crystal structures of
explosives together with their chemical bond strengths, and, in particular, on
the design and performance of more meaningful experiments where the truely
relevant physical quantities (e.g. velocities) can be and are directly

observed.
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Table I

Charaeteristic deformation velocities® for some cubic metals;

verification of the relation D = mcs2

Su———

v Ve lagtice —_ obsv?smea'n
3 velocity for dissociation D sound
h/ 2md, fission energy m velocity
Metal 10° em/sec  10* cm/sec ev/atom 10° cm/sec  10° cm/sec

Al 2.58s 2.92 3.21 3.36 3.19
Ni 1.36, 2,26 4.94 2.85 3.05
Cu 1.22, 1.89 4.11 2.5, 2.45
St .528 .85 1.69 1.3, -
Pd .682 1.29 4,28 2,0, 2.26
Ag .641, 1.14 3.18 1.7, 1.81
Pt .3686 .776 6.45 1.74 1.90
Au .351, .720 4.67 1.5, 1.52
Pb .275, .559 2,38 1.0, 1.05
Th . 2384 .695 5.92 1.5, 1.56
Li 9.46,, 6.55 1.60 4.6g -
Na 2.336 2.20 1.13 2.1, 1.93
K 1.10, 1.39 0.954 1.5, 1.33
v 1.488 2,12 5.20 3.1, 3.04
cr 1.534 2.49 4.2 2.8, 3.42
Fe 1,44, 2.36 4.21 2.7, 3,10
Mo .763, 1.67 8.67 3.6, 3.54
Nb « 1514 1.39 «e59 2.79 2.64
Ta +385¢0 .920 8.02 2.0, 2,08
W 396, 1.0% 10.3 2.3, 2,63

8pata taken from reference 2
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Jakle II
Dynamic shear compliance spectrum of Hycar 1072 at 35.7°C

(Butadiene, 66 parirs, Acrylonitrile, 28 parts,
Methacrylic acid, 6 parts by wt.)

Frequencies -~ cps

& 016 N14 CH13 Clz

Obsv. Cale. Obsv. Calc. Obav, Cale. Obsv. (Calc.
1 YES 91.8 yes 104.8 ves 111.3 yes 122.4
4* 367 (367) 419 (415) 445 (445) 490 (490)
9 840 826 900 943 985 1000 1060 1101
16 1445 1469 1650 1676 1770 1730 1950 1958
25 2295 2295 - 2620 - 2780 - 3060

(measurements made fom 25 to 2500 cps)

Obsv. frequency ratios

1.000/1.141/1.212/1.333 (q = 2)

]

1.000/1.142/1.230/1.332

(1/16)/(1/14)/(1/13) [ (1/12)

Prei. frequency ratios

[

*frequency values assigned to q = 2 for each of the four mass units
listed according to the supposed relation

v" = ﬁ q2 ; q = 1’ 2, 3 ses N'l

« n the same segment length S = Nd is assumed (cf. text, section 3).
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Table IIX

Predicted order of semsitivity for some azides

s Atomic Heat,? Lattice® X-N AD
Impact weight light dissociation bond® (D-Dp)
sensitivity of sensitivity energy dissociation
(increasing metal (increasing D energy, D
downivard) atonm dovmward)  kcal/mole kcal keal
N 39.1 KN 157 137 20
3 3
CuN:5 63.6 TZN5 164 104 60
AgNa 107.9 AgNs 205 112 93
Hga(Ne)g 200.6 CuNa 227 130 97
TEN3 204.3 ng(Ns)z - -12 -
Pb (N ) 207.2 Pb(N ) 516 46 470
3’2 a3’z

aImpact by an identical metal pin or projectile, i.e., K against
KNa, Ag against AgNa, etc. For asteel pin (atomic mass of

Fe = 55,85) the impact sensitivity of KNs is increased by
55.85/37.1 = 1,428 and that of CuN, decreased by 55.85/63.6 = 0.878
in a falling weight test, for example. The relative order

between KN, and CuN, which depends on the Cu/K mass ratio

(1.626) remains unchanged.

bThis is also listed by Bowden and Yoffee as the order of
increasing sensitivity to heat, light, and shock, but such

a colliective ordering needs further explanation (cf.
reference 13).

®From data of Gray and Waddington (reference 19} using Hess's
law,
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Table IV

Percentage ignitions (initiations of detonation)
v s. height of falling weight?

for a mercury fulminate mixture

Height
of Number Number
fall of of %

(inches) trials ignitions ignitions
6.0 12 12 100
5.5 12 12 100
4,5 20 20 100
4.0 20 20 100
3.5 30 25 83.3
3.0 30 18 60.0
2.7 30 11 36.7
2,5 30 13 43.3
2.0 30 8 26.0
1.5 20 0 0

3From Taylor and Weale, reference 23, Falling weight of 2.0 ounces
(56.7 g) against striking pins of 0.25 g (0.4 cm diameter steel balls).
Weight of charge 0.034 grams, thickness 0.02 inches.
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FIG. 1 (a) Schematic representation of an external field-free atom incident
3 with velocity, Vo OR a crystal with periodic potential variation,
v(x), in a lattice of spacing, d. (b) Representation of an internal
field-free atom with incident velocity, Vs in a crystal with
periodic potential and spacing, d. The width of the internal field-
free region is ¢ = pd (where p < 1) as indicated.
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(a) Effect of translational motiom of a lattice segment with
velocity, v,, on the apparent lattice spacing, d; seen by an inclident
free particle (with velocity, vi) for the lattice moving toward

the incident particiz.
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{b) Effect of translational motion of a lattice segment with
velocity, v,, on the apparent lattice spacing, d;, seen by an
incident free particle (with velocity, vi) for the lattice moving

away from the incident particle.
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Translational lattice velocity, v,, needed to provide an apparent

£
lattice spacing, d;, for which continuous values of the incident
free-particle velocity, v, = v;, will be the limiting velocity

{branch 0BC). DNiscrete values of v; below v, also occur for v, = 0

as indicated by the points along the abscissa (branch ODC). Above
A lattice segments must move against the incoming particle with

velocities given by the single, negative branch, CE.
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the required reverse lattice velocity, Ve equals'f57a where D
is the dissociation energy per atom and m 4is the mass of a lattice
atom. (b) Diagram showing how an eight-atom piece of a crystal
lattice breaks off to move against an incident four-atom "projectile"

with velocity, Vee 133
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FIG. 6 Diagram showing how two transverse phonons (velocity, ct:) and one
-; longitudinal phonon (velocity, cE) can be associated with any two-
atom combination in a crystal lattice. Each atom in the combination
i“ contributes a mass, m/2, to the isolated vibrational mecde depicted,
- so that the equivalent phonon mass of the two-atom system is m.
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The different translational velocities, vy required of the masses
m, and ml (as marked) in the diatomic row lattice of Fig. 7 for a
particle of mass m incident with velocity vi. Curves arse drawm for
a mass ratic m2/ml = 7.70 so that vllga = 7.70. An incident mass
m, at velocity v;_ is equivalent to a mass m incident at 7.7G v:'l

so that the translational velocity difference required for any
incident velocity can be found frow these curves as discussed in

the text. 137
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FIG. 9 Representation cf the interatomic 'pair' interaction potential, Vlz’

between two masses (atoms) of the diatomic row lattice of Fig. 7 as
a function of the distance, x, between atoms. If the bond distance
is shortened an amount Ad, the resulting potential energy of n
(relative to mz) may equal the bond dissociation emnergy, Db’ and

bond breaking or rupture can result as discussed in the text.
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Logarithmic plot of complex shear compliance, T iJ", vs.
frequency for natural rubber at various static elongations, as
indicated. Results above 3007 varied with time; the curves shown
are for approximately equilibrium conditions (i.e., after 80 hours).
Temperature was 25.1 + 0.2 °C. Experimental points are shown for O
and 310% elongations, but are otherwise omitted to avoid counfusicm.
Note that the sharp peak near 1000 eps appeared first at an elonga-
tion of 3107%, and thus coincides with the occurrence of both a

crystallinity and a superstructure. (cf. reference 2)
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Crater depth vs. incident velocity for two sizes of mercury drops

impacting lead target plates. (Data from Olive G. Enge1.16

The predicted threshold velocity, v, is 0.54 x 10* cm/sec.
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The predicted value of v 1is 2.36 x 10* cm/sec.
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The propagation of sound, shock, and detonation waves in continuous
media has been investigated in great detail, but theoretical information is
sparse on wave propagation in discrete media in the nonlinear regime and in
the linear regime in the presence of irregularities. The aim of this lec-~
ture is to sumnarize the difference between the propagation of small ampli-
tude waves in continuous and discrete media and to present some of the fea-
tures of nonlinear wave propagation in discrete media, and of both linear

and nonlinear wave propagation in irregular discrete media.

I. COMPARISON OF PROPAGATION OF SMALL AMPLITUDE WAVES IN CONTINUOUS AND

ONE-DIMENSIONAL DISCRETE MEDIA.

The wave equation for the propagation of small amplitude waves in a

continuous medium (without an energy dissipation mechanism) is

f_=cf (1)

11}

(where fx 3f/o%x, ete., ¢ the propagation velocity and f the physical quan-
tity, for example density, whos¢ variation in the medium is determined by

the wave propagation). Any function
£ = f(x £ ct) (2)

is a solution of (1). Hence, any initial disturbance of f from a constant
value retains its form while propagating with velocity c either to the left
or to the right. Even a very sharp gradient in an initial disturbance re-

tains its shape as it propagates.
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A medium composed of springs and masses generally does not allow an

arbitrary wave to propagate without a change in form. The one-dimensional

dlscrete analogue of (1) is the

2, .2 ;
A%t At = (y/w)[E 4 - 2 + £ )] (3)

where fn is the displacement of the nth mass from its equilibrium position.
If both sides of (3) sre divided by a2 (a being the lattice spacing), the

resulting equation

2
m d fn 1 fn+l"fn fn-fn-l\
272 "2t a - 4 (42)
ya dt
reduces to (1) as a >+ 0 if one defines
-2 , 2
¢ " = lim m/ya and (f ..~f )/a = 3f/3x. (4b)
n+l "n
a0
m/y=+0
A solution of (3) is
fn = exp i(ndiwt) (5)
if 6 and w are related by the dispersion relation
2
w = (2y/m)(1 - cos8)
or
1
= w sine/2 if w = (4y/m)* (6b)

The appropriate values of 6 (and, therefore, of the normal mode frequencies w),
depend on the end conditions on the chain, For example, if the chain is com-

posed of N particles and is closed in the form of a ring, then fn+N H fn so
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that one must have

8 = 27k/N wheve k=1,2,3,...,N. o))

The wave forms

cos(nfwt) and gin(notwt)

which are obtainad by taking linear combinations of (5) and its complex
conjugates yield waves which propagate to the left (for + sign) or to the

right (for -~ sign) with velocity (a being the lattice spacing)

v = a dn/dt = taw/o

Naw, sin(rk/N)
L 2222,2

= = - l
* Tk (awL/Z){l 3" k"a“/L

+ ...l (8

which depends on k with L = aN being the length of the chain.

In the long

wavelength regime, ka << L, v is constant as in the continvum case.

Since an arbitrary initial condition can be expressed as a linear
combination of normal modes of ( 5), we find that any wave with a sharp wave
front, or any wave which is restricted to a limited region of space small
compared with the total chain length, contains many k components. The small
k components will travel with velocity aﬁjz independently of k, while the
large k components will travel with a velocity of 0(N/k). Hence the wave form
will lose some of its sharpness and spread because of the dispersive effect of
a discrete medium{

A convenient way of following the development of a wave form as it
progresses through a chain is tc express the solution of the &guation of mo-

tion (3) in terms of Bessel functions as was first emphasized by Scnrodingerz.

Let

1
Y9 © fn and Yontl T EwL(fn-fn+l) (92)
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Then the equations of motion (3) in terms of the un's become

2du
dr (u - u

nﬂ) with T = tw (9b)

Thi~ equation is exactly the same form as the Bessel function equation
Jn_l(r) - Jn+l(r) = ZdJn(T)/dT (10a)
Another useful Bessel function equation 1s the recurrence formula
Jn-l(T) + Jn+l(r) = (2n/r)Jn(T). (10b)

We see then that u can be expressed as a linear corbination of Bessel func-

tions

Jn_r(twL) r=0,t1,2,... (11)

If initially all displ :cements fn are zero and all velocities except

the mth are initially zero, then

u (8) = £ (0)3 , (¢ (12)

is a solution of (9b)}. Jn the other hand, if velocities are initially zero

and the mth displacement is initially th. only nonvanishin: one,

= = ol
u2m+1(0) = kwam(O) and “2m—1(°) 1WL‘m(O) (13)

so that
-\ = -
u, (8 %mLfm(o){Jn-Zm—l(T) Jn-2m+1(r))

= w £ (0) dJ /dt (14)

n-Zm
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Since our original equations (9 ) are li.ear, a superposition of

these special solutions (12) and (14) 1lead to

L)

= { .
u (t) ,,,Z‘-m‘fm(o)J“-Zm(‘) +w £ (0) dI__, /dt)

= 115,000 5@ + [0, O,

YOOV INCE)

The particle velocities and disylacements are then, respectively,

fn(t) uzn(t) (16a)

and

t
£.(0) + {)’ u, (t) dt (16b)

£ (2

Some interesting special case§3are (a) particle at origin displaced
by urity at t = 0, all other particles at equilibrium positions, and all

particles initially at rest

= , : cY = =
fn(t) Jzn(tmL) if fm\J, 0 and fm(O) Gm 17n

,0

and (b) particle at origin at equilibrium but moving with velocity unity,

all others fixed at equilibrium position

t
£(t) = [J, (tw) dt if £ (0) = Spo 2d £ =0 (8

so that

2 -]
fn(t) = wp vZ“ J2n+2\)+l(twL)° (19

‘n the case of a semi-infinite chain, the particle "-1" is uncoupled

with "0" so that the end condition of the chain is
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or, in terms of the u's
2duo/dT = -y (21)
t is easy to verify that if fO(O) = 1 and all else vanishes at t = C,

fn(t) = Jzn(tmL) + J2n+2(twL) forn=0, 1, 2, ... {22)

[}

while, if EO(O) 1, and all else vanishes at t = 0,

t

= 3 } =
£ (1) £ defd, (to) + 3, L (tw )] forn=0, 1, 2, ... (23)

The case in which the end particle, n = 0, is driven to the right
wich a constant velocity u, with all other particles initially at rest at
their equilibrium positions, is a simple model of a shock produced by a

driving plate on a bar. The solution of our equatiorn of motion is

Lo o]

= 7 (vl

(tw.) (24)
L v=0 1L

2n+2v+

We have plotted the case of an initial impulse (23) and of a driven
first particle in Fig. la and lb. In a nondispersive medium, all particles
would have the same trajectory as fo(t) but lagging it with a time depending
on the particle number. However, as is clear f£rom the figure 1, this is not
the case for our chain of particles. In general, the wave form broadens and
flattens as it propagates and is accompanied by a diminishing train of
ripples, both in space and time. It was pointed out by Gilman and VineyardA

that the pulse in (17) reaches the nth particle at time

1/3
g')\
£~ 28y Q.SGi = if n>> 1

I

“L L
Neither the linear continuous or discre”e models exhibit shock wave

character. There is no dependence of the wave shape on amplitude and the
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The simplest one-dimensional chain with nonharmonic interactions in
which shock waves develop is a chain of hard spheres which interact only
through their mutual infinite repulsion at short distances., We discuss“
this case now. Certain other more complicated models will be presented
later.

Consider a one-dimensional gas of hard spheres which are initially
equally spaced and at rest so that the distance between the centers of suc-
cessive spheres is a. Let m be the mass of each ¢ sphere.

The laws ofconsrvation of momentum and energy between two colliding

spheres of mass m, and m, can be summed up in the equationg
m U,y + myu, = mv (23a)
2 2 _, 2
%mlu1 + %mzuz = m,v {25b)

where uj is the velocity after collisior of the sphere of mass uﬁ and it is

postulated that before collision, that of mass m, is at rest while that of

mass my has a velocity v. It is easily seen that

2v — V85T 7T

u, = 331557527 (262)

) v(l—mzlml) (26b)
1 1+(m2/ml)

u

These formulae can now be applied tc the propagation of a disturbance
dowa tae line of equal masses which we discussed above to be originally at

rest and uniformiy spaced. Let us first analvze the case in which Che par-
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ticle at the left end of the chain moves to the right with velocity v, After

it collides with the first particle to its right, we see from the upper arrow
cases of eq. (26a) and (26b) that the incident particle stops, giving its ve-
locity to the one with which it collides, which then achieves the veloecitv v. This
continues down the line. If the diameter of each sphere is p, the time between

collisions is

t = (a-4p)/v 27)

The mean speed at which the disturbance propagates is the ratio of distance

it proceeds in each collisicn to the time required for that propagation,
V = a/l{(a=8)/v] = v/[1-(a/a)] > 7 . 28)

After the disturbance passes, the atoms are again at rest but they have mov:d

a distance (a-A) to the right.

A case which is more interesting is that in which the particle at the
left end is driven with a constant velocity v which, through a continually
applied driving force, is not affected by coliisions. This is equivalent to
giving the left end particle an infinite mass and corresponds tc the lower
arrow case of equations (26a) and (26b). Hence the velocity of the leading

edge of the disturbance is, (replacing v in (28) by 2v),
V= 2v/[1-2/a). (29)

Since the velocity of the trailing edge is v, the average thickness of the

pulse is

_ ¢ lx(a/a)
= { 1-(572) } vt (30)
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and v is the velocity of particles in the shocked region. The trajectories

of both of the cases discussed are plotted" in figures (2 ) and (3),

II. EQUATIONS OF MOTION AND DISPERSION RELATIONS IN 2D AND 3D HARMONIC

LATTICES?

We now examine the two-and three-dimensional models which correspond
more closely to real solids. The equations of motion of a crystal lattice

follow immediately from the crystal Hamiltonian which has the form
H=T+ ¢, (31a)

T being the kinetic energy

1 2,8
= = (
T 3 ) o uu(‘c) (31b)

and ¢ the potential energy
_ Py AN 0 L' 3
o=0¢ +3] 0.8l @y {Jug(ce) + 0w) (31c)

where, in the harmonic approximation terms, cubic and higher order in dis-
placements from equilibrium are neglected.

The quantities

% A
ua(K) and d’GB(K K

represent respectively the displacement from equilibrium of the particle (of
mass mK) located at the Kth position in the Rth unit cell (o running through
the set of components, x, y, and z) and the force constant which couples the
displacement in the o direction of the Kth atom in the zth cell with that in

the o' direction oi the k' atom in the %' cell. ‘The quantity ¢, is the vibra-
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tional potential energy in the equilibrium state with all atoms located at

their equilibrium positions and

¢ = a2 1 (32)

af Ly . FAN
8ua(K) °UB(K‘)J o

The evaluation of these second derivatives is also to be made at the equil-
ibrium state.

The equations of motion of the vibrating lattice can be found from
the Hamiltonian (3la). Ir the small vibration harmonic approximation, the re-
sulting equations are linear in the displacements u, Since boundary effects
are generally uninteresting, one usually employs the Born-von Karman periodic
boundary conditions in lattice vibration discussions. The periodic nature of
the crystal implies that the ath component displacement of particle « in all

£ can be written as
)
u () = meua(K) exp i[ tw(k) + 27 kexr(2)] . (33)

When this is substituted into the equations of motion

[

£
" - 5
mau () z ‘¢(KK'

o o K 8,0" k' al

yag (i) (36)

one obtains a set of homogeneous equations whose solution exists only if the
determinant of the coefficients of the displacements vanish. The matrix of
the determinant is called the "dynamical matrix". The normal mode frequen-

cies w(k) associated with the wave vector k are solutions

) k 2, .. )
det 1DQB(K <‘) - (k)°a86K<‘} =0 (35a)

where

k
D (K 'S

" (KiK,) expl2niker(2)] (35b)

=
) = (meK') i‘bae
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The detailed dispersion relations
w = w(k) (36)

which are the roots of the characteristic determinants (10a) as a function
of k are very sensitive to the detailed choice of force constants ¢. Ex-
periments such as the scattering of slow neutrons by crystals can be used

to determine these dispersion curves}:3 The force constants @a can some-~

B8
times bs obtained from information on the elastic constants of the crystal.

By combining both sets of data, a best set of force constants and dispers-
ion curves can be found. Note that there are a number of branches of dij-
persion relations. For examp ¢, in the case of a monatomic cubic crystal,

the dynamical matrix is 3x3 and there are three branches.
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There is one model which leads to considerzble simplification.
It is a simple cubic lattice with nearest neighbor forces onlgcsboth central
and noncentral, the noncentral forces being required to keep the lattice
stable, relative to shear. This case is simple because the %, y, and z com-
ponents of the r.otion do not couple so that the dynamical matrix is diagonal.
The equations of motion are those of a lattice with one degree of freedom per
lattice point. We let the displacement of the (E,m,n)th particle from equil-~

ibrium in the x direction be

MXR,m,n:'yl(xz-!-l,m,n‘zxz,m,n+x2---1,m,n)
- +
+ Y2(x2,m+l,n 2xSL,m,n xl,m—l,n)
* Y3(xz,m,n+l - zxz,m,n + xz,n,n—l) (37)

where Y1 is the central force constant and Yy and Y3 the noncencral force

constants between nearest neighbors. 7Two similar sets of equaticns exist for

y and z displacements,

One can express the motions of particles in the lattice as lin-

ear combinations of the normal modes,

%o, mn = exp{i(wt+£¢l+m¢>?_+n¢3) . (38)

the ¢'s being chosen as
¢j = 2nkj/N, k,=0, 1, 2, ..., N-1, (39)

3

so that the x's satisfy periodic boundary conditions

etea., (40)
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N being the number of lattice points in each direction in the lsttice. The
points (¢1,¢2,¢2) are potnts on the reciprocal lattice. The normal mode fre-

quencies are found to be the functfon m(¢l,¢2,¢3) defined iy

2

Mu” = Zyj(l - coséd,), (41)

3

- ™MW

which is triply periodic in reciprocal (¢1,¢2,¢3) space. Equations similar
to (37) exist for y and z components of the displacements as well., All yield
the same dispersion relation. Each set of frequencies is called a branch of
the frequency spectrum, When next nearest neighbor interactions are introduced,
these branches become somewhat different. One frequency corresponds to each
triple of ¢'s of the form (39).

T'.e thermodynamic properties of acrystal depend on the normal mode
frequencies {w}. For example, the specific heat at constant volume is

A 2

¢, = k § (ﬁ—%) Jsinh2 (hu /2KT) (42)

As N > » ye see from (41) that the normal mode frequency becomes dense so
that the sum (43) can be expressed as an integral over the frequency distri-
bution function g(w) which has the property g(w)dw is the fraction of fre-

quencies between w and wtdw. Then

[

L
e, = Mk [ g(w){@w/2m)’/sinh’ Mu/2kT)} du “3)
o
where wy is the largest frequency, which,in case (41), becomes

2
Map = 4Qy tyytyg). (44)

Every lattice point (2nkl/N,2nk2/N,2nk3/N) corresponds to a fre-

quency w. In the limit N - « the number of lattice points in the region
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(0 < ¢j < 23), j=1,2,3, becomes dense and one can construct surfaces of con-

stant frequency. In two dimensional cases, there are only two ¢'s, ¢1 and

999 and one has curves of constant frequency. These are exhibited in Fig. 4
as obtained from (4l1) with Yq = 0, the dispersion relation obtained from

the 2D equations of motion

( 2x + x

M ¥otl,m - Fa,m T Fa-1,m

2,m - Yl )

2x +

- )
2 il £,m xi,m-l)’ (44a)

+ yz(x

If G(wz) is defined as the fraction of square frequencies be-
tween mz and m2+dw2, then it is clear that G(mz) is proportional to the
rate at which (¢l,¢2,¢3) space is swept out by a surface of constant frequency

as the frequency increases. Since
_ 2
gw)dw = 2uG(«”) dw , (45)

g(w) = 2uG(w“), and the distribution function g(w) can be expressed (for a

single branch of the spectrum) as the volume integral

g(w) = 1'3 g_m f 1] d¢, do, doy (46a)
8n 0<w(¢ 4y94)<w
or the surface integral
1 ry ds
= 46b
g(w) (212 1 lgrad wl (46b)

where the integration proceeds over the entive surface w = constant.
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The frequency spectrum is easily obtained in the 2D case. One finds

from the 2D analogue of (41) that
- 2=
M?w-Z(Yl+72) = —2y1cos¢»1 2y2cos¢2 and MwL 4(Yl+Y2) (47)

The lines of constant frequency are plotted in fig. 4. If, when wz < %mi,
we multiply by 4 the fraction of frequencies in the first quadrant whose
square is between w2 and w2+dw2, we find
G( 2) = I ?d f d (48)
w 7 219 %2
417 dw” o

where ¢2 is to be expressed in terms of % through (47) and ¢ is the value of

¢1 when ¢2 =0, i.e.,

2y1cos¢ = 2y1 - Mm2

or
2
¢ = cos_l(l - %Q— )
Y
1
Then
2 2_-%
cdy = & ? i {1 ) { 2(y+v,)-Mu®~2y, cosé, ] 1
"2 o 1 2Y2 4

so that if we define a new variable of integration, x, by
2
(x-1) (Mw /471) = cosy; - 1

we see that

1 8y 8y -k
6w?) = == 7 fa-di= - v+ x=2 - 2) - x1} (499) .
(rw)” -1 Mw Mw

which is a complete elliptic integral of the second kind. This is defined by

/2
Kk) = [ (1-k
C

=
2 sine)™% 4o (49b)
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One finds that

2 2.k
(w;-w")
G(wz) = M 3 K‘MW L T if 0 < Mzwz(wz-wz) < 16v,y
212 (v v )t Na(y.y)? L 12
Y12 Y172
In a similar manner it can be shown that
1
(Y17,) 2
c?) = I x[z ") 1f w2 (W2-w?) > 16v.v., (5Cb)
2,2 2% 2_2.% L vz
wr” {w; ~w ) w(wL—w )

where throughout Mmi = 4(y1+72). There are two logarithmic singularities in
G(wz), one at Mmz = 4yl and the other at sz = éyz. The functions G(wz) and
g(w) are plotted in Fig. 5.

While one cannot obtain simple formulae such as (50) for G(wz) in the
3D case, a representation as a single integral can be found and G(wz) can be
easily calculated aumerically, The graph of the function g(w) for the simple
cubic lattice model discussed above is given in Fig. 6. Fig. 7 is that for a
more realistic model of sodium which is constructed to fit data on neutron
scattering. The singularities are of the form (!m-wcg)‘1 as w approaches
certain critical values W, A considerable literature exists on the nature
of these singularities and the reason for t™eir existeuce%’é’g'lz

A considerable literature also exists on the experirental determina-
tion of dispersion curves for various crystalsl3.

The frequency spectrum and dispersion curves for polyatomic crystals
is somewhat more complicated than that for monatomic onesl’% Inasimple cubic
lattice in which the two atomic species alternate alorg the latice points ( for ex-
ample, an NaCl type lattice), a generalization of (41) can be found for the
squares of normal mode frequenciesla. ¥f the light and heavy masses are, re-
spectively, My and ¥y, there are two branches tc the frequency spectrum. The

high frequency branch, which is known as the optical branch, is
161
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2 _ 2,020 2 22 2 L
wy = Yo Hey) 5[ (wy-e])” o+ 16XT/M M, | ; (51a)

and the low frequency branch, which is known as the acoustical branch, is

2, 2,20 2 22 2 b
w_ = Hlerhey) = l5[(wy-w)” + 16XT/MM, ] (51b)
wuere
g
X = Y, €O3; (52)
j=1 b b

and the ¢is run through the set of values (39).

Also

N = 7 \ = 2
Ajwj "(Yl + Y, + Yq) with j 1,2 . (53)

The frequency distribution ii. this case is plotted in Fig. 8. Note the band

gap between the two bands.

162




IT1. PROPAGATION OF A PULSE IN A 2D ANHARMONIC LATTICE.

Considerable insight on the propagation of a disturbance in two-
and three-~dimensional lattices can be obtained from machine calculaticns
recently made by Payton, Rich, and Vissche%son 2D square lattices with
linear and nonlinear force laws in the special case in which all inter-
actions are between nearest neighbors oaly (with both central and non-
central forces). The linear case is the model which we have discussed
above. In the nonlinear case, the force law chosen was an expansion to

fourth order of the Lennard-Jones potential

4,(0) = e [(e/r )" = 2(r /1°)

i’

-e + %\{(r-ro)2 - %u(r-ro)3 + %‘v(r—ro)4 (54)

The magnitudes of . and v relative to y were taken to be appropriate for
noble gas solids in the anharmoaic case, and zero in the harmonic one.

With arbitrary units such that y =1, the potentials used were

L e 8 (55)

1 2
(b = = -~

Periocdic boundary conditions were chosen in the direction normal to
that of the propagation of the Input disturbance and reflecting boundary
conditions were set at the end of the lattice in the directicn of propaga-
tion of the disturbance so that it could be reflected from the ends.

The feature that has made the calculations especially interesting
is that they have been exhibited on a movie film. The 2D lattice is repre-
sented by a grid and the energy at a lattice point is shown by the raising

of the grid at that lattice puint by an amount propoctional to the energy
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(c.f. Fig., 9). The initial disturbance was the same at all lattice points
along lines normal to the direction of propagation. The initial energy pulse
had a kinetic energy per atom corresponding to 3 K and extended over several
lattice rows.

Two typical filw frames are shown in Figs. 9a and 9b; 9a represents
a stage in tﬁe propagation of an energy pulse through a mraatomic harmonic
lattice. The initial pulse diminishes in amplitude as it progresses and, due
to the dispersive character of the lattice, a trail of smaller amplitude waves
develops behind it. Fig. 9b represents the situation as the wave propa-
gates through the anharmonic lattice postulated above. Figs. 9a and 9%
correspond to the states of development at the same time on the two lattices.

Notice that a shock wave with a sharp front appears in the anharmonic case.

LYV

As expected, its propagation velocity exceeds that of the small amplitude
wave which trails it. The small amplitude trailing part behaves in essen-
tially the way that a wave would propagate in the harmonic lattice. Paytonm,
Rich, and Visscher have also made movies of the propagation of waves in iat-
tices with defects. These are discussed in Section IV.

Similar calculations can also be made in 3D lattices but a film pres-
entaticn is not possible.

A fundamental difficulty arises in the development of a theory of the
propagation of large amplitude or shock waves in a 3D lattice. When large
amplitude displacements from equilibrium occur, atoms exchange positions and
lactice imperfections appear. These are very hard to program into a calcula-
tion.

A strong shock in a real solid has a3 front of only a few atomic layers.

The mechanism of the rearrangement of the atoms from a lower to a higher demsity
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state is unclear as is the dissipation mechanism after the shock passes.
Cyril Smith has proposed that a shock front contains an array of edge dis-
locations which move with the shock front and which acccunt for the in-
crease in density in the shock without the destruction of the lattice. A
schematic picture of an edge dislocation is shown in Fig. 10 and the type
of array o edge dislocations which might appear in the shock front is given
in Fig. 11, Gilman and Vineyardghave discussed this model to some extent.
The molecular motions in the shock front are probably similar to those ex-

perienced in melting.
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IV. EFFECT OF DEFECTS ON LATTICE VIBRATIONS.

Let us now investigate the effect of defects on lattice vibrations
and on the manner in which waves propagate through a defective lattice. Im-
purities are an important class of defects as are dislocations. The replace-
ment of an atem in a lattice by an impurity corresponds to a local variation
in mass and force constants, while a dislocation is essentially an extended
variation in force constants.

Even without introducing a detailed model for the impurity, several
effects can be deduced on general grounds by applying certain theorems (first
due to Rayleigh) concerning systems or springs and masses. Let us suppose

that the normal mode frequencies of an unperturbed lattice are

ROPINOPINOPING: < @

n

< eee

(56)

Then, if one mass in the system is reduced, all frequencies are increased; how-

ever, the jth, &;Z is bounded between the unperturbed jth and (j+1)St so that

ROPINCORSN()

; 3 W44 i=1,2,3...,n-1 (57a)
0 1
wﬁ ) . wé ) (57b)

1f, instead, one mass is increased, one obtains the new set of frequencies

@

5 such that

w§°) > w§2) > “;22 §=1,2...,n-1 (58a)

o0 5 @ (58b)
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The increase in a force constant has the same effect as the decrease of a
mass (and vice versa). These results are, of course, in qualitative agree-
ment with those involving a mass tied to a rigid wall by a spring in that
a decrease in mass increases the frequency of vibration as does an increase
in spring constant, and vice versa.

As we observed in the last section, a crystal contains a large
number of degrees of freedom and, therefore, a large number of normal mode
frequencies. These were shown to appear in dense bands. The inequalities
(57) and (58) then imply that the frequencies of the perturbed lattice are
essentially the same as those of the unperturbed one except that frequencies
at the band edge might be displaced a considerable distance from the band.
For example, if the lattice contains a light defect, the frequency wél) (see
inequa.ity 37b) is not bounded from above sc that it might become separated
from the band. Indeed, if a linear chain which has no imperfections has a
highest frequency u«,, it can be shown that the defect frequency which es-

i

. , .16
capes {rom the band and which is due to the light mass defect, is

; = uL[Q(Z—Q)]"B with Q= mn'/n, (59)
m' being the light defect mass and m the mass of a host lattice atom.

An observation first made by Lord Kelvin is useful for the interpre-
tation of the nature of the normas mode of vibration associated with a fre-
quency that is separated from the “and. He found that if one tries to drive
a wave into a periodic structure frow one end with a frequency that is not
in the frequency baad, the wave damps out in a distance that depends on the
displacement of the driven frequencies fron the band edge, the penetration

depth decreasing as the displacement from the band edge increases.
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At a given temperature, thermal motion drives the various normal
medes. One whose frequency lies out of the band remains localized because
from Kelvin's theorem it cannot propagate far in the crystal. Hence in a
monatomic crystal, localized modes develop around defects which involve
light masses or force constants larger than those associated with pairs of
atoms in an unperturbed crystal.

If two mass defects are far from each other, a localized mode
develops around each and both modes have the same frequency. However, as
the two are brought closer to each other until the ranges of localization
overiap, tne two modes interact with each other and the frequency degeneracy
is split, one frequency going up and the other down. An impurity generally
corresponds to a change in mass and several force constants; six in the case
of a simple cubic lattice, with nearest neighbor interaction only. Since the
splitting of the degeneracy by variation of several force constants is analogous
to that by change of several masses, under favorable conditions one local mode
might appear for the mass change and six with similar frequencies for the
force constant change in a simple cubic lattice. As the concentration of

impurities increases, impurity bands of frequencies develop.

As was mentioned in Section 11, in the case of ordered diatomic and
polyatomic lattices, the frequency spectrum contains optical (high frequency)
and acoustical (low frequency) bands. A typical defect in such lattices is
an interchange of two atoms, which corresponds to a local disorder. The
change in frequency spectrum due to interchanging A and B atoms in an ordered
AB lattice can be seen from a considerztion of Rayleigh's theoren&é Let the
mass of an A atom ba MA and that of the B atom be MB with MA < MB' Then the
act of replacing a heavy B atom by a lighter A atom causes a localized mode

to emerge from the top of the optical and another from the top of the acousti-
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cal band. The completion of the interchange by replacing the light A with

a heavier B causeg a mode to emerge from the bottom of the optical band,

Similar remarks can be made about the influence of a change in force con-
stants. The various frequencies ot the localized modes and their sources

are sketched in Fig. 12 for the case of Yaa oY The dia-

as @4 Tpp < Vape
gram corresponds to our simple cubic lattice model which possesses one de-~
gree of freedom per lattice point. All degrees of freedom are taken into
account by multiplying each mode by a degeneracy factor of three. This de-
generacy is split by considering next nearest neighbor interactions. If
two force constants are changed at widely separated points in a lattice,
the associated localized mode frequencies are degenerate. The degeneracy
is split as the two anomalous force constants are brought closer together.
If it is assumed that only central force constants are changed when an A
atom is replaced by a P atom in our ordered diatomic lattice, two new force
consitants are associated with the substituted B atom. The pairs of closely
lying frequencies in Fig. 12 are drawn to correspond to the resulting split-
ting of pairs of anomalous force constant localized mode frequencies.

Some of the localized modes shown in Fig. 12 might be suppressed
for the following reason. Suppose a small decrease in a mass is made so
that frequencies barely rise from the bands. A large decrease in the force
~onstants which reduce all frequencies might return these modes to the bands.
This interplay between changes of masses and torce constants has been dis-
cussed for one-dimensional systems mlsewhere. Situations exist in which a
freguency does not emerge from the bands until a parameter is changed by

more than a certain critical amount.

Now consider a two- or three-dimensional lattice with a low concen-

tration of randomly distributed mass defects. Let a disturbance propagate
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through the lattice and suppose that the disturbance extends over the complete
line, (or plane, in the 3D casej}, normal to the direction of propagation while
the depth of the disturbance is of the order of five to twenty-five lattice
spacings. One would expect the following events to occur.

In the neighborhood of a light impurity, a localized mode would be
generated. However, since the frequency of vibraticn of the light particle
is higher than that of its neighbors, they would tend to be in phase with the
pulse for a long time while the light impurity would be sometimes in phase
and ssmefimes out of phase with the pulse, Hence the light impurity would not
couple to and pick up energy from the pulse as well as its heavier neighbors
would., If, for example, one plotted the energy associated with each particle,
the light mass would have less than its neighbors. On the other hand, a
heavy defect has greater inertia than its neighbors so that it remains in phase
with the driving pulse for a longer time and can pick up more energy leading
to a spike in an energy curve. The motion of the heavy atom is called a reso-
nance mode. It has a finite lifetime which is the time required to transmit
its energy to the rest of the crystal, Changes in force constants yield sim-
ilar results--an increase in force constant corresponding to a decrease in
mass, and vice versa.

Defects act as scatterers so that part of the pulse is reflected
backward by them and, indee., at a fixed concentratiot in a sufficiently lcng
sample, one would expect little of the pulse to continue tnrough it without
being reflected back.

The mathematical theory of the effe.t of defects has been developed
in a number of papers, including those in References 16 and 17. Several re-
views exist, (see, for example, References 5, 18, and 19). Recent experimen-

tal work is reported in Reference 20,
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Payton, Rich, and Visscheg? in their film program. discussed in the
last section, have given an excellcnt visual presentation of the propagation
of a disturbance in a lattice with defects. The atoms of the host lattice
were given a mass three, and light and heavy defects were given masses one
and nine, respectively.

The rirst cases considered were an isolated light and an isolated
heavy defect in an otherwise perfect two-dimensional lattice. The quantity
exhibited in Fig. 13 which summarizes their results is the energy at each
lattice point.

Thae difference between the passage of a wave through a light and a
heavy impurity is shown in Fig. 13, The 4dip in energy in the light im-
purity case and the spike in the heavy one are as described above.

Figures 14a and l4bgive an equal time comparison of energy penetration
into a harmonic lattice containing 15% heavy atoms with that into a 15%-light
impurity region. The impurity sites are the same in both cases. The pulse
seems to propagate further in the lattice with light impurities than in the
one with heavy. Apparently the heavy impurities reflect the incident wave
better tnan do the light ones.

Finally, Figures 1l4a and l4cshow the effect of 15% heavy impurities
on both harmonic and anharmonic lattices. Clearly the pulse propagates through
defects in the anharmonic lattice (case c} more escily than through the har-
monic one.

All the figures were taken from reference 15. The movies exist in the

Los Alamos film librarv.
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V. ERGODICITY AND PERMANENT WAVES IN ANHARMONIC ONE-DIMENSIONAL CHAINS.

One of the basic ideas in the classical statistical mechanics of systems
undergoing small vibrations is that, at equilibrium at a given temperature, the
energy of the system becomes equally divided into the various normal modes of
vibration. This js the so-called equipartition theorem which states that the
energy in every mode is (1/2kT).

Of course some mechanism has to be provided for the weak coupling
of the various modes since, if a system is completely harmonic, energy can
never be transferred betwsen modes. A veak anharmonicity, a radiation field,
or contact with some kind of heat bath are considered tc be sufficient to
make the mode mixing possible.

The equipartition thecrem is deduced from equilibrium statistical
mechanics and not from an investigation of the asymptotic behavior of its dy-
namics. Hence one could imagine (but not many did seriously) that equilibrium
might never be achieved, in which case the theorem would not be applicable. A
number of calculations have been made recently, investigating this point..

i) Fermi, Pasta, and Ulam calculations.

In the early days of high speed computers, E. Fermi became
interested in their emplcyment for the solution of nonlinear problems. He
felt that future fundamental theor.es in physics may involve nonlinear opera-
tions and equations and that it would be useful to develop some experience in
this field. As a test problem, he thought that the dynamics of the approach
to equipartition would be interesting to investigate.

A problem which Fermi, Pasta, and Ulam investigated with MANIAC T at
Los Alamos was the ergodic behavior of a linear chain of particles which in-

teracted through a nonlinear interparticle force. The interaction laws studied

cdrraldas

et




were respectively quadratic, cubic, and certain broken line interactions

so that the equations of motion were successively

o " 2 2

Y= Oy Fxg - 3 el = ox)T - Gy - oxg )7 (60a)

%, = (X + X - 2x,.) + Bl{x - X V3 (x, - % )3] (60b)
i i+l i-1 i i+l i’ i i-1

%, = él(xi+l - xi) - 62(xi - xi_l) + c (60c)

where X, represents the displacement of the ith atom from its equilibrium

position. The constants o ard 8 were chosen so that at maximum displacement
the nonlinear terms were only about one-tenth of the linear ones. In the
third case, the parameters 61, 62, and c were not constants but assused diff-
erent values depending upon whether or not the quantities in the parentheses
were greater or less than a certain value fixed in advance., The values of N

used by FPU were 16, 32, and 64.

The total energy of the chain, in the harmonic approximation, is

- 2 .2 2
= 1 -x -
E L {5 Xy + [(xj+JL Xy +(xj xj_l) 13
) (522 + 2a° sin®(nk/20)) (61)
K k k

The normal coordinates a, are defined by

a (t)=] xjﬁjsin(kjn/N) (62)
3
so that
5 N
xj(t) =5 E ak(t)sin(jkn/N) (63)
=1
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Also,

2
a, + wa, =0 k= 1,...N (64a)
K k

?.

where
w, = 2sin(=k/2N). (64b)

When anharmonic terms are included their contribution, which in
case (6Ca) is prcportional to the sum of &(xj+l-xi)3 and in case (0b) to
sum of S(xj+l—xj)ﬁ must be added to (62). In the FPU calculation, their
contribution to E was never more than a few percent, In the presence of
anharmonicities, the various ak's coupled so that the members of the set
of equations (p4) are all coupled.

If all the energy is initially in the ncrmal mode k = 1, one would
expect the coupling to generate a slow flow of energy into the higher
modes until equipartition with som small fluctuation is achieved. As
N -+ « these fluctuations should vanish.

In the FPU calculations, the process startec as expected, energy
flowed intc the second, then the third, then the fourth ana fifth mode, but,
to the surprise of all concerned, most of the energy suddenly flowed back
into the second mode and soon into the first mode with this exchange contin-
uing. With N = 32 and a = 1/4, the total energy in modes with k > 5 never

exceeded 8%. The details are shown in Fig. 15.

ii) Some Aspects of Perturbation Theory of Chain with Quadratic

Noniinearitv.

While perturbarion theory is not the most effective way of
obtaining a clear understu.ding of nonlinear processes, one can without too

much difticulty obtain some ideas from it. The easies. case tc discuss is
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the quadratic nonlinearity which yields the equations of motion

- 2 . )2

mxj = y(xj_l—ij+xJ ) + a[(x, 17* ) - (xj-xj+l) 1. (65)

Let us consider a ring of springs and masses so that xj+N z xj.
Then we set

N

X Z a exp{(2wikj/N (662)
so that

(xj_l-xj) = %-Z a, [-1 + exp(-27ik/N) ] exp(2wikj/N) (66b)
and

74 _ s, 1 “2ni k! 66¢c
(%1%, ._1 J aa ‘ez 1Jk/N[l_e 2rik /N] [l—e 271 (k-k )/N] (66¢)
3= Nk

Similar expressions e¢xist for (xj-xj+1) and (Xj- )2- If all these equa-

¥4l
tions are substi-..es into (65) and coefficients of exp(2aikj/N) on both

sides of the resu .ing equation are equated, one finds that

2ia . . .
Kak Z k,ak_k,{51n27rk'/x\:—51n27k/N + sin2n(k~k/)/N}

=(81a/mN)Z ak,ak_k,sin(wk/N) sin(zk'/N)sint(k'~k) /N (67a)
k'

where

&
[
]

K (2v/2) (1 - cos2rk/N) (67b)

or

€
1}

w

L sinnk/N with ‘2 = 4y /m. (67¢)
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is

_ 1. B -
ak(t) = ak(O)costw +u ak(0)51ntwk+wk

Since the solution of

A, +w’a = f(t)

1

O St

k "k

f(r)sin(t-T)wk dr

(68a)

(8b)

we see that the differential equation (680 is equivalent to the non-linear

integral equation

ak(t) = ak(O) cos twk + w;lék(O) sin twk

il >3
—

t
+(8nia/meL) f sin(t-—-'z)wk
0 k'

to obtain a power series in the small parameter a.

(k-k')

() () si ak! . .
a . (iay e (7)sin—p= sin

N ¢ (69)

A systematic but tedious way of solving this equation is to iterate

To get scme idea of how

the mode coupling develops, let us chuose the simpie example ék(O) = 0 for

all k and

ak(O) = Nc(ék 1” ék N_1)/2i

This corvresponds to the initial sine distributicn

Note that

Xj(O) = ¢ sin2rj/N

Then upon itetration we find cthat

N

~

«1

_Ne o
3 () = 57 Gy 1 7 B nay) 08 by

7
27iac’™ . 2 =® .
T e, sin” § (8, ,*28, W*8y n_o)

(70a)

(70b)

(71)

sin(t-!)wk dt  (72)




The integral is elementary and one finds

N = (c/2i -8
ak(t)/N (c/Zl)(dk,l k,N-l) cos twl

iﬂ(a/4y)r2w§

- = (§, ¥ Y{(l-cos tw )
@9 k,2 "k,N~-1 k
2
Y 2 4 73
+ =———— (cos 2tw,~-cos tw, )} + 0(a"c). (73)
2 2 1 k
wk~4m1

e have used the fact that wi = wisinzn/N, and the term proportional to sk,N
has been dropped because the quantity in the bracket vanishes when k = N
(since mN=0). The orly nonvanishing ak's are a;, a3y 15 3, and 3y 2 Hence,
first order perturbation only excites the second sine mode, sin 4rj/N. 1If
one iterates again, the terms of order azc4 correspond to excitation of the
third sine mode, etc. Higher modes appear with coefficients rhat are higher

2 4
- powers of a ¢ .

In the FPU calculation, ¢ was chosen to be of order 1 and a of order
3 1/10. Hence it would be hard for the higher modes to become excited. On the
other hand, they could get excited through resonances. Note the frequency

denominator ui—égi. As one develops perturbation theory to higher and higher

22 2
order, denominators of the form nkwk-nAu appedr wherelk and n
X

¢ are integers.

T

2

Hence, if frequencies are commensurable so that My @, =N, the resonances

27
. . th th .
appear and energy is easily transferred from the k= to the £ = mode. Since,

as & 2

cos tf - cos tax
B

- t sin ta

This means that when a resonance exists, by waiting long encugh the factor t
» DY g k24

eventually cverwhelms the smallness of the factor (ac2)2.




22.2
This observation has been made by Rr&z”ﬁah)ahn noticed that when N is a prime

or a power of 2, no resonances exist in the normal mode frequencies. Since N

was chosen to be 16, 32, or 64 in the FPU calculations, this efficient energy

transfer mechenism did not ¢xist and the energy spilled back {rom the second,

third, or fourth modes into lower ones before higher ones ever had a chance vo
become excited.

Incidentally, resonance phenomena have been known for many years in
celestial mechanisms. Newton's theory of gravitation and theory of planetary
orbits was under attack for many years by astronomers who noted that the orbit
parameters cf Saturn and Jupiter seemed to vary linearly with the time. The

enigma of the '

'mean motion' of these planets was resolved by Laplace who ob-
served that the small value of 5w-2w" (w and w' being the unperturbed frequen-
cies of the orbits of Saturn and Jupiter) led tc a resonance, The period of the
coupled system was 929 years. An interesting discussion of resonances (especi-
ally betwe2n asteroids) in the solar system was given by E. W. Brown%4

iii) Calculations of Northcote and Potts%s

In order to examirne the importance of the number of particles
in the chain and to check the sensitivity of the FPU results to the nature of
the wmodel, Northcote and Potts investigated the model of a line of rigid
spheres of diameter D connected by simple harmonic springs. The nonlinearity
is apparent only as an infinite repulsion when the spheres are in contact.
This is an easy model to program for a computer because, between collisioeas,
the solution ¢ <he equations of motion is known. One -.ould start with an in-
itial set of positions and mementa of the vrigid spheves and, from the known
solution of the harmonic problem, determine the new positions and momenta at

some time tl' If these positions and momenta indicate that no collisions
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occurred in this time t;s a new set is .ound appropriate for a time Ly

o L - th st
Suppose it is clear that a collision between the & and 2+1° ~ spheres lias

occurred in the interval tz—tl. Then one cnooses a new time tl < té < t,
and determines whether the collision occurs in the interval té—tl or t2—ti'

This process can be continued until the collision time is determined to
within any desired accuracy. In terms of the moment of collision, a new
set of solutions of the equation of motion is developed with initial cendi-
tions obtained by interchanging the momenta of the ch and #+1's particles
and giving the other variables the vzlues they had at the moment of collision.
The numerical results were quite different from those obtained by FPU
(same end conditions, particles at ends kept fixed, were used). Equipartition
was achieved slowly when the chain started in the lowest mode and more rapidly
when it started in a higher mode. The mixing of modes seemed to start effec-
tively at the chain ends. The first collision of the atoms next to the ends
with the end atoms gave a strong localized reflection so that the chain con-
figuration after the collisica required higher components of tb& harmonic
normal modes for their descriprion. The mixing does no: have to follow a step~
wise course through successive modes as it did in the FPU case. After some
time, the configuration of the system bore little resemblance to the initial
state. By that time, modes began to exchange energy more f{reely and mode tran-
sitions at the chain boundary were nc longer the dominant influence.
There seemed to be no evidence of the periodic behavior observed by
FPU and others. The only significant difference in the energy sharing process
between the weak and strong coupling cases was that the rate of mode mixing

Jas greater in the strong coupling than in the weak coupling examples.
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We have chosen three figures from the Northcote and Potts paper to
exhibit these results. The first, Fig. 16 represents the energy in the first
and second modes as a function of collision number. Notice the rapid drop of
energy in the lowest mode after the 37th collision, and also notice that most
of the energy in the first mode goes directly into modes higher than the
sacond, especially after the 37th collision, without going into the second

mode. The constants of the system were chosen to be N = 15 particles,

23 8

M=3x10 “ g., y = 400 dynes/cur., & = 4,000 x 1078 cm., a = 3.995 x 107 cm.
and d = 3.400 x 10“8 cm. Figures 17 and 18 compare the manner in which the
temperature equilibrates when the chain is initially in the first mode with

the energy all initially in the 31st mcde. N = 31 and Fig. 17 corresponds to

i

e = E/N=20.7 x 10_110 erg (equilibrium temperature 1 = 62.0°K), while Fig. 18
corresponds to € = 0.4 x 10—14 erg aad an equilibrium temperature T = 31.7°K.

Now why does the striking difference exist between the FPU and the
Northcote and Petts calculation? Ford's remarks on the importance of resonance
effects ae Irrelevant to the NP calculation because perturbation theory as pre-
sented above is not appropriate for the strong hard sphere nonlinear model an
which the force law cannot be expanded in a power series in the displacements
from equilibrium,

iv) Solitons.

A deeper point of view of the problem of energy transfer between
modes was taken by Zabusky and Kruské%% By ietting “he lattic: spacing vanish
as was done in eq. (4b), thry were able to convert the FPU difference-differential
equations into a nonlinear partial differential equation. The resulting equation
could be transformed into oune which has been investigated in connection with

water waves, the Korteweg-de Vries equation

2
u +uu + &u = 0.
t X XXX
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This equation has special solutions which preserve their character as a func-
tion of time. These solutions are called solitons and are the analogues of
normal modes of linear problems. Let an initial distuyrbance be a soliton,
and let it be decomposed into the normal modes of a related linear problem.
When the soliton is reflected from the chain ends, it returns to its initial
configuration. In terms of the Fourier coefficients of the normal mode decom-
position, it would seem that energy is flowing from one normal mode to another
so that when the initial configuration is repeated, the original Fourier com-
ponents repeat themselves. Zabrusky and Kruskal would then explain the FPU
results by saying that the initial state of the chain is cluse to a soliton
state which preserves its character for a long time, making it seem that the
chain is not ergodic and that energy gets transferred in and out of the lower
modes periodicaliy.

Rather than reproduce the ZK aralysis, we demonstrate the existence
of solitons by constructing them for a rather general class of nonlinear
wave equations.

The continuum wave equation
u /¢ =u (74)
in an unbounded medium has the general solution
a = f(x:ct) (75)

so that if the form f(x) of a wave is given at time t = 0, its form is for-
ever the same and its propagation velocity is c.

On the other hand, if we have a nonlinear wave equation such as

utt/cz = [F], (76)
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then we would expect that mode coupling would develop. One can, however, con-
struct special persistent waves or solitons for any function F(u).
We remember that any function u(w) with w s xtct is a solution of the

linear equation (1). Now consider the equation with constants «, and Cyt

Fluw)} = u(w) + ¢yt ocyw. an

For any function F(u) one can solve this (perhaps transcendental) equation
for u(w). The u(w) may not be a function which interests us, but, nevertheless,
one could generally find a solution, If u(w) is such a solution, then ( 77 )
can be substituted into ( 76 ) to find (since azw/8x2 =0)that u=u(w) is a
solution of ( 76 ).

Let us construct some examples by working backward. Suppose we are in-

terested in a soliton that looks .ike a shock wave with

u{w) = %(1 + tanh w) (78a)
Then

tanh T (2u - 1) = w (78b)
and

F(u) = u+ =N + <, tanh~l(2u-l) (78¢)

so that the nonlinear wave equation which has our shock wave type of soliton

solution is

2 _ -1, .
Uy / ¢ = U + c2{tanh (hu—l)}xx. {79)

The Gaussian solite

u(w) = exp(-wzia) (80a)
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implies that

v = {a log(i/u)}? (80b)
so that
F(w) = u + ¢, + c,(a Log(1/u) K (80c)
and
/e = u__ + ¢ [{a log(1/u)}?] (81)
1fe = u c2[ a log(l/u <x’

Other examples can be constructed.

v) Solitons on Discrete Lattices.

It is not so easy to construct solitons for wave propagation

in nonlinear discrete lattices. An elegant example, however, was given by

Tod%? He considered a chain of atoms whose interaction potential was defined

by
$(R) = const. + a(R-D) + (a/b)c-b(R_D)
. 2 2
= const. + %ab(R-D) - (ab" /6)(R-D) + ... (82)
Hence, if ab = const. while a2 - » and b » 0, then 6(R) becomes the harmonic

potential. lHowever, if b » « for fixed a,

o if r <D
$(R) - «{ (83)

0 if r>D

which is the defining characteristic of a hard sphere repulsion.
Now consider a chain of atoms with deviations from equiiibrium posi-

tions ul,uz,... . Then the kinetic and potential energies of the chain are

z pi/Zm with P, = ™y

-3
i

(84a)

©
[[)

T ¢(un—un_l) (84b)
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The equations of motion are, in the usual form,

Pp = mun = M(un_un—l)/aun - aMun-&-l - un)laun

If we use the interaction law (82)
m. = a exp{-b[un-yn_l - D} - a caxp(—b[un_’_l -u - D]}

Let us now subtract the relative coordinates

r = u -u
n n n-1

into ( 85 )., Then

mﬂn = f(rn) - f( )

rn+l

(85)

(86)

(87)

(88)

so that by subtracting the (n-l)St of the equations from the nth, we find

d .- 1
- ey = plflny) - 20 + £(r P}

where now

ul = rl H u2 = rl + r2 H u3 = rl + r2 + r3; etc.

Now define
. 1
Sp = mt ()

n

and suppose this expression can be inverted so that
= : 2 r = @ '(a
r X(sn) and ro=EX (sn)

Then ( 89 ) is equivalent to

- 8 e = -
SpX (Sn) Snel 2sn + Sa-1

184;
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(90)

(91a)

(91b)

(92a)




ot

The specific choice

£(r) = - a(l - ™) Lith ¢ = ae?? (92)

ylelds the connection between ( 39 ) and (92 ), Then

lopyy =28, + s 1) =8 /(5 + a/m) (93)

Tod%7found a special soliton solution of these equations by noticing
that this formula resembles one which can be derived from the adaition for-

mula for the ellipric function sn u. The following elliptic function identity

is well knownzsz

2
snz(u+v) _ snz(u~v) - ng sn u cn udn usnv } (94)

1- kzsnzu sn“v
where k is the modulus of the Jacobi elliptic functions and
dn’y = 1- kzénzu . (95a)

Then if one defines

72
e(n) = / dn"u dn , (95b)
o
. 2 1" 2
€'(u) = dn"u and & (u) = - 2k°sn u cn u dn a (95¢)
so that
kzdnz(u+v) - kzdnz(u—v) = - %; { = e (u) } (962a)
sn v -14%e'(u)
cr
v 5 v 1"
fdn® (u-v)dv ~ | dn®(ntv) dv = - —= (u) (96b)
) 0 sa v -1+ ¢'(u)
185
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Then

e(utv) - 2e(u) + e(u-y) = ——{8 (97)
~-1+sn v+ e'(u

The structure of this formula closely reseubles that of (23). It is

known that28

2(u) = e(u) - uE/K = &= log @, (u/2K) (98)

where E and K are, respectively, complete elliptic integrals of the first

and second kind of the variable k, and 64 is the fourth theta function. Then

Z(utv) - 22(u) + Z(uhv) = (o) 99)
=14 sn “v+ (E/K) + 2'(u)

The reader, by direct differentiation, can verify that not only do
{97 ) and ( 93 ) resemble each other, but that a special solution of ( 93 )

is

sn(t) = (2Kv/b) Z{2K(vt % nr)} (190)
as seen by setting
v =2/ , u = 2K(vt * nfi) (1014)

and observing the dispersion relation between ) and v

od

- 14 s iR + E/K) = 5
m(2Kv)

or

2Kv = {(ab/m)/{-1 + sn"z(g%) + E/x}}!’ (101b)

The function Z(u) is periodic with Z(u+2K) = Z(u) and v and A are, respec-

tively, the frequency and wavelength of the soliton. Finally, by combining
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(91v ) and (100))

2
1 4(K 2
ro=-3 logl 1+—£a;) Brdn“(2K(vt + n/A)} -«-E- i}

wken the modulus k is verv small

-~

2
snu=sinusj E/K=1-4° , Z{u) = (K°/4) sin2y, K = /2,

2 1
8 = %l—;— sin(wt * 2 -;HL) with w = 2(y/m)'§sin1r/)\

Furthermore

r = - (w2k%/8ab%) cos(ut * 27n/))

which corresponds to a typical wave which propagates in the harmonic lattice.

The function which appears in the soliton formulae,
2
dn” (2Kx) - (E/K)

is plotted in Fig. 19. As k » 1 with u = 2K/} fixed, the various elliptic
functions reduce to hyperbolic ones,

While all continuum wave equations of the type ( 76 ) have soliton
solutions, it seems that more conditions must be satisfied for discrete wave
equations. 1 suspect that the model used by Neorthcote and Potts dces not

have one.

vi) Mode Mixing in Two Dimensions.

The first 2D mode mixing calculations have recently been made
by Hirooka and Saitx%9 who invegtigated two dimensional lattices with a quartic
anharmonic term in the potential, (i.e., the 2D generalization of ( 60b)).

Computer calculations indicate the existence of a critical induction period
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after which the energy sharing between modes develops rather rapidly. The
induction period increases as the quartic force constant 8 decreases. There
seems to be a critical value of 8, say Bo such that when B exceeds Bo' the sys-
tem becomes ergodic while, when £ is less than 80, the lattice seems to be al-

most periodic in the manner exhibited by the FPU 1D calculations.
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(b) Experineantal frequency spectrum of sodium.
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Fig., 14. Equal time comparison of energy penctration into a harmonic
lattice containing 15% heavy impurities (a) with that into
a 154 light impurity region (b). Impurity sites are iden-
tical in the two pictures. (ec) corresponds to heavy impuri-
ties in anharmonic case.
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THE SIGNIFICANT STRUCTURE THEORY OF LIQUIDS APPLIED TO THE SHOCK
COMPRESSION OF ARGON AND DETONATION OF CONDENSED EXPLOSIVES

S. H. Lin* gnd D. Tweed
Department of Chemistry, Arizona State University

and

H. Eyring
Department of Chemistry, University of Utah

ABSTRACT
The shock compression of argon iec reported by van Thiel and Alder for
two initial states at 86°K and 2 bar, and 148.2°K and 70 bar. In this

investigation, the significart structure thecry of liquids is applied to

the shock compression of argon. At high pressures, to take into considera~

tion of the pressure effect on the solid-like portion of the partition
function of argon, the Lennard-Jones potential and the Gruneison constant
have been introduced. The Tait equation is used to correct the pressure
effect on Vs, the molar volume of solid. The Hugoniot adiabatics zre
calculated and are compared with the experimental results. The agreement
is satisfactory. The significant structure theory of liquids is also
applied to calculate the detonation velocity of condensed explosives like
NH4N02 and C3H5 (N03)3. The agreement between calculated results and
experimental values is again satisfactory.

*Alfred P. Sloan Fellow
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1. INTRODUCTION
“he significant structure theory of liquids has been developed by
Eyring and his co-workers and has been successfully applied to the calcula-

& (2) viscosities,(a)
(5)

tion of various liquids,

(%)

surface tension, thermal

conductivities, and diffusion coefficients. In this investigation,
we shall apply the significant structure theory of liquids to the shock
compression of argon. Shock compression of argon has bteen reported by

van Thiel and Alder.(6) Liquid argon has been shock compressed from two
initial states at 86°K and 2 bar, and 148.2°K and 70 bar. The shock com=
pression is well suited to the study of the inert gases at small interatomic
distances because of the large pressure and temperature range that can be
covered. The pressure range is, of course, high in shock wave experiments

on all condensed substances, and it goes up with the normal density of the

material.

2,  SIGNIFICANT STRUCTURE THEORY

According to the significant structure theory of liquids, a fluid is
assumed to consist of a quasi lattice in which mobile holes of molecular
size move from site to site. If Vs and V are the molar volumes of the
golid ard fluid phases, respectively, and a random distribution of holes
and molecules is assumed, then the number of holes present in the fluid
is given by N(V-Vs)/vs, N being Avogadro's number. Such a hole is
assumzd to confer gaslike properties on neighboring molecules which jump
into it. Thus, there will be effectiveiy N(V—Vs)/v molecules with gaslike
degrees of freedom and effectively NVSIV molecules with aolidlike degrees
of freedom. Further, these holes provide for a solidlike molecule 2 positional

degeneracy equal to the available neighboring positionms, o multiplied by a
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Boltzmann-type probability factor involving the necessary energy e to
exclude competing molecules from the available positions. On the basis

of these considerations, the partition function, f, say for a monatomic

liquid such as inert gases, can te expressed as,(l)
- \ Y (V=% )/v
£=(££)s", (fg) 5 (1
where
r eEs/R.T N
£ = {_(1-3'9/1")3 \2)
- -¢/RT,\N 3
fc (1+ n, e )
and
2mkTy 3/2 eV|N
£ = * — 4
g %) . (4)

fs stands for the solidlike portion of the partition function, for which
the Einstein oscillatof model is used. The quantity fc is the portion of
the partition function contributed from the geometrical degeneracy factor.
f8 represents the partition function of the gaslike part. Es is the energy

of sublimation. n, and ¢ are defined by

(V-v)
n = (&)

v
s

and

a ESV
£ = ——3 (6)
V-V

S

For the detailed discussion of the theory, the original papers should be
)

consulted.

4
&
E 3
]
2
i
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At high pressures and temperatures, the pressure effect on Vs and
fs must be taken into account. Thus, knowing the total partition function

f as a function of T and V, we can calculate the thermodynamic quantities
like the Helmholtz free energy A, internal energy E, and pressure P from

vy (v-vs)
A=-kT In f = —~—— (As + Ac) + Ag N
v '
, | on Vo v=-vy)
E = kT® |——— =——-—(ES+E)+ —E (8)
ar  Jv v ¢ v g
and
JA Vs (V-vs)
Pa | = (Ps+Pc)+ P +
oV T ' v
vs - - _ %
+;2- (Ag- As - Ac) '1+T 9)
where
Xs =-E +3RT1n (1- e-'e/'r) (10)
K; = - RT In (1 + nhe-E/RT) (11)
_ 2 mkn)®/? v
A = «~RT ln —s—— (12)
g n2 N
_ 3R6 :
8 s 8Ty
_ nh Ee-E/RT
Ec = -E/R_T (14)
1+ nh e
Eg = 3/2 RT (15)




o T - o > B B2 arupncitad

ARSI

dEs 3R a6 (16)
P = -
S av Ty av | T
RT - ——— H
Pc = v d T vV T e"E/RT (17) i
14+ nh e-E/RT :

and
RT
P = —— 18
g " (18)

Bs and 8 in Eq. (9) represent the compressibility of solid and liquid,
respectively. From the above equations one notes that the partition function

of significant structure theory includes the parametric quantities Es’ Vs, 0,

n, and a, which are characteristic “of a substance. These quantities have been

calculated theoretically by using an intermolecular potential.(7)

When the pressure is very small, the pressure effect on Vs and fs is

6))

small and hence Ps and Bs/B are negligible. At high pressures, for

(8

example, one may use the Tait equation

to correct the pressure effect on Vs,

V=V -Cln (19)

- B+ P
8 80

B

e s

(8)

and use the Lennard-Jones potential to correct the pressure effect on Es’

3\, 3

- 1 2

= - LA i I

E,= gNE|(C, v 2 ¢ v (3/2) B® 20)
8 8

Sy Tt g

through Vs and 9, where C6 = 14,4539, and C 12,1318. To correct the

12 ©
pressure effect on the Einstein temperature 6, one may use the Griineisen

constant, which is defined by(g)
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3. CALCULATION OF THE HUCONIOT ADIABATIC FOR ARGON
The Hugoniot adiabatic can be obtained from the Rankine~Hugoniot jump

(8)

conditions,
E - Eo ~ 1/2 (P + Po) (VO -V) (22)

where Po and V° represent the “nitial pressure and initial volume respectively.
If the thermodynamic properties of a substance are known, then it is possible
to express the energy E as a function of the pressure and volume, E = E (P,V).
Substituting this expression into Eq. (22), we obtain a certain curve in the

P, V-plane. The relatfon between P and V represents the Hugoniot adiabatic
curve, The initial pressure and initial volume, Po and Vo’ are parameters of
this curve. The problem of finding the Hugoniot adiabatic curve by using the
significant structure theory of liquids is straightforward and is equivalent to
eliminating both T and E using Eqs. (8), (9) and (22), so that P can be
expressed in terms of V only. In principle, the Hugoniot adiabatic curve

can be obtained no matter how complicated Eqs. (8) and (9) may be. But in
practice, we can accomplish this only by using numerical interation methods.

The parameters of argon are summarized in Table I. To check the

applicability of the Einstein model of solid, we rewrite Eq. (16) as follows

No3\ 5 No3 3

2¢ Y 3R
P = —— IC — - C — 4+ —— [3/2 RO 4 —~—m——| (23)
8 03 12 vs 6 vs vs ee/'l.‘._1

by using the Lennard-Jones potential. The isotherm of soiid argon at
T = 77°K is shown in Fig. 1, and is compared with measurements reported by

(10)

Stewart. In the pressure range under consideration, the agreement
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seems satisfactory. To check the applicability of the Tait equatiom, Eq. (19)

we rewrite Eq. (19) as follows

(24)

This means that at a particular temperature, the Tait equation predicts that
Ps vs 1/BSVs should be linear. Ps vs l/sts for solid argon is plotted in
Fig. 2, using Stewart's data. The linearity holds for the whole range of
pressure under consideration.

Next, we turn to the calculation of the Hugoniot adiabatic curve by
using the significant structure theory of liquids. The Hugoniot adiabatic exists;
adiabats are calculated for P = 2 bar Py = 1.405 g/cc and P° = 70 bar
and Py = 0.919 g/cc. In Figs. 3 and 4, the calculated results are compared
with experimental values reported by van Thiel and Adler.(6) The agreement
is satisfactory.

4, DETONATION OF CONDENSED EXPLOSIVES
According to the significant structure theory of liquids, the partition

function of a fluid mixture can be expressed as

Nt X (v /vy X (V-V)/V ~-Es/kT \V_/V
f= = mjg s g 108 £ e 8 (25)
N ! 1 si gl c
i1
where
2 1/2
V =JXV_ andE = }X“E_ +2) XX (E_ E_ )
s i'si s i i “si 1s§ 17j "si'sj
the quantities E and P are then given by,
E= §X1531 + VI @E -E + Exi'rzsi - inagi) (26)

i
and
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Vs . dEg - - - 6(
P =Pt [fxiysi-PG + R T )] + [}xi(Angsi) + (ES-AC)](VS/V -1+g_/8) (27)

’ where )
: _ ) Mnfsi _ ) annfgi _ , amfc
- Esi = kT ; E g " kT : Ec = kT 3 (28)
aT v g 3T oT v
A, = -kTonf , 3 Agi = -k'rsmfgi ; A" -kTnf | (29)
EE and
¢ NkT ainf ainf
: P = 5 Py o= kT(——-—EL) 3 P = kT( < ) (30)
8 v w w It
E: the partition functions fg 1° fs 1 of component i for nonlinear triatomic
E molecul: ;. can be written as:
: 2,,.3 1/2 0 3/2 N
ZmikT 3/2 8n (8« Ainici) (kT) 3 N
- £, = l—s (eV/Ny 7 — (31)
, gi hz oih3 . v=] l-e 6V1/T
3 and
i i 3 1 N
g fsi - " - I “evi/'r (32)
: (1-e 1/T) V=l 1l-e
and for linear triatomic molecules can be written as:
k . 2
j Znuik'f 3 8n Iik'l' 4 1 N
: £, = (i) ———— ¢ A (33
E ) gl hz gihz v=1 1-e evi/‘l‘
1 4 1 N
£, = e (36) :
H Bi -9 -8
2 (ee M5 w1, vi/r
;é
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similarly, the partition functions f fsi of component i for diatomic

gi’

molecules are:

2

(Zmnik’l‘ 3/2 81 kT 1 N
£a1 = "2 © (ev/n)- Oihz - l-e_ei, A (35)
and
1 1 N
f1 7 R Y (36)

The pressure effect on Es of nonpolar mclecules has been discussed in

(11),(8)

Section 2. To correct the pressure effect on Es of water, we shall use

s

where R is the intermolecular distance and Eo° is the zero-point energy. The

quantities in Bq., (37) are given as:

°

L= 1.200; tz = 0.6543 d = 2.725-A; € = 707 cal/mole

‘= 4.633; C, = 4.,237.

C12 = 4.000; 06 = 4.033; C 4

3

f and g in Eq. (37) are functions of the three angles which describe the mutual
orientation of two water molecules.

To calculate the detonation velocity, we have to use the Chapman-Jouquet

condition, which states that the detonation is sonic with respect to the products

at the end of the reaction zone. The Chapman-Jouquet condition can be stated

in another way; i.e., the Michelson line

P=P + D2/v°2 (vo -v) (38)
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is tangent to the Hugoniot adiabatic, Eq. (22), at the end of reaction zone.
v, and V represent the specific volumes. In this way, we can calculate the
detonation velocity D, from Eqs. (22), (26), {27), and (33). This has been
done for NH4N02 and C3H5(N03)3. For NH4N02, we obtain D = 4750 m/sec and the
conditions at the end of reaction zone, p = 4.95 x 104 atm, T = 3030°K, and
v = 0.747 cm3/g. For C3H5(N03)3, we obtain D = 7750 m/sec, and the conditions

at end of reaction zone, p = 1,975 x 105

atm, T = 5620°K, and v = 0.511 cm3/g,
compared with the experim:ntal value(lz) of D = 7500 + 500 m/sec. The agreement

again seems to be satisfactory.
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TABLE I

PARAMETERS OF ARGON

n 10.7 o} 3,402 A
a 0.0052 Y 2.25

9 dyne/cm:z
Vo 24.98 cc/aole B 1.716 x 10

] 60.0°K c 2.639

2
1.690 x 10-14 dyne/cm

o]
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MECHANISM OF PROPAGATION OF STEADY DETONATION#*
Wildon Fickett
Los Alamos Scientific Laboratory, University of California
Los Alamos, New Mexico
INTRODUCTION

The two classes of self-sustaining waves in explosives have very
different characteristics. Deflagrations, or flames, are relatively slow
and quiet. Detonations are fast and violent.

A deflagration wave propagates at much less than acoustic velocity.

The burned material emerges from the rear of the wave with a higher tempera-
ture, but lower pressure and density, than that of the initial state.

Momentum changes are relatively unimportant. The equations describing the
process have a steady solution at a unique wave~propagation velocity. The
calculation of this velocity requires the solution of an eigenvaiue problem,
in which the most important effects are the rate of the chemical reaction and
the rate at which the resulting increased translational energy of the reacticn
products is transported forward by heat and matter diffusion. The trausport
coefficients thus play an important part in the process.

A detonation is very different. 1t may be regarded as a strong shock
supported by an immediately-foilowing chemical reaction, triggered by the
high temperature produced by the nearly-instantaneous compression and heating
in the shock. The rapidity and violence of the process causes the rela&ive
importance of transport effects an! momentum changes to be compietely reversed:
here momentum changes are all-iwuportant, while tramnsport effects can be

neglected for most purposes.

*Work performed under the auspices of the U. S. Atomic Energy Commiscion.
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The front of a detonation which has run some distance is observed, over
a fixed area of the front, to approach a plane surface of discontinuity
(provided one does not look too closely), and the velocity is observed to
approach a constant limiting value. Thus, a one-dimensional flow model of
the process is suggested. Under this assumption, and the additional one that
the flow within the reaction zone is steady in a frame attached to the shock,
relatively simple solutions to the flow equations can be found. In this
approximation the unique value of the steady propagation velocity or
detonation velocity is generally determined not by the soluticn of an
eigenvalue problem containing the details of the flow within the reaction
zone, but by the sonic character of the flow at its end. The main con-
sideration is the question of whether a disturbance originating behind the
front will overtake it and affect its motion. The calculatien of the
detonation velocity is thus considerably simplified. It turns out that the
final state and its sonic character are determined by the solution of the
(algebraic) conserv;tion laws of one~-dimensional steady flow. The equation
of state of the reaction products must be known, but no information about
the reaction kinetics is needed.

Typical examples of the detonation velocity, and of the pressure,
density, and temperature at the end of the reaction zone are given in
Table I. Here M is the Mach number of the detonation, that is, the de-
tonation velocity divided by the sound speed in the undisturbed material.
The temperatures given for the liquid and solid are uncertain to perhaps
20 to 30 percent.

The high velocity of the detonation results in an astonishing power
level for the rate of conversion of chemical bond energy to mechanical and

heat energy. In a good solid explosive this rate is about 1010 watts per
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sq. cm., of front, which may be compared with the total U, §. electric

generating capacity of about 3 x lO11 watts. The rate at which the earth

receives energy from the sun, about 4 x 1016 watts, could be equaled by

a detonation wave 20 meters square.

Although condensed (i.e., liquid and solid) explosives are the ones of
interest here, they are comparatively difficult to study because of the high
pressures generated. The equation of state is too poorly known to be of any
use in quantitative testing of theories. Thus, most of the fundamental
advances in understanding from the experimental side have come from the study
of gaseous systems, where the experiments are cheap and easy by comparison,
and the known equation of state (ideal gas with small corrections) makes
possible quantitative a priori calculations. To what extent the understanding

gained here applies to condensed materials is not always clear.
ELEMENTS OF THE THEORY

In this section, we review briefly the elements of the one-dimensional
flow theory, in order to establish a frameswork and terminology for the sub-
sequent discussion.

We first consider the flow behind the front. As shown in Figure 1, the
detonation is supposed to be initiated at one end of a closed tube. The effect
of initiation transients is neglected, the detonation being assumed to have
run at constant velocity from the point of initiation. Also the reaction
zone structure is not shown; only the state at its end appears in the figure.
As shown in the first pressure-distance profile, the front is followed by a
self-similar rarefaction wave which terminates about halfway back where it
hzs reduced the forward material velocity produced by the front to zero, thus
matching the rigid-wall rear boundary condition, and the pressure to about

half the value at the front. The detonation velocity suggested by the simple
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one-dimensional theory is such that the flow at the end of the reaction zone
is sonic with respect to the front; i.e., the sound speed is equal to the
material velocity in a coordinate frame attached to the front. Since the
head of the rarefaction wave moves at sonic velocity, it just keeps up with
the front.

The second profile illustrates what may be more nearly the real case;
here tkz flow at the end of the reaction zone is supersonic with respect to
the front. Since the head of the rarefaction now moves more slowly than the
front, it 18 separated from the front by an ever-widening region of constant
state.

We now apply the laws of conservation ~ mass, momentum and energy to
the assumed one-dimensional steady flow in the reaction zone. For purposes
of illustration, consider a system in which a single reaction takes place
described by a progress variable which ranges from 0 for no reaction to 1
for complete reaction. The conservation relations connect any poiat in the

reaction zone with the initial state. They can be written as
2.2
p D" =(p=-p)/ (v =W Rayleigh line
o o o
E(P,V, A)"E(Poyvo’ K=0)=1/2(p+po) (VO-V) Hugoniot

wP=(p-p,) (v,=v)
Here o, v, p, E, D, and u are the density, specific volume, pressure, épecific
internal energy, detonation velocity, and material velocity (in the laboratory
frame in which the undisturbed material is at rest), and the subscript zero
denotes the initial state. The equation of state is written in the form
E=E (p, v, A) for convenience.
Curves of constant D and constant u and solutions of the Hugoniot equation

in the p - v plane are ‘hown in Figure 2. Curves of constant u are hyperbolas,
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with u increasing with pressure along the Hugoniot. Curves of constant D,

or Rayleigh lines, are straight lines passing through the initial point, with
slope proportional to D2. The Hugoniot for no reaction (3=0) is the locus of
possible shock states. The Hugoniot for complete reaction (X=1) is the locus
of possible states at the end of the reaction. The effect of the heat release
in the reaction is to displace the Hugoniot cut from the origin, so that it ro
longer passes through the initial point. Possible states immediately behind
the shock and at the end of the reaction zone are given by the intersection of
a Rayleigh line with the » = 0 and X = 1 Hugoniots, respectively. In contrast
to a shock, which can have any strength, it is seen that the velocity DC—J

in the figure, at which the Rayleigh line is tangent to the complete-reaction

Hugoniot, is the minimum possible one for a detonation. For any larger velocity

there are two possible states at the 2nd of the reaction zone, marked S and W
in the figure.
We now state some properties and define some terms:

1. The state immediately behind the shock, point N in Figure 2,
will be called the shock state. This is sometimes referred
to as the von Neumann peint.,

2. The state at the end of the reaction zone will be called the
final state.

3. On the complete-reaction Hugoniot, or detonation, the entrcpy
is a minimum at the C-J or tangent point and the {low there is
sonic with respect to the front. At all points of iower pres-
sure, called weak points, the flow is supersonic, and at all
points of higher pressure, called strong points, the flow is
subsonic.

4, The detonation pictured in Figure 1 is a self-supporting
detonation. If the fixed wall at the rear is replaced by a
piston moving with constant velocity, the detonation velocity
will be independent of changes in the piston velocity over a
certain range. But if the piston is moved forward rapidly
enough (faster than uC-J) the detonation velocity is increased

and an cverdriven detonation wave is produced.
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HISTORY

The phenomenon of detonation was first recognized by Berthelot and Vieille
(1881) and by Mallard and Le Chatelier (1881) in the course of their studies
of flame propagation. The elements of the simplest theory essentially as
outlined above were formulated independently by Chapman (1899) and Jouquet
(1905, 1906). In their work, it is realized that in the usual experimental
gituat 'n the front will be followed by some type of rarefaction wave, though
this part of the flow is not treated in detail. A detonation whose final state
is a strongpoint (at which the flow is subsonic) will be overtuken and slowed
down by the rarefaction. This argument suggests the so-called Chapman Jouquet
hypothesis: that the steady detonation velocity of the self-supporting wave
is the minimum value consistent with the conservation conditions. It is
concluded, without satisfactory justification, that the weak points can bhe
ignored.

This simple theory was quite successful. The detonation velocity, the
only quantity measured at that time, i{s predicted within a percent or two,
even with the relatively crude thermodynamic functions then available. The
first indication that all was not well was the discovery of spinning detonations
in the 1920's, in which a bright spot on the front is observed to trace out a
helfcal path as the detonation propagates. This interesting phenomena was
largely confined to 'marginal” systems with relatively small heat of reaction.
It was regarded as a more or less lsolated phenomenon and did not give rise
to serious questioning of the one-dimensional flow assumption as applied to
most detonations.

The next advance in theory came in the early 1940's with the detailed
treatment of the reaction zone in the so-called ZND model, put forth iadependently

by Zeldcvich (1940) in Russia, von Neumann (1942) in the United States, and

'8
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Doering (1943) in Germany. The configuration assumed is a plane shack, treated
as a jump discontinuity, followed by a region of one~dimensiconal steady flow
in which the reaction goes to completion. The steady-flow equations for the
reaction zone are written down and their properties studied for the case of a
single forward reaction proceeding to completion. This study shows that, in
the usual case, only strong final states or the CJ state can be reached. The
CJ hypothesis 1s applied as before.

What might be termed the modern era in experimental work on gas detonations
begins about 1950. The principal object is the measurement of the pressure,
density, and some composition variables of the final state and comparison of
these with the nearly exact calculated results based on the ideal gas equation
of state and the tabulated thermodynamic functions of the product species. The
use of the electronic computer lightens the computational burden considerably.
While the results are not entirely consistent, the general conclusion is that
the state point lies approximately on the weak branch of the detonation Hugoniot
at a pressure of something like 10% below the CJ value. Figure 3 from Schott's
review (1965) gives the properties of such a point, in this case arbitrarily
chosen for purposes of illustration.

In condensed explosives, about the only properties which can be measured
with sufficient accuracy to test the theory are the detonation velocity and,
to a lesser extent, the pressure., But the equation of state of the products
is so poorly known that an attempt to compare the experimental results with an
a priori calculation is of nc use. The special properties of the CJ point,
however, allow the pressure to be predicted from the measured dependence of
velocity on the initial energy and density. Values of pressure obtained in this
way by Davis, Cralg, and Ramsay (1965) are in disagreement with those obtained

by the conventional method of observing the motion cf thin metal plates in
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z contact with the explosive. Petrone (1968) disputes this conclusion, offering
s

3 an alternative interpretation of the conventional pressure measurements wnich
ke

é would, 1f correct, remove the disagreement. The disputed point is whether

the reaction zone is large enough to affect the motion of the metal plates;

Petrone believes that it 1is, while Davis, Craig, and Ramsay believe that it is

Ui v L

not. The author's opinion is that Davis, Craig, and Ramsay are correct.

it
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At about this same time, the theoretical work was being directed toward

SR

a thorough study of the nature of possible steady solutions under less re-
strictive agsumptions. This work extends to the consideration of an arbitrary
number of chemical reactions proceseding in both forward and backward directions,
so that the effects of chemical equilibrium must be considered. Also studied
in some detail is the inclusion of transport effects, through use of the
Navier-Stokes equations. iIn nearly all cases based on less restrictive
assumptions than those of the ZND model, it is found that there may be, for

certain values of the physical parameters, a class of solutions terminating at

T

a final weak state. For the other more "normal" class of solutions, the Chapman
Jouquet hypothesis, slightly modified to account for the effects of chemical
equilibrium, is still proposed. It is unlikely that a solution terminating in
a weak state applies to any of the more commonly investigated gaseous systems.
The applicability of such a solution would not explain the disagreement in

any case, since the entire one-dimensional theory rests on the neglect of

motions transverse to the direction of propagation, which, as it turns out,

TR KR S P PR Y T T B R TR

are probably tooc important to ignore.

As detnnations were studied in more detzil, it began to be apparent,

EANCH RIS S AT

beginning in the early 1960's, that transverse wave motious are present on
% the front in nearly all cases, with true one-dimensicnal flow being generated
; only in exceptional circumstances. The spacing of these wavez is strongly
230
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dependent on the heat release and reaction rate, and varies over 2 wide range.
The phenomenon of spin, originally regarded as a somewhat isolated curiosity,

. is now recognized as one extreme of this general phenomenon - the lowest-
frequency (spatial) mode which will fit into a round tube. The theoretical
work of this same recent period has also been much concerned with the question

of the effects of non-one-dimensional flow, a much more difficult problem than

the study ol the steady solution. The main progress to date is the fiunding
i that the steady solution is typically unstable to small pertuvrhations, together
L with the study of the time-dependent replacement for the steady solution when

; the flow is constrained (by assumption) to be one-dimensional.

: STEADY SOLUTIONS

The general framework for the constru:tion of steady solutions is that
3 of the ZND model. At the front of the wave is a shock, treated as a jump

discontinuity. Ahead of the shock no reaction occurs, the undisturbed

explosive being in a state of metastable equilibrium. Following the shock

is a region of steady flow (i.e., independent of time in a coordinate frame
g attached to the shock) in which the chemical reaction takes place. The
steady solution sought is to extend from the shock back to the point of
f complete reaction or chemical equilibrium (which will make it formally
? infinite in length for the common types of reaction rates). Some other non-
reactive and possibly time~-dependent flow, such as a rarefaction wave,.is to

be appended to the end of the reaction zone in order to match the prescribed

d rear boundary condition. This is most commonly specified as a following

piston of specified constant velocity which, of course, includes the special

T
Rk -

case of zero velocity; i.e., a rigid wzll.

Other assumptions are that the flow is one-dimensional (plane) and

laminar, and that the =aterial behind the shock is everywhers in local

g e
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thermodynamic equilibrium except for the chemical reaction. This is equivalert

to the assertion that the material possesses an equation of state, with the
chemical composition inciuded in the set of independent variables. Th= orly
entropy-producing process, other than the shock jump itself, is that of
chemical reactioa. Throughout the following discussion transport processes -
viscosity, heat conduction, diffusion ~ may be taken tc be neglected except
where specifically mentioned. Work on this problem with more than one re-
action, but with neglert of transpcct effects, has been done by Wood and
Kirkwood (1957}, Wood and Salsburg (1960) and Erpenbeck (1964). Transport
effects have been considered, but with only & single chemical reaction, by
Hirschfelder and his group (1961}, Wood (1963), and others.

Let us now outline the form of the solution for the case of a single
forward reaction. Tet the reaction be

A ~>B

with progress variable A equal to the mass fraction of species B. Tne steady

flow equations are

(ou)x =
(p+pu)x =0
2, _
(H+su ), =0
x = r/u,

where p, u, p, %, and r are the density, material velocity, pressure, specific
enthalpy, ana reaction rate per unit mass, and the subscript x denotes dif-
ferentiation with respect to the distance ». The reaction rate is assumed
to be a functicn of the local thermodynamic state.

The integrals of the first three equations can be expressed as the three
conservation relations given earlier. With an assumed value of D as a paraaeter,

these can be solved for p, v, and u as functions of A, so that only a single
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ordinary diffearential equation

dr/dx = r(\;D),
remains. The initial roint for the integration is the shock state. The value
ol XA is zero there by assumption, and the solution of the congervation relations
witn X =0, of course, gives the complete state.

The assumption of a single fcrward reaction (restricted also to the case
of no decrease in the number of moles with reactioa) is too restrictive in that
it does not give ary solutionc of a second type which generally appears under
less restrictive assumptions, such 2s the consideration of more than one re-
action, of the possibility of a decrease in the number of moles (more generally,
a volume decroment) with reaction, of slight (radial) divergence of the flow,
or of transport effects,

In all of these cases. there are two general classes of soluticn which we
will call "normal"” and "eigenvalue” solutions. The normal solution is of the
type obtained with a single forward reaction. The profiles of Figure 6,
presented in the next section, are examples. It always terminates at either a
strong point of the detonation Hugcniot or the CJ point, never at a weak point.
la the phase space of the ordinary differential equations for the steady flow,
such a point is a nodal critical point or is reached through a nodal sactor of
a higher-order critical point. In determining a value of D for & given rear
boundary condition, only the properties of the terminal state at the eqd of
thie reaction zone need be known. This can, of course, be calculated from the
conservation relations and the equation of state, without knowledge cf the
teaction rate. In the overdriven case, the rear boundary is matched hy the
final state having the same material velocity as the pistoa, plus a region of
constant scate beliind the reactiun zone. In the unsupported rase, the final

state is the CJ point, with a rarefaction wave adjoined.
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The eigenvalue solution has an entirely different character. In order
for it to occur, there must be some process which is effectively endothermic
in its effect on the flow, such as an endothermic reaction (which absorbs
instead of releasing energy), or a normally exothermic reaction which is
driven past its equilibrium point by the flow and becomes effectively endo-
thermic as it returns. In this type of solution, the integrzl or solution
curve of the differential equations proceeding from the shock state must
reach a special point called the pathclogical point at which the essentially
endothermic and essentially exothermic processes are in balance in their
effect on the flow, From this point, the integral curve may proceed to
either a strong point or a weak point, the weak point being a saddle-type
critlcal point of the differential equations. For a given substance (i.e.,
for given equation of state and reaction kinetics with parameters fixed),
the eigenvalue solution, if it ¢ .ists at all, can do so only for a unique
value of D, and its determination is an eigenvalue problem whose outcome
is sensitive to the details of the properties of the material, in particular
the reaction kinetics. A steady solution for a profile of this type is
diagrammed in Figure 4. It bears scine rescmblance to that for the non~
reactive flow in a vonvergent-divergent nozzle. The solid curve is the
profile for the eigenvalue D, which is the velocity of the self-supporting
wave. Point P is sonic, and points § and W are the final strong and weak
points. For piston velocities less than ug the detonation will be followed
by a slower-moving second wave. For piston velocities less than w, this
wave will be a rarefzction and for piston velocities between uy and ug it
will be a shock. At piston velocities above ug the detonati n is overdriven

and the profile takes the shape of the dashed curve, subsenic throughout.
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HYDRODYNAMIC STABILITY

The existence of these extensively-studied steady, one-dimensional
solutions of the flow equations does not, of course, mean that they will
necessarily appear as the long-time limit of a flow problem with appropriate
boundary conditions. The opposite apnears to be the case: the flow in the
reaction zone of self~gsur:orting detonations in nature is neither steady nor
one-dim-nsicnal.

The first step in asking whether this is predicted by the equations
chosen to represent the flow is to investigaete the hydrodynamic stability
of the one-dimensional solutions against small (three~dimensional, time-
dependent) perturbations. This is done by linearizing the time-dependent
flow equations about the one-dimensional steady solution. The shock is
taken into account explicitly, one of the complications in the analysis being
the necessity of working in the accelerated coordinate system in which the
longitudinal distiance is measured from the perturbed shock front. The re-
sulting set of linear partial differential equations then describes the
growth or decay of infinitesimal perturbations c¢n the steady solution. Let
the gpaze and time variables be x, y, z. t with the steady detonation propa-
@-rang in the x-direction. The equations are reduced by Fourier transformation
ony and z, and Laplace trausformation on t to a set of ordinary differential
equations in x with variable coefficients Jdepending or the steady solutionm,
and with shock boundary conditions at the front. The solution of these

Tst
equations contains a sum of terms of the approximate form Xe 1", where the
i

T, are the vaiues of the time~transform variable T at the poles of a certain
complex function. For each value of T the corresponding perturbation grows

or decays according to whether the real part of 1 is positive or negative.
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The necessary calculations have been done by Erpenbeck (1964) for the
idealized system represented by a polytropic gas of constant heat capacity
reacting according to

A~+B

with Arrhenius rate r (per unit mass)

!
r= (i-Ae /RT,

with A the mass fraction of species B, E+ the activation energy, T the
temperature, and R the gas constant.

The parameters are y (fixed at 1.2), D, E+ and the heat of reaction Q.
Figure 5 shows the stability at Q = 50 RT, as a function of transverse spatial
wave number of the perturbation for a range of values of D and two values of
the activation energy. The stability is increased by decreasing the activation
energy. At the larger valuss of D, the steady solution is unstable oanly to
perturbations whose transverse wavelengths are of the order of the reaction
zone length. Interestingly, at values of D not too far above D

C

solution is unstable to perturbations of zero transverse wave number or infinite

70 the steady

wave length; that is, those in which the motion, although time-dependent, is a
function of x only and in which the shock front is planar. Thus, a one-dimen-
sional pulsating flow of some type is to be expected as the long-time limit

of the self-supporting detonation for this case.

This interesting result suggests a one~-dimensional time-dependent
numerical finite difference calculation of the flow, a type of computer
experiment which can be characterized as based on weli-developed numerical
or algorithmic technology (with the exceptiecn of the non-trivial addition of
chemical reaction), and well within the capability of second~generation
computers. The calculation uses the method of characteristics. Some results

from the paper of Fickett and Wood (1966) are shown in Figures 6 and 7.
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The two cases compared in these figures have in common vy=1.2, Q=50RT,,
2
D"=1.6 DZCJ, chosen to be typical of gaseous systems. According to Figure 5,

the steady solution should be stable for e = 40RT, and unstable for E+ = 50RT,.

Figure 6 shows profiles of the steady solution for these two cases. Figure 7
shows the shock pressure history for a detonation initiated by a piston whose
velocity decreases linearly from the value of the velocity at the shock state
of the steady solution to that at the final state (in a time comparable to
the reaction time), and then remains constant. As predicted by the linear

F perturbation analysis, the case E+=£:0RT° is stable, with the flow settling

3 down fairly quickly into the steady solution. The case predicted to be

' unstable, E+=50RT°, behaves very differently, with large continuing pulsations.
These eventually become perlodic; the irregularities in the figure are caused
by reflections from the piston. In spite of the large amplitude and non-
linearity of the pulsation, the mean pressure is within one percent of the
steady-solution value., The linear theory finds only one value of Ty with
pesitive real part for this case. The growth rate and period observed in

the computer experiment are in qualitative agreement with those suggested

by the real and imaginary parts of this 7 The linear periurbation analysis

i
was later extended by Erpenbeck (1967) to include higher-crder terms. This
nonlinear analysls results in a periodic behavior of the shock pressure
similar to that described above. Mader (1965) has obtained similar pulsating
solutions from a numerical finite-difference calculation for condensed

explosives.

The instability of the steady solution extends to quite small values

TR

of Q. Figure 8§ shows a shock pressure history for the case y=1.2, Q=RT,,

2 2

E+=50RT°, D"=1.6 D c The ircregularity of the pattern is consistent with

3
i the presence in the linear analysis result of more than one value of ™ with

positive real part.
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STRUCTURE OF THE FRONT

A reaction zone consisting of an induction zone followed by a narrow
region of rapid reaction and heat release is sensitive to perturbations
because a detonation can easily propagate through the almost-unreacted
ma_erial) of the induction zone. A small hot spot at the rear of the re-
action zone, for example, could initiate a hemispherical detonation wave
which would soon overtake the front. The observed structure of the front
can be imagined to arise from the collision of such microdetonations, as
they have been called by Dremin (1968). The details of the process are
quite complicated but the main features are sketched in Figure 9. The
lower line shows three microdetonations which have broken through the
original front and begun to collide with each other. The shock reflection
at the collision is initially regular. As the angle of collision changes,
a Mach stem is formed. In the second line it is shown as having overtaken
the origiral front. Behind the Mach stem, the pressure is high and the
reaction zone short. Where the spherical front of the original microdetona-
tion has passed through the original front into unshocked material, the
reaction zone is relatively long. The reflected shocks moving approximately
perpendicular to the original front initiate reaction as they pass into this
region and thus become detonations propagating in the transverse direction.
Mecawhile, the speed and strength of the Mach stem is being decreased and
its reaction zone lengthened by rarefaction from its sides and rear. By the
time the transverse wave reverses its direction by collision with its neighbor,
it again finds a region of unreacted material into which to propagate - the
now~lengthened reaction zone behind the original Mach stem, and the process
is thus able to repeat itself, Clearly the natural spacing of transvezse

waves will be strongly dependent on the reaction kinetics. It must be large
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enough to allow an appreciable inducticn zone to form behind the transverse
waves so that when their directicn is veversed by collision they will find
suffiicient unreacted material to sustain their propagation. 7t must be small
enou,h so that a new microdetonation does not have time to form from a randem
perturbation betweenr two transverse waves approaching each other.

Structures of this type are observed in nearly all detcnating systems.
The wavelength can be made large enough for convenient study by diluting the
original gaseous system with an inert gas. The principal means of observation
are: (1) study of the tracks left in scot-coated walls of the detonation tube
by the Mach stem and other features of the front; (2) photography with the
motion stopped by an arc or pulsed laser flash source or by velocity-
synchronization of the camera; and, (3) small pressure transducers placed in
the walls of the tube.

The main results of the observations are summarized in a recent review
by Strehlow {1968). 1In typical systems the spacing of the transverse waves
varies over a . ..2 of a few tenths of a centimeter to ten centimeters or more,
depending on the amount of diluent and the initial pressure. Quite regular to
very irregular patterns may be obtained, depending on the degree of dilution
and the system chosen.

It is important to note that this structure fs an intrinsic feature of
the detonation front, and would be present even in the absence of walls.
Similar structure is cbserved on spherical detonation fronts. The presence
of walls u. ccurse affects the details of the structure to some exteat, but
is not at all necessary for its existence.

High speed photographs of the detonation front in liquid explosives, most
recently by Mallory (1967), indicate th2 presence of a similar structure, with
gpacing increaged by dilution with an .nert liquid. Because of the relative

difficulty of observation, extensive quantitative studies have not been made.
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The flow structure in the front is quite complex; the actual transverse

wave contains one or more triple-shock interaction points behind the front in

addition to the one at the front. The book by Voitsekhovskii, Mitrofanov, and

Topchian (1963) gives a detailad account of their intensive study of che details

of flow in gases.

The general features of the flow may be illustrated by the case of the

single Mach reflection propagating across a detonation front as shown 1in

Figure 10. A nearly one~dimensional detonation front is produced by passing

¢ detonation through a convergent-divergent channel. The transverse structure

disappears in the convergent section. Betore it has time to reappear in the

expansion, reflection at the corner produces the downward propagating three-

shock confirguration shown. The ciagram shows the streamlines in a coordinate

system attached to the triple point. The Mach stem is much stronger than the

incident shock and the reaction zone behind it is correspondingly shorter. The

exact nature of the flow behind the reflected shock is not clear. Material

passing through both the incident and reflected shocks will have a shortar

reaction time than that passing through the incident shock only, but not so

short as that passing through the stem. Emerging from the rear will be three

streams of material with different entrcpies and velocities: the material

passing through the incident shock only, that passing through the incident and

reflected shocks, and that passing through the stem only. With many such

configurations passing back and forth across the front, the flow behind may

well be turbulent.

White (1961) has made an extensive experimental study of the propagation

of steady detonation in the mixture of 2H2+02+C02 in which the front structure

is of such a size that the apparently turbulent zone behind the fromt can be

easily seen in his spark interferograms. He also offers a qualitative
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thecretical analysis showing che effect on the conservation laws of including
some terms representing the effect of isotropic turbulence in the flow equations.
Combining White's results with more recent knowledge of the details of
the front structure, the following overall picture of the flow can be con~
structed. As ve saw above, different streams of material passirg through
the structured front experience quite different histories. The reaction is very
fast in some and slower in others, but probably on the average more rapid than
that in the corresponding hypothetical one-dimensional wave. Large fluctuations
in the state occur in the interior. The extreme is reached at the point of
cellision of two transverse waves, with resulting pressures as large as ten
times th. one-dimensional CJ preesure. Froat velocities may vary as much as
twenty percent above and below the one~-dimensional CJ value. Emerging from

the end of this complex "reaction zone,"

roughly speaking, i{s a turbulent flow
with space scale comparable to that of the spacing of the transverse waves

on the front. The situation is further complicated by the presence of trams-
verse shocks degenerating farther to the rear into acoustic waves. The decay
of this turbulence is a much slower process than the chemical reaction and

the corresponding "turbulence decay zone" is much longer than the reaction
zcne. (In White's system at an initial pressure of 0.3 atm., the turbulence
decay zone is a few cm. long and the reactior zone is probably less than a
tenth cof this.)

The fincl state appears to be approximately on the weak branch of the
complete-reaction Hugeniot, at a pressure ten to fifteen percent belov the CJ
value. The point marked "WEAK" in Figure 3 is typical. The flow at the end
of the turbulence decay zone is of course not completely uniform and steady

so that the usual one-dimensional conservation laws cannot be applied

exXactly to this plane. But the closeness of the average pressure to the
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steady value in the one-dimensional puisating detonation gives some reason
to hope that the defect averaged over the cross section of the tube is small.
Perhaps the most interesting property of this final state is that the
flow there is superscnic with a local Mach number of about 1.15 in a frame
attached to the shock. In this flow, a following rarefaction wave head or
weak shock would recede from the front at a speed of 8 to 10 percent of the

detonation velocity.
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D(m/s)
p(kb)
p(g/cc)
elo,

T(°K)

M=D/co

GAS

2H2 + O2

po = 1 atm

2850
.C186
.00090
1.77
3680

5.138

TABLE 1

LLQUID
NITROMETHANE

Py = 1.13 g/cc

6290
141
1.65
1.46
34007

3.59

SOLID
PLASTIC-BONDED
HMX

p, = 1.84 g/cc

8790
362
2.47
1.34
25007

3.81
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Figure 1. The flow behind a detonation initiated at the
closed end of a tube.
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PRESSURE
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COMPLETE REACTION HUGONIOT

NO REACTION HUGONIOT

¥

VOLUME

Figure 2. Curves of constant D and constant u and solutions
of the Hugoniot equation in the p - v plane. Point
0 is the initial state.
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Figure 4.

DISTANCE

Diagram of stez - -solution profiies for the eigenvalue
case. The solid curve is the profiie at the eigenvalue
detonaticn velocity, and the dashed curve that for a
slightly larger detonation velocity,
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Stability of the steady one-dimensional solution to
perturbations as a function of detonation velocity D

and transverse (spatial) wave number of the perturbationm,
The wave number is in units of 27 divided by the diatance
from the shock to the point at which the reaction is half
completed (A=1/2) in the steadly solution for the given value

of D. Most of the E+=40RT° curve is guessed from other
resalts,
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Figure 9.

Development of front structure. The wave moves from
bottom to top of the figure. The dashed lines indicate
the end of the reaction zone.
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