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FOREWORD

Dr. R. J. Eichelberger
U.S. Army Ballistic Reseirch Laboratories

Aberdeen Proving Ground, Maryland

The Problems And The Goals For The Seminar On Explosive Reactions

The purpose of this seminar is to explore the feasibility of a

mcre fundamental _,pproach to the reaction rate portion of detonation

phenomena. The problems peculiar to military explosives research stem

from the fact that military explosives are pure organic compounds,

mixtures of organic compounds, or mixtures containing organic molecules

plus inorganic oxidizers, or reactive metals, or both. These materials

are usually in solid form, cast or pressed to the maximum possible

density. During manufacture, storage, and use, they are subjected to a

variety of energy stimuli ranging in intensity from levels too low to

cause any significant changes, to those s'•icient to create initial

pressure of several megabars.

Using the principles of hydrodynamics and thermodynamics and some

concepts from solid state physics, investigators have made considerable

progress in the continuum treatment of initiation and propagation of

detonation. This aspect of the problem can be considered at a level of

sophistication permitting treatment of interacting, non-steady detonation

waves that coalesce into a superficially steady wave. Energy distribu-

tion by transport effects can be treated by continuum methods, and the

influence of boundary conditions can be taken into account.

The great difficulty lies in providing input data to the continuum

models that accurately represent the absorption and distribution of

energy received from an external source or evolved by chemical reaction,

and the consequent molecular rearrangement and decomposition. No experi-

mental techniques are available or are foreseen that would provide



direct measurement of the needed quantities. New approaches are clearly

called for. It appears likely that the new approaches might be found in

the areas of lattice dynamics and molecular physics, using the mathematical

techniquis of statistical mechanics. The manner in which these fields

may be joined in the solution of the explosive decomposition problem is

suggested in the following hypothetical model of the phenomena.

For this purpose, we envision a molecular solid, consisting
of metastable organic molecules in a crystal lattice, being
subjected to an energy stimulus. The stimulus will ordinarily
be in the form of mechanical energy, thermal energy, or radiation
in the spectral region ranging from infrared to X-ray. Given
the nature of the energy source, it would be necessary, first,
to accurately predict how the energy is absorbed by the crystal
lattice and the molecules. It then becomes necessary to deter-
mine with reasonable accuracy how the energy is transported
and partitioned between the lattice and the molecules. If
decomposition is to occur, the energy imparted to a molecule
must be sufficient to break bonds and start a rearrangement

* forming new molecular species. Some of these reaction processes
will liberate energy and lead to other changes in the state of
the medium. At some stage, or at some energy density, it will
become critical to determine whether the rate of energy evolution
due to molecular excitation and decomposition will exceed the
rate at which energy -can be transported away from a given volume
element.

In order to predict the effects of energy partitioning
upon the chemical phenomena, it is necessary, first, to know
accurately the bond strengths in the molecule.

The changes in bond energies as a result of incorporation
of the molecule in a crystal lattice must also be known. The
distribution of energy among the bonds as a result of direct
stimulation, or interaction with the lattice, and the prob-
ability of breakage of each bond, as functions of energy level
and time, are the prime objectives of the model. At low energy
levels, equilibrium energy distribution, and simple reaction
kinetic laws may be satisfactory approximations. At high energy
densities, the distribution of energy among the bonds of a
molecule may never approach that associated with equilibrium
conditions; consequently, the course of decomposition, the
chemical species, and the density of species may be quite
different at high energies than at lower values. In the

* extreme case of "steady" detonation, with interacting shock
Swaves providing the energy source to sustain the reaction,
* temperatures approaching 10,0000K and pressures of several



hundred kilobars are produced. It may be completely erroneous
to use the Arrhenius relation, with constants determined under
equilibrium conditior.s, iii an analysis of these phenomena.

In the case of mixtures, the diffusion of intermediate
products, mixing and subsequent "hybrid" reactions represent
additional complicating factors governing the overall "reaction
rate."

The pertinent long-term objectives of explosives research can be

described as twofold:

* Capability of predicting the chemical behavior of
known organic molecular solids with sufficient
accuracy to determine the intrinsic sensitivity to
initiation, and the magnitude and rate of energy
evolution, under arbitrary environmental conditions.

* Capability of predicting the crystal habit and
essential physical characteristics of new organic
compounds and, as in (a), determiring their potential
usefulness as explosive materials.

To achieve these objectives, according to the postulated model, we

need much more sophisticated treatments of energy absorption, transport

and partitioning in molecular crystals, and of nonequilibrium chemical

reactions. Statistical mechanics provide the essential mathematical

framework.

This seminar provides a means for reviewing the present state and

current directions of research in each of the subject areas: lattice

dynamics, molecular physics, and statistical mechanics. More important,

however, is the opportunity to assess the following (not mutually

independent) points with respect to each of the fundamental fields:

a. Will the present state of knowledge in the field permit

theoretical treatment of pertinent aspects cf the detonation process,

with sufficient rigor to yield useful results? If so, have the

necessary mathematical models (computer programs?) been developed?

b. If not, what is lacking? What kinds of basic research are

needed to attain the required level ef knowledge? Does the necessary

basic research appear to be feasible, assuming a dedicated, coherent

effort?



c. If additional basic research is needed and appears to be

feasible, what are the best approaches, to both theoretical and experi-

mental investigation?

d. How can the overall phenomenon be best treated? Should an

integrated mathemratical model be developed, or should the events be

treated in a series of steps? If the latter course is more tractable,

are there evident interface problems In proceeding from one stage of

the phenomenon to another? What devices for simplification can and

should be used, and how much error or uncertainty is likely to result?

It is our hope that, by bringing together experts in the relevant

fundamental sciences, a background can be provided against which appro-

priate plans for future research can be formulated. Answers to the

technical problems are not expected to result directly from the con-

ference, but we hope to learn from the discussion how best to proceed

to find the answers.

While the emphasis of the seminar is upon explosives and detonation,

the same questions are of importance in a number of applied research

areas. At the fundamental level of treatment, the detonition process

differs in degree, but not in substance, from many othe, phenomena.
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INTRODUCTION

Dr. James E. Ablard

I was in on what I think was the beginning of this ceminar -- by

now most of you have had sime contacts with the technical cooperation

program between England and Canada, Australia and the United States.

The Explosives Panel of the Ordnance Subgroup of that diverse body held

its fourth meeting in London in May 1966. Panel 0-2 is & typical com-

mittee from that organization. You've all attended meetings (and the

one in London was no exception) where you were like the observe- at

Northhampton Harbor who was shown the facilities for navigation that had

been growing up over the years. He was shown lighted buoys, red buoys,

black buoys, but wheu he was telling about it afterwards, he said the

lights flash and the horns blow, bells ring, but the fog rolls in just

the same.

Out of the fog in London came a suggestion from Dr. Eichelberger

that we sponsor a seminar which would review the new knowledge in

instrumentation that has grown up in universities and institutions not

usually connected with our explosives program.

In a way we were like the young pilot several years ago who was on

his way from New York to Boston. After flying above the forecast for

what he thought ought to be long enough, he called down and asked how

much fartner it was to get to Boston; the reply came: if you keep on

going in that direction, its 23,999 miles. We wanted to be sure we

were headed towards our objectives in the shortest possible way. We

don't want to continue going all the way around the world to get there.

On the other hand, we may be like the fellow who was groping around

under the street light on the corner. A man came by and asked him what

he was looking for -- a quarter, he said. Where did you lose it? Over

there. Well, what are you looking for it here for? Because there's

more light over here. We may be searching here where it's light and
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we can see what we e doing, but over there in what is now dark to us

-- may be the pay dirt. So one of the objectives of this seminar

is to obtain some advice.

The Panel thought that there was a reasonable chance that some of

the new tools and theories of molecular physics could be turned to the

solution of some of our problems. The idea, as Dr. Elchelberger pointed

out to some of you, was not to have the expert solve the problem but to

introduce to us the theories in the fields of their choice and the in-

struments that are used to get the information in their separate fields.

We would expect to take it from there. Getting an idea is like sitting

on a tack -- both make you rise to the occasion. We arose to this idea

and promptly appointed Dr. Eichelberger as Chairman of the Committee to

carry it out. He named the other members of the Committee; I'll do it

again. Mr. J. C. Baril was the member from the Canadian Defence Research

Staff in Washington. He escaped back to Canada a month or two ago. Dr.

Peter Dees was the member from the British Scientific Mission - he had

to rush home and have a brand new first child a few months back. Bill

Pheasant is from the office of the Australian Defence Supply Attache;

he hasn't escaped yet but his relief is in Washington and he is taking

him around this week and couldn't be with us. So the members of the

committee who are still about are Dr. Jacobs from NOL and Dr. Ray Walker

of the Feltman Research Laboratories at Picatinny.

The Committee was able to secure nine speakers from three countries

for this seminar. We are grateful to the speakers who have diverted

their attention from their usual interests and have come here this

week to brief us. We work in a field quite foreign to their usual

pursuits. I hope that a glance at our problems may lead some of thew

as well as us to the awakening of ideas for our mutual benefit. But

before we proceed with this it may be well to make some statements

relative to where we are -- from where we think we are in the under-

standing of high explosives. I borrow here heavily from the writings

of Dr. Eichelberger's Committee.



Military aigh explosives may be pure organic compounds, mixtures

of organic compounds, or mixtures containing organic compounds plus

inorganic oxidizers, metals, plastics, and so forth. The usual state

of the mixtures when ready for use is a cast or pressed charge, pressed

to its highest density obtainable in the factories. When this solid

detonates, it is traversed by a strong shock which compresses successive

layers of the material; the density is considerably higher than the

solid density. Under these conditions, essentially complete molecular

rearrangement into small stable molecules takes place, in the order

of hundred to several microseconds.

Progress has been made in the past 25 years in understanding the

physics and chemistry of detonation. We have made use of thermodynamics

and hydrodynamics and the equations of state of high pressure physics.

We have also made progress in measuring the effects of detonation on

the surrounding environment and in so doing have learned how to estimate

the action to be expected. From the properties of the shocks created

in materials, it is even possible for instance to compute the detonation

pressure, but there are two parts of the detonation process for which we

have so far only qualitative understanding. They are similar in nature

but different.

I refer on the one hand to the description of the process that

material undergoes as it is overrun by a detonation and on the other

hand to the process that an explosive goes through when a portion of it

is energized by some mechanism and the resulting exothermic reaction

manages to build up to a detonation. The two processes are similar in

that they both involve reaction rates and probably induction theory but

they are different in many important ways. Material passing through a

steady state detonation is first subject to an extremely high pressure

shock -- 300 kilobars and higher. The chemical reactIon then begins

and continues while the pressure decreases. Completion nf the reaction

is practically 100 percent certain.
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It is not usually necessary to consider more than the small micell

of the material to describe the whole process for all micells. That is

all micells large enough to contain all the atoms of the mixture.

Furthermore, all micells undergo the saue reaction in the same time --

not at the same time but in the same time.

In the other case the build-up to detonation -- t small amount of

energy may be supplied to a small amount of material at atmospheric

pressure. Energy may be sufficient to cause a small portion of the

material to decompose. The exothermic reaction may be imparted to
neighboring materials which in turn may decompose, or may not. The

energy may be dissipated. If the reaction continues, gaseous products

may collect until a small pressure is generated - the small pressure

results in a pressure wave length which travels over the unburned

material. Continued reaction generates more wavelengths which may

coalesce into a larger pressure wave - or they may not. They may es-

cape the solid before they coalesce. This brings in the concept that

the size of the solid sample is important for the build-up to detona-

tion and its environment is important -- that means whether it is con-

fined or not. And finally a self-sustaining chemically reacting shock

may be generated which rapidly builds up to a detonation. Thus in the

build-up to detonation an important part of the prccess can take place

at relatively low pressure -- say, under 1 kilobar.

The success of the reaction is dependent on the size of the

sample, on the confinement and other things like the crystal size.

Both processes have varying rates depending on the density and some

characteristic of the chemical - not very well defined or understood.

And finally given the same material in the same state in the same con-

finement to which sufficient energy has been added to build up to

detonation should be successful. Anything less than this we are

inclined to think should fail. However there are certainly many cases

where the apparent energy required is much less than the normal amount.

Success or failure appeared to be statistical. We begin to wonder if
a lot less than the usual amount will initiate the detonation some

small fraction of the time. The one case in a thousand keeps haunting us.

5



Now what makes us think that molecular physics and solid state

physics might serve to improve the description of these two processes.

We hope that statistical dynamics will be able to describe the state of

the atoms or molecules when subjected to these extremely high pressures

such that their densities are about four-thirds of the solid density.

We hope that this description will lead to a prediction of the rates of

reaction. The only rate law that has been used to date is the familiar

Arrhenius law. It may be the best thing there is. Some recent work

tends to show that it leads to reasonable values for the reactioil zone

length in nitromethane and liquid TNT. This would be the first process

referred to above -- that is the steady state detonation. However a

look at some of the alternatives might produce other descriptions or

might give us more confidence in the Arrhenius expression. And in any

case it has not been too successful to date in the build up to detonation

process.

The equation of state for the gaseous products which have been used

successfully are empiriral expressions which describe the Chapman-Jouget

conditions-at the end of the chemical reaction. They have been arbitrar-

ily fit to what data is available and do not allow much extension beyond

the high pressure-high temperature conditions in the Chapman-Jourget

situation. Molecular physics of mixtures of gases at high pressures

might lead to better more versatile equations of state.

Of considerable current interest is the second prccess I have

mentioned -- the build up to detonation. Our interest is particularly

drawn to this because of the instances of prematures in guns and bombs,

the one in a thousand cases that I mentioned previously. Considerable

progress has been made in the continuum treatment of the build up to

detonation process. This has been accomplished using the familiar

principles of hydrodynamics and simple kinetics. The great difficulty

lies in accurately representing the absorption and distribution of

energy in the initial stages. It seems highly probable that the like-

lihood of chemical decomposition under a given energy absorption is a

function of the c:-ystal lattice and imperfections in it. It also seems

6



probablr that L higher density of imperfectiout should permit the chain

reaction process to continue in spite of a given set of difficulties

whereas a lesser dinnity of higher chemical potential sites might let

the reaction fail. We would have to translate whatever may be learned

about the propagation of the wave of a reaction in a pure crystal into

a process that jumps from one crystal to another in a conglomerate chart,

but this is far down the stream from the current figure.

One bit of specialization we have insisted on -- this particular

Panel is concerned with high explosives. While some mixtures which are

explosives contain ionic crystals, the pure crystalline high explosive

molecules are non-ionic crystals and so we have insisted that we were

particularly interested in what the new theories in instrumentation might

tell us about non-ionic crystals. This has posed a new problem because

we are told that the study of ionic solids is not yet complete and the

organic molecules must wait. However we are not content to wait. We

prefer to keep our attention on the less familiar - maybe it's in the

dark spot -- but that's where the pay dirt is.

I Jo not know whether the May 1966 decision preceded or followed

the initiation of Dr. Walker's work on organic solid states at Feltman

Research Laboratories or Mr. Connick's work at the Defense Research

Laboratories in Australia and perhaps there is other work in this field

that I do not know about. In any event these two installations have

made a start in direct application of solid state techniques to non-ionic

high explosive crystals. Although they have not been solicited as

speakers for this seminar, we will hope that they will make substantial

contributions to the discussions through their comments.

In summary I quote from the inclosure to the letter that the

Committee mailed to the prospective experts. "In posing the questions

to which the speakers would address themselves, they said: Will the

present state of knowledge in the field permit theoretical treatment of

the detonation process with sufficient rigor to yield useful results?

If so, have the necessary mathematical models been developed? If not,

7
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what is lacking? What kind of basic research is needed to attain the

required level of knowledge? Does it appear to be feasible, assuming a

dedicated coherent effort? What are the best approaches to both ex-

perimental and theoretical investigations in this field?" These and

other questions were posed. It was really a difficult task. The fact

that we were able to have nine speakers on the agenda indicates that we

already have some measure of success.

Walt Disney told the story of the boy who knew n. such word as

"fail," he wanted to march in the circus parade so he offered to take

the place of a missing trombonist. He hadn't marched two blocks before

the fearful noises from his trombone caused a horse to rear and to create

a turmoil. The bandmaster commanded: "Why didn't you tell me you

couldn't play the trombone?" The boy said: "How did i know, I hadn't

ever tried it before." So far as I know the experiment for setting up

a seminar in this fashion on this subject has not been tried before.

I hope that it will be a success. At least we will have tried.

• 8



CROSSED MOLECULAR BEAMS RESEARCH AND

CONNECTIONS WITH ENERGY STORAGE PROBLEMS*

R. H. Davis
Department of Physics, Florida State University

ABSTRACT

Because of recent advances in neutral beam source technology, collisions

between a variety of molecules are now subject to detailed experimental

investigation. Total cross section measurements provide crude tests of

molecular collision models. Early measurements of differential cross

sections using alkali beams showed the sensitivity of such measurements

to different types of collision partners. High intensity, good resolution

nozzle sources extend the domain of feasible differential cross section

measurements as functions of energy and angle. An objective of this new

field of research is the test of collision models so that they may be more

effectively applied to complicated reaction problems such as those which

arise in the formation and detonation of explosives.

I. INTRODUCTION

The credit for first thinking about molecular collisions should no

doubt go to the several Greek philosophers who invented the concept of a

"molecule" more than two thousand years ago. Through the efforts of numerous

and much later scientists, many of the properties of gases, liquids, and to

some extent solid state matter are now understood in terms of molecules moving

more or less freely between collisions with one another. Surprisingly simple

assumptions such as billiard ball molecules are adequate to explain many

*Research supported in part by the Air Force Office of Scientific Research;
Office of Aerospace Research, U. S. Air Force, under Grant No. AFOSR-440-67.
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phenomena. Conversely, measurable quantities are often not sensitive to the

details of the collision mechanisms.

In contrast, relatively precise information has been obtained about

microscopic collisions in nuclear physics. A sense of perspective is

established by considering where nuclear physics would be if observations

were restricted to atomic bomb blasts. Accelerators and reactors have been

available to nuclear physicists for years while only recently have neutral

beam sources suitable for preci3e collision studies become available to

molecular physicists.

In Section II, several facets of the physics of explosives are considered

since they point towards the importance of crossed molecular beam research.

Section III is a discussion of crossed molecular beam research with effusive

sources. Systems with supersonic nozzle sources are described in Section IV.

Theoretical considerations in experiment design, data reduction problems,

reactions, and scattering are reviewed in Section V. Section VI concludes

this paper.

II. CONNECTION WITH PHYSICS OF EXPLOSIVES

A. Potential Energy Storage

An explosive may be defined as a material in which the atoms are arranged

in states of high potential energy relative to the states formed in the explosion

products. It is a special energy storage system in that the structure and al-

lowed reaction mechanisms will support a detonation. A practical explosive is

one in which a compromise is struck between high energy storage density and

stability against slow dissipative reactions or accidental detonation during

ordinary handling procedures.

While mixtures, such as oxygen-rich chemicals with fuels, continue to

find important applications as explosives, the emphasis of current development

10



work is on new materials in which energy storage is understood in terms of

molecular or crystalline properties. Here the problem reduces to an under-

standing of a stable system of atoms which are held together by "weak" bonds

as shown in Figure 1 but which can, through a rearrangement, form "strong"

bonds.

The formation process with respect to the natural forms of the atoms is

endothermic. It is a process of entropy reduction for the system of atoms

making up the explosive m..terial. Of the many systems which may be con-

sidered on a basis of energetics alone, only a few have been obtained in

practical quantities. Chemical processes of formation generally involve

several intermediate steps as schematically shown in Figure 2.

In successive chemical reactions the potential energy of the constituent

atoms of the final explosive material are bootstra-7ed upward until a useful

stored energy density is achieved. The problem is to find a se:ies of such

reactions which is not abortively terminated by a lissipative reaction 7hanne!

Too often the entire procedure is carried out without the benefit of detailed

informacion concerning the reaction mec..ani--s involved.

B. Stability, Detonation, -.d F-ergy ox Eplosion

In Figure 2, the concept of sta. liz •s shown • a local potential m•. num

in which the explosive as a system resides. While -rude, the diagram illus-

trates a basic problem in that the potential minimum which guarantec- stability

must be delicately reached without over shooting and precipitatilb slow decays

or catastrophic reactions; i.e., an explosion.

Against the practical requirement of stability for ordinary handling is

lodged the equally practical requirement for detonation. Speed of energy re-

lease is desired providing it is controlled and free of sympathetic complications.

17,11



[A- a figure Of merit -L -o .... maLeriLal Lhe energy of explosion is one

of the most important performance ratings. Other practical considerations

being satisfied, it should be made as large as possible.

A cursory examination of bonding energy tables will show that a number

of arrangements of atoms and molecules in crystals give promise of very high

energy densities and correspondingly large energies of explosion. Such a

hypothecical energy storage system is shown in Figure 3. A laminar geometry

is assumed which immediately raises the question of formation, a point to

be taken up later.

The energy of explosion Q is obtained from the energy of formation,

QF' of the explosive and the energy of formation of the explosion products, Qp.

Qx = QP - QF (1)

To get the energy of formation, consider the periodic array of O-N-H-C as made

up of O-(NHC)b. Bond (a) is between the 0 and N and (b) is between C and 0.

The bond energies are:

O-C 26 kcal/mole

O-N -22 kcal/mole

and the average is +2 kcal/mole.

The heat of formation is given by

QF = -33 -58 +4 = -87 kcal/mole . (2)
HCN 0 Bonds

(a) and (b)

Several products are possible. To be specific, assume that the products are

H G0, CO, N2 , and C. The energy of formation of the products is

Qp = 1/2 x 58 + 1/2 x 26 + 0 + 0 42 kcal/mole (3)
CO N2 C

The energy of explosion is the difference

12



Qx= 42 - (-87) = 129 kcal/mole

= 3,000 kcal/kg

This may be compared with a value given 1) for RDX of 1390 kcal/mole.

Such a calculation immediately raises several questions. First, can this

or some other equally interesting system exist? If it does exist, what are the

correct bonding energies or taking the system as a whole, what are the details

of its structure? Second, if it does exist, is there a formation process which

will produce it? Historically, many explosives have been invented by the

discovery of a formation process rather than a premeditated design of the system

and a subsequent search for ways to make it.

The hypothetical array is laminar in design since it was originally put

forward in a discussion of tuned chemical reactions of vapors incident on a solid

surface. Momentum control of the reactant beams is assumed to optimize in a

controlled fashion weak bond formation.

The third question, which is raised by any proposed energy storage system,

is whether or not the system will detonate and if so, under what conditions?

How is shock propagated? What are the effects of electromagnetic radiation or

nuclear radiation?

In general, these questions are incompletely answered in our applications

of atomic and molecular physics and chemistry to explosive materials. In some

areas the scientific foundations have not been laid, while in others the ap-

plication techniques have not been developed,

C. Molecular Collisions

On a microscopic scale the formation of explosive materials is a result of

molecular collisions in which chemical reactions produce the explosive material.

The control of such collisions is only parametric in conventional chemical

processes in that the number and types of atoms or molecules is specified along

13



with environmental factors such as temperature, pressure and radiation bath.

Parameters crucial to the reaction such as the relative momentum of colliding

pairs of molecule are not controlled. For a given temperature the spread in

relative velocities is comparable to the magnitude of the most probable velocity.

The possibility of tuning the reaction to the optimum conditions for the produc-

tion of the desired substance is lost in a Maxwellian blur.

Conceptionally, the situation is much improved if the resultant is

crystalline and if formed by reactions at its surface. Figure 4 illustrates

the control effected by a vapor reactant source, not only with respect to the

momentum of the reactant molecule but the angle of incidence on the reactive

surface as well. The reactant beam may be tuned to maximize the desired reaction

rate, which is ultimately determined by microscopic quantum mechanical details.

There is not, unfortunately, an extensive literature on crystal growing from

the vapor phase which will serve as a basis for the design and investigation

of new crystalline explosive formulations. The advantages of surface reactions

with regard to energy and momentum balance are apparent and should not be

overlooked in future developments.

Chemical reactions in gases offer no special advantages in the control

of the reaction mechanism because of the Maxwellian distribution of relative

velocities as previously mentioned. The formation of weak bonds between aggregates

of atoms which through a rearrangement can form a strong bond is a matter of chance

with dissipative reaction processes working to the detriment of high yields

of explosive substances. In one form of chemical reaction theory the hazard

of forming a given chemical product is introduced by assuming a steric factor.

Between collisions, a gas molecule does have a specific energy and momentum

as does the partner in the next collision. Thus, specially prepared gases in

the form of jets which are arranged to intersect bring molecules together with
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fuiaLive momenta limited by the velocity distributions in each of the jeLu.

This is the basic idea of crossed molecular beams research. The objective is

to determine as precisely as possible the conditions of molecular collisions

so that the details of the mechanisms are manifest.

III. CROSSED MOLECULAR BEAMS-EFFUSIVE SOURCES

A. Early Work

if crossed molecular beam techniques are a powerful tool for the detailed

study of molecular collisions, why is the development of the field so belated?

There are two related answers. First, sources for the production of well-

collimated beams of neutral particles of high energy resolution and high

intensity have only recently become available. Second, the .etection of low

energy neutral particles is a difficult technical problem. This in part

accounts for the lead which exists in the study of nuclear collisions. Energies

involved in nuclear collisions are considerably larger :- suggested by the

conventional energy unit 1 MeV = 1,000,000 electron volts. Alpha particles

emitted by nuclei can be detected with the assistance of an ordirary microscope

as individual scintillation events in a zinc sulfide screen.

The first experiments on reactions with crossed molecular beams are

scilematically shown in Figure 5. Potassium and halogen compound beams produced

in effusive sources intersected in an evacuated chamber with a pressure the

order of .0-9 Torr. The products of the collision are detected at various

angles with respect to the direction of the potassium beam. Effusive sources

are ovens with suitable aptrtures and collimating slits to define the beam.

2)
Experiments of these tyre were chosen by Taylor and Datz for two reasons.

First, the alkali atoms and the alkali halide molecules can be detected in

a surface ionization device. Second, the beams were readily available.
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ýeveral experiments followed their pioneer work on the reaction

K + HBx KBr + H (4)

While the yield as a function of angle could be obtained, information relevant

to the details of the collisions was limited by the Maxwellian spread of the

individual molecular beams.

B. Velocity Selection

By the proper angular shift of vanes mounted on a rotating axis in a

turbinelike device, the transmission of molecular beams can be restricted to

a predetermined velocity interval. As the velocity resolution is increased,

there is a corresponding loss in transmitted intensity since particles of the

wrong velocity are removed from the beam. Practically, + 5% is a limit on the

velocity resolution for many experiments. A system for the measurement of a

total cross section is shown in Figure 6.3) Again, note that an alkali beam

is used for ease of detection.

Additional important information4) can be obtained by the measurn aent of

angular distributions using a system schematically shown in Figure 7.3) Not

only is the velocity of one beam selected, but a further refinement in technique

is indicated here by the addition of a state selector. This device provides

a multipoJ.e electric field which via a coupling with the electric moments of

the particle beams defocuses particles in certain states while gathering those

in another. A system producing a 10-pole field is described by Waech et al.5)

The use of state selectors is important in beam preparation and yield detection

but it will not be further discussed here.

The results of reaction studies with potassium beams vary provocatively

for different targets. Qualitative differences in the angular distributions

for allkall halide product is shown* The extreme forward and extreme backward

*Figure 8.

16



peaking of the angular distributions is reminiscent of direct reactions in

nuclear physics. The intermediate distributions may be due to long lived

compound systems. While such results demonstrate that the yields of chemical

reactions may be preferentially concentrated at a given angle with respect to

one of the reactant beams, a complete understanding of the anisotropy in terms

of molecular structure and collision parameters is not available at this Line.

An example of the challenge is dramatically presented by studies of the

following reactions

K + lBr KBr + H

K + DBr ÷ KBr+D (5)

K + TBr ÷ KBr + T

Except for the isotopic differences in the hydrogen atom the three reactions

are identical. From a classical chemistry point of view only minor differences

should exist. The first two reactions have been carefully studied by Bernstein

and his collaborators6) while the last has been recently investigated by Martin
7)

and Kinnse} using a radio-isotope detection technique. The angular distribu-

tions are sketched in Figure 9.

Within the uncertainties of the measurement, the results for the hydrogen,

bromide and deuterium bromide are very similar. The angular distribution with

the tritium bromide target appears, however, to be radically different. At

present, this difference is not understood in terms of a reaction mechanism

in which only the isotopic state of the hydrogen is changed.

IV. SYSTEMS WITH SUPERSONIC NOZZLE SOURCES

A. Nozzle Sources

The ideal neutral molecule beam source is one which produces mono-energetic,

high intensity beams of variable energy for a variety of molecular species. What

is desired is a source which will serve molecular collision physics in the way
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in which Van de Graaff accelerators have served Nuclear Physics. The effusive

sources with velocity selectors have opened the field of research but beam

intensities fall far short of the requirements for a general attack. Alkali

beams have been used to compensate for this deficiency since alkali atoms and

certain of their compounds can be very efficiently detected.

An important step towards an ideal source is the supersonic nozzle, one

constructed by J. G. Skofronick8) is schematically shown in Figure 10.

Beams 100 times more intense tchan those from effusive so-irces with velocity

selectors are produced.

The idea for this type of source was first put forward by Kantrowitz

and Gray in 1951.9) A series of references describing the evulution of the
8)

source are given in a recent paper by Skofronick and McArdle, and in an

earlier paper by Skofronick.
1 0)

Structurally simple, the principal of operation can be summarized as

follows. The gas to be used in the jet is delivered to the small stagnation

volume, one of which is the concave surface of the nozzleý As the gas passes

through the nozzle, it is expanded and cooled with a significant fraction of

the energy converted into stream kinetic energy of the jet. Immediately down-

stream from the nozzle is the skimme,- which is critically designed to prevent

a downstream flow of the laterally expanded gas while transmitting the jet

with minimum disturbance due to shock fronts. Mach numbers of ten or larger

are readily achieved for the stream velocity.

The velocity distribut•on function is given by

f(v) - v2 exp - a (v/v -1) (6)

where alpha is the constant and vs is the stream velocity of the beam. The

relative shape of the velocity distribution for the nozzle source is compared
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with the Maxwellian distribution obtained from effusive sources in Figure 11.

Both distributions have been normalized to a peak ralue of one. Actually, the

peak for the nozzle source is a minimum of 100 times larger.

Of special importance experimentally is the success achieved in reducing

the pumping requirements and the construction of otherwise compact nozzle
8)

sources. Enormous pumps were used in the earlier versions of nozzle sources.

An important feature of these sources, in addition to high intensity and

good energy resolution, is the capability for controlled variable energy. This

is accomplished by controlling the temperature of the nozzle body which in

turn affects the stream kinetic energy. A demonstration of energy variability

is shown in Figure 12, in which the most probable kinetic energy of argon atoms

is plotted against the nozzle body temperature.

B. Chambers

A conceptually simple experiment is the measurement of total cross sections

schematically shown in Figure 13. The beam labelled flIv) enters the scattering

cell, which contains the target gas. The attenuated beam is measured in detector

(D). Also shown are the relevant formulae and expressions for relating the

collision cross section to the observed or effective cross section Aeff" A

total cross section measurement for helium on helium is given in Figure 14.11)

Curve A is a total cross section calculated from a P) potential (see Figure 15).

The cross section curves averaged to account for the dispersion in velocity in

both the beam and scatterer are shown as curves B and C for the case of scattering

gas temperatures of 77K* and 300K*, respectively. The averaging techniques
12)

developed by Desloge et al, were used.

Figure 16 illustrates the chamber for crossed beams produced by two nozzle

sources. In addition to the two neutral beam sources, a detector is shown which

19



in this system is positioned for total cross section measurements. By changing

the angular position with respect to one beam axis, information about the angular

distribution can be obtained. A formula relating the velocity form factors and[ •the collision cross section to the observed effective cross section is given

[! in Figure 17. The importance of differential cross measurements will be taken

[ up in Section V.

C. Data Acquisition and Handling

Even with the intensity improvement gained by the use of nozzle sources,

signals at the detector are small. To extract the signals from the noise due to

the residual gas and possibly other sources, the beam is chopped as schematically

indicated in Figure 10. By a repetitive comparison of the detector signal with

beam on to that with beam off statistically significant results are obtained.

If the beam burst is of sufficiently short duration, time-of-flight measure-

meritsII can be used to determine the velocity distribution experimentally.

13)J. P. Aldridge has designed an economical on-line computer system which

"serves all of the purposes of conventional signal averaging devices and provides

a programmable data handling capability. The system, especially well suited for

time-of-flight analysis, is block diagrammed in Figure 18. Suitable small

computers are available from several manufacturers.

Once the data is acquired, i.e., the time-of-flight spectrum is stored,

the full reach of programmable machine capability is available. The first

operation is signal averaging which is readily accomplished. A comparison

to a spectrum stored in another part of the computer memory representing the

velocity distribution of the beam provides immediate indication of interesting

features of the velocity distribution. Because such features may be the result

of statistical background fluctuation rather than the real effect, immediate
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indication is vital as the run cax. be promptly repeated and a direct comparison

can be made between two or more runs. Real effects will repeat whereas statistical

effects should not.

In addition to data acquisition and reduction, certain calculations such

as kinematic relations can be performed to guide the experimenter in selecting

the most appropriate parameters to improve the quality of the measurements.

Further improvements of state selectors, particle detectors and analogue-to-

digital converters will further accentuate the advantages of on-line computers

in molecular collision physics.

V. DISCUSSION

A. Overview

The study of molecular collisions with crossed molecular beams is a new

and rapidly changing field of research. Several topics are discussed in this

section to establish a perspective of what has been done and what can be done.

The first is a discussion of experiment design criteria with the objective of

obtaining the best possible data on molecular collision events under conditions

such that quantum mechanical effects are observed. Second, a significant part

of the experimentalist's efforts must be devoted to reduction and transformation

of the data into a form subject to theoretical interpretation. Graphical

techniques have been extensively used but these are tedious as a standard data

processing tool. The nature of the problem is illustrated with computed

results for coplanar trajectories.

The third topic is that of chemical reaction theory. Most of the molecular

collisions involved in the formation, stability and detonation of explosives

are of the reactive type. Consequently, the understanding of reactions in terms

of molecular collision data deserves special comment. While the paucity ef data

has rather starved the theoretical developments, several promising approaches
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are emerging. Several of these theories require angular distribution measurements

of the reaction products.

Fourth, the importance of elastic scattering uata to the understanding of

reactions and of the gaseous state is pointed out. The scattering of helium by

helium is discussed because of the intrinsic interest and as an example.

B. Experiment Design

Since low beam intensities and low detector sensitivity have impeded the

study of collisions of neutral atoms and molecules, quantitative comment on the

situation with crossed beams from nozzle sources is appropriate. These sources yield

approximately 1019 neutral particles per sr sec with a velocity resolution as good as

+ 5%. With a flight path of 30 cm from each source and a collision volume of

3 -16 21 cm , the scattering yield for a cross section approximately 10 cm is in

excess of 107 particles per cm2 at a distance of 30 cm from the reaction volume.

Isotropy is assumed in this estimate. It should be noted that scattering cross

sections which are important of themselves and to reaction models, are found

to be typically 1015 cm2 in test calculations.

Some theoretical predictions are useful in determining to what extent the

resolution of the experiment is commensurate with the expected detail of the

molecular collision event. Each collision can be characterized in terms of a

parameter, alpha,given by

a = pR 2 (7)

where R is the impact parameter and u is the reduced mass for a system with a

projectile mass M Pand target mass Nt. Clearly, alpha represents an effective

moment of inertia under consideration, and for the sake of convenience, it is

assumed to be a simple function of M, Mt, through an approximate (but sufficiently

accurate for these purposes) expression for the impact parameter given by
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R 0 -I1/2 (M 1 /3 + Mt 1/ 3 A (8)

This expression yields the distance at which the two molecules just touch, if

each molecule (or atom) is assumed to have a radius of 10-1/2 M1 / 3 this ap-

proximation gives a reasonable estimate for the size of the molecule or atom

provided M is in units of the mass of the hydrogen atom. Figure 19 shows values

of alpha plotted against M for various projectile masses M . Having determined
t p

the value of alpha for a given pair of particles the type of phenomena expected

can be dieectly read off Figure 20 which indicates the various regions as a

function of relative energy E and the parameter a.

ln Figure 20 regions bounded by specific val'tes of the parameter o are

shown. The parameter p is simply given by the equation

2 1/2
p = kR = [(2pE)/4I R max (9)

V and this parameter corresponds to the maximum angular momentum Zmax contributing

to the cross sectioný

The E, a space is approximately divided by the o = 10 and o 50 lines

into three physical regions:

1. 0 < p < 10. In this "resonance" region, the cross section should
exhibit rapidly varying values as the energy E is changed due to
the expected quantum mechanical phenomena of "compound states" in
the continuum. High resolution is needed to study such behavior
which is vital to an understanding of the nature of chemical
reactions.

2. 10 < p < 50. This is the "diffraction region" in which the cross
sections will tend to be smoother but the angular distributions of
reaction products will still show quantum effects such as are well
known in electron diffraction. Such angular distributions will be
strongly angle-dependent and indicative of the reaction mechanism.

3. 50 < p • m. The "classical region" is a less interesting region
where molecules tend to behave more like billiard balls so that the
intrinsic structure becomes relatively unimportant.

Finally, the a, E plane is divided by values for the "width" parameter r

which is given by the equation
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4'j 4E
r= 2p 2--2  (10)

The parameter r is an estimate of width of the state in the compound system which

exists during the collision process. It is a criterion for establishing the

maximum energy resolution which can be allowed if atomic single particle states

are to be experimentally detectable. The value of r immediately shows the

necessity for high energy resolution. Clearly, a resolution of 10 r is

desirable at all energies.

From the discussion of Figure 20, it is apparent that angular resolutions

sufficient to reach well into the diffraction region in a given experiment are

desirable. In angular acceptance A8 = 10 is a reasonable choice considering

the problems of mechanical construction, desired physical significance, and

required threshold for detectable flux.

C. Transformation of Data

Since the center-of-mass motion for the system of colliding particles does

not coincide with either beam direction, rather unusual kinematic relationships

are found. A CDC 6400 computer program named PUFF-I has been written by

Aldridge14) to quickly establish the kinematic relationships for a given

experiment. This program is of immediate use in fixing the design of atomic

collision chambers in addition to subsequent use in data reduction.

The computer program to handle the kinematics problem is briefly described

here, and results for the elastic scattering of atomic hydrogen by molecular

hydrogen are shown by way of illustration. The program works for arbitrary

reectant and product pairs and for positive, zero, or negative Q values.

A velocity di;.gram defining the calculated quantities is shown in Figure

21.
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Units: The units to be employed are the convenient set:

energies in eV

masses in amu

velocities in cm/sec

times in seconds

distances in cm

Since the system is over specified, a conversion is necessary.

-12 2 2E(eV) = 1.0364084 x 10 E(amu cm /sec2)

This is based on Cohen and Dumont.15) In the cm-amu-sec system E = 1/2 my2

Let 1 denote the projectile, 2 the target, 3 the light scattered particle,

and 4 the heavy scattered particle. This is clearly for convenience -.s inter-

change of 1 and 2 or 3 and 4 cannot have a.. influence on the scattering. In

other words, 2 may be used to denote the projectile and 4 may denote the heavy

scattered particle depending on 4hat kinematic information is desired.

The kinematic relations .re summarized

M v1 + m v =m v 4 m v (11! 1 2 2 3 3 4 4

E1 + E2 + Q = E3 - E4 (12)

where Q reaction Q value adjusted to proper units using Eq. 8. AMgles are

measured with respect to the direction of particle I for convenience from an

experimental point of view.

Equations 11 and 12 specify v3 as a function of e3. In particular,

V 2 m -mV3 [m (mVlCcos 03 + m2 v2 cs 023)]

(13)

[m1  m 2  mlm2  1+ 1)E + (--1)E2 + V V2 os 2.-Q 0

cos 023 cos 02 cos 03 + sin 02 sin 63 cos( 2-I 3 )
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This quadratic form, Av4 + Bv3 + C 0 can be solved for v3 . There t,,y be 0,

1, or 2 solutions depending on the satisfaction of the conditions (i) v,> 0

and (ii) v3 real.

(i) means (-B + V2 - 4AC /2A_, 0

(ii) means B - 4AC > 0

Then v4 follows from Eq. 11.

Center of mass velocity:

mI m2
CM mm 1 m+m 2 2 (14)

1 2 1 2

i- CH +i i= 1, 2, 3, 4 (15)

It, therefore, follows that

V33dLAB V -3 dCM (6

Scattering angle: The initial velocity of relative motion is given by the

equation

>

q 1 2 1 ~2 (17)

The final velocity of relative motion is given by the relation

> > • -

f 3 4 3 4

The scattering angle is defined by the expression[ > (I>o
cose = qo qf/(ln II qfl) (19)scf 0 f

Note that it is convenient to ascribe an orientation to these angles. The

orientations such that V x x ýI, and qf x q are up define positive4 1 3 1' qxq1 aeudenepstv

angles. Using a similar convention, 02 and 0 should be negative. At present,
cm

these are read in and printed out as positive angles.
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transformation a lab/ c.m, and the velocity of the scattered projectile are

plotted as functions of the laboratory scattering angle 03 in Figures 22, 23,

and 24. Each of the plots are divided into three segments which are labeled

according to the appropriate value of 4lsc or .3" The angle ý is.measured in

a counterclockwise sense along the beam 1 direction.

In this example, t1- relative angle between the beams is 900 which

prevent.- the observation of the scattered yield at 90* (and 2700) in the

laboratory. In Figure 22, it is seen that the scattering angle 0st of 1500

cannot be measured at 03 = 900 because of the beam 2 position, but it can be

observed at 03 approximately equal to 1320.

For the regions labeled 1, 2. and 3 the transformation of the differential

cross section from the center-of-mass frame to the laboratory frame given as a

ratio is plotted in Figure 23. An expansion or reduction of the angular resolu-

tion results depending on whether the observation point lies below or above

la la C..=1.°lab/°c.m.=I

In Figure 24, the velocity of the scattered particle is plotted against

the observation angle 63* Again, there are 3 segments in the plot depending

on the choice of the values of 53 and sc"

In this discussion the trajectories of the reactants and the products are

assumed to be coplanar. The three dimensional case can be, of course, prcgrammed.

Recently, Desloge16) derived an analytic form for the transformation which per-

mits the calculation for given starting conditions without resort to diagrammatic

techniques.

D. Reactions

While several reactions involving heavy collision partners have been

studied, it is apparent from the discussion of experiment design that collisions
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requires low center-of-mass collision energies corresponding to room temperature

or below in order to limit the number of partial waves involved in the collision

and to reduce internal excitation to a minimum. These restrictions direct at-

tention to the (inderstanding of the simplest collisions, an accomplishment not

extant at this time. Once simple elastic scattering is understood at least in

terms of improved molecular particles, rearrangement reactions can be considered

as the next step. This basis is needed for a "state of the art" investigation

of more complicated chemical reactions such as those responsible for the forma-

tion, -cability (or absence thereof) and detonation of explosives.

The problem is to understand, in terms of individual events, the mechanisms

which control bulk chemical reactions. These mechanisms are usually discussed

in terms of classical or semi-classical approximations. 1 7'18) Recently, Micha 19 ,

has discussed compound state resonances in atom-diatomic-molecule collisions in

terms of a modified Feshback theory. His work reinforces the approach developed

here in two ways. First, as a result of a detailed quantum mechanical discussion

of the collision mechanism, resonance states are computed for the system Xe + H2

and the system Xe + D2. Second, in order to precisely fix the parameters of this

collision analysis, the need for experimentally determined potentials is pointed

Out.

Another extreme type of reaction has been discussed by Karplus, Porter,

and Sharma2 0 ) for the collision of a hydrogen atom with a hydrogen molecule.

Their analysis indicates that a direct reaction mechanism is dominant. That

is, the collision time is comparable to the transit time of the projectile

across the diameter of the target. Such extreme situations are well known in

nuclear physics and it is only a careful measurement of the differential cross

section as a function of both angle and energy which generally provides a proper
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[ estimate of the relative contributions of resonance mechanisms and direct

reaction mechanisms. Here again the need for precision scattering data is a

principal requirement for the next step towards understanding the reaction

mechanism.

Perhaps the most richly developed theory for collisions between microscopic

particles is that built on the R-matrix. For example, see the recent application

of R-matrix theory to nuclear physics by Lane and Robson.21) Several authors

have applied the R-matrix theory to chemical reaction problems, 2 2 ' 2 3 ) but the

full pcwer of this approach has not been brought to bear on the problem because

of the lack of suitable data and sufficiently extensive theoretical investigation.

An objective of the R-matrix theory is the separation of the energy dependent

parts of the cross section from energy independent (or nearly so) parameters which

cnaracterize the reaction mechanism. Mathematically, the essential feature of

the analysis is the separation of space into an "internal volume" in which the

interaction forces are large and an "external volume" in which the forces be-

tween the particles are small or nonpolarizing. The distinction between several

types of forces involved in molecular collision mechanisms is important here and

influences the choice of internal and external regions. A variety of reaction

mechanisms may be parameterized, such as long lived intermediate systems, direct

reactions, and step.-wise reactions which involve more than one identifiable

intermediate stage.

E. Scattering

Scattering data and the molecular potential parameters derived from such

data are the raw material for several models for chemical reaction mechanisms.

They are also of intrinsic importance. Consider the collision between two low

- energy neutral helium atoms. While the collision partners are among the simplest

available, the experimental investigation of this collision can, at best, be
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described as inadequate. For the most part, data consists of total cross

sections rather than the far more sensitive differential cross sections.

From detailed differential cross section measurements come more precise

deteruinations of the intermolecular potential.24) As pointed out by Aldridge

aud Davis 25 ). provocative results are obtained with the PMD (See Figure 15) when

calculations for the total cross section and phase shifts are carried down to

very low energies. They find that the conditions for the Ramsauer-Townsend

effect in the collision between two helium atoms are satisfied at a temperature

corresponding to the lambda point for liquid helium II. A plot of the phase

shifts and the total cross section is shown in Figure 25. In collisions where

the Ramsauer-Townsend effect operates, one particle, in this case a helium

atom, passes through the other with no change. This looks like microscopic

superfluidity. Its relation to the dramatic bulk superfluidity property of

liquid 'ielium II )-as not been worked out. Confirmation of this possible insight

into quantum fluids must await further experimental investigation, in particular

the measurement of angular distributions over a wide range of energy, and a

detailed theoretical analysis of the results.

VI. CONCLUSIONS

Both in energy and in beam species molecular collisions between helium

atoms for which the conditions of the Ramsauer-Townsend effects are satisfied

are rather different from the molecular collisions of the formation and detona-

tion processes in exploaives. Current research interests in the collisions

between simple particles is motivated by the absence of previous research,

molecular collision physics as described here is a new field, and the power of

such investigations in the development of collision models. At present, reliable

differential cross sections as functions of energy and angle have not been

measured over a wide range of parameters for simple collision partners.
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From an understanding of the collisions between light atoms and molecules

under conditions such that quantum mechanical details are apparent will come

appropriate models and theories for the analysis of more complicated collisions.

The first in the hierarchy of increasing complexity are the rearrangement collisions.

The rich and diverse reaction theory worked out for nuclear collisions can be

adopted to such molecular collisions.

Because of the rapid increase in orbital angular momentum, complexity of

internal excitation, and the number of both incoming and outgoing channels which

results when complex molecules interact, it is difficult to extract mechanism

details from such interaction data. Certain systematics will, of course, ezerge.

For example, it appears that several of the alkali beam experiments can be

explained by a direct reaction mechanism.

The technology is now available to investigate the quantum mechanical

details of many molecular collisions. The equipment is, as Saul Wexler of the

Argonne National Laboratory put it, "at the point where nuclear physics equip-

ment was during the 192?)'s." Development should be no less rapid.

VII. ACKNOWLEDGEMENTS

The author is indebted to his colleagues in the molecular collision

physics group at the Florida State University for numerous discussions and

the use of research results prior to publication. The members of the group

are the following:

Experimentalists Theorists

J. P. Aldridge E. A. Desloge
R. H. Davis D. Robson
J. W. Sheldon
W. N. Shelton
J. G. Skofronick

31



REFERENCES

1. F. A. Baum, K. P. Stanyukovick, and B. I. Shekhtev, Physics of an
Explosion (translated from Fiz Matgiz, Moscow by Research Information
Services, New York), (1959).

2. E. H. Taylor and S. Dtaz, J. Chem. Phys. 23, 1711 (1955).

3. E. F. Greene and J. Ross, Science 159, 587 (1968) (a popular review paper.)

4. J. P. Toennies, Chemische Elementarprozesse edited by H. Hartmann, published
by Springer-Verlag, Heidelberg (1968).

5. T. G. Waech, K. H. Kramer, and R. B. Bernstein, WIS-TCI-248X Theoretical
Chemistry Institute, University of Wisconsin (1967).

6. A. E. Grosser, A. R. Blythe, and R. B. Bernstein, J. Chem. Phys. 42,

1268 (1965).

7. L. R. Martin and J. L. Kinsey, J. Chem. Phys. 46, 4834 (1967).

8. J. G. Skofronick and K. T. McArdle, (submitted to Rev. Sci. Inst.).

9. A. Kantrowitz and J. Grey, Rev. Sci. Inst. 22, 328 (1951).

10. J. G. Skofronick, Rev. Sci. Inst. 38, 1628 (1968).

11. K. T. McArdle and J. G. Skofronick (to be submitted).

12. E. A. Desloge, R. S. Grace and J. G. Skofronick (submitted to J. Chem. Phys.).

13. J. P. AIdridge (to be submitted).

14. J. P. Aldridge, Compi-ter Program PUFF-I (unpublished).

15. E. R. Cohen and J. W. M. DuMond, Rev. Mod. Phys. 37, 537 (1965).

16. E. A. Desloge (in preparation).

17. D. L. Bunker, Theory of Elementary Gas Reaction Rates, (Pergamon Press,
Oxford, 1966).

18. H. S. Johnston, Gas Phase Reaction Rate Theor., (Ronald Press, New York, 1966).

19. D. A. Micha, Phys. Rev. 162, 88 (1967).

20. M. Karplus, N. R. Porter, and R. D. Sharma, J. Chem. Phys. 43, 325A (1965).

21. A. M. Lane and D. Robson, Phys. Rev. 151, 989 (1967): D. Robson and A. M.
Lane, Phys. Rev. 161? 982 (1967).

22. B. C. Eu and J. Ross, J. Chem Phys. 44, 2467 (1966).

32



23. L. Blum, Molecular Physics 1i, 06 %-9oo6.

24. R. B. Bernstein and F. A. Morse, J. Chem. Phys. 40, 917 (1964).

25. J. P. Aldridge and R. H. Davis, Phys. Rev. Letts. 19, 1001 (1967).

3

33



4-

4-44

00
4-1

Cl

34-



0

0-

zz
00

wI
WI
F3 0

I w

I C)

Iz
35'



0 0 0 0 0 0 0 0 0
N N N N N N N N N ....
H I'i H H H H H H H--..
C C C C C C C C C ....
o 0 0 0 0 0 0. 0 O....
N N N N N N N N N'...
H H H H H H H H H ....
C C C C C C C C C-

HYPOTHETICAL ATOMIC ARRAY

Hypothetical energy storage syster

Fig. 3

36



F

CC)

0

K 01

CU

0

In-

37

i i im I i m ml mnu l • I ~ im



00

u

w 0

€• ~u
0)

6ý0

m o

4-4

30
C) 0

00:

00

04 0

co

383



-0

co• o, 0 "
01

Y- w -0
00 0

w >o

a.a
U°)

o ~0'
00

0 W

>

z AQ

w

00

0-

14,

10

0l I t I t I I i ! .. " .,

0 0 0 0 0 4
0 0 0 0 0
0 0 OD 0

39



I-N

LLI

LLL

LL,4

W LL 1  0

I---- -0 E 1aw
1: (-

W( 0 - ý

+11 +1' U)

C) r1* I.iS*-4

I 0,

0j I U) 1

< 0
U) 44L

w

41)



•€OD

CL

0.0.

CL co

go+ 0

bo

0

V
4
1

0

caa

0

0

00

'S.

plaiA

o1

4- a)



0

"44

+o 0

1.4

+

00

"c.

0

.0

oo

t
*0

I.0

V4.

"42



w
cr N

0 N
H 0

z

wl 0

CLC

0~0

U0.

U)U

00

00

00

zz

w 0

zz

(DI

43



LL

(xnij) AllSN31Nl 3) V-

44



0

w

44

mC -1

44

'41Ht
000

C).

tcC)

CCC.

4500



IF
a) 4-) r

(1) 4-4 )0

rN IN ~ 0 r
0J 04 0 4-

E) 10 44 (1 to HL
o0 04) 4-)C 4

N- H r *H C);
a) 'd Enl 1: (

04 >1 En rd to >
I 4-' U $-4(L) %- ~ r4 00 0

j2~~ 04C 0 00
X > $4 0+> 00 E(D IE-44-) H I

I ~(n (1 U, C)>

p-Ib ICco

04 -

0

44U

N 
CE

4-446



LL
0

I.. .... I fil .. . I C l)0

! E•

ii

1w

I>

Ii 0N

I04 "4)

0

CC))

1 0

0 0 -

00 LO to) M

V - N01103S SS08Z0 3Ali13=dJ3

47



C-i

0a

48-



n

LAJ
La
0.
2

4
0 USC,
'A.

'a-5
E
U (hi-
2 04

4
(.)CO

aww
U-

U'
4
0

0

0.a a-I

a. 0
. a-I

2 1�I U

U, �Z4 -4
U- J. 0
IA.a

0
_____________ 0

0
I.'
U

'.4
0

".4*1

r

L
49

r
w

V _ -- __- -�



________ ---- pi~w
________-, -, -, o

0 0

44 ~44 i f
'-"4 0 0 00

>4~ >1 La (n 4J. 0
S I *ri *di 4) 0D 4 4)0

> 0 U.

>0 0 MD %4Hý 0,

>1 >I Hn mI *
4-) 4J > 0

Cfl$4

0 004 0 4 )*9J+ 4
0 0

> k 0 ((%H 41 ::' H >

> >. Wi 1 tN
HIIf

4.4
u

LL.4

4-4

05



W

.- W.

WA. a.

41f-

owin w -

0-4

Ix 0
W~~~z w *-4C

rea I 1I ;:$
w owI W, ,c

cI I-

u 0 ow c.- <4
aw L 0 X'

.. a 0~ -J- I CC
cc ~ I Cr - I

Ol i w U~ U' *z f ~

~~It Ra I Zo 0 k ~ ~ ~ NI a

L _u-------i L ----------

5.4

9. 0

hi

4c-

1K51



100

Ioo :M p-200///'0 /20

E
a

5

10

5

0< p-

E

.0,

I 2 5 I0 20 50 •00 200

S • ~MT =Mass of Target

•- • Plot of ¢C against Mt and M
;:iFig. 19P

0552

}M



M1M2  3 M/3

' M2-I (M1  , ) M , ,3 (A x hydrogen mass units)

a = .209 E (P=o1) 0 z= 30E/r 2

20.9 F. (p 1O0) r"= 2p 2

': 100
b / c

r .01 Di i Classical Regionr 01e/
' I10-- Dif fraction /"

Region
5/

[r' eVt P= 50

E
v I Resonance

SRegion

.5/

/= 10t r itevý

.01 .02. .05 .1 .2 .5 1.0 2.0 5.0 I0.0

Ec.m.(eV)
Molecular collision phenomena domains

Fi§ 20
53



V4
vI

Beam2 3 bem V4

VELOCITY
DIAGRAM

Velocity diagta

Fig. 21
54



H2 (H, H) H2

Scattering Angle vs. 03

900 Between Beam Directions

EH EH 2 = 1/40el Beam 2/

ISOC

//
//- S

3 /r
S100 TscTr

500

500

0 30 60 90 120 150 180

E3
Fig. 22

Plot of scattering angle versus 8
3

55



r -- -- ---

IH2(H, H) H2p

cm to lob conversion

90* Between Beam Directions
EH EH: 1/40 eV

1.00

0 30 60 90 120 150 180

e3 (deg.)
Reference framie transformnation for cross section

Fig. 23
56



H2 (.H H) H2

Velocity of scattered H

900 Between Beam Directions

3.0- EH EH2  1/40 eV

IE
0 2.

.0-

Rn

0 30 60 90 120 .150 180

03 (deg.)
Velocity of scattered H as a function of 83

Fig. 24

57

2 ___ ____



T T(0K)

0 2 4 6 8 10 12

240 '240

I - -~ Q1
200 200

160 i -160

NN

Io ./.i o s

40 , 4 00 /

80 0.1 0.8. 010

•{ EcM(meV)

S •, iComputed total cross section and phase shifts for

[ i i helium-heliva= scattering at low energies

Fi.2
I5



.. . 7 - -I - - ' 7 ! __ .. . . . .. 7 ......

Electronic Structure and Chemical Instability of Explosives*

Ferd Williams
Physics Department, University of Delawaxe

ABSTRACT

After briefly reviewing some experimental results which indicate that

electronic states and electronic mechanisms have an influence on chemicni

instability, we consider the problem theoretically and find that, in an

extension of the quantum mechanical adiabatic approximation, the dynamics

of atomic motion during a detonation are governed by an effective potential

whose dominant term is the electronic energy eigenvalues which are dependent

on the atomic coordinates. The range of validity of the approximations used

iai thus establishing a relation between electronic structure and chemical

instability is discussed. We consider the electronic states, and electron

and exciton transport, in the region of the detonation front and conclude

that the gradient in the energy bands arising from the large pressure gradient

and the resulting anisotropic electronic transport may have, in some materials,

appreciable effects on initiation. Representative primary and secondary

explosives are then considered from the point of view of modifications of

their electronic states or of their Fermi levels in order to alter explosive

characteristics. Finally, we suggest the following: single crystal explo-

sives detonated by electronic mechanisms, homogeneous mixed crystals with

intermediate detonation characteristics, and inhomogeneous graded mixed

crystals with nonsteady state and unidirectional characteristics.

SPrepared for Explosives Chemical Seminar at Army Research Office-Durham,
* October 21, 1968.
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I. Introduction

In this paper we shall consider the possible effects of the elec-

tronic structure of molecules and crystals on the chemical instability, and

actually the detonation, of explosives. The analysis will be necessarily

preliminary rather than rigorous and thorough, and will be sometimes super-

ficial and occasionally speculative. This is perhaps appropriate for somt.-

one whose specialization i: electronic structure of crystals and who has

been invited to explore possible relevance to explosive phenomena. It also

seems appropriate because of the lack of published works relating electronic

structure to initiation and detonation.

The lack of published works on this subject arises for two reasons.

First, the theory of the electronic structure and electronic transport has

only recently become anywhere near adequate to cope with materials as

complex as lead azide on one hand and 1, 3, 5, 7-tetranitro-1, 3, 5, 7-

tetrazacyclooctane (QMX) on the other hand. Second, the hydrodynamic

theory of detonations has been remarkably successful in explaining the

velocities of detonations, 1 and initiation-has been reasonably well explained
2

in iost cases as ultimately thermal in origin.

II. Experimental Evidence for the Inter-relation of Electronic Structure
and Chemical Instability

Nevertheless, there does appear to be experimental evidence that the

electronic states, transitions and occupational probabilities of these states

may be involved in the chemical decompositien ef inorganic and organic

materials, including explosives.

1Evans, M. W. and Ablow, C. M., Chem. Rev. 61, 129 1961)

2Macek, A., Chem. Rev. 62, 41 (1961)
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A classical example of chemical changes arising from electronic

processes is the radiation damage of alkali halide crystals. Ionizing radia-

tion generates atomic defects in these crystals, specifically halogen vacan-

cies and halogen molecule negative ions, by electronic mechanisms. These

are genuine chemical changes in the sense of creating different molecular or

structural entities. The generation of crystal defects by electzrnic mecha-

nisms may occur in materials whose band gap E is large compared to the
g

energy of formation of the defects Ed, because E is the maximum energy

which is storable in electronic modes before atomic relaxation to form the

defect. This requirement is not severe for explosives, in which Ed is

negative for those defects involved in the decomposition. More immediately

relevant to explosives than the radiation damage of alkali halides is the

photo-decomposition of alkali and other metallic azides to form defects

such as N4  and N2 observed in electron spin resonance by King et al, 4

5 6Gilliam and co-workers, Marinkas and Bartram, and others. The photo-

decomposition of silver halides and of organic dyes also involves electronic

transitions.

The electronic states of crystals are dependent on crystal structure.

Some inorganic explosives, for example, lead azide and many organic explo-

sives, for example, TNT and IMX exist in several structures. The initiation

3Crawford, J. H., Advances in Physics 17, 93 (1968)

4 King, G. J., et al, J. Chem. Phys. 32, 940 (1960); 34, 1499 (1961);
35, 1442 (1961)

5Gilliam, 0. R., et al, J. Chem. Phys. 33, 622(1960); Phys. Rev. 125,
451 (1961)

6Marinkas, P. L. and Bartram, R. H., J. Chem. Phys. 48, 927 (1968)
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characteristics for each of the polymorphs are found to be different. This

may be explainable in terms of the differenccs in electronic states for the

different crystal structures.

Finally, the effect of doping with charged impurities on the

decomposition of explosives either through changes in the electronic energy

levels or through changes in their occupational probability, i.e. Fermi

level, is of interest. Fair and Forsyth7 have reported changes in the

photelytic decomposition of lead azide by doping with iron. They have

correlated the decomposition with exciton and impurity absorption and

photoconductivity, all three of which are purely electronic processes.

We shall, therefore, be concerned with relating electronic structure

with chemical instability in the most general theoretical analyses, and with

the following: the energy transport during detonation by electronic mecha-

nisms, the possibility of initiation by nonthermal mechanisms, the origin

of the difference in stability of organic and inorganic explosives, and

electronic means for the possible more efficient use of the energy of

explosives.

III. General Theory Relating Electronic Structure to Chemical Instability

Matter consists of electrons and atomic nuclei. We specify the

spatial and spin coordinates of the i-electron by i and the spatial

coordinates of the j-nucleus by R.. According to quantum mechanics a system

in a state is described as completely as is possible by a wave function which

is a function of the coordinates of all the particles. In general the wave

7Fair, H. D., Jr. and Forsyth, A. C. Sixth International Symposium
on Reactivity of Solids, August, 1968, Schenectady (To be published).

62



function is also time-dependent, however, we shall be concerned in this

analysis with stationary states and with the solutions of the time-

independent Schrodinger equation. The time-dependence of the chemical

reaction will be taken care of through transitions between stationary

states. For a system of n electrons and N nuclei we have the many

particle wave function:

,(¢i,2,.. nRIR_2 ..... NI (•R) I

where the dependence on & and R indicates the dependence on all electronic

and nuclear coordinates, a notation we shall now follow. The many particle

wave function satisfies the Schrodinger equation:

H 'p(&,R) =E ~P(C,R), 2

where H is the Hamiltonian operator involving terms for the kinetic energies

of all particles and for all electrostatic interactions, and E are the

energy eigenv&lues.

From the difference in mass of the electrons m and of the nuclei

M. and from equipartition if energy, it is evident that the electrons move

rapidly compared to the nuclei and, therefore, will exist in separable,

approximate stationary states which are smoothly modified by the motion of

the nuclei. This is of course the well-known adiabatic approximation of Born

8
and Oppenheimer. In order to solve for these electronic stationary states

we consider the nuclei fixed in the following. Schrodinger equation:

Hei 1 = E(el(R) "RL-' (3)

8Born, M. and Oppenheimer, R., Ann. of Phys. 84, 457 (1927)
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where H iS the part of H which involves electronic coordinates, R

specifies the fixed R... R , and Eel (R) are the electronic eigenvalues

or electronic structure which are of course dependent on R. Again, in

accordance with the adiabatic approximation we take i to be the following

form:

= ¢R xCR). (4)

Substituting Eq. 4 in Eq. 2 and using Eq. 3, we obtain the following for

the Schrodinger equation which governs the motion of the nuclei, if we

neglect two terms to be discussed later:

2
+ E-2W e AR. + V(R) + X 1R) = EX(R) (5)

where A is the Laplacian and V(R) is che direct interaction between nuclei.

The important conclusion, however, is that the electronic structure Ee (R)

is a major term in the effective potential which governs the motion of the

nuclei. In the usual application of Eq. 5 only displacements in R about

equilibrium sites are involved. For the large excursions in R occurring

during chemical reactions, the approximations must be re-examined. It is

expected, however, that Eel(R) will persist in the effective potential for

the motion of nuclei even during detonations. We believe that the initial

assumption of the slow motion of nuclei versus rapid motion of electrons

remains approximately valid for detonations. For typical electronic states

of molecules and solids, Eel ! 1 eV,and therefore the orbital time for

electronic motion < I015 sec,which is shorter than any process occurring

6
in a detonation. For example, for shock velocities vs = 10 cm/sec the time

to transverse an atomic layer T 'U 10"14 sec. The departure from stationary

electronic states is actually one of the terms neglected in obtaining Eq. 5,

mand this term can be shown to be of order • compared to terms retained.
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The other term neglected in obtaining Eq. 5 is the following:

).KR. {VR R(•)VRX(R)). (6)J :1 -- --

The diagonal elements in the matrix formulation of this term vanish if the

number of electrons is conserved, as is the case for non-nuclear reactions.

The off-diagonal elements correspond to electron-phonon interaction. Further

analysis is necessary to determine whether phonons remain a valid concept

or whether Eq. 6 diverges in the chaos of the detonation.

We shall continue, assuming Eq. 5 to be approximately valid as the

basis for Fig. 1. The effective potential

Veff=V(R) + Eel(R_) (7)

is plotted versus the nuclear coordinates or reaction coordinates R.

Because of the double minima the eigenstates X(R) for the system are not

in general simple oscillator funct.ons. They are however bound states

because Vfef ÷ at the extrema of R. The reaction is visualized as

proceeding from an initial "clamped" state to the final equilibrium state

by the perturbation from electron-phonon interaction. The initial and

final states are describable as linear combinations of the complete set

of x(R). The electronic states Eel(R) at all intermediate configurations

R between the initial and final configurations are of course involved in

determining the X(R). To reduce somewhat the complexity of the problem,

the core electrons which survive the reaction unchanged can be grouped on

their respective nuclei and V(R) taken as the ion-ion interaction. In any

case, it is evident from Eq. 5 and Fig. 1 that the electronic structure

Ee (R) plays an important role in chemical reactions, including detonations.
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IV. Electronic States and Electronic Transport in the Region of the
Shock Front

The classic theory of detonations of Doering, von Neumann and

Zeldovich (see footnote 1 for criginal references) considered the shock

and chemical reaction zones separate; the pressure wave heating the

unreacted explosive so that the reaction occurs thermally after an induc-

tion period. Hirschfelder and co-workers 9 and Wood1 0 investigated the

effects of coupling of the shock and reaction zones. We are concerned with

the electronic structure in the region of the shock front and with possible

electronic transport getting ahead of the shock and contributing to

initiation.

We therefore look at the details fore and aft of the shock front

11
in condensed explosives. Ilynkhin and co-workers give the shock velocities

*v, the pressure behind the shock front P, and the ratio of specific volumes

after and before shock compression V/V0 for cast TNT, crystalline RDX and

5
nitromethane. These quantities are approximately S x 10S cm/sec, 10 atm

and 0.7 for these explosives. The important observation to be made is that

the electronic structure Eel(R) in the region of shock compression is in

general quite different than for the uncompressed explosive. As

noted earlier, the electronic states are approximately stationary at shock

velocities. The initial predictions for most explosives are that the allowed

electronic bands are wider, the forbidden energy gap narrower and all states

9llirschfelder, J. et al, J. Chem. Phys. 28, 1130, 1147 (1958);

30, 470 (1959)

10Wood, W. W., Phys. Fluids 4, 46 (1961)

1lllynkhin et al, Dokl. Akad. Nauk L3, 793 (1966)
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are perturbed towards the vacuum level in the high pressure region. The

first prediction is evident for organic explosives because the overlap of

the molecular wave functions is increased by compression; the last, from

consideration of the increase in kinetic energy of the electrons confined

to the smaller volume.

The second feature of the region of the shock front with which we

are concerned is the spatial dependence of the electronic structure. If

the pressure gradient is only over one or two molecular distances, then we are

dealing with an abrupt semiconductor heterojunction whose electronic trans-

port properties are largely determined by space charge effects; if the

pressure gradient at the shock front extends over at least 100 molecular

distance then, as was shown by Gora and Williams12 for graded mixed crystals,

the concept of a graded band gap is valid. Craig estimated the reaction

zone length for nitromethane at 10 cm from extrapolation of the equation

of state for the unreacted material and from thermodynamic adiabatic (not

quantum mechanical) explosion theory. The shock front is probably thinner,

-6therefore, we take X % 10-6 cm as an estimate of the length of the pressure

gradient and consider the system as having graded band edges. More quanti-

tative determinations of the width of the pressure gradient and of the

electronic structure in the high pressure region are needed for typical

solid explosives. Fig. 2 includes estimates of these two features of the

electronic states in the region of the shock front.

12Gora, T. and Williams, F. II-VI Compound Semiconductors
(Benjamin Press, 1967) p. 639

k 13
Craig, B. G. Tenth Symposium on Combustion (1965) p. 863

67



We now consider electronic transport in the region of the detona-

tion front. The following analysis applies to conduction electrons or to

positive holes in the valence band and with straightforward modifications

to coupled vlectrons and positive holes (excitons). The component of the

current density arising from ordinary diffusion is:
= ~dn(8

nv -D D , (8)

where n is the carrier concentration, vD is the diffusion velocity and D

is the diffusion constant. Our primary concern is with the order of magni-

tude of velocities compared to shock velocities v therefore:

n-no 1
vD 2 D -V-' (9)

and for negligible charge carriers in front of the shock we have no << n.

Using the Einstein relation D Eq. 9 can be solved in terms of thee
mobility p. For an order of magnitude calculation we take V • 1 cm2/Vsec,

typical for a very poor inorganic semiconductor and for a good organic

semiconductor, I • 10-6 cm as estimated Dreviously and T P 30000K, and

obtain vD ' 2 x 10 cm/sec which is the magnitude of but less than vs.D •
Incidentally, v is reduced by the high temperature but increased by the

high pressure (10 atmospheres); the latter is particularly pronounced for

organic semiconductors. A value of p for the conditions at the shock front

of the magnitude observed at ordinary temperatures and pressures for good
S2

inorganic semiconductors, i.e. 104 cm/Vsec, would obviously result in the

electronic excitation outrunning the shock wave.

In addition to the ordinary diffusion current, there is an additional

anisotropic current arising from diffusional effects in systems with graded
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band edges such as shown in Fig. 2. Van Ruyven and Williams14 derived

this anisotropic diffusional component of the current density:

- D dE(x) (10)
A A ( J10

where E(x) is the position-dependent band edge for the n electronic

carriers. For the same hypothetical system just analyzed for vD and with

E - E estimated as 2 eV from considering the change in energy levels of
0

an electron in a box of molecular dimension on compression (V/V 0 0.7),

6we find vA " 2 x 10 cm/sec. This exceeds vs. In general, for n << n,
E-E.

vA exceeds vD by the factor ,

In order to have the electrons, positive holes or excitons, whicIL

are generated in the detonation region, p.-ecede the shack front and

conceivably contribute to initiation, it is also necessary that their

-l 12
lifetime Te exceed the threshold value Z/vA 10 sec. This requirement

does not appear to be severe.

The anisotropic diffusion of electrons or positive holes in advance

of the shock front will yield a space charge and result in an electric

field traveling with the shock front. This effect which arises from the

graded band edges may explain the voltages measured in shocks. For example,

i5
the observations of Eichelberger and Hauver of shock-induced electrical

polarization in distilled water may originate from graded band edges,

probably for the states involved in protonic conduction.

14Van Ruyven, L. J. and Williams, F. E., Am. J. Phys. 35, 705 (1967)

15Eichelberger, R. J. and Hauver, G. E., Les Ondes de Detonation,
Paris CNRS, p. 363 (1962)
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In general, any theory of electronic effects in a detonation

must include the effects of the graded band edges such as shown in

Fig. 2. In addition to band edge transport, electron tunneling is also

shown and would be included in a more complete analysis.

V. Electronic States, Fermi Levels and Decomposition of Representative
Explosives

As a representative primary explosive, we shall consider lead

azide; as a representative secondary, HMX. Both are important militarily;

both are challenging scientifically. It now seems that single crystals of

both materials can be prepared and used for measurements of electronic

properties. We shall consider in a preliminary way a few aspects of their

electronic states and the occupational probability of these states, as

described by the Fermi level, relevant to the decomposition of these

materials.

Perhaps the most striking feature of a preliminar:y consideration

of the electronic states of lead azide is the diversity of types of excitons

which it may have. In addition to the charge transfer excitons, well-known

in alkali halides, and effective mass excitons, well-known in elemental

semiconductors, one predicts for PbN6 : intracation excitons (excited states

of Pb+2 , IP and 3P of the is2... 5d 1 06s6P configuration, modified by the

complex crystal field of the PbN6 stricture) and intra-anion excitons

(excited states of N"). These offer possibilities for the transport of

electronic energy.

Slow decomposition or initiation is predicted from Eq. S and illus-

trated in Fig. I to depend on occupied electronic states. The Fermi level

is the energy of the state at the top of the electron distribution, or more
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precisely, the energy for which the occupation probability is one-half.

If we assume that during the early stages of decomposition, or during

initiation, PbN6 undergoes the following reaction:

2NS- 3N2 + 2e-, U11)

and that lead metal is not precipitated, then the electrons (2e) of Eq. 11

will be in the conduction band, perturbed, howeter, by the field of the

[N3-] vacancies. The electrons will be in F-center bound states, the Fermi

level will have risenand the n-type electronic conductivity increased, The

electronic states El (R) in the effective potential Veff of Eq. 7 which

governs the motion of the nuclei in Eq. 5 will have changed. Higher Veff(R_)

functions on Fig. 1 should now dominate the chemical reaction. It is tempting

to predict that initiation occurs rather generally by a rising Fermi level.

The well-known memory effect in explosives subjected to repeated partial

decomposition may be explainable by accumulated changes in the Fermi. level.

Similarly, if both positive holes p+ and electrons are electrically

injected into PbN6 (double injection), the Fermi level will also rise if the

positive holes are removed by the reaction:

2N3 + 2p+ - 3N2, (12)

and the compensating electrons occupy perturbed conduction band states. In

other words, appropriate electronic injection can in principle achieve the

same Fermi level change which may be essential to initiation.

HMX or 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazacyclooctane exists

r in four polymorphic forms. These are molecular crystals. Both intramolecular
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excitons and intermolecular (charge transfer) excitons are predi:ated.

Electronic charge transport depends on overlap of the molecular wave-

5functions and is therefore enhanced by the pressures (10 atmospheres)

in the shock wave during detonation. The mobilities of both types of

excitons are also enhanced by pressure.

16Surya Bulusu, it al have determined with isotopes that the

thermal degradation of HMX proceeds by breakage of C-N bonds. It is

important to determine whether charged intermediates are formed during

decomposition, and even during detonation, because these would change

the Fermi level.

VI. Homogeneous and Graded Mixed Crystals

It is well known in semiconductor physics that most homogeneous

mixed crystals of semiconductors have electronic bands intermediate

between those of the pure components. This can be explained theoretically

on the basis of the virtual crystal approximation, in which the statistical

distributions of unit cells in the random alloy are replaced by an average

unit cell. Because the de Broglie wavelength for the electron is large

compared to unit cell dimensions, the electron responds to the field of

the average cell and has the corresponding band structure. To the extent,

therefore, that the electronic states influence initiation or detonation,

mixed crystal explosives may offer interesting intermediate characteristics.

For example, within the constraints of solubility limitations due to differences

in crystal structures of copper azide and sodium azide, CufNalfN may warrant

experimental studies.

1 6 Bulusu, Surya, et al, West Point Conference on Army Hateriel
Command
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In addition, mixed semiconductors with graded compositions have,

as described earlior relevant to gradations due to prdssure, graded elec-
14

tronic properties, for example, graded band gaps. A graded mixed crystal

explosive should have predictable, nonsteady state, detonation characteris-

tics. The nousteady time dependence and partial directionality of the

detonation may permit greater utilization of the energy of the reaction.

VII. Concluding Remarks

In conclusion we emphasize that there are two points of view that

can be taken regarding the impact that investigations of electronic structure

and transport may have on explosives research. The first which is emphasized

in this paper concerns the understanding of phenomena well-known for conven-

tional explosives; the second which is quite speculative concerns the inves-

tigation of qualitatively different phenomena and materials relevant to

* initiation and detonation as a consequence of detailed consideration of

electronic processes.
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Figure 1

Effective potential for atomic motion during detonation versus

generalized reaction coordinate. Different curves correspond

F to different electronic states; vibrational levels for initial

and final configurations are also shown.
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Figure 2

Probable electronic structure of unreacted explosive versus

direction through shock front. The pressure fore and aft the

front are respectively po and p; electronic transitions, trans-

port and tunneling are also shown.
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Figure 3

Approximate electronic energy level structure of lead azide.

Transitions for creation of the following excitons are included:

Effective mass excitons, a; intra-anion excitons, b; and

intracation, c.
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Introduction

A connection between the propagation of particle waves and deformation

1,2in crystalline solids has been presented in earlier publications . In general

the nonelastic deformations of such solids are considered to result from the

motion of certain initially field-free or "free" atoms in a solid in very loose

analogy with the free electron theory of conduction. These atoms, moreover,

are supposed to move thirough a t'Tystal as particle momentum waves with wave

lengths calculated from the de Broglie relation X - h/mvi ; vi is the final

velocity acquired by the free atoms just before they pass beyond their initial

field-free regions, h is Planck's constant, and m is the atomic mase A

schematic representation of both external and internal field-free atoms in

relation to a crystal lattice is shown in Fig. 1. The internal field-free

atom of Fig. lb is, of course, no longer field-free if a stress, Y0, is produced

in the crystal by an external load. Instead such an atom will now be subjected

to a force, F = Y , where • is the number of atoms per cross sectional

area in the region of the stress.

An atom located in an initial field-free region of width pd in the

direction of the force will then be accelerated as a particle until it reaches

* the end of the field-free region; after this it (or its momentum) propagates

through the crystal as a particle wave with a wavelength determined by the

final velocity as already stated. By equating the work done, by the force Fi

through the distance pd , to the final kinetic energy of the particle and

using the de Broglie relation for a free particle, a relation between the

external stress applied to a crystal and the wavelength of the resulting

2
particle momentum wave is obtained
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The parameter, p, which defines a particular initially field-free region

(s = pd) is the only new atomic constant introduced in Eq. 1; its value is

generally taken to be less than one as Indicated in Fig. I. Moreover, in some

cases, final expressions for macroscopic mechanical quantities are independent

2
of p , and the quan~tties are functions only of known atomic constants

These ideas on the propagation of particle momentum waves and their role

in nonelastic deformation are made more specific by the assumption of a

differential equation for momentum transfer. For example, in a one-dimensional

monatomic row lattice (cf. Fig. 2) conservation of momentum among any thr.e

adjacent masses requires that 2

)(WV ih
-t 2 - (v +v -2V) .... (2)

d2  n+1 n-1 n

where mv is the momentum of a general nth mass, m, in the lattice of spacingn

d, i = h/21 and i vT-i . Eq 2 also results from writing the time-dependent

Schroedinger equation for one oi the .,asses (atoms) of such a periodic :ructure

provided that.real-property waves (i.e., momenLum waves) are associated with

moving particles in place of (or in addition to) the Born probaLility waves

of orthodox wave mechanics 3 '4. From Eq. 2 and its solutions number of

macroscopic mechanical properties of crystalline solids have been described

and some mechanical quantities calculated directly from atomic constants.

These have included transition velocities observed in impact experiments,
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threshold velocities for cratering in hypervelocity impact, nonelastic audio

frequency resonances, characteristic stresses of plasti," deformation, and

2
coefficientR of sliding friction . A stress-strain law in close agreement

with the experimental results for cubic crystals has been formulated, the

velocity dependence of sliding friction and other frictional phenomena accounted

for, and the cross-sectional shapes of hypervelocity craters formed at oblique

2impact explained

The success with which some hypervelocity impact and high-speed frictional

phenomena are explained by the particle-wave view of nonelastic deformation

suggested that the means by which high explosive reactions are initiated might

also be clarified if considered in a similar fashion. In particular, detonation

by impact has proved susceptible to a particle-wave explanation by extension

of the ideas used for monatomic crystals to diatcmic or polyatomic crystals.

This explanation is accordingly presented here after a brief review of momentum

transfer and impact in monatomic crys ils.

1. Particle waves and momentum transfer.

The concepts used to account for momentum transfer and detonation in

polyatoiic crystals are to a large extent direct extensions of ideas used in

describing the behavior of monatomic crystals; therefore it is appropriate to

review some of these results, Consider first the infinitely long, one-dimensional

row lattice of Fig. 2 with identical point masses, m, spaced a distance d

apart. A continuity equation for momentum transfer or flow along this lattice

can be written as
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ý(mv )
- i v.) -'n Vnn( -v)

where

ý(mvn) represents the net time rate of change of

momentum of the nth lattice mass

K(v - vn) is the rate of momentum transfer from the

mass at n-i to that at n

K v - V+) is the rate of momentum transfer from the%pn n+2.

mass at n to the mass at n+I

K is a momentum transfer constant for the%Op

lattice

That is, according to Eq. 3 above we postulate that as a result of an applAed

force (as discussed in the introduction) some type of momentum transfer occurs

in the lattice for which the rate of momentum transfer depends on the velocity

differences between adjacent masses. From the conservation of momentum Eq. 3

then follows directly. The exact nature and/or value of . is clearly of

great importance. Fortunately it is possible to obtain an exact expression

for K by writing a wave solution for vn in Eq. 3 of the form

-i(2rv pt - knd)
vn= Be ... (4)

where k = 2Žr/X is the wave vector, d is the lattice spacing, B is a constant

and the frequency Vp is given by

-2% kdV - sin 2 - .o.. (5)

3nn 2

83



I

According to the particle-wave view of deformation 1 ' 2 Eq. 5 gives the frequency

of a particle (momintum) wave in the lattice and in the limit of long wave

lengths (small k) this expression must reduce to that for a free particle,

i.e.,

-12K kd hlm = kd = 2 .... (6)

k-40 inm 2 47na

where k2/47M is the free-particle frequency. For small values of k the

sine can be replaced by its argument in Eq. 6 so that

Rp X 0/2d2  .... (7)

and substitution of this value for K in Eq. 3 yields Eq. 2 of the

introduction

(mvn) 0l
t- = -; (vn+ + v - 2vn) .... (2)

•t 2d2  n3 -

while Eq. 5 for the frequency becomes,

VP = 2 sin Kd ..... (5a)
iplnd 2

If instead of the infinite lattice of Fig. 2 we turn our attention to a

finite lattice of length S = Nd with fixed ends, a standing wave solution

to Eq. 3 is necessary1' 2 , but again the same expressions for A and VP

are obtained. Now, however, discrete values of the wave vector, k, are

demanded such that
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k = (. ; q=l, 2,3.... (N-3) .... (8)

Minimum and maximum values of k in this case are iT/Nd and iT/d corres-

ponding to respective minimum and maximum values of v
P

Vp (min.) = 2  (for S = Nd)
8mS2

V p(max.) 2 (fur N large) .... (9)
pMiud 2

The prevalence of mosaic structures in real crystals indicates that finite

lattice segments with lengths of a few microns will be -.ncountered in momentum

2,5transfer through crystals . Characteristic values of vp hence range from

10 to 1010 cps with accumulations of these particle-wave modes near the ends

1,21,
of the frequency spectrum1. Considerable experit-ental evidence exists1 '

for the presence of such nonelastic modes at the audiofrequency end of the

spectrum where from Eqs. 5a and 8 the successive modes are to a very good

approximation supposed to occur according to

V q2  .... (10)

pq 8mS2

.n speaking of wave propagation and assuming a wave solution for the

velocity of a general nth mass in a discontinuous medium such as the periodic

lattice of point masses shown in Fig. 2, a clear definition of wave motion is

needed. We adopz here and apply to the preceding discussion the definition

6advanced, for example, by Brillouin . That is, let *n be some measurable

property of the nth lattice mass which can be defined in the vicinity of the
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mass site, but not elsewhere. *n is then said to be propagated as a wave

if a differential equation for %n can be set up (on a physical basis) with

a solution of the form = Ae'i(2Vvt - knd) where k = 27r/X , v is the

wave frequency, and nd is the equilibrium position of the nth mass relative

to the origin. A real property commonly treated in this way is the atomic

displacement from equilibrium (x n) in dealing with elastic displacement waves,

but we have chosen instead the momentum (mv n) to account for nonelastic

deformation. Since the displacement and the momentum can only be measured at

the positions of the masses in the lattice, we expect to be able to know

nothing of such wave properties between lattice masses. Hence it follows that

X - 2d is the smallest measurable wave length for real-property waves in a

lattice of spacing d. Further, in principle real-property waves such as the

momentum waves ciscussed cannot exist in the lattice at wavelengths less than

2d. Then, from the de Broglie relation, there will be a limiting f ae-particle

veltcity (for both external and internal field-free atoms) above which the

associated momentum wave will not propagate through a lattice,

h hv (max.) = -- .... (II)
m X(min.) 2md

The existence of this velocity limit (for stationary lattices) provides a

basis for explanations of high velocity impact behavior of crystals in general

and the low-velocity impac, behavior (detonation.) of some crystals in particular.

Finally it must be mentioned that, although all of the preceding discussion

has been confined to momentum transfer in one-dimensional (row) lattices, the

2results are easily exter°.ded to three-dimensional crystals and lead to no
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major changes. This follows partly from the fact that the x,y,z components of

momentum are independently conserved and partly from the assumption of in-line

or central momentum transfer between masses (atoms) in a three-dimensional

lattice. The practical outcome is that the results obtained for row lattices

apply directly to three-dimensional lattices when the periodic spacing d

between lattice masses in a particular direction in the crystal is usei. Thus

the momentum transfer constant in a direction with spacing, dj, is K = it/2dj2

which predicts that the momentum transfer constant will be largest for directions

of closest spacing in a crystal. Thus nonelastic deformation of a crystal

should occur most readily in the directions of closest spacing, and this is in

accord with all experimental evidence. Similarily the maximum values of limiting

velocities for field-free particles given by Eq. 11 can be calculated for a

particular crystal in terms of the distance of closest approach, di, by

v = h/2md . Values for cubic metal crystals calculated in this way range from1 1.

9.46 x 103 cm/sec for lithium to 0.238 x 103 cm/sec for thorium2 .

2. High-velocity impact in monatomic crystals.

The existence of limiting velocities (well below the speed of sound)

for the free particles supposed to be generating momentum waves suggests, at

first, that such waves can not account for high speed deformation of crystals.

2
It turns out, however , that there is a way in which waves generated by free

particles with velocities above v = h/2md can be propagated in a crystal1 1

lattice. It is only necessary for a crystal lattice, or parts of it, to move

against the incident free-particle wave. Such reverse motion requires, of

course, a source of energy, and it is evident that this source can only be the
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vibrational (phonon) energy of the cr'ital lattice itself. In fact, as we shall

demonstrate, the proposed mechanism eventually results in destruction of the

crystal lattice when the free-particle impact velocity is such as to demand a

translational lattice energy per atom equal to the lattice binding energy.

a) The effect of lattice motion

The review discussion in Section I was in terms of a fixed or

stationary lattice, but we now consider a row lattice of fixed spacing d moving

with a translational velocity v2  toward an incoming free-particle of velocity

vi as indicated schematically in Fig. 3a. All velocities are measured with

respect to the same system of laboratory coordinates. The distance moved by

the field-free particle in reaching he lattice can be expressed in terms of the

lattice spacing as pd in accordance with previous notation. The time required

for the field-free particle to travel up to a stationary lattice is

t = pd /vi .... (12)

while for a lattice (or lattice section) moving toward the incident free

particle with velocity v, this time is reduced to

t' (pd - vjt')/vi .... (13)

= pdj , where pdj = pd - vt' .... (13a)

Eq. 13 can be solved for t' to give

pdI
t p .... (14)

vi +v,
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From Eqs. 12 and 13a it follows that d'/d = t'/t and from Eqs. 12 and

14 the ratio t'/t can be written in terms of the velocities as vi/(vi + v)

so that

d'(contracted) = d ... (15)
1 1v 4+vvi +v

The variation of d' with translational lattice velocity is shown in Fig. 3.1

The apparent lattice spacing clearly decreases as the lattice moves toward the

incident particle with increasing velocity; therefore momentum waves of

decreasing wavelengths below 2d can be propagated through the moving lattice.1

In an entirely similar way it can be shown that the apparent lattice spacing

d' increases with lattice velocity for a lattice moving away from the incident1

particle. and a single expression written for both cases (cf. Fig. 3b)

V.

d,(apparent) = d .... (16)1 1 vi ±v•

where positive values of v, denote lattice motion toward the incident field-

free particle and negative values correspond to lattice motion away from the

incoming particle. Finally, from Eq. 16 a new value for the limiting free-

particle velocity allowing momentum wave propagation in a moving lattice can

be calculated as vi (max) = v' = h/2md' or, from Eq. 16,
2.i 1

vi(max) = v' = v (17)

V1

It is instructive to consider the limiting free-particle velocity, v1,

in Eq. 17 as the independent variable and then determine from Eq. 17 the

required values of translaticnal lattice velocity, v2, as in Eq. 18 below.
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V, v1'(l -v'I/v .).. (8

where now negative values of v, indicate velocities opposite to the incident

free-particle velocity, v', taken as reference. A plot of v, vs. v' reveals

an inverted parabola with vertex at (v /2, v /4) as shown in Fig. 4. From

this figure it is clear that at incident free-particle velocities above v1

the lattice must move with negative velocities (against the incident particle)

in order to allow propagation of the momentum wave associated with the incident

particle.

According to our previous discussion it is not necessary for any transla-

tional lattice motion to occur for free-particle velocities below v . All1

particle waves generated by velocities below v are propagated in an infinite1

lattice, and a series of waves at discrete wave lengths are propagated in a

finite lattice. For a lattice segment of length S = Nd values of incident

free-particle velocities generating such allowed wave lengths are

iq m Nd

=v 4 = 1, 2, 3...(N - 1) .... (19)

There will therefore be a series of evenly spaced allowed velocities along the

abscissa (v2 1 0) between 0 and v1  as indicated in Fig. 4 (branch ODC), as

well as the continuous allowed velocity values for forward lattice motion given

by the positive branch (OBC) of the curve. Thus there is a choice of lattice

behavior for free-particle incident velocities below v (1) the lattice1

remains stationary and propagates only particle waves of certain discrete wave

lengths; or (2) the lattice moves forward at varying velocities, v 2 , and
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propagetes particle waves of any wavelengths between 00 and 2d . Above v
1 1

there is only one possibility; i.e., the lattice must reverse and move against

nn incident field-free particle to propagate waves of wavelengths less than

2d 1

As discussed in detail elsewhere2, the conditions under which the lattice

moves or remains stationary represent the difference between transient and

equilibrium behavior, respectively. From Eq. 5a the phase velocity, c

(2irv/k) can be calculated in terms of the incident velocity, and be shown to

have a maximum value of v /mf2 when v. = 3v /4 . The duration times for

transient behavior can then be estimated for a given lattice segment length in

terms of the time needed for a standing wave to be set up in the segment; for a

segment length of 10-4 cm. these times are usually of the order of 10-6 sec. or

greater. Of course there will also be incident velocities below v between

the discrete stationary allowed values where only forward lattice motion will

allow propagation.

It is also possible to demonstrate2 the existence of a region of instability

between incident velocities of v /2 and 3v /4 where a sudden jump to the

reverse lattice motion required beyond v takes place. The exact location1

of the instability point on the upper branch, OBC, of the curve in Fig. 4

depends on the number of lattice atoms in a particular segment which are moving

with the translational velocity v,. This number can never be less than two

since at least two atoms are needed to define an apparent lattice spacing, but

three, four, or many more atoms may eventually share the translational velocity

(and energy) as the momentum wave propagation proceeds along the lattice. As

each lattice atom moves forward it can, in fact, be expected to "push" along the

atoms ahead of it so that additional atoms share in the translational motion
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(with a corresponding decrease in the amount of translational energy and

momentum of each atom). Because of the existence of these instability conditions

for incident velocities above v /2 , as a practical matter the reverse flow

will start at some velocity beyond v /2 instead of at v . That is, an

incoming particle with velocity greater than the instability value will sooner

or later jump to a velocity just above v1, and the lattice will move in the

reverse direction. The extra energy for this jump to a higher velocity is

supplied to the particle by the lattice since a point just beyond v corresponds1

to a lower absolute value of translational lattice velocity, v2  , than a

point near v /2 . Finally, above an incident velocity of 2v we expect the1 1

results of reverse fiow to become unusually severe as each lattice atom moves

in the reverse direction with an energy greater than the initial energy of the

incident atom. As mentioned before, suiuh energy can only be supplied by the

crystal itself. For the case where two-atom segments are broken loose, the

value of translational velocity demanded of each lattice atom will reach aF, when the corresponding energy (mve 22ffinal value, v2 f hn9 e orsodigeeg (vfI/2 equals one-half the

dissociation energy per atom (D/2) of the crystal lattice. That is,

Vi , = / .... (20)

The final value of incident particle velocity, vf, will be that which requires

the final translational lattice velocity or, from Eq. 17

v + +v+Iz+4vlv
vt (final) = Vf 1 1 if

1 2

2 (1 + I1 + 4v ./v ) . (21)
2'
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For vf >> v and 2  • •f/ >> 1 Eq. 21 becomes the approximation

Vf vlvif

-v 1/2 (D/m) 1/4 .. 0 (22)
1

which is accurate to within 5% if Vif/vI > 100. Values of vf necessary to

produce lattice disintegration or fracture can be calculated from a knowledge of

v = h/2md and the lattice dissociation energy, D, for a crystal. Eq. 221 1

also results if we consider a four-atom projectile incident against a three-

dimensional crystal where eight-atom chunks now break loose because four

adjacent two-atom segments are required to move at velocities greater than Vif.

These ideas on lattice disintegration are depicted schematically in Fig. 5.

A threshold velocity, vf, is thus predicted above which lattice break-up and

"1cratering" begins, for example, in high-velocity impact.

The previous discussion applies to Impact between similar atoms, but is

easily extended to provide for a particle of. mass mp with velocity, v1 ,

striking a lattice with different masses mt , for example. The momentum of

the striking particle is mpvi with an associated de Broglie wavelength

X - h/mpV v In our view this is equivalent to, and can be replaced by, api

particle with the lattice mass, rt, and velocity vi provided only that

m tv = m pV . That is, an incident atom with mass greater than the lattice

masses is equivalent to the smaller lattice mass incident with greater velocity,

while the reverse is true for an incident atom with mass smaller than the lattice

masses. For dissimilar projectile-target materials, for example, the final

velocity of Eq. 22 becomes
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mt
f= f.... (22a)

Vf m -f
p

b) Phonon fission

The preceding ideas about conversion of lattice energy into transla-

tional energy of lattice segments and ultimate lattice dis4ntegration can also

be discussed in terms of the mass-energy equivalence of atoms in a crystal

lattice 27. We recall that the vibrational energy of a crystal containing N

atoms can be taken as equal to the energy of a system of 3N quantized harmonic

oscillators whe't attention is confined to linear elastic interactions between

atoms. For a Boltzman distribution of oscillators among the available energy

levels the average energy per oscillator at any temperature T is 8

hve hve
< U > =- + e .... (23)

q e2 e

where ve is the frequency of oscillation of a particular harmonic oscillator

of the system and k is Boltzman's constant, l•,e first term of Eq. 23 represents

the average zero-point energy of the oscillators (atoms) since it remains when

T = 0. With each vibrational mode of frequency ve a certain numbez of sound

quanta or phonons can be associated and if hve is takan as the energy of

each, then the number of phonons, ne, to be associated with any vibrational

frequency, ve can be determined from Eq. 23,

<U > 1 1
n = = - +...2)e h 2 ehVe/kt- .... (24)

From Eq. 24 it is at once clear that phonons of two types occur, viz. intrinsic

(non-thermal) phonons and thermal phonons. The intrinsic phonons are present
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at all temperatures in a constant amount of 1/2 phonon per mode. Thus each

lattice atom (with three vibrational modes) corresponds to 3/2 intrinsic

phonons. In the same way there will be three intrinsic phonons associated with

every two lattice atoms as indicated in Fig. 6. Hence any two lattice atoms can

be characterized by one longitudinal and two transverse intrinsic phonons with

sound propagation velocities respectively of cP, cta, and Ctb . Although two

lattice atoms are associdted with three phonons only one atomic mass is involved

since one half of each lattice mass is assigned to the adjoining atom pair.

Three intrinsic phonons are insufficient, of course, to describe an

arbitrary -nisotropic solid. Instead three mutually orthogonal three-phonon

sets are needed7 or a total of nine intrinsic phonons; three longitudinal and

six transverse. These correspond to 18 vibrational modes of 6 lattice atoms.

In any case it is possible to obtain a quantitative mass-energy equivalence

for lattice atoms in general, but consider first a cubic crystal needing only

three intrinsic phonons for characterization. If any two atoms of a crystal

are sufficiently separated by removal from the lattice or otherwise, three

phonons will be destroyed. A mean squared sound velocity for the crystal can

be written as

2 2+ 2
-,2 + ta Ctb
c = .... (25)s 3

and the "phonon" mass involved is m/2 per atom. Accordingly, the annihilation

of three phonons with mean sound velocity Zs might be expected to result in

the release of a vibrational energy per atom of mi 2/2 or mc 2 (where

c2 = 2 /2). Now if a solid lattice is vaporized by supplying heat energy

equal to D per atom the final result is also the destruction of all intrinsic

95



lattice phonons. The separated atoms in the vapor will have an energy of D

per atom above their original energy at O°K in the lattice. Thus we infer

that the destruction of intrinsic (zero-point) lattice phonons, by any means,

will result in the release of a vibrational energy per atom equal to the

dissociation energy, D, per atom such that

D = mc 2 .... (26)

where c 2 is the mean sound velocity defined above for a cubic lattice in5

terms of three sound velocities. In the most general case the value of c 2

will depend on nine sound velocities corresponding to the three sets of three

phonons needed to describe a crystal 7; for hexagonal crystals four measured sound

velocities or elastic modulii are needed to determine c 2 , etc. We also notes

another implication of Eq. 26; if the average dissociation energy per atom, D,

is to be constant then c 2 must also be a constant of the crystal. Therefore
s2

the sound velocity sums defining cs2 must be invariant and this has been shown

7
to be the case according to classical elasticity thecry

From Eqs. 20 and 26 it is at once apparent that vif = cs so that the

final or "fission" velocity for an incident atom to cause disintegration of a

lattice can be written as

vf .... (27)

We now refer to this as the phonon-fission velocity since a particle

incident at such velocity will cause a crystal lattice to break up and thus

produce phonon splitting or fission. Vv)ues of v are of the order of 102
1

to 103 cm/sec. while cs is often about 105 cm/sec yielding values of vf

from 103 to 104 cm/sec. The energy required by an incident particle to produce
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fission is therefore less than one-hundreth of that released for incident and

lattice particles of the same mass.

M < 0.01 e2 .... (28)

For heavy atoms incident against lattices with light masses the difference

between the striking energy and the released energy will be even greater.

Self-sustained phonon fission consequently is possible if somehow fragments

of the fissioned lattice fly off in such a way as to strike other sections of

the lattice to produce more fission, etc.

3. Momentum transfer and impact in diatomic crystals

In order to explain detonation it is necessary to extend the ideas

on momentum transfer and impact to diatomic and polyatomic crystal structures.

A diatomic row lattice with masses m ,m is shown in Fig. 7 a with a distance2 1

d between atoms in each molecule and d between molecules in the lattice.
a m

A field-free atom of mass m2 incideiit at velocity v. on such a lattice is2 1

also depicted in Fig. 7b. The question immediately arises as to the manner

in which the momentum wave associated with the incident particle is propagated

along this diatomic lattice.

Following the general physical principle that the simplest assumption is

9
often the most useful (or even most valid) we assume that the actual momentum

transfer process is equivalent to momentum waves of different frequencies travel-

ling independently along the two sets of masses, m and m . The notation adoptedIC2 1

in Fig. 7 is such that all even numbered lattice sites are occupied by m massesa

and odd sites by m masses. From the assumption of independent momentum
1
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waves the differential equations for momentum transfer are accordingly:

ýy ir,

. -n _ (v + v n 2 .... (29)
2 t 2d 2  2n42 2n-2 2n

and

1 y i (v
m I 2 _2 (V2n+3 + v 2-1 2vn+_ .... (30)I •t ~2d2 n

where d = d + d is the periodic spacing between like masses (atoms) in thea m

lattice. Traveling-wave solutions to Eqs. 29, 30 are

-i[2rv 2t - knd]

v =B e 2.... (31)

V n+e 1 k(nd + d) .... (32)

where

- h sin. kd (33)
2 2rmd2 2

V fYd- sin2- .... (34)1 7nm d 2

and so that V /V m/m.

The separate differential equatic.is (Eqs. 29, 30) likewise result from

writing the time-dependent Schroedinger equation for one molecule (i.e., two

atoms of mass m ,m ) and considering the total wave function for the two atoms

to be *T =$+4'I where m, =rv and m, =mv in accordance with the

idea that 4 is a momentum wave. Eqs. 29, 30 are also equivalent to the
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assumption that momentum transfer between the molecules of Fig. 7 takes place

as if point masses M = m + m were located at the center of mass of each
1 2

molecule to form a monatomic row lattice of spacing, d.

In any event, such separate momentum waves will have different limiting

velocities, v = h/2m d and v = h/2m d , beyond which reverse lattice motion
2 2 1 31

of each separate set of atoms (i.e. each of the interpenetrating row lattices)

is required. Furthermore, the effective incident velocity of a mass m will
2

be different for the "lattice" of masses m1  and given by v" = (m /m)v.

where v. is the actual velocity of a m mass. In order to describe the
2. 2

required translational lattice motion of a diatomic lattice under impact as

previously shown for a monatomic lattice in Fig. 4, two curves of v, vs. vi

are now needed as drawn in Fig. 8.

The curves in Fig. 8 are for a mass ratio m2/mi = 107.9/14.0 = 7.70.

Then, for example, an atom of mass m , incident with velocity v' has that
2 2

effective velocity for the mi lattice, but has a higher effective velocity2

v= v' = 7.70 v' against the m lattice. A mass m incident at velocity
S 1 2 2

v' v /2 may thus require momentarily that the m masses move forward at
2 2 2

velocities v /4 = 0.25 v while the m masses move forward at the same time
2 2 1

with velocities v /4 = 1.925 v . The required translational velocity difference

between atoms in the same molecule hence would be 1.675 v
2

For the smaller mass, mi, incieent at a velocity v' v /2 , on the other
11 2

hand, the transient response of ti'e m lattice requires a forward velocity

of v, I 0.4 v while the m2 lattice has to move as if hit by a mass m
2 2 2

at velocity v'e 0.065 ve , or with translational velocity v• 0.06 v2

The required intramolecular velocity difference in this case amounts to only
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about 0.34 v2.

For incident velocities of a mass m2  above v2 (or a mass m, above

v ) the separate requirements of the two interpenetrating lattices become

alarmingly different in that a large steady state or equilibrium translational

velocity difference is demanded for the atoms of each molecule. Thus at

1' = 1.2 v a reverse velocity of v z -0.2 v is required for the m
2 2 V2 2 2

masses along with a reverse velocity of v,1 = -1.75 v (corresponding to

v' = 9.25 v ) or a translational velocity difference of AV, : 1.55 v . At
a 22

v = 1.5 v & a- 4.50 v ; at v' = 2v , Av 13.4 v , etc.
2 V2 2 2 2 2 2 2

Just as in the case of a monatomic lattice we expect that final values

of the "lattice" velocities will be reached beyond which disintegration or

fracture of the crystal will occur. Now, however, there are two possibilities

for such a crystal break up: 1) breaking of the lattice bonds between molecules

in the crystal or 2) breaking of the chemical bonds between the atoms forming

the molecules. In the first case lattice disintegration will occur when

m 2 +m vif, = D .... (35)1 £1f 2 i•f

where D is the lattice dissociation energy per molecule and v1f' v12f

are the final values of translational velocity demanded of each set of lattice

atoms; again to define an effective spacing d' at least two atoms of each

lattice (a total of four) must move as indicated schematically in Fig. 7b. In

the second case molecular dissociation into component atoms will occur when

myv f2 + M vO 2 = 2D .... (36)
123X1 2 22f =2 b

where now Db is the chemical bond dissociation energy per molecule.
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Values of D and Db range from I to 10 ev/molecule so that values of

V Zf, V12 f are expected to be of the order of 2 x 105 cm/sec. Since values

of v and v range from 102 to I10 cm/sec for most crystals, final or
1. 2

fission velocities of about 104 cm/sec are again expected for incident atoms

of mass m or m2 2.

V2 2f Vfl ..... 07)

The choice between breaking of intramolecular chemical bonds and breaking of

intermolecular lattice bonds obviously depends greatly on the relative values

of Db, D. If 2 Db < D chemical bonds will be broken before lattice

dissociation occurs. For 2 Db > D there will be lattice bond rupture before

the chemical bonds within the molecule break, etc.

The aeneral lea that in nonelastic deformation diatomic crystals may

act as separate or interpenetrating lattices of identical atoms, is, moreover,

extremely useful in accounting for many properties. Thus NaCI can be

considered to behave as two interpenetrating fcc monatomic lattices of sodium

and chlorine respectively 2. The distance of closest approach between like

atoms in NaCl is in the < 110 > directions so that the momentum transfer

constant (h/2d. 2 ) is greatest and plastic flow or slip is expected to occur

mos eadily in such directions, as is indeed the case. Similarily from

Eqs. 33, 34 and the results presented in section I for finite latticez, a

series of discrete audiofrequency modes or resonances for each type of atom

in a polyatomic finite lattice is expected for a given segment length, S

where
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V q 8 2
Vq 8mSP

2V2q 8m S 2
2

Vkq 8= q2  ; q 1, 2, 3 ... N - 1 and S Nd.
8mý,S

or

V=11 V 1  Yk 1/mr : 1/m 2 :... :1/mk (38)

As we shall see in the final section, there are cases where the observed

(nonelastic) resonance frequency ratios are in very close agreement with

reciprocal atomic mass ratios as expected from Eq. 39. The identification of

two sets of curves in average dislocation velocity v.s. stress data 2 'I0, 1 for

NaCl, LiF, etc. also supports the idea that momentum waves may travel independently

through each set of identical atoms in a crystal.

4. Detonation by impact

From these general ideas on momentum transfer and the consequent

breaking or disintegration of a crystal lattice we turn finally to an attempt

to describe the process of deton,,tion in a solid. There is general agreement

on the definition of an explosion as a fast chemical reaction forming gases at

high pressures from a small amount of a solid, liquid or gas, but some variation

seems to exist among various authors as to just what constitutes detonation.

Robinson12 says that detonation is a term applied to the brisant explosion of
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high explosives while Bowdon13 defines detonation as any reaction propagated

at speeds greater than the sound velocity in the detonating medium. Everyone

seems to agree, however, that detonation can be initiated by impact and we

shall first consider such initiation.

The breaking of chemical bonds between d•oms in a molecule when the

required translational velocity of the atoms results in a kinetic energy in

excess of the bond dissociation energy has already been discussed. Impact

velocities of 103 to 104 cm/sec are sufficient (depending on the incident atomic

mass) and, as mentioned for phonon fission, the separated atoms will have

energies (and velocities) in excess of that initially required to break the

bonds. A separated or "dissociated" atom in the row lattice of Fig. 7 may then

strike the remaining undissociated lattice with a velocity equal to or greater

than that of the original incident free-particle (atom) and cause additional

bond breaking, etc.

The chemical bond breaking process may be initiated also by free

particles (atoms) incident at velocities below the fission values, vf, vf

if the required translational velocity difference Av I is sufficient to

cause a rapid increase or decrease +-dd in the equilibrium bond distancea

between the atoms in a molecule. The interaction potential V between atoms

in the molecules of Fig. 7 can be represented by the curve shown in Fig. 9

where the mass m is at an equilibrium distance d from mass m at absolute
1 a 2

zero. If now an incident mass m approaches the lattice at some velocity2

v' < v /2 the required transient response will result in a forward velocity
2 2

difference Av between atoms in at least the first two molecules as previously

discussed. As a result the bond distance, d a' will be increased with time

(against the attractive force between the atoms) until finally a new distance

d' is reached corresponding to a potential energy equal to the bond energy Db.
a
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That is

d' = d + d

a a a

where

,Mda = AvZtb .... (39)

and tb can be defined as the time necessary for mass m to obtain a1

potential energy (relative to m ) equal to the bond energy. Equilibrium bond

distances vary but are most often between 1 to 4 x 10 cm; the exact shape

of the interaction potential curve will determine 6d as but it can be taken

as d a/2. Thus the required time, tb3 can be estimated from a knowledge of

AV in terms of the characteristic velocity v h/2m d . For Ad a= 1.5 x 10-8

cm and 1v, = 1 x 102 cm/sec, tb = IMda /AV I 1.5 x 10"10 seconds which is well

below the transient duration time for most lattice segments. The attainment of

a potential energy equal to the chemical bond energy can, of course, occur only

by an energy conversion from the intrinsic (zero-point) phonon or vibrational

energy of the molecule. Once separated the atoms of each molecule can be

expected to share the bond energy in the form of increased translational kinetic

energy according to

1 2 2 2mlli :•mvi 22 Db.. (40)

For typical valies of Db (1 to 10 ev/atom) Eq. 40 requires that at least, one

of the separated atomic masses will have a translational velocity which may be

equal to or greater than the velocity of sound in the crystal. For example,

if v 2 0 the freed light mass m will have a forward velocity of

v I,-M 2 Db/- whereas the mean sound velocity in the crystal is

c s J (Db+D)/ 2 m = D -/M for Db =D.
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The released mass m in the second molecule then becomes an internal1

incident free particle against the rest of the lattice and may require, because

of its high veloclty, reverse lattice motion of the next two molecules in the

lattice. This w±ll result in a decrease in the bond distance between ntoms in

these molecules until again a distance is reached where the potential energy of

mass m (relative to m 2) is greater than the bond energy (cf. Fig. 9b). In1

this case, however,

d' = d - Ad .... (41)

a a a

where da can again be calculated from da = Av tb and for nd a

will be about 10"1° sec as before. Actually, because of the nonsymmetrical

shape of the potential curve, the decrease in bond length required to reach a

distance corresponding to a potential energy equal to the bond dissociation

energy will be less for contraction than for extension. The freed atoms of

mass m in this case will be repelled back against the unbroken lattice once1

again as incident free particles, and further bond breaking produced in the next

two molecules, etc.

Detonation by heat can evidently be explained along the lines just discussed

if we note that a rise of temperature in a crystal may correspond to an increase

in the mean vibrational energy levil of the atoms within a ý-lecule as well

as the mean vihrational energy ot molecules in the crystal lattice. At

an) Lemperature there will be a distribution of both the vibrational energy levels

within the molecules and vibrational energy levels of molecules in the crystal

lattice. If in one molecule (or a few) the rise in temperature results in

raising the vibrational energy level to a value Db, dissociation may occur for

that particular molecule with the consequent creation of an internal high
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velocity free particle (atom). Such a free particle will in turn cause bond

breaking in the two adjacent molecules,. so on to initiate detonation as

previously described.

In general any process which imparts energy in excess of the chemical bond

dissociation energy to one or a few molecules (e.g. a spark discharge, an

intense light beam, local heating or creation of a hot spot, etc.) may result

in initiation of bond breaking or detonation by the creation of an internal

high-velccity free part%'..e in a crystal. Bombardment of a crystal with sub-

atomic sized particles can also initiate detonation if the velocities are high

enough so that the momentum imparted to the crystal atoms requires apprE.iable

lattice motioap

According to these ideas initiation of bond freaking will occur at lower

incident velocities when the lattice is at a higher temperature since the bond

dissociation energy decreases as the temperature increases (cf. Fig. 9).

One further rather unusual feature (at ntg m.ny) of the proposed explanation

of detonation must be mentioned. From Fig. 8 it is evident that a particle

of mass m incident on the lattice at exactl the limiting velocity v will

require no lattice motion of either set of atoms. This is true since the

incident mass m at velocity v is exactly equivalent to an incident mass

-m at velocity, v . Hence no relative motion between atoms in a molecule (or

molecules in the lattire) is required, AvZ = C, and no chemical or lattice

bonds are broken. This is true even though m atoms incident at lower (as

well as higher) velocities may initiate bond breaking as previously described.

For dissimilar atoms, md, nondetonation velocities, vd' will be those for which

r2 v = idn" or vd = m v/md. Thus for an incident mais, m 2the "dud"

velocity, v M 14 /m v , et.
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5. Comparison with some experimental results.

Many of the concepts introduced in chis explanation of detonation

in erms of particle waves are somewhat novel, and it is therefore appropriate

to look for experimental verification of the idLas where possible. Scme

experimental evidence in support of this general view of deformation in crystal-

line solids will be presented first and then more particular reference to

detonation made. a) Nonelastic deformation

One of the inmmediate consequences of the particle wave description of

deformation is the prediction of the existence of nonelastic audiofrequency

modes dependent on the mosaic structure of crystals. For finite lattice

segment lengths around 10-4 cm such modes should be observable in the audio-

2
range, and, in fact have been extensively reported . The existence of such

modes can be readily observed, for example, in lightly vulcanized rubber (hevea)

where reversible changes from a completely amorphous state to an ordered

crystalline state can be produced by stretching. This stretch-induced crystal-

'inity has been studied x-ray diffractior; and crystallization found to appear

14
first at an elongation oZ 300% at 250C. Furthermore Yau and Stein have

investigated stretched rubber by means of low-as gle light scattering usil.g a

laser photographic technique. They report evidence for a crystalliae super-

structure which is pronounced above 300% elongation and of the order of

2 x 10-4 cm in ,ize. These data allow a direct calculation of the lowest

particle-wave mode, q = 1, in terms of the carbon atom, taking S 2 x 10-4 cm.

From Eq. 10

h 6.62 x __0" ____"h- 1 6.62 1040 cps.
"•p 8mS2  8 x 1.99 x 10-.21(2 x 10-4)
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This resonance should appear in the stretched rubber at an elongatic. just above

300%,and the prediction compares well with the experimental dynamic

shear compliance data of Fig. 10 in which a resonance at i020 cps appears at

an elongation of 310%.

Thr- existence of critical velocities in impact experiments has long been

15
recognized. Bell , for example, has identified hydrodynamic transition

velocities above which "excessive mushrooming in the first diameter is

experimentally observed." From our description of impact this transition

velocity corresponds to 2v (i.e, twice the limiting or "reverse flow" velocity),1

and calculated values of 2v for aluminum and copper are compared with the1

Bell transition velocity below:

Al Cu
Hydrodynamic transition
velority measured by Bell. 2050 in/sec 980 in/Jec

(- 50 in/see) (- 20 in/sec)

2v 2039 in/sec 968 in/sec
. (5179 cm/sec) (2458 cm/sec)

15

In addition Bell has reported another critical velocity in aluminum of

582 in/sec below which there is no mushrooming, delay in strain development,

and poor reproducibility near the impact face. In terms of the ideas presented

here,unstable behavior and the mushrooming threshold (due to reverse lattice

flow) should occur between 0.5v and 0.75v or between 508 in/sec and 765 in/sec1 1

for aluminum.

The idea of reversed lattice metion taking place against an incoming

projectile is also supported by observations on impact at so-called hyper-

velocities. That is, according to the ideas presented here, above a certain

characteristic velocity v (or in practice above v /2) sections of a target
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will tend to move toward an incoming projectile. Further above another

characteristic value, vfl the target will actually disintegrate or break up;

sections of the target will fly off against the incident projectile and in

so doing will maintain their crystallographic integrity (i.e., "melting"

is not supposed to occur). The reverse motion is not imagined to result

from reflection or tebounds from some depth (or back surface) of the target,

but, on the contrary, above vf pieces of the target in the impact region

should peel off from the front surface in groups of two atoms or more.

Another, quantitative test of these ideas is possible from data on zrater

depth vs. incident velocity in high-velocity impact experiments. A thres-

hold velocity, vf, (vt) is predicted by Eq. 22 in terms of Planck's constant,

the closest lattice spacing, a measured lattice dissociation energy, and the

atomic mass,

vf

-(h/2md )1/2 (D/m) 1/4 .... (22a)

In using crater depth as a measure of the lattice disintegration process a

distinction between a crater and an indentation must be maintained, of course.

This is most easily done with data for a soft projectile against a similar or

harder target material. Pit-depth data reported by Olive 0. Engel16 for 0.1

and 0.285-cm mercury drops against lead targets is shown in Fig. 11, and the

calculated threshold value of v' = 0.54 x 104 cm/sec agrees well with these

experimental results. Similar data given by Partridge17 for 0.483-cm iron

spheres fired into iron targets are shown in Fig. 12. Again the calculated

value of vf = 2.36 x 104 cm/sec compares well with the extrapolated zero-

139



I

depth value from these somewhat scattered points.

Finally, in connection with the remarks on impact in monatomic crystals

a connection between a mean elastic sound velocity and the lattice dissociation

energy was developed, i.e. D = mc s . Measured values of sound velocities

and dissociation energies again afford a means of checking the supposed relation.

This "Einstein" relation, indeed, seems to be well verified for 18 cubic metals

as shown in Table I,and is also true for a number of hexagonal metal crystals.

In more direct support of the ideas presented on detonation some data on

the independent existence of particle waves in like sets of atoms in a

polyatomic solid are shown in Table II. Here are tabulated some observed

resonances or modes from dynamic shear compliance measurements on a butadiene-

acrylonitrile terpolymer (Hycar 1072). According to Eqs. 38 there should be

sets of frequencies present for each type of atom or each mass value in the

solid lattice. Further, the frequency ristios of a particular mode (e.g.,

q = 2) should be equal to the reciprocal atomic mass ratios for the same segment

length (S). This does appear to be the case for this terpolymer as it is also

for some other materials.

All of these comparisons, and the more extensive correlations published

elsewhere2 as discussed in the introduction lend support to the general idea

that nonelastic deformation may be described in terms of momentum wave

propagation in crystalline solids. However, no detailed confirmation of the

corresponding explanation of the detonation process has yet been attempted.

Such confirmation ui.. require new experiments, modification of present testing

methods, or in fact may not be possible. We can, however, examine some of

the existing data on detonation and attempt to explain it in terms cf the

mechanism proposed in the preceding section.
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b) Detonation

To begin with we expect that for a given crystal structure, the same

spacing between unlike atoms, and comparable bond dissociation energies, the

impact sensitivJiy should increase as the atomic mass ratio of the bonded

atoms increases. This follows since the limiting incident velocity at which

reverse motion of the metal "lattice" is demanded, decreases as the metallic

mass increases (v2 = h/2m d), and also because the required translational

velocity difference, AvV, leading to rapid bond shortening increases as the

atomic mass ratios increase in a particular crystal structure. Therefore

mercury fulminate (Hg, 200.6) should be more sensitive to impact than silver

fulminate (Ag, 107.9) which, in turn, should be more sensitive than sodium

fulminate (Na, 23). According to Marshall18 this is true. In the same way the

azides should be increasingly sensitive to impact as the mass of the metallic

atom increases, provided the relevant bond lengths, lattice spacings, etc. are

un'Thanged. Accordingly we would suppose the sensitivity to shock or impact to

increase for the azides in the order KN , CuN , AgNS, Hg (N3)2, VN 3 , Pb(N3 )2
3 3 3 2 3 3

Bowden 13, however has listed the azides of increasing sensitivity or

decreasing stability to heat, light, and shock in a somewhat different order

as shown in Table III (see footnote, b). In particular according to Bowden

TUN is next to KN in stability while CuN is more sensitive than AgN 3. From3 3 3

our point of view TON and CuN are out of place, at least insofar as sensitivity
3

to i is concerned. Bowden has not listed separately the sensitivities to

shock, heat, and light for the azides and therefore exa..t measures or criteria

of bis sensitivity scale are lacking; differences in bond and lattice dis-

sociation energies could perhaps rzault in a different ordering of the azide

sensitivities to heat and light than for shock or impact. From the data of
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Gray and Waddington 19, in fact, it is possible to calculate the difference

between the lattice and bond dissociation energies, !M = D - Da' for some of

the azides listed in Table M. This difference,6fD, does increase in the order

of increasing sensitivity as given by Bowden (cf. Table i1)- thus in terms of

the supposed atomic potential interaction curve of Fig. 9 a localized increase

in energy of the crystal lattice (resulting from heat or light energy) can

initiate detonation by producing dissociation of a chemical bond (in preference

to dissociation of a lattice bond which causes "melting"). The occurrence of

heat or light produced interatomic bond dissociation prior to interlattice bond

dissociation (melting) is more likely as t6D increases and therefore sensitivity

to heat and light might be expected to follow •D while sensitivity to impact

depends on increasing atomic mass ratios as predicted. Of course a large

decrease in spacing between like atoms in the TU-N bo d direction could also

produce a decrease in impact sensitivity (increase v ) but this does not seem

likely. Rather it appears from our point of view that "se-asitivity" by itself

or a collective sensitivity may be meaningless and that one should always

specify sensitivity to something (heat, light, impact, etc.) when speaking

of detonation'

A numerical estimate of what might be called the "falling weight sensiti'ity"

can also be calculated in ter, of the diatomic linear lattice of Fig. 7 for

specific materials where the crystal structure in % particular cirection

resembles that of Fig. 7. For example, silver azide (AgN 3) is orthorhombic

with rows of alternating silver an! nitrogen atoms in line along the Ag-N bond

direction in [201] directions on (010) planes 20. The Ag-N distance is 3.33

and hence the limiting velocity, v, of an incideat silver atom beyond which

reverse flow of the "silver lattice" i.; reqtlired is
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v (Ag) = h/2m d2 2

= 6.625 x 10 27/2(17.89 x 10-23) (6.66 x 10"8)

= 2.78 x 102 cm/sec

The limiting velocity for a nitrogen atom against the "nitrogen lattice" is,

in the same way, found to be

v (N) = 2.14 x 103 cm/sec1'

The velocity v = 2.78 x 102 cm/sec would be attained by a silver bullet2

(weight) dropped from a height H = 39.3 cm (H = v2 /2g), for example. Because

of the instability cited in section 2, reverse lattice motion (and the

consequent initiation of detonation) will in practice occur at velocities

between v2/2 and 3v2/4 or between 1.39 x 102 and 2.08 x 102 cm/sec.

This predicted range of striking velocities needed to initiate detonation

in AgN3 crystals of a particular orientation can be compared to experimental

determinations of the falling weight sensitivity for polycrystalline AgN

18
made by Wohler in 1911 and reported by Marshall . The tests were performed

according to specifications set forth by the International Conmmittee on

Explosive Testing18 and consisted of a hardened steel weight of 500 grams

falling against a hardened steel striking pin of 12.55 grams in contact with

the AgN 3which was backed by a large steel anvil. Under these conditions the

actual striking velocity of the hardened steel pin can only be estimated for

an assumed coefficient of restitution. The minimum height of fall for the

500-gram weight to initiate detonation was found to be 31.5 cm corresponding

to a final velocity of 2.46 x 102 cm/sec for the weight. This results in a
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calculated striking velocity for the steel pin against the AgN of

23
4.42 x 102 cm/sec if the coefficient of restitution is taken as 0.90. The

equivalent incident or "striking" velocity for a silver pin can these be

determined from the atomic mass ratio as

55.85
Ag 107.9 'Fe

0.51 x 4.42 x 102 cm/sec

2.25 x 102 cm/sec

which compares well with the upper limit of 2.08 x 102 for the predicted initiation

detonation velocity of silver against silver azide. In fact, since the texture

or preferred orientation of the polycrystalline sample used by Wohler is not

known, this is an entirely plausible result. The difference between the

predicted initiation velocity of 2.08 x 102 cm/sec and that observed could be

accounted for in a single crystal sample by an angle, e, between the incident

mass or striking pin and the aligned Ag-N bond directions in the crystal such

that cos@ = 2.08/2.25 = .924 or 9 n 22.50. The uncertainties surrounding the

actual incident velocity of the striking pin against the sample in this falling

weight test, however, are too great to justify any deýfinite conclusions in

this regard. The most we can say is that the predicted initiation velocity

for silver against silver azide (or iron against silver azide) is in reasonable

agreement with the experimental data cited in this instance.

Any falling weight or "drop" test in which a separate striking pin must

be put in motion to produce detonation will always create doubt as to the

actual incident or impact velocity of the pin against the sample since assump-

tions about the collision between the falling weighz and the striking pin must
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be made. On the other hand, Cushman21 has reported more recent experiments

(1918) in which the minimum height of fall of a 3..oz weight with steel firing

pin attached is determined for the onset of misfires (nondetonation). Compounds

tested were iron disulfide (pyrite, FeS2), antimony trisulfide (stibnite,

Sb ' and lead sulfide (galena, PbS). Extreme precautions were also taken

to prepare samples of the same fineness or grain size distribution in each case;

equal quantities of three sieve sizes being used for the test samples of each

waterial. Calculation of the initiation velocity is particularly easy for

PbS which has the (cubic) sodium chloride structure with a lattice spacing2 2

between like atoms in the [100] direction of d = 5.936 x 10"8 cm. Hence the

limiting velocity for a lead atom (m = 34.39 x 10-23 g) incident against the

"lead lattice" of PbS is

v (Pb) = h/2m d
2 2

1.62 x 102 cm/sec

while that for a sulfur atom against the "sulfur lattice" is

v (S) 1.05 x 10 cm/sec.
3.

According to our idea that reversed lattice flow results in initiation of

detonation, for a lead pin incident against PbS this should occur for incident

velocities between 0.81 x 102 cm/sec and 1.21 x 102 cm/sec. Cushman gives

21.0 in. as the minimum experimental drop height producing detonation (100%

of the time) for a steel firing pin, corresponding to a striking velocity of

3.24 x 102 cm/sec for a steel pin against PbS. The equivalent striking velocity

for a lead pin is then
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55.85
V'b 207.2 'Fe

- 0.269 x 3.24 x 102

-0.871 x 10'2 cm/sec

which falls very nicely within the predicted initiation velocity range of

0.81 x 102 cm/sec to 1.21 x 102 cm/sec.

The expectation of a range of incident velocities within which firing

or detonation may occur is in our view a direct result of the presence of

an instability region between v /2 and 3v /4 as already described (cf.22

section 2a and reference 2). Such a range of sensitivities is, indeed, found

in the usual falling weight or drop tests. Taylor and Weale23 describe drop

tests on a mercury fulminate mixture using a 2-ounce weight and 0.4 cm

diameter steel balls as the striking pins. Some of their data, reproduced

in Table IV, suggested to them a statistical distribution "...governed by

some probabilit: law." However we expect an incident velocity range for initiation

of detonation, v 2, equal to (3v2/4 - v /2) or v /1 in every case; this

being the velocity range or difier,nkce between the highest velocity (3v /4)

and the lowest velocity (v /2) which, in practice, result in reverse lattice

motion. Further the ratio of the lowest initiation velocity to the highest

initiation velocity should be exactly 2/3. This ratio can evidently be determined

in a falling weight test (for a constant mass ratio of the falling weight to

the striking pin) from the height for 100% in'tiation, H , and the height100

for 0% initiation Ho as

v i (m i n ) H O

vi (max) HioO
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and compared with the predicted value of 2/3. The experimental values

reported by Taylor and Weale in Table IV give ý1.5/4.0 or 0.62 which is

in only fair agreement with the expected value of 0.67. More extensive

tests were subsequently carried out by Taylor and Weale in which 100 samples

were tested at each of eight heights of fall. These gave a ratio of

IH I/H I 3.7/8.0 or 0.68 which is in good agreement with the predicted

ratio of 0.67 (i.e., 2/3) for the initiation velocities. As mentioned above

it is important in this calculation that all tests be carried out with the

same falling weight for a given mass and type of striking pin so that the

actual incident velocity of the striking pin against the explosive will vary
24,25

only with the height of fall. In some cases ' the percentage ignition

(0 to 100%) vs. height of fall is reported for several values of falling

weights and the corresponding striking-pin velocities are therefore not

proportional to the falling heights alone, but instead depend on the different

falling weight to striking pin mass ratios, coefficients cf restitution,

rigidity of the anvil on which the explosive is placed, etc.

The foregoing comparisons of predicted and experimental results for

the initiation of detonation in crystalline solids are far from extensive

as stated in the beginning. However, the agreement between the calculat- is

and the observations is sufficiently close to encourage further investigation

of the general ideas used to account for the initiation of detonation.

"Further, it must be emphasized that the critical incident velocities are

calculated entirely in ierms of fundamental microscopic constants (Planek's

constant, atomii mass, and crystal spacing) without the aid of assumed

values for any new parameters.
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Conclusions

With many unanswered or even unasked questions about detonation,there

are still a few general conclusions that can be stated in terms of the simple

model discussed. First, it is proposed that in order for repeated bond-

breaking to proceed in a solid there must be atoms of different mass bonded

together with their bond directions in line for an appreciable distance in a

crystal. Second, for a given bond length, lattice spacing, and bond dissocia-

tion energy the instability of a crystal should increase as the mass ratios

of the bonded atoms increase. This results from the difference in the

required reverse translational lattice velocities for each atom and the

separate dependence of each translational velocity on the reciprocal atomic

masses. That is, for an external or internal incident free atom of velocity,

vi, against a lattice of masses, m , the required translational "m lattice"

velocity, v2 , is

v = vi(l - vi/v) .... (42)

where v = h/2m d. For values of vi > v negative (reverse) lattice

velocities, v2 , are required. If a second type of atom with mass mi is

present, the corresponding equation for the translational "m lattice"
2

velocity is

= vi(1-vi/v) .... (43)

where v 2 h/2m ad and values of vi > v2  again require reverse lattice

motion. From Eqs. 42 and 43 the translational lattice velocity difference
Av v, v, is clearly a function of the mass ratio m /mi. This

2v 2
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difference in translational velocity results in bond rupture or dissociation

in a very short time as discussed in section 4.

A third conclusion is that the impact sensitivity will be a function of

the incident velocity requiring reverse lattice motion; in practice this

incident velocity for the initiation of detonation will be between v /22

and 3v 2/4 for an incident mass, m , identical to one set of lattice masses2 2

(or between v /2 and 3v /4 for an incident mass, m 1, identical to the other

set of lattice masses in a diatomic lattice, for example). The initiation

(initiat!on of detonation) velocity for any atom of mass, mk, can always be

calculated in terms of one of the lattice masses by determining the equivalent

limiting velocity

Vk - v2 or vk -v , etc. .... (44)
m m2 1

where m2 , m are masses of lattice atoms. Accordingly the initiation velocity21

for a lead strikin3 pin should be less than that for a steel striking pin

against the same explosive; that for a steel striking pin less than that for

an aluminum striking pin, etc. It also follows that the actual impact velocity

of the striking pin against the explosive is the relevant quantity, and not

the velocity (or momentum) of a falling weigait against a striking pin.

Finally, it is necessary to explain why all solids with large atomic mass

ratios do not explode! Ice, for example, has a mass ratio of 16:1, but is not

a high explosive under usual conditions. In terms of the simple "in-line"

model ol Fig. 7 this can be attributed to the lack of any long-range alignment

of the 0-H bonds in ice where, in fact, the positions of the hydrogens in the

26lattica do not seem to be well defined . In other cases recombination of the

broken interatomic bonds may take place after the momentum wave has passed,
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provided that the products of the broken bond are not subject to sudden

expansion (gaseous), or react violently with their environment. Thus the

presence in crystals of chemical bonds between atoms of different masses is

proposed as a necessary, but far from sufficient condition for a detona:ion

wave to be initiated.

It is further possible that rows of adjacent atoms with different periodic

spacings will have different limiting or critical velocities for reverse lattice

motion even when the atoms are of comparable masses. Then chemical bonds

between atoms in adjoining rows could be broken as a result of some type of

microscopic shearing process resulting from the required translational velocity

difference between rows. Such bonds would have to have identical orientations

over some distance in the crystal, but would not necessarily have to be "in

line" as supposed from our simple one-dimensional model.

The eventual success of this attempt to apply to the detonation process

some of the ideas on particle waves and momentum tran-.er in crystals previously

used to describe non-elastic deformation remains to be determined. At this

stage, however, we are in complete agreement with Willoughby Walke's

conclusions27 of 1897:

"....According to this view, detonation is the result of
a combination of true chemical and dynamical reactions, neither
of which alone suffices to explain the attending phenomena...."

Further understanding of the initiation process for detonation will therefore

depend on the acquisition of more information on the crystal structures of

explosives together with their chemical bond strengths, and, in particular, on

the design and performance of more meaningful experiments where the truely

relevant physical quantities (e.g. velocities) can be and are directly

observed.
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Table I

Charaetezistic deformation velocitiesa for some cubic metals;

verification of the relation D - mc 2
s

D c
vf lattice obsv. 5meal

V, velocity for dissociation - sound

h/2md1  fission energy m velocity

Metal 103 cm/sec 104 cm/sec ev/atom 105 cM/sec 105 cm/sec

Al 2.58 2.92 3.21 3.3 3.19
5 6

NI 1.364 2.26 4.94 2.85 3.05

Cu 1.229 1.89 4.11 2.5o 2.45

Sr .528 .85 1.69 1.37 -

Pd .682 1.29 4.28 2.07 2.26

Ag .6410 1.14 3.18 1.78 1.81

Pt .3686 .776 6.45 1.78 1.90

Au .3512 .720 4.67 1.51 1.52

Pb .2753 .559 2.38 1.05 1.05

Th .2389 .695 5.92 1.57 1.56

Li 9.462 6.55 1.60 4.69 -

Na 2.336 2.20 1.13 2.17 1.93

K 1.l03 1.39 0.954 1.54 1.33

V 1.49a 2.12 5.20 3.14 3.04

Cr 1.536 2.49 4.24 2.81 3.42

Fe 1.440 2.36 4.21 2.70 0110

Mo .7631 1.67 8.67 3.62 3.54

Nb .7510 1.39 .59 2.79 2.64

Ta . 3 8 50 .920 8.02 2.07 2.08

W .396 2 1.0$ 10.3 2.34 2.63

aData taken from reference 2
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Dynamic shear compliance spectrum of Hycar 1072 at 35.7 0 C

(Butadiene, 66 parLi, Acrylonitrile, 28 parts,
Methacrylic acid, 6 parts by wt.)

Frequencies - cps

q2  016 N1 4  CHI1 3  C1 2

Obsv. Calc. Obsv. Calc. Obav. Calc. Obsv. Calc.

1 YES 91.8 yes 104.8 yes 111.3 yes 122.4

4* 367 (367) 419 (419) 445 (445) 490 (490)

9 840 826 900 943 985 1000 1060 1101

16 1445 1469 1650 1676 1770 1780 1950 1958

25 2295 2295 - 2620 - 2780 - 3060

(measuremvnts made fom 25 to 2500 cps)

Obsv. frequency ratios = 1.000/1.141/1.212/1.333 (q = 2)

Preei frequency ratios = 1.000/1.142/1.230/1.332

= (1/16)/(1/14)/(1/13)/(l/12)

frequency values assigned to q = 2 for each of the four mass units
listed according to the supposed relation

S 2V1 - q ; q 1, 2, 3 ... N-i

X, n the same segment length S = Nd is assumed (cf. text, section 3).
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Table III

Predicted order of sensitivity for some azides

bAtomic Heat, LatticeC X-N AD
Impact weight light dissociation bondc (D-Da)

sensitivity of sensitivity energy dissociation
(increasing metal (increasing D energy, Da
downward) atom downward) kcal/mole kcal kcal

Mq 39.1 KN 157 137 203 3

CuN 63.6 TVN 164 104 603 3

AgN 107.9 AgN 205 112 93

Hg2(N3 )2 200.6 CuN 227 130 972 32 3

TIN 204.3 Hg"(Ns)2 - -12 -

Pb *(N) 2 207.2 Pb(N ) 2 516 46 470

Ilmpact by an identical metal pin or projectile, i.e., K against

KNs, AS against AgN3 , etc. For a steel pin (atomic mass of
Fe - 55.85) the impact sensitivity of Us is increased by
55.85/37.1 - 1.428 and that of CuN3 decreased by 55.85/63.6 - 0.878
in a falling weight test, for example. The relative order
between KN, and CuN. which depends on the Cu/K mass ratio
(1.626) remains unchanged.

biThs is also listed by Bowden and Yoffee as the order of

increasing sensitivity to heat, light, and shock, but such
a collective ordering needs further explanation (cf.
reference 13).

cFrom data of Gray and Waddington (reference 19) using Hess's

law.
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Table IV

Percentage ignitions (initiations of detonation)

v s. height of falling weighta

for a mercury fulminate mixture

Height
of Number Number

fall of of %
(inches) trials ignitions ignitions

6.0 12 12 100

5.5 12 12 100

4.5 20 20 100

4.0 20 20 100

3.5 30 25 83.3

3.0 30 18 60.0

2.7 30 11 36.7

2.5 30 13 43.3

2.0 30 8 26.0

1.5 20 0 0

a From Taylor and Weale, reference 23. Falling weight of 2.0 ounces

(56.7 g) against striking pins of 0.25 g (0.4 cm diameter steel balls).
Weight of charge 0.034 grams, thickness 0.02 inches.
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FIG. 1 (a) Schematic representation of an external field-free atom incident

with velocity, vo, on a crystal with periodic potential variation,

v(x), in a lattice of spacing, d. (b) Representation of an internal

field-free atom with incident velocity, vi, in a crystal with

periodic potential and spacing, d. The width of the internal field-

free region is e - pd (where p < 1) as indicated.
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FIG. 3 (a) Effect of translational motion of a lattice segment with

velocity, vI, on the apparent lattice spacing, dj se by an incident

free particle (with velocity, vi) for the lattice moving toward

the incident partic..13
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FIG. 3 (b) Effect of translational motion of a lattice segment with

velocity, vp, on the apparent lattice spacing, dj, seen by an

incident free particle (with velocity, vi) for the lattice moving

away from the incident particle.
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FIG.____4 Translational lattice velocity, vP, needed to provide an apparent

lattice spacing, d'l for which continuous values of the incident

free-particle velocity, v= vj,' will be the limiting velocity

(branch OBC). Discrete values of v'l below vz also occur for v,, = 0

as indicated by the points along the abscissa (branch ODC). Above

v . lattice segments nust move against the incoming particle with

velocities given by the single, negative branch, CE.
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(b)
FIG. 5 (a) Diagram showing how two-atom segments of a row lattice break

off to move against an incidert particle with velocity, vf, when

the required reverse lattice velocity, v 2f, equals TDhm where D

is the dissociation energy per atom and m is the mass of a lattice

atom. (b) Diagram show.'ing how an eight-atom piece of a crystal

lattice breaks off to move against an incident four-atom "projectile"

with velocity, vf. 133
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FIG_.__6 Diagram showing how two transverse phonons (velocity, ct) and one

longitudinal phonon (velocity, c2) can be associated with any two-

atom combination in a crystal lattice. Each atom in the combination

contributes a mass, m/2, to the isolated vibrational mode depicted,

so that the equivalent phonon mass of the two-atom system is m.
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FIG. 8 The different translational velocities, vP, required of the masses

m and m (as marked) in the diatomic row lattice of Fig. 7 for a

particle of mass m incident with velocity v!. Curves are drawn for

2a mass ratio men =7.70 so that v Iv=70. Aindetms

m at velocity vi is equivalent to a mass m incident at 7.70 vi21

so that the translational velocity difference required for any

incident velocity can be found fror these curves as discussed in

thet text. 137
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'7-AAd
FIG. 9 Representation of the interatomic "pair" interaction potential, V 12

between two masses (atoms) of the diatomic row lattice of Fig. 7 as

a function of the distance, x, between atoms. If the bond distance

is shortened an amount Ada the resulting potential energy of m

(relative to m 2) may equal the bond dissociatiin energy, Db , and

bond breaking or rupture can result as discussed in the text.

138



250
09

S/00 20%

/50

so 00 2S8 SO000 eooso

1399



rAGE I

7777



FIG. 10 Logarithmic plot of complex shear compliance, J- vs.

frequency for natural rubber at various static elongations, as

indicated. Results above 300% varied with time; the curves shown

are for approximately equilibrium conditions (i.e., after 80 hours).

Temperature was 25.1 + 0.2 0 C. Experimental points are shown for 0

and 310% elongations, but are otherwise omitted to avoid confusicn.

Note that the sharp peak near 1000 cps appeared first at an elonga-

tion of 310%, and thus coincides with the occurrence of both a

crystallinity and a superstructure. (cf. reference 2)
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FIG. 11 Crater depth vs. incident velocity for two sizes of mercury drops

16
impacting lead target plates. (Data from Olive G. Engel.1)

The predicted threshold velocity, vf, is 0.54 x 104 cm/sec.
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FIG. 12 Crater depth vs. projectile velocity for 0.483-cm iron spheres

fired into semi-infinite iron targets. (Data from reference 17.)

The predicted value of vf is 2.36 x 104 cm/sec.
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The propagation of sound, shock, and detonation waves in continuous

media has been investigated in great detail, but theoretical information is

sparse on wave propagation in discrete media in the nonlinear regime and in

the linear regime in the presence of irregularities. The aim of this lec-

ture is to summarize the difference between the propagation of small ampli-

tude waves in continuous and discrete media and to present some of the fea-

tures of nonlinear wave propagation in discrete media, and of both linear

and nonlinear wave propagation in irregular discrete media.

I. COMPARISON OF PROPAGATION OF SMALL AMPLITUDE WAVES IN CONTINUOUS AND

ONE-DIMENSIONAL DISCRETE MEDIA.

The wave equation for the propagation of small amplitude waves in a

continuous medium (without an energy dissipation mechanism) is

ftt = c2fxx (i)

(where f -= Bf/9x, etc., c the propagation velocity and f the physical quan-

tity, for example density, whose variation in the medium is determined by

the wave propagation). Any function

f- f(x ± ct) (2)

is a solution of (1). Hence, any initial disturbance of f from a constant

value retatns its form while propagating with velocity c either to the left

or to the right. Even a very sharp gradient In an initial disturbance re-

tains its shape as it propagates.
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A medium composed of springs and masses generally does not allow an

arbitrary wave to propagate without a change in form. The one-dimensional

discrete analogue of (1) is the

2, 2=d f /dt = [f -2f +f ] (3)n n+l n n-I

th
where f is the displacement of the n mass from its equilibrium position.n

If both sides of (3) Pre divided by a2 (a being the lattice spacing), the

resulting equation

m d2fn I fn+l- fn f n n-nl (4a)
2 2 a a aya dt2

reduces to (1) as a - 0 if one defines

-22

c = lim m/ya and (f n+l-f n)/a af/x. (4b)

a/-*Onlnm/y40

A solution of (3) is

f = exp i(nO+wt) (5)n

if a and w are related by the dispersion relation

2
w = (2y/m)C( - cose)

or

S= WL sine 2 if WL = (4y/m) 1  (6b)

The appropriate values of 6 (and, therefore, of the normal mode frequencies w),

depend on the end conditions on the chain. For example, if the chain is com-

posed of N particles and is closed in the form of a ring, then fn+N f so
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that one must have

0 = 2vk/N where k 1,2,3,...,N. (7)

The wave forms

cos(nO±wt) and sin(nO±wt)

which are obtain-ad by taking linear combinations of (5) and its complex

conjugates yield waves which propagate to the left (for + sign) or to the

right (for - sign) with velocity (a being the lattice spacing)

v = a dn/dt = -aw/0

NawLsin(Tk/N) 2
L+n• =(aL/2){i - 2k a !L + ... (8)2iTkL

which depends on k with L aN being the length of the chain. In the long

wavelength regime, ka << L, v is constant as in the continuum case.

Since an arbitrary initial condition can be expressed as a linear

combination of normal modes of (5), we find that any wave with a sharp wave

front, or any wave which is restricted to a limited region of space small

compared with the total chain length, contains many k components. The small

k components will travel with velocity aj/2 independently of k, while the

large k components will travel with a velocity of O(N/k). Hence the wave form

will lose some of its sharpness and spread because of the dispersive effect of

I
a discrete medium.

A convenient way of following the development of a wave form as it

progresses through a chain is to express the solution of the equation of mo-

tion (3) in terms of Bessel functions as was first emphasized by Scturodinger 2 .

Let

u f and U. (~f f9a2n n 2n+l 2L n n+l (9a)
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Then the equations of motion (3) in terms of the u 's become
n

2 du

n (un- Un+l with T = tWL (9b)

Thi"- equation is exactly the same form as the Bessel function equation

J nl(T) - J n+l(T) = 2dJ ()/dT (10a)

Another useful Bessel function equation is the recurrence formula

Jnl (T) + J n+l(T) = (2n/T)J n(r). (10b)

We see then that u can be expressed as a linear cc•:zbination of Bessel func-

tions

Jn-r(twL) r = 0,_i,±2,... (1.)

If initially all displt•ceneuts fn are zero and all velocitles except
th

the m are initially zero, then

u (t) = f (O)Jn _2mr' (12)
n mP n-..m

is a solution of (9b). in the other hand, if velocities are initlally zero
th

and the m displacement is initially th- only nonvanishini one,

u 2m+(O) = WLfm(O) and u2m-1 () = - f m (0) (13)

so that

unCt) = ½WLfm(O ){Jn2mlT) - 2m+l

uL f M(0) dJn_2m/dT (14)
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Since our original equations (9) are lit.ear, a superposition of

these special solutions (12) and (14) lead to

un(t) = i rfm(0)Jn_2m(*) + WL f m(0) dJn_2m/dt}
M-.

= Ž{fm(O)Jn_2m( ) + ½JwL[f m(O)-fm+l(O) ]Jn_2m41 (T)} (15)

The particle velocities and disUlacements are then, respectively,

f (t) = U2 (t) (16a)

and

t
f n(t) = f (0) + I u2n(0) dt (16b)

0

3Some interesting special cases are (a) particle at origin displaced

by urity at t = 0, all other particles at equilibrium positions, and all

particles initially at rest

fn(t) 3 
2n(twL) if f (j) = 0 and f = (0 m, (17)

and (b) particle at origin at equilibrium but moving with velocity unity,

all others fixed at equilibrium position

t

fn(t) = f J 2 n(twL) dt if fm (0) 6m,0 and fM (0) = 0 (18)

Liso that

fn(t) = I 2n+2v+l(tut). (19)n ,L V=0 n2l L

"n the case of a semi-infinite chain, the particle "-I" is uncoupled

with "0" so that the end condition of the chain is
2

d f
= _ I(fo-fl) (20)

dt 2  m 01'
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or, in terms of the u's

2du /dT = - uI (21)
0

It is easy to verify that if f (0) = 1 and all else vanishes at t 0,0

fn(t) = J2n(tuL) + 2n+2(tw L) for n 0, , 2... (22)

while, if f (0) = 1, and all else vanishes at t = 0,0

t
f n(t) = f dt{J 2n(tw L) + J 2n+2(tw L) for n = 0, 1, 2, ... (23)

0

The case in which the end particle, n = 0, is driven to the right

wi.h a constant velocity u, with all other particles initially at rest at

their equilibrium positions, is a simple model of a shock produced by a

driving plate on a bar. The solution of our equation of motion is

f (t) = (2v+l)J (tw) (24)
n W L 2n+2v+l L

We have plotted the case of an initial impulse (23) and of a driven

first particle in Fig. la and lb. In a nondispersive medium, all particles

would have the same trajectory as f (t) but lagging it with a time depending

on the particle number. However, as is clear from the figure 1, this is not

the case for our chain of particles. In general, the wave form broadens and

flattens as it propagates and is accompanied by a diminishing train of

ripples, both in space and time. It was pointed out by Gilman and Vineyard 4

th
that the pulse in (17) reaches the n particle at time

t 2n + 0.809(2n) 1 / 3  if 11 > I
'L •L

Neither the linear continuous or discre'e models exhibit shock wave

character. There is no dependence of the wave shape on amplitude and the
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characteristic sharpening of the wave form does not occur.

The simplest one-dimensional chain with nonharmonic interactions in

which shock waves develop is a chain of hard spheres which interact only

through their mutual infinite repulsion at short distances. We discuss 4

this case now. Certain other more complicated models will be presented

later.

Consider a one-dimensional gas of hard spheres which are initially

equally spaced and at rest so that the distance between the centers of suc-

cessive spheres is a. Let m be the mass of each ý sphere.

The laws of conservation of momentum and energy between two colliding

spheres of mass m1 and m2 can be summed up in the equations

mIu1 + m2 u2 = m1v (25a)

2 2 2 (25b)
11mu+ 1 2 u2 =

where u is the velocity after collision of the sphere of mass m and it is

postulated that before collision, that of mass m2 is at rest while that of

mass mi has a velocity v. It is easily seen that

2v - v as mI1  M 2u 2v (26a)
u2 i+ (m2/mI)2v 

as m
S2v as mi 2

v~l-m2in1 ) ~0 as in1 ÷ in2v(l-m21ml)

u1  (26b)S l+(m2 /mIl)

v as m1  c

These formulae can now be applied to the propagation of a disturbance

down the line of equal masses which we discussed above to be originally at

F rest and uniformly spaced. Let us first analyze the case in which zhe par-
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ticle at the left end of the chain moves to the right with velocity v. After

it collides with the first particle to its right, we see from the upper arrow

cases of eq. (26a) and (26b) that the incident particle stops, giving its ve-

locity to the one with which it collides, which then achieves the velocitv v. This

continues down the line. If the diameter of each sphere is t, the time between

collisions is

t = (a-A)/v (27)

The mean speed at which the disturbance propagates is the ratio of distance

It proceeds in each collisicn to the time required for Lhat propagation,

V = a/[(a-A)/vI = v/[l-(A/a)] > v (28)

After the disturbance passes, the atoms are again at rest but they have movid

a distance (a-A) to the right.

A case which is more interesting is that in which the particle at the

left end is driven with a constant velocity v which, through a continually

applied driving force, is not affected by collisions. This is equivalent to

giving the left end particle an infinite mass and corresponds tc the lower

arrow case of equations (26a) and (26b). Hence the velocity of the ieading

edge of the disturbance is, (replacing v in (28) by 2v),

V = 2v/[l-A/a]. (29)

Since the velocity of the trailing edge is v, the average thickness of the

pulse is

6 = f • ltLa vt (30)
1-(A/a)
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and v is the velocity of particles in the shocked region. The trajectories

of both of the cases discussed are plotteJ in figures (2) and (3).

II. EQUATIONS OF MOTION AND DISPERSION RELATIONS IN 2D AND 3D HARMONIC

LATTICES

We now examine the two-and thrte-dimensional models which correspond

more closely to real. solids. The equations of motion of a crystal lattice

follow immediately from the crystal Hamiltonian which has the form

SH = T + 4 ,(31a)

T being the kinetic energy

T 1E mk u2(£) (31b)

and 4$ the potential energy

0 2 a 8 K KC' cXK ~K

where, in the harmonic approximation terms, cubic and higher order in dis-

placements from equilibrium are neglected.

The quantities

S(). 01

S() and P 8(• 1)

represent respectively the displacement from equilibrium of the particle (of
th £th

mass mK) located at the K position in the Z unit cell (a running through

the set of components, x, y, and z) and the force constant which couples theth t

displacement in the a direction of the Kc atom in the £th cell with that in

the a' direction of the K' atom in the V' cell. The quantity 0 is the vibra-
0



tional potential energy in the equilibrium state with all, atoms located at

their equilibrium positions and

2(32)

The evaluation of these second derivati.ves is also to be made at the equil-

ibrium state.

The equations of motion of the vibrating lattice can be found from

the Hamiltonian (31a). In the small vibration harmonic approximation, the re-

sulting equations are linear in the displacements u. Since boundary effects

are generally uninteresting, one usually employs the Born-von Karman periodic

boundary conditions in lattice vibration discussions. The periodic nature of
th

the crystal implies that the ai component displacement of particle K in all

Z can be written as

2.

u() m-u (K) exp if tw(k) + 21 k-r(k)] (33)
aK CE

When this is substituted into the equations of motion

m "d (' E D ,)u (<') (34)

one obtains a set of homogeneous equations whose solution exists only if the

determinant of the coefficients of the displacements vanish. The matrix of

the determinant is called the "dynamical matrix". The normal mode frequen-

cies w(k) associated with the wave vector k are solutions

det {DU( K - W2 (k)6 a B 6 K, 0 (35a)

where

D B(K k, K = (mKm ,)K ½ 2. ) (; ,K exp[2rik-r(Z)] (35b)
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The detailed dispersion relations

S= w(k) (36)

which are the roots of the characteristic determinants (10a) as a function

of k are very sensitive to the detailed choice of force constants 0. Ex-

periments such as the scattering of slow neutrons by crystals can be used

13to determine these dispersion curves. The force constants (V can some-

times br obtained from information on the elastic constants of the crystal.

By combining both sets of data, a best set of force constants and dispers-

ion curves can be found. Note that there are a number of branches of di;-

persion relations. For examp e, in the case of a monatomic cubic crystal,

the dynamical matrix is 3x3 and there are three branches.

156



There is one model which leads to considprable simplification.

6-8
It is a simple cubic lattice with nearest neighbor forces only, both central

and noncentral, the noncentral forces being required to keep the lattice

stable, relative to shear. This case is simple because the x, y, and z com-

ponents of the r.otion do not couple so that the dynamical matrix is diagonal.

The equations of motion are those of a lattice with one degree of freedom per
th

lattice point. We iet the displacement of the (Z,m,n) pzrticle from equil-

ibrium in the x direction be

M4 Z~nYl (x Z~~~-2 ,n+x Zý~ )" Y,m,n x 1 Z£+l,m,n -2£,m,n +ZXl,m,n )

" Y32(XZ,mn+l - 2xmn + Xinn-l)

where y1 is the central force constant and Y2 and Y3 the noncenural force

constants between nearest neighbors. Two similar sets of equations exist for

y and z displacements.

One can express the motions of particles in the lattice as lin-

ear combinations of the normal modes,

XZ,m,n = exp{i(wt+4 1 +mp2+n3) , (38)

the 4's being chosen as

2k = 2Ik./N, kj=0, 1, 2, ... , N-l, (39)

so that the x's satisfy periodic boundary conditions

X mn X+N,m,n, et., (40)
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N being the number of lattice points in each direction in the lattice. The

points (•iv2,•2) are points on the reciprocal lattice. The normal mode fre-

quencies are found to be the function w(4i,42,p3) defined ..y

2 3

MW2 =IZ 2 yj ( - cosoj), (41)

which is triply periodic in reciprocal (ýi,62,ý3) space. Equations similar

to (37) exist for y and z components of the displacements as well. All yield

the same dispersion relation. Each set of frequencies is called a branch of

the frequency spectrum. When next nearest neighbor interactions are introduced,

these branches become somewhat different. One frequency corresponds to each

triple of ý's of the form (39).

T'e thermodynamic properties of acrystal depend on the normal mode

frequencies {M}. For example, the specific heat at constant volume is
2

c = k I (2--) /sinh 2 (4Jw /2kT) (42)v j

As N + • we see from (41) that the normal mode frcquency becomes dense so

that the sum (43) can be expressed as an integral over the frequency distri-

bution function g(w) which has the property g(w)dw is the fraction of fre-

quencies between w and w+dw. Then

WL2 2
cv = Nk f g(w){(41w/2kT) /sinh (fw/2kT)} dw (43)

0

where wL is the largest frequency, whichin case (41), becomes

2 4(y 1 +y2 +73 ) (44)ML = 2y)

Every lattice point (2nkl/N,2irk 2 /N,2-nk 3 /N) corresponds to a fre-

quency w. In the limit N ÷ the number of lattice points in the region
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(0 <. < 2i,), j=1,2,3, becomes dense and one can construct surfaces of con-

stant frequency. In two dimensional cases, there are only two o's, i and

o2' and one has curves of constant frequency. These are exhibited in Fig. 4

as obtained from (41) with 0, the dispersion relation obtained from

the 2D equations of motion

MR -Y(x 2x Z +xYM£, 1l(X+l,m Zm Xk-l'm)

+ 2(Xz,m+l 2 xm + xm) (44a)

If G(w ) is defined as the fraction of square frequencies be-

tween w and w 2+dw 2, then it is clear that G(w 2) is proportional to the

rate at which ( space is swept out by a surface of constant frequency

as the frequency increases. Since

2
g(w)dw = 2wG(w ) dw , (45)

g(w) = 2wG(wL), and the distribution function g(w) can be expressed (for a

single branch of the spectrum) as the volume integral

g = () I f f dol do d3 (46s)
83 aw 2 0 2 33 )42

or the surface integral

g(• M ds(4b

(2)12 igrad wI (46b)

where the integration proceeds over the entire surface w = constant.
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The frequency spectrum is easily obtained in the 2D case. One finds

from the 2D analogue of (41) that

Mw-2(y 1 + 2  -2y cs4-cos os42  and Mw 4y2 y(7
L 4(y+y)(47) :

• -(l+Y2) 1 -2lO1-2Y2cos"2 adML = y+2)

2 2

The lines of constant frequency are plotted in fig. 4. If, when w < .2L

we multiply by 4 the fraction of frequencies in the first quadrant whose

2 22square is between w and w +dw , we find

2 4 a 2
G(w) 2 -• fd4l f dp2  (48)

42 aw o o

where 02 is to be expressed in terms of •l through (47) and ¢ is the value of

when 02 , i.e.,

2ylcosý = M- 2

or

P= cos-1(l (1 2y,

Then

2 = d.4l - 2 )-MwM 2 -2y cos4ý
G (w 1) -i rý r1 _ __ __2_

so that if we define a new variable of integration, x, by

(x-l)(Mw 2 /4y,) = cos41 - 1

we see that

8Y 8Y2
G(w 2) = -- ! J j(lx2)M( 1 1) + x][(-- 2)- x]y (49a)

(7W)2 -1 MW2 Mu2

which is a complete elliptic integral of the Recond kind. This is defined by

ir/2 2 2
K(k) (1 -k sin e) de (49b)
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One finds that

2~ ) L ____ __ 2 2 2_ 2,2 2T(2 ( K l ) if 0 <MWL 2 ) < 16y y2  (50a)

In a similar manner it can be shown that

2(Y1Y 2 2 2
G(cow 2 2 K2(_ 2 A2½ if W (W w1- > 16y~y,, (5Gb)

WTI (Wu-u,' u(W L -

2=
L 4 (y 1 +y2 ). There are two logarithmic singularities in

2he functghou 2 2 2 nd
G(W ), one at Mu2 4y1 and the other at Mu The functions G(u2) and

g(u) are plotted in Fig. 5.

While one cannot obtain simple formulae such as (50) for G( 2) in the

3D case, a representation as a single integral can be found and G( 2) can be

easily calculated numerically. The graph of the function g(u) for the simple

cubic lattice model discussed above is given in Fig. 6. Fig. 7 is that for a

more realistic model of sodium which is constructed to fit data on neutron

scattering. The singularities are of the form (1w-w j) as w approaches

certain critical values w . A considerable literature exists on the nature

of these singularities and the teason for t'eit existence5 6$9-12

A considerable literature also exists on the experimental determina-

tion of dispersion curves for various crystals13.

The frequency spectrum and dispersion curves for polyatomic crystals
1 , 5

is somewhat more complicated than that for monatomic ones . Inasimple cubic

lattice in which the two atomic species alternate akxr dhe IaLice pord (for ex-

ample, an NaCl type lattice), a generalization of (41) can be found for the

14
squares of normal mode frequencies . If the light and heavy masses are, re-

spectively, MI and M2 , there are two branches te the frequency spectrum. The

high frequency branch, which is known as the optical branch, is
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2 (W- 2 +W2- ( 2_ 2 2 16X 2/MIM2(1a

- ---- [ • -i ' ]½- (5 a

and the low frequency branch, which is known as the acoustical branch, is

2 2 2 12 212 2/MIlbw• = ½(•142) - [(u 2 -wl) + ]16Xlb

where

3
x y cI- (52)

J=l

and the $'s run through the set of values (39).

Also

Mw 2 = 2(y +y 2 + y3 ) with j = 1,2. (53)

The frequency distribution it. this case is plotted in Fig. 8. Note the band

gap between the two bands.
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III. PROPAGATION OF A PULSE IN A 2D ANHA-MONIC LATTICE.

Congiderable insight on the propagation of a disturbance in two-

and three-dimensional lattices can be obtained from machine calculatians

15
recently made by Payton, Rich, and Visscher on 2D square lattices with

linear and nonlinear force laws in the special case in which all inter-

actions are between nearest neighbors only (with both central and non-

central forces). The linear case is the model which we have discussed

above. In the nonlinear case, the force law chosen was an expansion to

fourth order of the Leanard-Jones potential

o(r) c [(r!r )12 _ 6(ro/rN6

1 2 1 3 1 4 (4
-• + 1(r-ro) 2_1 (r-ro) 3+ 1(r-ro) (54)

The magnitudes of • and v relative to y were taken to be appropriate for

noble gaz solids in the anharmonic case, and zero in the harmonic one.

With arbitrary units such that ) =1, the potentials used were

1 2 1 3 1 4
S(x) =1 -2 x +1 (55)

Periodic boundary conditions were chosen in the direction normal to

that of the propagation of the input distrbance and reflecting boundary

conditions were set at the end of the lattice in the direction of propaga-

tion of the disturbance so that it could be reflected from the ends.

The feature that has made the calculations especially interesting

is that they have been exhibited on a movie film. The 2D lattice is repre-

sented by a grid and the energy at a lattice point is shown by the raising

of the grid at that lattice point by an amount proportional to the energy
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(c.f. Fig. 9). Theý initial disturbance was the same at all lattice points

along lines normal to the direction of propagation. The initial energy pulse

had a kinetic energy per atom corresponding to 3 K and extended over several

lattice rows.

Two typical film frames are shown in Figs. 9a and 9b; 9a represents

a stage in the propagation of an energy pulse through a m,"iatomic harmonic

lattice. The initial pulse diminishes in amplitude as it progresses and, due

to the dispersive character of the lattice, a trail of smaller amplitude waves

develops behind it. Fig. 9b represents the situation as the wave propa-

gates through the anharmonic lattice postulated above. Figs. 9a and 9b

correspond to the states of development at the same time on the two lattices.

Notice that a shock wave with a sharp front appears in the anharmonic case.

As expected, its propagation velocity exceeds that of the small amplitude

wave which trails it. The small amplitude trailing part behaves in essen-

tially the way that a wave would propagate in the harmonic lattice. Payton,

Rich, and Visscher have also made movies of the propagation of waves in lat-

tices with defects. These are discussed in Section IV.

Similar calculations can also be made in 3D lattices but a film pres-

entation is not possible.

A fundamental difficulty arises in the development of a theory of the

propagation of large amplitude or shock waves in a 3D lattice. When large

amplitude displacements from equilibrium occur, atoms exchange positions and

lattice imperfections appear. These are very hard to program into a calcula-

tion.

A strong shock in a real solid has a front of only a few atomic layers.

The mechanism of the rearrangement of the atoms from a lower to a higher density
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state is unclear as is the dissipation mechanism after the shock passes.

Cyril Smith has proposed that a shock front contains an array of edge dis-

locations which move with the shock front and which acccunt for the in-

crease in density in the shock without the destruction of the lattice. A

schematic picture of on edge dislocation is shown in Fig. 10 and the type

of array oC edge dislocations which might appear in the shock front is given

in Fig. 11. Gilman and Vineyar4have discussed this model to some extent.

The molecular motions in the shock front are probably similar to those ex-

perienced in melting.
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IV. EFFECT OF DEFECTS ON LATTICE VIBRATIONS.

Let us now investigate the effect of defects on lattice vibrations

and on the manner in which waves propagate through a defective lattice. Im-

purities are an important class of defects as are dislocations. The replace-

ment of an atom in a lattice by an impurity corresponds to a local variation

in mass and force constants, while a dislocation is essentially an extended

variation in force constants.

Even without introducing a detailed model for the impurity, several

effects can be deduced on general grounds by applying certain theorems (first

due to Rayleigh) concerning systems oi springs and masses. Let us suppose

that the normal mode frequencies of an unperturbed lattice are

(0) (0) (0) (0) <(0) (6S1 A°2 < o3 < W°4 < ... <4 n

Then, if one mass in the system is reduced, all frequencies are increased; how-

th l) 4st
evei; the j , ýj, is bounded between the unperturbed jth and (J+l) so that

(0) (1) (0)(0 (1) ()J 1,2,3 ... ,n-1 (57a)

(0) (1)
n n (57b)

If, instead, one mass is increased, one obtains the new set of frequencies

(2)
Wj such that

(0) > "( > -iJ = 1,2...,n-1 (58a)

Wl(0) > 12) (58b)

166



The increase in a force constant has the same effect as the decrease of a

mass (and vice versa). Tlhese results are, of course, in qualitative agree-

ment with those involving a mass tied to a rigid wall by a spring in that

a decrease in mass increases the frequency of vibration as does an increase

in spring constant, and vice versa.

As we observed in the last section:, a crystal contains a large

number of degrees of freedom and, therefore, a large number of normal mode

frequencies. These were shown to appear in dense bands. T'he inequalities

(57) and (58) then imply that the frequencies of the perturbed lattice are

essent.ally the same as those of the unperturbed one except that frequencies

at the band edge might be displaced a considerable distance from the band.

For example, if the lattice contains a light defect, tlic frequency w (I) (see

inequa-ity 57b) is r-ot bounded from above so that it might become separated

from the band. Indeed, if a linear chain whi:h has no imperfections has a

highest frequency •, it can be shown that the defect frequency which es-
16

capes from the band and which is due to the light mass defect, is

= (2 -Q) with Q = m'/m, (59)

m' being the light defect mass and m the mass of a host lattice atom.

An observation first mide by Lord Kelvin is useful for the interpre-

tatiou of the nature of the normax mode of vibration associated with a fre-

quency that is separated from the "and. He found that if one tries to drive

a wave into a periodic structure from one end with a frequency that is not

in the frequency boad, the wave damps out in a distance that depends on the

displacement of the driven frequencies fro-n the band edge, the penetration

depth decreasing as the displacement from the band edge increases.
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At a given temperature, thermal motion drives the various normal

modes. One whose frequency lies out of the band remains localized because

from Kelvin's theorem it cannot propagate far in the crystal. Hence in a

monatomic crystal localized modes develop around defects which involve

light masses or force constants larger than those associated with pairs of

atoms in an unperturbed crystal.

If two mass defects are far from each other, a localized mode

develops around each and both modes have the same frequency. However, as

the two are brought closer to each other until the ranges of localization

overlap, the two modes interact with each other and the frequency degeneracy

is split, one frequency going up and the other down. An impurity generally

corresponds to a change in mass and several force constants; six in the case

of a simple cubic lattice, with nearest neighbor interaction only. Since the

splitting of the degeneracy by variation of several force constants is analogous

to that by change of several masses, under favorable conditions one local mode

might appear for the mass change and six with similar frequencies for the

force constant change in a simple cubic lattice. As the concentration of

impurities increases, impurity bands of frequencies develop.

As was mentioned in Section II, in the case of ordered diatomic and

polyatomic lattices, the frequency spectrum contains optical (high frequency)

and acoustical (low frequency) bands. A typical defect in such lattices is

an interchange of two atoms, which corresponds to a local disorder. The

change in frequency spectrum due to interchanging A and B atoms in an ordered

14
AB lattice can be seen from a consideration of Rayleigh's theorem. Let the

mass of an A atom be MA and that of the B atom be MB with MA < MB. Then the

act of replacing a heavy B atom by a lighter A atom causes a localized mode

to emerge from the top of the optical and another from the top of the acousti-
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cai band. The completion of the interchange by replacing the light A with

a heavier B causes a mode to emerge from the bottom of the optical band.

Similar remarks can be made about the influence of a change in force con-

stants. The various frequencies ot the localized modes and their sources

are sketched in Fig. 12 for the case of yAA > YAB and yBB < ¥AB" The dia-

gram corresponds to our simple cubic lattice model which possesses one de-

gree of freedom per lattice point. Ull degrees of freedom are taken into

account by multiplying each mode by a degeneracy factor of three. This de-

generacy is split by considering next nearest neighbor interactions. If

two force constants are changed at widely separated points in a lattice,

the associated localized mode frequencies are degenerate. The degeneracy

is split as the two anomalous force constants are brought closer together.

If it is assumed that only central force constants are changed when an A

atom is repi"ed by a B atom in our ordered diatomic lattice, two new force

consLants are associated with the substituted B atom. The pairs of closely

lying frequencies in Fig. 12 are drawn to correspond to the resulting split-

ting of pairs of anomalous force constant localized mode frequencies.

Some of the localized modes shown in Fig. 12 might be suppressed

for the following reason. Suppose a small decrease in a mass is made so

that frequencies barely rise from the bands. A large decrease in the force

-:onstants which reduce all frequencies might return these modes to the bands.

T-his interplay between changes of masses and force constants has been dis-

cussed for one-dimensional systems elsewhere. Situations exist in which a

frequency does not emerge from the bands until a parameter is changed by

more than a certain critical amount.

Now consider a two- or three-dimensional lattice with a low concen-

tration of randomly distributed mass defects. Let a disturbance propagate
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through the lattice and suppose that the disturbance extends over the complete

line, (or plane, in the 3D case), normal to the direction of propagation while

the depth of the disturbance is of the order of five to twenty-five lattice

spacings. One would expect the following events to occur.

In the neighborhood of a light impurity, a localized mode would be

generated. However, since the frequency of vibration of the light particle

is higher than that of its neighbors, they would tend to be in phase with the

pulse for a long time while the light impurity would be sometimes in phase

and some -imes out of phase with the pulse. Hence the light impurity would not

couple to aid pick up energy from the pulse as well as its heavier neighbors

would. If, for example, one plotted the energy associated with each particle,

the light mass would have less than its neighbors. On the other hand, a

heavy defect has greater inertia than its neighbors so that it remains in phase

with the driving pulse for a longer time and can pick up more energy leading

to a spike in an energy curve. The motion of the heavy atom is called a reso-

nance mode. It has a finite lifetime which is the time required to transmit

its energy to the rest of the crystal, Changes in force constants yield sim-

ilar results--an increase in force constant corresponding to a decrease in

mass, and vice versa.

Defects act as scatterers so that part of the pulse is reflected

backward by them and, indee_, at a fixed concentratiot. in a sufficiently ]cng

sample, one would expect little of the pulse to continue tnrough it without

being reflected back.

The mathematical theory of the effect of defects has been developed

in a number of papers, including those in References 16 and 17. Several re-

views exist, (see, for example, References 5, 18, and 19). Recent experimen-

tal work is reported in Reference 20.
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15
Payton, Rich, and Visscher, in their film program. discussed in the

last section, have given an exceli,-nt visual presentation of the propagation

of a disturbance in a lattice with defects. The atoms of the host lattice

were given a mass three, and light and heavy defects were given masses one

and nine, respectively.

The rirst cases considered were an isolated light and an isolated

heavy defect in an othergise perfect two-dimensional lattice. The quantity

exhibited in Fig. 13 which summarizes their results is the energy at each

lattice point.

The difference between the passage of a wave through a light and a

heavy impurity is shown in Fig. 13. The dip in energy in the light im-

purity case and the spike in the heavy one are as described above.

Figures 14a and 14bgive an equal time comparison of energy penetration

into a harmonic lattice containing 15% heavy atoms with that into a 15%-light

impurity region. The impurity sites are the same in both cases. The pulse

seems to propagate further in the lattice with light impurities than in the

one with heavy. Apparently the heavy impurities reflect the incident wave

better tnan do the light ones.

Finally, Figures 14 a and l4cshow the effect of 15% heavy inpurities

on both harmonic and anharmonic lattices. Clearly che pulse propagates through

[ defects in the anharmonic lattice (case c) more e-Uily than through the har-

monic one.

All the figures were taken from reference 15. The movies exist in the

Los Alamos film library.

171

V w ~w •i •Nm•mnmw



V. ERGODICITY AND PERMANENT WAVES IN ANHARMONIC ONE-DIMENSIONAL CHAINS.

One of the basic ideas in the classical statistical mechanics of systems

undergoing small vibrations is that, at equilibrium at a given temperature, the

energy of the system becomes equally divided into the various normal modes of

vibration. This is the so-called equipartition theorem which states that the

energy in every mode is (l/2kT).

Of course some mechanism has to be provided for the weak coupling

of the various modes since, if a system is completely harmonic, energy can

never be transferred between modes. A weak anharmonicity, a radiation field,

or contact with some kind of beat bath are considered to be sufficient to

make the mode mixing possible.

The equipartition theorem is deduced from equilibrium statistical

mechanics and not from an investigation of the asymptotic behavior of its dy-

namics. Hence one could imagine (but not many did seriously) that equilibrium

might never be achieved, in which case the theorem would not be applicable. A

number of calculations have been made recently, investigating this point.

i) Fermi, Pasta, and Ulam calculations. 21

In the early days of high speed computers, E. Fermi became

interested in their employment for the solution of nonlinear problems. He

felt that future fundamental theor..es in physics may involve nonlinear opera-

tions and equations and that it would be useful to develop some experience in

this field. As a test problem, he thought that the dynamics of the approach

to equipartition would be interesting to investigate.

A problem which Fermi, Pasta, and Ulam investigated with MANIAC I at

Los Alamos was the ergodic behavior of a linear chain of particles which in-

teracted through a nonlinear interparticle force. The interaction laws studied

4
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were respectively quadratic, cubic, and certain broken line interactions

so that the equations of motion were successively

2 2
= (Xi+l xi-]. L [) + 4(xi+1 - - (xi -

i = (X i+l + xi- 1 - 2xi) + a[(xi+l - x.) 3 - (xi - x i- 1 )3 (60b)

. = -1 X x) - 62 (xi - X ) + c (60c)
S'61(Xi-l i-iI

i= , 2, 3,...,N

where x. represents the displacement of the ith atom from its equilibriumi

position. The constants a ard a were chosen so that at maximum displacement

the nonlinear terms were only about one-tenth of the linear ones. In the

third case, the parameters 61, 622 and c were not constants but assu.:ed diff-

erent values depending upon whether or not the quantities in the parentheses

were greater or less than a certain value fixed in advance. The values of N

used by FPU were 16, 32. and 64.

The total energy of the chain, in the harmonic approximation, is

{½ 2x + [x - ) 2 + (x. j
j j+l J j j-J

= f {½ýEk + 2 a2 sin2 (Tk/2N)) (61)
k

The normal coordinates a k are defined by

ak(t) • x.(t)sin(kj7./N) (62)

so that

N2 N.

x = (t ak(t)sin(k-4/N) (63)
k= 1
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Also,

Ak + -kak = 0 k =1,...N (64a)

whe re

Wk = 2sin(-k/2N). (64b)

When anharmonic terms are included their contribution, which in

case(60a) is prc~ortional to the sum of (x j+l-X4) 3 and in case(6Ob) to

sum of (x j+l-Xj) , must be added to (61. In the FPU calculation, their

contribution to E was never more than a few percent. In the presence of

anharmonicities. the various ak' s coupled so that the members of the set

of equations (64) are all coupled.

If all the en~ergy is initially in the normal mode k = 1, one would

expect the coupling to generate a slow flow of energy into the higher

modes until equipartition with som small fluctuation is achieved. 4.;

N -* these fluctuations should vanish.

In the FPU calculations, the process started as expected, energy

flowed into the second, then the third, then the fourth anc fifth mode, but,

to the surprise of all concerned, most of the energy suddenly flowed bacK

into the second mode and soon into the first mode with this exchange contin-

uing. With N = 32 and a = 1/4, the total energy in modes uith k > 5 never

exceeded 8%. The details are shown in Fig. 15.

ii) Some Aspects of Ferturbation Theory of Chain with Quadratic

Nouiinearitv.

While perturbation theory is not tne most effective way of

obtaining a clUiar underst,.,dirg of nonlinear processes, one can without too

much difticuJty obtain some ideas from it. The easiest case to discuss is
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the quadratic nonlinearity which yields the equations of motion

mR. Y (xC J 1 -2xj+xj+ 1 ) + a[±(x J-Xj)2 - (XLj-xj+l) 2 (65)

Let us consider a ring of springs and masses so that xj+N xj.

Then we set

N I a exp(2-:ikj/N (66a)
i k=1

so that

(X j.-Xj) = L ak[-l + exp(-27ik/N)] exp(2.,ikj/N) (66b)

and

(X )21 a a e-k 2ijk/N [Ile _21ik,/N] [lie _2-i(k-k')/N] (66c)

( X l - N k k = k kk '

2
Similar expressions exist for (xj-x j+) and (x -x j+) . If all these equa-

tions are substi*--,.," into (65) and coefficients of exp(2iikj/N) on both

sides of the resu''ing equation are equated, one finds that

2 2ict2kA= nu; IakakkV sin2,,k'/"Nsin27k/", + sin2iT(k-k/)/N}

=(8ict/mN), ak, ak-k, sinr(7k/N; sin(-,k'/N)sin'i(k'-k)/N (67a)

where

U= ( 2 y/m)(l - cos27k/N) (67b)

or

2
W k = L sin~k/N wiith = 4y/m. (67c)

175



I

Since the soLution of

"+ kak = f(t) (68a)

is

ak(t) ak(O)costwk+ýwk k(0)sintwk+wk f f(t)sin(t-T)ok dT (68b)

0

we see that the differential equation (68a) is equivalent to the non-linear

integral equation

ak(t) = ak(O) cos twk +k() sin tk

t N -nk' (ksi)
+(81Tia/mNwL) sin(t-'r)wk k=a (�a (T))sin- sinTr-N (69)

L k'=l k("kk

A systematic but tedious way of solving this equation is to iterate

to obtain a power series in the small parameter a. To get some idea of how

the mode coupling develops, let us choose the simple example ak(0) = 0 for

all k and

ak(O) = Nc(6k,l - 6k,N-l)/2i (70a)

This corresponds to the initial sine distribution

x.(0) = c sin2rj/N (70b)J

Note that

k= NN-k (71)

Then upon itetation we find that

a_ ((k, 6 Cos G
ak(t) = 2 kl - ok,N-1) 1

2iiiacN sin 2 r 2
mw n N 6k,2+26 k,N +6k,N-2 Cos •i sin(t-T)wk dT (72)
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I

'lI•e integral is eleientary and one finds

a (t)/N= (c/2i)(6 - 6 ) cos tw,
k k,i k,N-i

"o9

ir (a/4-) W •(

)L '. k (5k,2 +k,N-l-cos tlk

2
•2 -- (cos 2twl-Cos tw-)c + 0(a 2 c 4 ). (73)

W24,21 tk)

2 2

We have used the fact that I =L sin2ir/N, and the term proportional to 6k,N

has been dropped because the quantity in the bracket vanishes when k = N

(since w N=O). The orly nonvanishing a k's are al, aN-l, a 2 and aN- 2 . Hence,

first order perturbation only excites the second sine mode, sin 4irj/N. If

2 4
one iterates again, the terms of order a c correspond to excitation of the

third sine mode, etc. Higher modes appear with coefficients that are higher

24
powers of a c

in the FPU calculation, c was chosen to be of order 1 and a of order

1/10. Hence it would be hard for the higher modes to become excited. On the

other hand, they could get excited through resonances. Note the frequency

denominator j2 -42. As one develops perturbation theory to higher and higher

2 2 2 2
order, denominators of the forr. n 22k-n2r a rwhere 2and n are integers.

Hence, if frequencies are commensurable so that nkk=n,,Z, the resonances

appear and energy is easily transferred from the kth to the ZIr mode. Since,

as -- a

cos LB - cos ta t sin ta

This means that when a resonance exists, by waiting long enough the factor t

2 2
eventually cverwhelms the smallness of the factor (ac2)
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L3

This observation has been made by FordT" who also noticed that when N is a prime

or a power of 2, no resonances exist in the normal mode frequencies. Since N

was chosen to be 16, 32, or 64 in the FPU calculations, this efficient energy

transfer mechanism did not .ýxist and the energy spilled back from the second,

third, or fourth modes into lower ones before higher ones ever had a chance to

become excited.

Incidentally, resonance phenomena have been known for many years in

celestial mechanisms. Newton's theory of gravitation and theory of planetary

orbits was under attack for many years by astronomers who noted that the orbit

parameters of Saturn and Jupiter seemed to vary linearly with the time. The

enigma of the "mean motion" of these planets was resolved by Laplace who ob-

served that the small value of 5w-2W' (., and w' being the unperturbed frequen-

cies of the orbits of Saturn and Jupiter) led to a resonance. The period of the

coupled system was 929 years. An interesting discussion of resonances (especi-

24
ally betwe3n asteroids) in the solar system was given by E. W. Brown.

25
iii) Calculations of Northcote and Potts.

In order to examine the importance of the number of particles

in the chain and to check the sensitivity of the FPU results to the nature of

the r•odel, Northcote and Potts investigated the model of a line of rigid

spheres of diameter D connected by simple harmonic springs. The nonlinearity

is apparent only as an infinite repulsion when the spheres are in contact.

This is an easy model to program for a computer because, between collisioan,

the solution c 'he equations of motion is known. One -..ould start with an in-

itial set of positions and momenta of the rigid spheres and, from the known

solution of the harmonic problem, determine the new positions and momenta at

some time t If these positions and momenta indicate that no collisions
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occurred in this time tV a new set is .ound appropriate for a time t2.

Suppose it is clear that a collision between the kth and Z+lst spheres has

occurred in the interval t 2 -C i 'nTen one cnooses a new time t < t < t2

and determines whether the collision occurs in the interval t 2 -tI or t 2 -t .

Thiis process can be continued until the collision time is determined to

within any desired accuracy. In terms of the moment of collision, a new

set of solutions of the equation of motion is developed with initial coai-

tions obtained by interchanging the momenta of tha th and k+l's particles

and giving the other variables the values they had at the moment of collision.

The numerical results were quite different from those obtained by FPU

(same end conditions, particles at ends kept fixed, were used). Equipartition

was achieved slowly when the chain started in the lowest mode and more rapidly

when it started in a higher mode. The mixing of modes seemed to start effec-

tively at the chain ends. The first collision of the atoms next to the ends

with the end atoms gave a strong localized reflection so that the chain con-

figuration after the collisicn required higher components of tba harmonic

normal modes for their description. The mixing does no: have to follow a step-

wise course through successive modes as it did in the FPU case. After some

time, the configuration of the system bore little resemblance to the initial

state. By that time, modes began to exchange energy more freely and mode tran-

sitions at the chain boundary were no longer the dominant influence.

There seemed to be no evidence of the periodic behavior observed by

FPU and others. The only significant difference in the energy sharing process

between the weak and strong coupling cases was that the rate of mode mixing

.Jas greater in the strong coupling than in the weak coupling examples.
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We have chosen three figures from the Northcote and Potts paper to

exhibit these results. The first, Fig. 16 represents the energy in the first

and second modes as a function of collision number. Notice the rapid drop of

energy in the lowest mode after the 37th collision, and also notice that most

of the energy in the first mode goes directly into modes higher than the

second, especially after the 37th collision, without going into the second

mode. The constants of the system were chosen to be N = 15 particles,

M = 3 x 10-23 g., y = 400 dynes/cur., 2 = 4.000 x 10-8 cm,, a - 3.995 x 10-8 cm.

and d = 3.400 x 10-8 cm. Figures 17 and 18 compare the manner in which the

temperature equilibrates when the chain is initially in the first mode with

the energy all initially in the 31st mode. N = 31 and Fig. 17 corresponds to

c = E/N = 0.7 x 10-14 erg (equilibrium temperature T = 62.0 K), while Fig. 18

corresponds to c = 0.4 x 10-14 erg aad an equilibrium temperature T = 31.7 K.

Now why does the striking difference exist between the FPU and the

Northcote and Potts calculation? Ford's remarks on the importance of resonance

effects are irrelevant tp the NP calculation because perturbation theory as pre-

sented above is not appropriate for the strong hard sphere nonlinear model in

which the force law cannot be expanded in a power series in the displacements

from equilibrium.

iv) Solitons.

A deeper point of view of the problem of energy transfer between

modes was taken by Zabusky and Kruskal By lbtting -he latticz spacing vanish

as was done in eq. (4b), thoy were able to convert the FPU difference-differential

equations into a nonlinear partial differential equation. The resulting equation

could be transformed into one which has been investigated in connection with

water waves, the Korteweg-de Vries equation

2u +uu + 6 = 0.
t x Xxx
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This equation has special solutions which preserve their character as a func-

tion of time. These solutions are called solitons and are the analogues of

normal modes of linear problems. Let an initial disturbance be a soliton,

and let it be decomposed into the normal modes of a related linear problem.

When the soliton is reflected from the chain ends, it returns to its initial

configuration. In terms of the Fourier coefficients of the normal mode decom-

position, it would seem that energy is flowing from one normal mode to another

so that when the initial configuration is repeated, the original Fourier com-

ponents repeat themselves. Zabrusky and Kruskal would then explain tCio FPU

results by saying that the initial state of the chain is close to a soliton

state which preserves its character for a long time, making it seem that the

chain is not ergodic and that energy gets transferred in and out of the lower

modes periodically.

Rather than reproduce the ZK analysis, we demonstrate the existence

of solitons by constructing them for a rather general class of nonlinear

wave equations.

The continuum wave equation

2u c u(74)
utt/c = Uxx

in an unbounded medium has the general solution

u = f(xict) (75)

so that if the form f(x) of a wave is given at time t = 0, its form is for-

ever the same and its propagation velocity is c.

On the other hand, if we have a nonlinear wave equation such as

u tt/c 2 =[P(U)]xx (76)
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then we would Pxpect that mode coupling would develop. One can, however, con-

struct special persistent waves or solitons for any function F(u).

We remember that any function u(w) with w a x4 ct is a solution of the

linear equation (1). Now consider the equation with constants C'. and c

F{u(w)} = u(w) + c1 + c 9 w. (77)

For any function F(u) one can solve this (perhaps transcendental) equation

for u(w). The u(w) may not be a function which interests us, but, nevertheless,

one could generally find a solution. If u(w) is such a solution, then ( 77 )

can be substituted into ( 76 ) to find (since 2w/ax2 = 0) that u = u(w) is a

solution of ( 76 ).

Let us construct some examples by working backward. Suppose we are in-

terested in a soliton that looks .-ike a shock wave with

u(w) = V(l + tanh w) (78a)

Then

tanh- (2u - 1) = w (78b)

and

F(u) = u + c1 + c2 tanh- (2u-l) (78c)

so that the nonlinear wave equation which has our shock wave type of soliton

solutioa is

utt / c2 = uxx + c 2 {tanh- 1 (2u-.)}xx" (79)

The Gaussian solitcn

2,
u(w) = exp(-w /a) (80a)
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implies that

w =a log(l/u)}½ (80b)

so that

F(u) = u + cI + c 2a log(l/u))½ (80c)

and

Itt /c 2 =Uxx + c2[{a log(l/u)}½IXX. (81)

Other examples can be constructed.

v) Solitons on Discrete Lattices.

It is not so easy to construct solitons for wave propagation

in nonlinear discrete lattices. An elegant example, however, was given by

27
Toda. He considered a chain of atoms whose interaction potential was defined

by

ý(R) = const. + a(R-D) + (a/b)c-D(R-D)

2 2
= const. + ½ab(R-D) - (ab /6)(R-D) + ... 08 2)

Hence, if ab const. while a - and b - 0, then O(R) becomes the harmonic

potential. {owever, if b ÷ for fixed a,

I O if r < D
t(R) 0 if r > D

which is the defining characteristic of a hard sphere repulsion.

Now consider a chain of atoms with deviations from equili'rium posi-

tions u1 ,u 2 9 . . . .  M. hen the kinetic and potential energies of the chain are

2
T E p 2n/2m with Pn =m:n n (84a)

Z 1(U3n-Un) (84b)
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The equations of motion are, in the usual form,

Pn = mU 1 = - ( (U-Un-l)/Mu - 3(Un+l - Un Mun (85)

If we use the interaction law (82)

mln = a exp{-b~u -Y - D) - a exp{-b(un+n - u - D]) (86)

Let us now subtract the relative coordinates

r = u - Unl (87)n n n-(

into ( 85 ). Then

mU n f(r) - f(r n+) (88)

St th
so that by subtracting the (n-i) of the equations from the nh, we find

-d.-(r ) = l{f(r ) 2f(r + f(r )} (89)
dt m n1n n-i

where new

u1 r r1 ;u 2 = r 1 -- r 2 ; u3 =r 1 + r2 + r 3 ; etc. (90)

Now define

1 r-7"•rn (91a)
n m n

and suppose this expression can be inverted so that

r x(s n) and rn nX'(sn) (91b)

Then ( 89 ) is equivalent to

nx,'(Sn) = S- 1 - 2s + sn-l (92a)
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The specific choice

f(r) -(l - e-br ) with ac aebD (92)

yields the connection between ( 39 ) and ( 92 ). Then

b(Sn+1 - 2s + s ) n/(Sn + a/m) (93)

Toda found a special soliton solution of these equations by noticing

that this formula resembles one which can be derived from the adaition for-
mula for the ellipcic function sn u. The following elliptic function identity

is well known 2 8 :

sn 2(u+v) - sn 2(u-v) = d sn- Ucn - u d n2v (94)I k usn u sn v 9

where k is the modulus of the Jacobi elliptic functions and

222dn u = 1 - k2 sn2 u 
(95a)

Then if one defines

u
c(n) = dn 2 u dn , 

(95b)
0

'(u) = dn u and E (u) -- 2 sn ,a cn u dn u (95c)

so that

k dn (u+v) k dn (u-v) ( 96a)
2dv { -2 v (96a)

sn v 2 C (u) (u
or

V V "I

/dn 2 (u-v)dv - f dn 2 (n+v) dv 
) (u)

Q -v -1 + C'(u)
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Then

e (u+v) - 2c(u) + c(u-v) = C (u) (97)• -2
1+ sn v + O'(u)

The structure of this formula closely resewbles that of (93). It is
• 28

known that

Z(u) e(u) - uE/K au / log C4 (u/2K) (98)

where E and K are, respectively, complete elliptic integrals of the first

and second kind of the variable k, and 04 is the fourth theta function. Then

if

Z(u+v) - 2Z(u) + Z(u+v) Z (u) (99)
-1+ sn v + (E/K) + Z'(u)

The reader, by direct differentiation, can verify that not only do

( 97 ) and ( 93 ) resemble each other, but that a special solution of ( 93 )

is

sn(t) = (2Kv/b) Z{2K(vt + nx)} (100)

as seen by setting

v - 2K/X u = 2K(vt - n/x) (101a)

and observing the dispersion relation between , apd v

-I + sn-2 (2K/)) + (E/K) =ab
m(2Kv)

or

2Kv - {(ab/m)/[-l + sn 2 2K + E/K]}½ (1Olb)

The function Z(u) is periodic with Z(u+2K) - Z(u) and v and A are, respec-

tively, the frequency and wavelength of the soliton. Finally, by combining
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(91:) and (100))

r log (K2[dn2{2K(vt En/X)1n b Kb K

when the modulus k is very small

2 2

sn u = sin u ; E/K 1 - ½k2 , Z(u) (K /4) sin2u, K wr/2.

and if y cab

2 1
wk- sin(,wt 2 with 2 (y/m) sInir/X

I 8b X

Furthermore

2 2 2
r - (W k /8ab2) cos(wt - 27n/X)n

which corresponds to a typical wave which propagates in the harmonic lattice.

The function which appears in the soliton formulae,

2
dn (2Kx) - (E/K)

is plotted in Fig. 1.9. As k -• 1 with u 2K/X fixed, the various elliptic

functions reduce to hyperbolic ones.

While all continuum wave equations of the type ( 76 ) have soliton

solutions, it seems that more conditions must be satisfied for discrete wave

equations. I suspect that the model used by Northcote and Potts does not

have one.

vi) Mode Mixing in Two Dimensions.

The first 2D mode mixing calculations have recently been made

29
by Hirooka and Sait2 who investigated two dimensional lattices with a quartic

anharmonic term in the potential, (i.e., the 2D generalization of ( 60b)).

Computer calculations indicate the existence of a critical induction period
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after which the energy sharing between modes develops rather rapidly. The

induction period increases as the quartic force constant 8 decreases. There

seems to be a critical value of 8, say 80 such that when 8 exceeds 8o' the sys-

tem becomes ergodie while, when 8 is less than BoT the lattice seems to be al-

most periodic in the manner exhibited by the FPU ID calculations.
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Fig. 13- Illustrations of the dip occurring in the energy wave as.
It passes over a light impurity (a) and the spike resulting from
encounter with a heavy impurity (b).

Uýeb
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ties in anharmonic case.
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THE SIGNIFICANT STRUCTURE THEORY OF LIQUIDS APPLIED TO THE SHOCK

COMPRESSION OF ARGON AND DETONATION OF CONDENSED EXPLOSIVES

S. H. Lin* and D. Tweed
Department of Chemistry, Arizona State University

and

H. Eyring
Department of Chemistry, University of Utah

ABSTRACT

The shock compression oi argon is reported by van Thiel and Alder for

two initial states at 86°K and 2 bar, and 148.2'K and 70 bar. In this

investigation, the significant structure theory of liquids is applied to

the shock compression of argon. At high pressures, to take into considera-

tion of the pressure effect on the solid-like portion of the partition

function of argon, the Lennard-Jones potential and the Gruneison constant

have been introduced. The Tait equation is used to correct the pressure

effect on V, the molar volume of solid. The Hugoniot adiabatics are

calculated and are compared with the experimental results. The agreement

is satisfactory. The significant structure theory of liquids is also

applied to calculate the detonation velocity of condensed explosives like

NH NO and C3H (NO3) The agreement between calculated results and
4 2 3ndC3H5  3'

experimental values is again satisfactory.

*Alfred P. Sloan Fellow
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1. INTRODUCTION

Mhe significant structure theory of liquids has been developed by

Eyring and his co-workers and has been successfully applied to the calcula-

tion of various liquids,(1) surface tension,(2) viscosities, 3 ) thermal

conductivities,(4) and diffusion coefficients.(5) In this investigation,

we shall apply the significant structure theory of liquids to the shock

compression of argon. Shock compression cf argon has been reported by

van Thiel and Alder.(6) Liquid argon has been shock compressed from two

initial states at 86*K and 2 bar, and 148.2OK and 70 bar. The shock com-

pression is well suited to the study of the inert gases at small interatomic

distances because of the large pressure and temperature range that can be

covered. The pressure range is, of course, high in shock wave experiments

on all condensed substances, and it goes up with the normal density of the

material.

[ 2. SIGNIFICANT STRUCTURE THEORY

According to the significart structure theory of liquids, a fluid is

* •assumed to consist of a quasi lattice in which mobile holes of molecular

size move from site to site. If V and V are the molar volumes of the

solid and fluid phases, respectively, and a random distribution of holes

and molecules is assumed, then the number of holes present in the fluid

is given by N(V-Vs)/Vs, N being Avogadro's number. Such a hole is

assumed to confer gaslike properties on neighboring molecules which Jump

into it. Thus, there will be effectiveiy N(V-Vs)/V moleculee with gaslike

degrees of freedom and effectively NV /V molecules with 3olidlike degrees

of freedom. Further, these holes provide fr a solidlike molecule R positional

degeneracy equal to the available neighboring positions, nh, multiplied by a
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Boltzmann-type probability factor involving the necessary energy c to

exclude competing molecules from the available positions. On the basis

of these considerations, the partition function, f, say for a monatomic

liquid such as inert gases, can be expressed as,

f = (fsfc)Vs. (fg)(V-V )/V (1)

where

r eEs/RT N
fs-(1~-e/T3

f (1 + nh e-/RT)N (3)

and

27rmkTI 3/2 eV]iN
= -* -I(4)

f stands for the solidlike portion of the partition function, for whichS

the Einstein oscillator model is used. The quantity f is the portiou of
C

the partition function contributed from the geometrical degeneracy factor.

f represents the partition function of the gaslike part. E is the energy
g s

of sublimation. nh and e are defined by

S

n h n- (5)
V

s

and

aEV

E-S S (6)
V-V

For the detailed discussion of the theory, the original papers should be

consulted. (1)
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At high pressures and temperatures, the pressure effect on Vs and

fs must be taken into account. Thus, knowIng the total partition function

f as a function of T and V, we can calculate the thermodynamic quantities
like the Helmholtz free energy A, internal energy E, and pressure P from

Vs (V-Vs )

A -kT ln f -- (A + A) + - A (7)
V c g

-- • ln f s _ (V- s) _

V (-V)E*-kT2  ~n __- 8SE K - (E + E)+ - -E (8)( T )v =-(E+E) v g

and

-3 A Vs (V-Vs)
u - M (P +P)+ - P +

W dVT V S v

+ T _ -A -A Ac) (1 + a) (9

where

X =-E + 3RT ln (l - e.O/T) (10)
5 S

Ac -RT ln (1 + nhec (11)

(2 TimkT)3/2 eV
A -RT ln 2- (12)

g h N

3R0
E a-E + e/T (13)"n-h-c e -l

._24-EI/RT

Sg = - liiT(14)Sc l+ nhe-C/RT

E" 9 3/2 RT (15)
g
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dE(
des 3R T (16)

dV e I/T-

_T_ T_-___T -a/RT
P -n hT e (1 7 )

+ ne- C/RTC l+lhe

and

RT (8P = -- (18)
g v

Bs and a in Eq. (9) represent the compressibility of solid and liquid,

respectively. From the above equations one notes that the partition function

of significant structure theory includes the parametric quantities Es, Vs, 0,

n, and a, which are characteristic "of a substance. These quantities have been

calculated theoretically by using an intermolecular potential. (7)

When the pressure is very small, the pressure effect on Vs and fs is

small and hence Ps and as/a are negligible.(I) At high pressures, for
"- ~(8)

example, one may use the Tait equation to correct the pressure effect on V.,

IB+P)

V s -Vso -C ln -1 (19)

and use the Lennard-Jones potential to correct the pressure effect on E ,(8)
S

NO -(3/2) RO (20)

through Vs and 0, where C6 = 14.4539, and C12 - 12.1318. To correct the

pressure effect on the Einstein temperature 0, one may use the GrUneisen

constant, which is defined by(9)
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Y d in V " (21)
ins

3. CALCULATION OF THE HUCONIOT ADIABATIC FOR ARGON

The Hugoniot adiabatic can be obtained from the Rankine-Hugoniot jump
(8)

conditions,

E-Eo-. 1/2 (P+Po) (Vo -V) (22)

where P and V represent the 'nitial pressure and initial volume respectively.O O

If the thermodynamic properties of a substance are known, then it is possible

to express the energy E as a function of the pressure and volume, E = E (P,V).

Substituting this expression into Eq. (22), we obtain a certain curve in the

P, V-plane. The relation between P and V represents the Hugoniot adiabatic

curve. The initial pressure and initial volume, P and V0 , are parameters of

this curve. The problem of finding the Hugoniot adiabatic curve by using the

significant structure theory of liquids is straightforward and is equivalent to

eliminating both T and E using Eqs. (8), (9) and (22), so that P can be

expressed in terms of V only. In principle, the Hugoniot adiabatic curve

can be obtained no matter how complicated Eqs. (8) and (9) may be. But in

practice, we can accomplish this only by using numerical interation methods.

The parameters of argon are summarized in Table I. To check the

applicability of the Einstein model of solid, we rewrite Eq. (16) as follows

2 a o 3] Y/PC 6  /+ 32 Re + - I (23)

by using the Lennard-Jones potential. The isotherm of solid argon at

T - 77K is shown in Fig. 1, and is compared with measurements reported by

Stewart. (10) In the pressure range under consideration, the agreement
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seems satisfactory. To check the applicability of the Tait equation, Eq. (19)

we rewrite Eq. (19) as follows

C
P =B + (24)

S

This means that at a particular temperature, the Tait equation predicts that

"P vs 1/0sVs should be linear. Ps vs 1/s Vs for solid argon is plotted in

Fig. 2, using Stewart's data. The linearity holds for the whole range of

pressure under consideration.

Next, we turn to the calculation of the Hugoniot adiabatic curve by

using the significant structure theory of liquids. The Hugoniot adiabatic exists;

adiabats are calculated for P = 2 bar po = 1.405 g/cc and P 0 70 bar

and po = 0.919 g/cc. In Figs. 3 and 4, the calculated results are compared
(6)

with experimental values reported by van Thiel and Adler. The agreement

is satisfactory.

4. DETONATION OF CONDENSED EXPLOSIVES

According to the significant structure theory of liquids, the partition

function of a fluid mixture can be expressed as

N! R [f Xi(Vs/V)sg Xi(V-Vs)/VI e-S/kTVs /V(
f [ 2fgi5)

where

V=s YXV andE= X I 2E. + 21jX EX E E 2
i s i i si sJ i j(Esi sj

the quantities E and P are then given by,

E JXE + /V (E,- E, + JXE. - ~ 1X ) (26)
igi s igi

and
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v E
P = G+ •- ~si'PG + (JX (A- +[YX gi s) + (ES-A)JVs/V)(-l+0s/f) (27)

where

-k 2  *Efs 2k aknf gj 2 (28)
Yan~ kT 2T C kT (8

si. V 9aTa

Asi, -kTtnfs; Agi -kTgnfgi ; C -kT~nfc (29)

and

NkT fPsn (30)P Nk ; Pc "kT, TIav ýT av

the partition functions f5,, f., of component i for nonlinear triatomic

moleculi ; can be written as:

F2rm~kT 3/2 Sn2 (8r3 AB 1/ (kT) 32 3 1

feV/Ny - 3 1! -e (31)
giLkh oah vail-e-vi/T

and

fsl , •_ -OifT(32)
(1-e&Bi/T)6 V2 1-e

and for linear triatomic molecules can be written as:

2iMkT 3 87r 2 IkT 41 Ii •f~t= h ] eWN)"- - , -0i/ 1 (33)

v-i l-e Vi/T

and

r 1 4 N
2(34): f l '7r - e /T

(1-e 1-e
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similarly, the partition functions fgi' fsi of component i for diatomic

molecules are:

2 l-e

and

f si = (l e-i/T)N5  l~e-iT (36)

The pressure effect on E of nonpolar molecules has been discussed in

Section 2. To correct the pressure effect on E of water, we shallus()(8
s

Es = -4e r2 (d/R) 12 
- C(dR6-3 viP)(!) fC•2 Xld/R)4g] - Eo* (37)

where R is the intermolecular distance and E is the zero-point energy. The
0

quantities in Eq. (37) are given as:

0

t1= 1.200; t 2 = 0.654; d = 2.725"A; £ = 707 cal/mole

C12 = 4.000; C6(ff 4.033; C3 "= 4.633; C4 -= 4.237.

f and g in Eq. (37) are functions of the three angles which describe the mutual

orientation of two water molecules.

To calculate the detonation velocity, we have to use the Chapman-Jouquet

condition, which states that the detonation is conic with respect to the products

at the end of the reaction zone. The Chapman-Jouquet condition can be stated

in another way; i.e., the Michelson line

P-=Po +D2/Vo (v° - v) (38)
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is tangent to the Hugoniot adiabatic, Eq. (22), at the end of reaction zone,

v and V represent the specific volumes. In this way, we can calculate the

detonation velocity D, from Eqs. (22), (26), (27), and (33). This has been

done for NH4NO2 and C3H5 (NO3) 3. For NH4N02, we obtain D - 4750 m/sec and the

4conditions at the end of reaction zone, p - 4.95 x 10 atm, T - 3030*K, and

v = 0.747 cm3 /g. For C3 Hs(NO3 )y we obtain D - 7750 m/sec, and the conditions

at end of reaction zone, p - 1.975 x 105 atm, T - 5620°K, and v 0.511 cm 3/g,

compared with the experim,.ntal value(12) of D - 7500 + 500 m/sec. The agreement

again seems to be satisfactory.
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TABLE I

PARAMETERS OF ARGON

n 10.7 3.402 A

a 0.0052 y 2.25

Vs0  24.98 cc,'mole B 1.716 x 09 dyne/cm2

0 60.0"K C 2.639

c 1.690 x 1 0 -1 dyne/cm2
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MECHANISM OF PROPAGATION OF STEADY DETONATION*

Wildon Fickett
Los Alamos Scientific Laboratory, University of California

Los Alamos, New Mexico

INTRODUCTION

The two classes of self-sustaining waves in explosives have very

different characteristics. Deflagrations, or flames, are relatively slow

and quiet. Detonations are fast and violent.

A deflagration wave propagates at much less than acoustic velocity.

The burned material emerges from the rear of the wave with a higher tempera-

ture, but lower pressure and density, than that of the initial statc.

Momentum changes are relatively unimportant. The equations describing the

process have a steady solution at a unique wave-propagation velocity. The

calculation of this velocity requires the solution of an eigenvalue problem,

in which the most important effects are the rate of the chemical reaction and

the rate at which the resulting increased translational energy of the reaztion

products is transported forward by heat and matter diffusion. The trausport

coefficients thus play an important part in the process.

A detonation is very different. It may be regarded as a strong shock

supported by an immediately-following chemical reaction, triggered by the

high temperature produced by the nearly-instantaneous compression and heating

in the shock. The rapidity and violence of the process causes the relative

importance of transport effects an'.- momentum changes to be completely reversed:

here momentum changes are all-important, while tiansport effects can be

neglected for most purposes.

*Work performed under the auspices of the U. S. Atomic Energy Commission.
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The front of a detonation which has run some distance is observed, over

a fixed area of the front, to approach a plane surface of discontinuity

(provided one does not look too closely), and the velocity is observed to

approach a constant limiting value. Thus, a one-dimensional flow model of

the process is suggested. Under this assumption, and the additional one that

the flow within the reaction zone is steady in a frame attached to the shock,

relatively simple solutions to the flow equations can be found. In this

approximation the unique value of the steady propagation velocity or

detonation velocity is generally determined not by the solution of an

eigenvalue problem containing the details of the flow within the reaction

zone, but by the sonic character of the flow at its end. The main con-

sideration is the question of whether a disturbance originating behind the

front will overtake it and affect its motion. The calculation of the

detonation velocity is thus considerably simplified. It turns out that the

final state and its sonic character are determined by the solution of the

(algebraic) conservation laws of one-dimensional steady flow. The equation

of state of the reaction products must be known, but no information about

the reaction kinetics is needed.

Typical examples of the detonation velocity, and of the pressure,

density, and temperature at the end of the reaction zone are given in

Table I. Here M is the Mach number of the detonation, that is, the de-

tonation velocity divided by the sound speed in the undisturbed material.

The temperatures given for the liquid and solid are uncertain to perhaps

20 to 30 percent.

The high velocity oi the detonation results in an astonishing power

level for tbe rate of conversion of chemical bond energy to mechanical and

heat energy. In a good solid exploAve this rate is about 1010 watts per
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sq. cm. of front, which may be compared with the total U. S. electric

generating capacity of about 3 x 10 1 watts. The rate at which the earth

receives energy from the sun, about 4 x 1016 watts, could be equaled by

a detonation wave 20 meters square.

Although condensed (i.e., liquid and solid) explosives are the ones of

interest here, they are comparatively difficult to study because of the high

pressures generated. The equation of state is too poorly known to be of any

use in quantitative testing of theories. Thus, most of the fundamental

advances in understanding from the experimental side have come from the study

of gaseous systems, where the experiments are cheap and easy by comparison,

and the known equation of state (ideal gas with small corrections) makes

possible quantitative a priori calculations. To what extent the understanding

gained here applies to condensed materials is not always clear.

ELEMENTS OF THE THEORY

In this section, we review briefly the elements of the one-dimensional

flow theory, in order to establish a framework and terminology for the sub-

sequent discussion.

We first consider the flow behind the front. As shown in Figure 1, the

detonation is suppo3ed to be initiated at one end of a closed tube. The effect

of initiation transients is neglected, the detonation being assumed to have

run at constant velocity from the point of initiation. Also the reaction

zone structure is not shown; only the state at its end appears in the figure.

As shown in the first pressure-distance profile, the front is followed by a

self-similar rarefaction wave which terminates about halfway back where it

has reduced the forward material velocity produced by the front to zero, thus

matching the rigid-wall rear boundary condition, and the pressure to about

half the value at the front. The detonation velocity suggested by the simple
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one-dimensional theory is such that the flow at the end of the reaction zone

is sonic with respect to the front; i.e., the sound speed is equal to the

material velocity in a coordinate frame attached to the front. Since the

head of the rarefaction wave moves at sonic velocity, it just keeps up with

the front.

The second profile illustrates what may be more nearly the real case;

here tl-a flow at the end of the reaction zone is supersonic with respect to

the front. Since the head of the rarefaction now moves more slowly than the

front, it is separated from the front by an ever-widening region of constant

state.

We now apply the laws of conservation mass, momentum and energy to

the assumed one-dimensional steady flow in the reaction zone. For purposes

of illustration, consider a system in which a single reaction takes place

described by a progress variable which ranges from 0 for no reaction to 1

for complete reaction. The conservation relations connect any point in the

reaction zone with the initial state. They can be written as

S~22 poD = (p - pO) / (v° - v) Rayleigh line

E(p,v, X)-E(povo, X=O)=l/2(p+po) (vo-v) Hugoniot

2u =(p-po) (vo-v)

Here o, v, p, E, D, and u are the density, specific volume, pressure, specific

internal energy, detonation velocity, and material velocity (in the laboratory

frame in which the undisturbed material is at rest), and the subscript zero

denotes the initial state. The equation of state is written in the form

E = E (p, v, X) for convenience.

Curves of constant D and constant u and solutions of the Hugoniot equation

in the p - v plane are hown in Figure 2. Curves of constant u are hyperbolas,

226



with u increasing with pressure along the Hugoniot. Curves of constant D,

or Rayleigh lines, are straight lines passing through the initial point, with

slope proportional to D2. The Hugoniot for no reaction (X=O) is the locus of

possible shock states. The Hugoniot for complete reaction (X=i) is the locus

of possible states at the end of the reaction. The effect of the heat release

in the reaction is to displace the Hugoniot out from the origin, so that it no

longer passes through the initial point. Possible states immediately behind

the shock and at the end of the reaction zone are given by the intersection of

a Rayleigh line with the X = 0 and X = I Hugoniots, respectively. In contrast

to a shock, which can have any strength, it is seen that the velocity DCJ

in the figure, at which the Rayleigh line is tangent to the complete-reaction

Hugoniot, is the minimum possible one for a detonation. For any larger velocity

there are two possible states at the and of the reaction zone, marked S and W

in the figure.

We now state some properties and define some terms:

1. The state immediately behind the shock, point N in Figure 2,
will be called the shock state. This is sometimes referred
to as the von Neumann point.

2. The state at the end of the reaction zone will be called the
final state.

3. On the complete-reaction Hugoniot, or detonation, the entropy
is a minimum at the C-J or tangent point and the flow there is
sonic with respect to the front. At all points of lower pres-
sure, called weak points, the flow is supersonic, and at all
points of higher pressure, called strong points, the flow is
subsonic.

4. The detonation pictured in Figure i is a self-supporting

detonation. If the fixed wall at the rear is replaced by a
piston moving with constant velocity, the detonation velocity
will be independent of changes in the piston velocity over a
certain range. But if the piston is moved forward rapidly
enough (faster than u,_) the detonation velocity is increased

and an cverdriven detonation wave is produced.
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HISTORY

The phenomenon of detonation was first recognized by Berthelot and Vieille

(1881) and by Mallard and Le Chatelier (1881) in the course of their studies

of flame propagation. The elements of the simplest theory essentially as

outlined above were formulated independently by Chapman (1899) and Jouquet

(1905, 1906). In their work, it is realized that in the usuaJ experimental

situat in the front will be followed by some type of rarefaction wave, though

this part of the flow is not treated in detail. A detonation whose final state

is a strongpoint (at which the flow is subsonic) will be overtaken and slowed

down by the rarefaction. This argument suggests the so-called Chapman Jouquet

hypothesis: that the steady detonation velocity of the self-supporting wave

is the minimum value consistent with the conservation conditions. It is

concluded, without satisfactory justification, that the weak points can be

ignored.

This simple theory was quite successful. The detonation velocity, the

only quantity measured at that time, is predicted within a percent or two,

even with the relatively crude thermodynamic functions then available. The

first indication that all was not well was the discovery of spinning detonations

in the 1920's, in which a bright spot on the front is observed to trace out a

heli.cal path as the detonation propagates. This interesting phenomena was

largely confined to "marginal" systems with relatively small heat of reaction.

It was regarded as a more or less isolated phenomenon and did not give rise

to serious questioning of the one-dimensional flow assumption as applied to

most detonations.

The next advance in theory came in the early 1940's with the detailed

treatment of the reaction zone in the so-called ZND model, put forth independently

by Zeldc'ich (1940) in Russia, von Neumann (1942) in the United States, and
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Doering (1943) in Germany. The configuration assumed is a plane shock, treated

as a jump discontinuity, followed by a region of one-dimensional steady flow

in which the reaction goes to completion. The steady-flow equations for the

reaction zone are written down and their properties studied for the case of a

single forward reaction proceeding to completion. This study shows that, in

the 3usal case, only strong final states or the CJ state can be reached. The

CJ hypothesis is applied as before.

What might be termed the modern era in experimental work on gas detonations

begins about 1950. The principal object is the measurement of the pressure,

density, and some composition variables of the final state and comparison of

these with the nearly exact calculated results based on the ideal gas equation

of state and the tabulated thermodynamic functions of the product species. The

use of the electronic computer lightens the computational burden considerably.

While the results are not entirely consistent, the general conclusion is that

the state point lies approximately on the weak branch of the detonation Hugoniot

at a pressure of something like 10% below the CJ value. Figure 3 from Schott's

review (1965) gives the properties of such a point, in this case arbitrarily

chosen for purposes of illustration.

In condensed explosives, about the only properties which can be measured

with sufficient accuracy to test the theory are the detonation velocity and,

Sto a lesser extent, the pressure. But the equation of state of the products

is so poorly known that an attempt to compare the experimental results with an

a priori calculation is of no use. The special properties of the CJ point,

however, allow the pressure to be predicted from the measured dependence of

velocity on the initial energy and density. Values of pressure obtained in this

way by Davis, Craig, and Ramsay (1965) are in disagreement with those obtained

by the conventional method of observing the motion of thin metal plates in
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contact with the explosive. Petrone (1968) disputes this conclusion, offering

an alternative interpretation of the conventional pressure measurements which

would, if correct, remove the disagreement. The disputed point is whether

the reaction zone is large enough to affect the motion of the metal plates;

Petrone believes that it is, while Davis, Craig, and Ramsay believe that it is

not. The author's opinion is that Davis, Craig, and Ramsay are correct.

At about this same time, the theoretical work was being directed toward

a thorough study of the nature of possible steady solutions under less re-

strictive assumptions. This work extends to the consideration of an arbitrary

number of chemical reactions proceeding in both forward and backward directions,

so that the effects of chemical equilibrium must be considered. Also studied

in some detail is the inclusion of transport effects, through use of the

Navier-Stokes equations. in nearly all cases based on less restrictive

assumptions than those of the ZND model, it is found that there may be, for

certain values of the physical parameters, a class of solutions terminating at

a final weak state. For the other more "normal" class of solutions, the Chapman

Jouquet hypothesis, slightly modified to account for the effects of chemical

equilibrium, is still proposed. It is unlikely that a solution terminating in

a weak state applies to any of the more commonly investigated gaseous systems.

The applicability of such a solution would not explain the disagreement in

any case, since the entire one-dimensional theory rests on the neglect of

motions transverse to the direction of propagation, which, as it turns out,

are probably too important to ignore.

As detonations were studied in more detail, it began to be apparent,

beginning in the early 1960's, that transverse wave motions are present on

the front in nearly all cases, with true one-dimensional flow being generated

only in exceptional circumstances. The spacing of these wavea is strongly
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dependent on the heat release and reaction rate, and varies over a wide range.

The phenomenon of spin, originally regarded as a somewhat isolated curiosity,

is now recognized as one extreme of this general phenomenon - the lowest-

frequency (spatial) mode which will fit into a round tube. The theoretical

work of this same recent period has also been much concerned with the question

of the effects of non-one-dimensional flow, a much more difficult problem than

the study of the steady solution. The main progress to date is the finding

that the steady solution is typically unstable to small pertvrl>ations, together

with the study of the time-dependent replacement for the steady solution wheu

the flow is constrained (by assumption) to be one-dimensional.

STEADY SOLUTIONS

The general framework for the construztion of steady solutions is that

of the ZND model. At the front of the wave is a shock, treated as a jump

discontinuity. Ahead of the shock no reaction occurs, the undisturbed

explosive being in a state of metastable equilibrium. Following the shock

is a reuion of steady flow (i.e., independent of time in a coordinate frame

attached to the shock) in which the chemical reaction takes place. The

steady solution sought is to extend from the shock back to the point of

complete reaction or chemical equilibrium (which will make it formally

infinite in length for the common types of reaction rates). Some other non-

reactive and possibly time-dependent flow, such as a rarefaction wave, is to

be appended to the end of the reaction zone in order to match the prescribed

rear boundary condition. This is most commonly specified as a following

piston of specified constant velocity which, of course, includes the special

case of zero velocity; i.e., a rigid wall.

Other assumptions are that the flow is one-dimensional (plane) and

laminar, and that the naterial behind the shock is everywhere in local
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thermodynamic equilibrium except for the chemical reaction. This is equivalent

to the assertion that the material possesses an equation of state, with the

chemtcal composition included in the set of independent variables. Th. or1y

entropy-producing process, other than the shock jump itself, is that of

chemical reactioa. Throughout the following discussion transport processes -

viscosity, heat conduction, diffusion - may be taken to be neglected except

where specifIcally mentioned. Work on this problem with more than one re-

action, but with neglect of transpcrt effects, has been done by Wood and

Kirkwood (1957), Wood and Salsburg (1960) and Erpenbeck (1964). Transport

effects have been considered, but with only a single chemical reaction, by

Hirschfelder and his group (1961), Wood (1963), and others.

Let us now outline the form of the solution for the case of a single

forward reaction. Let the reaction be

A ÷B

with progress variable A equal to the mass fraction of species B. The steady

flow equations are

(ou)x =0

(p+pu)x 0

(H+ý~u2) 0

x

A = r/u,

where p, u, p, V, and r are the density, material velocity, pressure, .specific

enthalpy, ana reaction rate per unit mass, and the subecript x denotes dif-

ferentiation with respect to the distance x. The reaction rate is assumed

to be a function of the local thermodynamic state.

The integrals of the first three equations can be expressed as the three

conservation relationb given earlier. With an assumed value of D as a parameter,

these can be solved for p, v, and u as functions of X, so that only a single
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ordinary differential equation

dA/dx r(X;D),

remains. The initial roint for the integration is the shock state. The value

uf A is zero there by assumption, and the solution of the consetvation relations

with X = 0, of course, gires the complete state.

The assumption of a single fcrward reaction (restricted also to the case

of no decrease in the number of moles with reaction) is too restrictive in that

it does not give any solution5 of a second type which generally appears under

less restrictive assumptions, such is the consideration of more than one re-

action, of the possibility of a decrease in the number of moles (more ganerally,

a volume decL.-'ent) with reaction, of slight (radial) divergence of the flow,

or of transport effects.

In all of these cases, there are two general classes of solution which we

will call "normal" and "eigenvalue" solutions. The normal solution is of the

type obtained with a single forward reaction. The profiles of Figure 6,

presented in the next section, are examples. It always terminates at either a

strong point of the detonation Hugoniot or the CJ point, never at a weak point.

In the phase space of the ordinary differential equations for the steady flow,

such a point is a nodal critical point or is reached through a nodal sector of

a higher-order critical point. In determining a value of D for a given rear

boundary condition, only the properties of the terminal state at the end of

the reaction zone need be known. This can, of course, be calculated from the

conservation relations and the equation of state, without knowledge cf the

teaction rate. In the overdriven case, the rear boundary is matched by the

final state having the same material velocity as the piston, plus a region of

constant state behLnd the reaction zone. In the unsupported case, the final

szate is the CJ point, with a rarefaction wave adjoined.
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The eigenvalue solution has an entirely different character. In order

for it to occur, there must be some process which is effectively endothermic

in its effect on the flow, such as an endothermic reaction (which absorbs

instead of releasing energy), or a normally exothermic reaction which is

driven pest its equilibrium point by the flow and becomes effectively endo-

thermic as it returns. In this type of solution, the integrEl or solution

curve of the differential equations proceeding from the shock state must

reach a special point called the pathological point at which the essentially

endothermic and essentially exothermic processes are in balance in their

effect on the flow. From this point, the integral curve may proceed to

either a strong point or a weak point, the weak point being a saddle-type

critical point of the differential equations. For a given substance (i.e.,

for given equation of state and reaction kinetics with parameters fixed),

the eigenvalue solution, if it e .ists at all, can do so only for a unique

value of D, and its determination is an eigenvalue problem whose outcome

is sensitive to the details of the properties of the material, in particular

the reaction kinetics. A steady solution for a profile of this type is

diagrammed in Figure 4. It bears some resemblance to that for the non-

reactive flow in a eonvergent-divergent nozzle. The solid curve is the

profile for the eigenvalue D, which is the velocity of the self-supporting

wave. Point P is sonic, and points S and W are the final strong and weak

points. Fot piston velocities less than us the detonation will be followed

by a slower-moving second wave. For piston velocities less than uW this

wave will be a rafef-ction and for piston ,,elocities between uW and uS it

will be a shock. At piston velocities above us the detonation is overdriven

and the profile takes the shape of the dashed curve, subsonic throughout.
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HYDRODYNAmIC STABILITY

The existence of these extensively-studied steady, one-dimensional

solutions of the flow equations does not, of course, mean that they wil'

necessarily appear as the long-time limit of a flow problem with appropriate

boundary conditions. The opposite apnears to be the case: the flow in the

reaction zone of self-sur;orting detonations in nature is neither steady nor

one-dim-nsicnal.

The first step in asking whether this is predicted by the equations

chosen to represent the flow is to investigate the hydrodynamic stability

of the one-dimensional solutions against small (three-dimensional, time-

dependent) perturbations. This is done by linearizing the time-dependent

flow equations about the one-dimensional steady solution. The shock is

taken into account explicitly, one of the complications in the analysis being

the necessity of working in the accelerated coordinate system in which the

longitudinal distance is measured from the perturbed shock front. The re-

sulting set of linear partial differential equations then describes the

growth or decay of infinitesimal perturbations co the steady solution. Let

the spac.e and time variables be x, y, z, t with the steady detonation propa-

,-ýcing in the x-direction. The equations are reduced by Fourier transformation

on y and z, and Laplace transformation on t to a set of ordinary differential

equations in x with variable coefficients depending on the steady solution,

and with shock boundary conditions at tha front. The solution of these

equations contains a sum of terms of the approximate form lelit, where the
i

T. are the values of the time-transform variable T at the poles of a certain
I

complex function. For each value of T., the corresponding perturbation grows

or decays according to whether the real part of T is positive or negative.
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The necessary calculations have been done by Erpenbeck (1964) for the

idealized system represented by a polytropic gas of constant heat capacity

reacting according to

A - B

with Arrhenius rate r (per unit mass)

r - (i-X)e--E +IRT'

with X the mass fraction of species B, E+ the activation energy, T the

temperature, and R the gas constant.

The parameters are y (fixed at 1.2), D, E+ and the heat of reaction Q.

Figure 5 shows the stability at Q = 50 RT. as a function of transverse spatial

wave number of the perturbation for a range of values of D and two values of

the activation energy. The stability is increased by decreasing the activation

energy. At the larger values of D, the steady solution is unstable only to

perturbations whose transverse wavelengths are of the order of the reaction

zone length. Interestingly, at values of D not too far above DCj, the steady

solution is unstable to perturbations of zero transverse wave number or infinite

wave length; that is, those in which the motion, although time-dependent, is a

function of x only and in which the shock front is planar. Thus, a one-dimen-

sional pulsating flow of some type is to be expected as the long-time limit

of the self-supporting detonation for this case.

This interesting result suggests a one-dimensional time-dependent

numerical finite difference calculation of the flow, a type of computer

experiment which can be characterized as based on well-developed numerical

or algorithmic technology (with the exception of the non-trivial addition of

chemical reaction), and well within the capability of second-generation

computers. The calculation uses the method of characteristics. Some results

from the paper of Fickett and Wood (1966) are shown in Figures 6 and 7.
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The two cases compared in these fi6ures have in commo y¥=1. 2 , Q=50RTo,

D 2=1.6 D 2C, chosen to be typical of gaseous systems. According to Figure 5,

the steady solution should be stable for E = 40RTo and unstable for E+ - 50RT,.

Figure 6 shows profiles of the steady solution for these two cases. Figure 7

shows the shock pressure history for a detonation initiated by a piston whose

velocity decreases linearly from the value of the velocity at the shock state

of the steady solution to that at the final state (in a time comparable to

the reaction time), and then remains constant. As predicted by the linear

perturbation analysis, the case E +=40RT. is stable, with the flow settling

down fairly quickly into the steady solution. The case predicted to be

unstable, E +=5ORTo, behaves very differently, with large continuing pulsations.

These eventually become periodic; the irregularities in the figure are caused

by reflections from the piston. In spite of the large amplitude and non-

linearity of the pulsation, the mean pressure is within one percent of the

steady-solution value. The linear theory finds only one value of Ti with

positive real part for this case. The growth rate and period observed in

the computer experiment are in qualitative agreement with those suggested

by the real and imaginary parts of this Ti. The linear perturbation analysis

was later extended by Erpenbeck (1967) to include higher-order terms. This

nonlinear analysLs results in a periodic behavior of the shock pressure

similar to that described above. Mader (1965) has obtained similar pulsating

solutions from a numerical finite-difference calculation for condensed

explosives.

The instability of the steady solution extends to quite small values

of Q. Figure 8 shows a shock pressure history for the case y-l.2, Q-RTo,

E+=5ORTo, D 2=1.6 D 2Cj. The i~regularity of the pattern is consistent with

the presence in the linear analysis result of more than one value of Ti with

positive real part.
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STRUCTURE OF THE FRONT

A reaction zone consisting of an induction zone followed by a narrow

region of rapid reaction and heat release is sensitive to perturbations

because a detonation can easily propagate through the almost-unreacted

ma.eria). of the induction zone. A small hot spot at the rear of the re-

action zone, for example, could initiate a hemispherical detonation wave

which would soon overtake the front. The observed structure of the front

can be imagined to arise from the collision of such microdetonations, as

they have been called by Dremin (1968). The details of the process are

quite complicated but the main features are sketched in Figure 9. The

lower line shows three microdetonations which have broken through the

original front and begun to collide with each other. The shock reflection

at the collision is initially regular. As the angle of collision changes,

a Mach stem is formed. In the second line it is shown as having overtaken

the original front. Behind the Yach stem, the pressure is high and the

reaction zone short. Where the spherical front of the original microdetona-

tion has passed through the original front into unshocked material, the

reaction zone is relatively long. The reflected shocks moving approximately

perpendicular to the original front initiate reaction as they pass into this

region and thus become detonations propagating in the transverse direction.

Mecnwhile, the speed and strength of the Mach stem is being decreased and

its reaction zone lengthened by rarefaction from its sides and rear. By the

time the transverse wave reverses its direction by collision with its neighbor,

it again finds a region of unreacted material into which to propagate - the

now-lengthened reaction zone behind the original Mach stem, and the process

is thus able to repeat itself. Clearly the natural spacing of transverue

waves will be strongly dependent on the reaction kinetics. It must be large
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enough to allow an appreciable induction zone to form behind the transvcrbe

waves so that when their direction is reversed by collision they will find

sufficient unreacted material to sustain their propagation. Tt must be small

enough so that a new microdetonation does not have time to form from a randcm

perturbation between two transverse waves approaching each other.

Structures of this type are observed in nearly all detonating systems.

The wavelength can be made large enough for convenient study by diluting the

original gaseous system with an inert gas. The principal means of observation

are: (1) study of the tracks left in scot-coated walls of the detonation tube

by the Mach stem and other features of the front; (2) photography with the

motion stopped by an arc or pulsed laser flash source or by velocity-

synchronization of the camera; and, (3) small pressure transducers placed in

the walls of the tube.

The main results of the observations are summarized in a recent review

by Strehlow (1968). In typical systems the spacing of the transverse waves

varies over a . ., of a few tenths of a centimeter to ten centimeters or more,

depending on the amount of diluent and the initial pressure. Quite regular to

very irregular patterns may be obtained, depending on the degree of dilution

and the system chosen.

It is important to note that this structure fs an intrinsic feature of

the detonation front, and would be present even in the absence of walls.

Similar structure is cbserved on spherical detonation fronts. The presence

of walls u. course affects the details of the structure to some extent, but

is not at all necessary for its existence.

High speed photographs of the detonation front in liquid explosives, most

recently by Mallory (1967), indicate the presence of a similar structure, with

spacing increased by dilution with an .nert liquid. Because of the relative

difficulty of observation, extensive quantitative studies have not been made.
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The flow structure in the front is quite complex; the actual transverse

wave contains one or more triple-shock interaction points behind the front in

addition to the one at the front. The book by Voitsekhovskii, Mitrofanov, and

Topchian (1963) gives a detailed account of their intensive study of the details

of flow in gases.

The general features of the flow may be illustrated by the case of the

single Mach reflection propagating across a detonation front as shown in

Figure 10. A nearly one-dimensional detonation front is produced by passing

L detonation through a convergent-divergent channel. The transverse structure

disappears in the convergent section. Before it has time to reappear in the

expansion, reflection at the corner produces the downward propagating three-

shock confirguration shown. The ciagram shows the streamlines in a coordinate

system attached to the triple point. The Mach stem is much stronger than the

incident shock and the reaction zone behind it is correspondingly shorter. The

exact nature of the flow behind the reflected shock is not clear. Material

passing through both the incident and reflected shocks will have a shorter

reaction time than that passing through the incident shock only, but not so

short as that passing through the stem. Emerging from the rear will be three

streams of material with different entropies and velocities: the material

passing through the incident shock only, that passing through the incident and

reflected shocks, and that passing through the stem only. With many such

configurations passing back and forth across the front, the flow behind may

well be turbulent.

White (1961) has made an extensive experimental study of the propagation

of steady detonation in the mixture of 2H +0 +CO in which the front structure
~2 2 2

is of such a size that the apparently turbulent zone behind the front can be

easily seen in his spark interferograms. He also offers a qualitative
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theoretical analysis showing :he effect on the conservation laws of including

some terms representing the effect of isotropic turbulence in the flow equations.

Combining White's results with more recent knowledge of the details of

the front structure, the following overall picture of the flow can be con-

structed. Ms we saw above, different streams of material passing through

the structured front experience quite different histories. The reaction is very

fast in some and slower in others, but probably on the average more rapid than

that in the corresponding hypothetical one-dimensional wave. Large fluctuations

in the state occur in the interior. The extreme is reached at the point of

collision of two transverse waves, with resulting pressures as large as ten

times th. one-dimensional CJ pressure. Front velocities may vary as much as

twenty percent above and below the one-dimensional CJ value. Emerging from

the end of this complex "reaction zone," roughly speaking, is a turbulent flow

with space scale comparable to that of the spacing of the transverse waves

on the front. The situation is further complicated by the presence of trans-

verse shocks degenerating farther to the rear into acoustic waves. The decay

of this turbulence is a much slower process than the chemical reaction and

the corresponding "turbulence decay zone" is much longer than the reaction

zone. (In White's system at an initial pressure of 0.3 atm., the turbulence

decay zone is a few cm. long and the reactior zone is probably less than a

tenth of this.)

the final state appears to be approximately on the weak branch of the

complete-reaction Hugoniot, at a pressure ten to fifteen percent below the CJ

value. The point marked "WEAK" in Figure 3 is typical. The flow at the end

of the turbulence decay zone is of course not completely uniform and steady

so that the usual one-dimensional conservation laws cannot be applied

exactly to this plane. But the closeness of the average pressure to the
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r
steady value in the one-dimensional pulsating detonation gives some reason

to hope that the defect averaged over the cross section of the tube is small.

Perhaps the most interesting property of this final state is that the

flow there is supersonic with a local Mach number of about 1.15 in a frame

attached to the shock. In this flow, a following rarefaction wave head or

weak shock would recede from the front at a speed of 8 to 10 percent of the

detonation velocity.
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TABLE I

GAS LIQUID SOLID
2H2 + 02 N ITROMETFUNE PLASTIC-BONDED

fm

po 1 atm p= 1.13 g/cc P =1.84 g/cc

D(m/s) 2850 6290 8790

p(kb) .C186 141 362

p(g/CL) .00090 1.65 2.47

P/po 1.077 1.46 1.34

T( 0 K) 3680 3400? 2500?

M-D/c 5.38 3.59 3.81
0
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Figure 1. The flow behind a detonation initiated at the
closed end of a tube.
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Figure 2. Curves of constant D and constant u and solutions
of the Hugoniot equation in the p - v plane. Point
0 is the initial state.
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Figure 4. Diagram of stee -solution profiles for the eigenvalue
case. The solid curve is the profile at the elgenvalue
detonation velocity, and the dashed curve that for a
slightly larger detonation velocity.
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Figure 5. Stability of the steady one-dimensional solution to

perturbations as a function of detonation velocity D
and transverse (spatial) wave number of the perturbation.
The wave number is in units of 2w divided by the diatance
from the shock to the point at which the reaction is half
completed (0=1/2) in the steadiy solution for the given value
of D. Most of the E+=40RT. curve is guessed from other
results.
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Figure 6. Steady solutions for the cases y=1.2, Q=50RT., D -1.6 D
E+B50RT. (stable) and E+f40RTo (unstable). The time CJ'

origin and unit are such that the fluid element pabses
through the shock at t=0 and is half-reacted (X-1/2) in
a given steady solution at t=l. The pressure is in
units of the initial ;ressure.

250

Ii



LU)O
In'

C) 4) 44

tI '.-4 4J
.rw H,- 0

$4'

o *.: j
A. LrC 4J 01

*I-40 14

q)~ a) Hw

U r. >, 0)
1. vq .. 4 '-4 .

oJ 4- 0q U.4 :

;CU 0 Q0
- 4 > . -

, r. A

o 0) 0 0 0

2514



00

4) -4 o4
.41

0 +wa

4.1
E~-4 -4

fa4 T- Q

0 "-4
o4 CX.

.1)00

r4~

ODtk

3?j laq'S3w

252.



[

Figure 9. Development of front structure. The wave moves from
bottom to top of the figure. The dashed lines indicate
the end of the reaction zone.
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