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PREiFACE AND SUMMARY

This report is a part of a continuing Rand research effort in the

general area of mathematical programming. Increasingly, the practical

problems that very large organizations confront are highly structured,

with many decision vcriables and constraints. In the Air Force, prob-

lems of long-term program planning and allocating scarce resources are

beco•ing more complex. The obvious importance of such problems, and

the intriguing mathematical possibilities for solving them, have led

to a voluminous technical literature. Unfortunately, little has been

done to distill and unify the essential concepts found in this litera-

ture, with the result that the technical development of the field and

its practical application have been retarded.

The aim of this study is to identify and develop the concepts

central to the optimization of large structural systems, and to attempt

an organization of the literature around thesc covcepts. It is hoped

that nonspecialists will find the study a coherent introduction to

large-scale optimization, and that the specialist will find it a source

of new insights and unifying concepts.

The author carried out this work as a consultant to The Rand Corp-

oration and also under the auspices of a Ford Foundation Faculty Re-

search Fellowship and National Science Foundation Grant GP-8740.

An earlier version of this study was published as Working Paper

144 by the Western Management Science Institute of the University of

California at Los Angeles and has been used there and at Stanford

University as a supplementary text. It is being published in this

form to make it readily available to the Air Force and other users.
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1. INTRODUCTION

It is widely held that the development of efficient optimization

techniques for large structured mathemetical programs is of great im-

SIportance in economic planning, engineering, and management science.!I
mere glance at the bibliography of this paper will reveal the enormous

effort devoted to the subject in recent years. The purpose of this

paper is to suggest a unifying framework to help both the specialist

and nonspecialist cope with this vast and rapid~y growing body of

knowledge.

The framework is based on a relative handful of fundamental con-

cepts. They can be clasqified into two groups: problem manipulations

and solution strategies. Problem manipulations are devices for restating

a given problem in an alternative form that is apt to be more amenable

to solution. Ths ra3ult is often what is referred to in the litera-Ii
ture as a "master" pro-lec. Dualization of a linear progran is one

familiar example of such a device. Section 2 discusses three others:

Projection, Inner Linearization, and Outer Linearization. Solution

strategies, an the other hand, reduce an optimization problom to a

related sequence of simpler optimization problems. This often leads

to "subproblems" amenable to sulution by specialized methods. The

Feasible Directions strategy is a well-known example, and Sec. 3 dis-

cusses the Piecewise, Restriction, and Relaxation strategies. The

. reader is probably already familiar with special cases of most of

these concepts, if not with the names used for them here; the new

terminology is introduced to emphasize the generality of the ideas

involved.
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By assembling these and a few other problem manipulations and

so3',ýion strategies in various patterns, one can rederive the essential

aspects of most known large-scale programing algorithms (and even

design new ones). Section 4 illustrates this for Benders Decomposition,

Dantzig-Wolfe Decomposition, Rosen's Primal Partition Programming meth-

od, Takahashi's "local" approach, and a procedure recently devised by

the author for nonlinear decomposition.

Although much of the presentation is elemeit.ary, for full appre-

ciation the reader will find it necessary to have a working knowledge

of the theory and computational methods of linear and noulinear pro-

gramming about at the level of a first graduate course in each subject.

1.1 TYPES OF LARGE-SCALE PROBLEMS

It is impo::tant to realize that size alone is not the distinguishing

attribute of the field of "large-scale programming," but rather size

in conjunction with structure. Large-scale programs almost always

have distinctive and pervasive structure beyond the usual convexity

or linearity properties. The principal focus of large-scale programming

is the exploitation of various special structures for theoretical and

computational purposes.

There are, of course, many possible types of structure. Among

the commonest and most important general types are these: multidivi-

sional, coubinatorial, dynamic, and stochastic. Multidivisional

problems consist of a collection of interrelated "subsystem" to be

t
optimized. The subsystems can be, for example, modules of

SSee, e.g., Aoki 68, Bradley 67, Gould 59, Hass 68, Kornai and
Liptak 55, Lasdon and Schoeeffler 66, Malinvaud 67, Manne and Markowitz
63, Pari'h and Shephard 67, Rosen and Ornea 63, Tcheng 66.
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an engineirfng system, reservoirs in a vater resources system, depart-

ments or divisions of an organization, production units of an industry,
or sectors of an economy. Combinaterial problems typically have a

large number of variables because of the numerous possiblliLlts for

selecting routes, machine setups, schedules, etc. Problems with

dynamic aspects are large because of the need to replicate constraints

and variables to account for several time periods.tt And problems

with stochmstic or uncertainty aspects are often larger than they would

otherwise be in order to account for alternative possible realizatious

of imperfectly known entities. tt A mer.hod that successfully exploits

one specific structure can usually be adapted to exploit other specific

structures of the same general type. Perhaps needless to say,

problems are not infrequently encountered which fall simultaneously

into two or more of these general categories.

The presence of a large number of variables or constraints can

be due not only to the intrinsic nature of a problem as suggested

above, but also to the chosen representation of the problem. Some-

S 'times a problem with a few nonlinearities, for example, is expressed

as a completely linear program by mean of piecewise-linear or tangen-

tial linear approximation to the nonlinear functions or sets (cf.

I t
See, e.g., Dantzig 60, Dantzig, Blattner and Rao 67, Dantzig,

Fulkerson and Johnson 54, Dantzig and Johnson 64, Ford and Fulkerson
L ~ 58, Gilmore Lnd Gomory 61, 63, and 65, Glassey 66, Midler and Wollmer

68, Rao and Zionts 68, Appelgren 69.
t See, e.g., Charnes and Cooper 55, Dantzig 55b, 59, Dzielinski

I and Gomory 65, Glassey 68, Rao 68, Robert 63, Rosen 67, Van Slyke and
Wets 66, Wagner 57, Wilson 66.

If See, e.g., Dantsig and Madansky 61. El Agizy 67, Van Slyke and
WetsI 66 Wolfe an Ill 62.
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Secs. 2.2, 2.3). Su*.h approximations usually greatly enlarge the size

of the problem. 
t

1.2 SCOPE OF DISCUSSION AND THE LITERATURE

The literature on the computazional aspects of large-scale mathe-

matical programming can be roughly dichotomized as follows:

I. Work aimed at improving the computational
efficiency of a known solution technique
(typically the Simplex Method) for special
types of problems.

II. Work aimed at developing fundamentally
new solution techniques.

The highly specialized nature of the category I literature and the

availability of several excellent surveys thereon leave little choice

but to focus this paper primarily on category II. Fortunately this

emphasis would be appropriate anyway, since category II is far more

amorphous and in need of clarification.

Category I

The predominant context for category I contributions is the

* Simplex Method for linear programming. The objective is to find, for

various special classes of problems, ways of performing each Simplex

iteration in less time or using less primary storage, This work is

in the tradition of the early and successful specialization of the

Simplex Method for transportation problems and problems with upper-

bounded variables. The two main approaches may be called inverse

compaotification and mechanized pricing.

"t See, e.g., Charnes and Lemke 54, Gomory and Hu 62, Kelley 60.



Inverse compact-f;cation schemes involve maintaining the basis

inverse matrix or an operationally sufficient substitute in a more

advantageous form than the explicit one. One of the earliest and most

significant examples is the "product form" of the inverse a[Jntzig and
I Orchard-Hays 54), which takes advantage of the sparseness of most large

matrices arising in application. Other schemes involve triangular

factorization, partitioning, or use of a "working basis" that is more

tractable than the true one. See part A of Table 1. A survey of many

such contributions is found in Sec. II of (Dantzig 681. The interested

reader should also consult [Willoughby 691 which, in the course of

collecting a number of recent advances in the methods of dealing with

sparse matrices, points out much pertinent work done in special appli-

cation areas such as engineering structures, electrical networks, and

electric power systems. Well over a hundred references are given.

Table 1

SOME '.!')PV AIMED AT IMPROVING THE EFFICIENCY OF THE
SIMPLEX METHOD FOR LARGE-SCALE PROBLEMS

A. Inverse C:-22actification
Dantzig and Orchard-Hays 54; )antzig 55a, 55b, 63t- Markowitz 57;
Dantzig, Harvey, and McKnight 64; Heesterman and Smndee 65; [aul
65; Bakes 66; Bennett 66; Bennett and Green 66; Saigal 66; Dantzig
and Van Slyke 67; Sakarovitch and Saigal 67; Grigoriadis 69; Willoughby 69.

B. Mechanized Pricinga
Ford and Fulkerson 58; Dantsig 60; Gilmore and Gomory 61,b 63•, 65;
Dantzig and Johnson 64; Bradley 65, Sec. 3; Glassey 66; Tomlin 66;
Dantzig, Blattner and Rao 67; Flmaghraby 68; Lesdon and Mackey 68;
Rao 68, Sec. II; Rao and Zionts 68; Graves, Hatfield and Whinston 69;
Fox 69a.

aIost of the references in part C of Table 2 also use mechanized

pricing.
bDiscussed in Sec. 3.2.

Ii
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M•chanized pricing, sometimes called cotlun generation, involves

the use of a subsidiary optimization algorithm instead of direct

enumeration to find the best nor.basic variable to enter the basis

when there are many variables." The first contribution of this

sort was [Ford and Fulkerson 58], in which columns were generated by

a network flow algorithm. Subsequent authors have proposed generating

columns by other network algorithms, dynamic programming, integer pro-

grasming, and even by linear programming itself. See part B of Table

1. Excellent surveys of such contributions are [Bslinaki 64] and

[Gomory 63).

Category I contributions of comparable sophistication are rels-

tiely rare in the literature on nonlinear problems. It has long been

recognized that it is essential to take advan.age of the recursive

nature of most of the computations; that is, one should obtain the data

required at each iteration by ecoromically updating the data available

from the previous iteration, rather than by operating each time on the

original problem data. In Rosen's gradient projection algorithm, for

example, the required projection matrix is updated at each iteration

rather than computed ab initio. This is quite different, however, from

"compacting" the projection matrix for a particular problem structure,

or "mechanizing" the search for the most negative multiplier by means

of a subsidiary optimization algorithm. Little has befn' published

along these lines (see, however, p. 153 ff. and Sec. 8.3 of [Fiacco

t It is also possible to mechanize the search for the exiting ba-

sic variable when there are many constraints (e.g., Gomory and Hu 62,
Sec. 4) or when what amounts to the Dual Method is used (e.g., Sec. 3

Sof Gomory and Hu 62, Abadie and Williams 63, hinston 64, and part A

of Table 2).
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and McCormick 68]). Of course, many nonlinear algorithms involve a

sequence of derived linear programs and therefore can benefit from the

techniques of large-scale linear programming.

Category II

We turn now to work aimed at developing new solution techniques

for various problem structures--the portion of the literature to which

our framework of fundamental concepts is primarily addressed.

As mentioned above, the fundamental concepts are of two kinds:

problem manipulations and solution strategies. The key problem manip-

ulations (Sec. 2) are Dualization, Projection, Inner Linearization,

and Outer Linearization, while the key solution strategies (Sec. 3)

are Feasible Directions, Piecewise, Restriction, and Relaxation. These

building block concepts can be used to reconstruct many of the existing

computational proposals. Using Projection followed by Outer Lin-

earization and Relaxation, for example, we can obtain Benders' Parti-

tioning Procedure. Rosen's Primal Partition Programing algorithm can

be obtained by applying Projection and then the Piecewise strategy.

Dantzig-Wolfe Decomposition employs Inner Linearization and Restriction.

Similarly, many other existing computational proposals for large-

scale programming can be formulated as particular patterns of problem

manipulations and solution strategies applied to a particular structure.

See Tabie 2 for a classification of much of the literature of

category II in terms of such patterns. One key or representative

paper from each pattern is underlined to signify that it is discussed

in some detail in Sec. 4. Familiarity with one such paper from each 4

I

II• • • m
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aoaepattern should enable the reader to arsimilate the other papers, given

an understL=nding of the fundamental concepts at t3.e level of .•ecs. 2

Table 2

CLASSIFICATION OF SOME REFERENCES BY PATTERN:
PROBLEM MANIPULATION(S) /SOLUTION STRATEGY

A. Projection, Outer Linearization/Relaxation

Benders 62; Balinski and Wolfe 63; Gomory and Hu 64,
pp. 351-354; Buzby, Stone and Taylor 65; Van Slyke and
Wets 66, Sec. 2; Weitzman 67; Geoffrion 68b, Sec. 3.

B. Projection/Piecewise

Rosen 63, 64; Rosen and Ornea 63; Beale 63; Gass 66;
Varaiya 66; Chandy 68; Geoffrion 68b, Sec. 5;
Grigoriadis and Walker 68.

C. Inner Linearization/Restriction

Dantzig and Wolfe 60; Dantzig and Madansky 61, p. 175;
Williams 62; Wolfe and Dantz~g 62; Danteig 63a, Ch.
24; Baumol and Fabian 64; Bradley 65, Sec. 2;

Dzielinski and Gomory 65; Madge 65; Tcheng 66; Tomlin
66; Whinston 6k; Malinvaud 67, Sec. V; Parikh and
Shephard 67; Elmaghraby 68; Hass 68; Rao 68, Sec.
III; Robers and Ben-Israel 68; Appelgren 69.

D. Projection/Feasible Directions

Zschau 67; Abadie and Sakarovitch 67; Geoffrion 68b,
Sec. 4; Silverman 68; Grinold 69, Secs. IV and V.

E. Dualization/Feasible Directions

J Uzava 58; Takahashi 64, "local" approach; Lasdon 64,
68; Falk 65, 67; Golshtein 66; Pearron 66; Wilson 66;
Bradley 67 (Sec. 3.2), 68 (Sec. 4); Grinold 69, Sec.
III.

Table, 2 does not pretend to embrace the whols literature of cat-

egory I1. There undoubtedly are other papers that can naturally be

viewed in terms of the five patterns of Table 2, and there certainly
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t

are papers employing other patterns. !t Rt nns A and 3 mention otherIi
papers that can be viewed naturally in terms of one of the problem

manipulations or solution strategies discussed there. Still other

contributions seem to employ manipulations or 3trategies other than

(and sometimes along with) those identified here; regrettably, this

interesting work does not fall entirely within the scope of this effort.

Another group of papers not dealt with in the present study are

those dealing with an infinite number of variables or constraints,

although a number of contributions along these lines have been made,

particularly in the linear case--see, e.g., [Charnes, Cooper and

Kortanek 691, [Hopkins 69]. Nor do we consider the literature on

mathematical programs in continuous time (a recent contribution with

a good bibliography is [Grinold 681), or literature on the interface

between mathematical programing and optimal control theory (e.g.,

[Dantzig 66], [Rosen 67], [Van Slyke 68]).

1.3 NOTATION

Although the notation employed is not at odds with customary

usage, the reader should keep a few conventions in mind.

S I Lowercase letters are used for scalars, scalar-valued functions,

II iand vectors of variables or constants. Except for gradients (e.g.,

SE.g.: Inner Linearization/Relaxation: Abadie and Williams 63,
Whinston 64.

Dualization, Outer Linearization/Relaxation: Takahashi
64 ("global" approach), Geoffrion 68b (Sec. 6), Fox 69b.

Inner Linearization, Projection, Outer Linearization/
Relaxation: Metz, Hovard and Williamson 66.

Dualizatlon/Relaxation: Webber and White 68.
Hy Eg.: Bals 65 and 66, 1.11 66, Charnes and Cooper 55, Gomory

and Hu 62 (Sees. I and 2), Kornai and Liptak 65, KronsjB 68, Orchard-
Hays 68 (Ch. 12), Rech 66, Ritter 67b.



Vf) "W ax 'x,, all vectors are column vectors unless
1 n

transposed. Capital letters are used for matrices (A, B, etc.), sets

. (X, Y, etc.) and vector-valued functions (e.g., G(x) - [g 1(x),

&,(x)] t). The dimension of a matrix or vector-valued function is left

unspecified when it is immaterial to the discussion or cbvious from

context. The dimension of x, however, will always be n. The symbol

"•" is used for vector inequalities, and "S" for scalar inequalities.

means "equal by definition to." The notation s.t., used in stating

a constrained optimization problem, means '"subject to." Convex poZy-

tope refers to the solution set of a finite system of linear equations

or inequations: it need not be a bounded set.

A
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2. PROBLEM MANIPULATIONS: SOURCE OF "MASTER" PROBLEMS

A probZem mawipuZation is defined to be the restatement of a given

problem in an alternative form that is essentially equivalent but more

amenable to solution. Nearly all of the so-called master problems found

in the large-scale programming literature are obtained in this way.

A very simple example of a problem manipulation is the introduction

of slack variables in linear programming to convert linear inequality

constraints into linear equalities. Another is the restatement of a

totally separable problem like (here xi may be a vector)

k

Minimize E f (xl) s.t. G (x ) > 0, iml,...,k
xl,•..xkiii

as k independent problems, each of the form

Minimize fi (x1 ) s.t. Gi(x 1 ) > 0.
x.

This manipulation crops up frequently in large-scale optimization, and

will be called separation.

These examples, although mathematically trivial, do illustrate the

customary purpose of problem manipulation: to permit existing optimiza-

tion algorithms to be applied where they otherwise could not, or to take

advantage in some way of the special structure of a particular problem.

The first example permits the classical Simplex Method, which deals

directly only with equality constraints, to be applied to linear pro-

grams with inequality constraints. The second example enables solving

a totally separable probtem by the simultaneous solution of smaller
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problems. Even if the smaller problems are solved sequentially rather

than simultaneously, a net advantage is still probable since for most

solution methods the amount of work required increases much faster than

linearly with problem size.

More specifically, the three main objectives of problem

manipulation in large-scale programming seem to be:

(a) to isolate familiar special structures imbedded in a given
problem (so that known ef.icient algorithms appropriate to
these structures can be used);

(b) to induce linearity in a partly nonlinear problem via

judicious approximation (so that the powerful linear
programming algorithms can be used);

(c) to induce separation.

We shall discuss in detail three potent devices frequently used in

pursuit of these objectives: Projection, Inner Linearization, and

Outer Lineariznt ion.

Projection (Sec. 2.1), sometimes known as "partitioning" or

"parameterization", is a device which takes advantage in certain prob-

less of the relative simplicity resulting when certain variables are

t•mporarily fixed in value. In [Benders 621 it is used for objective

(a) above to isolate the linear part of a "semilinear" program (see Sec.

4.1), while in [Rosen 64] it is used to induce separation (see Sec. 4.2).

i. i Inner Linearization (Sec. 2.2) and Outer Linearization (Sec. 2.3)

are devices for objective (b) long used in nonlinear prograuming.

Inner Linearization goes back at least to (Charnes and Lemke 543,

in which a convex function of one variable is approximated by a piece-

wise-linear convex function. Outer Linearization involves tangential

U%
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approximation to convex functions as in [Kelley 60] (see Sec. 3.3).

Both devices have important uses in large-scale programming. Inner

Linearization Is the primary problem manipulation used in the famous

Dantzig-Wolfe Decomposition method of linear and nonlinear program-

ming (Sec. 4.3). One important uee of Outer Linearization is as a

means of dealing with nonlinearities introduced by Projection

(Sec. 4.1).

Perhaps the most conspicuous problem manipulation not discussed

here is Dualization. Long familiar in the context of linear programs,

dualization of nonlinear programs t is especially valuable in pursuit

of objectives (a) and (c). This significant omission is made because

of space considerations, and also to keep the presentation as elemen-

tary as possible. One algorithm relying on nonlinear dualization is

mentioned in Sec. 4.5; see alsc part E of Table 2 and [Geoffrion 68b;

Sec. 6.1].

Other problem manipulations not discussed here, mostly quite spe-

cialized, can be found playing conspicuous roles in [Charnes and Cooper

55], [El Agizy 67], [Gomory and Hu 62), [Weil and Kettler 68J.

We now proceed to discuss Projection and Inner and Outer Lineari-

zation. Section 3 will discuss the solution strategies that can be ap-

plied subsequent to these and other problem manipulations. The distinc-

tion between problem manipulations and solution strategies is that the

former replaces an optimization problem by one that is essentially

equivalent to it, while the latter replaces a problem by a recursive

sequence of related but much simpler optimization problems.

1 See, e.g., Rockafellar 68, reoffrion 69.

• N m Im - _
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2.1 PROJECTION

The problem

(2.1) Maximize f(x,y) s.t. G(xy) • 0

xCX

y sY

involves optimization over the joint space of the x and y variables.

We define its projection onto the space of the y variables alone as

(2.2) Maximize [SuP f(x,y) s.t. G(Xy) k 0_

The maximand of (2.2) is the entire bracketed quantity--call it v(y)--

which is evaluated, for fixed y, as the supremal value of an "inner"

maximization problem in the variables x. We define v(y) to be -ft if

the inner problev is infeasible. The only constraint on y in (2.2)

is that it must be in Y, but obviously to be a candidate for the

optimal solution y must also be such that the inner problem is feasible,

i.e., y must be in the set

(2.3) V m r y:v(y) > -: : S fy:G(x,y) > 0 for some xeX4.

-• Thus we may rewrite (2.2) as

S(2.4) Maximize v (y).

The set V can be thought of as the projection of the constraints

xCX and G(x~y) > 0 onto the space of the y variables alone. It is

depicted for a simple case in Fig. 1; X is an interval, the set
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1X

I iI

"Fig. 1--Depiction of the set V

II

F(x,y):G(x~y) Ž~0) is shaded, and the resulting V is an interval.

It is often possible to obtain a more conventional and tractable

representation o than the definitional one. See, for example,

the inequalities (4~.5) of Sec. 4.1 (cf. [Kohler 671).

The relationship between the original problem (2.1) and its

1'1

projection (2.4) is as follows. tThe proof is elementary.

Theorem 1. Problem (2.1) is infeasible or has unbounded

00value if and only if the same us true of (2.4). If (X). y

ois optimal in (2.1), then y 0must be optimal in (2.4). If

y is optimal in (2.4) and x a--hieves the supremum of

f(x, y) subject to xcX and G(x, yO) > 0, then x° together

with y is optimal in (2.1).

tOno may read (2.2) for (2.4) in Theorem 1, except that (2.2) can
be feasible vith value - when (2.1) Is Infeasible.

ii
II M•N



It should be emphasized that Projection is a very general

manipulation--no special assumptions on X, Y, f, or C are required

for Th. 1 to hold, and any subset of variables whatsoever can be

designated to play the role of y. When convexity assumptions do hold,

however, the following theorem shows that (2.2) is a concave program.

Theorem 2. Assume that X and Y are convex sets, and that f and

each component of G are concave on X X Y. Then v is concave

on Y.

Proof. Fix y , y 'Y and 0 < e < 1 arbitrarily. Let 1 - 1 - 0. Then

v(ey0 + Oy') -

Sup 0 f(ex° + x' ,ey° + iy')

s.t. G(Ox° + Ox', ey° + iy') -0

> Sup f(Ox 0 + Ox', By0 + Oi') S.t. G(x°,yO) > 0,G(x',y') > 0
0- x 'X CX

' > Sup 0 f(x°,y°) + Of(x',y') s.t. G(x°,y°) > O,G(x',y') - 0- 0Ox£

X ,X ex

- ov(y 0 ) + Ov(y'),

where the equality or inequality relations follow, respectively, from

the convexity of X, the concavity of G, the concavity of f, and

separability in x° and x'. II
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Since V is easily shown to be a convex set when v is concave,

it fnllows under the hypotheses of Theorem 2 that (2.4) is also a

concave program.

Projection is likely to be a useful manipulation when a problem

is significantly simplified by temporarily fixing the values of certain

variables. In [Benders 621, (2.1) is a linear program for fixed y

(see Sec. 4.1). In [Roten 64], (2.1) is a separable linear

program for fixed y (see Sec. 4.2). See Table 2 for numerous other

instances in which Projection plays an important role.

It is interesting to note that Projection crn be applied sequentially

by first projecting onto a subset of the variables, then onto a subset

of these, and so on. The result is a dynamic-programmini-like reformula-

tion [Bellman 57], [Dantzig 59, p. 61 ff.], [Nemhauser 64]. Many dynamic

programmiing problems can fruitfully be viewed in terms of sequential

projection, and conversely, but we shall not pursue this matter

here.

It may seem that the maximand of the projected problem (2.2) is

excessively burdensome to deal with. And indeed it may be, but the

solution strategies ol Sec. 3 enable many applications of Projection

to be accomplished successfully. Tie lkey strategies seem to be

Relaxation preceded by Outer Linearization (cf. Sec. 4.1), Zhe Piece-

wise stratEgy (cf. Sec. 4.2), and Feasible Dire-tions (cf. Sec. 4.4).

Of ccurse if y is only one-dimensional, (2.2) can be solved in a

parametric fashion [Joksch 64], [Ritter 67a].
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2.2 INNER LINEARIZATION

Inner Linearization is an approximation applying both to convex

or concave functions and to convex sets. It is conservative in that

it does not underestimate (overestimate) the value of a convex (concave)

function, or include any points outside of an approximated convex set.

An example of Inner Linearization applied to a conuax set X

in two dimensions is given in Fig. 2, where X has been approximated
1 5

by the cenvex hull of the points x ,...,x lying within it. X has

been linearized in the sense that the approximating set is a convex

polytope (which, of course, can be specified by a finite number of
1 5

linear inequalities). The points x ,...,x are called the base.

The accuracy of the approximation can be made as great as desired by

making the density of the base sufficiently high.

ipS~X2

I ///2

,00

4xx 4

Fig. 2--Inner Lineari=stion of a convex set

I_ n m ,,il i ~ .,mim .=w ,m ,.= m
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An exanple of Inner Linearization applied to a function of one

variable is given in Fig, 3, where the function f has been approximated

on the interval [x x 5-] by a piecewise-linear function (represented

by the dotted line) that accomplishes linear interpolation between

1 5the values of f at the base points x I... . The approximation

is "inner" in the sense that the epigraph of the approximating function

lies entirely within the epigraph of the approximated function. (The

epigraph of a convex (concave) function is the set of all points lying

on or above (below) the graph of the function.)

\X

f',,) /

- -

Fig. 3--Inner Linearization of a convex function

I1 Let us further examine these two graphical examples of Inner

Linearization in the contex- of the special problem

(2.5) Minimize f(x) s.t. G(x) 1 O,
I xeX

I

.. i, --
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where n=2, X is a convex set, and all functions are convex. Inner-

linearizing X as in Fig. 2 yields the approximation

(2.6) Minimize f(L )xj) s.t. G(• dxj) <, C

0 i J=1 j=1

Note that the x variables are replaced by the "weighting" variables

0'j, one for each chosen base point in X. Inner-linearizing f no as

in the two-dimensional analog of Fig. 3 yields

S5 5
(2.7) Minimize Z aJ f(xj) s.t. G( F a'xj)-< 0, E C = 1.

a > 0 j-1 J=1 j.1

We have taken the Lases for the approximations to X and f to coincide,

since notually only one base is introduced for a given problem. An

exception to this general rule may occur, however, when some of the

functions are separable, for then it may be desirable to introduce

different bases for different subsets of variables. Suppose, for

example, that f(x) If(XI) + f 2 (x 2 ), X - R2, and that we wish to

1 4 1 6
use < x1 ,...,xI > as a base for inner-linearizing fI and < x2,...,x 2 >

as a base for f Then the corresponding approximation to (2.5) would
2

be

4 6
(2.8) Minimize X o: Ifl(xi1) + E cf 2(xj2)

Ž0 jin1

4 6 4 6

s.t. G(L x, E +j) •0. I = I and
PJoll J(l (7 a.

SProblems (2.6), (2.7") and (2.8) are all convex programs.
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The general nature of Inner Linearization should be clear from

these examples. It is important to appreciate that there is a great

deal Af flexibility in applying Inner Linearization--both as to

whic' sets and functions are inner-linearized, and as to which base

is ufed.. Inner-linearizing everything results, of course, in a linear

program, although it is by no means necessary to inner-linearize every- S

thing (see Sec. 4.3). The base can be chosen to approximate the set

of points satisfying any subset whatever of the given constraints; the

constraints in the selected subset are replaced by the simple non-

negativity conditions on the weighting variables plus the normalization

constraint, while the remaining constraints are candidates for functional

Inner Linearization with respect to the chosen base. Or, if desired, the

base can be chosen freely from the whole space of the decision variables

(this can be thought of as corresponding to the selection of an empty

set of constraints). Each of the given constraints, then, is placed

into one of three categories, any of which may be empty: the constraints

defining the convex set approximated by the chosen base, those that

afe inner-linearized over the base, and all others.

Inner Linearization has long been used for convex (or concave)

functions of a single variable [Charnes and Lemke 54]. It has also

been used for non-convex functions of a single variable [Miller 63].

Techniques based on this manipulation are sometimes called "separable

programming" methods because they deal with functions that are linearly
n

separable into functions of one variable (e.g., f(x) • E f (x )).

It is easy to determine--perhaps graphically--an explicit base

yielding as accurate an inner-linearization as desired for a given

function of one variable. 1c is much more difficult, however, to doI
!
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this for functions of many variables. Even if a satisfactory base

could be determi.ned, it wtuld almost certainly contain a large number

of points. ThIs suggests the desirability of having a way to generate

base points as actually needed in the course of computationally solving

the inner-linearized problem. Hopefully it should be necessary to

generate only a small portion of the entire base, with many of the

generated points tending to cluster about the true optimal solution.

Indeed there is a way to do this based on the solution strategy we call

Restriction (Sec. 3.2). The net effect is that the Inner Linearization

manipulation need only be done implicitly! Dantzig and Wolfe were the

originators of this exceedingly clever approach to nonlinear programming

[Dantzig 63a, Ch. 24]; we shall review this development in Sec, 4.3.

An important special case in which Inner Linearization can be us.d

very elegantly concerns convex polytopes (the polytope could be the

epigraph of a piecewise-linear convex function). Inner Linearization

introduces no error at all in this case if the base is taken to coin-

cide with the extreme points.t As above, the extreme points can be

generated as needed If tae iuplicitly inner-linearized problem is

solved by Restriction. This is the iaea behind the famous Decomposition

Principle for linear programing [Dantzig and Wolfe 60], which is

reviewed in Sec. 4.3.

For ease of reference in the sequel, the well-known theorem

asserting the exactness of Inner Linearization for convex polytopes

[Goldman 56] is recorded.

It is also necessary, of course, to introduce the extreme rays

if the polytope is unbounded.

Ii
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Theorem 3. Any nonempty convex polytope X = {x : Ax b can be

expressed as the vector sum ,P + C of a bounded convex polyhedron

S-4and a cone C • (x: Ax 1 0). P in turn can be expressed as

the convex hull of its extreme vectors < yl,...,y >, and C can

be expressed as the nonnegative linear combinations of a !inite

set of spanning vectors < Zl,.*.,Zq>. (If J*(respectively C)

consists of only the O-vector, take p (respectively q) equal to 0.)
Thus there exist vectors <Y I "' y Yp; Z1,..., z q > such that xcX if

and only if

p q
x =a E 5Y£ +• 01z1Ii=l i=1

for some nonnegative scalars c, ....a)) I such that
p
, 1t . Moreover, if the rank of A equals n (the number

i-1
of its columns), then a representation with a minimal number of

vectors is obtained by letting the y 's be the extreme vectors

of X and by letting the z 's be distinct nonzero vectors in each

of the extreme rays of C; this minimal representation is unique

up to positive multiples of the z 's.
Ii

It shoull be noted that in mathematical programming the rank of

A usually equals n, since nonnegativity constraints on the variables

are usually Licluded in X. If this is not the case, then X can

n+l
always be imb,!dded in the nonnegative orthant of R by a simple

linear transformation (viz., put xi = y" yo where y 0, 1 1 O:

n).

I
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There are also results having to do with economical inner lineari-

zations of nonpolyhedral sets. For example, there is the Theorem of
Krein and Hilman [Berge 63, p. 167] that every closed, bounded, non-

empty convex net is the onvex hull of its extreme points. Usually,

however, it suffices to know that a convex set or function can be

represented as accurately as desired by Inner Linearization if a suf-

ficiently dense base is chosen.

2.3 OUTER LINEARIZATION

Outer Linearization is complementary in nature to Inner Lineariza-

tion, and also applies both to convex (or concave) functions and to

convex sets.

An example as applied to a convex set in two dimensions is given

by Fig. 4, where X has been approximated by a containing convex poly-

tope that is the intersection of the containing half-spaces HP ... SP

The first three are actually supporting half-spaces that pass, respec-
t i e y , t o u h t e o n t 1 2 3

tively, through the points , x , and x on the boundary of X.

X2 H___.__

H2

Fig. 4--Outer Linearization of a convex set
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An example as applied to a function of one variable is given in

Fig. 5, where the function f has been approximated by the piecewise-

linear function that is the upper envelope, or pointwise maxirfum, of

the linear supporting functions s (X), ... , s (x) associated with the
1 5

points , ... , x . A linear support for a convex function f at the

point x is defined as a linear function with the property that it

-"
nowhere exceeds f in value, and equals t in value at x. The epigraph

of the approximating function contains the epigraph of the approxillaLed

function when Outer Linearization is used.

/(X)

I
I

Fig. 5--Outer Linearization of a convex function S

Obviously Outer Linearization is opposite to Inner Linearization

S~in that it generally underestimates (overestimates) the value of a

Ilf f Is differentiable at x, then f(x) + fx) -x) is a

linear support at 3Ft.
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S convex (concave) function, and includes net only the given convex set

Sbut points outside as well. The notion of conjugacy (see, e.g.,

[Rockafellar 68]) is a logical extension, but need not be pursued here.

SThat Outer Linearization truly lineari~s a convex program like

(2.9) Minimize f(x) s.t. G(x) 5 0
xeX

should be clear. The approximation of X by a containing convex poiy-

tope can only introduce linear constraints; the approximation of gi

by the pointwise maximum of a collection of p linear supports, say,

obviously leads to pi linear inequalities; and the approximation of f

by the pointwise maximum of p linear supportt leads to p additional

linear inequalities after oaie invokes the elementary manipulation of

minimizing an upper bound on f in place of f itself.t If all nonlinear

functions are dealt with in this fashion, the approximation to (2.9)

is a linear program.

As with Inner Linearization, there is great latitude concerning which

sets and functions are to be outer-linearized, and which approximants

are to be used. In general, the objective function may or may not be

outer-linearized, and each constraint is placed into one of three

categories: the ones that together define a convex set to be outer-

linearized, the oaes that arc outer-linearized individually, and the

ones that are not outer-linearized at all.

E.g., Min Maxi{s(x)} - Min a s.t. a s (x), all i
SxcX xcX

tFor the sake of unified terminology, we use the term approximant

for a containing or supporting half-space of a convex set, a so or
a linear bounding function or linear support of a convex function.
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The main obstacle faced with Outer Linearization is that an

excessive number of approximants may be required for an adequate approxi-

mation, especially for sets in more than two dimensions and functions

of more than one variable. Fortunately, it turns out that it is usually

possible to circumvent this difficulty, for there is a solution strategy

applicable to the outer-linearized problem that enables approximants to

be generated economically as needed without having to specify them in

advance. We call this strategy Relaxatioa. The net effect is that the

Outer Linearization manipulation need only be done implicitly. Two pio-

neering papers on this approach to nonlinear programming are [Kelley 601

and [Dantzig and Madansky 61]. Relaxation and the first of these papers

are discussed in Sec. 3.3.

In large-scale r-ogramming, Outer Linearization is especially impor-

tant in conjunction with Projection and Dualization. See, for example,

the discussion of [Benders 621 in Sec. 4.1.

Approximation by Outer Linearization naturally raises the question

of the existence of a supporting approximant at a given point. The

main known result along these lines is that every boundary point of a

convex set in Rn must have at least one supporting half-space passing

through it. It follows that every closed convex set can be represented

as the intersection of its supporting half-spaces [Berge 63, p. 166].t

It also follows that every convex (or concave) function with a closed

epigraph has a supporting haif-space to its epigraph at every point where

the function is finite. Unfortunately, this is not quite the same as the

existence of a linear support at every such point, since the supportiug

I Of course, a coivex polytope by definition admits an exact outer-linearization using only a finite number of anproximants.
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half-space may be "vertical" when viewed as in Fig. 5. Various mild

conditions could be imposed to preclude this kind of exceptional

behavior, but for most purposes one may avoid the difficulty by

simply working directly with the epigraph of a convex function.

VIV
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3. SOLUTION STRATEGIES: SOURCE OF "SUBPROBLEMS"

The previous section described several prominent problem manipu-

lations for restating a given problem in a more or less equivalent form.

The result is often referred to in specific applications as a "master" I,
problem. Typically one then applies a solution strategy designed

to facilitate optimization by reduction to a sequence of simpler op-

timization problems. Quite often this leads to aubprobtema amenable

to solution by specialized algorithms. There are perhaps a half

dozen principal solution strategies, each applicable to a variety

of problems and implementable in a variety of ways. This section pre-

sents three such strategies that seem to be especially useful for large-

scale prv-lems: the so-called Piecewise, Restriction and Relaxation

strategiet:. See Table 2 for a classification of many known algorithms

in terms o. #he soluLion strategy they can be viewed as using.

The Pietvwise strategy is appropriate for problems that are

significautly simpler if their variables are temporarily restricted to

certain regions of their domain. The domain is (implicitly) subdivided

into such regions, and the problem is solved by considering the regions

one at a time. Usually it is necessary to consider only a small frac-

tion of all possible regions explicitly. The development of the Piece-

wise strategy for large-scale programming is largely due to J. B. Rosen,

whose various Partition Programming algorithms invoke it subsequent

to the Projection manipulation.

Restriction is often appropriate for problems with a large number

of nonnega;ive variables. It enables reduction to a recursive sequence

of problems in which most of the variables are fixed at zero. The
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Simplex Method itself turns out to be a special form of Restriction

for linear programming, although the strategy also applies to nonlinear

problems. Restriction is almost always u3ed if Inner Linearization has

been applied.

Relaxation is useful for problems with many inequality constraints.

It reduces such a problem to a recursive sequence of problems In which

many of these constraints are ignored. The Dual Method of linear pro-

gramming is a special form of Relaxation, although the strategy applies

equally well to nonlinear problems. Outer Liinearization is almost

always followed by Relaxation.

Perhaps the most important solution strategy not discussed here

is the well-known Feasible Direction strategy [Zoutendijk 60], which

reduces a problem with differentiable functions to a sequence of one-

dimensional optimization problems along carefully chosen directions.

Most of the more powerful primal nonlinear programming algorithms

utilize this strategy, but their application to large-scale problems

is frequently hampered by non-differentiability (if Dualization or

Projection is used) if not by sheer size (especially if Inner or Outer

Linearization is used). See Sec. 4.4 for an instance in which the

first obstacle can be surmounted.

We have also omitted discussion of the Penalty strategy (e.g.,

[Fiacco and McCormick 68]), which reduces a constrained problem to a

sequence of essentially unconstrained problemfs via penalty functions.

The relevance of this strategy to large-scale programming is hampered

by the fact that penalty functions tend to destroy linearity and linear

separability.
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3.1 PIECEWISE STRATEGY

Suppose that o'.ie must snlve

(3.1) Maximize v(y),
ycY

where v is a "piecewise-simple" function (e.g., piecewise-linear or

piecewise-quadratic) in the sense that there are regions (pieces)

1. 2
P , P of its domain such that v coincides with a relatively

k k.
tractable function v on P The situation can be depicted as in

Fig. 6, in which Y is a disk partitioned into four regions. Let

us further suppose that v is concave on the convex set Y and that,

pp2

t,'3 p3

p4

Fig. 6

given any particular point in Y, we can explicitly characterize the

particular piece to which that point belongs, as well as v on that piece.

Then it is ndtural to consider solving (3.1) in the following piecemeal

fashion that takes advantage of the oiecewise-simplicity of v. Note that

it is unnecessary to explicitly characterize all of the pieces in advance.

I I II! 1 I! 1 1 II I IIJ
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The Piecewise Strate&L

Step• • Let a point yo feasible in (3.1) be given.
Determine the corresponding piece P con-
taining y and the corresponding function

00

V0.

Ste 2 MaAimize v (y) subject to ycY n Po. Let
y' be an optimal solution (an infinite
optimal value implies termination).

Step 3 Determine a piece P' adjacent to Pe at
such that v(y) > v(y*) for some yeY n P'
[if none exists, y" is optimal in (3.1)].
Determine the corresponding function v'
and return to Step 2 with P',vt, and y'
in place of P', v*, and y*.

A hypothetical trajectory for y is traced in Fig. 6 as a dotted

line. Optimisations (Step 2) were performed in three regions before

the optimal sclution of (3.1) was found.

The problem at Step 2 has a simpler criterion function than (3.1)

itself, although it has more constraints (ycP0 ). If it is sufficiently

simple by comparison with (3.1), then the Piecewise strategy is

likely to be advantageous provided Steps 1 and 3 are not too difficult.

Both Steps 2 and 3 can give rise to "subproblems" when this strategy

is used for large-scale programing.

The principal use of the Piecewise strategy in large-scale pro-

gramming is for problems resulting from Projection and Dualization.

In both cases [cf. (2.2)], v involves the optimal value of an associated

"inner' optimization problem parameterized by y. Evaluating v requires

solving the inner problem, and so v is not explicitly available in

closed form. Fortunately, it usually happens that evaluating v(y )

yields as a by-product a charocterization of the piece P0 containing
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y on which v has relatively 3imple form. We shall illustrate this

with a simple example. Sec also Sec. 4.2 and [Geoffrion 68b; Sec. 5].

The Piecewise strategy can also be used to motivate a generaliza-

tion of the Simplex Method that allows the minimand to be a sum of

piecewise-linear univariate convex functions [Orden and Nalbandian 68).

Example

Constrained games and similar applications can lead to problems

of the form

(3.2) Maximize 'Minimum Ht(y)x s.t. Ax- b

ycY x?0O

where H(') is a concave vector-valued function on the convex set Y.

The maximand of (3.2), v, is concave because it is the poirntwise minimum

.f a collection of concave functions of y. Suppose that we evaluate

v at y EY, with the corresponding optimal solution of the inner

problem being x . The value is H t(y°)x°. We know from the elementary

theory of linear programming that, since changes in y cannot affect

0the feasibility of x , x remains an optimal solution of the inner

problem as y varies so long as the "reduced costs" remain of the right

sign. Hence the value of v(y) is Ht(y)xo for all y such that!

I <
(3.3) (HB(y))t-A hi(y) 0 0, all nonbasic j

*th B I-~
where A is the j column of A, and the component functions of H

correspond to the variables xi in the optimal basis matrix B at y

Thus we see how to accomplish Step 1, and the problem to be solved at

Step 2 is

• mm~m~mm• -m -. ---



(3.4) Maximize Ht(y)x° s.t. (3.3)
yEY

Note that (3.4) has the advantage over (3.2) of an explicit criterion

function. Since x 0 0, H()x° is concave on Y.

Suppose that y' is an optimal solution of (3.4).' If y' is no:

optimal in (3.2), then there must be an alternate optimal basis B' at

y Isuch that the corresponding problem (3.4) admits an improved solution.

At worst, such an "improving" basis could be found by enumerating

the alternative optimal bases at y'. At best, an improving basis

would be revealed by a single active constraint among those of (3.')

at y'. One could also compute an improving feasible direction z' for

(3.2) at y' (cf. Sec. 4.4); the appropriate improving basis would -:hen

be revealed by a parametric linear programming analysis of the inner

problem.

3.2 RESTRICTION

RestriCtion is a solution strategy principally useful for prcblems

with many nonnegative variables, the data associated with some of which

perhaps being only implicitly available. Combinatorial models and Inner

Linearization are two fertile sources of such problems.

The basic idea is as follows: solve the given problem subject to

the additional restriction that a certain subset of the variables must

have value 0; if the resulting solutton does nct satisfy the optimality

V'It may be difficult to find a global optimum of (3.4) if H is
not linear for then (3.3) need not define a convex feasible region
(unless B-1A j 4 0 for all nonbasic J). Fortunately, however, it can

be seen from the concavity of v that a local optimum will generally
suffice, although finite termination may now be in jeopardy.

A .
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conditions of the given problem, then "release" one or more restricted

variables (allov them to be nonnegative) and so've this less-restricted

problem; continue in this fashion until the optimality conditions of

the given problem are satisfied, at which point the procedure terminates.

An important refinement forming an integral part of the strategy involves

adding variable:; to, as well as releasing them from, the restricted set.

Note that the variables restricted to 0 essentially drop out of the

problem, thereb9 reducing its size and avoiding the need for knowing

the associated Jata explicitly. If (as is usually the case) only a

fairly small proportion of all variables actually are active (positive)

at an optimal smlution, then this strategy becomes quite attractive.

The earliest and most significant embodiment of the Restriction

strategy turns 3ut to be the Simplex Method for linear programming

itself. It can be shown, as we shall indicate, that a natural speciali-

zation of Restriction to the completely linear case yields the very

same sequence of trial solutions as does the ordinary Simplex Method.

All of the column-generation schemes for implementing the Simplex

Method for linear programs with a vast number of variables can thereiore

be viewed in terms of Restriction. We shall review one of these schemes

[Gilmore and Gomory 61] at the end of this section. The usefulness of

Restriction is not, however, limited to the domain of linear programtring.

"It will be shown in Sec. 4.3 how this strategy can yield, in a nonlinear

case, variations of the Dantzig-Wolfe method for convex programnming.

t Another column-generating scheme is explained in Sec. 4.3. See

also part B of Table 1.

-I!

•r i ia IN
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Formal Statement

Consider the problem

(3.5) Maximize f(x) s.t. g W m,
xeX f,

where f is a concave function on the nonempty convex set X C Rn and

the functions gl, .... gm are all linear. All nonlinear constraints,

as well as any linear constraints that are not to be restricted, are

presumed to be incorporated in X. The typical restricted version of

(3.5) is the (still concave) problem

(3.6) Maximize f(x) 3.t. gi(x) = 0, icS
x X

gi (x) >- , its,

where S is a subset of the m constraint indices. (Note that we are

presenting Restriction in a seemingly more general setting than the

motivational one above ir, that general linear iz;equality constraints,

as well as simple variable nonnegativities, are aliowed to be restricted

to equality. Actually, the present setting is no more general since

slack variables could be introduced to accommodate the restriction of

general linear inequalities.] Some, none, or all of the x > 0 type

constraints (if any) may be included among gl, ... , gm. The analyst

is free to choose the linear inequality constraints to associate with

1 X; the rest are candidates for restriction.

An optimal solution of the restricted problem (3.6) will be denoted

y , aeponding optimal multiplier vector (which, under

mild assumptions, must exist) is denoted by u8  (i - ., tm)L!•: The pair (x 5 , s) satisfies the Kuhn-Tucker optimality conditions for

(3.6), namely

ýJ
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Im
(i) x s maximizes f(x) + I' .,sig(x) over X

i-1I

(ii) x8 is feasible in (3.6)

S(iii) Ls >_ 0, iis
1

(iv) JIg.(X) 0, i~s.

We are now read)' to give a formal statement of Restriction

applied to (3.5). Notice that not only are constraints released from

the current restricted set S at each iteration, but additions are

also made whenever gi(xs) 0 for some iiS, provided that f(xs) has

just increased.

The Restriction Strategy

Step Put £ = .. o and S equai to any subset of indices
such that the corresponding restricted problent
(3.6) is feasible.

5

Step 2 Solve (3.6) for an optimal solution x and as-
sociated optimal multipliers u.s (if it has un-
bounded optimal value, the same must bc Lrue
of the given problem (3.5) and we terminate).
If uis Ž 0 for all icS, then cerminate (xs is
optimal in (3.5)); otherwise, go on to Step 3.

Step 3 Put V equal to any subset of S that includes
sat least one constraint for which u < 0. If

f(xs) > f, replace f by f(x ) and S by E-V, 4
where E _ (I < i •m g (xs) = 0u; otherwise,
(i.e., if f(xs) = f), replace S by S-V. Return
to Step 2.

F We assume that the given problem (3.5) admits a feasible solution,

so that Step 1 is possible. To ensure that Step 2 Is always possible,

we also assume that the restricted problcm (3.6) admits an optimal

solution and multiplier vector whenever it .s feasible and has finite

supremal value. It is a straightforward matter to show that the

termination conditions of Step 2 are valid, and Step 3 is obviously
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always possible. Thus the strategy is well defined, although we have

deliberately not specified how to carry out each step.

An important property is that the scqience <f(xS )> is non-

decreasing. Thus the strategy yields an improving sequence of feasible

solutions to (3.5). Moreover, <f(xS)> can be stationary in value at

most a finite number of consecutive times, since the role of f at

Step 3 is to insure that S is augmented (before deletion by V) only

when f(xs) has just increased. Hence termination must occur in a

finite number of steps, for there is only a finite number of possi-

bilities for S and each increase in f(xs) precludes repetition of any

previous S.

Options and Relation to the Simplex Method

Let us now consider the main options of Restriction beyond the

decision as to which of t&e linear inequality constraints will

comprise g,, ... , gm.

(i) How to select the initial S at Step I?

(ii) Hou to solve (3.6) for (xs, us) at Step 2?

(iii) What criterion to use in selecting V at Step 3?

How these options are exercised exerts a great influence upon the

efficiency.

* As stated above, there is an intimate relationship between

Restriction and the Simplex Method in the completely linear case.

Givenr the linear program

Al
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t >Maximize c x s.t. Ax b, x 0,
x

define (3.5) according to the identifications

t.
f(x) =ctx

gi(x) xi, all i

X = (x : Ax = bl

and spezialize Restriction as follows: let the initial S be chosen

:o coincide with the nonbasic variables in an initial basic feasible

.3o.ttticn, and select V at Step 3 to be the index of the most negative

1.". It can then be shown, under the assumption of nondegeneracy,

tiat Restriction is equivalent to the usual Simplex Method in that

the set of ivinbasic variables at the v iteration of the Simplex

th
Method necessarily coincides with E at the v iteration of Restriction,

and the vth basi, feasible solution coincides with the vth optimal

solution x of (3.6). Thus Restriction can be viewed as one possible

strategic generalization of the Sinmplex Method. Not only is this an

interesting fact in its own right, but it also permits us co draw some

inferences--as we shall see in the discussion beiow--concerning how

best to exercise the options of Restriction.

Step J

The selection of the initial S should be guided by two objectives:

to make the corresponding restricted problem easy to solve by comparison

with the given problem, and to utilize any prior knowledge that may

be available concerning which of the g. constraints are likely to hold

i

I mw
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with equality at an optimal solution. In the Simplex Method, for

example, the initial choice of S implies that the restricted problem is

trivial since it has a unique feasible solution; at every subsequent

execution of Step 2, the restricted problem renains nearly trivial with

essentially only one free variable (the entering basic variable). Use-

ful prior knowledge is often available if the given problem is amenable

to physical or mathematical insight or if a variant has been solved

previously.

Step 2

How to solve the restricted problem for (xs, u s) at Step 2 depends,

of course, on its structure. Hopefully, enough constraints will be

restricted to equality to make it vastly simpler than the original

problem. In any event, it is advisable to take advantage of the fact

thzc a sequence of restricted problems must be solved as the Restric-

tion strategy is carri-I out. Except for the first execution of

Step 2, then, what is required is a solution recovery technique that

effectively utilizes the previous solution. The pivot operation per-

forms precisely tlis function in the Simplex Method, and serves as an

ideal to be approached in nonlinear applications of Restriction.

It is worth mentioning tha. many solution (or solution recovery)

t&=hniques that could be used for the restricted problem automatically

yield V as well as x . When this la not the case, one me:, fin;! v

once x As known by solving a linear problem if f and the constraint

functions defining X are differentiable, since under these conditions

the Kuhn-Tucker optimality conditions for (3.6) in differential form

become linear in P.
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* Step 3

Perhaps the most conspicuous criterion for choosing V at Step 3

is to let it be the index of the constraint corresponding to the most

8 .
negative v * One rationale for this criterion is as follows. Suppose

that s is unique. It can then be shown (see [Geoffrion 69) or fRocka-

fellar 68]) that the optimal value of the restricted problem is differ-

entiable as a function of perturbations about 0 of the right-hand ride

of the g9 constraints, and that -v is the partial derivative of the

optimal value with respect to such perturbations of the ith constraint.

Thus the most negative v s identifies the constraint in S whose release

will lead to the greatest initial rate of improvement in the value of

f as this constraint is permitted to deviate positively from strict

equality. It can be argued that ps is likely to be unique, but if we

drop this supposition then -ýa1 still provides an upper bound on the

initial rate of improvement even though differentiability no longer

holds.

This most-negative-multiplier criterion is precisely the usual

criterion used by the Simplex Method in its version of Step 3 to

select the entering basic variable, but it i5 Iy no means the only

criterion used. The extensive computational ex.perience presently

available with different criteria used in the Simplex Method may

permit some inferences to be drawn concerning the use of analogous

criteria in the nonlinear case. It has been observed LWolfe and

Cutler 63j, for example, that the most-negative-multiplier criterion

typically leads to a rumber of iterations equal to about t-ice the

number of constraints, and that other plausible criteria can be

Ii Iw~mma m• m m mm a m m • w m•m m~ m q•rm



expected to be consistently better by no more than a factor of two or

i t
so. Lest it be thought that V must necessarily be a singleton, we

note that we may interpret Wolfe and Cutler to have also observed

[ibid., p. 190] that choosing V to consist of the five most negative

multipliers reduced the number of iterations by a factor of two as

tt
compared with the single--most-negative-multiplier choice. Of course,

this increases the time required to solve each restricted problem.

Experience such as this should at least be a source of hypotheses to

be examined in nonlinear applications of Restriction.

Mechanizing the "Pricing" Operation

Each iteration of Restriction requires determining whether

there eAists a negative multiplier and, if so, ac least one must be

found. In the ordinary Simplex Method, which as has been indicated

can be viewed as a particular instance of Restriction, this was

originally done enumeratively by scanning the row of reduced costs

for an entry of the "wrong" sign. To deal with large numbers of

variables, however, it is desirable whenever possible to replace

this enumeration by an algorithm that exploits the structure of the

problem. This is referred to as mechanized pricing.

t An example of another plausible criterion is this: select V to

be the index of the constraint ohich, when deleted from S, will result
in the greatest possible improvement in the optimal value cf the re-
stricted problem. Of course, this criterion is likely to be prohibitively
expensive computationally in the nonlinear case.

ttThis is known as multiple pricing, a feature used in mcst

production linear programming systems designed for large-scaie problems.
See, for example, [Orchard-Rays 68, Sec 6.11.
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Mechanized pricing is widely practiced in the context of linear

programming, where it is often referred to as coZwnn-generation.

Since the pioneering paper [Ford and Fulkerson 58], many authors

have shown how pricing could be mechanized by means of subsidiary

network flow albarithms, dynamic programming, integer programming, I

and even linear programming. See the references of part B of Table 1,

[Balinski 64], and (Gomory 63]. It will suffice to mention here

but one specific illustration: the cutting-stock problem as treated

by [Gilmore and Gomory 61]. See also Sec. 4.3.

Cutting-Stock Problem

A simple version of Gilmore and Gomory's cutting-stock problem,

without the integrality requi:ement on x, is

(3.7) Minimize F x s.t. a ijx_ ] ri, i= i ,

where alj is the number of pieces ot length Li produced when the cut-
.th

ting knives are set in the j pattern, r. is the minimum number of

Irequired pieces of length ii, and x.j is the rumber of times a bar of

stock is cut according to pattern j. The number of variables is very

large because of the great variety o: ways in which a bar of stock

can be cut. It is easy to see that each column of the matrix A

is of the form (y .... Ym , where y is a vector of nonnegative
m

integers satisfying Z •iyi • X (X i• the length of a bar of
S~i-l

!

1I
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stock); and conversely, every such vector corresponds to some column

(assuming that all possible patterns are allowed). When Restriction

is applied to (3.7) in the form of the Simplex Method, it follows that

the problem of determining the most negative multiplier can be expressed

as the subsidiary optimization problem

(3.8) Minimize I - u y s.t. e1iyi < %, y i-teger(3.)->O\, iitge

where u is the known vector of the current "Simplex multipliers."

If slack variables are given priority over structural variables in

determining entering basic variables (cf. Sec. 4.3), then u can be

assumed nonnegative and (3.8) is a problem of the well-known "knapsack"

variety, for which very efficient solu;tion techniques are available.

See (Gilmore and Gomory 61] for full details.

3.3 RELAXATION

Whereas Restriction is a solution strategy principally usefui for

problems with a large number of variables, the complementary strategy

of Rer~ation is primarily useful for problems with a lUrge number of

inequality constraints, some of which may be only implicitly available.

Such problems occur, for example, as a result of Outer Linearization.

One of the earliest uses of Relaxation was in [Dantzig, Fulkerson, and

Johnson 54], and since that time this strategy has appeared in one guise

tRelaxation can also be useful for dealing with large numbers
of nonnegative variables; when a constraint such as xj k 0 is re-
laxed, the variable xj can often be substituted out of the problem
entirely [Ritter 67c], [Webber and White 68].

LI
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or another in the works of numerous authors. We discuss [Kelley 601

at the end of this section, and [Benders 62] in Sec. 4.1.

The essential idea of Relaxation is this: solve a relaxed version

of the given problem ignoring some of the inequality constraints;

if the resulting solution does not satisfy all the ignored constraints,

then generate and include one or more violated constraints in the

relaxed problem and solve it again; continue in this fashion until a

relaxed problem solution satisfies all of the ignored constraints, at

which point an optimal s , of the given problem has been found.

An important refinement inv,_ Iropping imply satisfied constraints

from the relaxed problem when this does not destroy the inherent

finiteness of the procedure. We give a formal statement of Relaxation

(with the refinement) below.

Relaxation and Restriction are complementary strategies in a very

strong sense of the word. In linear programming, for example, whereas

a natural specialization of Restriction is equivalent to the ordinary

Simple% Method, it is also true [Geoffrion 68a) that a similar special-

ization of Relaxation is equivalent to Lemke's Dual Method. It follows,

very significantly, that Restriction (Relaxation) applied to a

linear program esqentially corresponds to Relaxation (Restriction) ap-

plied to the dual linear program. In fact [ibid.], the same assertion

holds for quite general convex programs as well. This complementarity

makes it possible to translate most statements about Restriction iito

statements about Relaxation, and conversely.

tRe axation without problem manipulation is used in Dantzig 55a,

Sec. 3; Stone 58; Thompson, Tonge and Zionts 66; Ritter 67c; Grigoriadis
and Rittcr 68. The following papers all use the pattern Outer Lineari-
zation/Relaxation: Cheney and Goldstein 59; Kelley 60; Dantzig and
Madansky 61, p. 174; rarikh 67; Veinott 67. The references of part A
of Table 2 all use the pattern Projection, Outer Linearization/Relaxa-
tion. See also the second footnote in Sec. 1.2.

I m u~ml$ m m m mm~ mm m m r mmm • • |m•m mm
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Since we have already given a relatively detailed discussion of

Restriction, a somewhat abbreviated discussion of Relaxation will

suffice. See [ibid.] for a more complete discussion.

Formal Statement

Let f, gl, .... g be concave functions on a nonempty convex

set X C: Rn. The concave program

(3.9) Maximize xx f(x) s.t. gi(x) L 0, i = 1, ... , m

is solved by solving a sequence of relaxed problems of the form

(3.10) MaximizexeX f(x) s.t. gE(x) ? 0, icS,

where S is i subset of [1, ... , ml. Assume that (3.10) admits an

optimal solution xs whenever it admits a feasible soluLion and its

maximand is bounded above on the feasible region, and assume further

that an initial subset of constraint indices is known such that

(3.10) has a finite ootimal solution. (This assumption can be en-

forced, if necessary, by enforcing continuity of all functions and

compactness of X.)

Under these assumptions, it is not difficult to show that the

following strategy is well defined and terminates in a finite number of

steps with either an optimal solution of the given problem (3.9) or

knowledge that none exists; moreover, in the first case a nonincreesing

sequence <f(xs)> of upper bounds on the optimal value of (3.9) is

obtained and the first solution of (3.10) that is feasible in (3.9) is

also optimal. This version of Relaxation deletes amply satisfied con-

straints from S so long as <f(rs)> is decreasing.
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The Relaxation Strategy

Step 1 Put f = and S equal to any subset of indices
such that the corresponding relaxe4 problem
(3.10) has a finite optimal solution.

Step 2 Solve (3.10) for an optimal solution x5 if
one exists; if none exists (i.e., if the re-
laxed problem is infeasible), then terminate
(the given problem is infeasible). If
gi(xs) ! 0 for all iiS, then terminate
(xs is optimal in the given problem); other-
wise, go on to Step 3.

Step 3 Put V equal to any subset of constraint
indices that includes at least one constraintS

such that g.(x ) < 0. If f(xs) 'e , replace f
by f(xs) anh S by E U V, where E _ (icS: gi(xs)
0); otherwise (i.e., if f(xs) T), replace S by
S U V. Return to Step 2.

Discussion

As with Restriction, the analyst has considerable leeway con-

cerning how he applies the Relaxatio,. strategy. For instance, he can

select the constraints that are to be candidates for Relaxation

(gl, ... , g.) in a.y way he wishes; the rest comprise X. He is free

to choose the initial S so as to allow an easy start, or to take ad-

vantage of prior kn:;wledge concerning which of the constraints might

be active at an optimal solution. He can choose the mos,: effective

solution recovery technique to reoptimize the successive relaxed

problems. And, very importantly, he can choose the criterion by

which V will be selected at Step 3 and the method by which the cri-

terion will be implemented.

Probably the most natural criterion is to let V be the index of

the most "lolated constraint. This is the criterion most commonly

employed in the Dual Method of linear programming, for example,
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although other criteria are possible. The complementarity between

Relaxation and Restriction mentioned earlier enables us to interpret

existing computational ".perience in linear programming so as to

shed light on the merits and demerits of several alternative criteria.

The discussion oi Step 3 of Restriction should make further discussion

of this point unnecessary. We should remark, however, that in some

applications (e.g., [Dantzig, Fulkerson and Johnson 541, [Gomory 58],

[Kelley 601) only one or a few violated constraints are accessible

each time the relaxed problem is solved, and it is therefore indi-

cated that these be used regardless of whether they satisfy any

particular criterion. In other applications a criterion such as

"most violaced constraint" is within the realm of attainability,

and can be approached via a subsidiary linear program [Benders 62],

network flow problem [Gomory and Hu 62], or some other subsidiary

optimization problem that is amenable to efficient solution. This

is the counterpart of mechanized pricing in Restriction.

Restriction and Relaxation, opposites though they are to one

another, are by no means incompatible. In fact it can be shown

[Geoffrion 66 and 67] that both strategies can be used simulta-

neously. The reduced problems become still more manageable, but

assurance of finite terminatiou requires more intricate control.

The Cutting-Plane Method

One important use of Relaxation occurs, as we have mentioned,

in connection with problems that have been outer-linearized. This



will be illustrated in the simplest possible se.ting in terms of the

problem

(3.11) Minimize c x s.t. Ax • b,

g(x) -• 0,

where g is a convex function that is finite-valued on

x fx x 0 Ax b].

If one manipulates (3.11) by invoking an arbitrarily fine outer-

linearization of g and then applies the Relaxation strategy with the

new approximating constraints as the candidates for being relaxed,

the resulting procedure is that of [Kellay 601.

Let us assume for simplicity that g iL differentiable on X.

Then g has a linear support g(x) + vg(x)(x - x) at every point x in X,

where Vg(x) is the gradient of g at x, and so (3.11) is equivalent to

t

(3.12) Minimize c x s.t. g(X) +vg(x)(x - x) < 0, all xeX.
xCX

The Relaxation strategy is the natural one for solving (3.12),
since it avoids the need to determi. in advance all of the linear

S%

supports of g. At e3ch iteration, a relaxed version of this problem

with a finite number of approximating constraints is solved. The

optimal solution x of the relaxed problem is feasible in (3.12) if

%The assumption of differentiability can be weakened, since it
is only necessary for g to have a support at each point of X. And
even this requirement can be weakened as implicitly suggested in the
conclusion of Sec. 2.3 if (3.11) is phrased in terms of the epigraph
of g.

I
I
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and only if g(x) - 0; if g(i) > 0, then evaluation of Vg(i) yields a

violated couistraint that must be appended to the current relaxed

problem. Sin:e each relaxed problem is a linear program that will

be augmented by a violated constraint, it is natural to reoptimize

it using postoptimality techniques based on the Dual Method for

linear programming.

it is easy to generalize this development to cover the case in

which (3.11) has several (nonlinear) convex constraints and a conve.x

minimand.

It should be pointed out that dropping amply satisfied constraints

from the relaxed problem--a feature incorporated in our statement of

Relaxation--is questionable in this context since (3.12) has an in-

fiiite number of constraints. Without this feature, Kelley has

given mild conditions under which convergence to an optimal solution

of (3.11) is assured in the limit.

We remark in passing that the approach of [Hartley and Hocking

63] for (3.11) can be viewed as Restriction applied to tl-e dual of

(3.12). Since Relaxation of (3.12) corresponds to Restriction of

its dual, the two approaches are really equivalent.

I
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4. SYNTHESIZING ALGORITHMS FROM MANIPULATIONS AND STRATEGIES

This section further illustrates the problem manipulations -id

solution strategies of the previous two sections by combining them in

various ways to yield several known algorithms. The main object is not

an exposition of these algocithms, although this is certainly important;

rather, we wish to focus on the principal patterns in which manipula-

tions and strategies can be assembled. These patterns constitute the

real common denominators in the literature on large-scale programming.

Sea Table 2.

It is beyond the scope of this effort to exemplify all of the im-

portant patterns of manipulations and strategies. We shall limit our

discussion to five key ones:

1. PROJECTION, OUTER LINEARIZATION/RELAXATION

2. PROJECTION/PIECEWISE

3. INNER LINEARIZATION/RESTRICTION

4. PROjECTION/FEASIBLE DIRECTIONS

5. DUALIZATION/FEASIBLE DIRECTIONS

The first pattern is illustrated in Sec. 4.1 by Benders' Partitioning

Procedure for what might be called semilinear programs; the second is

illustrated in Sec. 4.2 by Rosen's Primal Partition Programming algo-

rithm for linear programs with block-diagonal qtructure; the third in

Sec. 4.3 by Dantzig-Wolfe Decomposition; the fourth In Sec. 4.4 by a

procedure the author recently developed for nonlinear programs with

multidivisional structure; and the fifth in Sec. 4.5 by the "local"

approach discussed by Takahashi for concave programs with "complicating"

i nl • mimm m ~ m•m• 'amm • • $ m m mwI
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constraints. Another key pattern, OUTER LINEARIZATION/RELAXATIO9,

was already illustrated in Sec. 3.3 with reference to Kelley's cutting-

plane method. In addition, it is indicated in Sec. 4.2 how Rosen's

algorithm can be used to illustrate the pattern DUALIZATION/PIECEWISE,

and in Sec. 4.3 how Dantzig-Wolfe Decomposition can be used to illus-

trate DUALIZATION, OUTER LINEARIZATION/RELAXATION.

The discussion of the various algorithms is as uncluttered by

detail as we have been able to make it. There is little or no mention

t
of how to find an initial feasib'1 solution, the details of computa-

tional organization, or qtrstio,,s of theoretical convergence. The

reader is invited to ponder such questions in the light of the concepts

and results advanced in the previous two sections, and then to consult

the original papers.

4.1 [Benders 62]

One might refer to

t

(4.1) Maximize t: x + f(y) s.t. Ax + F(y) • b

y cY

as a 8emnZinea program because it is a linear program in x when

* / y is held fixed temporarily. The algorithm of (Benders 62] for

this problem can be recovered b) applying the pattern PROJECTION,

OUTER LINEARIZATION/RELAXATION. Specifically, project (4.1) onto the

space of the y variables, outer-linearize the resulting supremal

value function in the maximand, and apply the Relaxation strategy

t If one exists, it can usually be found by applying the algorithm

itself to a suitably modified version of the given problem.I

-i
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to the new constraints arising as a consequence of Outer Linearization.

Assumc for simplicity that (4.1) is feasible ane has finite optimal

value.

Projection onto the space of the y variables yields

(4.2) Maximize [f(y) + Sup [c x s.t. Ax 1 b - F(y))].
yeY xW>O

Note that the supremal value function appearing in the maximand cor-

responds to the linear program

t(4.3) Haximi..e c x s.t. An b -F(y).

This program is parameterized nonlinearly in the right-hand &ide by y,

2 and our assumption implies chat it has a finite optimum for at least

one value of y. By the Dual Theorem, therefore, the dual linear

program

(4.4) Minimize u t(b - F(y)) s.t. u tA k ct
ukO

,must be feasible (for all y). Let <uI, ... , uP> be the extreme points

i <up~~+l' tP•
and ... , representatives of the extreme rays of the feasi-

ble region of (4.4) (cf. Th. 3). Again using the Dual Theorem, we see

that (4.3) it feasible if and only if (4.4) has finite optimal value,

that is, if and only if y sntisfies the constraints

I it
(4.5) (u ) (b - F(y)) Z 0, j - p + I, ... , p + q.

Since we take the supremal vaLue function in (4.2) to be -w fcr y

such that (4.3) is infeasible--see Sec. 2 .1--we may append the



-54-

constraints (4.5) to (4.2). Thus Projection applied to (4.1) yields

(4.2) subject to the additional constraints (4.5).

Next we outer-lin3arize the supremal value function appearing

in (4.2). It is easy to see, referring to (4.4), that its valuei is

precisely

(4.6) Minimum ((uJ)t(b - F(y)) '
l!;j Vp

for all y feasible in (4.2) with (4.5) appended. (Strictly speaking,

it is accurate to call this Outer "Linearization" only if F is linear.)

With this manipulation, (4.2) becomes

(4.7) Maximize If(y) + Minimum (uJ) t(b - F(y))I] s.t. (4.5)
y CY 1 eJ!5p

or, with the help of an elementary manipulation based on the fact that

"a minimum is really a greatest lower bound,

(4.8) Maximize f(y) + yo
yeY
Yo

s.A. yo < (uj (b - F(y)), j 1, ... ,p

(uJ)t(b - F(y)) > 0, j - p + p, ... , p + q.

This is the master problem to be solved.

Relaxation is a natural strategy for (4.8); it avoids having

to determine in advance all of the vectors uj , = 1, .. , p + q. To

test the feasibility of a trial solution (jog 9), where ycY, one solves

the linear subproblem (4.4) with y equal to 9. If the infimal value

in greater than or equal to 9 then (j 9) is feasible and therefore
o 0

I
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optimal in (4.8); y, along with i equal to the optimal dual variables

of (4.4), is an optimal solution of the given problem (4.1). If, on

the other hand, the infimal value is less than 9 , then a violated

constraint of (4.8) is produced (some uj with 1 - j - p is found if

the infimal value is finite, while p + 1 :S j I p + q if it is -- ). Of

course, f, F, and Y must satisfy the obvious convexity assumptions if

dropping amply satisfied constraints is to be justified. These assump-

tions t!ill probably have to hold anyway if the relaxed problems based

on (4.8) are to be conicave programs (remember u . 0). There is, how-

ever, at least one other interesting case: if Y is a discrete set, say

the integer points of some convex polytope, while f and F are linear,

then (4.8) is a pure (except for yo) integer linear program (see

[Balinski and Wolfe 63), (Buzby, Stone and Taylor 65]).

The present development seems preferable to the original one

since: (a) it justifies dropping amply satisfied constraints from suc-

cessive relaxed versions of (4.8); (b) it retains f(y) in its natural

position in the criterion function of (4.8) (Benders' version of (4.8),

which is also equivalent to (4.7), has y alone as the criterion func-

tion and an added term f(y) in the right-hand side of each .: :.!e first

p constraints); and (c) its comparative simplicity suggests a xv.,erali-

zation, with the help of nonlinear duality theory, pertuitting

nonlinearities in x. Decails concerning (c) will be provided in L.

forthcoming paper.
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The algorithm of LIosen 641 for the 'near progcam

!L

(/,.9) Maximize bty + b bx~ s.t. x tAi + Y tD. ct, i 1,..

1 2

illustraces the pattern PROJECTION/?PIECVWlS E. Assume for simpicity

that (4.9) is feasible and has finite optimal value.

!a'

wnere we have separated the supretmum in the maximand (this separation

is peeriaps the main justification for using Poeto)

The Piecewise strategy is appropriate for (4.10) because each

( supremal value in the maximand is piecewise-linear as a function of

y. This follows from the elementary theory of linear programming,

au~ we now explain. Let ý be feasible ir. (4.10) in the sense that the

maximand is not --. Then each of the L. linear programs appearing in

the maximand must have a finite optimal value, and by the Duel Theorem

this optimal value must be equal tolehat of the duals litear program

i (4.1) MMinimize zc )1Y s+t A pu b

et he vector sabe an optimal solution of this programs and let the

corsp i basis mAtrix be B ica Sion c change inoyc an affec.t

the feasibility of e wsthe optimal value of (4.10)--vhich is equal to

the value of i thsupremavalue function i f (4.10) at y--utist be

4.Ti olw rmteee,•tr hoyo ierpormig

-2w o xli.Lt•b esbl n(.O ntesneta h

maLadi o - he aho h ier ria•apaigi
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(4.12) (ci - y D)

so long as the reduced costs remain of the correct sign, that is, so

long as y satisfies the condition

St t B i - I t
S(4.13) (ci- y Di Bi (A).- (ci - yt~i),) -ý 0, all nonbasic J,

where the superscript B masks all but the basic components of

L _yti.

(c - D Thus the master problem (4.10), confined to the
linear "piece's containing v. becone. the linear program

(4.14) Maximize bty + t (c " ytDi~ "•.t" (413), i - l, .... L.t

y i-l

This shows that Step 2 of the Piecewise strategy can be accomplished

by linear progratming. Rosen actually works with the dual of (4.14).

His Theorems 1 and 2 concern Step 3 (cf. the discussion following (3.4)

in Sec. 3.1).

It is interestrng to note that if we had started with the dual

of (k.9)-sa block-diagonal linear program with coupling constraints--

we would have obtained precisely the same procedure as the one just

described by dualizing with respect to the coupling constraints only

[Geoffrion 69] and then invoking the Piecevise strategy. In this way

[Roser. 64] could alao be uued to illustrate the pattern DUALIZATION/

PXECEW13E.

Iy

ii mw w• m~m- ~ -ww • n w • m •wi m • ••w
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4.3 DANTZIG-WOLFE DECOMPOSITION

Dantzig-Wolfe Decomposition is archetypical of the pattern

INNER LINEARIZATION/RESTRICTION. Mechanized pricing plays a prominent

role. We shall illustrate this pattern first with the algorithm of

[Dantzig and Wolfe 60] for a puteiy linear program, then with the

algorithm of [Dantzig 63a, Ch. 24] for a nonlinear program, and finally

with a variation of the latter in which not all nonlinear functions

need be inner-linearized.

It is interesting to note that Dantzig-Wolfe Decomposition can

also be viewed as an instance of the pattern DUALIZATION, OUTER

LINEARIZATIO/RELAXATION. In the context of (4.15), for example, one

would dualize with respect to the constraints Ax I b, outer-linearize

the resulting minimand in the obvious way, and then apply Relaxation.

A [Dantzig and Wolfe 60)

The well-known Dantzig-Wolfe decomposition approach for linear

I programs will be explained in terms of the linear program

(4.15) Maximize c x s.t. Ax b,
x>0

where we have arbitrarily divided the constraints into two groups.

With the definition

(4.16) X x 0 Ax b

we may wr 4 te (4.15) as

t
(4.17) Maximize c x s.t. Ax-

xCX
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Since X is a convex polytope, we know (Th. 3) that it admits an exact

inner linearization using oriy i finite number of points. Invoking

this representation for X, we obtain a master linear program with a vast

number of variables to which Restriction can be applied in the form

of the Simplex Method. It turns out that the pricing operation (cf.

Sec. 3.2) can be accomplished by solving a linear subproblem

whose feasible region is X. The details are as follows.

Assume that X is not empty and also, for ease of exposition only,

that X is bounded. Then X can be represented in terms of irs extreme

points <xI ... , xP>, and (4.17) can be written as the equivalentmaster

linear program 1.

p p
(4.18) Maximize c ( Z f.x ) s.t. Z a. = 1,

""0 j=l j-. J-

2: cQx) <b.t=l J
tP

The Simplex Method for this problem corresponds to Restriction with

respect to the constraints c4O.t To describe how the pricing opera-

tion can be mechanized, we shall use the familiar terminology of

linear programming rather than the general terminology of Restriction.

The optimality conditions at the general iteration are u >0 and

(4.19) u 0+ utAxj - ctxj a 0, j 1 , .. , p

Actually, the inequality constraints involving A are also normally
ccnsider•.d as candidates for restriction to equality. The latter
constraints can be excluded, if desired, from the candidates for re-
st-iction by giving u >, 0 priority over (4.19) in deteavining the en-
terins basic variable. Such a modification is necessary, as vo *hall
see latei in this subsection, Vhen nonlinear functions are inner-"ineartzed..
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where u and the vector u are the current Simplex multipliers.
0

Condition (4.19) is equivalent to

[u + Minimum f(utA - ct)xj Z4 Ž 0

or, since <x1 , ... , xP>span X, to

(4.20) [u + mil Cu A - crux] Ž 0.

The linear program in this expression is valid replacement for the

finite minimum in the previous expression because the minimum of a

linear function over X occurs at an extreme point. Thus we see how

to test optimality when the Simplex Method is applied to (4.18). If

either u > 0 or (4.20) fails to hold, a profitable nonbasic variable

satisfying the usual criterion for the entering variable is obtained

automatically: if the greatest violation occurs in u >0 , introduce

the corresponding slack variable; if in (4.20), introduce the vari-l Jo.
able ajo where x is an optimal basic feasible solution of the

linear program in (4.20) (the extremal function coefficient ot a. isJo Jo
t Jo 

1

c x , and the technological coefficient column is unity followed by

Thus there is no difficulty in carrying out the Simplex Method

applied to the master problem (4.18). Each iteration requires solving

the linear subproblem in (4.20). This approach may possess an advan-

tage over the direct application of the Simplex Method to (4.15) when

r tThe subproblem need be solved from scravch only at the first

iteration; thereafter, restarting or parametric techniques can be
used to recover an optimum as u changes from iteration to iteration.
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the subproblem has some special structure. For example, if (4.15) is

a transportation problem with additional constraints, then the sub-

problem becomes a pure transportation problem if A is taken to comprise

the additional constraints. Another example is the case in which A is

ýlock-diagonal, for then the subproblem separates into k independent

smoller linear programs. In general, one should select a grouping of

the constraints (in terms of A and A) that isolates a special structure,

and then exploit this structure in dealing with (4.20). See [Broise,

Huard and Sentenac 68], [Orchard-Hays 68, Sec. 10.4] for additional

discussion based on computational experience.

[Dantzig 63a, Ch. 24]

Noj consider a nonlinear version of (4.17), namely

(4.21) Maximize f(x) s.t. gi(x) r bi, i I, ... M,
xcX

where X is a convex set, f is concave on X, and g1 is convex on X.

Dantzig and Wolfe's approach [Dantzig 63a, Ch. 24] for this problem

can be viewed as follows. Let f and each g be approximated by

Inner Linearization over an arbitrarily fine base <xI, x2 , ... > in

X, so that (4.21) is approximated as closely as desired (in princi-

pie, at least) by the linear master problem

(4.22) Haximize E a f(x )s.t. Z c. a.,
S0 J - Lj =i.L(x•) • bi, i = 1. ... , m.

We say "in principle" becausa we do not wish to actually evaluate f

and each g• at every point in the base, or even specify the base

explicitly. Hence it is natural r.o solve (4.22) by Restriction with
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the constraints a>0 as the candidates for restriction to equality

(when is restricted to 0, the values f(xi) and gi(Ki) are not

needed). A very natural way to do this is to employ the Simplex

Method with a priority convention to ensure that the restricted prob-

lems #e- truly optimized: slack variables corresponding to the i

constraints must be given priority over structural variables in deter-

mining which variable is to enter a basis. Any feasible solution of

(4.21) can be used to find an initial basic feasible solution, and at

the general iteration the optimality criterion or pricing problem is

(cf. (4.19)) uI 1 0 (1 1 i < m) and

m

(4.23) uo 4- u ug.(x " f(xJ z 0, all J,

Ii-I

where u, U0 , ... 8 um are the current Simplex multipliers. By the

priority convention, we may assume that ui > 0 (1 s i Sm). Note that

(4.23) is intimately related (cf. (4.20)) to the convex subproblem

m

(4.24) Minimize F uis.(x) - X)
x eX i'l

If u plus the optimal value of this problem is nonnegative, then

(4.23) holds and an optimal solution of (4.21) is at hand Ix* =

T h& xj where & is the current and optimal solution of (4.22)];

otheivise, an optimal or near-optimal solution • of (4.24) can be

profitably added to the current explicit base by introducing the

corresponding a. into the basis in the usual way after evaluating

Sf(•) and gIn practice, termination would take place as soon as

the value of the current approximation to an optimal solution of

IIi ! l lI~l I I I I
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(4.2i)--the quantity f(E • -- approaches closely enough the

foilowing easily demonstrated upper bound for che true optimal value:

M
(4.25) -ibi - MirXex uigi(x) - f(x

This approach is particularly attractive when the structure is

such that (4.24) is relatively tractable by comparison with (4.21);

for example, when X is an open set and f and g are differentiable,

or when (4.24) is separable into several indepenuu r subproblem.

A Variant

It is interesting to observe that Inner Linearization need not

be applied to all nonlinear functions of (4.21). An advantage can

sometimes be gained by inner-linearizing only a subset of the non-

linear functions, say g,, ", m' < m). Then instead of (4.22)L L

we have the concave master problem

(4.26) Maximize f(l a crxi)
J J

Yl 0og (x1 ) ! bi, i - 1, . ml

Sg(E- orxc) ! bi, i mI + I, ... , m. -

Again we wish to apply Restriction with only the nonnegativity con-

straints O.=O as candidates for restriction to equality. The Simplex

Method can no longer be adapted to this purpose, however, since (4.26)

is not a linear program. lmplementation requires a concave programming

_ _ _ _.
tin [Whinston 66], for example, the objective function of a block-

diagonal quadratic program with coupling constraints is not inner-
linearized.
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algorithm for solving the restricted versions of (4.26) and also a

means of mechanizing the iricing operation. We need not discuss the

first requirement. The second involves being .ble to determine the
s

prices u for all J in S, where S is the current set of indices for

which a is restzicted to value 0. This can be done as follows [Holloway

691. Let as be the optimal solution to (4.26) with the additional re-

strictions a j 0 for JeS, and let uso, uls -,' usm be the associated

optimal multipliers (which must exist if a constraint qualification is

satisfied). Then, assuming all functions are continuously differen-

tiable, the price • associated with aj = 0 is given for all JcS by

(4.27) s u-S- Vf(xS)xi + i- 1 ugi(x0) + i Vg(ZS)x,Ji-l i-M 1+1

where

(4.28) F j•JA
It follows that the pricing problem can be solved by optimizing the

I convex (us 0) subproblem

Sm

(4.29) Minimize -Vf(xS)x + U g1(x) + u 7g (x)X.

i Compare with (4.24). If f were inner-linearized too, the first term

of the maximand of (4.29) would be -f(x).

Which of all given constraints should be incorporated into X,



1' -65-

and which of the remainder and whether f itself should be inner-linear-

ized, depends mainly on the availability of efficient algorithms for the

resulting versions of (4.29) and (4.26) with a - 0 for jeS.

4.4 [GCýoffrion68b, Sec. 43

A q,•ite general problem with multidivisional structure is

k
(4.30) Maximize Z fi(xi)

x i=1

S.t. H i(x d ý= 0, 1 1 , , k

kGi(xi) b,
i-I

where fi, h and g are all concave differentiable functions of the
& 'ij ij

vector xi. The subscript i can be thought of as indexing the individual

divisions, which are linked together only by coupling constraints. The

approach of £Geoffrion 68b, Sec. 4) is an application of the pattern

PROJECTION/FEASIBLE DIRECTIONS. The optimization of (4.30) is carried

*: out largely at the divisional level subject to central coordination.

First (4.30) is projected onto the space of its coupling con-

stralnts. This requires introducing the vectors y., "' Y:

(4.31) Maximize f (x )
x11y i=1

s.t. i(x) d 0, 1 .. k

I (x i p' k

i~ k~ l•b.

j• mm •m • •w wM •m m • m
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In effect, this changes the given problem from one with coupling con-

straints to one with coupling variables, since (4.31) separates into

k separate problems if y is held fixed temporarily. One may i'Iterpret

th
Yi as a vector of resources and tasks assigned to the i division.

Projection of this problem onto y yields the master problem

k k(4.32) Maximize vi(yi) s.t. Yi b,
(4y2)i1 i=l ~b

1y

where v1 is defined as the supremal value of the parameterized

divisional problem

(4.33) Maximize fi(xi) s.r. HV(x) 0O

;j x.

G Gi(xi) d yi"

SNow we wish to apply the Feasible Directions strategy to (4.32).

The idea of this strategy, it will be recalled, is to generate an

improving sequence of feasible poin.s, with each new point determined

from the previous one by selecting an improving feasible direction

and then maximizing along a line emanating in this direction. The

latter maximization is only one-dimensional, and can easily be es-

sentially decentralized to the divisional level. The chief difficulty

with this strategy concerns how to find a good improving feasible
k

direction, for the maximand E v (yi) is not everywhere differentiable

and is avail~ble only implicitly in terms of the divisi. nal problems

(4.33). It can nevertheless be shown [ibid., Sec. 4.2], using the theory

of subgradients for concave functions and the optimality conditions as-

sociated with (4.33), that the following explicit linear program yields
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an improving feasible direction z° for (4.32) at a feasible point
0 0

y moreover. z is est_ among all feasible directions in that it
k

maximizes the initial rate of improvement of E vi(YJ):

k(4.34) Maximize 17? fiw

ij yi0s.t. Viwi -2 j O, i k 0...,kj such thatgi Yi0

j such that h.. 0
'S

k k
Zij Q 0, j such that Yij0

-1 :5 zij S 1, all i and j.

0
Here Vg i_ refers to a row vector that is the gradient of gii evaluated

at an optimal solution of (4.33) with y, = y O, and the other super-

scripted quantities have similar definitions. The vector wi has the

same dimension as xiC This subproblem enables the Feasible Directions

strategy for (4.32) to be carried out.

4.5 [Takahashi 641

4 Consider

(4.35) Maximize f(x) s.t. H(x) 0
x G(x) =0,

where f is concave and all constraints are linear. Suppose that the

G constraints are complicating in the sense that the problem would

be tnuch easier if they were not present. For instance, the complicating

t I= = e= •

m* Immm• m =mm mm~ m l m ~ m
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constraints may be the coupling constraints of a structure similar to

the one in the previous subsection, or they may spoil what would other-

wise be a special structure for which efficient solution methods would

be available. The pattern of the "local" approach of [Takahashi 64)

for this problem is DUALIZATION/FEASIBLE DIRECTIONS.

The dual of (4.35) with :espect to the complicating constraints

only yields (see, e.g., [Rockafellar 681 or [Geoffrion 69]) the following

problem in the space of the dual variables X (a vector whose dimension

matches G):

(4.36) Minimize v(X),
X

where v(%) is defined as the supremal value of the parameterized

problem

(4.37) Maximize f(x) + X tG(x) s.t. H(x) - 0.
x

Note that (4.37) is of the same form as (4.35) except the complicating

constraints are now part of the criterion function.

To apply the Feasible Directions strategy to (4.36), we must be

able to identify an improving feasible direction. Any direction is

feasible, of course, since X is unconstrained. When f is strictly

concave, t can be shown that v is differentiable. Its gradient aL

a point X° is simply G(x°), where x° is the optimal solution of

(4.37) with X - X°. Hence the Feasible Directions strategy can be

carried out for (4.36) using the negative of the gradient of v

11i
I
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as the improving feasible direction. Actually, Takahashi proposes

a shorc-step method rather than requiring a one-dimensional minimi-

zation to 6e performed in order to determine step size. The pro-

cedurc nay be eumntarized as follows.

I, Choose a starting point Xo.

0 0
2. Solve (4.37) with AX - X for itn optimal solution x . If

G(x°) - 0, then x° is optimal. in (4.35); otherwise, go on
to Step 3.

3. Let X' X° - CG(x 0 ), where • is a small positive constant,
and return to Step 2 with A' in place of X0.

I
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5. CONCLUSION

W'e have attempted to develop a framework of unifying concepts that

comprehends much of the literature on large-scale mathematical program-

ming. If we have been successful, the non-specialist should have an

overview of the 'ield that facilitates further study, and the advanced

reader should feel that he has a deeper understanding of previously

familiar algorithms and that he perceives new coimmonalities among ap-

proaches that heretofore seemed to be related only vaguely if at all.

In addition, we hope that the framework will suggest a variety of

worthwhile topics for investigation. The problem manipulations and

solution strategies discussed here all invite further study, and others

should be added to the fold so that additional algorithms can be en-

compassed. The algorithms falling within the purview of each particular

manipulation/strategy pattern (cf. Table 2) should be studied carefully

"in relation to one another, with the aim of learning how "best" to use

the tactical options of the patterr and organize the computations for

various classes of problems.

The relationships between ostensibly different patterns also war-

rant further study. We mentioned in Sec. 3.3 that Restriction (Relax-

ation) is essentially equivalent to Dualization followed by Relaxation

(Restriction), and other equivalences were briefly noted in Secs. 4.2

and 4.3. Many others exist; for example, it has often been observed

that Dantzig-Wolfe and Benders Decomposition are dual to one another

4 in an appropriate sense. The results of [Zoutendijk 60; Secs. 9.4,

10.3, 11.41 are in this spirit, even if they do not specifically

involve algorithms for large-scale programming. Knowledge of such

-I
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relations reduces the number of essentially different patterns to be

considered, and enables meaningful comparisons aiwng the remainder.

Investigations along these lines should help civilize the jungle

of extant algorithms and pave the way for truly significant computa-

tional studies.

V I

3.

C" 3

,s,,sI
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