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PREFACE AND SUMMARY

This report is a part of a continuing Rand research effort in the
general area of mathematical programming. Increasingly, the practical
problems that very large organizations confront are highly structured,
with many decision variables and constraints., In the Air Force, prob-
lems of long-term program planning and allocating scarce resources are
beconing more complex. The okvious importance of such problems, and
the intriguing mathematical possibilities for solviag them, have led
to a voluminous technicail literature. Unfertunateiy, little has been
done to distill and unify the essential concepts found in this litera-
ture, with the result that the technical development of the fieid and
its practical application have been retarded.

The aim of this study 18 to identify and develop the concepts
central to the optimization of large structural systems, and to attempt
an organization of the literature arcund these conceprs. 1t is hoped
that nonspecialists will find the study a coherent introduction to
large-scale optimization, and that the specialist will find it a source
of new insights and unifying concepts.

The author carried out this work as a consultant to The Rand Corp-
oration and alsoc under the auspices of a Ford Foundation Faculty Re-
search Fellowship and National Science Foundation Grant GP-8740.

An earli~r version of this study was published as Working Paper
144 by the Western Management Science Institute of the University of
California at Los Angeles and has been used there and at Stanford
University as a supplementary text, It {s heing published in this

form to make it readily availabie to the Air Force and other users.
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1, INTRODUCTION

It is widely held that the development of efficient optimizafion

techniques for large structured mathemgztical programs is of great im-

portance in economic planning, engineering, and management science. £

mere glance at the bibliography of this paper will reveal the encrmous
effort devoted to the sutject in recent years. The purpose of this
paper is tc suggest a unifying framework tc help both the specialist

and nonspecialist cope with this vast and rapidly growing body of

knowledge.

The framework is based on a relative handful of fundamental con-

cepts. They can be classified into two groups: problem manipulations

and solution strategies. Prcblem manipulations are devices for restating

a given problem in an alternative form that is apt to be more amenable
to solution. The rasult ir often what is referred to in the litera-
ture as a "master"” protlec. Duaiization of a linear progran is one
familiar example of such a device. Section 2 discusses three others:
Projection, Inner Linearization, and Outer Linearization. Solution
strategies, on the other hand, reduce an optimization problem to a
related sequence of simpler optimization problems. This often leads
to "subproblems" amenable to sulution by specialized methods. The
Feagible Directions strategy is s well-known example, and Sec. 3 dis-
cusses the Piecewise, Restriction, and Relaxation strategies. The
reader is probably already familiar with special cases of most of
these concepts, if not with the nsmes used for them here; the new

terminology is introduced to emphasize the generality of the ideas

{nvolved.
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By asdembling these and a few other problem manipulations and
soinzion strategies in various patterns, one can rederive the essential
aspects of woet known large-scale programming algorithms (and even
design new ones). Section &4 illustrates this for Benders Decompesition,
Dantzig-Wolfe Decomposition, Rosen's Primal Partition Programming meth-
od, Takahashi’s ''local' approach, and a procedure recently devised by
the suthor for nonlinear decomposition.

Although much of the pregentation 1is elememi ary, for full appre-
ciation the reader will find it necessary to have a working knowledge
of the theory and computational methods of linear and noulinesar pro-

gramming about at the level of a first graduate course in each subject.

1.1 TYPES OF LARGE-SCALE PROBLEMS

It is impo:rtant tc realize that size alone is not the distinguishing
attridute of the field of "large-scale programming,"” but rather size
in conjunction with structure. Large-scale programs almost always
have distinctive and pervasive structure beyond the usual convexity
or linearity properties. The principal focus of large-scale programming
is che explcitation of various special structures for theoretical and
computational purposes.

There are, of cuurse, many possible types of structure. Among

the comsonest and mest important general types are these: multidivi-

sional, combinatorial, dynamic, and stochastic. Multidivisional
probiems consist of a collection of interrelated "subsystems” to be

opcinixcd.f The subsystems can be, tor example, modules of

ama——————

rSce, e.§., Aoki 68, Bradley 67, Gould 59, Hass 68, Kornai and
Liptak S5, Lasdon and Schoeffler 66, Malinvaud 67, Manne and Markowitz
63, Parixh and Shephard 67, Rosen and Ornea 63, Trheng 66.
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an engineering system, reservoirs in a water resources system, depart-
ments or divisions of an organization, production units of an industry,

or sectors of an economy. Combinatorial problems typically have a

large number of variables because of the numerous possibiliiiss for
selecting routes, machine setups, schedules, etc.f Problems with
dynamic aspects are large because of the need to replicate constraints
and variables to account for several time petiods.H And problems

with stochastic or uncertainty aspects are often larger than they would
otherwise be in order to account for alternative possible realizatioms
of imperfectly known entities.ff* A method that successfully exploits
one specific structure can usually be adapted to exploit other specific
structures of the same general type. Perhaps needless to say,

problems are not infrequently encountered which fall simultaneously

into two or more of these general categories.

The presence of a large number of variables or constraints can
be due not only to the intrinsic nature of a problem as suggested

above, but also to the chosen representation of the problem. Some-

times a problem with a fow nonlinesrities, for example, is expressed
as a completely linear program by seans of piecewise-linear or tangen-

tial linear approximation to the nonlinear functions or sets (cf.

+See, e.g8., Dantzig €0, Dantzig, Blettner and Rao 67, Dantzig,
Fulkerson and Johnson 54, Dantzig snd Johnson 64, Ford and Fulkerson
58, Gilmore w«nd Gowory 61, 63, and 65, Classey 66, Midler and Wollmer
68, Rao and Zionts 68, Appelgren 69.

?fSee, e.g., Charnes and Cooper 55, Dantzig 555, 59, Dzielinski
and Gomory 65, Glassey 68, Rao 68, Robert 63, Rosen 67, Van Slyke and
Wets 66, Wagner 57, Wilson 66.

t++t

See, e.g., Dantzig and Madansky 61, El Agizy 67, Van Siyke and
Wets 66, Wolfe and Dantzig 62.
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Secs. 2.2, 2.3). Suzh approximations usually greatly enlarge the size

of the problem.+

1.2 SCOPE OF DISCUSSION AND THE LITERATURE

The literature on the computacicnal agpects of large-scale mathe-
matical programming can be roughly dichotomized as follows:
1. Work aimed at improving the computational
efficiency of a known solution technique
(typically the Simplex Method) for special
types of problems.

I1. Work aimed at developing fundamentally
new golution technigues.

The highly specialized nature of the category I literature and the
availability of several excellent surveys thereon leave little choice
but to focus this paper primarily on category II. Fortunately this
emphasis would be appropriate anyway, since category LI is far more

amorphous and in need of clarification.

Category 1

The predominant context for category I contributions is the
Simplex Method for linear programming. The objective is to find, for
various special classes of problems, ways of performing each Simplex
iteration in less time or using less primary storage. This work is
in the tradition of the early and successful specialization of the
Simplex Method for transportation problems and problems with upper-
bounded variables. The two main approaches may be called inverse

compactification and mechanized pricing.

—
See, e.g., Charnes and Lemke 54, Gomory and Hu 62, Kelley 60.
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Inverse compactification schemes involve maintaining the basis
inverse matrix or an operationally sufficient gubstitute in a more
advantagevus form than the explicit one. One of the earliest and most
significant examples is the "product form'" of the inverse [Pantzig and
Orchard-Hays 54), which takes advantage of the sparseness of most large
matrices arising in application. Other schemes involve triangular
factorization, partitioning, or ugse of a "working basis' that is more
tractable than the true one. See part A of Table 1. A survey of many
such contributions is found in Sec. II of [Dantzig 68]. The interested
reader should also consult [Willoughby 69] which, in the course of
collecting & number of recent advances in the methods of dealing with
sparse matrices, points out much pertinent work done in special appli-
cation areas such as engineering structures, electrical networks, and

electric power systems. Well over a hundred references are given.

Table 1

SOME UOR¥ AIMED AT IMPROVING THE EFFICIENCY OF THE
SIMPLEX METHOD FOR LARGE-SCALE PROBLEMS

A. Inverse Ccmpactification
Dantzig and Orchard-Hays 54; DJantzig 55a, 55b, €3t; Markowitz 57;
Dantzig, Harvey, and McKnight 64; Heesterman and Sandee 65; Kaul
65; Bakes 66; Bennett 66; Bennett and Green 66; Saigal 66; Dantzig
and Van Slyke 67; Sskarovitch and Saigal 67; Grigoriadis 69; Willoughby 69.

B. Mechanized Pricing® N
Ford and Fulkerson 58; Dantzig 60; Gilmore and Gomory 61, 63, 65;
Dantzig and Johnson 64; Bradley 65, Sec. 3; Glassey 66; Tomlin 66;
Dantzig, Blattner and Raoc 67; Flmaghraby 68; Lasdon and Mackey 68;

Rao 68, Sec. 1I; Rao and Zionts 68; Graves, Hatfield and Whinston 69;
Fox 69a.

8Most of the references in part C of Table 2 also use mechanized
pricing.

bDiscussed in Sec. 3.2.

SRR

.

A
)

. **W“‘”"“‘""""*"*WW;M

v



”W‘ vYre "
PR BY i LN A

MO

o SR~
e s

T
- H

Y

i

| poaappy

Rl S Rt SELLabah Sl S £ 2 S o

i e ——

.
)
i
H
i
¢
§
¥
i
i
3
i
B
H

P .
ERRILEH

Mechanized pricing, sometimes called coluom generation, involves
the use of a suhsidiary optimization algorithm instead of direct
enumeration to find the best norbasic variable to enter the bsasis
when there sre many \‘nnria;b].c’:s.'k The first contribution of this
sort was [Ford and Fulkerson 58], in which columns were generated by
a network flow algorithm. Subsequent authors have proposed generating
columns by other network algorithms, dynamic programming, integer pro-
grasming, and even by linear programming itaelf. See part B of Table
1. Excellent gurvevs of such contributions are [Balinski 64] and
[Gomory 63].

Category I contributions of comparabie sophistication are rels-
tively rare in the literature on nonlinear problems. It has long been
recognized that {t is essential to take advan:age of the recursive
nature of most of the computations; that is, one should obtain the data
required at sach iteration by ecoromically updating the data available
from the previous iteration, rather than by operating each time on the
original problem data. In Rosen's gradient projection algorithm, for
example, the required projection matrix is updated at each iteration
rather than computad ab iaitio. This is quite different, however, from
“cowpacting" the projection matrix for a particular problem structure,
or "mechanizing" the ssarch for the most nagative multiplier by means
of a gubsidiary optimization algorithm. Little has bear published

along these lines (see, however, p. 153 £f. and Sec. 8.3 of [Fiacco

*It is also postidle to mechanize the search for the exiting ba-
sic variable vhen there are meny constraints (e.g., Gomory and Hu 62,
Sec. &) or when what amounts to the Dual Method is used (e.g., Sec. 3
of Gomory and Hu 62, Abadie and Williams 63, Whinston 64, and part A
of Table 2).
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and McCormick 68]). Of course, many nonlinear algorithms involve a
sequence of derjved linear programs and therefore can benefit from the

techniques of large-scale linear programming.

Category 11

We turn now to work aimed at developing new solution techniques
for various problem structures-~the portion of the literature to which
our framework of fundamental concepts 1s primarily addressed.

As mentioned above, the fundamental concepts are of two kinds:
problem manipulations and solution strategies. The key problem manip-
ulations (Sec. 2) are Dualization, Projiection, Inner Linearization,
and Outer Linearization, while the key sclution strategies (Sec. 3)
are Feasible Directions, Piecewise, Restriction, and Relaxation. These
building block concepts can be used to reconstruct many of the existing
computaticnal proposals. Using Projection followed by Outer Lin-
earization and Relaxation, for example, we can obtain Benders' Parti-
tioning Procedure. Rosen's Primal Partition Programming algorithm can
be obtained by applying Projection and then the Piecewise strategy.
Dantzig-Wolfe Decomposition employs Inner Linearization and Restrictiom.
Similarly, =many other existing computational proposals for large-~
scale programming can be formulated as particular patterns of problem
manipulations and solution strategiea applied to a particular structure.

See Tabie 2 for a classification of much of the literature of
category LI in terms of such patterns. One key or representative
paper from each pattern is underlined to signify that it is discussed

in some detail in Sec. 4. Familiarity with one such paper from each
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pattern should enablz the reader to assimilate the other papers, given
an undersianding of the fundamental ccncepts at tue level of Secam. 2

and 3.

Table 2

CLASSIFICATION OF SOME REFERENCES BY PATTERN:
PROBLEM MANIPULATION(S)/SOLUTION STRATEGY

A. Projection, Outer Linearization/Relaxation

Benders 62Z; Balinski and Wolfe 63; Gomory and Hu 64,
pp. 351-354; Buzby, Stone and Taylor 65; Van Slyke and
Wets 66, Sec. 2; Weitzman 67; Geoffrion 68Lt, Sec. 3.

A

AR LAt
o - e 4

B. Projection/Piecewise

v '

Rosen 63, 64; Rosen and Ornea 63; Beale 63; Gass 66;
Varaiya 66; Chandy 68; Geoffrion 68b, Sec. 5;
Grigoriadis and Walker 68.

C. Inner Linearization/Restriction

-y oo

Dantzig and Wolfe 60; Dantzig and Madansky 61, p. 175;
Williams 62; Wolfe and Dantzfg 62; Dantzig 63a, Ch.
24; Baumol and Fabian 64; Bradley 65, S»c. 2;
Dzielinski and Gomory 65; Madge 65; Tcheng 66; Tomlin
66; Whinston 6¢; Malinvaud 67, Sec. V; Parikh and
Shephard 67; Elmaghraby 68; Hass 68; Rso 68, Sec.

7 111; Robers and Ben-Israel 68; Appelgren 69.

3 D. Proiection/Feasible Directions

Zschau 67; Abadie and Sakarovitch 67; Geoffrion 68b,
Sec. 4; Silverman 68; Grinold 69, Secs. Iv and V.

E. Dualization/Feasible Directions

Uzawa 58; Takahashi 64, "local" approach; Lasdon 64,

68; Falk 65, 67; Golshtein 66; Pearcon 66; Wilson 66;
Bradley 67 (Sec. 3.2), 68 (Sec. 4); Grinoid 69, Sec.

III.

Table 2 does not pretend to embrace the whole literature of cat-
egory II. There undoubtedly are other papers that can naturally be

vieved in terms of the five patterns of Table 2, and there certainly
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are papers employing other pattc:rm.Jr Sactiong I and 3 menticn other
papers that can be viewed naturally in terms of one of the problem
manipulations or solution strategies discussed there. Still other
contributions seem to employ manipulations or atrategies other than
(and sometimes along with) those fdentified here;*f regrettably, this
interesting work does not fall entirely within the scope of this effort.
Another group of papers not dealt with in the present study are
those dealing with an infinite number of variables or constraints,
although a number of contributions along these lines have been made,
particularly in the linear case--see, e.g., [Charnes, Cooper and
Kortanek 69], [Hopkins 69]). Nor do we consider the literature on
mathematical programs in continuous time (a receat contribution with
a good bibliography is {Grinold 68]), or literature on the interface
between mathematical programming and ootimal control theory (e.g.,

[Dantzig 66), [Rosen 67], [Van Slyke 68]).

1.3 NOTATION

Although the notstion empioyed is not at odds with customary
usage, the reader should keep a few conventions in mind.
Lowercase letters are used for scalars, scalar-valued functions,

and vectors of variables or constants. Except for gradients {e.g.,

1Pl-:.g.: Inner Linearization/Relaxation: Abadie and Williams 63,
Whinston 64.
Dusglization, Outer Linearization/Relaxation: Takahashi
64 (“'global" approach), Geoffrion 68b (Sec. 6), Fox 69b.
Inner Linearization, Projection, Outer Linearization/
Relaxation: Metz, Howard and Williamson 66.
Dualization/Relaxation: Webber and White 68.

E.g.: Balas 65 and 66, Bell 66, Charnes and Cooper 55, Gomory

and Hu 62 (Secs. 1 and 2), Kornai and Liptak 65, Kronsj 68, Orchard-
Hays 68 (Ch. 12), Rech 66, Ritter 67b.
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VE(x) = cﬂ%ﬁ!l’ cens 2-af-éﬁ-)), all vectors are column vectors unless
transposed. 1Capital letters are used for matrices (A, B, etc.), sets
(X, Y, etc.) and vector-valued furictions (e.g., G(x) = [gl(x), sens
gm(x)]t). The dimension of a matrix or vector-valued function is left
unspecified when it is immaterial to the discussion or cbvious from
context. The dimension of x, however, will always be n. The symbol
"S" 18 used for vector inequalities, and "S" for scalar inequalities.
"4" means "equal by definition to." The notation &.t., used in stating
s constrained optimization problem, means "subject to." Convex poly-
tope refers to the solution set of a finite system of linear equations

or inequations: it need not be a bounded get.
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2. PROBLEM MANIPULATIONS: SOURCE OF "MASTER' PROBLEMS

A problem manipulation is defined to be the restatement of a given
problem in an alternative form that is essentially equivalent but more
amenable to solution. WNearly all of the so-called master problems found
in the large-scale programming literature are obtained in this way.

A very simple example of a problem manipulation is the introduction
of slack variables in linear programming to convert linear inequality
constraints into linear equalities. Another is the restatement of a

totally separable problem like (here x, may be a vector)

k.
2> =
Minimize }E: fi(xi) S.t. Gi(xi) 2 0, i=1,...,k
xl,...'xk 181

as k independent problems, each of the form

imi 2
Minimize fi(xi) s.t. Gi(xi) 2 0.

X,
i

This manipulation crops up frequently in large-scale optiwization, and
will be called separation.

These examples, although mathematically trivial, do illustrate the
customary purpose of problem manipulation: to permit existing optimiza-
tion algorithms to be applied where they otherwise could not, or to take
advantage in some way of the special structure of a particular problem.
The first example permits the classical Simplex Method, which deals
directly only with equality constraints, to be applied to linear pro-
grams with inequality constraints. The second example enables solving

a totally separable probiem by the simultaneous 3olution of smaller
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problems. Even if the smaller problems are solved sequentially rather
than simultaneously, a net advantage is 3till probable since for most
solution methods the amount of work required increases much faster than
1linearly with problem size.

More specifically, the three main objectives of problem

manipulation in large-scale programming seem to be:

{(a) to isolate familiar special structures imbedded in a given
problem (so that known ef.icient algorithms appropriate to
these structures can be used);

(b) to induce linearity in a partly nonlinear problem via
judicious approximation (so that the powerful linear

programming algorithms can be used);

(c) to induce separation.

We shall discuss in detail three potent devices frequently used imn

pursuit of these objectives: Projection, Inner Linearization, and

Quter Linearizoation.

Projection (Sec. 2.1), sometimes known as "partitioning" or
“parameterization", is a device which takes advantage in certain prob-
lems of the relative simplicity resulting when certain variables are
samporarily fixed in value. In [Benders 62] it is used for objective

(a) above to isolate the linear part of a “semilinear” program (see Sec.

4.1), vhile in [Rosen 64] it is used to induce separation (see Sec. 4.2).

Inner Linearization (Sec. 2.2) and Outer Linearization (Sec. 2.3)
are devices for objective (b) long used in nonlinear programming.
Inner Linearization goes back at least :o [Charnes and Lemke 547,
in which a convex function of one variable is approximated by a piece-

wise-linear convex function. Outer Linearization involves tangential
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approximation to convex functions as in [Kelley 60] (see Sec. 3.3).
Both devices have important uses in large-scale programming. Inner
Linearization is the primary problem manipulation used in the famous
Dantzig-Wolfe Decomposition metnod of linear and nonlinear program-
ming (Sec, 4.3)., One important uge of Outer Linearization is as a
means of dealing with nonlinearities introduced by Projection

(Sec. 4.1).

Perhaps the most conspicuous problem menipulation not discussed
here is Dualization. Long familiar in the context of linear programs,
duaiization of noniinear programs* is especially valuabie in pursuit
of objectives {a) and (¢). This significant omission is made because
of space considerations, and also to keep the presentation as elemen-
tary as possible. One algorithm relying on nonlinear dualization is
mentioned in Sec. 4.5; see alsc part E of Tatle 2 and [Geoffrion 68b;
Sec. 6.1].

Other problem manipulations not discussed here, mostly quite spe-
cialized, can be found playing conspicuous roles in [Charnes and Cooper
55}, [El Agizy 67], [Gowory and Hu 62], [Weil and Kettler 68f.

We now proceed to discuss Projection and Inner and Outer Linesri-
zation. Section 3 will discuss the solution strategies that can be ap-
plied subsequent tc these and other problem manipulations. The distinc-
tion between problem manipulations and solution strategies is that the
former replaces an optimization problem by one that is essentially
equivalent to it, while the latter replaces a problem by a recursive

sequence of related but much simpler optimization problems.

*See, e.g., Rockafellar 68, Ceoffrion 69.

v

AT e A




VI AN (o bt S 3 s ey s e e

-

e

£

SR G, .
pars e ’
R ﬂéﬁi’u‘fﬁ% ST
Rl ?f{l““"a"%mﬂﬁihw:w-

e

bt
k0%

B2 v s b b s gl ey ——
o sttt on i A T

—~i4-
2.1 PROJECTION
The problem
(2.1) Maximize £(x,y) s.t. G{(x,¥) 20
xeX
ye¥

involves optimization over the joint space of the x and y variables.

We define its projection onto the space of the y variables alone as

f(x,y) s.t. G(x,y) 2 0] .

2.2) Maximize [Sup
zeX

yeY

The maximand of (2.2) is the entire bracketed quantity--call it v(y)--

which is evaluated, for fixed y, as the supremal value of an "inner"

maximization problem in the variables x. We define v(y) to be -» if

the inrer probler is infeasible. The only constraint on y in (2.2)

is that it must be in ¥, but obviously to be a candidate for the

optimal solution y must also be such that the inner problem is feasible,

i.e., ¥y must be in ithe set

(2.3) v? {y:v(y) > -»} = {y:6(x,y) 2 0 for some xeX}.

Thus we may rewrite (2.2) as

Maximize v(vy).
ysY¥(V

(2.4)

The set V can be thought of as the projection of the constraints

xeX and G(x,y) 2 0 onto the space of the y variebles aione. It is

depicted for a simple case in Fig. 1; X is an interval, the set




b RN

Fig. l1--Depiction of the set V

{(x,y):G(x,y) 2 0} is shaded, and the resulting V is an interval.

It is often possible to obtain a more conventional and tractabie
representation o than the definitional one. See, for example,
the inequalities («.5) of Sec. 4.1 (cf. [Kohler 67]).

The relationship between the original problem (2.1) and its

projection (2.4) is as follovs.* The proof is elementary.

Theorem 1. Problem (2.1) is infeasible or has unbounded
velue 1if and only if the same is true of (2.4), If (xo, yo)
is optimal in (2.1), then y° must be optimal in (2.4). If
y° is optimal in (2.4) and x© achieves the supremum of

f(x, y°) subject to xeX and G(x, v®) 2 0, then x° together

with yo is optimal in (2.1),

T0nc may read (2.2) for (2.4) in Theorem 1, except that (2.2) can
be feasibie with value -« wvhen (2.1) is infeasible.
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1t should be emphasized that Projection is a very general
{ manipulation--no special assumptions on X, Y, £, or G are required
for Th. 1 to hold, and any subset of variables whatsoever can be

designated to play the role of y. When convexity assumptions do hold,

WO

however, the following theorem shows that (2.2) is a concave program.

Theorem 2, Assume that X and Y a2re convex sets, and that f and

each component of G are concave on X x Y. Then v is concave

. on Y.
A Proof. Fix yo, y'cY and 0 < 6 < 1 arbitrarily. Let 6 = 1 -~ 6. Then

v(eyo + 0y') =

E : Sup £(8x° + Bx',0y° + 8y')
f i 0o 4
. : x ,x eX
P : - -
- s.t.  G(ox° + Bx', 8y° + 8y') = 0
; > Sup £(0x° + Bx', 0y° + 8y')  s.t.  c(x°,y°) = 0,6(x’,y") = 0
i - [+ T
i x ,x'eX
’ > Swp Bf(xo,yo) + 0f(x',y") s.t. G(x°,y°) - 0,6(x',y") =0
x ,x'eX

= ov(y®) + 6v(y"),

where the equality or inequality relations follow, respectively, from

K

the convexity of X, the concavity of G, the concavity of £, and

separability in x° and x'. ||
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Since V is easily shown to be a convex set when v is concave,
it follows under the hypotheses of Theorem 2 that (2.4) is also a
concave program.

Projection is likely to be a useful manipulation when a problem
is significantly simplified by temporarily fixing the values of certain
variables. In [Benders 62], (2.1) is a linear program for fixed y
(see Sec. 4.1). 1In [Rower 64), (2.1) is a separable linear
program for fixed y (sec Sec. 4.2). See Table 2 for numerous other
instances in which Prcjection plays an important role.

It is interesting to note that Projection can be applied sequentially
by first projecting onto a subset of the variables, then ontc a subset
of these, and so on. The result is a dynamic-programming-like reformula-
tion [Bellman 57], [Dantzig 59, p. 61 ff.], [Nemhauser 64]. Many dynamic
prograsming problems can fruitfully be viewed in terms of sequential
projection, and conversely, but we shall not pursue this matter
here.

It may szem that the maximand of the projected problem (2.2) is
excessively burdensome to deal with. And indeed it may be, but the
solution strategies of Sec., 3 enable many applications of Projection
to be accomplished successfully. Tie key strategies seem to be
Relaxation preceded by Outer Linearization {(cf. Sec. 4.1), the Piece-
wise strategy {(cf. Sec. 4.2), and Feasible Dire-tions (cf. Sec. %.4).

Of ccurse if y is oaly one-dimensional, (2.2) can be solved in a

parametric fashion [Joksch 64], [Ritter 67a].
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2.2 INNER LINEARIZATION
& Inner Lineariaation is an approximation applying both to convex

or concave functions and to convex sets. It is conservative in that

kz it does not underestimate (overestimate) the value of a convex {concave)

3 function, or include any points outside of an approximated convex set.

An example of Inner Linearization applied to a convex set X

f in two dimensions is given in Fig. 2, where X has been approximated
by the cenvex huli of the points xl,...,xs lying within {t. X has

been linearized in the sense that the approximating set is a convex
polytope (which, of course, can be specified by a finite number of

linear inequalities). The points xl,...,x5 are called the base.

The accuracy of the approximation can be wade as great as desired by

making the density of the base sufficiently high.
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Fig. 2--Inner Linearirstion of a convex set
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An exanple of Inner Linearization applied to a function of one
variable is given in Fig. 3, where the function f has been approximated
on the interval [xl,xS] by a piecewise-linear function (represented
by the dotted line) that accomplishes 1linear interpoiation between
the values of f at the base points xl,...,xs. The approximation
is "inner" in the sense that the epigraph of the approximating function
lies entirely within the epigraph of the approximated function. (The
epigraph of a convex (concave) function is the set of all points lying

on or above (below) the graph nf the function.)

! x? x3 x! x5

Fig. 3--Inner Linearization of a convex function

iet us further examine these two graphical examples of Inner

Linearization in the contex* of the special problem

(2.5) Minimize f(x) =s.t. G(x) £ 0,
xeX
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where n=2, X is a convex set, and all functions are convex. Inner-

linearizing X as in Fig. 2 yields the approximation

5
Minimize f(z: a”xj) s.t, G(E ojx") 0, 2 ¢
=1

(2.6)
az 0 i=t

Note that the x variables are replaced by the "weighting' variables

dj one for each chosen base point in X. Inner-linearizing f now as

in the two-dimensional analog of Fig. 3 yields

¥ o tad) st c(z Jxdy o, E J =

(2.7) Minimize
j=1

aZ 0 i=1

We have taken the tases for the approximations to X and f to coincide,

since normally only one base is introduced for a given problem. An

exception to this general rule may occur, however, when some of the

functions are separable, for then it may be desirable to introduce

different bases for different subsets of variables. Suppose, for
example, that f(x) = fl(xl) + f2(x2), X = R7, and that we wish to
1 6

"2

use < xi,...,xi > as a base for inner-linearizing fl and < x2,...,x >

as a base for fz. Then the corresponding approximation to (2.5) would

be

6
%fx("{) + j*z:l Oéfz(":jz)

4
(2.8) Minimize 2:

j=1
9 e
20
2
; 6 4
: s.t. G(Z{j.zq%xg)ﬁ')»}:% 1@*‘2‘%’1
j=1 j=1 3=1 i=1

Problems {2.6), (2.7) and (2.8) are all convex prograus,
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The general nature of Inner Linearization should be clear from

these examples. It is important to appreciate that there is a great

deal »f flexibility in applying Inner Linearization--both as to

which sets and functions are inner-linearized, and as to which base

is used. Inner-linearizing everything results, of course, in a linear

program, although it is by no means necessary to inner-linearize every-

thing (see Sec. 4.3). The base can be chosen to approximate the set

of points satisfying any subset whatever of the given constraints; the
constraints in the selected subset are replaced by the simple nen-
negativity conditions on the weighting variables plus the normalization

constraint, while the remaining conscraints are candidates for functional

Ipner Linearization with respect to the chosen base. Or, if desired, the

hase can be chosen freely from the whole spacz of the decision variables

(this can be thought of as corresponding to the selection of an empty

set of constraints). Each of the given constraints, then, is placed

into one of three categories, any of which may be empty: the constraints

defining the convex set approximated by the chosen base, those that

aze inner-linearized over the base, and all others.

Inner Linearization has long been used for convex (or concave)

functions of a single varjable [Charnes and Lemke 543, It has also

been used for non-convex functions of a single variable [Miller 63].
Techuiques based on this manipulation are sometimes called "separable

programming’” methods because they deal with functions that are 1linearly

n
separable into functions of one variable (e.g., f(x) & & fi(xi))'

i=]
It is easy to determine--perhaps graphically--an explicit base

yielding as accurate an inner-linearizaticn as desired for a given

fuaction of one variable. ¥c¢ is much more difficult, however, to do
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this for functions of many variables. Even if a satisfactory base
could be datermined, it wuuld almost certainly contain a large number
of points. This suggests the desirability of having a way to generate
base points as actually needed in the course of computationally solving
the inner-linearized problem. Hopefully it should be necessary to
generate only a small portion of the entire base, with many of the
generated points tending to cluster about the true optimal solution.
Indeed there is a way to do this based on the solution strategy we call
Restriction (Sec. 3.2). The net effect is that the Inner Linearization
manipulation need only be done implicitly! Dantzig and Wolfe were the
originators of this exceedingly clever approach to nonlinear programming
{Dantzig 63a, Ch. 24]; we shall review this development in Sec. 4.3.

An important special case in which Inner Linearization can be us2d
very elegantly concerns convex polytopes (the polytope could be the
epigraph of a plecewise-linear convex function). Inner Linearization
introduces no error at all in this case if the base is taken to coin-
cide with the extreme pomt:s..r As above, the extreme points can be
generated as needed if tne ipplicitly inner-linearized problem is
solved by Restriction. This is the icea Lehind the famous Decomposition
Principle for linear programming [Dantzig and Wolfe 607, wkich is
revieved in Sec. 4.3.

For ease of referance in the sequel, the well-known theorem

asserting the exactness of Inner Linearization for comvex polytopes

[{Goldman 56} is recorded.

1.]'..’. is also necessgary, of course, to introduce the extzeme rays
if the polytope is unbounded.
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Theorem 3. Any nonempty convex polytope X 8 {x : Ax b} can be
expressed as the vector sum # + C of a bounded convex polyhedron
+# and a cone C & {x: Ax s 0}, _A in turn can be expressed as
the convex hull of its extreme vectors < yl,...,yp >, and C can
be expressed as the nonnegative linear combinations of a !inite
set of spanning vectors < zl,...,zq>. (If,/g(respectively C)

consists of only the O-vector, take p (respectively q) equal to 0.)

Thus there exist vectors Ygs cecs Vo3 Zge cees zq> such that xeX if

P
and only if
P q
x= Xy, *25 By
i=1 i=1
f;r some noanegative scalars Oi,...,ob, Bl,...,Bq such that
T o = 1. Moreover, if the rank of A equals n (the number
i=1

of its columns), then a representation with a minimal number of

vectors is obtained by letting the yi's be the extreme vectors

of X and by letting the zi's be distinct nonzero vectors in each

of the extreme rays of C; this winimal representation is unique

up to positive multiples of the zi's.

It shoull be noted that in mathems&tical programming the rank of

A usually equals n, since nonnegativity constraints on tke variables

are usually aicluded in X. If this is not the case, then X can

alwaye be imb:dded in the nonnegative orthant of Rﬁ+1 by a simple

linear transformation (viz., put x1 = yi - yo, vhere y1 20, 1i=0,
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There are also results having to do with economical inner lineari-

zations of nonpulyhedral sets. For example, there iz the Theorem of

Krein and Milman [Berge 53, p. 167] that every closed, bounded, non-
empty convex set is the -onvex hull of its extreme pcints, Usually,
however, it suffices to know that a convex set or function can be

represented as accurately as desired by Inner Linearization {f a suf-~

ficiently dense base is chosen.

2.3 OUTER LINEARIZATION

Cuter Linearization is complementary in nature to Inner Lineariza-

tion, and also applies both to convex (or concave) functions and to

convex sets.

An example as applied to a convex set in two dimensions is given
by Fig. %, where X has been approximated by a containing convex poly-
tope that is the intersection of the containing half-spaces Hl”"’HA'
The first three are actually supporting half-spaces that pass, respec-

tively, through the points xl, xz, and 13 on the boundary of X.

iy L

Fig. 4--0Outer Linearization of a convex set
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An example as app'ied to 2 function of one varisble is given in
Fig. 5, where the function f has been approximated by the piecewise-
linear function that is the upper envelope, or pointwise maximum, of
the linear supporting functions sl(x), N ss(x) associated with the
points xl, cess xs. A linear support for a convex function f at the
point x is defined as a linear function with the property that it
nowhere exceeds f in value, and equals t in value at ;.f The epigrapn
of the approximating function contains the epigraph of the approxinated

function when Outer Linearization is used,
/35(37)

flz)

x

s,(z) 8,(z}

Fig. 5-~0uter Linearization of a convex function

Obviously Outer Linearization is opposite to Inner Linearization

in that it generally underestimates (overestimates) the value of a

1- ~ — — —
If £ is differentiable at x, then f(x) + Uf(x)(x - x) is a
lirear support at X.
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convex (concave) function, and includes nct only the given convex set

but points outside as well. The notion of conjugacy (see, e.g.,

{Rorkafellar 68]) is a logical extension, but need not be pursued here.
That Outer Linearization truly linearirz:s a coavex program like

(2.9) Minimize £(x) s.t. G(x) 20
x€X

should be clear. The approximation of X by a containing convex poiy-
tope can only introduce linear constraints; the approximation cf 8y

by the pointwise maximum of a collection of Py linear supports, say,
obviously leads to Py linear inequalities; and the approximation of I
by the pointwise maximum of p linear support: leads to p additional
linear inequalities after one invokes the elementary manipulation of
minimizing an upper bound on £ in place of £ itself.* 1f all aonlinear
functions are dealt with in this fashioa, the approximation to (2.9)

is a linear program,

As with Inner Linearization, there is great latitude concerning which
sets and functions are to be outer-linearized, and which zwproximants"r
are to be used. In general, the objective function may or may not be
outer-linearized, and each constraint is placed into one of three
categories: the ones that together define a convex set to be outer-

linearized, the caes that are outer~linearized individually, and the

ones that are not outer-linearized at all,

+E.g., Min Maxi(a,(x)} = Mnr o s.t. o2 si(x}, all i .
xeX * xeX
o

HPot the sake of unified terminology, we use the term a%prozimant
for a containing or supporting half-space of a convex set, and also for
a linear bounding function or linear support of a convex function.
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The main obstacle faced with Outer Linearization is that an
excessive number of approximants may be required fer an adequate approxi-~
mation, especially for sets in more than two dimensions and functioas
of more than one variable. Fortunately, it turns out that it is usually
possible to circumvent this difficulty, for there is a solution strategy
applicable to the outer-linearized problem that enables appruximants to
be generated aconomically as needed without having to specify them in
advance. We call this strategy Relaxatioa. The net effect is that the
Outer Linearization manipulation need only be done implicitly. Two pio-
neering papers on this approach to nonlinear programming are [Kelley 603
and [Dantzig and Madansky 61]. Relaxaticn and the first of these papers

are discussed in Sec. 3.3.
In large-scale r-ogramming, Quter Linearization is especially impor-

tant in conjunction with Projection and Dualization. See, for example,

the discugsion of [Benders 62] in Sec. 4.1.
Approximation by Quter Linearization naturally raises the question

of the existence of a supporting approximant at a given point. The

main known result along these lines is that every boundary point of a

n
convex get in R must have at least one supporting half-space passing

through ft. It follows thst every closed convex set can be represented

ag the intersection of its supporting half-spaces [Berge 63, p. 166].+

It also follows that every convex (or concave) function with a closed

epigraph has a supporting haif-space to 1its epigraph at every point where

the function is finite. Unfortunately, this is not quite the same as the

existence of a linear support at every such point, since the supporting

f0{ course, a cou.

vex polytope by definiti d -
linearization uaing on ytope by ition admits an exact outer

ly a finite number of anproximants.
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half-space may be "vertical" when viewed as in Fig. 5. Various mild

conditions could be imposed to preclude this kind of exceptional
behavior, but for most purposes one may avoid the difficulty by

simply working directly with the epigraph of a convex function.
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3. SOLUTION STRATEGIES: SOURCE OF "SUBPROBLEMS"

The previous sectjion described several prominent problem mauipu-
lations for restating a given problem in a more or less equivalent form.
The result is often referred to in specific applicaticns as a "master”
problem. Typically one then applies a solution strategy designed
to facilitate optimfzation by reduction to a sequence of simpler op-
timization problems. Quite often this leads to subprobleme amenable
to solution by specialized aligorithms. There are perhaps a half
dozen principal solution strategies, each applicable to a variety
of problems and implementable in a variety of ways. This section pre-
sents three such strategies that seem to be especially useful for large-

scale pi~blems: the so-called Piecewise, Restriction and Relaxation

strategles:. See Table 2 for a classification of many known algoarithams
in terms ol *the soiuiion strategy they can be viewed ag using.

The Piecewise strategy is appropriate for problems that are
significautly simpler if their variables are temporarily restricted to
certain regions of their domain. The domain i3 (implicitly) subdivided
into such regions, and the problem is solved by considering the regions
one at a time. Usually it is necessary to consider only a small frac-
tion of all possible regions explicitly. The development of the Plece-
wise strategy for large-scale programming is largely due to J. B. Rosen,
whose various Partition Programming algorithms invoke it subsequent

to the Projection manipulation.

Restriction is often appropriate for problems with a large number

of nonnegaicive variables. It enables reduction to a recursive sequence

of problems in which most of the variables are fixed at zero. The
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Simplex Method itself turns out to be a special form of Restriction
for linear programming, although the strategy also applies to nonlinear

problems. Restriction is almost always used if Inner Linearization has
been applied.

Relaxation is useful for problems with many inequality comnstraints.
It reduces such a problem to a recursive sequence of problems in which
many of these constraiats are ignored. The Dual Method of linear pro-
gramzing 18 a special form of Relaxation, although the strategy applics
equally well to nonlinear problems. Outer Linearization is almost

always followed by Relaxation,
Perhaps the most important solution strategy not discussed here

{8 the well-known Feagible Direction strategy [Zcoutendijk 60}, which
reduces a problem with differentiable functions to a sequence of one-
dimensional optimizarion problems along carefully chosen directions.
Most of the more powerful primal nonlinear programming algorithms
utilize this strategy, but their application to large-scale problems
is frequently hampered by non-differentiability (i1{ Dualization or

Projection i3 used) if not by sheer size (especially if Inner or Outer
Linearization is used). See Sec. 4.4 for an instance in which the

first obstacle can be surmounted.
We have also omitted discussion of the Penalty strategy (e.g.,

[Flacco and McCormick 68]), which reduces a constrained problem to a
sequence of essentially unconstrained problers via penalty functions.
The relevance of this strategy to large-scale programming is hampered

by the fact that penalty functions tend to destroy linearity and linear

separability.
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3.1 PIECEWISE STRATEGY
Suppose that oue must solve
(3.1) Maximize v{y), i
yeY

where v is a '"piecewise-simple™ function {e.g., piecewise-linear or
piecewise-quadratic) in the sense that there are regions (pieces)
| S . ) ;
P, P, ... of its domain such that v coincides with a relatively
. k k . . ] ]
tractable function v on P°. The situation can be depicted as in

Fig. 6, in which Y is a disk partitioned into four regions. Let

us further suppose that v is concave on the convex set Y and that,

Y,

Y

Fig. 6

given any particular point in Y, we can explicitly characterize the
particular piece to which that point belongs, as well as v on that piece.
Then it is natural to consider solving (3.1) in the following piecemeal
fashion that takes advantage of the viecewise-simplicity of v. Note that

it is unnecessary to explicitiy characterize all of the pieces in advance.
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The Piecewise Strategy

P

Step 1 Let a point yo feasible in (3.1) be given.
Determine the corresponding piece ?° con-
taining y and the corresponding function
ve,

Step 2 Maximize vo(y) subject to yeY N ?°. Let
y' be an optimal solution (an infinite
optimal value implies termination).

Step 3 Determine a piece P' adjacent to P°® at y
such that v(y) > v{y*) for some yeY N P'
{1f none exists, y°® is optimal in (3.1)].
Determine :the corresponding function v'
and return to Step 2 with P',v', and y'
in place of P*, v°, and y°.

A hypothetical trajectory for y is traced in Fig. 6 as a dotted
line. Optimizations (Step 2) were performed in three regions before
the optimal sclution of (3.1) was found.

The problem at Step 2 has a simpler criterion functior than (3.1)
itself, although it has more constraints (yePo). 1f it 1s sufficiently
simple by comparison with (3.1), then the Piecewise strategy is
likely to be advantageous provided Steps 1 and 3 are not too difficult.
Both Steps 2 and 3 can give rise to 'subproblems' when this strategy
is used for large-scale programming.

The principal use of the Piecewise strategy in large-scale pro-
gramming is for problems resulting from Projection and Dualization.

In both cases [cf. (2.2)], v involves the optimal value of an associated
"inner'" optimization problem parameterized by y. Evaluating v requires
solving the inner problem, and so v is not explicitly available in

closed form, Fortunately, it usually happens that evaluating v(yo)

yields as a by-product a characterization of the plece P° containing
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yo on which v has relatively simple form. We shall illustrate this

with a simple example. See also Sec. 4.2 and [Geoffrion 68b; Sec. 5].
The Piecewise strategy can also be used to motivate a generaliza-

tion of the Simplex Method that allows the minimand to be a sum of

plecewise-linear univariate convex functions [Orden and Nalbandian 68].

Example

Constrained games and similar applications can lead to problems

of the form

(3.2) Maximize { Hinémum {.Ht(y)x s.t. Ax = b}] .
yeY x=0
where H(*) is a concave vector-valued function on the convex set Y.
The maximand of (3.2), v, is concave because it is the pointwise minimum
vf a collection of concave functions of y. Suppose that we evaluate
v at yoeY, with the corresponding optimal solution of the inner
problem being x°. The value is Ht(yo)xo. We know from the elementary
theory of linear programming that, since changes in y cannot affect
the fessibility of x°, x° remains an optimal solution of the inner

problem as y varies so long as the "reduced costs' remain of the right

sign. Hence the value of v(y) is Ht(y)xD for all y such that

(3.3) @y A - b, (y) S0, all nonbasic j ,
% T

where A 3 is the jth column of A, and the component fuactions of HB

correspond to the variables xy in the optimal basis matrix B at y°.

Thus we see how to accomplish Step 1, and the problem to be solved at

Step 2 1is

g




(3.4) Maximize H (y)x° s.t. (3.3) .

ye¥
Note that (3.4) has the advantage over (3.2) of an explicit criteriun
function. Since x° 20, Bt(')x0 is concave on Y,

Suppose that y' 18 an optimal solution of (3.4).1L If y' is no:
optimal in (3.2), then there must be an alternate optimal basis 3' at
y' such that the corresponding problem (3.4) admits an improved solutiorn.
At worst, such an "improving" basis could be found by enumerating
the alternative optimal bases at y'. At best, an improving basis
would be revealed by a single active constraint among those of (3.3)
at y'. One could also compute an improving feasible direction z' for
(3.2) at y' (cf. Sec. 4,4); the appropriate improving basis would “hen

be revealed by a parametric linear programming analysis of the inner

problem.

3.2 RESTRICTION

Restriction is a solution strategy principally useful fcr prcblems
with many nornegative variables, the data associated with some of which
perhaps being only implicitly available. Combinatorial models and Inner
Linearization are two fertile sources of such problems.

The basic idea is as follows: sgolve the given problem subject to
the additional restriction that a certain subset of the variables must

have value 0; 1if the resulting solution does nct satisfy the optimality

~?It mey be difficult to find & global optimum of (3.4) 1if H is
ncet linear, for then (3.3) need not define a convex feasible region
(unlees B“IA‘ S 0 for all nonbasic j). Fortunately, howaver, it can

be seen from the concavity of v that a local optimum will generally
suffice, although finite termination may now be in jeopardy.

T e i
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conditions of the given problem, then 'release" one or more restricted
variables (allow them to be nonnegative) and so’ve this less-restricted
problem; continue in this fashicn until the optimality conditions of

the given problem are satisfied, at which point the procedure terminates.
An important refinement forming an integral part of the strategy involves
adding variable; to, as well as releasing them from, the restricted set.
Note that the variables restricted to O essentially drop out of the
problem, thereby reducing its size and avoiding the need for knowing

the associated data explicitly. If (as is usually the case) only a
fairly small proportion of all variables actually are active (positive)
at an optimal so>lution, then this strategy becomes quite attractive.

The earliest and most significant embodiment of the Restriction
strategy turns >ut to be the Simplex Method for linear programming
itself. It can be shown, as we shall indicate, that a natural speciali-
zation of Restriction to the completely linear case yields the very
same sequence of trial solutions as does the ordinary Simplex Method.
All of the column-generation schemes for implementing the Simplex
Method for linear programs with a vast numter of variables can therefore
be viewed in terns of Restriction. We shall review one of these schemes
[Gilmore and Gomory 61] at the end of this section.f The usefulness of
Restriction is not, however, limited to the domain of linear programming.
It will be shown in Sec. 4.3 how this strategy can yield, in a nonlinear

case, variations of the Dantzig-Wolfe method for convex programming.

fAnother column-generating scheme is explained in Sec. 4.3. See
also part B of Table 1.
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Formal Statement

e T

Consider the problem

(3.5) Maximize f(x) s.t. gi(x) 20, i=1, ..., m,
xeX

where f is a concave function on the nonempty convex set X C R" and

+» 8 are all linear. All nonlinear constraints,

the functions gl,
as well as any linear constraints that are not to be restricted, are

presumed to be incorporated in X. The typical restricted version of

{(3.5) is the (still concave) problem

] (3.6) Maximize £(x) s.t. g (x) =0, ieS
x eX
g, (x) = 0, ifs,

3
where S is a subset of the m constraint indices. [Note that we are

presenting Restriction in a seemingly more general setting than the
motivational one above in that general linear iuequality constraints,

48 well as aimple variaole nonnegativities, are aliowed to be restricted

Actually, the present setting is ro more general since

to equality,
slack variables could be introduced to accommodate the restriction of
!} Some, wone, or all of the xj 2 0 type

+

general linear inequalities.
constraints (if any) may be included among Bys soes B The analyst

is free to choose the linear inequality constraints to associate with

3

ti
!
g X; the rest are candidates for restriction,
E é% An optimal solution of the restricted problem (3.6) will be denoted
E ég by x , and a corresponding optimal multiplier vector (which, under
k gé mild assumptions, must exist) is denoted by y® - (ui, ceens u:).
§§i The pair (xs, u®) satisfies the Kuhn-Tucker optimality conditions for
§§§ (3.6), namely

R N A
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m
(i) x° maximizes f(x) + & uig (x) over X

11
(ii) x° is feasible in (3.4)
(iii) uj > 0, ifS
. S
(iv) 1gl\x ®y = 0, ifs.

We are now ready to give a formal statement of Restriction

applied to (3.5). Notice that not only are constraints released from

the current restricted set S at each iteration, but additions are

also made whenever gi(xs) = 0 for some ifS, provided that f(xs) has

just increased.

Step 1

Step 2

Step 3

We assume that the given problem (3.5) admits a feasible solution,

so that Step 1 is possible.

The Restriction Strategy

Put f = -= and § equal to any subset of indices
such that the corresponding restricted problem
(3.6) is feasible.

Solve (3.6€) for an optimal solution xs and as-
sociated optimal multipliers us (if it has un-
bounded optimal value, the same must bc (rue
of the given problem (3.5) #nd we terminate).
1f u? 2 0 for all ieS, then cerminate (xS is
opti%al in (3.5)); otherwise, go on to Step 3.

Put V equal to any subset cof 5 tha*sincludes

at least_cne counstraint for which Uy < 0. If
£(x5) > f replare f bv f(x ) and S by E-V,
where E 8 {1 < { < g, (x5) = 0}; otherwise,
(1.e., if f(xs) f), replace $ by S-V. Return
to Step 2

we also assume that the restricted protlem {3.0) admits an optimal

solution and multiplier vector whenever it is feasible and has finite

supremal value. It is a straightforward matter to show that the

terminat ion conditions of Step 2 are valid, and Step 3 is obviously

To ensure that Step 2 is always possible,

S
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always possible. Thus the strategy is well defined, although we have

F deliberately not specified how to carry out each step.

An important property is that the scquence <£(xs)> is non-

decreasing. Thus the strategy yields an improving sequence of feasible

T ST

. s

solutions to (3.5). Moreover, <f(x )> can be stationary in value at

most a finite number of consecutive times, since the role of T at

Step 3 is to insure that S is augmented (before deletion by V) only
S . . .

when f£(x ) has just increased. Hence termination must occur in a

finite number of steps, for there is only a finite number of possi-

bilities for S and each increase in f(xs) precludes repetition of any

previous §.

Options and Relation to the Simplex Method

Let us now ccnsidey the main options of Restriction beyond the

decision as to which of tre linear inequality constraints will

comprise gl, ceen B

g (i) How to select the initial S at Step 1?
(ii) How te solve (3.6) for (xs, us) at Step 2?

(iii) What criterion to use «n selecting V at Step 37

How these options are exercised exerts a great influence upon the
# efficiency.
® - As stated above, there is an intimate relationship between

Restriction and the Simplex Method in the completely linear case.

Given the linear program
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.. t >
Maximize ¢ x s.t. Ax = b, x u 0,
X

define (3.5) according to the identifications

f(x) = ccx
gi(x) =X, all 1

X = {x : Ax = b}

and specialize Rastriction as follows: let the initial § be chosen

<0 co.ncide with the nonbasic variables in an initial basic feasible

s0.uticn, and select V at Step 3 to be the index of the most negative

J?- It can then be shown, under the assumption of nondegeneracy,
i

ttat Restriction is equivalent to the usual Simplex Method in that

the set of uonbasic variables at the vth iteration of the Simplex

. s . . - th | . .
Method necessarily coiacides with £ at the v iteration of Restriction,

th . 3 4 s . . th .
and the v bas.. feasible solution coincides with the v~ optimal

solution x> of (3.6). Thus Restriction can be viewed as one possible

strategic generalization of the Simplex Methcd. No: only is this an

interesting fact in its own right, but it alsc permits us co draw some
inferences--as we shall see in the discussion beiow--concerning how

best to exercise the options of Restriction.

Step 1

The selectioa of the initial S should b2 guided by two objectives:

to make the corresponding restricted problem casy to solve by comparison

with the given problem, and tc utilize any prior knowledge that may

be available concerning which of the g5 ceastraints are likely to hold
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with equality at an optimal solutien. In the Simplex Method, for
example, the initial choice of S implies that the vestricted problem is
trivial since it has a unique feasible solution; at every subsequent
execution of Step 2, the restricted problem remains nearly trivial with
essentially ouly one free variable (the entering basic variable). Use-
ful prior knowledge is often available if the given problem is amenable
to physical or mathematical insight or if a variant has been solved

previously.

Step 2

How to solve the restricted problem for (xs, us) at Step 2 depends,
of course, on its structure. Hopefully, enough constraints will be
restricted to equality to make it vastly simpler than the original
problem. In any event, it is advisable to take advantage of the fact
that a sequence of restricted problems must be solved ae the Restric-
tion strategy is carri~1 out, Except for the first execution of
Step 2, then, what is required is a solution recovery technique that
effectively utilizes the previous solution. The pivot operation per-
forms precisely tb{g function in the Simplex Method, and serves as an
ideai to be approached in nonlinear applications of Restrilction.

It is worth mentioning thai many solution {(or solutior recovery)
techniques that could be used for the restricted problem automatically
yield us as well as x°. When this i< not the case, one me fin’ p®
once x° s known by solving a linear problem if £ and the constraint
functions defining X are differentisble, since under these conditions

the Kuhn-Tucker optimality conditions for (3.6) in differential form

become linear in .




-yeT

IR

o g e T T ~ v

Step 3

Perhaps the most conspicuous criterion for choosing V at Step 3
is to let it be the index of the constraint corresponding to the most
negative ui. Une rationale for this criterion is as follows. Suppose
that us is unique. It can then be shcwn (see [Geoffrion 69} or [Rocka-
fellar 68]) that the optimal value of the restricted problem is differ-
entiable as a function of perturbations about 0 of the right-hand g£idz
of the 81 constraints, and that -ui ic the partial derivative of the
optimal value with respesct to such perturbations of the ith constraint.

i identifies the constraint in § whose release

Thus the most negative u
will lead to the greatest ianitial rate of improvement in the value of
f as this constraint is permitted to deviate positively from strict
egquality. It can be argued that us is likely to be unique, but 1f we
drop this supposition then -ui still provides an upper bound on the

initf{al rate of ifmprovement even though differentiability no longer

holds.

This most-negativemultiplier critericn is precisely the usual
criterion used by the Simplex Method in its version of Step 3 to
select the entering basic variable, but it i3 hy no means the only
criterion used. The extensive computational e:.perience presently
available with different criteria used in the Simplex Method may
permit some inferences to be drawn concerning the use of amalogous
criteria in the nonlinear case. It has been observed {Wolfe and
Cutler 63}, for example, that the most-negative-multiplier criterion
typically leads to a rumber of iterations equal to about tvice the

number of coastraints, and that other plausibie criteria can be

T A < g
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expected to be consistently better by no more than a factor of two or
so.)r Lest it be thought that V must necessarily be a singleton, we
note that we may interpret Wolfe and Cutler to have also observed
[ibid., p. 190]) that choosing V to consist of the five most negative
multipliers reduced the number of iterations by a factor of two as
compared with the single-most-negative-multiplier choice.H 0f course,
this increases the time required to solve each restricted problem.
Experience such as this should at least be a source of hypothesas to

be examined in nonlinear applications of Restrictiem.

Mechanizing the “Pricing” Operation

Each iteration of Restriction requires determining whether
there eaigts a negative multiplier and, if so, ac least one must be
found. In the ordinary Simplex Method, which as has heen indicated
can be viewed as a particular instance of Restriction, this was
originally done enumeratively by scanning the row of reduced ccsts
for an entry of the "wrong" sign. To deal with large numbers of
variables, however, it is desirable whenever possible to replace
this enumeration by an algorithm that exploits the structure of the

problem. This is referred to as mechanized pricing.

fAn example of another plausible criterion is this: select V to
be the index of the constraint which, when deleted from S, will result
in the greatest possible improvement in the optimal value cf the re~
stricted problem. Of course, this criterion is likely to be prohibitively
expensive computationally in the nonlinear case.

*fThis is known as muitiple pricing, a feature used in mcst
production linear programming systems designed for large-scale problems.
See, for example, [Orchard-Hays 68, Sec 6.1].
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Mechanized pricing is widely practiced in the context of linear

programming, where it is often referred to as colwm-~generatiom.
Since the pioneering paper [Ford and Fulkerson 53], many authors
have shown how pricing could be mechanized by means of subsidiary

network flow alyorithms, dynamic programming, integer programming,

and even linear programming. See the references of part B of Table 1,
[Ralinski 64], and {Gomory €3]. It will suffice to mention here
but one specific illustration:

the cutting-stock problem as treated

by [Gilmore and Gomory 61]. See also Sec. 4.3.

Cutting-Stock Problem

A simple version of Gilmore and Gomory's cutting-stock problem,

without the integrality requicement on x, is

(3.7) Minimize 2: X, Ss.t. 2: a..x,. 2r,, i=1, ..., m,
> " < ij7] i
x=0 1} ]
where a, .

£ is the number of pieces ot length Li produced when the cut-

. .th L
ting knives are set in the j pattern, r, is the minimum number of

required pieces of length Ei’ and x_ is the number of times a bar of

stock is cut according to pattern j. The number of variables is very
iarge because of the great variety ¢ ways in which a bar of stock
can be cut. It is easy to see that each column of the matrix A

m
integers satisfying I ziyi S

A (A is the length of a bar of
i=1

is of tne form (yl, evey ym)t, where y is a vector of nonnegative
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stock); and conversely, every such vector corresponds to some column
(essuming that all possible patterns are allowed). When Restriction

is applied to (3.7) in the form of the Simplex Method, it follows that
the problem of determining the most negative multiplier can be expressed

as the subsidiary optimization problem

(3.8) Minimize 1 - uty s.t. 2: £.y. Sk, y iuteger ,
y20 i=1 Y1

where ¢ is the known vector of the current "Simplex multipliers.”

If slack variables are given priority over structural variables in
determining entering basic variables (cf. Sec. 4.3), then u can be
assumed nonnegative and (3.8) is a problem of the w2ll-known "knapsack"
variety, for which very efficient solution techniques are available,

See [Gilmore and Gomory 61] for full detarls.

3.3 RELAXATION

Whereas Restriction is a sclution strategy principally useful for
problems with a large number of variables_. the complementary strategy
of Relaration is primarily useful for problems with a l:rge number of
inequality constraints, some of which may be only implicitly available.
Such problems occur, for example, as a result of Outer Linearization.
One of the earliest uses of Relaxation was in [Dantzig, Fulkerson, and

Johnson 54], and since that time this strategy has appeared in one guise

fRelaxation can also be useful for dealing with large numbers
of nonnegative variables; when a constraint such as xjy 2 0 i8 re-
laxed, the variable x; can often be substituted out ~of the probiem
entirely [Ritter 67c], [Webber and White 68].
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or another in the works of numerous authors.+ We discuss [Kelley 60}
at the end of this section, and [Benders 62] in Sec. 4.1.

The essential idea of Relaxation is this: solve a relaxed version
of the given problem ignoring some of the inequality constraints;
if the resulting solution does not satisfy all the ignored comstraints,
then generate and include one or more violated constraints in the
relaxed problem and solve it again; continue in this fashion until a

relaxed problem solution satisfies all of the ignored constraints, at

which point an optimal g * of the given problem has been found.

An important refinement inve. 'ropping amply satisfied constraints
from the relaxed problem when this does not destroy the inherent
finiteness of the procedure. We give a formal statement of Relaxation
(with the refinement) below.

Relaxation and Restriction are complementary strategies in & very
strong sense of the word. In linear programming, for example, whereas
a natural specialization of Restriction 1s equivalent to the ordinary
Simplex Method, it is also true {Geoffrion 68a] that a similar special-
ization of Relaxation is equivalent to Lemke's Dual Method. It follows,

very significantly, that Restriction (Relaxation) applied to a

linear program essentially corresponds to Relaxation (Restriction) ap-

plied to the dual linear program. In fact [1bid.], the same assertion

holds for quite gemeral convex programs as well. This complementarity

makes it possible to translate most statements about Restriction iato

statements about Relsxation, and conversely.

—
Re axation without problem manipulation is used in Dantzig 55a,

Sec. 3; Stone 58; Thompson, Tonge and Zicnts 66; Ritter 67¢c; Grigoriadis
and Ritter 68. The following papers all use the pattern Outer Lineari-
zation/Relsxation: Chen2y and Goldstein 59; Kelley 60; Dantzig and
Madansky 61, p. 174; rarikh 67; Veinott 67. The references of part A

of Table 2 all use the pattern Projection, Outer Linearization/Relaxa-
tion. See also the second footnote in Sec. 1.2.
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Since we have already given a relatively detailed discussion of
Restriction, a somewhat abbreviated discussion of Relaxation will

suffice. See [ibid.] for a more complete discussion.

Formal Statement

Let £, Bys vver B be concave functions on a nonempty convex

set X T& R”. The concave program

(3. 2 i =

(3.9) Max1m1zex€x f£(x) s.t gi(x) 0, i 1, , m

is solved by solvinz a sequence of relaxed problems of the form
{3.10) Maximizexex f(x) s.t. gi(x) > 0, ieS,

where S is 1 subset of {1, ..., m!. Assume that (3.10) admits an
optimal solution x° whenever it admits a feasible solution and its
maximand is bounded above on the feasible region, and assume further
that an initial subset of constraint indices is known such that
(3.10) has & finite ootimal solution. (This assumption can be en-
forced, if necessary, by enforcing continuity of all functions and

compactness of X.)

Under these assumptions, it 1s not difficult to show that the
following strategy is well defined and terminates in a finite number of
steps with either an optimal solution of the ziven problem (3.9) or
knowledge that none exists; moreover, in the first case a nonincreasing
sequence <f(xs)> of upper bounds on the optimal value of (3.9) is
obtained and the fizst solution of (3.10) that is feasible in (3.9) is
also optimel. This version of Relaxation deletes amply satisfied con-

straints from S so long as <f(x°)> 1is decreasing.
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The Relaxation Strategy

Step 1 Put f = © and S equal to any subset of indices
such that the corresponding relaxed problem
(3.10) has a finite optimal solution.

Step 2 Solve (3.10) for an optimal solution x° if
one exists; if none exists (i.e., if the re-
laxed problem is infeasible), then terminate
(the given problem is infeasible). 1If
gi(x%) 2z 0 for all i#S, then terminate
(x5 is optimal in the given problem); other-
wise, gc on to Step 3.

Step 3 Put V equal to any subset of constraint
indices that includes at least one_constraint_
such that g (x°) < 0. If £(x5) « f, replace f
by £(x5) and S by E U V, where E & {i¢S : gi(xs) =

0}; otherwise (i.e., if £(x5) = T, replace S by
S U V. Return to Step 2.

Discussion

As wirh Restriction, the analyst has considerable leeway con-
cerning how he azpplies the Relaxation strategy. For instance, he can
select the constraints that are to be candidates for Relaxation
(gl, e gm) in any way he wishes; the rest comprise X. He is free
to choose the initial S so as to allow an easy start, or to take ad-
vantage of prior knuwledge concerning which of the constraints might
be active at an optimal solution. He can choose the mes: effective
solution recovery technique to reoptimize the successive relaxed
problems. And, very importantly, he can choose the criterion by
which V will be selected at Step 3 and the method by which the cri-
terion will be implemented.

Probably the most natural criterion is to let V be the index of
the most -iolated constraint. This is the criterion most commonly

employed in the Dual Method of linear programming, for example,
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although other criteria are possible. The complementarity between
Relaxation and Restriction mentioned earlier enables us to interpret
existing computational sxperierce in linear programming so as to

shed light on the merits and demerits of several alternative criteria.
The discussion of Step 3 of Restriction should make further discussion
of this point unnecessary. We should remark, however, that in some
applications (e.g., [Dantzig, Fulkerson and Johnson 547, [Gomory 581,
[Kelley 601) only one or a few violated constraints are accessible
each time the relaxed problem is solved, cad it is therefore indi-
cated that these be used regardless of whether they satisfy any
particular criterion, 1In other applications a criterion such as
"most violaced constraint"” is within the realm of attainability,

and can be approached via a subsidiary linear program [Benders 62},
network flow problem {Gomory and Hu 62], or some other subsidiary
optimization problem that is amenable to efficient solution. This

is the counterpart of mechanized pricing in Restriction.

Restriction and Relaxation, opposites though they are to one
another, are by no means incompatible. 1n fact it can be shown
[Geoffrion 66 and 677 that both strategies can be used simulta-
neously. The reduced problems become still more manageable, but

assurance of finite terminatiou requires more intricate control.

The Cutting-Plane Method

One important use of Relaxation occurs, as we have mentioned,

in connection with problems that have been outer-linearized. This
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will be i1llustrated in the simplest possible se.ting in terms of the

problem

(3.11) Minimize ctx s.t. Ax $ b,
x20

g(x) <0,

wher: g is a convex function that is finite-valued on
X8 {x20:axSnpbl.

If one manipulates (3.11) by invoking an arbitrarily fine outer-
linearization of g and then applies the Relaxation strategy with the
new approximating constraints as the candidates for being relaxed,

the resulting procedure is that of [Kellzy 607,

Let us assume for simplicity that g i. differentiable on )(.‘r

Then g has a linear support g(;) + Vg(;)(x - ;) at every point x in X,

where Vg(;) is the gradient of g at X, and so (3.11) is equivaleat to

(3.12) Minimize ctx s.t. g(x) +-vg(;)(x - ;) <0, all xeX.

xeX

The Relaxation strategy is the natural cne for solving (3.12),

since it avoids the need to determi. in advance all of the linear

supports of g. At each iteration, a relaxed version of this problem

with a finite number of approximating constraincs is solved. The

optimal solution x of the relaxed problem is feasible in (3.12) if

+The assumption of differentiability can be weakened, since it
is only necessary for g to have a support at each point of X. And
even this requirement can be weakened &s implicitly suggested in the

conclusion of Sec. 2.3 i{f (3.11) is phrased in terms of the epigraph
of g.
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snd only if g(X) < 0; 1if g(x) > 0, then evaluation of Vg(x) ylelds @

violated coustraint that must be appended to the current ra2laxed

e s s A e TSR A8 R § R ¢ b S

problem. Since each relaxed problem is a linear program that will
f be augmented by a violated constraint, it is natural to reoptimize
¥ ' it using postoptimality techniques based on the Dual Method for
linear programming.

It is easy to generalize this development to cover the case in
: which (3.11) has several (nonlinear) convex constraints and a convex
. minimand.
. It should be pointed out that dropping amply satisfied constraints
i from the relaxed problem--a feature incorporated in our statement of
Relaxation--is questionable in this context since {3.12) has an in-
finite number of constraints. Without this feature, Kelley has
given mild conditions under which convergence to an optimal solution

of (3.11) is assured ir the limit.

We remark in passing that the approach of [Hartley and Hocking
63] for (3.11) can be viewed as Restriction applied to tte dual of
i (3.12). Since Relaxation of (3.12) corvesponds to Restriction of

its dual, the two approaches are really equivalent.
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4. SYNTHESIZING ALGORITHMS FROM MANIPULATIONS AND STRATEGIES

This section further illustrates the problem manipulations _:d

solution strategies of the previcus two sections by combining them in

various ways to yield several known algorithms. The main object is rot

an exposition of these algorithms, although this is certainly important;

rather, we wish to focus on the principal patterms in which manipula-

tions and strategies can be assembled. These patterns constitute the

real common denominators in the literaturz on large—-scale prrgramming.

Sez Table 2.

It is beyond the scope of this effort to exemplify all of the im-

portant patterns of manipulations and strategies. We shall limit our

discussion to five key ones:

1. PROJECTION, OUTEK LINEARIZATION/RELAXATION

2. PROJECTION/PIECEWISE

3. INNER LINEARIZATION/RESTRICTION

4, PROJECTION/FEASIBLE DIRECTIONS

5. DUALIZATION/FEASIBLE DIRECTIONS
The f£irst pattern is iilustrated in Sec. 4.1 by Benders' Partitioning
Procedure for what might be cslled semilinear programs; the second is
illustrated in Sec. 4.2 by Rogen'’s Primal Fartition Programming alge-
rithm for lipesr programs with block~diagonal structure; the third in
Sec. 4.3 by Dantzig-Wolfe Decomposition; the fourth in Sec. 4.4 by a
procedure the author recently developed for nonlinear programs with
multidivisional structure; and the fifth in Sec. 4.5 by the *local”

approach discussed by Takahashi for concave programs with "complicating"
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1 constraints. Another key pattern, OUTER LINEARIZATICN/RELAXATION,

was already illustrated in Sec. 3.3 with reference to FKelley's cutting-

plane method. In additivn, it is indicated in Sec. 4.2 how Rosen's

algorithm can be used to illustrate the pattern DUALIZATION/PIECEWISE,

TP IRIP

and in Sec. 4.3 how Dantzig-Wolfe Decomposition can be used to ilius-
trate DUALIZATION, OUTER LIREARIZATION/RELAXATION.

The discussion of the various algorithms is as uncluttered by
X detail as we have been able to make it. There is little or no mention
; of how to find an initial feasib’: solution,? the details of computa-
tional organization, or quzstions of theoretical convergence. The

reader is invited tc ponder such questions in the ligh® of the concepts

and results advanced in the previous two sections, and then to consult

the original papers.

4.1 [Benders 62]

One might refer to

(4.1) Maximize z'x + f(y) s.t. Ax + F(y) * b
x20
yeY
as a semilinear program because it is a linear program in x when
y is held fixed temporarily. The aslgorithm of [Benders 62] for
this problem can be recovered by applying the pattern PROJECTION,
OUTER LINEARIZATION/RELAXATION. Specifically, project (4.1) onto the

space of the y variables, outer-linearize the resulting supremal

value function in the maximand, and apply the Relaxation strategy

T ——r— . ————.

?If one exists, it can usually be found by applying the algorithm
itself to a suitably modified version of the given problem.
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to the new conatraints arising as a consequence of QOuter Linearization.

Assumc for simplicity that (4.1) is feasible and has finite optimai

value,

Projection onto the space of the y variables yields

>
(4.2) Maximize [£(y) + Sup {c'x s.t. Ax ® b - F(y) }].

yeY xR0
Note that the supremal value function appearing in the maximand cor-
responds to the linear program

t <
(4.3) Maximi.e ¢ x s.t. A2 = b - F(y).
x20

This program is parameterized nenlinearly in the right-hand side by y,
and our assumption implies chat it has a finite optimum for at least

one value of y. By the Dual Theorem, therefore, the dual iinear

program

{4.4) Minéyize ut(b - ¥(y)) s.t. uta >4 ct
usl

must be feasible (for all y). Let <u1

and <hp+1, cees hp+q> representatives of the extreme rays of the feasi-

y vees uP> be the extreme points

ble region of (4.4} (cf. Th. 3). Again using the Dual Theorem, we see
that (4.3) i: feasible if and only if (4.4) has finite optimal value,

that is, if and only if y s«.tisfies the constraints
RS .
(4.5) (D" -F(y)) 20, §=p+1,...,p+q.

Since we take the supremal vaiue function in (4.2) to be -o for y

such that (4.3) is infeasible--sece Sec. 2.1l--we may append the

o aprtan otrn At
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constraints (4.5) to (4.2). Thus Projection applied to (4.1) yields
(4.2) subject to the additional constraints (4.5).
Wext we outer-linzarize the supremal value function appearing

in (4.2). It is easy to see, referring to (4.4), that 1its vaiue is

precisaly

. .
(4.6} Minimum {(') (b - F(y)) )

1sjsp
for all y feasibie in (4.2) with (4.5) appended. (Strictly speaking,

it is accurate to call this Outer "Linearization" only if F is linear.)
With this manipulation, (4.2) becoues
(4.7) Maximize [£(y) + Minimm {(u})*(b - F(y))}] s.t. (4.5)
y€x 1sj<p
or, with the help of an elementary manipulation based on the fact that

a minimum is really a greatest lower bound,

(4.8) Maximize f(y) + Y,
yeY

Yo

sty s @)'®-FG), i1, ., p

@hH'® - F(¥)) 20, 3=p+1, ..., p +q.

This is the master problem to be solved.
Rkelaxation is a natural strategy for (4.8); it avoids having
to determine in advance all of the vectors uj, =1, ..., ptq. To

test the feasibility of a trial solution (§°. ¥), where yeY, one solves

the linear subproblem (4.4) with y equsal to y. If the infimal value

is greater than or equai to 9°, then (io. y) is feasible snd therefore
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ontimal in (4.8); y, along with X equal to the cptimal dual variables

of (4.4), is an optimal solution of the given problem {4.1). If, on

the other hand, the infimal value is less than §o’ then & violated |
constraint of (4.8) is produced (some uj with 1 £ § £ p 1s found if

the infimal value is finite, while p+ 1 £ J S p + q 1f it 18 -=). Of
course, £, F, and Y must satisfy the obvious convexity assumptions if
dropping amply satisfied constraints is to be justified. These assump-
tions will probably have to hold anyway if the relaxed problems based

orn (4.8) are to be concave programs (remember uj 2 0). There is, how-
ever, at least one other interesting case: 1if Y is a discrete set, say
the integer points of some convex polytope, while f and F are linear,
then (4.8) 1s a pure (except for yo) integer linear program (see
(Balinski and Wolfe 63), [Buzby, Stone and Taylor 65]).

The present development seems preferable to the original one
since: (a) it justifies dropping amply satisfied constraints from suc-
cessive relaxed versions of (4.8); (b) it retains f(y) in its natural
position in the criterion function of (4.8) (Benders' version of (4.8),
which is also equivalent to (4.7), has Yo alone as the criterion func-
tion and an added term f(y) in the right-hand side of each .l _“e first
p constraints); and (c) its comparative simplicity suggests & ge.erali-

zation, with the help of nonlinear duality theory, peruitting

nonlinearities in x. Decails concerning (c) wiil be provided in =

forthcoming paper.
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4.2 {poser 84]

The algorithm of LRosen 641 for the iinear program

i
(4.9) Maximize be + 2: b;:xi s.t. xiAi + ytD. 5 c?, i=1, ..., £
X,y o1 i i

illustraces the pattern PROJECTION/PIECEWISE. Assume for simpiicity
that (4.9) is feasible and has finite optimal value.

Projection onto the y variables yields the master problen

t : {
(4.10) Max;mize [bcy + 12‘:1 s:i ?bixi s.t. ngi < ci - ytDj_S].
witere we have separated the supremum in the maximand (this separation
is perhaps the main justification for using Projection).

The Piecewise strategy is appropriate for (4.10) because each
supremal value in the maximsnd is piecewise-linear as a functicn of
y. This follows from the elementary theory of linear programming,
as we now explain., Let y be feasible in {4.10) {n the sense that the
maximand is not -», Then each of the £ linear programs appearing in
the maximand must have a finite optimal value, and by the el Theorem
this optimsl value must be equal to that of the dual linear program
(&.11) Minimize {ci - §tl}1)ui s.t, Aiui = bi'

Uia
Let the vector Gi be an optimal solution of this program, and let the
correspending basis matrix be Bi' Since changes in y cannot affect
the feasibility of G!, the cptimal value of (4.11}--which is equal tec

the value of 1th suprem2]l value function of (4.10) at y--must be

Enie. . T 3R RS T . SHRRT BT DS, B o S 8 R e
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t d -
(4.12) {ej - ¥yDu,

so long as the reduced costs remain of the correct sign, that is, so

long as y satisfies the condition

B
., t t i -1 t t ,
{4.13) (ci -y Di) Bi (Ai)‘j - (ci -y Di)j < 0, all noabasic j,

where the superscript Bi masks all but the basic components of
(ci - ytDi). Thus the magter problem (4.10), confined to the

linear "piece" containing ¥y, becomes the linear program

4
. t t T oaa .
(4.14) Max;mize boy + 1&1 (ci -y Di)-..i z.t. (6.13), i =1, ...,

This shows that Step 2 of the Piecewise strategy can be accomplished

by linear programming. Rosen actually works with the duval of (4.14).

His Theorems 1 and 2 concern Step 3 (cf. the discussion follewing (3.4)

in Sec. 3.1).

It is interesting to note that if we had started with the dual
of (%£.9)--3 hlock~diagonal linear program with coupling constraints—-
we weuld have obtained precisely the same procedure as the one just

described by dualizing with respect to the coupling constraints only

[Geoffrion €9] and then invoking the Piecewise strategy. In this way

[Roser 64] could aleo be used to illustrate the pattern DUALIZATION/
PYXECEWIiSE,

e
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4.3 DANTZ1G-WOLFE DECOMPOSITION

Dantzig-Wolfe Cecomposition is archetypical of the pattern
3 INNER LINEARIZATION/RESTRICTION. Mechanized pricing plays a prominent
role. We shall illustrate this pattern first with the algorithm of

[Dantzig and Wolfe 60] for a purely linear program, then with the

YT LA

algorithm of [Dantzig 63a, Ch. 24) for a nonlinear program, and finally

with a variation of the latter in which not all nonlinear functicns

7 need be inner-linearized.

It 18 interesting to note that Dantzig-Wolfe Decomposition can
also be viewed as an instaunce of the pattern DUALIZATION, OUTER
LINEARIZATIGI/RELAXATION. In the context of (4.15), for example, one

would dualize with respect to the constraints Ax S g, outer-linearize

e ————

the cesulting minimand in the obvious way, and then apply Relaxztion.

[Dantzig and Wolfe 60)

e !’.L!......!Iti’._' Al

i The well-known Dantzig-Wolfe decomposition approach for linear

E programs will be explained in terms of the linear program
EE {4.15) Maximize ctx s.t. Ax Sb,
§ > L]
3 x=0 - -
: Ax = b,

e en

; where we have arbitrarily divided the constraints into two groups.

AT

e

With the definition

(4.16) x8 {x20: Ax = b},
we may write (4.15) as
(4.17) Maximize ctx s.t. Ax S b.

xeX

i, ERR R Tt A B o R Sy e 2 2 |
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Since X isa convex polytope, we know (Th, 3) that it admits an exact
inner linearization using oriy 2 finite number of points. Invoking
this representation for X, we obtain a master linear program with a vast
number of variables to which Restriction can be applied in the form
of the Simplex Method. It turns out that the pricing operazion (cf.
Sec. 3.2) can be accomplished by solving a linear subproblem
whose feasible region is X. The details are as foilows.

Assume that X is not empty and also, for ease of exposition only,
that X is bounded. Then X can be represented in terms of itrs extreme
points <x1, ey xp>, and (4.17) can be written as the equivalent master

linear program

-

t, P j 4
(4.18) Maximize ¢ ( T ox”) s.t. I 03 = 1,
@20 j=1 3 j=1
P iy <x%
A z a.X = b.
(i=1 )

The Simplex Method for this problem corresponds to Restriction with
respect to the constraints a?ﬂ.f To describe how the pricing opera-
tion can be mechanized, we shall use the familiar terminology of
linear programming rather than the general terminology of Restriction.

The optimality conditions at the general iteration are u 2 G and

(4.19) N AR X T I B

Actually, the inequility constraints invelving A are also normally
censiderad as candidates for restriction to equality. The latter
constraints can be excluded, if desired, from the candidates for re-
stziction by giving u 2 O priority over (4.19) in determining the en-
tering basic variable. Such a modification is necessary, as we sghall

see late: in this subsection, when nonlinear functions are inner-
“inearized.
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where u and the vector u are the current Simplex multipliers.

Condition (4.19) is equivalent to

lu  + Minimum {(utx - ct)xj}] 20
1sisp

. 1
or, since <k, ..., «P> span X, to

{4.20) lu + Min (utK'- ct)x] = 0.
o
x eX

The linear program in this expression is . valid replacement for the

“finite minimum in the previous expression because the minimum of a

linear function over X occurs at an extreme point. Thus we see how

te test optimality when the Simplex Method is applied to (4.18). 1If

citker u 2 0 or (4.20) fails to hold, a profitable nonbasic varisble
satisfying the usual criterion for the entering variable is obtained
automatically: 1if the greatest violation occurs in u i 0, introduce

the corresponding slack variable; if in (4.20), introduce the vari-

able 030, where xjo is an optimal basic feasible solution of the
11n€ar program in (4.20) (the extremal function ccefficient ot 03 is
ctxjo, and the technological coefficient column is unity fcllowedoby
ijo).

Thus there is no difficulty in carrying out the Simplex Method
applied to the master problem (4.18). FEach iteration requires solving
the iinear subproblea in (&.20).f This approach may posseas an advan-

tage over the direct application of the Simplex Method to (4.15) when

+The subproblem need be solved from scraich only at the first
iteration; thereafter, restarting or parametric techniques can be
used to recover an optimum as u changes from iteration to iteration.
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the subproblem has some special structure. For example, if (4.15) 1s

a transportation problem with additioral constraints, then the sub-
problem becomes a pure transportation problem if A is taken to comprise
the additional constraints. Another example is the case in which A is
»lock~diagonal, for then the subproblem scparates into k independent ,
smoller linear programs. In general, one should select a grouping of
the constraints (in terms of A and A) that isolates a special structure,
and then exploit this structure in dealing with (4.20). See [Broise,
Huard and Sentenac 68), [Orchard-Hays 68, Sec. 10.4] for additional

discussion based on computational experience.

[Dantzig 63a, Ch. 24] .

Now consider a nonlinear version of (4.17), namely

(4.21) Maximize f(x) s.t. gi(x) £b,,i=1, ..
xeX i

. m,

where X is a convex set, f is concave on X, and gi is convex on X.
Dantzig and Wolfe's approach [Dantzig 63a, Ch. 24] for this problem
can be viewed as follows. Let f and each 8 be approximated by

P .2

Inner Linearization over an arbitrarily fine base <x", x*, ...> in

X, so that (4.21) is approximated as closely as desired (in princi-

ple, at least) by the linear master problem

Srenay 4445, e 1
SRR, ARY T

-, 3 -
{6.22) Hizégize 25 ogr(x ) s.t. 23 05 1,

Zj Osgi(xj) < bi’ i=1., ..., m

We say "in principle" becausz we do not wish to actually evaluate f

e

and each gi at every point in the base, or even sp2cify the base

explicitly. Hence it is natural f.o solve (4.22) by Restriction with
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the constraints a.0 as the candidates for restriction to equality
(when 03 is restricted to 0, the values f(xJ) and gi(xj) are not

‘ needed). A very natural way to do this is to employ the Simplex

Method witn a priority conventlon to ensure that the restricted prob-

Ly

lems #ve truly cptimized: slack variables corresponding to the 8y
constraints must be given priority over structural variables in deter-

; mining which variable 1s to enter a basis. Any feasible solution of

(4.21) can be used to find an initial basic feagible solution, and at
ig the general iteration the optimality criterion or pricing problem is
§

(cf. (4.19)) uy 230 (1<£1%mn) and

m
3
(4.23) u + 12'1 a8, () - £(xd) = 0, all i,

vhere Ujs Ups eeen u ave the current Simplex multipliers. By the

priority convention, we may assume that u, 29 (1 si sm). Note that

T T T TERTve

(4.23) is intimately related (cf. (4.20)) to the convex subproblem

m
(4.24) Hi:gt(:ize 121 uigi(x) -1 ).
If U plus the optimal value of this problem is nonnegative, then
(4.23) holds and an optimal solution of (4.21) is at hand [x* =
Xé Eaxj, where @ is the current and optimal solution of (5.22)];
otheiwise, an optimal or near-optimal solution X of (4.24) can be
profitably added to the current explicit base by introducing the

corresponding o, into the basis in the usual way after evaluating
4

f(x) and 81(£)' In practice, termination would take place as soon as

the value of the current approximation to an optimai solution of

<= PR h el ey A% St DL 1 T SN B 7Y -
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(4.2i)-~the quantity f(Eﬁ Eij)-oapproaches closely enough the

foilowing easily demonstrated upper bound for che true optinal value:

in m
(4.25) i);l ub, - Minxd([iz,_l ug, (x) - f(x)].

This approach is particularly attractive when the structure is
such that (4.24) is relatively tractable by comparison with (4.21);
for example, when X is an open set and f and 8, are differentiable,

or when (4.24) 1is separable into several indepenc. r subproblems.

A Variant

It is interesting to observe that Inner Linearization need not
be applied to all nonlinear functions of (4.21).T An advantage can
sometimes be gained by inner-linearizing only a subset cf the non-

linear functions, say 815 +ce» 8 {mi <m). Then instead of (4.22)
1

we have the concave master problem

i
(4.26) Ma:gize f(Zj ajx )

s.t. 23 03 =1,

i -
I g (x) sb, 171, o, m

gi(zj ijj) < bi’ i = ml + 1, seoy M.

Again we wish to apply Restriction with only the noanegativity con-
straints azb as candidates for restriction to equality. The Simplex

Method can no longer be adapted to this purpose, however, since (4.26)

lmplementation requires a concave programming

?In [Whinston 66], for example, the cbjective function of a block-

Wy Geeaeas s
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diagonal quadratic program with coupling constresints is not inner-
linearized.
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algorithm for soiving the restricted versions of (4.26) and also a

weans cof mechanizing the picing operation. We need not discuss the
first requirement. The second involves being =hle to determine the
prices u; for all j in S, where S is the current set of indices for

vhich aj is cestricted to value 0. This can be done as follows [Hollcway
691. Let o be the optimel solution to (4.26) with the additional re-
strictions aj = 0 for jeS, and let ui, ui, ey u: be the associated
optimal multipliers (which must exist if a constraint qualification is

satisfied). Then, assuming all functions are centinuously differen-

tiable, the price u? associated with aj = 0 1s given for all jeS by
8 8 8, J ml~ s 3 u s 8
(4.27) u, = u - vE(x )x? + :il uigi(x ) + 2: ug Vgi(x )xj .
4 =] i-m1+1
where
(4.28) > a‘j‘xj.
j#s

It follows that the pricing probiem can be solved by optimizing the

convex (u: 2 0) subproblem

m
1 m
S 8 S
(4.29)  Minimize -vE(x®)x + 3, uig (x) + uj vg, (x*)x.
xeX i=1 i*ml 1

Compare with (4.24). If f were innzr-linearized too, the first term

of the maximand of (4.29) would be -f(x).

Which of all given constcaints should be incorporated into X,

G S T Tt e
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and which of the remainder and whether f itself should be inner-linear-
ized, depends mainly on the availability of efficient algorithms for the

resulting versions of (4.29) and (4.26) with 03 » 0 for jeS.

4.4 [Gooffrion68b, Sec. 4]

A quite general problem with multidivisional structure is

v

straints. This requires intrcducing the vectors Yi»

k
(46.30) Maximize 2, £, (x,)
1'%y
x i=1
> =
s.t, Hi(xi) z0,i=1, ..., k

k
i=1

where fi’ hij and gij are all concave differentiable functions of the
vector x.. The subscript i can be thought of as indexing the individual
divisions, which are linked together only by courling constraints. The
apnroach of [Geoffrion 68b, Sec. 4] is an application of the pattern
PROJECTION/FEASIBLE DIRECTIONS., The optimization of (4.30) is carried
out largely at the divisional level subject to central coordination.

Pirst (4.30) is projected onto the space of its coupling con-

I A

k
(4.31) Maximize 2 fi(xi)
X,y i=1
s.t.

Hi(xi) €0, i =1, ..., &k

Cle ) > -
bi(xi) =Yyo i=1, ...

e e P P e 8 2
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e
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In effect, this changes the given problem from one with coupling con-
straints to one with coupling variables, since (4.31) separates into
k separate problems if y is held fixed temporarily. One may interpret

. th .
yg as a vector of resources and tasks assigned to the i~ division.

Projection of ttis problem onto y yields the master problem

nw

k k
(4.32) Maximize iz:;l Vi(yi) s.t. 12 ¥y b,

y

where vy is defined as the supremal value of the parameterized

divisional probliem

v

(4.33) ﬁaxi?ize fi(xi) s.C. Bi(xi)
' 6, (x,)
Now we wish to apply the Feasible Directions strategy to (4.32).
The idea of this strategy, it will be recalled, is to generate an
improving sequence of feasible poincs, with each new point determined
from the previous one by selecting an improving feasible direction
and then maximizing along a line emanating in this direction. The

latter maximization is only one-dimensional, and can easily be es-

sentially decentralized to the divisional level. The chief difficulty

with this strategy concerns how to find a good improving feasible
direction, for the maximand i}, Vi(yi) is not everywhere differentiable
and is avail:ble only implicitly in terms of the divisi ual problems
(4.33). 1It can nevertheless be shown [ibid., Sec. 4.2], using the theory

of subgradients for concave functions and the optimality conditious as-

sociated with (4.33), that the following explicit linear program yields

o L S R A .

LY
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an improving feasible direction 2° for (4.32) at a feasible point

LY

vy : moreover, 2° s pegt among all feasible directions in that it

k
maximizes the initial rate of improvement of 2: Vi<yl):
i=1
k 0
(4.34) Maximize E: V. w
il
w,2Z i=1
8.t Vgo w, - % 20, £ =1 k
.t 1391 44 » 1 e kg
j such that gij yij
o
%Lfizo’i-l"”’k

j such that hY. =0
ij

k
z b i o =
24 z ¢, j such that E Yij b

=1 21 J

-1 < zij <1, all i and j.

Here vg‘;j refers to a row vector that is the gradient of g  evaluated
at an optimal solution of (4.33) with y; = yz, and the other super-
scripted quantities have similar definitiorns. The vector v, has the
same dimension as X This subproblem enables the Feasible Directiens

strategy for (4.32) to be carried out,

4.5 {[Takahashi 64 ]

Consider

{4.35) Maximize £(x) s.t. H(x) = 0
x

G(x) = 0,
where f is concave and all constraints are linear. Supposge that the
G constraints are complicating in the sense that ths: problem would

be much easier if they were not present. For instance, the complicating
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constraints may be the coupling constraints of a structure similar to

] the one in the previous subsection, or they may spoil what would other-

wise be a special structure for which efficient solution methods would

be available. The pattern of the "local" approach of [Takahashi 64]

for this problem is DUALIZATION/FEASIBLE DIRECTIONS.

The dual of (4.35) with Tespect to the complicating constraints

kf only yields (see, e.g., [Rockafellar 68] or [Geoffrion 69]) the following

x problem in the space of the dual variables ) (a vector whose dimension

i

9 matches G):

(4.36) Minimize v(1),
A

where v(1\) is defined as the supremal value of the parameterized

problem

(4.37) Maximize £(x) + A"G(x) s.t. H(x) = O,
X

Note that (4.37) is of the same form as (4.35) except the complicating

constraints are now part of the criterion functiom.

To apply the Feasible Directions strategy to (4.36), we must be
able to identify an improving feasible direction. Any direction is

feasible, of course, since A is unconstraired. When f is strictly

PR e ot w7 Syl

concave, it can be shown that v is differentiable. Its gradient at

T
e e

a point x° is simply G(xo), where x° is the optimal solution of
(4.37) with A = Ko. Hence the Feasible Directions strategy can be

carried out for (4.36) using the negative of the gradient of v
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as the improving feasible direction. Actually, Takahashi proposes

a shorc-step method rather than requiring a one-dimensional minimi- i

zatien to be performed in crder to determine step size. The pro-
cedur: may he summarized as follows.
1. Choose a starting pcint A°. ‘
. 2. Solve (4.37) with A = 2% for its optimal solution x°. If

: G(xo) = 0, thea x° is optimal in (4.35); otherwise, go on
to Step 3.

3. Let A' = 2% - QG(xo), where ([ is a small positive constant,
and return to Step 2 with A' ir place of A°.
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} 5. CONCLUSION

We have attempted to develop a framework of unifying concepte that

Ef comprehends much of the literature on large-scale mathematical program-
: ming. If we have been successful, the non-specialist should have an
overview of the “ield that facilitates further study, and the advanced

; reader should feel that he has a deeper understanding of previously

familiar algorithms and that he perceives new commonalities among ap-

proaches that heretofore seemed to be velated only vaguely if at all.

Y o o

In addition, we hope that the framework will suggest a variety of
worthwhile topics for investigation. The problem manipulations and

solution sirategies discussed here all invite further study, and others

gshould be added to the fold so that additicnal algorithms can be en-
compassed. The algorithms falling within the purview of each particular
mznipulation/strategy pattern (cf. Table 2) should be studied carefully
in relation to one another, with the aim of learning how 'best" to use
the tactical options of the patterr and organize the computations for
various classes of problems.

The relationships between ostensibly different patterns also war-

rant further study. We mentioned in Sec. 3.3 that Restriction (Relax-

ation) 1is essentially equivalent to Dualization followed by Relaxation
(Restriction), and other equivalences were briefly noted in Secs. 4.2
and 4.3. Many others exist; for example, it has often been obgerved
that Dantzig-Wolfe and Benders Decomposition are dual to omne another
in an appropriate sense. The results of [Zoutendijk 60; Secs. 9.4,
16.3, 11.4) are in this spirit, even if they do not specifically

involve algcrithms for large-scale programming. Knowledge of such

ormes s s e
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relations reduces the number of essentially different patterns to be

considered, and enables meaningful comparisone among the remainder.

Investigations along these lines should help civilize the jungle

of extant algorithms and pave the way for truly significant computa~

tional studies.
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