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NOTATION

Dotted variables are dimensional; undotted variables are
dimensionless

a, b constants

B! ship beam

D! drag force

f, F outer and inner comp.2x potentials
Fro, = U2 /g

Froude numbers

FrL

Uvz/ng

g gravity acceleration

h'(x',z'), h'(x') functions describing the hull shape

k(z) function of complex variable {k = w + if)

L! shiplength

Ly! forebody length

N free surface elevation (inner, dimensionless)

p' pressure

P pressure (inner, dimensionless)
q veloclty modulus

T! draft

u', v! velocity components

w' velocity component (Sect., II), complex
velocity w' = u' - iv' (Sect. III)

-U unperturbed velocity at infinity

U, Vv, W velocity components (inner dimensionless

Sect. II); w = u - iv (Sect. III)
velocity vector

<

x', y' coordinates
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“iv-
2! coordinate (Sect. II), complex variable
z' = x' + 1y' (Sect., III)
X, ¥, 2 coordinates (inner, dimensionless)
Y constant
A _ jet thickness (A = A'/T')
€ = TV/L! draft/length ratio
€g = B'/L' beam/length ratio
e* = T'/gU'?
¢! velccity potential
® velocity pctential (inner dimensionless)
w, ¢ auxiliary complex variables
g, u auxiliary variables
A angle and also dummy variable
6 angle between velocity vector and x axis

Q =-fn (U-1V)
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I. INTRODUCTION

The wave pattern created by a ship moving steadily in an
ideal fluid and the related wave resistance are classical subjects
of hydrodynamics. Although the theory has diversified and com-
putational refinements have been achieved with time, there has
been little essential progress beyond the linearized techniques
introduced by Michell and Havelock. In essence the present method
of solution of the gravity flow problem 1s based on twc approxi-
mations: (1) the free surface condition is linearizea and (1ii)
the hull is replaced by a singularity distribution along a line
or a plane. The wave resistance ;s generally determined from the
rate of energy radiated far away from the ship..

The above two basic approximations have been given foundation
in a rational way in the last years by the application of the
method of matched asyﬁptotic expansions (Tuck 1965, Ogilvie 1967).
It has been shown that the classical theory is in fact a first

order term of an outer expansion in which the observer is fixed
with respect to the ship length while the ratio draft/length or
beam/length (or both) tend to zero and the Fr number based on
length remains constant. In the vicinity of the body, in the
inner zone, the solution is still valid, provided that the slen-
dzrness parameter is sufficiently small and the ship has a fine

form. The latter condition has been somehow overlooked when
applying the theory to actual ships which do not generally have
a needle-like or knife-like shape. In the extreme case of a
blunt shape there is stagnation at the bow and the linearized
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assumptions are badly violated there: the speed and tne free
surface rise are no longer small perturbations of the uniform
speed and of the horizontal level, respectively. At the stern
the situation 1s different due to separation and viscous effects.

Realizing the importance of bluntness effects on resistance
of real ships, we have initlated a study of the free surface flow

near the bow and of the related resistance.

The present report summarizes our first results which, be-
cause of the complexity of the problem, involve in this initizal
stage rather crude approximatiorns obtained for highly schematized
configurations. It is our feeling, however, that this initial
step ylelds basic understanding of the problem. We hope to be
able to extend and refine the results in the future, to compare
them with experiments, and eventually to apply them to actual
ships.

II. INNER AND OUTER EXPANSIONS AND CLASSIFICATION OF SHIPS

1. Notation and Basic Equations

The symbois used in this report arc given in "Notations"
and also shown in part in Figure 1.

The ship iz defined by the sh&pe of its hull represented
by the equation

f(x'. y', 2') =0 (2.1)

or in one of the explicit forms

SR

-
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y' = h'(x', z') [2.2]

The three basic lengths associated with the hull are B', T'
and L', Additional geometrical coefficients or lengths may be
considered, like the forebody length L;'. The latter is im-
portant in characterizing the bluntness.

Assuming that the flow is steady and uniform at infinity,
the equations satisifed by V' and 1', given here for convenience

of reference, are as follows:

rot V! = 0 [2.3
- (in the flow domain)
div V! = 0 [2.4)
ul2+ vr2g w'? Ula
2 ren =3 (on the free-surface (2.5]
y' =q' (x',2'))
vl_ u.“.,x' - w'n"z| o (‘ V [2.6]

vt - u'h!, , - w'h', , =0 [2-7]

z'
Bquations [2.3] and ([2.4] express as usual irrotationality
and incompressibility, Equation [2.5) is the dynamic Bernoullil
condition on the free surface, while Equations (2.6] and (2.7)
R are the kinematicel boundary conditions along the free-surface
and the hull respectively.
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In order to render the solution unique, the radiation con-
dition is imposed

u' = -U'; v = w =0 (x' =+ w; y' = - w) [2.8]

Equations [2.3] to [2.8] may be reformulated in terms of the
velocity potential ¢' by replacing v by grad ¢'.

2. Outer Expansion; Classification of Hull Shapes

Economy is achieved by making the variables and the equa-
tions dimensionless in the standard way. Let us define the

following outer variableé

1}

- - 7 )
Vv = Vl/Ul(u,v’w uf/Ul’V'/Ul,wl/Ul); X,¥,2 =’x'/L',y'/L',Z'/L';

/LU h o= /LT p = p'/pUNE5e = 0t /UL

3
1l

[2.9]

The equations nf flow [2.3] - [2.8) become, in terms of o,

V2 = 0 (in the flow domain) [2.10]
2 : g
KY;Z.)_ + n/Fr,® = 1/2 | [2.11)
(v = n(x,2))
°,y = °,xﬂ:x = °:zn:z = 0 ‘ [2-12]>
Oy = ®4h, - 0, B, =0 (y = h(x,2)) [2.13]
U= =<1; vaew=0 (x> +0; yo= =) - [e.14)

ORENAEARIR ~ P% Svacts

P
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The solution of ¢ depends on x, y, z and the parameters

FrL = U'/(gL')%, B'/L', T'/L' for a given hull shape. The clas-
sical technique for simplifying the nonlinear problem is to take
advantage of the fact that B'/L' orxT'/L' or both are much smaller
than unity. With ¢ = T'/%L and eB = B'/L' an outer expansion is
obtained by assuming that V and ¢ may be expressed as a series

B This

has been done in numerous publications (see for instance Wehausen
and Laitone, 1960 and Tuck, 1965) and will not be repeated here.
Since by definition

associated with an asymptotic sequence based on € or ¢

h (x,2z) = e(x,2) t2.15]

where H = 0(1), it is natural to consider an expansion of the

type

o = - x + ed; + 0(e)

=3
]

ena + 0(e) - [2.16)

with x, y, z = 0(1). For an outer observer with a position fixed
wlth respect to the shlp length, the ship collapses in a line or
a8 plane at zero order and the flow 1s unperturbed. At first

order (and we consider here only first order terms) the equations

become the well known iinearized equations
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V¢, =0 y< O [2.17]
-u + m/Fr® =0 [2.18]
(y = 0)
Vi - M, =0 [2.19]
vy + H,x =0 (o the hull) [2.20]
U=vi =W =0 (x=+0;y= - «) [2.21]

The hull, at first order, degenerates into:

( 1) a 1line in the case of slender ships (eB = 0(¢)),
(11) a vertical plane in the case of thin ships

(e = 0(1) and €g = 0(1)) and
(111) a horizontal plane at y = O for flat ships

(eB = 0(1) and ¢ = 0(1)).

Different flow regimes, and equations accordingly, are ob-
tained corresponding to the relationship between FrL and e,
Ogilvie (1967) has analyzed these possibilities. Since we con-
centrate here on displacement ships malnly, we should consider
the following two possibilities:

(1) Small Fr; number, FrL2 = 0(1). In this case a
direct expansion of Equations [2.10] - [2.11] gives

vy = 0 (y = 0) [2.22]

\\
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i.e., a rigid wall condition of the free surface, This expansion
is discussed in detail in Section III.3.

(11) Fr. = 0(1), which yields the ordinary ship re-
sistance problem, with gravity waves left behind
the ship (Equations [2.17] - [2.21])

Higher FrL lead to planing problems not considered here,

Problem (ii), by far the most interesting, has been solved
by replacing the degenerated hull by: (i) a line of scurces for
slender ships, (ii) a source distribution in the mid-plane for
thin ships and (iii) a pressure distribution on the free surface
for flat ships (Lunde, 1952).

The fulfillment of the free-surface conditions [2.18] and
[2.19] is equivalent to the extension of the flow in the whole
space (above y = 0) and the introduction of an infinite system of

singularities in y > 0, reflection of the ship singularities. Tn

the case of small FrL Just one image is sufficlent in order to
satisfy Equation [2.22].

e kst e e s

3. Inner Expansion; Bow Singularity

The outer expansion is singular near the body in the
Fr, = 0(1) case since the first order velocity tends there to
infinity. Tuck (1965) has considered an inner expansion for
slender ships. The inner varlables are defined as

. X = x

V/L'; Y=y/e =y /T'; 2 =2/¢ = 2'/T;

e s o I Rt A

N

n/e=n9"/T; U0, V, W=u, v, w [2.23]
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The equations of flow [2.10] and [2.11] are again expanded
by assuming that U,V,W and N are asymptotic series with respect

to €

U,V,W

U,V ,W_ + 0(e)
[e] 0 (o]

=2
]

NO + 0(e) [2.24]

while X,Y,Z2 = 0(1).

In the inner 1limit the observer is fixed with respect to the

beam (or draft). For such an observer, when € =+ O the hull cross
section keeps 1is shape unchanged while the shiplength tends to
infinity. The equations become, at zero order, two-dimensional
(in Y,2) and the free surface condltion becomes that of a rigid
wall,

The matching of the outer and inner expansions yields (Tuck,
1965) the classical result, at first order : 1.e, the replacement
of the ship by a source system., The sour-e strength is propor-
tional to the cross-section area variation. The inner expansion
is valid only if this variatlon is gradual, 1.e, for fine ships.
The slender body expansion falls in the bow region if the ship
has some bluntness, and there the lnner problem 1s no more one
of two-dimensional flow in the ¥Y,Z plane, nor 1s the condition
on the free surface one of a rigid wall. For this reason we
should call the slender body expansions outer and inner midbody
expansions, in order to stress their limitations.

P
e e ettt et e e s s i 1 i o

5m;_”~__7
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In the case of a blunt-bow ship the appropriate inner varil-
ables in the bow region are
X,Y,2 = x/¢,y/e,z/¢; U,V,W = u,v,w; N =n/e; & = 6/¢

[2.25]

UV, W= U,V W+ 0(e); = ¢O(X,Y,Z) + 0(e);N = N+ o(e)

[2.26]
with X,Y,Z = 0(1).

While in the case of the inner midbody expansion the ob-
server 1s fixed laterally with respect to the ship and at zero
order the length tends to infinity, in both bow and stern direc-
tions, in the bow inner expansion the observer is fixed with re-

spect to the bow and the shiplength tends to infinity sternwise,.

Substituting [2.25] and [2.26] into Equations [2.10] -
[2.13] we get at zero order

v“¢° = 0 (in the flow domain) [2.27)]

U2 +v24+wu®
e 9o 9o, 1y .2 [2.28)
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The condition at infinity [2.14] is lost and is replaced by
the matching with the outer expansion.

i
2

The bow Froude number FrT =U'/(gT')? 1s related to Fr, and

L
€ through

FrT2 = FrLa/e [2.31)

Consequently the Bernoulli Equation [2.28] may have the following

form depending on the order of magnitude of Fr

O VUSRI P U URD PR S

L:
(1) FrL"’ = o(1)(1/FrT2 = 0(e)). Then Equation [2.28]
2 2 2 _ - M
US+VE+weE=1 (z=N) [2.32]

i.e. free gravity flow at zero order in the inner region.

| (11) FrL2 = O(e)(l/FrT2 = 0(1)). Equation [2.28] remains
unchanged and we have the full nonlinear gravity problem.
(111) FrL2 = O(e"’)(l/FrT2 = 0(1/¢)). This case reduces to
that of a rigid wall condition discussed in the pre-
ceding section.

In the case of slender and thin ships the flow in the
vicinity of the bow is three-dimensional in all the above approxi-
mations., Further simplifications are achleved in the case of
flat ehips. Then the proper inner variables are

X=x/c; Ymy/e; 2=2; N=n/e; & =0/¢; U V,W=u,v,w [2.33] .

[
.
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while the asymptotic expansion starts as
¢ =0 + O(e); N = N, + o(e); ¥,V = UO,VS + 0(e); W= 0(¢)

(2.34]

Again the substitution of [2.33] and [2.34] into Equations [2.10]
- [2.14] gives, at zeroc order

vx‘y ¢, =0 [2.35]
v2+v®e
o 0 1 1
5 + z No =3 [2.36]
Fro
(Y = No)
v, - uon‘mI =0 ) [2.37]
V,-UH, =0 (Y = H) [2.38]

and the problem is reduced to that of gravity flow in the ver-
tical X,Y plane in the vicinity of a body of shape Y = H(X,2)
(here 2 appears as a parameter). The requirement of flatness

has the meaning of T'/B' < 1, but still allows for B'/L' ¢ 1.

In the flat ship approximation the observer attached to the bow
sees both width and length tending to infinity (although pos-
sibly at different rates). Obviously this approximation is not
valid near corners or regions of large change of H with X. There
the full three-dimensional flow or some other approximations have
to be considered. Again we obtain the three differsnt cases
discussed above depending on whether I/Trﬁf- 0(€),0(1) or 0(1/¢).
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We summarize the discussion of all the encountered 6aSes
in the following table:

DISPLACEMENT SHIPS (Fr_ < 1)

2 2l o(1) 0(1)
il TR o(2)
Fr2=U'2/gT .
=Fr2/c o(e) o(1) ko(c-l)

Outer
Expansion

Inner
Midbody
Expansion

Inner
Bow
Expansion

Rigid Wall

Condition

Everywhere

The. un-~

| perturbed
| flow 1is

the state
of rest.

Linearized gravity waves far

. s p——

from the ship. The ship 1s
2§ﬁéit¥2él replaced by a line (slender)
= or a plane (thin and flat)
distribution of singularities.
Rigid Wall Condition
Rigid Wall Slender ships: two-dim. flow
Condition in vertical planes normal to

the centerline (Tuck, 1965).

Nonlinear Gravity

Nonlinear free-gravity flow

Flow. Slender and
thin ships:
dim. flcw; flat
ships: twc-4dim.
flow in vertical
planes ncrmal to
the bow.

three-

three-dim. flow.

three-dim. flow

near a strut.

Flat ship: two-dim. flow in
vertical planes
normal to a body
of infinite length.

Slender ships:
Thin ships:

obs

evervwh ere.

" In the case of fine ships the midbody expansion 1s valid
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Finally we present in Figure 2 a plot of B'/F' and FrT for

wore than one hundred existing ships.

There is no apparent correlation between the two parameters.
At any rate most of the ships considered are flat rather than
thin (B'/T' = 2.2 + 3.4),

The draft Froude number FrT is of order one in most cases,
but reaches values as high as 2 for a rapid containership and

more than 3 for cruisers and destroyers.

III. GRAVITY FLOW PAST TWO-DIMENSIONAL BLUNT BODIES OF
SEMI-INFINITE LENGTH

1., General

In the preceding sections it was shown that in the case of
flat ships the inner bow flow reduces to a two-dimensional flow
in a vertical plane normal to the bow. In the remaining sec-
tions of this work we consider exclusively such flows., More-

over, we are assuming that the outer flow 18 also two-dimensional
and that the body is of semi-infinite length. Obviously, these
assumptions simplify the problem considerabdly. The essent1§1
features of the bow flow are, nevertheless, included in the
picture., We plan to apply the results by some approximate tech.-
niques to actual ships in the future, taking advantage of the
fact that for most ships the ratio draft/beam is smaller than
unity. '
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Consistent with the range of FrL considered, which apply
to displacement ships, we assume that the bottom of the midbody
is horizontal. The results permlt however, to compute trim to a

first approximation, but we do not consider this problem here,

In the case of a two-dimensional flow (Figure 3) the dimen-
sionless velocity potential depends on only one parameter for
a given hull shape: ¢ = ¢ (x,y;FrT). Consequently, the possible
asymptotic expansions of the exact Equations [2.10] - [2.14],
with the 2z cowmponents deleted, reduce to the following cases:

(1) Small Fry .
gives a rigid wall condition in a first approximation. A uni-

In this case the Bernoulli equation

form expansion solves the problem. Results for the first and
second order approximations are given in Section III.3.

(11) Large Frp. In this case the outer flow conforms
to equations similar to the linearized Equations [2.17)-[2.21],
while the inner flow is that of a free-gravity flow at 2zero
order. PFor this regime we sugg st two possible inner flow
models: The jet model discussod in detail in Section III.4 and
the spiral vortex model. It is presumed that the jet model is
adequate for large FrT, while the sbiral vortex model represents
moderate to large PrT flows. Only the theory for the former is
presented herein,

In addition a discussion of the exact equations of free-
surface gravity flow near a stagnation point 1s presented in
Section III.2.

-
e s b o R e MRS

a e A
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2. Free-Surface Gravity Flow near a Stagnation Point

Let us consider the confluence between a free-surface and a

rigid wall in the vicinity of a stagnation point (Figure La).

In the symmetrical case (A, = ™ - A\z2) the classical Stokes
result (Wehausen and Laitone, 1960) requires that A = Az - A,
= 120°. This result will now be extended for other possible
angles between AO and OB.

In the vicinity of O(z = 0, Figure 5a) we assume that the
z-plane is mapped on the complex potential pla~-~ f (Figure 5b)

by

-iny A7
z=2ae £+ R(r) [3.1)

AOB being obviously a stream line,

The function R, which has to vanish at O, is assumed to be
in the vicinity of O of the form

Reb £ (3.2]

witn b = b'e16 a complex number and ¥ u real number,

Obviously, ¥ > A\/¥, otherwise the wapping of the corner
AOB is not ensured.

In order to apply the Bernoulli equation along AO let us
determine y and q* = u® + v® as functions of ¢. From Equa-
tions (3.1) and ([3.2] we obtain on AO (f = ¢)

1.Y4
y=-8s8in )\ ¢ / +b sind e’ (3.3]
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2

. B ( 1) Ay A/moy-2
N 1/e® = x,,0 4y, = l%}) 02(MT-1) o ab Y cos (ry+5)e /T 72)

B [3.4]
By expanding Equation [3.4], q? is found as

2 ¢-2(»x/vr-1)[1 -2 T YV s (0, 40) +] [3.5]

q2 = -

T
Aa

Substituting y and a® into Bernoulli's equation and retaining terms

(2-N/T)

of order ¢ or 2 at most we get

2 N/ 2 -2(n/m-1)
.. . L S =
y + 28 a sin M0 + b' sin 5 ¢ + 22 7\a) ¢ +...20
[3.6]
The identity [3.6] ylelds the following relationships be-
tween A1 and A:
(1) M # 0. The first two terms of [3.6] give
A = 2r/3 ,
f ’ (3.7]
- %-j; =g sin M
g2
This is Stokes classical result. Obviously, Az > 27/3
(11) A1 = 0. The first term of Equation [3.6)
vanishes, and the remaining give
v =-2(NT - 1) | [3.8]

e ad prs et 0 3ot bt

P
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Since vy > A/m Equation [3.8] shows that A < 27/3. A particular
case is that of v = 1, which renders the function R analyﬁical.
In this case Equation [3.8] gives A = m/2, i.e. the confluence

between a horizontal free-surface and a vertical wall.

In conclusion there are two possible angles between a free-

surface and a rigid wall at the stagnation point:

(1) if tne wall is inclined with respect to the hori-
zontal at an angle larger than 1200(2v/3 < N2 < )
the free surface intersects the wall at 120°
(n = 27/3) and,

(11) if the wall is inclined at less than 120°
(A < 2m/3) the free-surface is horizontal
(1, = 0). |

We will consider blunt bows of the latter type in Sec-
tion III.3.

3. Small Froude Number Flow (Fr'T < 1)

(a) General

VWe consider here the flow past a blunt body of the

shape of Figure S5a. An asymptotic expansion with FrT as a small

parameter has as its zero order term the state of rest cor-

responding to FrT = 0. Hence, it 1s appropriate to make the

variables dimensionless in the following way

x'/T;Y =y'/TN = n'/T'§H = /50 = w /(e ) /2

V'/(sT')l/gsF =0 + 1Y = (¢o'+ 1w')/gl/2T'3/2;P = p'/pgT'?

[3.9]
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The exact boundary conditions of two-dimensional flow are:

2
02+ V2 Fro
-—'—2———+N= > [3.10]
(Y = N(X)
V-UN,y =0 [3.11)
V-Ud,=0 (v = H(X)) [3.12]
V=0,N=0,U= - Frp (|2} =)  [3.13]

U-1iVand F = & + i¥ being analytical functions of
X + iV, T

N ]
{1

(b} Small Perturbation Expansion

In order to simplify the nonlinear problem we seek a
solution valid for small FrT. When FrT-* 0, while X,Y = 0(1)
the flow tends to rest (Equation 3.13) while the body retains its

shape,'the thickness belng equal to unity.

It is a matter of simple algebra to show that a nontrivial

small perturbation expansion has the form

U= Fry Uy + FrTaUg o0 )
V= FrpV1 + FrTsv2 + ... ? [3.14]
N = FrTle + FrT4N2 + ...

R
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Tr.e above expansion will be shown to be regular at infinity
and ccnsequently there is no need to consider inner and outer

expansions separately,

Expanding U(X,Y) and V(X,Y) in the vicinity of ¥ = N(X) as
given by Equations [3.14] and substituting in Equations [3.10]-

[3.13], we get the following set of equations after separating
terms of the same order

(1) Uy, Vi, Ny

Vi =0 (X>0, Y=0) [3.15]
N, = % (1 - U.2) (X>0, ¥ =0) [3.16]
Vi - BiH,y = 0 (Y = H(X) [3.17]
M=o t=-1 (2] =) [3.18]

Hence the first order approximation is that of a rigid wall on
the free surface and uniform flow at infinity.

(ii) Ua; Va; N2

Vz = (UiMi),y (x . = 0) [3.19]
N2 = - UyUz (x> 0) [3.20]
Va - UzH,y = 0 (Y = H(X)) [3.21]
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V =0, Uz =0 (|2] = =) [3.22]

In the second order approximation, the condition on the un-
perturbed free surface (Equation 3.19) is equivalent to a dis-
tribution of sources generated by the first order flow, with no

flow at infinity. It is easy to ascertain that

[ Vo dX = Ny V1 = 0 [3.23])
(o]

SinceN1= 0 as X= o and Uy = 0 at the stagnation point X = 0,
Obviously W, and Wz are analytical functions of Z,

Higher order terms satisfy equations similar to those of
second order, but the computations become tedious as the order

is increased.

c, Geheral Solution

The solutlions of the different order approximations
may be obtained as follows (Figure 5): The region AOBA of the
Z plane 1s mapped on the { half plane by

2 =2(t) (3.24]

and the first order complex potentlal Fi, = & + 1¥; 1s mapped

on the same { plane by

F. = const X ¢ [3.25]

St
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At second (and higher) order the imaginary part of Fo=& + 1Y¥2
1s given along the £ axis (Figure 5b) by Equations [3.19] and
[3.21]

Yo = - U1 Ny (¢ > 1)

[3.26]

¥, = const (8 < 1)

and Fz(l) is found by solving the related Dirichlet problem.

(d) Application to the Rectangular Body

As a simple example we conslder the box-like shape
body of Figure 6. The AOBO region of the Z plane 1s mapped on
the ! half-plane by

(c2- 1)* + = o+ (e 1)*] [3.27]

N
]
[+

where both (¢2- 1)% and the logarithm have real determination on
£ > 1.

With Fy = ~ {/7 we get

4
W, = Uy - iVy = d—g-% - (-gi-ll- [3.28)

In particular from Equation [3.16) Ny is given by

Mo=s(1-0")- E,{—l (6> 1) (3.29]
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Equations [3.29] and [3.27] describe the shape of the free
surface in a parametric form. N, (X) is represented graphically

in Figure 7.

The next order term F, = &> + 1¥ has, according to Equa-
tions [3.21], [3.28] and [3.29], the imaginary part

3

1

L (&-1
g+1

Y2 = - U1N, ti1

0) [3.30]

(6>1, n

Yo =0 (<1, u=0)

and Wz vanishes at infinity.

Fo(l), with given imaginary part on the real axis € is
determined by the Cauchy integral

dé 1 (e-1) ag
F = - vy T - = 7y [3'31]

1

The integration in Equation [3.31]) may be carried cut analytically,
the result being for { = ¢, &€ > 1

b e b
wle) {2 s (53] dmle(eo (3.3

The velocity Ua(0,8) is, accordingly
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otp 6 - 1 g-1 \% £-2 2 '}’1
UE(Ule) - —aie'ax - (-l+€\? ) 3{ E*l ’ * e+1 .,'1[5—(6 -1\ ]r
+e ‘o P

[(3.33]

and finally the free surface elevation is given by Equation [3.2C]

No = « UhyUa = - i‘l_. 3 + —"-‘———xc-e .n[g-('g'?- l)él [3-3"]
2 1v2 {€+1‘3 (E'-‘._ 1):

Nz and N/FrT2 = Ny + FrT’Ng as fun:tions of X are represented

graphicaily in Figure 7.

(e} Pressure Distribution and Forces Acting on the Body

The dimernsionless pressure has the following expan-
sion resulting from the Bernoulll Egquation,

2
Fro,

Pm.Y+ >

[1-(0a2 + V,2))- F?T‘(01Uz + N\Vad+. ...

(3 35!
A detalled analysis ~f the forces acting on the body show that
the drag is equal to zer»>, as it should be in an ideal fluid
flow with no waves. The drnamical vertical force as well as
the moment are different from geros even at first arderQ The
possibility of omputing sinkege an< trim vis the small FrT ex-
pansion will te explore? in 8 future work.




HYDRONAUTICS, Incorporated

-oh.

(f) Stability of the Free Surface

Experiments show that as FrT increases a breaking
wave appears in front of the body (Baba, 1969). The inspection
of Figure 7 reveals that as FrT increases the free surface be-
comes steeper. Because of the convexity of the free-surface
near the body, the centrifugal effect diminishes the pressure
gradient normal to the surface. When the pressure gradlient be-
comes less than zero, the pressure at some point inside the fiuid
is smaller than the atmospheric pressure. As shown vy G.I.Taylor
(1950), such a condition leads to the instability of the free-
surface and very often, to its disruption or breaking. Adopting
the vanishing of the pressure gradient as a criterion for free-
surface stability, i.e., the Taylor stability criterion, we are
led to the condition

dp! - 12 4 g2
g,'ﬁ,—.--ps(1+n:,.’)§+p“ —— =0

Rewriting Equation [3.35]) in dimensionless variables and

with r' = - o' (14, 2 )'3/? we arrive at marginal sta-
. ?

lx! Dvxl
bility for

(v* $ VN, (08, )2 e, MR (3360

Expanding Equation [3.36) on the free-surface yields, at Fr,*
order, | | |

st g
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oP

S = - FrotUa®N, o - FrT"(UI’Na,xx + 201UzN1, 4y )
1
-1+ 3 Fr,r‘m,; + FrTeNl,xNg,x =0 (3.37]

The stability criterion as expressed by Equation [3.37] has been
applied to the flow plast a box shaped body. With N, Nz, U,
and Uz given in Equations [3.28], [3.29], [3.33] and [3.34] the
different terms of [3.37] have been computed as functions of &.
In Figure T7a we give the location of the point of minimum -9OPdn
as a function of FrT. The point of minimum -OP/dn is located at
X= 0.3.

(g) Discussion of Results

A uniformly valid expression for the velocity and {ree-
su: face profile has been derived. The solution of first order
is based on a rigid wall approximation while in the second order
a singularity distridbution is used to satisfy the free-surface
condition. The solution has the proper behaviour at the stagna-
tion point S (Figure 7) since both W and dN/dX vanish there in
the case of s blunt dbody. ’The‘behavior at infinity is also
correct, |

Inspection of the free-surface profile as a function of

. PrT(Figure 7) shows that as FrT increases the trec-uurrhce‘be-

comes steeper. This 1s a second order effect and reflects the
influence of the nonlinearity of the free-surface condition.
Although at FrT of order one or larger it is doubtful whether
the first two term: represent the expansion accurately, the

trend it n:vartheless obvious.

B s
e -
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The prgséure gradient normal to the free-surface decreases
with Fr, (Figure 8). At Frp, = 1.5, Taylor instability of the
free surface occurs. Of course, the value of the critical FrT
predicted by this second order theory is probably not too ac-
curate, but the calculation serves to suggest the probable
existence of a critical value of FrT, beyond which wave breaking
ocecurs,

In analogy with progressive free surface waves, we might
even expect the onset of Taylor Instabliiity to coincide with
the non-existence of a free surface wave without breaking.

The present approach permits an evaluation of the influence
of the bow shape on the inception of free surface breaking as
well as the determination of the sinkage and of the trim of
bodies of finite length.

4, High Froude Number Flow (FrT > 1): The Jet Model

‘a) General

In the case of high rrT it is appropriate to relate
the variables in the outer zone to the outer length U'*/z and
the velocity U'

x=gx' /% y =gy U n = ' U b= gt

Ueu U v e VG e eget NS [3.38)

s S R it M o mb
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The exact boundary conditions become now

2

u 2

v

——Z—-—+n=:§' (y =n) [3.39]
u-vy =0 (y = n) [3.40]
u=-vh, =0 (y = h) [3.41]
u=-1; v= O (x=o; y= =) [3.42]

with w = u - iv an analytical function of z = x + 1y.

At the iimit T'g/U'2 = (Fr,ra - w) the body collapses into
a line along y = 0 (Figure 3) and the unperturbed state is that
of uniform flow. The first order equations are the linearized
equations of gravity waves of the type [2.18]) - [2.19]) (see next
paragraph).

The problem of two dimensiont” flow, in this approximation,
has been studied extensively. Por the case of a blunt body at
the free-surface two types of representations have been suggested
in the literature:

(1) The replacement of the body by a source (Wehausen
and Laitone, 1960) or by a constant pressure acting on the free-
surface behind the bow (Lunde, 1952). It is easy to ascertain
that the two are identical if the source is lovcated on y = 0.

The first order velocity potential for a souree of strength
Q is (Wehausen and Leitone, 1960)

-
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" z

[
n z - % -iz ! e

£,(z) = 01 + 1¥y = e J —— da [3.43]

3 1o

o

The free-surface profile corresponding to this solution has
a wavy shape far behind the origin. It cannot, therefore, simu-
late a semi-infinite body of arbitrary shape. Near the origin,
an expansion of £1(z) for small z shows that the free-surface
is continuous there, since the integral in ([3.38] behaves like
In z for small z. The complex velocity is singular near ther
origin like Zn z. This behavior will be found unsatisfactory

for matching with the inner solution (naragraphs c, e).

(11) “The replacement of the body by a _pressure dis-
tribution singular &t the leading edge 1ike |x| . This ap-

proach is used in studies of planing surfaces (Sedov 1965,

. Maruo 1951;'Squire‘195§). _Approximate‘SOlutions:have been found

for inclined'flatfplates of finite length by a Fourier series
'ehpansion pfrthe pressure"diStribution. In these*sblutions the
velocity w 15 singular near the leading sdge (z = 0) like z_%,
while the free- surface is continuous there. For this reason

this type of singularity, although stronger than that of (i),

is still too weak in order %o permit matching with the inner ex—
pansion (paragraphs c,,e) An interesting feature of the planing
solution is the fact that the pressure distribution is Inte-
‘grable. For thils .reason the leading edge correction and the
inner expansion are not essential., It was nevertheless assumed 3
that a Jet exlists at the leading edge and Wagner (1932) has ‘
’linked the Jet flow and the pressure,singularity in a way Simi-

lar to the matching of the inher‘and outer‘expansions.:

e

il . i
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Wu 71967) has studied the flow past an inclined surface in
the high Fr _ezime by matched asymptotic expansion.

In the following paragraphs we study the flow past a blunt
semi-infinite body. The outer expansions corresponds to a regime
in which FrT > 1 while FrL-* 0. Hence we are in the range of
displacement ships, the buoyancy being much larger than the
dynamlic 1ift, dynamic effects being important only in the bow

region.

(b) The Inner and Outer Expansions

The inner and outer expansions of Equations [3.39] -
{3.42] follow <closely the derivations of Section II.2, the body
length being now lmmaterial.

The outer expansion has the form [2.16], with € = €'=V/Fr,’
= T'g/U'® this time. Again the choice of the first order ex-
pansion is dictated by the fact that '

h(x) = e*H(x) and H(x) = 0(1) o [3.4)

The first order terms satisfy equations simi;ar to [2 17} -
[2 21] which may be written in a complex form as

Re (wp +ifi) =0 (x>0, y=0)  [3.45)

Yo = (x>0, y=0) | (3.46)

I o RS
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¥,

li
o >

(x <0, y=0) (3.47]

(x = + =) [3.48]

i
@)

Wi
f1. = ¢ + 1¥; and w1 = uy - ivi being analytical functions of
z in the domain y < O.

The inner variables are those of [2.33) with Z and W de-
leted. The zero order inner expansions are exactly the free-
gravity flow Equations [2.35] - [2.38].

(¢) The Zero Order Inner Solution for the Rectangular Body

Let us consider again the simple case of a rectangular
body (Figure 9). In the inner limit X and Y are fixed with re-
spect to the bow and we assume that the free-gravity flow there
takes the form of a jet directed upwards. Gravity effects are
taken into account along the free-surfacé upstream by the outer
expansion. The same effect on the Jet upwards at some distance

from the bow is ignored.

The solution 6f the inner problem follows the classical
methods of free streamline flow studies (Gurevich, 1965).

The complex potential Fo plane 1s mépped on the auxiliary
£ = ¢ + iy half-plane by

dF

o __4aAtH

_— " L N TR, YN

P
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The function Qo = in (1/Wo) = In (1/|W0|) 4+ 16 has given

imaginary and real parts on the boundaries

Ret = O (AJ;¢ > 0) )
6 = m/2 (8J; -1 < &£ < 0)
5 [3.50]
6 = 3m/2 (SB; -b2% < £ < -1)
9= (BA; £ < -b%) )

where

b® is an arbitrary constant.

The mapping of Qo on { i1s a solution of a classical mixed
problem (Signorini problem) which is reduszed +o a Dirichlet
1
probiem for the function QO/FQE. The result of the integration

of Cauchy's integrals is

% 2
-1 (e ib) . (3.51)
+1 \t2 - 1b

W Y

Q = in g
r

With a new auxiliary plane w related to { through
3
w= [3.52]

we get from [3.51] and [3.52)

w+l
o  w-1i

3
w=1b
E:IS) [3.53]

T e LR
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n+l/2

Eigensolutions of the type QO ~ 1 are ruled out since they

yield infinite or zero velocity far downsctream.

The mapping of the Z plane on the w plane results from the

basic relationship
dFo
dz = — (3.5%4]

W
0

Substituting [3.49], [3.52] and [3.53] into Equation [3.54]
and taking in consideration that 2 = - 1 for w = - ib (Figure 8)
we get

V]
w?H w-1 [w+ib
w o+ti jw-ib

dw

The integral of [3.55] can be carried out in a closed form with

the result

% (w?+ ba)% - = in (0% )t w i(E-b)(w2+b2)%

-ib

Py
2 2 2 2)\°
+ (2b-1) 4n (0 +_?b)+u) + 1 4n 2 +(wi$ bZ) -\ [3.56]

In all the above formulae the square roots and the loga-

rithm have real determination on w = resal.

The unknown constants A and b have to be determined from
matching wilth the outer expansion. For thls purpose let us
seek the behavior of Z and Wo far from the bow, i.e, for

le >> b, From Equation [3.56] we get for large w
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2 2

.
2h [Q— - i(2-b) o + (2b-1--b§— Y bnw + 1 g (2b-1-%— )

Z+1=5%2
™

2

w

+ ib +..} [3.57]

Similarly, from Equation [3.53] we obtain for wo

1(2-b) , (p-2)%  1(0°- 2) 4.,

0 T w
202 3w

[3.58)

Two cases of interest are to be discussed separately:

(1) b # 2. In this case in a first approximation

3
wo=-1-ﬂi‘-‘§'i“— -Zl_g+ - 13.59)

T

N =-1+ (2b-1-92—2- )A-2(2-b)'\/§ x%+....(x > 0) [3.60]

0

Ny =-1 (X < 0) [3.61]

Hence, the velocity perturbation behaves llke Z'%, while
N ~ - Xé.
o
(11) b = 2, For this distingulshed value

2n3/2 4
Wo = -1 -1 —;575 ;575 I [3.62]
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3/2
_ A 1
NC =-1+A+ 372 h7z (x > 0) [3.63]
T X
N =-1 (X < 0) (3.64]

In this case for large X the veloclty perturbation decays like

1/2

2-3/2 unile N_ tends to the constant value -1 + & like X /°.

There is no major difficulty in determining the zero inner
solution for bodies of other shapes than the rectangular, pro-

vided that 6 1is given as a function of & (for instance, a poly-

gonal body). In the case of an arbitrary body with given 6 as
a function of x (or y) the problem becomes extremely difficult

and leads to an integral equation for 6(&) (Wu, 1967).

(d) The First Order Outer Solution

The outer problem reduces to the determination of

£1(z) subject to conditions [3.45], [3.46]) and [3.u48], while
for the particular case of a rectangular body Equation [3.47]

glives
¥, =1 (x £ 0, §y= 0) {3.65]

The problem is made unique if the singular behavior of
£f1 (or wy) near the bow (z = 0) “s prescribed. The inner so-

- lution sh)ws that there exist two possibilities for WO: Equa-~
tion [3.59] or Equation [3.62]. A detailled study shows that
matching is possible only in the second case. The reason is the

1f b ¥ 2 the matching requires that wy ~ z ° near

following:

e+ e a v

S —
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the origin and A or (2-b) has to be of the order e*%. In the
first case n1 1s continuous at x = O and has the valuemy = - 1

there; this requires a solution with n1 dropping from N1=0(x = o)

tom = -1 (x =0). Such a solution is not possible for the
assumed type of singularity of wi. If (2-b) is O(G*%) and A = 0(1),
n1 has a jump at x = O from (-1 + A) to (-1). Again the assumed
type of singularity of wi does not allow for a discontinuous 7,
(see paragraph a of this section).

Consequently, we adopt the value b = 2, and the inner term
contains A as the only unknown. Moreover, w, behaves near z = 0
11ke z-3/2 while 1. 1s singular like xF for x > O.

An exact solution of £3(2) is still difficult. The usual way
to find it (Sedov, 1965) is to consider the function wy, + 1fy
(suggested apparently for the first time by Keldish) and to con-
tinue it analytically over x > O in the entire z plane cut along
x < 0, With

wi(z) + 1fy(z) = k(z) {3.66)

the unknown function k(z) has to be imaginary for z = x > 0. Its
real part is in fact the linearized pressure. The solution of
Bquation [3.66] with the radiation condition [3.48) is

f1(z) = e"""[ e k(2 )an (3.67]
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Finally k()\) has to be determined from Equation [3.65] which
yields the integral equation

X
1 = e‘i"‘/r e Me(n)an x<0 [3.68] |

-
IO

At this stage we do not seek a solution of Equation [3.68]
by general methods, but adopt an approximate simple expression ;
for k(z) which satisfies only approximately [3.68]. ;

The simplest form of k(z) imaginary along x > O and having i
the propér singularity at z = O is R

k(z) = —§§5 [3.69)
2

with a an arbitrary constant.

From Equation (3.67] we find

-1z eik
f2(z) =1 e a[ ;375 a\ (3.70]

The integral in (3.70] may be expressed by the aid of the Gamma ;
Incomplete Furction (Gradshtein and Rhyzik, 1965) and f,(z) be- |
comes |

£1(z) = 12 & 1E/M) £y, Liy) [3.71) E
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The function P(-é, -1z) is analytical in the whole z plane cut by
x =0, y> 0. It has the following asymptotic series (Gradshtéin
et al, 1965):

(1) For small z:

D(<d, -12) = D(<3) + o17% 3], N L1)7(-12)"
{. n!' (n-3)

n=]1

(3.72]
Hence with I'(-4) = - 2#5, f. has the expansion

£1(z) = - sorf 2 e 1%y 210 2t s o(z§) (3.73]

and
¥:(x,0) = -(21)* a + 2ax'§ + o(xQ) (x > 0)
[3.78)
¥, (x,0) = -(2r)} a + o x }) (x < 0)
(11) PFor large z:
r(-3, -1z) = |z|-3/2 o-13(arg 2-1/2)/2 o“[1 + o(]:—l)]
(3.75)
and
£, = -2 e-13 arg z/2 [1 + O(T:T)] {3.76)
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Again, ¥, = Imf, follows the expressions *

Y = o(—) (x > 0)
(3.77}
¥, = -2+ o(—l-) (x < 0)
|2]

Unfortunately ¥, is not constant along x < O, as required
by Equation [3.65]. But the approximate solution has the proper
behavior nesr the bow, where w, ~ z'3/2 and n, = ¥; is 1like
x'i for x > 0, and also at x = - = where 7, — - a with no waves
) left behind the body.

Now, it 13 a matter of convention how to pick the value of 'i
; a in order to satisfy approximately Equation [3.65]. If we try !
| to satisfy [3.56] near the bow a may be obtained from the ccn-

dition

Y, (0,-0) =1 (3.78])

which gives
a=-1/(er)} (3.79]

Although we have no exact soiution for the cuter problem,the ,
approximate expression [3.71] reflects the main features of the
solution. |

(t) The Matching of the Inner and the Outer Solutions

The matching is generally achieved by an 1ntermediaté
expansion (Cole, 1968). 1In the present case it can be done by
. the simple principle (Van Dyke, 1964): The outer limit of the
inner solution equals the inner lidit of the outer solution.
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Substituting z = €¢*Z in the outer solution [3.71] and seeking
the 1imit Wy (Z) for €” = 0 and 2 = 0(1) we obtain from Equa-
tions [2.16] and [3.73]) for the inner limit of the outer solution

ia *1/2
Ws-w-l+0(€ ) [3.80]

The outer solution matches with the outer limit of the inner
solution [3.62] only if

a~ et/ [3.81]

The estimate of [3.81] is the main result of our analysis.
In particular, for the value of a of [3.79],

2/3

v

A e*-1/3 [3.82]

The matching of n and N_ is also ensured at order e*~1/2 yitn
A given by [3.82]): From Bquations [2.16] and [3.74) we find for
the inner limit of the outer solution

N e - — ot + o(1) (3.83]
*? ;; x?

while the outer limit of the inner solution {3.83) has the form

oot e e
e*" 27 X

L e —— R -
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(g) Bow Drag

The bow drag 1s evaluated from the momentum loss in
thg Jet

D' = pU'3a!
or, in a dimensionless form

D= D! /pU'3T! = A

‘ 1
From Equation [3.81] we have D ~_FrT'3 or

D' ~ pU'af'(U'z/gT')i [3.85]

If we assume that the bow drag for a body of finite length L'

‘'has the same expression we have for the bow drag in its con-
ventional form ’

1
3

D1/purRLe = (vr/) (U2 /e )Y = (oo /n)¥ (e e ) [3.86]

(h) Discussion of Results

In the present section the free-surface flow past a
blunt body with high FrT number (but low_FrL) has been studied.
The problem is different from that considered in planing studies,
since the position of the body is fixed and its botfom is hori-
zontal. o



-~ - HYDRONAUTICS, Incorporated

4j-

(1) The proper type of pressure singularity at the
bow in the outer solution is of the order Ixi'3/2. This pressure
is not integrable so that 1lift may be evaluated only via the
inner expansion. Obviously, the inner solution shows that the

dynamic pressure is 2 maximum pU'z/é at the stagnation point.

3
Y
i
3
" The main results of the analysls are the following:
{1i) A Jet is assumed to appear at high Fro, numbers.
The energy of the jet is probably entirely dissipated. This is

causing a drag additional to the wave resistance.

(*ii) The Jet thickness and the bow drag grow slowly

with FrT like Fr 1/3

The present analysis may be refined 1ﬁ different directions:
By improving the outer solution, by considering bodies of finite
length, by stuaying different bow shapes and by extending the
results to real flat ships.
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IV. CONCLUSIONS

Special approximations are needed in order to analyze the
free surface flow in the vicinity of the bow of blunt ships. 1In
the case of thin ships (T'/B' sufficiently small), the inner bow
flow reduces to a two-dimensional flow in a vertical plane normal
to the bow. Furthermore, it is appropriate to consider a blunt
two-dimensional body of semi-infinite length and this is done

hereiln.

The situation at the confluence of a blunt bow and the
free surface is clarified first. It 1s shown that there are two
possible angles between a free surface and a rigid wall at the
stagnation point: (i) if the wall is inclined with respc:t to
the horizontal at an angle larger than 1200, the free surface
intersects the wall at 120°; (i1) if the wall is inclined at
less than 1200, the free surface is horizontal. The latter case

is usual for ships.

For small Froude number based on draft, Fr the flow can

T,

be analyzed by means of an expansion in Fr,,, according to which

the first approximation corresponds to rep?acing the free sur-
face by a rigid wall. The flow past a rectangular body is
analyzed to the second order. The solution to this second ap-
proximation shows that the free surface becomes steeper in
front of the bow. Application of Taylors instability criterion
leads to the concluslon that the stabllity of the free surface

decreases with increasing FrT, presumably, culminating in breaking.
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In the second approximation, the free surface becomes unstable
at FrT of about 1.5 and at a position 30 percent of the draft
ahead of the bow. The small Fr,, theory does not allow the cal-

T
culation of bow drag, which only ensues after breaking, but it

does permit the estimation of sinkage and trim,

For large Frj (but small FrL) the flow past a rectangular

bow has been analyzed. The problem is different from that con-

o T N T U N e~y

sidered in planing studies, since the bow is vertical, while
the bottom is horizontal. The problem is solved by matching
appropriate inner and outer solutions. The inner solution cor-
responds to a free surface without gravity while the outer flow
correSponds to the usual linearized free surface flow with

gravity. The main results of the analysis are: (i) the proper

type of pressure singularity at the bow in the outer solutio

if of order 'x|3/2; (11) a spray Jet appears at the bow, whose
energy 1s probably entirely dissipated, This Jjet causes a bow
~drag additional to the usual wave resistance; (1i1) the Jjet

thickness and the bow drag grows slowly with Fr_, like FrT1/3.
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FIGURE 1 - NOTATION FOR STEADY FLOW PAST SHIPS
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FIGURE 4 - FREE SURFACE FLOW IN THE VICINITY OF A STAGNATION POINT
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FIGURE 5 - FLOW PAST A BLUNT BODY AT SMALL FROUDE NUMBER
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