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NOTATION

Dotted variables are dimensional; undotted variables are
dimensionless

a, b constants

B' ship beam

D, drag force

f, F outer and inner comp-ex potentials

Fr = U,2/gT'
T Froude numbers

Fr = U'2/gL'L

g gravity acceleration

h'( h'(x') functions describing the hull shape

k(z) function of complex variable (k = w + if)

shiplength

L1 ' forebody length

N free surface elevation (inner, dimensionless)

p' pressure

P pressure (inner, dimensionless)

q velocity modulus

T' draft

u', v' velocity components

velocity component (Sect. I), complex
velocity w' - u' - iv' (Sect. III)

-U' unperturbed velocity at infinity

U, V, w velocity components (inner dimensionless
Sect. II); w - u - Iv (Sect. III)

V velocity vector

X', y' coordinates

4
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coordinate (Sect. II), complex variable
z' = x' + iy' (Sect. III)

X, Y, Z coordinates (inner, dimensionless)

V constant

Jet thickness (A = At/T')

- TYL' draft/length ratio

E B'/L' beam/length ratio

* = T'/gU' 2

velocity potential

velocity potential (inner dimensionless)

auxiliary complex variables

, p. auxiliary variables

angle and also dummy variable

e angle between velocity vector and x axis

n -An (u-iv)

-*
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I. INTRODUCTION

The wave pattern created by a ship moving steadily in an

ideal fluid and the related wave resistance are classical subjects

of hydrodynamics. Although the theory has diversified and com-

putational refinements have been achieved with time, there has

been little essential progress beyond the linearized techniques

introduced by Michell and Havelock. In essence the present method

of solution of the gravity flow problem is based on two approxi-

mations: (i) the free surface condition is linearizea and (ii)

the hull is replaced by a singularity distribution along a line

or a plane, The wave resistance is generally determined from the

rate of energy radiated far away from the ship.

The above two basic approximations have been given foundation

in a rational way in the last years by the application of the

method of matched asymptotic expansions (Tuck 1965, Ogilvie 1967).

It has been shown that the classical theory is in fact a first

order term of an outer expansion in which the observer is fixed

with respect to the ship length while the ratio draft/length or

beam/length (or both) tend to zero and the Pr number based on

length remains constant. In the vicinity of the body, in the

inner zone, the solution is still valid, provided that the slen-

derness parameter is sufficiently small and the ship has a fine

form. The latter condition has been somehow overlooked when

applying the theory to actual ships which do not generally have

a needle-like or knife-like shape. In the extreme case of a

blunt shape there is stagnation at the bow and the linearized

..... " ' -'_ _ _ _ _ _ :I;:i
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assumptions are badly violated there: the speed and the free

surface rise are no longer small perturbations of the uniform
speed and of the horizontal level, respectively. At the stern
the situation is different due to separation and viscous effects.

Realizing the importance of bluntness effects on resistance

of real ships, we have initiated a study of the free surface flow

near the bow and of the related resistance.

The present report summarizes our first results which, be-

cause of the complexity of the problem, involve in thia initial

stage rather crude approximations obtained for highly schematized

configurations. It is our feeling, however, that this initial

step yields basic understanding of the problem. We hope to be

able to extend and refine the results in the future, to compare

them with experiments, and eventually to apply them to actual

ships.

II. INNER AND OUTER EXPANSIONS AND CLASSIFICATION OF SHIPS

1. Notation and Basic Equations

The symbols used in this report arc given in "Notations"

and also shown in part in Figure 1.

The ship It defined by the shape of its hull represented

by the equation

f(x', y', a')-0 (2.11

or In one of the explicit forms

h
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y= h'(x', z') [2.2]

The three basic lengths associated with the hull are B', T'

and L'. Additional geometrical coefficients or lengths may be

considered, like the forebody length L1'. The latter is im-

portant in characterizing the bluntness.

Assuming that the flow is steady and uniform at infinity,

the equations satisifed by V' and n', given here for convenience

of reference, are as follows:

rot V, = 0 [2.3

(in the flow domain)
div 0o [2.4]

U+ V1 2 + W2 (oUre-urae225

v'- u'r',x, -w'', , - [(2.61

v' - u'h',, - w'W,, 0 [2.71

Rquations (2.31 and (2.4] express as usual irrotationality

and incompressibility, lquation [2.5] Is the dynamic Bernoulli

condition on the free surface, while Equations (2.61 and [2.7!

are the kinematical boundary conditions along the free-surface

and the hull respectively.



HYDRONAUTI CS, Incorporated

-4-L

In order to render the solution unique, the radiation con-

dition is imposed

U - U,; v, = w, = 0 (x, - + 00; y, - co) [2.8]

Equations [2.3] to [2.81 may be reformulated in terms of the

velocity potential 0' by replacing V by grad 0'.

2. Outer Expansion; Classification of Hull Shapes

Economy is achieved by making the variables and the equa-

tions dimensionless in the standard way. Let us define the

following outer variables

vUv/U,(u,v,w = u/U' v,/UW, /U'); x,y,z x,/, / ,

S= r'/L'; h = h'/L'; p p,/pU 2 ;, =O/uL,

[2.9]

Ths equations f flow 12.3] - [2.8] become, in terms of 0,

7 = 0 (in the flow domain) [2.10]

2  + nAr L - 1/2 2.ll]

(y = i(xz))

Sy x no Z] x  o [ (.12]

x, - 0, h,x - 0,0h, z - 0 (y - h(x,z)) [2.13]

U' -1 V = W - 0 (x- + Ca - )0 [2.14]
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The solution of 0 depends on x, y, z and the parameters

N
Fr = U'/(gL')2 , BI/LI, T'/L' for a given hull shape. The clas-Lsical technique for simplifying the nonlinear problem is to take

advantage of the fact that B'/L' or T'/L' or both are much smaller

than unity. With c = T'/L' and EB = B'/L' an outer expansion is

obtained by assuming that V and P may be expressed as a series

associated with an asymptotic sequence based on E or EB, This

has been done in numerous publications (see for instance Wehausen

and Laitone, 1960 and Tuck, 1965) and will not be repeated here.

Since by definition

h (x,z) = c(x,z) [2.15]

where H = 0(1), it is natural to consider an expansion of the

type

0 = - x + E01 + 0(E)

SET + 0(c) [2.16]

with x, y, z =0(i). For an outer observer with a position fixed

with respect to the ship length, the ship collapses in a line or

a plane at zero order and the flow is unperturbed. At first

order (and we consider here only first order terms) the equations

become the well known linearized equations

pI
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v2 , = 0 y < 0 [2.17]

-U1 + Il/FL = 0 [2.18] 

(y =o)

Vi- TIL x = 0 [2.19]

v, + H, = 0 (on the hull) [2.20]x

u= vi= wi= 0 (x- +m00;y- -o0) [2.21]

The hull, at first order, degenerates into:

(i) a line in the case of slender ships (eB = 0()),

(ii) a vertical plane in the case of thin ships

( = 0(I) and EB = 0(l)) and

(iii) a horizontal plane at y = 0 for flat ships

(CB = 0(1) and e = 0(l)).

Different flow regimes, and equations accordingly, are ob-

tained corresponding to the relationship between Fr and E.
L

Ogilvie (1967) has analyzed these possibilities. Since we con-

centrate here on displacement ships mainly, we should consider

the following two possibilities:

(i) Small FrL number, FrL2 = 0(1). In this case a

direct expansion of Equations [2.10] - [2.11] gives I

vi= (y = 0) [2.22]
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I.e., a rigid wall condition of the free surface. This expansion

is discussed in detail in Section 111.3.

(ii) Fr = 0(1), which yields the ordinary ship re-
L

sistance problem, with gravity waves left behind

the ship (Equations [2.17] - [2.21])

Higher FrL lead to planing problems not considered here.

Problem (ii), by far the most interesting, has been solved

by replacing the degenerated hull by: (i) a line of sources for

slender ships, (ii) a source distribution in the mid-plane for

thin ships and (iii) a pressure distribution on the free surface

for flat ships (Lunde, 1952).

The fulfillment of the free-surface conditions [2.18) and

[2.19] is equivalent to the extension of the flow in the whole

space (above y = 0) and the introduction of an infinite system of

singularities in y > 0, reflection of the ship singularities. Tn

the case of small FrL just one image is sufficient in order to

satisfy Equation [2.22].

3. Inner Expansion; Bow Singularity

The outer expansion is singular near the body in the

FrL = 0(1) case since the first order velocity tends there to

infinity. Tuck (1965) has considered an inner expansion for

slender ships. The inner variables are defined as

x = x- x/L'; Y = y/ = y'/T'; Z = z/e z'AT';

N = n/E= n/T'; U, V, W = u, v, w [2.23]
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The equations of flow [2.101 and [2.11] are again expanded

by assuming that U,V,W and N are asymptotic series with respect

to E

UVW = U'V'W + 0(E)

N = N + O(E) [2.24]~0

while X,Y,Z 0(l).

In the inner limit the observer is fixed with respect to the

beam (or draft). For such an observer, when e- 0 the hull cross

section keeps its shape unchanged while the shiplength tends to

infinity. The equations become, at zero order, two-dimensional

(in Y,Z) and the free surface condition becomes that of a rigid

wall.

The matching of the outer and inner expansions yields (Tuck,

1965) the classical result, at first order : i.e. the replacement

of the ship by a source system. The sour e strength is propor-

tional to the cross-section area variation. The inner expansion

is valid only if this variation is gradual, i.e. for fine ships.

The slender body expansion fails in the bow region if the ship

has some bluntness, and there the inner problem is no more one

of two-dimensional flow in the Y,Z plane, nor is the condition

on the free surface one of a rigid wall. For this reason we

should call the slender body expansions outer and inner midbody

expansions, in order to stress their limitations.
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In the case of a blunt-bow ship the appropriate inner vari-1* ables in the bow region are

X,Y,Z =x/E)y/,z/E; U,V,W u,v,w; N =/E = /

[2.25]

t,V,W=U03V )w + O(e); T =D (XoYZ) + O(e);N N N+ O [.26

While in the case of' the Inner midbody expansion the ob-

server is fixed laterally with respect to the ship and at zero

order the length tends to inffinity, in both bow and stern direc-
tions, in the bow inner expansion the observer Is fixed with re-

spect to the bow and the shiplength tends to infinity sternwise.

Substituting [2.25] and [2.261 into Equations [2.10] -

[2.13] we get at zero order

724 0 0 (in the flow domain) (2.27)

U0  +V W0 ~ 1~. .8

0

V 0- U0N -x W 0No -O0 (2.29]

:H.x W HT:0 (Z -1) (2.30]
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The condition at infinity [2.141 is lost and is replaced by

the matching with the outer expansion.

The bow Froude number FrT = U'/(gT')
2 is related to FrL and

e through

FrT2 = FrL2 /E [2.31]

Consequently the Bernoulli Equation [2.281 may have the following

form depending on the order of magnitude of FrL:

(i) FrL2 = 0(l)(l/FrT2 = O(e)). Then Equation [2.28]

u0 2 + v 2 + w2 - 1 (Z-N) [2.32]
0 0 0 0

i.e. free gravity flow at zero order in the inner region.

(ii) FrL2 = O(c)(l/FrT2 = 0(i)). Equation [2.28] remains

unchanged and we have the full nonlinear gravity problem.

(iii) FrL2 = O( 2 )(1/FrT2 - 0(1/E)). This case reduces to

that of a rigid wall condition discussed in the pre-

ceding section.

In the case of slender and thin ships the flow in the

vicinity of the bow is three-dimensional in all the above approxi-

mations. Further simplifications are achieved in the case of

flat ehips. Then the proper inner variables are

X - x/e; Y - y/E; Z - z; N - - 4/e; UVW - u,v,w (2.33]
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while the asymptotic expansion starts as

= 0 + 0(E); N N0 + 0(E); ,V U ,V + 0(e); W- 0(e)

(2.34]

Again the substitution of [2.33] and [2.34] into Equations [2.10]

- [2.14] gives, at zero order

V 2 = o [2.35]
x~y

2 0 2 (2.361

(Y NO)
V - UN - 0 [2.37]

0 0 OX)

V0 - UH, -0 (Y a H) (2.38]
o 0x

and the problem is reduced to that of gravity flow in the ver-

tical X,Y plane in the vicinity of a body of shape Y = H(XZ)

(here Z appears as a parameter). The requirement of flatness
has the meaning of T'/B' < 1, but still allows for Be/LI < 1.

In the flat ship approximation the observer attached to the bow

sees both width and length tending to Infinity (although pos-

sibly at different rates). Obviously this approximation Is not

valid near corners or regions of large change of H with X. There

the full three-dimensional flow or some other approximations have

to be considered. Again we obtain the three different oases

discussed above depending on whether I 1/ "- O(e),O(1) or 0(1/4).
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We summarize the discussion of all the encountered cases

in the following table:

DISPLACEMENT SHIPS (FrL < I)

Fr~aI2 ~' (E) O(l) 0(1),
o)(E) (c)

FrT2 U 1/g T o(1)2/E ,',). )l

A Linearized gravity waves far
from the ship. The ship is

Outer Rigid Wall replaced by a line (slender)
Expansion Condition or a plane (thin and flat)

distribution of singularities.
Rigid Wall
Condition
Everywhere Rigid Wall Condition
The. un-

Inner perturbed Rigid Wall Slender ships: two-dim, flow
Midbody flow is Condition in vertical planes normal to
Expansion the state the centerline (Tuck, 1965).

of rest.

Nonlinear Gravity Nonlinear free-gravity flow
Flsw. S~ender and
t- sb. tnree-dSlender ships: three-dim.flow.
thin shlwS: three- Thin ships: three-dim. flowdim. flow; flat' near a strut.
ships: twc-dlmn.nerasutInfoin: vticaI -. 1 Flat ship: two-dim, flow inInner flow in vertical

vertical planes
Bow planes normal to normal to a body

Expansion the bow. of infinite length.

obs.: In the .aze of fine ships the midbody expansion is valid
everywhere.
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Finally we present in Figure 2 a plot of B'/T' and FrT for

wore than one hundred existing ships.

There is no apparent correlation between the two parameters.

At any rate most of the ships considered are flat rather than

thin (B'/T' = 2.2 + 3.4).

The draft Froude number Fr is of order one in most cases,
T

but reaches values as high as 2 for a rapid containership and

more than 3 for cruisers and destroyers.

III. GRAVITY FLOW PAST TWO-DIMENSIONAL BLUNT BODIES OF
SEMI-INFINITE LENGTH

1. General

In the preceding sections it was shown that in the case of

flat ships the inner bow flow reduces to a two-dimensional flow

in a vertical plane normal to the bow. In the remaining sec-

tions of this work we consider exclusively such flows. More-

over, we are assuming that the outer flow is also two-dimensional

and that the body Is of semi-infinite length. Obviously, these

assumptions simplify the problem considerably. The essential

features of the bow flow are, nevertheless, included in the

picture. We plan to apply the results by some approximate tech-

niques to actual ships in the future, taking advantage of the

fact that for most ships the ratio draft/beam Is smaller than

unity.
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Consistent with the range of Fr considered, which apply
L

to displacement ships, we assume that the bottom of the midbody

is horizontal. The results permit however, to compute trim to a

first approximation, but we do not consider this problem here.

In the case of a two-dimensional flow (Figure 3) the dimen-

sionless velocity potential depends on only one parameter for

a given hull shape: 4 = * (xy;FrT). Consequently, the possible

asymptotic expansions of the exact Equations [2.10) - [2.141s

with the z components deleted, reduce to the following cases:

(I) Small FrT . In this case the Bernoulli equation

gives a rigid wall condition in a first approximation. A uni-

form expansion solves the problem. Results for the first and

second order approximations are given in Section 111.3.

(i) Large PrT . In this case the outer flow conforms

to equations similar to the linearized Equations [2.17]-[2.21],

while the inner flow is that of a free-gravity flow at zero

order. For this regime we sugg 9t two possible inner flow

models: The Jet model discussod in detail in Section 1II.4 and

the spiral vortex model. It Is presumed that the Jet model is

adequate for large FXTo while the spiral vortex model represents

moderate to large PrT flows. Only the theory for the former is

presented herein.

In addition a discussion of the exact equations of free-

surface gravity flow near a stagnation point is presented in

Section 111. 2.

_________ _______________
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2. Free-Surface Gravity Flow near a Stagnation Point

Let us consider the confluence between a free-surface and a

rigid wall in the vicinity of a stagnation point (Figure 4a).

In the symmetrical case (N 7 - r - 12) the classical Stokes

result (Wehausen and Laitone, 1960) requires that 7 = 12 - Al

= 1200. This result will now be extended for other possible

angles between AO and OB.

In the vicinity of O(z = 0, Figure 5a) we assume that the

z-plane is mapped on the complex potential plar- f (Figure 5b)

by

-iwi X/I
z - a e f + R(f) [3.1]

AOB being obviously a stream line.

The function R, which has to vanish at 0, is assumed to be

In the vicinity of 0 of the form

R= b f [3.2]

witn b b'e a complex number and y a real number.

Obviously, y > W/, otherwise the mapping of the corner

AOB is not ensured.

In order to apply the Bernoulli equation along AO let us

determine y and q* . u v as functions of s. From Zqua-

tions (3.1] and [3.21 we obtain or. AO (f -

y - - a sin W, / + b' sin 5 ( [3.31
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By expanding Equation.[3.41, q 2 is found as

q2  12(-1 0 (w-) 1 -2 abY / cos(?Al+B) +.. 3-51

Su-b3tituting y and q2 into Bernoulli's equation and retaining terms

of order (-W or (12at most we get

qT +
2 + -a sin ?\, + b' sin 5 +)0+.'

[3.6]

The identity 13.6] yields the following relationships be-

tween N, and 'A:

(i) N, 0. The first two terms of [3.6] give

8 a 3 =sn

This Is Stokes classical result. Obviously, ?12 > 27r/3

(ii) N, = 0. The first term of Equation [3.6]

vanishes, and the remaining give

= - -r1) [3.8]
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Since ly > 'A/r Equation [3.8] shows that 'A < 2r/3. A particular

case is that of y = 1, which renders the function R analytical.

In this case Equation [3.8] gives X = r/2, i.e. the confluence

between a horizontal free-surface and a vertical wall.

In conclusion there are two possible angles between a free-

surface and a rigid wall at the stagnation point:

(i) if the wall is inclined with respect to the hori-

zontal at an angle larger than 1200 (2r/3 < ?2 < i)

the free surface intersects the wall at 1200

(X = 2r/3) and,

(ii) if the wall is inclined at less than 1200

(- < 2r/3) the free-surface is horizontal

= o).

We will consider blunt bows of the latter type in Sec-

tion 111.3.

3. Small Froude Number Flow (FrT < 1)

(a) General

We consider here the flow past a blunt body of the

shape of Figure 5a. An asymptotic expansion with Fr as a small

parameter has as its zero order term the state of rest cor-

responding to FrT = 0. Hence, it is appropriate to make the

variables dimensionless in the following way

X = x'/T';Y = y'/T';N = n'/T';H = h'/T';U = u/(gT)
I/2

V v/gT 1/2 1/2 T 3/2
V = vl/(gT') ;F = + iT = (0'+ i?'PI)/g T' ;P = p'/pgT'2

t3 -91.

11-ROMNIM"NM®RM4
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The exact boundary conditions of two-dimensional flow are:

U1 + V2  FrT2  [i - -+ N- 1 3.10]
2 2

(Y = N(X)

V UN,x 0 [3.11]

V - UH, X 0 (Y = H(X)) [3.12]

V = O,N-- oU = - FrT z ).

W = U -iV and F = P + i! being analytical functions of

Z=X+iY.

(b) Small Perturbation Expansion

In order to simplify the nonlinear problem we seek a

solution valid for small Fr When Fr -* 0, while X,Y = 0(i)

the flow tends to rest (Equation 3.13) while the body retains its

shape, the thickness betng equal to unity,

It is a matter of simple algebra to show that a nontrivial

small perturbation expansion has the form

U = FrT U1 + Fr 3  + U2 +T T

V = FrTV, + Fr + ... [3.1]

N = FrT2 N1 + FrT4N +

Tt T
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Tne above expansion will be shown to be regular at infinity

and ccnsequently there is no need to consider inner and outer

expansions separately.

Expanding u(X,Y) and V(X,Y) in the vicinity of Y = N(X) as

given by Equations [3 -141* and substituting in Equations 13.10]-

13.13], we get the following set of equations after separating

terms of the same order

(i) U1, V1, N,

Vi = 0 (x >, y1 Y 0) [3-15]

N1  (I -U 1 2 ) (X > 0, Y 0 ) 13.16]

V1 -U1H,x = 0 (Y =H(X) 13.17]

Vi 0; U1 = - 1 (jz 0) [3.18]

Hence the first order approximation is that of a rigid wall on

the free surface and uniform flow at infinity.

(ii) U2, V2, N2

V= (u1N1),X (X 0) (3.19]

N2 = - u1u 2  (X > 0) [3.20]

V2 -U2H, X =0 (Y = H(X)) [3.213l
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v = 0, U2 = 0 (jzI -- ) 13.22]2

In the second order approximation, the condition on the un-

perturbed free surface (Equation 3.19) is equivalent to a dis-

tribution of sources generated by the first order flow, with no

flow at infinity. It is easy to ascertain that

000

V2dX - NiV lj =0 13.23]
0

0

Since N1-. 0 as X- cc and U1 = 0 at the stagnation point X = 0.

Obviously W, and W2 are analytical functions of Z.

Higher order terms satisfy equations similar to those of

second order, but, the computations become tedious as the order

is increased.

c. General Solution

The solutions of the different order approximations

may be obtained as follows (Figure 5): The region AOBA of the

Z plane is mapped on the C half plane by

z = z(.) [3.21

and the first order complex potential F1  01 + i'j is mapped

on the same ( plane by

F, = const X ( [3.25]

,'W, FT""
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At second (and higher) order the imaginary part of F2= + i2T2

is given along the axis (Figure 5b) by Equations [3.19] and

(3.21]

if= - U1 N ( > I) 13.26]

2= const (< < i)

and F2 () is found by solving the related Dirichlet problem.

(d) Application to the Rectangular Body

As a simple example we consider the box-like shape

body of Figure 6. The AOBO region of the Z plane is mapped on
the t half-plane by

Z + + ( )]3.27

where both ((2_ I) and the logarithm have real determination on

>l.

With F =- /Tr we get

w- - ivi - d 3.28]

In particular from Equation (3.16) N, is given by

Ni (1 - Q > 1) (3.29]

. .. ... . --
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Equations [3.29] and [3.27) describe the shape of the free

surface in a parametric form. N1 (X) is represented graphically

in Figure 7.

The next order term F4 = 2 4 i'? has, according to Equa-

tions [3.21], [3.28] and [3.29], the imaginary part

T2 --- UiNi R +I +I(> 1, 0 ) [3.30]

2 0 R (< 1, 0 )

and W2 vanishes at infinity.

F2 (), with given imaginary part on the real axis is

determined by the Cauchy integral

1 1

The integration in Equation (3.31] may be carried cut analytically,

the result being for > - 1, >1

1 2 + j+L- 1 1 3321

The velocity U&(Ot) is, ac}ordingly



HYDRONAUTICS, Incorpora te,!

-23-

I 77+7 I +

(3.33]

and finally the free surface elevation is given by Equation [3.2C]

N2 = 3 UU .=L-.+ . [3 + 3-2 t -( ]3.34]

N2 and N/FrT2 = N, + FrT2N. as fun.itiins of X are represented

graphically in Figure 7.

(e) Pressure Distribution and Forces Acting on the Body

The dimensionless oressure has the follnwing expan-

sion resulting from the Berno'ulli Ecwiatlon.

- - + ~r (1-(U 1' 2 Vl )]- PrT (U1U,2 V4V.) ...

(3 351
A detailed analysis if the firces acting 3n the body show that

the drag is equal to sern, as It should be in an Ideal fluid

flow with no waves. The dyvnamical vertical force as well as

the moment are different from zero even at first order. The

possibility of ,omputi.ng sinkage ane trim via the small PrT Ox-

pansion will te explore. In a future work.
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(f) Stability of the Free Surface

Experiments show that as FrT increases a breaking

wave appears in front of the body (Baba, 1969). The inspection

of Figure 7 reveals that as FrT increases the free surface be-

comes steeper. Because of the convexity of the free-surface

near the body, the centrifugal effect diminishes the pressure

gradient normal to the surface. When the pressure gradient be-

comes less than zero, the pressure at some point inside the fluid

Is smaller than the atmospheric pressure. As shown by G.I.Taylor

(1950), such a condition leads to the instability of the free-

surface and very often, to its disruption or breaking. Adopting

the vanishing of the pressure gradient as a criterion for free-

surface stability, i.e., the Taylor stability criterion, we are

led to the condition

- - pg(l + u V1 0

Rewriting Equation (3.35] in dimensionless variables and,Ithr' -- ' ( + •  )3/2
with rx' (+ns we arrive at marginal sta-

bility for i r (U" + V)N,,xl+N,.3/2- - ( a+N,)"1/ 2  13.361

Expanding Equation (3.36) on the free-surface yields, at PrT'

order,
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TUNJxx- Fr UN2 + 2UlU2Nl.x)

1+ L FrTNx + FrT6Ni'xN2x = 0 (3.37]

The stability criterion as expressed by Equation (3.37] has been

applied to the flow plast a box shaped body. With Ni, N2 , U,

and U2 given In Equations (3.28], (3.29], (3.33] and (3.34] the

different terms of (3.37] have been computed as functions of (.

In Figure 7a we give the location of the point of minimum - Pin

as a function of FrT. The point of minimum -P/1n is located at

X 0.3.

(g) Discussion of Results

A uniformly valid expression for the velocity and free-

su. race profile has been derived. The solution of first order

is based on a rigid wall approximation while In the second order

a singularity distribution Is used to satisfy the free-surface

condition. The solution has the proper behaviour at the stagna-

tion point S (Figure 7) since both W and dN/dX vanish there in

the case of a blunt body. The behavior at Infinity is also
correct.

Inspection of the free-surface profile as a function of

rT(Figure 7) shows that as T increases the free-surface be-

comes steeper. This Is a second order effect and reflects the

influence of the nonlinearity of the free-surface condition.

Although at PrT of order one or larger It is doubtful whether

the first two terms represent the expansion ascurately, the

trend is n :v he1ess obvious.

\ _ - ... . .... . . ....... ... !
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The pressure gradient normal to the free-surface decreases

with FrT (Figure 8). At FrT = 1.5, Taylor instability of the

free surface occurs. Of course, the value of the critical FrT

predicted by this second order theory is probably not too ac-

curate, but the calculation serves to suggest the probable

existence of a critical value of FrT, beyond which wave breaking

occurs.

In analogy with progressive free surface waves, we might

even expect the onset of Taylor Instabiliit to coincide with

the non-existence of a free surface wave without breaking.

The present approach permits an evaluation of the influence

of the bow shape on the inception of free surface breaking as

well as the determination of the sinkage and of the trim of

bodies of finite length.

4. High Proude Number Flow (FrT > 1): The Jet Model

fa) Geeral

In the case of high PrT it is appropriate to relate

the variables in the outer zone to the outer length TJ'a/ and

the velocity U'

x ' -' y j/tl; q - gq/'/i; h a mhl/'1;

u - u,/U'; v - v'AJ'; * m ,/U, 3 (3.38)
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The exact boundary conditions become now

2 2u + v2 +2 + 2(Y =  )  3-39]
22

u (y=t ) [3.40]
x

u vh X =0 (y =h) [3.41]

u--- 1; v--0 (x---; y---) [3.42]

with w - u - iv an analytical function of z - x -r iy.

At the limit T'g/U' 2 _0 (FrTa2 -) the body collapses Into

a line along y - 0 (Figure 3) and the unperturbed state is that

of uniform flow. The first order equations are the linearized

equations of gravity waves of the type (2.18] - (2.19] (see next

paragraph).

The problem of two dimensionL'. flow, in this approximation,

has been studied extensively. For the case of a blunt body at

the free-surface two types of representations have been suggested

In %he literature:

(i) The replacement of the body by a source (Wehausen

and Laitone, 1960) or by a constant pressure acting on the free-

surface behind the bow (Lunde, 1952). It Is easy to ascertain

that the two are Identical If the source is located on y = 0.

The fIrst order velocity potential for a source of strength

Q is (Vehausen and Leltone, 1960)

..........
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z
iz r in

fi(z) = (1 + i~j i n z e-  e d? [3.43]

The free-surface profile corresponding to this solution has

a wavy shape far behind the origin. It cannot, therefore, simu-

late a semi-infinite body of arbitrary shape. Near the origin,

an expansion of f1 (z) for small z shows that the free-surface

is continuous there, since the integral in (3.38] behaves like

In z for small z. The complex velocity is singular near the

origin like in z. This behavior will be found unsatisfactor-y

for matching with the inner solution (paragraphs c, e).

(ii) -The replacement of the body by a pressure dis-

tribution singular at the leading edge like Ix-2 . This ap-

proach is used in studies of planing surfaces (Sedov 1965,
Maruo 1951, Squire 1957). Approximate solutions have been found

for inclined flat plates of finite length by a Fourier series
expansion of the pressure distribution. In these solutions the

velocity w is singular near the leading edge (z = O) like z-2,
while the free-surface is continuous there. For this reason

this type of singularity, although stronger than that of (s),
is still too weak in order to permit matching with the inner ex-

pansion (paragraohs o, e). - An interesting feature of the planing

solution is the fact that the pressure distribution is inte-

grable. For this reason the leading edge correction and the

inner expansion are not essential. It was nevertheless assumed

that a Jet exists at the leading edge and Wagner (1932) has

linked the jet flow and the pressure singularity in a way simi-

lar to the matching of the inner and outer expansions.

....". .....
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Wu 11967) has studied the flow past an inclined surface in

the high Fr .egime by matched asymptotic expansion.

In the following paragraphs we study the flow past a blunt

semi-infinite body. The outer expansions corresponds to a regime

in which FrT > 1 while Fr -- 0. Hence we are in the range ofT L
displacement ships, the buoyancy being much larger than the

dynamic lift, dynamic effects being important only in the bow

region.

(b) The Inner and Outer Expansions

The inner and outer expansions of Equations [3.39] -

[3.42] follow closely the derivations of Section 11.2, the body

length being now immaterial.

The outer expansion has the form (2.16], with E *= T2

- 'g/U'2 this time. Again-the choice of the first order ex-

pansion is dictated by the fact that

h(x) = E*H(x) and H(x) = 0() [3.441]

The first order terms satisfy equations similar to [2.17] -

[2.21] which may be written in a complex form as

Re (w, + if,) = 0 (x > 0, y = 0) [3.45]

(x > 0, y = 0) [3.46]

- - - [
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= H (x < O, y = O) [3.47]

W. =0 (x- + C) [3.48]

f -1 + i! and w, = u, - iv, being analytical functions of

z in the domain y < 0.

The inner variables are those of [2.33) with Z and W de-

leted. The zero order inner expansions are exactly the free-

gravity flow Equations [2.351 - [2.38).

(c) The Zero Order Inner Solution for the Rectangular Body

Let us consider again the simple case of a rectangular

body (Figure 9). In the inner limit X and Y are fixed with re-

spect to the bow and we assune that the free-gravity flow there

takes the form of a jet directed upwards. Gravity effects are

taken into account along the free-surface upstream by the outer

expansion. The same effect on the jet upwards at some distance

from the bow is ignored.

The solution of the inner problem follows the classical

methods of free streamline flow studies (Gurevich, 1965).

The complex potential F plane is mapped on the auxiliary
0

-- + ip half-plane by

' ~dFo +I- = - _ T.1 .9
Si3.49]

dt _7r1



HYDRONAUTICS, Incorporated

-31-

The function fl I (l,4Io) = In (1/1w01) +ie has given

imaginary and real parts on the boundaries

R eft = 0 (AJ;P. > 0)
0

[3.50]

e 37/2 (SB; -.b' < t < -1)

9 = 7(BA; < -b2 )

where

b 2is an arbitrary constant.

The mapping of 1 orn C is a solution of a classical mixed
0

problem (Signorini problem) which is redu-ced t-o a Dirichlet
I

problem for the function ft /F 2 The result of the integration

of Cauchy's integrals is

iT
P, iin [3.51]

With a new auxiliary plane corelated to through

w = [3.52]

we get from [3.51] and [3.52]
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Eigensolutions of the type n it are ruled out since they

yield infinite or zero velocity far downstream.

The mapping of the Z plane on the w plane results from the

basic relationship

dF
dZ W [3.54]w

0

Substituting [3.49], [3.52] and [3.53] into Equation [3.54]

and taking in consideration that Z = - i for w = - ib (Figure 8)

we get

Z + i =w 13-i55h i of .ib)
-ib

The integral of [3.55] can be carried out in a closed form with

~the result

)(i2A+ b (wb+ b2 )+ W )Z + i (°)+ b2) --- in -i i(2-b)( +b2
r 22 -ib

+ (2b-l) in (W2+ b2)+ + i b +(2 b 2 )
• [3.56]

-ib iU)

In all the above formulae the square roots and the loga-

rithm have real determination on w = real.

The unknown constants A and b have to be determined from

matching with the outer expansion. For this purpose let us

seek the behavior of Z and W far from the bow, i.e. for
0

j l >> b. From Equation [3.56] we get for large a)

=A
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z+ - [ - i(2-b) + (2b-l--) In w + i (2b-l-lal

+ - +...] [3.57]

Similarly, from Equation [3.53] we obtain for W0

1 1i(2-b) + (b-2)2 _ i(b - 2) [3.58]
0 W 22 3W3

Two cases of interest are to be discussed separately:

(i) b f 2. In this case in a first approximation

w = - 1 +... [3.59]

No  1 + (2b-1--a!-)A-2(2-b) AX +.... (X > 0) [3.6o]

0 2 V\/r

No  -1 (X < 0) [3.611

Hence, the velocity perturbation behaves like Z-i, while

N m - Xi.
0

(ii) b = 2. For this distinguished value

- 3/2 1Wo = - 3/2 32 ... [3.62]
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4A3/2  1
Nc  + 6 + -32 / (X > 0) [3.631

N 0 =- (X < O) [3.64]

In this case for large X the velocity perturbation decays like

Z , while N tends to the constant value -1 + A like X
-I/ 2

0

There is no major difficulty in determining the zero inner
solution for bodies of other shapes than the rectangular, pro-

vided that e is given as a function of t (for instance, a poly-

gonal body). In the case of an arbitrary body with given e as

a function of x (or y) the problem becomes extremely %difficult

and leads to an integral equation for e(e) (Wu, 1967).

(d) The First Order Outer Solution

The outer problem reduces to the determination of

fl(z) subject to conditions [3.45], [3.46) and [3.48], while

for the particular case of a rectangular body Equation (3.47]

gives

= 1 (x < 0, y - 0) (3.65]

The problem is made unique if the singular behavior of

f1 (or wi) near the bow (z - 0) -. prescribed. The inner so-

lution sh )ws that there exist two possibilities for W : Equa-

tion (3.59) .r Equation (3.62]. A detailed study shows that

matching is possible only in the second case. The reason is the

following: If b p 2 the matching requires that wi " z near
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the origin and A or (2-b) has to be of the order e*l. In the

first case Tj2. is continuous at x = 0 and has the value j = - 1

there; this requires a solution with ni dropping from n=0(x = =

to I = - 1 (x = 0). Such a solution is not possible for the

assumed type of singularity of wi. If (2-b) is O(e*i) and A = 0(l),

ni has a Jump at x = 0 from (-1 + &) to (-l). Again the assumed

type of singularity of w, does not allow for a discontinuous nj

(see paragraph a of this section).

Consequently, we adopt the value b - 2, and the inner term

contains A as the only unknown. Moreover, w, behaves near z = 0z-3/24
like z while n. is singular like x-i for x > 0.

An exact solution of fj(z) is still difficult. The usual way

to find it (Sedov, 1965) is to consider the function w, + if,

(suggested apparently for the first time by Keldish) and to con-

tinue it analytically over x > 0 in the entire z plane cut along

x < 0. With

wi(z) + if±'(z) - k(z) [3.66]

the unknown function k(z) has to be imaginary for z - x > 0. Its
real part is in fact the linearized pressure. The solution of

Equation (3.66] with the radiation condition [3.48] is

Z
fl (z) -i "  0 D6 elk)dlk 13.671

eif

* U
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Finally k(X) has to be determined from Equation 13.651 which

yields the integral equation

X

e i = e'X k(N)dW x < 0 (3.68]

At this stage we do not seek a solution of Equation (3.68]

by general methods, but adopt an approximate simple expression

for k(z) which satisfies only approximately (3.68).

The simplest form of k(z) imaginary along x > 0 and having

the proper singularity at z - 0 is

k(z) - a (3.69]

with a an arbitrary constant.

From Equation (3.67] we find

zz eOix

fL(z)- i e-I a J dW (3.70]
J3/2

The integral in (3.70] may be expressed by the aid of the Gamma
Incomplete Function (Oradahtein and Rhyzik, 1965) and tL(z) be-

comes

n(,) - ia e"I ( ' / ) r(-i, -i,) (3.71]
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The function r(-, -iz) is analytical in the whole z plane cut by

x = 0, y > 0. It has the following asymptotic series (Gradshtein

et al, 1965):

(i) For small z:

r(4, -iz) r(4) + e" z "  2 - 1)niiz)j
n! (n

Ln-1

(3.72]

Hence with r(-) - - 27 , f1 has the expansion

f1 (z) 12ri a eiT/4 + 21a :4 + o(zi) (3.73]

and

Yi(x,0) -(2w)i a + 2ax "i + O(xi) (x > 0)
(3. 71 ]

Yi(x,o) - .(2r)i a + o( x C) (x < 0)

(ii) For large z:

r(4, - 1) - -3/2 e 3(arg -/2)/2 .t [ + O( 1)]

[3.75]
and

fl a -13 arg z/2 r1 + TIii 3-6
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Again, TY -Imfj follows the expressions

T1- 0 (x > 0)

)3.77]

, -a + 0(x < 0)

Unfortunately Y, is not constant along x < 0, as required

by Equation [3.65]. But the approximate solution has the proper

behavior near the bow, where w, z and ni - I, is like

x-1 for x > 0, and also at x- where -- a with no waves

left behind the body.

Now, It is a matter of convention how to pick the value of

a in order to satisfy approximately Equation (3.65]. If we try

to satisfy [3.56] near the bow a may be obtained from the crn-

dition

T, (0,-0) -1 (3.78]

which gives

a-- i/(02r) (379]

Although we have no exact solution for the outer problem, the

approximate expression (3.71) reflects the main features of the

solution.

() The Matching of the Inner and the Outer Solutions

The matching Is generally achieved by an tntermediate
expansion (Cole, 1968). In the present case It can be done by
the simple principle (Van Dykes 1964): The outer limit of the

inner solution equals the inner limit of the outer solution.
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Substituting z = E Z in the outer solution [3.71] and seekAing

the limit W1 (Z) for e* - 0 and Z - 0(i) we obtain from Equa-

tions [2.161 and [3.73] for the inner limit of the outer solution

ia

W - - 1 + O( l*-/2 [3.80]C *1/2 Z3/2

The outer solution matches with the outer limit of the inner

solution [3.62] only if

€ " - I /3 [3.81]

The estimate of [3.81] is the main result of our analysis.

In particular, for the value of a of [3.79],

w213 IE--1/3 1.2A -€[3.82]
2

*-1/2 wt

The matching of I and No is also ensured at order ewith

A given by [3.82): From Equations [2.16) and [ 3 .74] we find for

the Inner limit of the outer solution

N" -y,--X- +0(1) [3.831

while the outer limit of the Inner solution [3.831 has the form

21 ,+o [3.84)
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(g) Bow Drag

The bow drag is evaluated from the momentum loss in

the jet

D= pU'2A '

or, in a dimensionless form

SD.= D'/pU'2T' =A

1

From Equation [3.81] we have D - FrT or

O , pu'2T ' (U12/gT' )1 [3.85]

If we assume that the bow drag for a body of finite length L'

has the same expression we have for the bow drag in its con-

ventional form

DI/pU'2 L ' = (T'/L")(U'2 /gT')3 = (T'/L')5(TW2/gL1)" [3.86]

(h) Discussion of Results

In the present section the free-surface flow past a

blunt body with high FrT number (but low FrL) has been studied.

The problem is different from that considered in planing studies,

since the position of the body is fixed and its bottom is hori-

zontal.
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The main results of the analysis are the following:

(I) The proper type of pressure singularity at the

bow in the outer solution is of the order lx 3/2. This pressure

is not integrable so that lift may be evaluated only via the

inner expansion. Obviously, the inner solution shows that the

dynamic pressure is a maximum pU'2/2 at the stagnation point.

(ii) A Jet is assumed to appear at high Fr numbers.
T

The energy of the jet is probably entirely dissipated. This is

causing a drag additional to the wave resistance.

(iii) The Jet thickness and the bow drag grow slowly

E with FrT, like Fr T/3

The present analysis may be refined in different directions:

By improving the outer solution, by considering bodies of finite

length, by stuaying different bow shapes and by extending the

results to real flat ships.

~!
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IV. CONCLUSIONS

Special approximations are needed in order to analyze the

free surface flow in the vicinity of the bow of blunt ships. In

the case of thin ships (T'/B' sufficiently small), the inner bow

flow reduces to a two-dimensional flow in a vertical plane normal

to the bow. Furthermore, it is appropriate to consider a blunt

two-dimensional body of semi-infinite length and this is done

herein.

The situation at the confluence of a blunt bow and the

free surface is clarified first. It is shown that there are two

possible angles between a free surface and a rigid wall at the

stagnation point: (i) if the wall is inclined with respc t to

the horizontal at an angle larger than 1200, the free surface

intersects the wall at 1200; (ii) if the wall is inclined at
0

less than 120 , the free surface is horizontal. The latter case

is usual for ships.

For small Froude number based on draft, FrT, the flow can

be analyzed by means of an expansion in FrT, according to which

the first approximation corresponds to replacing the free sur-

face by a rigid wall. The flow past a rectangular body is

analyzed to the second order. The solution to this second ap-

proximation shows that the free surface becomes steeper in

front of the bow. Application of Taylors instability criterion

leads to the conclusion that the stability of the free surface

decreases with increasing FrT, presumably, culminating in breaking.

T

> , *I
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In the second approximation, the free surface becomes unstable

at Fir of about 1.5 and at a position 30 percent of the draft
T

ahead of the bow. The small Fir theory does not allow the cal-
T

culation of bow drag, which only ensues after breaking, but it

does permit the estimation of sinkage and trim.

For large FirT (usm l i the flow past a rec'tangularI
bow has been analyzed. The problem is different from that con-

sidered in planing studies, since the bow is vertical, while

II the bottom is horizontal. The problem is solved by matching
appropriate inner and outer solutions. The inner solution cor-

responds to a free surface without gravity while the outer flow

corresponds to the usual linearized free surface flow with

gravity. The main results of the analysis are: oi the proper

type of pressure singularity at the bow in the outer solution

if of order (ii) a spray jet appears at the bow, whose

energy is probably entirely dissipated. This jet causes a bow

drag additional to the usual wave resistance; (iii) the jet

thickness and the bow drag grows slowly with Fr like Frith/3

V Tgravty.The ainreslts f te aalyss ae: i) te po1e
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FIGURE 1 - NOTATION FOR STEADY FLOW PAST SHIPS
U,

FIGURE 3 - TWO-DIMENSIONAL FLOW PAST A BODY OF SEMI-INFINITE LENGTH
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FIGURE 4 - FREE SURFACE FLOW IN THE VICINITY OF A STAGNATION POINT
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